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ABSTRACT

The report presents a methodology developed to predict the elastic
and inelastic response of highway bridge superstructures. Simple span or
continuous multigirder bridges with steel girders and reinforced concrete
deck are considered. Inelastic behavior of the bridge is modeled through
the use of nonlinear stress-strain curves for concrete, reinforcing steel
and structural steel. Initiation of the damage to the superstructure in
the form of cracking or crushing of concrete and yielding of the steel is
detected, progression of the damage is monitored, and load versus deforma-
tion, and damage to the bridge, is developed until the attainment of the
collapse of the structure.

The developed method and the corresponding computer program
BOVAS (Bridge OVerloading Analysis-Steel) are designed to predict thé
overload response of the types of bridges described above. The accuracy
and applicability of the method is illustrated by applying the method to
four bridge overload tests that had been conducted elsewhere and reported
in the literature. Good agreement between the test results and analytical

prediction is noted.



FOREWORD

Prior to the study of the report, the reader should be informed
of the contents of the report, the goals of the reported research, and the
relations between the reported paft of the research and the parent research
project. The intent of the foreword is to inform the reader of these
issues. Even though they have been included in various parts of the
reports, they may not be easily recognizable by the reader.

The research project, "Overloading of Steel Highway Bridges,"
is aimed at the development of a computer based tool to be used to rate,
to determine the overload response, and to determine the ultimate load
carrying capacity of bridge superstructures and their main components.

The bridges are steel multi-beam, or multi-girder, superstructures with
reinforced concrete deck (or with monolithic deck with secondary details).
Simple and continuous span bridges are considered. The research program
consists of the following major phases: (1) mathematical model for beam-
slab bridges of idealized materials, (2) overloading response of reinforced
concrete slabs, (3) slip phenomena and its incorporation into the analysis
scheme, (4) mathematical modeling of steel girder reinforced concrete deck
bridges, (5) effects of web buckling, flange buckling, etc., (6) effects

of design details, stiffeners, X-bracings, etc., on the overload response,
(7) parametric studies on the overload of these bridges, and (8) development
of guidelines for "overloading' and user's manual for the developed com-
puter program.

Phases 1 and 2 have been completed within the framework of

vi




another research project, and the findings have been reported. Phase 3
and part of phase.S have also been Eompleted and reported in two research
reports. This report provides a summary of the work carried out in Phase
4. The reporting of this phase has been delayed in order to complete the
pilot research in phases 5 and 6. The pilot research have indicated that
the methodology employed in the reported research permits its extension
to more complicated structural configurations.

The report briefly presents, even though it corresponds to about
one quarter of the report, the research methodology of phases 1-3. The
contained information should be sufficient for the reader, if the prime
interest is on the overloading of steel multi-girder bridges. However, for
in-depth study of this report a compfehensive understanding of the summar-
ized research is needed. Thus, full use of the references provided in
this report needs to be made.

Because of the highly theoretical nature of the analytical
developments, efforts have been made to group together the parts of'tﬁe
formulae that will not be of any interest to bridge engineers or any
researcher, but are essential for those who would like to follow the
derivations. This material is included in the appendices. The reader
could easily dispense with the study of these appendices, unless step-by-
step checking of the theoretical derivations is required.

The developed methodolbgy to predict the overload response of
the steel bridges has been compared against available test data. The
correlation between the analytical prediction and experimentally obtained

results have been satisfactory. The report presents the results of two
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full scale bridge tests, and two scale model tests, and the analytical
predictions obtained via the developed method. Good correlation between

the full scale bridges and corresponding analytical results was observed.
The scale model tests and the corresponding analytical results have not
been satisfactory. The reasons for these discrepancies have been postulated
in the report. The authors have preferred to include both the good and the
bad verification studies to inform the readers of the possible pitfalls

that may occur when extrapolations are used.

The developed computer program is acronymed BOVAS (Bridge OVerload
Analysis—-Steel). BOVAS is under continual expansion and modification to
include various factors associated with the overloading of the steel bridges.
These activities are included in Phases 5 and 6 of the parent research

program.
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1. INTRODUCTION

1.1 Overview of Research

The report presents results of the research on the development
of a computer based mathematical model to predict the overload response
of highway bridge superstructures. The response considered includes
the elastic and inelastic behavior of the superstructure, until its collapée.
The reported research is a part of the overall research program on the
"Overloading of Steel Highway Bridges" sponsored by the Pennsylvania
Department of Transportation (Research Project 77-1). This report is an
interim report of this research project.

The bridges considered in the research consist of steel beams,
or girders, and composite reinforced concrete deck (Fig. 2 ). Henceforth,
these bridges will be referred to as steel bridges.

In 1966 over 700,000 overweight permits were issued in the
fourty-eight states (Ref. 24). Assuming no changes in regulations and load
limits this total was expected to grow to approximately 1,250,000 by 1975.
The fact that real factors of safety for bridges are not known is reflected
in the widely varying levels of overload permitted by each individual
state. Furthermore, recent information indicates that one in six bridges
in the United States is structurally deficient (Ref. 15). Thus the purpose
of the present research is twofold.

In the short term the methods will allow engineers to analytically
assess any damage, e.g. cracking of concrete or yielding of steel, a bridge
would undergo due to an overload vehicle. Over the long term, experience

with the analytical results, parametric studies and field tests may permit




correction of any deficiencies in new design and retrofitting of existing
bridges.

Theoretical work has already been completed on the inelastic
analysis of highway bridge superstructures consisting of prestressed or
reinforced concrete beams and a composite reinforced concrete deck (Ref. 29,
39 and 41). These structures will be referred to herein as concrete
bridges. In addition, theOrefical work has been completed on the linear
elastic analysis of steel bridges, including the effects of shear lag of
the deck, shear deformation.of the girders, and slip between the slab and
girder (Ref. 49). Wherever possible, use will be made of the previous
works, even though the nonlinear behavior of steel bridges requires special

considerations.

1.2 Purpose and Scope of Investigation

As stated earlier, the purpose of the overall research program
is the development of a mathematical model and anaylsis technique to predict
the overload response of steel highway bridge superstructures from initial
dead loads, in elastic range, to complete collapse of the superstructure by
the placement of vehicles with increasing gross weight. The mainthrust of
the reported research is the interfacing of the inelastic analysis for
reinforced concrete slabs (Ref. 39) with the linearly elastic analysis for
steel beams (with slip provisions) (Ref. 49), and development of a new
analysis scheme which will model the initiation and spread of nonlinear
behavior of the beams.

This report presents:

1. A summary of the analytical modeling of the reinforced concrete



slab and steel girder (Chapter 3).

2. A summary of the analytical ﬁodeling of the complete stress-
strain behavior for the biaxially stressed concrete and uniaxially
stressed steel, including cracking and crushing of concrete and
yielding of steel (Chapter 2).

3. Analytic modeling of simply supported or continuous highway
bridge superstructures (Chapter 3), and

4. Verification of the analytical model and solution technique

by comparing to experimental tests (Chapter 4).

1.3 Previous Work

Much of the investigation into the behavior of composite beams
started with two papers by Newmark (Refs. 38 and 45). In both papers the
structures were limited to simply supported structures and the effects
of shear lag were neglected. Although the second paper dealt with partial
interaction of the beam and slab, it was applicable only to isolated T-beams.
Terazkiewicz expanded on Newmark's second paper to incorporate an effective
width (Ref. 47). Based upon an initial assumption for the effective width,
an iterative process was used to converge to a particular effective width.
Neither Newmark nor Terazkiewicz includes the effects of shear deformations
of the beams in their analyses.

Gustafson and Wright presented a theory capable of analyzing
multi-girder simply supported and continuous bridges using finite elements
(Ref. 18). Wegmuller and Kostem rederived the basic formulations and showed

favorable comparisons with field tests (Ref. 52). The theory, however,



while incorporating shear lag ignored the effects of slip and shear defor-
mation of the beams. An attempt to iﬁcorporate slip into the theory was
presented by du Plesis (Ref. 14).

Recent research has been aimed at extending the previous elastic
theories to account for the effects of material nonlinearities. Newmark's
differential equation has been rederived to account for non-uniform
connector spacing, initial strains, and non-linear material properties.
Thege approaches utilize an incremental approach.

Algorithms developed by Proctor, Baldwin, Henry and Sweeney at
the University of Missouri (Ref. 4 and 43) and by Yam and Chapman at
Imperial College (Ref. 56) handle the boundary value problem as an initial
value problem where equations are solved by successive approximations. The
schemes developed by Dai, Thiruvengadam and Seiss at University of Illinois
(Ref. 12), Wu at Lehigh University (Ref. 55), and by Fu at the University
of Maryland (Ref. 17) use finite differences. None of these works relieves
all the basic inadequacies of shear lag, shear deformation, slip, and
continuous structures.

The finite element formulations have been extended into the non-
linear range in a multitude of ways. Kostem, Kulicki, Peterson, and
Wegmuller have done considerable work at Lehigh University using J2 theory
and a new theory for reinforced concrete. The structures analyzed have had-
J2 beams and deck (Ref. 53), concrete beams and J2 deck (Ref. 32) and
concrete beams and deck (Ref. 29, 39 and 41). They used both an incremental

and incremental-iterative techniques but the basic elastic¢ finite element



algorithm remains as de;ived by Wegmuller and Kostem.

A general finite element fofmulation, whicﬁ can be used to perform
elastic analysis of composite single or multibeam, simple or continuous
bridge superstructures, has been presented by Tumminelli and Kostem at
Lehigh University (Ref. 49). The formulation can include the effects
of slip between the slab and the beams, shear deformation of the beams, and
shear lag in the deck.

Several state of the art papers have discussed other aspects of..
composite beams and other theorectical work (Refs. 2, 27 and 50), but they
indicate the lack in generally sophisticated enough methods to analyze

steel bridges.

1.4 The Analytical Model

The behavior of the analytical model should adequately describe
the behavior of the real structure. Thus, the developed model for steel
highway bridge superstructures considers: (1) the flexural behavior of the
superstructure, (2) shear deformations of the beams, (3) the composite action
of the beam and the slab, (4) in-plane stresses in the beams and the slabs
developed due to eccentricity of the beams, (5) slip between the beams and
the slab, (6) the material nonlinearities,.and (7) the coupling action of
the in-plane and out-of-plane forces and deformations.

Since the material nonlinearities have a great effect on

behavior of the superstructure, in particular, the structural stiffness, a

realistic representation of the material behavior of the component parts




is essential. The biaxial stress-strain relationship and failure envelope
for concrete slabs developed from experimental and analytical results (Refs.
33, 35, 36 and 37) and implemented in References 41 and 42 have also been
used in the present model. In addition, the stress—-strain relation for the
slab reinforcement and the beam steel (Refs. 29, 30, 31 and 44) utilized in
the research is similar to that employed in References 41 and 42 for mild
steel. The variation of material properties through the depth of the beams
and the slab is accounted for by dividing the finite elements into a series
of layers through the depth. By defining the stress—strain relation on a
layer by layer basis the progression of material failure in terms of crack-
ing or crushing of concrete or yielding of steel can be monitored through-
out the superstructure. Through the use of the layering technique excellent
agreement has been obtained in previous investigations (Refs. 5, 19, 20, 29,
32, 34, 40, 53, 51 and 54).

Steel bridges present some special considerations not included
in previous work on the inelastic analysis of concrete bridges. In the
elastic analysis of composite steel bridgeé (Ref. 49) assumptions were made
regarding Which phenomena were considered of primary importance and which
were of a secondary nature. Although these assmptions were based on a
review of experimental results of composite beam tests and analytical
studies of bridge superstructures, later research may alter some of the
assumptions. |

The following phenomena are considered to be of primary impor-

tance in the analysis of steel bridge superstructures:



1. Slip between the steel beam and concrete slab (Fig. 3a).
2. Shear deformations of the steél giraers (Fig. 3b).
3. Shear lag of the concrete deck (Fig. 4).
The following phenomena are considered to be of secondary impor—
tance and are neglected:
1. Minor axis bending of the beams (Fig. 4).
2. Torsion of the beams (Fig. 4).
3. Interaction between the girders and wind bracing and diapﬁragms
(Fig. 2).
" 4. Lateral torsional buckling of the beams.
Although these phenomena are ignored in the present analysis, the developed
model does not.preclude their inclusion during the later stages of the
research program. In addition to these assumptions there are some other
general assumptions:
1. Small deformations
2. Failure in a flexural mode
3. Constant slab thickness
4. Static loading
These are covered more in depth in Chapter 3. The shear punching of the

deck is not considered.






2. MATERIAL BEHAVIOR

2.1 Introduction

This chapter presents the stress—-strain relationships employed
in the analysis scheme herein reported. The material stress~strain relations
are defined for the steel reinforcing bars, the concrete, and the beam or
girder steel. These relations are later used in establishing the stiffness
properties of the bridge components.

The behavior of concrete is very much dependent upon the particu-
lar stress state, i.e. tension or compression, and whether the stress field
is uniaxial, biaxial, or triaxial. A slab could be considered as a two
dimensional structural element in which bending in both the longitudinal
and the transverse directions produce a biaxial state of stress (Ref. 39).
The inelastic biaxial stress~strain relations of concrete are analyti-
cally described by empirical formulae. These experimentally derived formulae
are summarized in the following sections. The readers are refered to
the previous work mentijoned above for an in-depth treatment of the theory
and the derivations.

A beam, whether composed of concrete or steel, may be idealized
as a one dimensional structural element in which bending in the longitu-
dinal direction produces a uniaxial state of stress (Ref. 29). The elastic-
inelastic uniaxial stress-strain relations of steel can also be described
analytically by an empirical formula. Once the analytic stress=strain

equations are established, they are differentiated to obtain an expression



for the instantaneous slope, i.e. tangent modulus, of the stress-strain curve.
The tangent modulus is then used to formulate the elasticity matrix,[D],
which relates the stress increment to the strain increment.

{o} = 0] {e} (2.1)
The elasticity matrix is utilized to establish the slab and beam finite
element stiffness properties (see Chapter 3).

Throughout this'report the stress-strain relationships discussed
will involve both total stresses and strains and incremental stresses and
strains. To differentiate between the two types, incremental quantities
will be distinguished by the customary dot over the appropriate quantity,

e.g. Eq. 2.1.

2.2 Biaxial Stress-Strain Relationships

The idealized biaxial stress-strain curves have basically two
fundamental shapes: one nonlinear and one linear. In the region of
biaxial stress where compression is dominant the nonlinear equation governs,
while in the regions of biaxial stress where tension is dominate the linear
expression controls. Figure 6 shows the approximate regions in the
biaxial stress space where the nonlinear and linear equations are applicable.

The peak slope of the stress-strain curve is designated by Ep in the figure.

2.2.1 Nonlinear Stress—Strain Equation for Concrete

The nonlinear stress-strain curve used for concrete has the form

(Ref. 39);



€Ec

O = =) (I+Ce + De2) (2.2)
Where: 0 = the principal stress in the direction of interest
€ = the strain in direction of interest

V = Poisson's ratio (taken to be 0.2)
o = the ratio of the principal stress in the
orthogonal direction to the principal stress
in the direction of interest, i.e.
ar= 02/01
Ec = Initial tangent modulus in uniaxial loading
A positive stress from equation 2.2 denotes compression, and cor-
respondingly a positive strain denotes contraction.
The remaining parameters are:

Ec 2 E ECE

—_— S
op(l Vo) ep (1 \)oc)ap
(2.3)
E E
RS N -
(l—\)OL)O'P
Where: ' 0 1is the peak stress

€ is the strain at the peak stress and

E is the slope of the stress—strain curve
at the peak stress
The instantaneous slope of the stress-strain curve is obtained
by differentiating equation 2.2 which gives,

do _ E. (1-De?) (2.4)
de (1-va) (1+Ce + De”)*




When this equation is applied in the direction of the two principal stresses,

the results are:

E - AdO'; - Ee (1-D1e1?)

b de, (I-vo1)  (1+Cie14D1€12) 2 (2.5a)
By = 992 _ Ee (1-Dpep?)

2 de, (1-vap)  (14Cpe,4Doep2) 2 (2.5b)

Where: E;b and E;b are the tangent moduli in the two principal directions

1 and 2 respectively.

o1 02/01

O2 01/0,

D1(2) and Cl( ) are the D and C curve parameters evaluated for
2
the "1" ("2") principal direction using equation 2.3.

Thus, the incremental stress—incremental strain relation in

matrix form can be defined as:

(3'1} - Eiy O {éll (2.6)
o 0 Eap éz‘

The curve parameters C and D, which are presented in equation

2.3, can.be determined if the following quantities are known: Ec, v, o, Op,
€p, and Ep. The first three quantities have already been defined, and the

last three quantities will be defined in Sections 2.2.3, 2.2.4, and 2.2.5.

2,2.2 Linear Stress-Strain Equation for Concrete

The linear stress-strain curve used for concrete has the form:
a
o = £ ¢ (2.7)
“p

-11-



Where the tangent modulus, which is constant, is obtained by differen-

tiating the stress-strain equation:

doi _ _ER
de; €
P

The incremental stress—incremental strain relationship follows

from equation 2.8 as:

1| _|E,, O el
30‘22 l 0 Eéb ] }gzﬂ (2.9)
g
Where: E1p = doy = —£L (2.10)
de; €.
P1
do, %p
E ) = 2
2b de £
2 p1

o] (ep1) and Op2  (epz ) denote the peak stress (strain) for the "1" and

pl
"2" principal directions, respectively. Thus, the linear stress-strain
curve can be established once the peak stress and peak strain values are

known.

2.2.3 Biaxial Failure Envelope - Definition of T,

Nondimensional experimental peak stress envelopes for various con-
crete strengths (Ref. 5, 33 and 39) indicate that the fundamental shape of
the failure envelope is essentially invariant and that only the size of
the envelope will change with concrete strength. The true failure surface
can be idealized as a series of straight lines as shown in Figure 7. The
characteristic points used to define the idealized peak stress envelope are

shown in Figure 8 and the corresponding coordinates and equations defining

-12~




the straight line segments, which are expressed in terms of the character-

istic points and the stress ratio, o, are given in Refs. 5 and 39.

2.2.4 Peak Strain Envelope - Definition €p

The nondimensional peak strain envelope, shown in Figure 9, is
approximated by a series of straight lines passing through or close to,
the experimental ﬁeak strain points indicated in the figure (Ref. 33 and 35).
The characteristic points used to define the peak strain envelope are shown
in Fig. 10 and the corresponding coordinates and equations defining the
straight line segments, which are expressed in terms of the characteristic

points and the stress ratio, o, are given in Refs. 5 and 39.

2.2.5 Peak Slope — Definition of Ep

The peak slope is defined as the tangent of the non-linear stress-
strain curve evaluated at the peak stress. Experimental evidence indi-
cates that this peak slope has a value of zero in the compression-compression
region (Refs. 33, 35 and 37). In the tension-compression region experi-
ments show that the value of peak slope can vary from a value of zero for
stress states near uniaxial compression to a value equal to Op/ep for stress
gtates near uniaxial tension. The ideaiization used assumes the ratio of
the peak slope to the initial slope varies linearly with respect to the
stress ratio. This ratio has a value of zero near uniaxial compression

state and a value of 1.00 near uniaxial tension state. An in depth descrip-

~13-



tion of this relationship and the resulting equations defining the straight

line segments are given in Ref. 5 and.39.

2,2.6 Biaxial Constitutive Relationships for Concrete

The incremental stress-stress relationship for concrete in terms

of the principal stresses is: ,

g1 €1
(}z = [5 ] éz (2.11)
(312 ‘;12

Where the subscripts 1 and 2 identify the principal stress directions and
the dots indicate incremental quantities.

Even though the shear stress increment, %12, will be zero, its
inclusion is needed in the principal stress vector so as to include the
contribution of shearing stiffness term in the [D] matrix. This is necessary
s0 that when transforming the [D] matrix from the principal axes to the
2lobal x-y axes the correct elasticity relationships are obtained. The

[D] matrix can be expressed by (Ref. 35).

] \) ]
Eib 2E1b 0
1-vwv 1 -vv
1 2 1 2
_ v E, E'y
[b1=| +2% 3 TR 0 (2.13)
1 2 1 2
E'. E'
0 0 : 1b “ob ,
+E' 2 E
i Elb 2b + vl 2b

E!b and Efb are the tangent moduli on the first and second principal stress
1" 2

~Lhe




directions, reapectively and v; and W, are the Poisson's ratios in the same
directions. In the~euqation above it is assumed that V]/E;b = vz/E;b'

The analytic stress-strain curves of Sections 2.2.1 and 2.2.2
relate the stress in a particular principal direction to the strain in the

same direction only. Thus, the following relationships were formed:

1 b 1 (2.13)

Where Elb and E2b are the effective tangent moduli for the principal
atress space. A relationship must now be established between the known

moduli, E1b and Ezb’ and the unknown quantities of the [ D] matric E;b’

E' vV and AV
2b’ "1? 2

Solving Eq. 2.11 for él and éz and noting that 51 = 52&2

and 60 =0 0 , leads to:
2 2 1

VvV o
‘o . 1 __-2_1.
E = 0 - - ' (2.14a)
1 1 Elb Ezb
- L] l \) 0"
E = 0o —_ L2 (2.14b)
2 2 E' - E'
2D 1P

Then by noting that VZ/E;b = \)l/El'b and rearranging yield:

. E' .
o, = —ab )E (2.152)
1-va
1 2
. E?!b R
5 = —b_ ) (2.15b)
2 1 -V a 2
_ 2 2

Comparison of Eq. 2.15 and Eq. 2.13 shows the relationship between

the effective tangent moduli and the actual tangent moduli and Poisson's ratios.
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After some rearranging this gives:

1 ' - 2.1
Elb Elb (1 vlal) (2.16a)

]

' —
Ezb Ezb 1 Vzaz) (2.16b)

E;b and E2b are defined in Eq. 2.5 for the nonlinear case and Eq. 2.10 for
the linear case. Elb’ Ezb’ and the o's are computed using the current
total stress state. The curve parameters C and D in the aforementioned
expressions are given by Eq. 2.3.

vl and Vz in Eq. 2.12 must still be obtained. Again noting the

relation VZ/E; b " vllE;b the following equations are formulated:
vA = (2.17a)

Vv 1

B (2.17:)
EAb 7(1 - \)AOLA) + Og

EppOs

where the subscripts (A,B) correspond to directions (1,2) or (2,1) which
ever is applicable. Thé value for vA is chosen as 0.2 and Vg is limited
to positive values. Bases upon the various combinations of cylinder strength,
stress ratios and stress levels, Vg has been found to range from 0.80 to 1.20
times the value of Ve

Thus all the terms of Eq. 2.12 can be defined, and the resulting
[D] matrix is the constitutive relationship for a particular layer expressed
in the principal stress directions. Before computing the contribution of
this layer to the element stiffness matrix, the [D] matrix must be transformed

into an elasticity matrix [D], relating the stress and strain in the x-y

coordinate system of the element.




ax €x

gy { = [D] €y (2.18)
Txy Yxy
where (Ref. L, M, N)
D] = [T] [D] [T]F (2.19)
and T is defined by:
cos? sin26 ~2cosfsind
[T] = sin?0 cos? 2cosfsinb (2.20)

cosfsin® -cosfsin® cos?6-sin’0
The angle O is defined as the angle between the x direction and the "1"

direction, and is positive when measured clockwise from the positive x axes.

2.27 Concrete Failure Mode

Concrete exhibits different types of failure modes which are
dependent upon the applied stress ratio as shown in Figure 12a. The four
physically distinct failure modes are described on (Ref. 5 and 39). The
idealized failure modes used in this report are depicted on Fig. 12b. A
cracking mode failure is assumed to occur from the tension-tension region
to a gtress ratio of -1/15. The direction of the crack(s) is assumed to be
perpendicular to the largest tensile stress and to the free surface of the
gpecimen. From the compression~compression region to the stress ratio
~1/15, a crushing failure mode is assumed to occur. The direction of crush-
ing is assumed to be perpendicular to the largest compressive stress and

perpendicular to the free surface of the specimen.
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The method presented here defines cracked regions and not
individual cracks which may occur. The validity of this method has already
been proven in (Ref. 5 and 39). In addition the effects of cracking or
crugshing of concrete on the element stiffness and the stiffness of the

rest of the superstructure is approximated.

2,2.8 Cracked or Crushed Concrete

Cracking or crushing of the concrete is deemed to occur when the
principal stress has exceeded the idealized peak stress as defined on Fig,
The concrete layer is assumed to have stiffness only in the uncracked or
uncrushed direction. For example, the constitutive stress-—strain relation
for a concrete layer which has experienced a failure caused by the stress

in "2" would be: ) \

g1 B 0 0 €1 '

. — J‘b . ‘

g2 - 0 0 Q €2 (2.21)
T2 “lo o o | vie),

The first principal direction is still effective in contributing stiffness
the the element.

After cracking or crushing of the concrete layer, the layer
will be incapable of sustaining the stress that caused the failure. This

stress must be reduced to zero within the layer while maintaining equili-

brium between external forces and internal stresses. This unloading of stress

requires a redistribution of the unloaded stress to other layers. This

redistribution is accomplished through the use of a fictitious force matrix
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which is statically gquivalent to the amount of stress to he redistributed.
Including these fictitious forces in Ehg solution of the stiffness equations
will produce the desired adjustments.

Experimental evidience indicates that after attainment of the
peak concrete strength, compression or tension, the stress—strain curve
exhibits a downward leg (Res. 5, 25, 26, 33, 35, 42 and 46). For this
research the unloading portion of the stress strain curve has been assumed
to be a straight line. (Refs. 5 and 29) Thus, unloading of the element
will occur with a gradual transfer of stress from the failed concrete layer

to the steel reinforcing bars (Ref. 34).

2.3 Uniaxial Stress~Strain Relationships

The beam steel and steel reinforcing bars are considered to be
in a state of uniaxial stress. The uniaxial stress—-strain curve is assumed

to follow the Ramberg-Osgood formulation (Refs. 29, 32 and 44) given by:

— n
c = %—i- + <lmi“—)-g—i (g‘g) (2.22)
Where: 0 = stress
€ = sgtrain
Ei = initial modulus of elasticity
Og = secant yield strangth equal to the ordinate of

the intersection of the stress—strain curve and
a line of slope (m) (Ei)
m = dimensionless constant defining a line of slope

(m) (E{) on the stress-strain curve
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n = a dimensionless constant
The tangent modulus can be found by differentiating the stress—-strain

equation as follows:

doq Ei
de1 1+n(l—m)(&> n—1
m ags

The constitutive relations between the stress and strain increments are:

(2.23)

[. ) - .

o °

| T2 = 0 €9 (2.24)
: O 0 0 Y12

lsz

Where ﬁll= doi /del,as in Eq. 2.23 and the subscript "1" refers to the

principal stress direction.

2.3l Beam Steel and Slab Reinforcement

The complete stress-—strain curve for typical beam steel on
uniaxial tension or compression is approximated with Ramberg-Osgood curves.
(Eq. 2.22). The curve parameters for typical bridge steel are as follows:

Og = £y, yield strength of steel

E; = Eg, Young's modulus for steel which may be taken
as equal to 29,000 ksi
n = 300
n = 0.67
Since the Ramberg-Osgood formula provides a continuous stress~strain curve

a mathematical distinction between yielded and non-yielded steel is not required.
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The proper selection of the curve parameters can provide an almost perfectly
plastic plateau in Ehe case for mild éfeels. This plateau will have a small
finite slope but its value will be so small that for all practical purposes
its effect on the structural behavior will be negligible.

The stress-strain relation for mild steel reinforcing would have

the following Ramberg-Osgood parameters:

Os = fy

Ef = 29000 ksi
n = 100

m = 0.7

The slight difference in the values of n and m from those of the beam steel
represents a more rounded knee for the reinforcing bar.

Special consideration must be made when the slab reinforcement
is placed at an angle with respect to the longitudinal x-axis of the bridge.
In this case, the "1" direction does not coincide with the x-directionm,
and the D matrix of Eq. 2.24 must be transformed to the x-y axes by the

T matrix.
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3. FINITE ELEMENT ANALYSIS

3.1 Introduction

The analytical technique employed in this research is based on
the finite element method. Only a brief review of the finite element
method is presented, and for an in-depth treatment of the method the
reader can refer to numerous text on the subject (e.g. Refs. 48 and 57).
The underlying assumptions that were made and their implications with
regards to the finite element model are discussed. In addition the basic
equations and notations used throughout the remainder of the report are

provided.

3.2 Assumptions

The general assumptions made in the development of the analytical
model and any associated implications are discussed in the following
paragraphs.

1. Geometry Restrictions:

At the present time the bridge superstructures to
be analyzed are limited to those which are rectangular
in plan, e.g., right bridges.

2, Assumptions Regarding Strain Distributions:

Kirchoff's assumption that plane sections normal to
the plate before deformation remain plane and normal

after beam theory is employed, where the plane section
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assumption for beam bending is used but in addition the
effects of shearing deformation are also included. Tt
is also assumed that the slab behaves as a thin plate,

and that the slab and the beam do not change thickness.

A. These restrictions allow the stresses and strain
normal to the slab to be neglected, and thus
reduce the three dimensional continuum problem to
a two dimensional plate bending problem, and a
one dimensional beam bending problem.

B. In addition, the restrictions permit the strain
at any depth to be computed from the displacements
at the reference plane.

Small Deformations:

The in-plane and bending displacements are assumed small
with respect to the dimensions of the slab, thereby, allowing
all calculations to be computed based upon the undeformed
position of the structure.

Small Strains:

The reinforced concrete slab and highway bridge super-
structures are assumed to be subjected to small strains,
therefore, linear strain-displacement relations can be
employed.

Layering:

Due to the material nonlinearitiés, such as nonlinear

stress-strain relations, cracking and crushing of concrete

and yielding of steel, the finite element stiffness
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properties will vary with the depth of the slab or beam
elemeng. To facilitate the computation of the element
stiffness, the finite element will be divided into a
series of layers through the depth (Figs. 5, 11). The
total stiffness of the element is then obtained by sum-
mation of the stiffness properties of each individual
layer. The stresses within a particular layer will be
assumed to be constant throughout the layer for the
purposes of computing element stiffnesses. Thus, the
stress field on the beam or slab will_vary in a step~like
manner. By increasing the number of layers the representa-
tion of the stress field could be improved, and this leads

to increased accuracy.

3.3 The Finite Element Method

The analytical technique employed to establish global,

equilibrium is the displacement-based finite element method, which leads

directly to the familiar set of equilibrium equations (Ref. 57):

where

{F}
(K]
{8}

{r} = [K] {6} (3.1)

vector of applied forces at the nodes

stiffness matric of the structure

vector of displacements at the nodes

—24—-




The structural stiffness matrix is obtained by stacking the element stiff-

ness matrices at each node point for each degree of freedom:
[K] =2 k] ° (3.2)

. e
where the summation is overall the elements on the structure and [k]i is

the element stiffness matrix for element-i.

The displacement based method presented in Egs. 3.1 and 3.2
is the most prevalent finite element scheme employed today, and it has
repeatedly shown its reliability as an analytical instrument in previous

research (Refs. 5, 29, 39, 41, 49, 52 and 53).

The primary concern of the analysis technique is the development

of the element stiffness matrix in the equilibrium equations:

{r} ® = [k]1° {8}° (3.3)
where
{F}€ = vector of applied forces at the element nodes
{8}® = vector of displacements at the element nodes.

The ﬁrocedure employed to formulate the generalized coordinate
finite elements can be separated into two parts. The first part is the
derivation of the shape functions from the assumed displacement fields;
and the second is the derivation of the element stiffness matrix from
the shape functions. The second part, although generally available
in the literature, is reviewed in this section to define terminology.
The first part is presented in the following section, which details the

methods used to derive shape functions from displacement fields.
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Zienkiewicy outlined the following formulation, which begins with
shape functions for the displacement fields within the element as a !

function of the element node displacements (Ref. 57):

{£} = [N] {8}° (3.4)

where
{£}
[N]

displacement field of the element

1]

shape functions.

Customarily the shape functions take the form of polynomials, but the

theory is not restricted to their use.

By differentiation of the displacement field given in Eq. (3.4)

the internal strains are determined.

{e} = [B] {8}° (3.5)

where

1]

{e}
[B]

‘vector of element strains

strain~displacement matrix.

Assuming no initial strains or stresses, the stresses can be

obtained from the appropriate constitutive relations:

{o} = [p] {e} (3.6)

where

{o}
[D]

vector of element stresses

stress-strain (elasticity) matrix.

Applying a small virtual displacement to the element and equating

internal and external work (i.e. the principle of virtual work) results
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in the formulation of the element stiffness matrix:

k1® = [, 1817 101 (81 @ (3.7)

The successful element formulation is the one that uses the
appropriate shape function to model the desired phenomena and considers

all the internal work terms consistent with the shape functions.

3.4 Shape Functions

The shape functions are derived from assumed displacement fields.
In order to preserve generality and increase computational efficiency,
the displacement field of the element and the node displacements are
written at a reference plane which is parallel to, but at an arbitrary
distance from, the centroidal axis of the element. This technique is wvalid
so long as the strain-displacement matrix relates the displacements at
the reference plane to the strains within the element. In the reported
research the displacement fields at the reference plane are taken as poiy—
nomials. The following procedure is adapted from material presented by
Peterson and Kostem (Ref.39) and Tumminelli and Kostem (Ref. 49) and

begins with the assumed displacement fields:

{f} = [P(x,y)] {a} (3.8)
where
[P(x,y)] = functions of x and y used to describe the shape
of the displacement fields
{0} = vector of the coefficients of the displacement

functions.
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Enforcing compatibility at the element nodes between the internal
displacement function and the external node displacement defines the co-
efficients of the polynomial. Usually in this type of formulation the
number of coefficients and node displacements (degrees of freedom) are
equal, thereby allowing all coefficients to be determined exactly by the

compatibility equations.

In the present formulation for the beam element the number of
coefficients exceeds the number of element degrees of freedom, so addi-
tional equations must be established. One conventional approach to obtain
additional equations is to introduce internal node(s) which have a suf-

ficient degree of freedom to completely determine all the coefficients.

Then through static condensation techniques the added degrees of freedom

are removed from the resulting stiffness ﬁatrix. An uncommon approach,
which is applied in this case, is to relate the polynomials directly to
one another via equilibrium and/or compatibility equations without
introducing new degrees of freedom. Thus evaluating and partitioning of

Eq. 3.8 yields

{8} cl
———1{a (3.9)
{o} L c2

"
Q
Q

Il

where
{0} = vector of zeros representing left hand side of
equilibrium and/or compatibility equations.
[C1] = matrix consisting of P(x), evaluated at the appropriate

nodes
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[C2] = coefficients of the equilibrium and/or

compatibility equatioms.

Inverting [C] to solve for {o}:

{5}
{a} = (17t (3.10)
{o}
and
{a} = [cc] {&%} (3.11)
where
[CC] = coefficient displacement matrix consisting
of the first n columns of [C]“l where n is
the number of displacements in the vector
{81°.
Therefore, the shape function is defined:
{£f} = [P(x,y)] {0} = [P(x,y)] [cc] {832 [N] {8}°  (3.12)
When performing the detailed derivations, the shape functions
are not explicitly formed because they are cumbersome. Since the [CC]

matrix is not a function of x, all derivatives of the shape functions
need be performed on [P(x,y)] only. All of the strains are functions
of x only, thus only [P(x,y)] will be differentiated. The operator

necessary to define the strains derived from the displacement fields

will be called [I'], hence:
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{e} ="[T] {£} = [T] [P(x,7] {a} = [qQ] {a} (3.13a)

and now substituting for {a}

{e} = [q] [cc] {8}€ = [B] {&%} (3.13b)

This strain-displacement matrix and the stress-strain matrix can

be substituted into Eq. 3.7 to formulate the element stiffness matrix.

3.5 The Layered Slab Model

In sections 3.3 and 3.4 the general steps required to obtain the
element stiffness matrix were discussed. These steps with regards to the
nonlinear analysis of reinforced concrete slabs will now be presented in
detail., Explicit expressions for matrices used in the layered slab model

can be found in Appendix A.

3.5.1 Plate Bending and Inplane Displacement Functions

The purpose of this section is to present the displacement

functions and to describe the displacement field, {A (x,y)}.

The bending deformation of a plate can be completely described
by the vertical displacement of the middle plane of the plate via the
Ruchoff's assumption. The bending deformation will consist of a vertical
displacement, W,.the rotation about the x-axis, GX, and the rotation
about the y axis, Qy. These rotations can be obtained by differentiation

of the vertical displacement. Expressed in vector form this gives:
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f W (W

o]
[}

ow
3y (3.14)
ow

Lo o

The ACM plate bending element originally proposed by Adini,
Clough and Melosh (Ref. 13) and a plane stress element originally pro-
posed by Clough (Ref. 11) are used in this research. As noted by
Tumminelli and Kostem (Ref. 49) as long as the reference plane of the
slab is at the midheight, the beam and plate element stiffnesses are
uncoupled and, in addition, the finite element model is conforming and
complete. These requirements are needed to insure convergence and an
upper-bound solution. This element has been successfully used in
previous research and has shown itself to be both accurate and
reliabie (Refs. 5, 39, 41, 52 and 53). The ACM vertical displacement

field (W) is given by a twelve term polynomial (Refs. 49 and 52).

2 2 3 2
W= al + azx + a3y + a4X + a3xy + a6y + a7x + a8x v
2 3 3 3
agxy” + a;4y" + a,,x’y + a,,xy (3.15)

The plate-in-plane displacement fields are given as (Refs. 49

and 52)

[}
I

bl + bZX + b3y + b4xy (3.16a)

<
l

by + b, + by + bgxy (3.16b)
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The coeffiéients, ai's and'bi's, of these equations correspond
to the constant coefficients of the displacement fields, {d}, used in

Eq. 3.8.

The nodal points of the plate element, labeled as I, J, K and L,
as indicated in Fig. 11, are located in the middle of the plate reference
plane and in the four corners of the rectangular finite element. The
element displacement vector, {G}e, consists of five deformation com-

ponents per node or a total of twenty components per element.

The displacement functions, W, U and V are used to define the
element displacement function for any location given by the coordinates
(X’Y) H

T T
61, ={uvwe, 0} = UV W aw/dy - 5w/dxl  (3.17)

where

{G}ie = node i displacements of element e.

Thus Eq. 3.8 can be established once the displacement functions have been
chosen. For added computational efficiency the displacement field is
partitioned into those involving only in-plane displacements and those
involving only bending displacements. For the entire plate element

we have:

{8}% = [P(x,y)]1 {o} (3.18)
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and by partitioning we get:

e - - \
§ P (x,y) -0 [ o,

= |- — = —— — ~ (3.19)

The subscripts u and ¢ refer to the in-plane and bending displacements

respectively.

3.5.2 Strain-Displacement Relations

Based upon the assumptions of thin plate small-deflection theory
the strain displacement relationships for a point at a distance z from

the reference plane are:

Uz

(ex)z = dx
Vz

(ey)z = :E;' (3.20)
U v

(e, ), = 52+ 52

where
z = distance of point under consideration from the
reference plane
UZ = displacement in the x~-direction at depth =z
Vz = displacement in the y-direction at depth z
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strain in x-direction at depth z

~ ~
P
N
1l ]

strain in y-direction at depth z

~~

2

N
Il

shear strain at depth z

Using Kirchoff's assumption the displacements Uz and V
z
can be expressed in terms of the middle surface in-plane displacements
and the rotation of the middle plane times the distance to the point

under consideration from the middle plane.

- W
U, =U0-z ox
, (3.21)
Vv =7 - z i)
z oy
Substituting Eq. 3.21 into Eq. 3.20 leads to
(e ) [ ) ()
X 9x 9.2
X
{e} =de V=4 ov > +Z —ﬁ ’ (3.22)
z v oy 8y2 '
U, v ' 3%
kayJ L dy X J L. Jxdy “

where {e}z represents the strain at depth z. Performing the operations
outlined in section 3.4 and partitioning the following strain-displace-

ment relation is obtained (Ref. 5).
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fe}, = Iouller 1™t (8.} © - 2 o llcL, 1™ {80°  (3.29)

where

[ = [T [P (x,5)]

[Q¢] = [I‘¢] [P¢(x,y)]

[Cld] [Pu(xn, yn) ] evaluated at xn, yn.

[c1 ]

[P, (xn, yn)] evaluated at xn, yn

¢

Using the notation of section 3.4 this reduces to:

(e}, = [8,) {8w® + 2 [3,] {5,}° (3.24)

3.5.3 Layering

Bending of the slab about both the longitudinal and transverse
directions produces a continuously varying biaxial stress state with the
concrete. Since the elaaticity matrix, [D], is dependent upon the stress
state, it too will vary throughout the finite element. To determine

the plate element stiffness matrix as given in Eq. 3.7, integration

must be performed over the volume of the element. Because of the com-
plexities in explicitly defining the elasticity matrix for reinforced
concrete under biaxial stress, the stiffness matrix is evaluated by

performing numerical integration.

A slab finite element can be subdivided into a series of layers

as shown in Fig. 11, Each layer can have its own elasticity matrix,
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[D;], which depends upon the state of stress in the layer, {5;}. This
implies that each layer is in a constant state of assumed plane stress
and stiffness, and that there is a step-like variation in the plane

stress and stiffness through the depth of the finite element.

The state of stress for each layer is represented by the
weighted average stress at the middle depth of the layer, which is
defined as being a distance E; from the refergnce plane of the slab.
This average stress is calculated by multiplying the layer elasticity

matrix times the integrated average strain vector at that depth:
fo,3 = Ipg1 {eg} . (3.25)

The integrated average strain is found using Eq. 3.24 and integrating

over the area of the element:

{;}_z_i = —l;al-fl_)- f/ [B'u]dx dy {Gu}e +f/;i [B¢] dx dy {6¢}e

where (3.26)

Z%E = area of element in x,y plane.

Combining Eqs. 3.25 and 3.26 yield:

— [Di] e e
{oi} = [[Bu] dx dy {Gu} + zi/f[%; dx dy {a¢}

(3.27)
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Because the elasticity matrix, [Di], is dependent upon the stress, fgi},
and visa versa an iterative solution technique is required, as discussed

in Section 3.8.

The steel reinforcing bars are idealized as a layer of steel of
equivalent thickness with uniaxial stiffness properties, and these layers
are included in the integration processes in the same manner as the
concrete layers. The direction in which the uniaxial stiffness acts is
specific with respect to the angle it makes with respect to the
x axis. The steel layer is located at the center of gravity of the

reinforcement, and the equivalent thickness is calculated by:

>

S
ts = '1;; (3.28)

where Ag indicates the area of a bar and bS is the bar spacing.

The progression of cracking and crushing of concrete and yielding
of steel through the depth of the slab can be monitored by maintaining
a stress history of each layer. The angle of crushing or cracking of any
one layer is in no way predefined by previous cracking and crushing of
another layer, and thus the pattern can vary from one layer to the next

throughout the depth of the slab.

3.5.4 Element Stiffness Matrix

The element stiffness matrix was previously defined as

[k]® f (8] [p] [B] dv (3.7)
v

in which the matrix [B] relates the strains to the displacements. If the
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matrix [B] is partitioned as in Eq. 3.23, then the element stiffness can

be rewritten as:

(B 1%
' u
e -
[K]® = (D] [[Bu] z [B¢]] dv
v Z[B¢]T .
(3.29a)
or multiplying out
T T
| (81" (D] (B ] : Z (B [D] [B,]
k1€ = - T T T T T T |
vy g 01 [B]] 2° (8,17 D] [B,]
¢
(3.29b)
For simplicity the following definitions are made:
e T
ky)® = [ 13" 0] (B,] av
v
k1% = [K ]eT = u/ﬂ Z [B']T [D] [B,] dv (3.30a)
u du d ¢
v
e _ 2 T
[k, 1° = f 22 (8,17 (0] (8] av
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Therefore the element stiffness matrix can be written as:

[k]®

L.

[k

—

[k

]e

uu

e

u¢]

T

|
I
I
!

[k

1“'_1

u¢

e

—

(3.31)

Where [kuu]e is the in-plane stiffness matrix, which relates in-plane
forces and displacements. ,[k¢¢]e is the bending stiffness matrix which
€ are the

relates bending forces and displacements. The [kﬁ ]e and [k

¢ dui”

coupling stiffness matrices which inter-relate bending and in-plane

action (Ref. 40).

Noting from earlier discussions that the elasticity matrix [D]

.is dependent only on z and the matrices [Bu] and [B,] are dependent only

¢

on x and y, Egs. 3.30 can be rewritten as:

e T

[k-uu] /;{/; [Bu] <ﬁ [D]dz) [Bu] dx dy
e T

[k ! /X fy (B, ] (ﬁ z [D]dz) (8,1 dx dy
e _ T 2 '

[kd>¢] = ﬁ/; [deb] </; / .[D]dz) [B(b] dx dy

]

(3.30b)
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Performing numerical integration of the quantities in paren-

thesis gives:

L
[Duu] = /z [Dldz = Z [Di] (Zy4q - zi)
i+l
L
« 2
[Dﬁ(b] =/ Z[Dldz = Z (0,1 (2 g -2 (3.32)
z i+1
L
[D¢¢] ) / ZZ[D]dZ B Z ;1 2y - Zi)3
z i+l

Where the sumation is over all of the layers, and Zi and‘Zi are the

+1

Z distances to the top and bottom of layer i.

Substituting Eqs. 3.32 into Egs. 3.31 yields:

e _ 1T
(k. 1% = f / 8,17 b1 (3,1 dx ay
X Jy

My 1° =/ [ (2,1 [D,y] [B,] dx dy (3.33)
X JYy
e _ 3 T
[y 1 = f / (Bl (Dl [B,] dx dy
X Jy

Thus, performing the integration over the element area will give the slab

element stiffness matrix.
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In Appendix A of Ref. 5 the slab element stiffness matrix form-
ulation is preseﬁted in detail, with all components of each matrix leading
up to Eq. 3.33 and all integrations were performed. However, the sub-
matrices in Egqs. 3.33 are left as a series of matrix operatiomns to be
performed by the computer. To reduce computation costs, time and
increase efficiency considerable effort has been made to perform all those
matrix multiplications by hand, so that in the end the formation of the
slab element matrix requires only direct substitution of the parameters.
In Appendix A of this report the resulting 20 by 20 stiffness matrix is
presented. A comparison of the previous matrix multiplication method
and the present method show a reduction in element formulation time of
1/100, and since element formulation is a large percentage of the total
computation time, the value of this new formulation becomes immediately

apparent.

3.6 Layered Beam Element

The theoretical development for an elastic composite finite
element hereafter referred to as the Tumminelli-Kostem element, consisting
of a concrete slab on top and a steel beam on the bottom, is presented
in detail in Ref. 5. This sophisticated element can include the effects
of slip between the bridge deck and the beam, shear deformations in the
beam and shear lag in the deck. Since the goal of the present research
is to develop a model to predict the inelastic behavior of highway bridges,
some alterations and refinements of the Tumminelli-Kostem element must be

made to model inelastic behavior.
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Since the displacement fields defining the elastic plate portion
of the Tumminelli—K&stem element aié identical to those alreédy presented
to describe the inelastic layered slab element, the element stiffness
matrices just developed to model inelastic slab behavior can replace the
Tumminelli-Kostem plate element without any complications. Therefore, the
major thrust of the discussions to follow is concerned with the beam
portion of the Tumminelli-Kostem element. Figure 13 shows the typical
arrangement of beam and plate nodes, and Fig.l4 defines the node deforma-
tions and sign conventions. It should be noted that the vertical dis-
placement field for the beam and plate is the same, but that the

respective axial displacement and rotation fields are different.

All deformations are written at the reference planes of the

slab and beam.

3.6.1 Composite Displacement Fields

The Tumminelli-Kostem element was derived considering the combined
action of the beam and slab as a unit. After establishing the coefficient
displacement matrix, however, the element development was divided into
four separate components by partitioning the coefficient-displacement
matrix. As will be shown this allows for the separate consideration of

the beam and plate stiffness matrices.

The vertical displacement field (W) used, following the assumptions

of Section 3.2, is:

(3.34)




This is simply Eq. 3.15 with y held constant. The vertical displacement
for the slab and.the beam is assumed to be the same. In order to permit

slip to occur between the beam and the slab the axial deformation for

each must be different.

[
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(3.35a)

U, =c, +c.,x+ c. x (3.35b)

The first equation for the axial deformation of the slab is simply
Eq. 3.16a with y held constant. To include the effects of shear deforma-
tion, a separated rotation field for the beam and slab must exist because
the slope of the deformed beam (%g) is not equal to the rotation (8)
(Ref. 5). The rotation of the slab will be given by the differentiation
of the vertical displacement Eq. 3.34 with respect to x, and the rotation

of the beam will be given by:

2
QB = dl + dzx + d3x (3.35¢)

Enforcing compatibility between the node displacements and the

displacement fields and noting the 8 = - %% generates the [Cl] matrix of
Eq. 3.9:

{63 = [c1] {a}
or

~43-



U, — 100 000 0 0 0 0 0 0 07cb <
by
Ug 000 100 0O 0O O O 0 0 O by
W 000 00O 1 0 0 O 0 0 0 ¢,
€2
o, 000 00O O0-1 0 0 0 0 0 cq
\a o
JQLB$_ 000 00O O 0 O O -1 0 0 a,
Uys 1l 111?000 0 0 0 0 o0 0 o a,
Uy o000 1Lw20 0 o0 0 0 0 0 a,
d
W, 000 000 1 L 1° 2 0o 0o 0]]d
O 000 000 o0-1 -2t2-3t2 0 0 o0 Nd, 7
O (000 000 0 0 0 0 -1 -L =l
g J
(3.36)

The sign conventions for node displacements and internal dis-

placement fields are shown in Fig. 14.

There are ten node displacements and thirteen coefficients,
therefore, three more equations must be established. Considering the
equilibrium of the axial forces and the interface shear flow results in

the equations (Fig. 15).
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=+ s (3.37a)
and
dNB
= = - s (3.37b)
where
NA = axial force in plate
NB = axial force in beam
8 = interface shear flow.

The axial force NA can be found by integrating the axial stress over the

area of plate:
du 2
A dw
NA— GxAdA— E:XAEAdA—/EA 2-—Z 2dA
A A A T\dx dx

Substituting for UA and W interms of the polynomial and differentiating

(3.38)

NA with respect to x yields:

dN d"vu 3 .

A _ A aw = - =

a;—-EA / 5 - Z 3 dA—EA (2b3 263.4)dA
A dx dx A

(3.39)
Performing the required integration:
dNA _ _
5 - 2 EA, by - 6 ES, a, (3.40a)
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where

o}
>
I

kA, EA X area plate

and

=
0
|

AT EA x first moment of inertia of plate with respect

to reference plane

0 since reference plane is at mid-height

Performing similar operations for the beam, but noting that the

axial strain is computed using QB and not‘%g gives:

dNB
~—=2E AB ¢y - 2 E SB d

ix (3.40b)

3

Setting Eqs. 3.40 equal to zero provides the first two of the three
required equations. Even though the interface shear has been set to zero,
no accuracy is lost in the final solution because the restrictions are
made at the lowest level of element formulation. The interconnection
between the beam and slab is accountedvfor later via the slip stiffness

matrix (Ref. 5).

The last constraining equation is obtained by enforcing compati-
bility between the rotatiomal fieids. First, the shearing strain in the
beam must be expressed in terms of the polynomial coefficients. Consider
the equilibrium of an element of the beam (Fig. 16). In order to maintain
generality, the interface shear flow (s) will not be set to zero until

after equilibrium is established.
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Summing the moments about point 0 (Fig. 16):

0=35 ZiB + VB dx + dMB (3.41a)

Substituting for s Eq. 3.37b and dividing through by dx yields

the shear in the beam
d MB dN
B
VB =3 "%z (3.41b)

The average shear strain can be expressed as

Yy = 2 (3.42)

where

ASB = ghear area of beam

GB = ghearing modulus of beam.
dNB
Now letting = equal zero (i.e. s = 0) and finding the poly~-

nomial expression for:

e
dx

d d8y
= —d;{- EI E_ = EIB (2(13) (30["3)

gives the shear strain in terms of the polynomial coefficients:

_ 2 EI,
A G

Yg=__ 5
SB B

dg (3.44)

where

EIB = EB x second moment of inertia of the beam about the refer-

ence plane of ence plane of beam.

Compatibility between the vert ical displacement field and the

rotation field requires:
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daw
dx

0=--——+ eB+YB | (3.45a)

or, in terms of polynomial coefficients:

L ) , 2EI

0=-a -2 -3ax" +d, +dx+dx -———g—d (3.45b)

2 3 4 1 2 3 A

SB B 3

Enforcing Eq. 3.45b for all possible values of x would yield too
many constraining equations, but previous research shows that sufficient

accuracy is obtained by enforcing compatibility at z = L/2 only:

2 2 EI
0=-3a,-La,->1% +d +24 +<%—-z\—g>d3
1 SB B

(3.46)

Combining the three constraining equations into matrix form

yields the [C2] matrix of Eq. 3.9:

(0 ) 0 0 28 00 0 0 0 O 0 00 0 ]
{0 »=|00 0 00 2 0 0O 0 0 00 -2
0 00 0 00 0 0 -1 -L -£1£<ﬁ-2EIB )
D 4 2 \h Agp Gy /|
(3.47)
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Combining Eq. 3.36 and Eq. 3.37 gives the [C] matrix of Eq. 3.9

which is solved to give the [CC] matrix indicated in Eq. 3.11 where [CC]

consists of the first ten columns of [C]-l:

\
B Y
b, 1 0 0 0 0 0 o 0 0 0 UL,
- 1 1
b, | |-T © 0 0 0 =0 0 0 0 Up
; b, 0 0 0 0 0 0 0 0 0 0 W,
c; 0 1 0 0 0 0 o o 0 0 614
. . 1. Il ZpJIL ZJIL .1 32,01 ZpJIL ZpJlL .
2 L 2 4 2 L 2 4 2 1B
2. J1  z,J1 z.J1 .01zl ozl % "
c 0o o —— - B_ _ 0 0o -—2— -2 _ U
3 2L 2 2L 4 2 MA
< a; p={ 0 o 1 0 0 0 0 0 0 0 Us
a, 0 o0 0o -1 0 0 0 0 0 0 Wy
- 3 2 3 1
a 0 0 --= = 0 0 0 = = 0 )
3 P L ip) L MA
~ 2 1 2 1
a 0 0 = - = 0 0 0 -5 -= 0 9
4 L3 LZ L3 L2 MB
_ L/
d; 0 o0 0 0 -1 0 ©0 0 0 0
391 JL 1, JIL 371 JIL , 1, JIL
e R A A e o e
371 J1 J1 371 J1 J1
dyf |0 O T e A e
L)
(3.48)
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where

4ASB Gy
2

L ASB GB + 8EIB

J1l =

The [CC] matrix is then partitioned to handle the displacement

fields separately:

- -
CA
CB

[cc] =|--- (3.49)
cw

CD
L

where [CA], [CB], [CW] and [CD] are coefficient-displacement matrices for

the U,, U

s Up W and QB fields respectively.

The internal work of the élement consists of four separate and
uncoupled components. The first two are the work due to axial stresses
and strains of the plate and the beam, the third is the work due to shear
stresses and strains in the beam, and the fourth is the work due to the
shear flow and slip at the interface. Therefore, the element stiffness
matrix can be formed as:

]e

[k]™ = [k

alp * [k

gy *+ gl + [kl (3.50)

where [kA]b’ [kB]b, [kB]S, and [k]d are the portions of the element

stiffness matrix resulting from the consideration of the internal work due

to axial stresses and strains in the plate, axial stresses and strains
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in the beam, shear stresses and strains in the beam, and shear flow and

slip at the interface.

Up to this point in the derivation we have ignored the contri-
bution of the strain (Sy) in the y direction of the plate and the
shearing strain (ny) in the plate. However, as pointed out by Tumminelli
and Kostem, using the plate element presented in Section 3.5, the beam
and plate elements are of compatible displacement fields, and thus these
added degrees of freedom do not alter the relations just developed.
Thus, the plate element stiffness matrix developed in Section 3.5 with

twenty degrees of freedom, will take the place of the [kA]b matrix.

Performing the required operations on the displacement fields
indicated by [T'] in Eq. 3.13a and substituting the coefficient-displacement
matrices for {0} as in Eq. 3.13b results in the remaining strain-displace-

ment matrices. Axial strain in the beam:

dUB de
SXB = = Z = (3.51a)
therefore
e p = [[012x] [cB] -2 [01 2x] [CD]] {5} (3.51b)
or
_ e
€xp = [BB]b {8} (3.51c)
Shear strain in the beam
dw
Y == _
B ax OB (3.52a)
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therefore

Yy = [[0 1 2x 3x°] [CW] - [1 x x°] [cD]] {8}® (3.52b)

or

[B] {5} (3.52¢)

y
B s

Slip at the interface

dw

U = (UA - ZiA =) (U]3 - ziB QB) (3.53a)
therefore

§u = [1 x x2 -1 -x - x2 0 -2, - 2Z X

iA iA
- 32 x2 zZ Z,.Xx Z x2] [ccl {8}¢ (3.53b)
iA iB iB iB '

or

8y = [xv] [cc] {8)° = [B], {6}° (3.53¢)

Forming the expressions for the internal work as in Eq. 3.7a

results in the component stiffness matrices of Eq. 3.50:

B T
kg, = J/” (8,1, [E5] [B], av (3.54)
v
_ | T
[y ] = f 8,17 Teg] 8,1 av (3.5%)
v
T
[k]d = d/ﬁ [B]d [ksc] [B]d dx (3.56)
L

-52-




where
kSc = the stiffness of the uniform connection used to

mathematically describe the shear connectors.

It should be noted that ksc values have not been as yet directly
related to the number shear connector or their arrangement, but that

there does exist an upper bound to kSC to insure composite action.

_ 1o 2 2
k= 2 {EAA (Cg) + EA; (1 - 2C, + C.7) } (3.57)

where

1
E EAA/EAB + 1

L = length of element

The matrices developed above are presented explicitly in
Appendix B. The [kB]b, [kB]S and [k]d matrices are added together to
form the beam stiffness matrix, and this in turn would be added to the
plate stiffness matrices according to Eq. 3.2 to result in a total struct-

ural stiffness matrix for the solution of Eq. 3.1.

3.6.2 Layering

As with the slab finite element, the beam finite element is sub-
divided into a series of layers as shown in Fig. 5. Each layer will
have its own elasticity [E]i’ which depends upon the state of stress in

the layer, (Ox)i. For the beam, each layer is assumed to be in a state of
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uniform uniaxial stress, and thus there exists a step-like variation
in stress through the depth of the. element. The state of stress for each

layer is represented by the stress at the mid-depth of the layer.

Referring to the element stiffness matrices present in Appendix B,
there exist four terms which are related to the elasticity of the element:
EAB, ESB, EIB and GASB' First it is assumed that the shearing modulus,

G, is related to E by:

E

C =3+

(3.58)

The four terms above are then calculated in the following manner:

n
EAp = Z E; A, (3.59a)
i=1
n
-
ESB = Ei Ai Zi (3.59b)
i=1
n
= 2
EI, DB, (1, +4 25 (3.59¢)
i=1
1 n
CAsp =2 (T +v) Z Ej Aspy (3.594)
-1
where
Ei = the instantaneous slope of stress-strain curve of layer i
Ai = the area of layer i
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Zi = the distance from reference plane to layer i centroid
Ii = the moment of inertia- of layer i about its centroid
ASBi = the shear area of layer 1i.

Thus, once the rigidity, Ei’ of the layer is established the element and,
ultimately, the layer stress can be calculated. However, since the
elasticity, Ei’ is dependent upon the stress level, an iterative process

is required.

3.7 Unloading of Cracked or Crushed Concrete

As was noted in Section 2.2.8 when a concrete layer has cracked or
crushed, the layer will be incapable of maintaining the stress that caused
the failure. The stress within the layer in a direction perpendicular
to the crack will be reduced to zero, and the overall internal stress
field will be adjusted accordingly. In order to maintain equilibrium,
however, a statically equivalent fictitious force vector must be applied
to the structure to redistribute to stress loss due to failure. In Ref.
41 the equations for computing the required fictitious force vector are
presented in detail; the reader need only be aware of the necessity of
and not the specifics of the fictitioué force vector to understand its

contribution to the solution process.
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3.8 Solution Scheme

The solution process congists of four main phases:

I Problem Definition
IT Dead Load Solution
IIT Scaling Procedure

IV Overload Solution Procedure

A cursory explanation of each of the phases enumerated above i
presented in the following paragraphs:

I Problem Definition - In this phase the particular
problem to be solved is defined by supplying the following
data:

A. Bridge Superstructure Geometry - The bridge is
discretized into layered beam and slab finite
elements.

B. Material Properties - All the beam and slab
material properties and stress—strain parameters
are defined.

C. Loading -~ The dead loads and live loads are

specified.

D. Boundary Conditions - The appropriate displacement
boundary conditions for the node points must be
used to model the actual structure, employing
where needed any lines of symmetry in this

consideration.
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ITI Dead Load Solution - Due to the nonlinear behavior
of the overload problem, the initial stress state due to
dead loads cannot be superimposed on a separate overload
solution. The dead load solution must be performed first
to obtain an initial stress state to which the stresses
due to the overload are then applied, as would be the actual
case. The initial dead load solution, reflecting the dead
weight of the slab and beams, is performed assuming only
the beams to be acting. If, after the concrete is hardened,
additional dead loads due to parapets or curbs are added to
the structure, a second dead load solution is performed on

the composite structure.

III Scaling Procedure - The scaling procedure modifies
the initial live load solution so as to increase load to
load level just below which the first crushing or cracking
of concrete or yielding of steel occurs. This technique
eliminates any excessive number of live load solutions
in the elastic range. At the same time if the initial
live load is above the first material failure load, the

solution scheme begins at a live load of zero.

IV Overload Procedure - The structural response to
an overload vehicle is obtained by solving the set of

equilibrium equations presented by:
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{F} = [K] {8} (3.1)

However, because the behavior to be analyzed is nonlinear in nature, a
piecewise or increment approach must be employed. Expressing Eq. 3.1

in incremental form yields:

{F} = [K (o + )] {S} (3.60)

where [K] is dependent upon the current total stress and an unknown
stress increment. In addition, {%} is the applied force increment and
{8} is the resulting displacement increment. Because the unknown stress
increment is dependent upon the stiffness and the stiffness is dependent
upon the stress increment, conventional linear elastic solution tech-

niques cannot be employed.

Using a tangent stiffness approach to the solution of the overload
problem, the system of equations given by Eq. 3.60 is assumed to be
linear in a given load increment. Then at the beginning of each load
increment or step, the tangent to the stress-strain curve, based on
the current stress level, is used for each layer in computing the element
stiffneés and ultimately the global stiffness matrix. Equation 3.60 is
then solved for the node point displacements, and using the strain-
displacement and stress-strain relations, the incremental stresses
are calculated. New stiffness matrices are recomputed using the new
increments of stress and the procedure is repeated to obtain a second
set of node point displacements. Since nonlinear behavior in the form of
cracking or crushing of concrete and yielding of steel will be taking
place in each load step, the initial displacement and second set of

-58~.



displacements will not match. Thus the entire process must be repeated
until the difference between the displacements of any two cycles con-
verges to within a certain tolerance. When this iteration scheme is
employed, the analytical technique is labeled as the "incremental-
iterative'" method. As an approximation the iterative process could be
eliminated leaving simply an "incremental" method, but because at the end
of the first load cycle some error exists due to the failure to update
the stiffness matrix, any succeeding load will only compound the error.

Thus, the "incremental" method generally will produce unreliable results.

Flow charts descibing the basic operations for both the incre-
mental and incremental-iterative solution techniques, as well as in-depth
descriptions of each of the key steps of the two methods, are presented

in Ref. 41.
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4, Experimental Correlation

4,1 Introduction

In order to verify the validity of the analysis technique and the
finite element model comparisons must be made between analytically produced
results and data obtained from experimental testing. A total of four con-
crete slab and steel beam structufes, which were previously subjected to
overload testing and reported on in the available literature, were analyzed
by the nonlinear finite element method presented in this report. Two of
the tests were conducted on full scale bridge superstructures, while the
remaining tests were performed on scale models. This report is concerned
with the comparison of the overall elastic and inelastic behavior of the
above mentioned highway bridge structures or models. The development and
verification of the layered slab model and the Tumminelli-Kostem elastic

composite element have been presented elsewhere (Refs. 39 and 49).

4.2 Steel Beam and Concrete Slab Highway Bridge Superstructures

A comparison of experimental and analytical results for four
test cases listed below has been made:
No. 1: A simply supported right bridge with a span length of
50" and a width of 15' having three W18 x 6Q steel beams
with partial length coverplates (Bridge 3B of Refs. 22 and 23)
No. 2: A four span continuous right bridge with span length of

70', 90', 90' and 70' and a width of 34'-6" and having four
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W36 x 170 steel beams with W36 x 160 with coverplates aver
the piers. (Bridge 1, Tést - 1300 of Refs.lQ and 13)

No. 3: A two span continuous right bridge model with two span
lengths of 9' and a width of 5'-3", with three S6 x 12.5
steel beams and partial lengthcoverplates. (Two span model
of Refs.8, 17 and 21)

No. 4: A three span continuous right bridge model with three span
lengths of 6' and a width of 5'-3" with three S5 x 10 steel
beams and partial length aoverplates. (Three span model of

Refs. 8, 17 and 21)

4.2.1 Example No. 1

This bridge was constructed as part of the AASHTO Road Test
conducted in the early 1960's (Refs. 22 and 23). The testing consisted of
three phases: (1) a regular test traffic program of 500,000 trips,

(2) dynamic load tests, and (3) increasing load tests, i.e. overload tests.
Bridge 3B was designed as a simply supported composite slab and steel girder
bridge with a span length of 50 ft. center-to-center of bearing. The deck
slab for the bridge had an average measured depth of 6.45 in. and was 15 ft.
wide. Three W18 x 60 steel beams were placed 5 ft. apart and 7/16 in. by

6 in. coverplates extended over 18'-6" of the middle of the span. Figs. 17

and 18 show the shape of the cross section including dimensions and rein-

forcement details.

The loads were applied to the superstructure by moving overload
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vehicles. For the testing of Bridge 3B three different overload vehicles
were used (vehicles 97, 98 and 99 as shown in Fig. 19). The loading procedure
consisted of placing weights on the overload vehicle which would then travel
across the bridge, usually thirty times. During the loading process the
midspan deflections of each beam were monitored and recorded. The load was
then increased and another set of runs made. The procedure was continued
until the bridge superstructure collapsed onto the safety crib below the
bridge superstructure.

Because the loads were not applied in a static manner but by
moving vehicles, the moment envelope produced by the passage of the overload
vehicle is of interest. Since the finite element program requires a static
loading pattern which will then be incremented, some equivalent static
loading pattern would correspond to a realistic simulation. In addition,
because three different overload vehicles were used, three different moment
envelopes must be simulated by one constant loading pattern. Based upon
previous experience and numerical computations, the moment envelope could
be best simulated by a line load (Ref. 42).

Figure 20 shows the superstructure discretized into a series of
finite elements. The node points, element numbering, and element dimensions
are indicated in the figure. Since the structure was assumed to be
symmetric in geometry and loading,only one-quarter of the structure need be
analyzed. A total of eighteen slab elements and twelve beam elements were
used. It should be noted that because a line of symmetry lies along the
axis of the interior beam, only one-half of the interior beam cross-section

is included in the model. The line load was simulated by a series of
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concentrated loads indicated by the cross-hatched squares.

The layered slab and beam models are shown in Fig. 21. A total
of six layers of concrete and four layers of steel reinforcement were used in .
the slab finite element. The direction of action of the reinforcement is
indicated by the cross-hatched area and is given along with the thickness,
and bar size/spacing in Table 1lA. The beam finite element consists of a
total of ten layers as indicated. The cross-hatched layer, which
represents the coverplate, has two sets of material properties. In the
region where there is no coverplate in the actual structure, the material
properties are set to artificially low values to simulate the "nonexistence"
of the coverplate. In the area where there is a coverplate the properties
of steel were used.

In Table 2 are presented the material properties of the steel
and concrete used in Bridge 3B, and the corresponding material properties
used in the finite element simulation. The Ramberg-Osgood curve parameters
are also specified for each material.

At the end of the regular test traffic program one of the three
beams of Bridge 3B was discovered to have a fatigue crack at the end of

the coverplate. Even so, it was determined that the small permanent set

of the bridge at that stage was due to cracking and crushing of the concrete
slab, and the fatigue crack had no effect on the stiffness of the bridge.
During the overload procedure the fatigue crack was repaired with a butt
weld in order to prevent premature failure.

The bfidge failed in a flexure mode and in Ref. 23 the overload

behavior of the bridge is presented in terms of a plot of the maximum static
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moment in midspan causeq by the overload vehicle versus the average displace-
ment at midspan of the three beams. Figure 22 shows the midspan moment
displacement history of the bridge. The analytical results of program BOVAS
and the test results are represented by the ([J) and (O) symbols as noted.
As can be observed from the plots, the results produced by the two methods
agree relatively well, especially at the beginning, and from a deflection of
4 inches (1/150 deflection to span ratio) to about 10 inches (1/60 deflection
to span ratio). The main discrepancies between test results and the calcu-
lated response occur within two regions: first, from approximately 1.3 inches
to 4.0 inches deflection, and secondly, from about 10 inches in deflection
to the termination of the test.

Some difference between test results and computed results is
to be expected because the loads were applied to the test structure by
three different overload vehicles in motion and the finite element program
applied an approximate equivalent static loading pattern in an inﬁremental
fashion. In addition, as with any finite element model, there exists the
effect of the size of the discretization used. However, in the second region
of disagreement the difference in maximum loads is only around seven percent
and thus within acceptable modelling limits. A considerable improvement can
be made in the modelling scheme if the effects of residual stresses in the
steel beams are included. Residual stress measurements in the beams were
made and reported on in Ref. 22. Assuming a parabolic distribution of
residual stresses in both the flanges and the web, an average value of residual
stress in each of these parts of the cross section is calculated. Using

these values of residual stress gg.-initial stress values in the beams and

—64~




repeating the finite element analysis, much better agreement with test
results is obtained, as indicated on fig. 22.

A qualitative description of the extent of damage at different load
levels, as reported in Ref. 23, is compared to damage as predicted by
program BOVAS in Table 3. In general the damage record shows that the
method of failure and the ioads at which different types of structural damage

occurted can be predicted by program BOVAS.

4.2.2 Example No. 2

This bridge was one of four bridges which were to be inundated as
part of a reservoir in Tennessee Ref. 10). Bridge 1, referred to as such
by the experimental résearchers, was a four span continuous composite
structure with span lengths of 70', 9G', 90', and 7Q'. It was constructed
in 1963 and designed for HS-20 lqading. The deck slab was 7 inches deep
and was 34'-6" wide, including the curb (Fig. 23). TFor the finite element
analysis the curb portion of the superstructure was considered to be in the
same plane and of the same thickness as the slab. A total of four W36 x 170
steel beams was used to support the deck with 8'~4" spacing center-to-
center between the beam. In the negative moment regions there were W36 x 160
steel beams with 10%" by 1" coverplates. A plan view of the superstructure
and the location of the applied loads and points where readings were taken are
shown in Fig. 24.

The loads were applied to the bridge deck by 200 kip center hole
jacks resting on bearing grills. The bearing grills were constructed from two

W14 x 30 steel beams 46 in. long and 30 in. center—to-center, and resting on
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concrete pads poured directly on the bridge deck. The location of the grills
is shown in Fig. 25 by cross-hatched areas.

Due to the symmetry of the loads only one half the structure needs
to be discretized. The node points, element numbering, and element dimensions
of the discretized structure are indicated in Fig. 25. The cross hatched
areas represent the location of the patch loads that must be applied to the
idealized structure. A total of 42 slab finite elements and 28 beam elements
were used, resulting in 90 nodes énd 360 degrees of freedom. The area of
main structural interest was that portion of the bridge near the midspan of
the loaded span; therefore, the element discretization is finer in this region
and much coarser in other spans. While the coarse discretization of the
unloaded spans will be sufficient to model accurately the stiffness of the
bridge, deflections and stresses in these regions will not be reliable
because of the element size.

The layered slab and beam finite elements are shown in Fig. 26.

A total of six layers of concrete and four layers of steel reinforcement
were used. The direction of action of the slab reinforcement is perpendi-
cular to the cross-—hatched area and is specified, along with the thickness
and bar size/spacing, in Table 1B. The exact reinforcement and pattern in
the slab were not specified in Ref. 10, so a reinforcement distribution based
upon the existing design practices was choosen. The beam finite element
consists of ten layers as indicated. Because the length of the cover-

plated sections Wwas not specified, the gsame beam element was used throughout.

In Table IV the actual material properties of the steel and concrete

ysed in Bridge 1 and the material properties and parameters assumed for the
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finite element analysis are listed.

Bridge 1 was described as béing "structurally sound'" prior to the
beginning of the experimental tests (Refs. 10 and 13). The bridge had been
in service for approximately five years and prior to the testing the average
daily traffic was 600 vehicles per day. Before the ultiméte load test was
conducted, other load tests involving lateral load distribution studies and
dynamic response studies to rolling and vibratory loading were carried out.
References 10 and 13 contain all the information concerning the results of
these other tests.

A plot of the load and corresponding average deflection at the
midspan of the loaded span is presented in Fig. 27 for both the analytical
(+) and experimental (*) results. In general, the two curves are in close
agreement except in the range of about five inches (1/216 deflection to
span ratio) to thirteen inches (1/83 deflection to span ratio) deflection.
However, even in this range the maximum differénce in load is only five
percent.

Qualitative bridge damage, as reported in Refs. 10 and 13, is
compared to damage as predicted by program BOVAS in Table 3. As can be
seen, considerable difference can be observed between the first cracking
loads for the experiment and the analytical predictions. This noteable
difference is not all that distrubing if one evaluates all the facts. First,
the real structure had coverplated sections over the piers, making the com-~
posite section in that area more resistant to cracking. Second, and most
important, the finite element discretization in the region near the support

piers is extremely coarse. This leads to poor element stress distribution and
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therefore damage predictions. As mentioned before, however, the coarse
discretization still produces reliable stiffness properties (i.e. overall load
versus deflection results). Lastly, the visual observation of cracking in

the slab does not give any quantitative information on the extent of cracking
through the slab. The reported cracking thus may be either "surface deep"

or halfway through the depth of the slab. Looking at other recorded damage
the observation of first yield in the beams differs by only ten percent, and
considering the qualitative nature of the observation, this is within
acceptable limits.

As reported in Refs. 10 and 13, at a load just above first yielding
the bridge "lifted off" the abutment nearest the load. The present version
of the finite element model is not capable of simulating this behavior, but
as indicated in Fig. 27 the experimental and analytical results are not very
different. This is in part due to the fact that when the "lift off" occurred,
the moment capacity of the composite section over the first pier had reached
much of its capacity. Considering coarseness of the discretization, the
leaving out of the coverplated sections, and the lifting off of the bridge

from the abutment, the BOVAS results are remarkably good.

4.2,3 Examples No. 3 and No. 4

The testing of these two multispan concrete slab-steel beam
highway bridge scale models was conducted at the University of Maryland as
part of a research project in conjunction with the Maryland State Highway

Administration and the Federal Highway Administration to ascertain
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(1) distribution factors and (2) effective widths of composite bridges at
ultimate load. The concrete slab use& in both models measured 216 inches in
length, 63 inches in width, and was 3 inches in thickness. Wire mesh rein-
forcement was placed at mid-depth in both slabs. The two span model consisted
of three twenty-foot long S6 x 12.5 beams composed of A-36 steel and spaced
21 inches apart center-to-center. Over the interior support 5" x 3/8" x 5'
coverplates were welded to the top and bottom flanges to provide negative
moment resistance. The three span model consisted of three twenty-foot long
S5 x 10 beams of A36 steel and spaced 21 inches apart center-to-center.
Coverplates measuring 5" x 3/8" x 3' were welded on to the top and bottom
flanges over the interior supports. In both models, headed, 1/2" x 2" shear
studs were used in pairs spaced at six inches to insure full composite action.
The total length of each of the models was eighteen feet. This means the
two-span model had two nine foot span lengths and the three-span model had
three six foot span lengths. Typical cross—-sectional and elevation views of
the two models are presented in Figures 28 and 29.

The loads were applied with a fifty ton hydraulic jack acting
through a strain gage actuated load cell. For the two span model the load
was centered directly over the interior girder and at mid-span of one of
these spans (Fig. 29). In the ultimate load test for the three span model
the load mechanism was centered directly over the middle beam and at mid-

gpan of one of these spans (Fig. 29). Prior to the ultimate load test each of

the models was loaded and unloaded several times in the elastic range to check out
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the test set up and equipment. The load increment to failure in the ultimate
load test was 2.5 kips and 5.0 kips fér two span and three span models respec—
tively.

Figures 30 and 32 show the respective finite element discretizations
for the two span and three span models. The node point and element numbering
and the element dimensions are indicated in each figure. Because of the
inherent symmetry in these structures and their loading only one half of
the two span and one quartef of the three span are required for the finite
element analysis as shown. The two span model uses fifty-seven slab elements
and thirty-eight beam elements with a total of 120 node points. The three
gpan model has thirty slab elements and twenty beam elements with a total
of 66 node points. The loaded area is indicated by the cross-hatched area
(Figs. 30 and 32). As has been noted earlier, since the longitudinal
axis of the center beam lies along a line of symmetry, only one half of the
interior beam cross sectional properties is included in each model.

The layered slab and beam finite elements for the two span and
three span models are shown in Figures 31 and 33 respectively. A total of
gix layers of concrete and two layers of wire mesh reinforcement were used
in each slab finite element. The size of the actual reinforcement was
3" x 3" -6/8 for the two span model and 4" x 4" -4/4 for the three span model.
The direction of action of the reinforcement is perpendicular to the cross-—
hatched area (Figs. 31 and 33), and this direction along with the layer
thickness, wire size and spacing is given in Tables 4A and 4B. The beam finite
elements consists of eleven layers as indicated (Figs. 31 and 33). The cross

hatched layer corresponds to the coverplate; however, since the coverplate does
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not run the full length of the beam, the material stiffness of the coverplate,
in the regions in the actual structuré where no plate exists, is set to an
artificially low value to simulate this 'monexistence'" of the coverplate. In
all other regions the normal coverplate material stiffness properties were
used.

In Table 7 .the material properties of the steel and concrete in
two-apan and three-span models are reported (Ref. 8) and the corresponding
material properties used in the finite element analysis. The Ramberg-Osgood
parameters are also specified for each material.

The load versus deflection at midspan of the loaded span of the
two span model is plotted for both the analytical and test results in
Figure 34. Unlike similar plots for Examples 1 and 2, here there exists
considerable differences in analytical and experimental results, even in the
elastic range. The unexpected deviation in the elastic range is considerably
unsettling in that in this range the previous results (Figs. 22 and 27)
show exceilent agreement in the elastic region with a maximum absolute
difference of 3% between analytical and test results. For the two span model,
however, the maximum absolute difference in this region is around 397 for
the center beam. After a careful review of Reference 8, it was discovered
that firstly, during the elastic loading and unloading of the two span model
the deflection gages recorded a noticeable amount, about 0.007 inches of

permanent set; thus, if this fact is not reflected in the ultimate load test

results the deflections reported will all be shifted to the right. This is quite

possible considering the noticeable kink in the test curve at 10 kips load.

However, shifting the test curve to the left to account for the initial perman-
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ent set would give an improvement of only 5% between the two curves. Secondly,
it was noted in Reference 8 that "...noticeable support movement occurred at
high loadings...'. These support movements were measured and the reported
deflections were "adjusted" to account for this occurence. However, past
experience has indicated that in the conduct of a test, if the test frame and
the loading devices move, even a minute amount, during the conduct of a test
the establishment of an exact reference plane free of all movements cannot be
easily undertaken without the inclusion of errors of unknown magnitude (Ref.
39)., In this light if one looks carefully at the interior beam deflection
curves starting at around a load of 10 kips and up to a load of around 40 kips,
the two curves are almost parallel. In fact, moving the deflection at 10 kips
for both the interior and exterior beam test results to agree with the
analyticals shows very good agreement from 10 kips to 35 kips as seen in

Fig. 35. Starting at around 35 kips load, however, the apparent failure of
the exterior beam to take any more load in that there is no further deflection
could account for the separation of the two curves for the interior beam.

The behavior of the exterior beam would suggest that slab was completely
cracked in the longitudinal direction and that the reinforcement was no

longer capable of transmitting additional load. Because wire mesh reinforce-
ment would have little bending stiffness once the slab was cracked, the
excessive differential deflection between the two beams would cause the wire
mesh to be subjected to bending in addition to just axial force effectively
violating the assumptions of the finite element analysis. This additional
bending streas would cause premature attainment of the ultimate load transmitted

between the beams. The center and outside beams would then deviate from
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expected as indicated by the test results. The ultimate load obtained during
the test was 65 kips while BOVAS predicted an ultimate load of 57.9 kips. The
fact that the experimental ultimate strength exceeded the program predicted
would seem to contradict the statement just made concerning the dropping off
of the experimental load versus deflection curve; however, BOVAS does not yet
include the effects of strain hardening and this additional capacity might be
attributed to this effect.

One other comparison was made with regards to the two span model.
Based upon information provided by Tall and Beedle (Ref. 7) an estimation of the
residual stresses present in the beams was made. Then the assumed parabolic
distribution in the flanges and web was approximated by uniform average
stresses in the flanges of 9.05 ksi and in the web of -18.66 ksi. The effect
of the assumed residual stresses on the load versus deflection diagram of
the interior beam is shown in Fig. 36. As can be seen, while the effect is
clearly evident, no significant improvement in the results is obtained.

The load versus deflection diagram of the three span model is
presented in Fig. 37. As with the two span model, there exists substantial
differences between the analytical results and test results, even in the
elastic range. While no unloading curves were presented for the three span
model in Ref. 8, it would be logical to assume some small amount of permanent
set occurred during the initial loadings. Support movements were again noted
to have occurred and the reported results were '"adjusted'" to account for the
support movements.

Thus, as with the two span model, there exists some question

concerning the establishment of the true reference plane. Proceeding as with
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the two span model, but setting, in this case, the test results at 20 kips equal
to the analytical results and shiftiné the interior and exterior test curves
left, gives Fig. 38. As can be observed, the analytical and test results are
in very good agreement up to 55 kips for the exterior beam and up to about
50 kips for the interior beam. The deviation between the test results and
BOVAS results starting at around 50 kips could again be attributed in part
to the possible bending action of the mesh reinforcement. The ultimate test
load obtained was 80 kips while BOVAS predicted a maximum load of 60.9 kips.
More than likely the effects of strain hardening could not account for all
of the difference between these maximum loads, but certainly it would account
for some of the discrepency. Additional ultimate strength above that
predicted by the finite element analysis and not due to strain hardening
effect might be attributed to the conditions at the exterior supports of
the unloaded spans. At these supports the girders were clamped to the supports
to prevent uplift. Thus, the acfual end condition might reflect a partially
fixed support instead of a simple support, and obviously this type of support
would create a larger ultimate load.

As with the two span model, an estimate of possible residual stresses
was made. The analysis was reconducted with the residual stresses. This
has resulted in a dip, or kink, in the inelastic curve similar to that in
Fig. 22, However, as shown in Figs. 35 and 38, the results without assumed
residual stresses are in good agreement with test results, thus one could
assume the actual residual stresses are probably small and thus have little
effect.

In view of the results presented above, and in particular in

Figs. 35 and 38, sufficient evidence exists to indicate that the test results
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“and BOVAS results do in fact agree quite well up to about 60% of the ultimate
test load for both the two span and three span models. Beyond that point
possible reasons for the difference in the two results are presented above.
These reasons may or may not be totally correct. Since BOVAS

performed quite well in the actual bridge tests of Examples 1 and 2, there
exists sufficient reason to assume that the computer program is reliable

in the inelastic range. Beyond 607 of the maximum test load, the behavior

of the models probably does not reflect the actual behavior of reél life

loading conditions and real size bridge structures.
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5. Summary, Conclusions and Other Considerations

5.1 Summary and Conclusions

This report presents a method for amalyzing composite beam-slab
type highway bridge superstructures subjected to overloads. The analytical
technique employs a finite element method of structural analysis. The
concrete slab and steel beams are discretized into a series of layered
finite elements. The elements, and particularly the layers, provide a
means to monitor the spread of cracking and crushing of concrete and yielding
of steel throughout the bridge superstructure. In addition, the layering
technique allows for the inclusion of inherent nonlinearities in material
stress~strain curves and for the variation in material properties through
the depth of the element.

The nonlinear and linear stress-strain behavior of the slab con-
crete is analytically described by empirically formulated biaxial stress-—
strain laws in terms of principal stresses and directions. In addition, the
establishment of biaxial failure envelopes in terms of peak stress, peak
strain, and peak modulus allows for the determination of the initiation of
the failure of concrete by cracking and/or crushing of concrete. Elastic-

plastic stress-strain behavior of slab reinforcement and of the beam steel

is incorporated into the analysis scheme via nonlinear and linear uniaxial
Ramsberg-~Osgood stress-~strain formulation.

The analysis technique utilized a linear tangent stiffness approach
in which the solution corresponding to a particular load level is obtained

by summing up the individual solutions obtained from a series of previous
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load increments. Two different tangent stiffness methods of analysis have
been presented: an incremental-iteraéive method and an incremental method.
The incremental-iterative technique, which performs iterations and updates

the tangent stiffness matrix within each load step, is the only method
actually used in experimental comparisons because of its more reliable
solutions. In the incremental method, no updating or iterations are performed
in each load increment.

A total of four composite bridge type structures were investigated
by comparing experimentally produced data and analytically produced results
from the developed finite element model. 1In general, the layered finite
element program was shown to be capable of reliably predicting the linearly
elastic and inelastic behavior of simply supported or continuous composite
slab-beam highway superstructures. In particular the analytical load (or
moment) versus deformation diagrams were, for each case, in close agreement
with the experimental results after all factors involved were included or
accounted for. In addition, the progression of cracking and crushing of
concrete and yielding of steel was dependably forecast by the developed
analytical model.

The importance of including residual stresses in the beams is clearly

evident in Example No. 1 and to a lesser extent in Examples No. 3 and 4.
While limit data exists for predicting residual stresses without actually
testing for them, even this limited data can produce results which show the
importance of residual stresses in the ultimate strength behavior of beam-
slab bridges. Also of essential importance, as was evident in Examples

No. 3 and No. 4, is the need for taking the utmost care in the
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conducting of any test .so that there can be no question as to the reliability
of the experimental results. While nSt the focus of this report, experimental
data which is questionable even to the slightest degree, minimizes greatly
its value.

In particular, while very close agreement was obtained from the
load versus deflection diagrams for the latter examples simply by shifting
the reference point for the experimental results, the question of the
reliability of either analytical and/or especially experimental results is
somewhat in doubt. However, in light of the information presented previously,
the reliability of the finite element program stands up reasonably well even
without including Examples No. 3 and No. 4, but they are still included as
part of good research practice. As has been demonstrated, the analytical
method even shows good agreement with the two-span and three-span models
after considering all factors.

While in three of the tests the structures were loaded statically,
in the remaining test the loads were produced by moving vehicles. However,
by creating a loading pattern which approximates ﬁhe actgal moment envelope,
the analytical model produced very satisfactory results. In addition, in
each case the beams were subjected to the dead load of the structure. If this
had not been done the ultimate load, as well as the nonlinear behavior, would
have been entirely different because the dead load solution produces initial
stresses in the beams. Finally, the finite element program produced reliable
predictions of the ultimate capacity of each bridge superstructure.

The analytical method thus gives a solution for the flexural response

of the structure in terms of displacements, strains, stresses, and regions of
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cracking and crushing of the concrete and yielding of the steel. Service-
ability criteria can then be evaluated at various load levels up to the

flexural collapse of the bridge superstructure.

5.2 Other Considerations

5.2.1 AASHTO Overload Provision

The 1977 AASHTO specifications have an overload provision to allow
for the possibilityof infrequent heavy loads. The provision applies to
all loadings except H20 and HS20 loadings. The design truck load is to be
applied to a single lane, increased by 100 percent, and without any concurrent
loading in any other lane. The combined dead, live and impact stresses
resulting from such loading are not to exceed 150% of the allowable design

stresses. The question arises as to how does this provision relate to

an actual overload analysis such as those presented in this report.

In the first example Bridge 3B of the AASHTO test, the allowable
design stress in the steel beams was 27 ksi, which is greater than the present
AASHTO allowable tension stress for A-36 steel of 20 ksi. The critieal
section for bridge 3B occurred at the ends of the coverplated section where
the maximum stress was calculated to be 26.9 ksi by assuming an impact factor
of 10% and a distribution factor of 33%. However, after measuring dead
load stresses and recording the maximum live load stresses due to the regular
test traffic the actual maximum stresses in the three beams were 26.0, 28.8

and 31.Q ksi at the ends of the coverplated sections of 97, 1Q7, and 115 percent
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of the design load. The actual computed moment distributions of the three
beams were 33.8, 33.4 and 32.8 percent confirming the 33% distribution
factor, but the measured impact factor was an average of 18.97%. Thus, part
of the difference between the design stresses and the actual stresses can
be attributed to excess dead load and excess impact factor. In an attempt to
apply the overload provision the stresses at the critical section will be
factored down to a maximum stress of 20 ksi while maintaining the same ratio
of dead load to live load. By then doubling the live load plus impact
stress in accordance with the overload provision the total maximum average
stress becomes 28.9 ksi or 145% of the design stress. Thus, according to
the overload provision the bridge would be sufficient as designed. However,
in the process of performing the necessary steps to get these results a
number of important factors are overlooked in this simplified overload
provision.

Firstly, as was evident, the actual design stress was exceeded
even in this carefully controlled test; thus, an actual multigirder, multi-
lane bridge superstructure will also have a possibility of design stresses

being exceeded with normal live loads. Thus, if an overload is to occur

it would be possible that although the bridge met the specifications, the
actual stresses could be greater than calculated by simplified means.
Secondly, the arbitrary nature of the overload provision does not allow for
a vehicle by vehicle analysis nor does it allow for any quantitative or
qualitative analysis of the bridge subjected to the overload. For example,

if the vehicle weight limits were to be increased, how does one then apply
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the code and is it possible that even if the 150% limit is exceeded will the
structure behave reliably. |

With program BOVAS such quastions and others can easily be answered
because the engineer will have a grasp on what is happening at each particular
load level and any loading condition. From the damage record for Bridge 3B
with residual stress effect in Table 3, it can be seen that localized yielding
begins at 762 kip-ft. but that the load deformation curve remained linear
up to 1059kip-ft. However, when the residual stress effect is not included
then yielding does not begin until 1167 kip~ft. Thus, the importance of
including the residual stress effect which is ignored in conventional analysis
becomes extremely important. At the same time both the test results and BOVAS
clearly show that the bridge could successfully take a design load of 27 ksi
without any detrimental effect. Since the stress calculation is so dependent
upon the ratio of the live load to dead load, the distribution factor,
the impact factor and residual stresses, all of which are complex and variable
factors, the use of a simplified overload provision becomes questionable.
For the overload calculation, which arrived at a maximum stress of 28.9 ksi,
this corresponds to a maximum static moment of 815 kip-ft. Depending on
how one views this value in light of the damage record, it could be considered
as a conservative value or as an unsafe value. However, in light of the
fact that in the actual test results it was noted that even at loads much in
excess of first yielding the bridge had only a small permanent set. The |

815 kip-ft. limit would appear to be conservative.
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5.2.2 Fatigue

While program BOVAS cannot account directly for the effects of
fatigue, the results from the finite element analysis can be used to
establish an estimate of the fatigue life of the component parts. By
simply recording all element layer stresses in the vicinity of each parti-
cular type of detail and corresponding to a particular overload, a stress
range can be calculated for the detail. Then using published S-N curves
established for each category of detail, the estimatea cycle life can be
found. If the bridge has had many years of service an approximation of the
number cycles already made and the corresponding stress range can be used
in conjunction with the above information to perform a root—-mean-square

summation of the stress range effects to arrive at a fatigue life prediction.

5.2.3 Local Instability

In addition to failure by yielding or by fatigue, there exists
the possibility of failure dué to local instability or localized or general
buckling of the steel member or a component of the steel member. This
could amount to buckling of the compression flange, lateral to;sional
buckling, or buckling of the web due to shear. At the present time an
analysis similar to the one performed for the fatigue analysis could'be
made where a stress check is made of the element layers and then compared
to critical buckling values. Determining when this type of failure would
occur would be extremely important in any overload analysis, because if the

member component buckled at some given load, but the analysis did not
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reflect this fact, then the performance of the structure beyond the
buckling load would be unreliable. Wﬂile the compression flange in the
positive moment region is unlikely to buckle due to the restraining effect
of the concrete slab, the compression flange of beams over interior
supports in continuous bridges in negative moment regions could buckle
because there is no such restraint. However, to perform a correct flange
buckling analysis an appropriate critical buckling formula must be

established, such as
Cop = k* <7rE/ (12 (1-v)* (b/t)? )>

from Ref. 28. BOVAS could then be modified to flag the occurrance of such
stresses, and although the post buckling performance would not reflect the
buckling phenomena, the engineer would know when buckling occurred.
Similarly, a critical stress could be established for lateral torsional

buckling of the entire beam section in the negative moment region, such as:

: —
o e Y e

from Ref. 28. L, K, C1’ C2 are constants depending upon boundary and

loading conditions and span length. However, since the above equation is

for doubly symmetric sections, only some adjustment would have to be made.

As far as web buckling due to shear is concerned, experiments and theory show,
unlike the first two local instability effects, a considerable amount of

post buckling strength. However, the major task in investigating web

and post buckling strength remains in determining which of the many web

-83~



shear buckling models can be used in analysis and they can reliably predict
post buckling behavoir. Thus a major.effort remains to determine the
significance of these features and to what extent they can be included in

the finite element analysis.

5.2.4 Details and Floor Systems

The effects of secondary details of the main girder, such as
transverse stiffeners, longitudinal stiffeners, and cross bracing on the
behavior of the bridge superstructure, is not accounted for by program
BOVAS at this time. 1In general, transverse stiffeners are used to control
the shear in thin webbed plate girders, and their effect on the behavior of
the bridge in the elastic range is minimal, but due to the possibility of
web shear buckling, they could become important. However, the effect of
these vertical stiffeners can be accounted for in connection with the web
shear problem above. Longitudinal stiffeners could be accounted for by
using an element layer to simulate their effect while ignoring any possible
beneficial effect on shear capacity. Cross-bracing would be difficult to
include in the analysis without increasing the degrees of freedom of the
finite element model, and such a manuveur might not be warranted in light
of its secondary nature. However, some type of back subsituation involving
relative displacement of slab and girders in transverse and vertical
direction might allow for the calculation of approximate cross-bracing

stresses,
As far as changing the program to model floor systems composed
of a deck slab, longitudinal stringers, traasverse floor beams and longitu-




dinal main girders,.some approximations could be made. However, consider-
able effort should be made via parametric studies to insure exactly what effect
these members have on each other. For example, when the stringer is attached
to the floor beams twisting moments are introduced to the floor beams, and

as of the present time, the beam finite element does not include the effects

of torsion. In addition, the beams will run transversely as well as
longitudinally and care must be taken not to violate any assumptions already
made concerning slab-beam interactfon. Thus, while BOVAS can handle many
typical bridge superstructures, some further refinements are necessary to
insure a wider range of applicability. However, some features may or may

not be realistically included in the analysis scheme without major changes.
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Centroidal Distance

TABLE 1A

REINFORCEMENT EXAMPLE 1

from Midheight O Thickness
(Positive Downward) (degrees) (inches) Size/Spacing
(inches)
-1.435 -90 0.0620 5@ 5"
-0.935 0 0.0550 3 @ 20"
0.935 0 0.0550 3 @ 20"
1.435 -90 0.0620 5@ 5"
TABLE 1B
REINFORCEMENT EXAMPLE 2
Centroidal Distance ,
from Midheight ex Thickness
(Positive Downward) (degrees) (inches) Size/Spacing
(inches)
-1.6875 -90 0.05636 5@5.5"
-1.0625 0 0.03875 5@ 38"
1.0625 0 0.03875 5@38"
1.5625 -90 0.05636 5@5.5"
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TABLE 2
MATERTAL PROPERTIES
EXAMPLE NO. 1

Concrete Slab
Finite Element

Actual Model
Compressive Strength, f' 5.74 ksi 5.74 ksi
Tensile Strength, f - 4592 ksi
Initial Modulus, EC 5,200 ksi 5,200 ksi
Unload Modulus comp., Egq - 1,000 ksi
fud
Unload Modulus tension,Eq - 800 ksi
Ramberg-Osgood m - 0.77
Ramberg-0Osgood n - 9.0

Reinforcing Steel

Actual Finite Element
Yield Strength, f 61.2 ksi 61.2 ksi
Modulus, E_ 7 28,800 ksi 28,800 ksi
Ramberg-Osgood m - 0.70
Ramberg-0Osgood n - 100.0

Steel Beam

Actual Finite Element
Yield Strength, flange, £ 35.1 ksi 25.1 ksi
Yield Strength, web, f y 39.9 ksi 39.9 ksi
Yield Strength, coverante, f 38.9 ksi 38.4 ksi
Modulus E_ 7| 30,000 ksi 30,000 ksi
Ramberg-0Osgood m - 0.67
Ramberg-Osgood n - 300
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TABLE 3

LOAD VS DAMAGE RECORD - EXAMPLE NO. 1

Web yielding is clearly

Load
(kip—-ft) Damage - Test

1333 Yielding of bottom
flange near ends of
coverplate

1493 Almost complete yield-
ing of bottom flange
except near supports,
extensive coverplate
yielding

2000
evident

2277

Extensive web yielding
and tension cracks in slab
halfway through depth in
coverpluted section

Yielding of exterior beam
bottom flange @ mid span

Yielding of interior beam
bottom flange @ mid span

Yielding of coverplate of
exterior beam @ mid span

interior beam bottom flange

Complete yielding of exterior
85% of
exterior beam bottom flange

Complete yielding of interior
85% of
interior beam bottom flange has

Bottom layer of slab has a
transverse crack all the way

The web of exterior beam has
yielded over 707% of its depth

The web of interior beam has
yielded over 70% of its depth

Load
(kip—-£ft) Damage - BOVAS
762
906
1059
1156 Yielding of exterior &
at end of coverplate
1364
beam coverplate.
has yielded
1455
beam coverplate.
yielded
1662
across at mid span
1883
1919
2296
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The slab has a transverse
crack through 507 of its depth
at mid span and 33% through
depth in coverplated section.
The web has yielded through
86% of depth at midspan




TABLE 4
MATERIAL PROPERTIES

EXAMPLE NO. 2

Concrete Slab

Finite Element

Actual Model
Compressive Strength, f; 6.87 ksi 6.87 ksi
Tensile Strength, £ ——— 0.4898 ksi
Initial Modulus, B ' — 4,776 ksi
Unload Modulus comp., Edc — 1,000 ksi
Unload Modulus tension, Edt ——— 800 ksi
Ramberg-Osgood m —— 0.77
Ramberg-0Osgood n —_—— 9.0

Reinforcing Steel
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Actual Finite Element

Yield Strength, f 40 ksi 40 ksi

Modulus, E_ J 29,000 ksi 29,000 ksi
Ramberg-Osgood m — 0.7
Ramberg-Osgood n —— 100.0

Beam Steel

Actual Finite Element

4 Yield Strength, £ 40 ksi 40 ksi

Modulus, E_ 7 30,750 ksi 30.750 ksi
Ramberg-0Osgood m —— 0.67
Ramberg-0Osgood n —— 300




TABLE 5
LOAD VS DAMAGE RECORD - EXAMPLE NO. 2

Load Load
(kip~ft) . Damage - Test (kip-ft) Damage - BOVAS

259.5 Up to this point there has
only been longitudinal crack-
ing of the slab in the bottom
layers at the center line of
the bridge under or near the 1
load

402.5 The first transverse cracks
appear in the top layer of
the slab near first pier

446.7 Transverse cracks appear in
the top of slab near the
second pier

556.4 First yielding begins in
bottom flange of interior
beams in area under the load

590.9 First yielding begins in
bottom of web of interior
beams in area under the load.

620 First yielding of steel
appears to occur at this
load - shortly after 625.5 The transverse crack over the
yielding started the first pier is now through 507%
bridge "lifted off" the of the slab depth
abutment nearest the load

650 Tension cracks visible in
deck slab over first pier

700 Tension cracks which
extend across the slab ,
and through the curb at 710.4 The first transverse crack in
second pier . the bottom of the slab in the
area under the load now
appears
757.5 The slab over first pier is

now completely cracked
longitudinally through the
complete deptﬁ, however, the
reinforcement is still functional
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Load
(kip-£ft)

Damage - Test

TABLE 5--Continued

The slab over second pier
is now cracked completely
through the depth in the

Yielding of the bottom flange
of the exterior beams in the
area of the load has started

The slab between the interior
and exterior beam at the

second pier is now also cracked
through 60% of its depth in

the longitudinal direction

The bottom transverse rein-
forcement in the slab in the
area of the load has now

Yielding in compression of the
bottom flange of interior beam

The transverse crack in the
bottom of the slab under the
load is now halfway through
the slab depth in the area
near the center of the bridge

The web of interior beam under
the load is now fully yielded

First crushing of slab at load

Load
(kip-£ft) Damage - BOVAS
767.8
longitudinal direction
819.3
851.6
925.4
yielded in tension
991.6
at first pier
1029.2
1072.6
1119.9
point
1202.3

-92-

"Yielding in compression of top

transverse slab reinforcement
in area under load. Yielding
in tension of top longitudinal
slab reinforcement near the

first pier. Yielding on tension
" of bottom longitudinal slab

reinforcement in area under’
the load.



TABLE 5--Continued

Load Load

(kip-£ft) Damage - Test (kip-ft) Damage - BOVAS

1221.2 The interior beam in the
area under the load has
now fully yielded forming
a plastic hinge in the beam

1254.7 The web of exterior beam
under point of loading has

1265 Maximum load reached. now fully yielded

Compression failure
of curb section.
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TABLE 6A

REINFORCEMENT EXAMPLE 3

Centroidal Distance 0 Thickness
from Midheight X
(Positive Downward) (Degrees) (Inches) Size/Spacing
(Inches)
0.00 -90 0.02667 w8 @ 3"
0.00 0 0.0200 w6 @ 3"
TABLE 6B

REINFORCEMENT EXAMPLE 4

S Centroidal Distance 0 Thickness
£ from Midheight x Leknes
) (Positive Downward) (Degrees) (Inches) Size/Spacing
(Inches)
0.00 -90 0.0100 W4 @ 4"
0.00 0 0.0100 W4 @ 4"

-94—




_g6—

MATERTAL PROPERTIES - EXAMPLE NO. 1 AND

TABLE 7

Concrete Slab

EXAMPLE NO. 2

TWO SPAN THREE SPAN
Actual F.E.M. Actual F.E.M.
Compressive Strength, f; 4.83 ksi 4.83 ksi 3.99 ksi 3.99 ksi
Tensile Strength, £ - 0.3946 ksi - 0.3591 ksi
Initial Modulus, Ec 3600 ksi®* 4044 ksi 3900 ksi* 3640 ksi
Unload Modulus Comp., Eg —_— 1000 ksi - 1000 ksi
Unload Modulus Tension, de - 800 ksi - 800 ksi
Ramberg-Osgood m : - 0.77 - 0.77
Ramberg-Osgood n - 9.0 9.0
* Secant Modulus
Reinforcement Steel
TWO SPAN THREE SPAN
Actual F.E.M. Actual F.E.M.
Yield Strength, £ High Strength 64 ksi High Strength 64 ksi
Modulus, ES y 29000 ksi* 29000 ksi 29000 ksi* 29000 ksi
Ramberg-0sgood m — 0.7 - 0.7
Ramberg-Osgood n 00 200 - 200
% As given by
manufacturer
Beam Steel
TWO SPAN THREE SPAN
Actual F.E.M, Actual F.E.M.
Yield Strength, £ 40 ksi 40 ksi 40 ksi 40 ksi
Modulus, ES 30000 ksi 30000 ksi 30000 ksi 30000 ksi
Ramberg-Osgood m - 0.67 - 0.67
Ramberg-0Osgood n — 300 - 300
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Fig. 4 Longitudinal Stress Distribution in Deck and
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Fig. 6 Linear and Nonlinear Concrete Stress-Strain Curve Regions
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Finite Element Discretization
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Fig. 34 Example No. 3 (University of Maryland) - Two Span Load versus

Deflection Diagram for Interior and Exterior Beams
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Fig. 35 Example No. 3 (University of Maryland) - Two Span Adjusted Load versus

Deflection Diagram for Interior and Exterior Beams
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Fig. 37 Example No. 4 (University of Maryland) - Three Span Load versus Deflection

Diagram for Interior and Exterior Beams
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NOMENCLATURE
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SB

c,D

D109,
Dy35D555

Dy3,Pa3

EA
EI

ES

NOMENCLATURE

Cross-sectional area

Layer area

Area of steel reinforcement in slab
Effective shear area in beam

Curve parameters

Constant associated with shear connector stiffness, ksc

Components of the rigidity matrices

Modulus of Elastdicity
Axial rigidity (ExA)
Flexural rigidity (ExI)

Modulus of Elasticity x first moment of inertia (ExS)

Initial tangent modulus in uniaxial loading for concrete

Downward slope of concrete stress—~strain curve for

compression

Downward slope of the concrete stress-strain curve for

tension

" Initial modulus of elasticity for the Ramberg-Osgood

stress—-strain relationship
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I,J,K,L

J1

Beam element layer stiffness

Tangent modulus at the peak stress

Initial modulus of elasticity for steel

Tangent moduli for the two principal stress directions

Tangent moduli for the principal stress directions

employed in formulating [D]

Generalized nodal forces

Shear modulus

Second moment of inertia

Nodal points for slab element

Moment of inertia for layer i about its centroid

Parameter in beam element formulation

Beam element length

Moment

Axial Force

First moment of inertia for beam

Axial displacement for beams or in-plane displacement

in x-direction for plate

In~-plane or axial displacement in x-direction at depth z

In-plane displacement in y-direction for plate

Sthear in beam
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i+l

N

tb

bA

f |

I

In-plane displacement in y-direction for plate at depth z
Displacement in z direction

Layer boundaries for layer i measured from the reference

plane in the vertical direction

Vertical distance between reference planes for slab and

beam

Centroid location of layer i measured from reference

plane in the vertical direction

Vertical distances from reference plane for slab (A)
and for beam (B) to the plane of intersecting two

element

Vertical distances from reference plane for slab (A) and

for beam (B) to their respective centroids
Slab element half lengths

Coefficients in polynomials for vertical displacement

fields, i = 1,...,12, j =1,...,4

Coefficients in polynomials for in-plane and axial

displacement fields, i = 1,...,8, j =1,...,3
Reinforcing bar spacing for slab

Distance from centroid of beam to top of beam
Distance from centroid of slab to bottom of slab

Coefficients in polynomials for rotation field in beam
i=1,...3

Representative uniaxial compressive cylinder strength

for concrete
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£ = Direct tensile strength for concrete

t
fy = Yield strength steel
sk ., = 8lab element submatrices

uu’ u¢
k

oo
k,,,k , = Beam element submatrices

Bb’ "ss
kA
ksc = Stiffness of uniform medium used to model shear connectors
m,n = Parameters used in Ramberg-Osgood stress-strain relation-

ship
s = Shear flow at interface
tS .= Equivalent thickness of a reinforcing bar layer for the
slab

X,y = Local cartesian coordinates
Xn’yn = Nodal point coordinates

z = Vertical distance from reference plane
a = The stress ratio or the ratio a/b
al = The stress ratio for principal direction 1, 02/01
o, = The stress ratio for principal direction 2,-01/02

] = The ratio b/a

(ny)z = GShear strain at depth Z
f = Shear strain increment
Yp = Shear strain in beam
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€ _»€
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]

Strain in principal stress direction
The concrete strain at peak stress

Concrete strains at the peak stress for the two

principal stress directions

Peak strains for uniaxially stressed concrete in

tension and compression respectively

Normal and shear strain increments in the x-y coordinate

system

Strains in principal stress directions

Angle which defines principal stress directions
Rotations about x and y axes

Rotations for slab and beam respectively
Poisson's ratio

Poisson's ratio in principal directions

A principal stress

The peak stress in a principal direction

The peak stress for the two principal directions

Secant yield strength used in Ramberg-Osgood stress-—

strain relationship

Normal and shear stress increments in x-y coordinate

system

Normal and shear stresses in x-y coordinate system
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Matrices

[81,
[By11B,],
(8,1, [B,1
(8],

[cl =

[c11,
1,1,
[c1,]

[Cc2]

]

[CAT, [CB]

(ccl =

[cD] =

[Cw] =

(D] =

Stresses in principal directioms

Shear stress increment

Strain displacement matrices

Matrix relating polynomial coefficients to element node
displacement using compatibility and constraining

equations

Compatibility matrices = [P(x,y)] evaluated at nodes

Matrix of constraining equations

Coefficient-displacement matrices for axial fields in

beam and slab

Coefficient-displacement matrix for all displacement

fields
Coefficient-displacement matrix for rotation field

Coefficient-displacement matrix for vertical

displacement field

Elasticity matrix based on current state of stress
which relates the stress increment to strain increment

in x-y coordinate system
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{F}

{f},
{A(xy)}

(K]

[KI]""
[K,]

[k]©

e

[k 1]

uu

e

e

[k, .1

o

e
g1,

gl

e

[K]

[N]

[P(x,y)]

Elasticity matrix for layer i

In-plane, coupling, and bending rigidity matrices

respectively

Elasticity matrix in the principal stress space
Vector of generalized nodal forces

Vector of shape functions

Global stiffness matrix

Component matrices of the slab stiffness matrix

Element stiffness matrix

In-plane stiffness matrix for slab element

Coupling stiffness matrix for slab element

Bending stiffness matrix for slab element

Axial and bending stiffness matrix for beam element
Shearing stiffness matrix for beam element

Slip stiffness matrix for beam element

Matrix defining shape functions

Polynomial functions used to describe the displacement
field
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A connection matrix relating strains within an element

CINCHP

[Q¢] to the constant coefficients of the displacement field

[S] " = A coordinate transformation for curvatures

[T] = Use to transform the elasticity relation from the
principal to the x-y coordinate system

{a} = Vector of polynomial coefficients

{e} = Vector of strains

(e} = Vector of incremental strains

[T] = Operator matrix to compute strains from the displacement
fields

{8} = Vector of generalized node displacements

{8} = Vector of incremental generalized node displacements

{a} = Vector of stresses \

{a} = Vector of incremental stresses

{Ei} = Vector of integrated average stress for layers

Notes:

1. The use of subscripts u, ¢, b, s, and d on matrices indicates that
the matrix is derived from the consideration of in-plane deformations
(u), bending deformations (¢), axial and bending deformations (b),

shear deformations (s), and slip (A).
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The use of the subscripts uu, u¢, and ¢¢ on matrices indicates
that the matrix is derive& from the consideration of in-plane
deformations (uu), coupling deformations (u¢), and bending
deformations (¢¢).

The use of the subscripts A and B used alone indicates the parameter
is associated with either the plate (A) or the beam (B).

The use of L or M as a subscript indicates that the quantity is
at node L or M.

The use of ('), primes, indicates quantities expressed in skew
coordinates.

The use of superscript, e, on vectors or matrices indicates that
the quantities are applicable to the element.

The use of 1,2 as subscripts indicates that the quantities are
with respect to the directions of principle stress.

A (+) dot used over any term indicates an incremental quantity.
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APPENDIX A

SLAB ELEMENT STIFFNESS FORMULATION

A.1 Introduction

In the basic development of the slab element stiffness matrix,
as outlined in Section 3.5 and presented in detail in Appendix A of

Reference 41, the following stiffness equations are derived:

T .
T -1
(Ryylgng = (617 g4 [Q 17 [,] [Q] 4,d [C,] (A.1)
[y Tonyp = [C,1° 1 toa® 1 18] 10 dod fe7t et @)
ud” 8%x12 ¥x [Qu u¢ Q¢ Xy ¢ )
[k, 1% =[] 1t [c 1‘1T i 10.% (s1t [0,.] [S] [Q,] d.d
! 12x12 b ¥yx " L) " xy
CR R @

The evaluation of the integrals in Eqs. A.l1 to A.3 can be simplified
by considering only one element of the rigidity matrices [Duu]’ [Du¢]’

and [D, . ], which are defined by equations 2.13, 2.23, and 3.32, to be

o9

nonzero at a time. Equations A.l to A.3 thus become:

T
] -1
[k, Jgxg = [Cq]7 [Dy;[K;] +Dy,[Ky] + Dy 5IR] + D[R, T +
-1
Dy5lRgl + Dys[KeT 1, [C,] (A.4)
_]_T

[kyolgxiz = (G617 [0y K] + D oK1 + D[R, + D[R, +
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1 -1

D23FK5] + DyylKel 154 [C¢J_ [T] (A.5)
T T
(g1 S 1 = 1117 (€17 D311+ Dyy[Ry] 4 DylKg] + D[R]
+D,.[K.] +D,,[K.]1 1, I[C 17 (17t (A.6)
2375 33767 T4 "9
where:
_1 —
0 b
0 0 a symmetric
0 0 0 1
0 0 0 0 b
1 0 0 0 0 0 a
[T] = =
o 0 0 0 0 0 1
0O 0 0 0 0 O O b
0 0 0 0 0 0O 0 0 a
0o 0 o 0 0 O 0O o0 0 1
o 0 0 0 0 0O 0O 0 0 0 b
o 0 0o 0 0 0 0 0 0 0 0 a] (A.7)
2 1 -1 2 1 -1 2 -1 1 2 1 1]
-3 1 1 -3 -1 1 3 -1 1 3 1 1
3 -1 -1 -3 -1 1 3 -1 1 -3 -1 -1
0 0 1 0 0 1 0 0 -1 0 0 -1
-4 1 1 4 1 -1 4 -1 1 =4 -1 -1
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41 01 0 0 -1 0
[C¢] =3
1 0 -1 1 0 -1
0 0 1 0 0 -1
0 -1 0 0 1 0
-1 1 0 1 1 0
1 0 -1 -1 0 1
1 -1 0 -1 -1 0
1 0 1 0 1
B ST S S §
a a a
1 1 1
» 2 % 0 3
1 1 1
" “ab 0 ab ¢ ab
-1 1
[Cu] =%
0 1 0 1 0
0o -+ o -1 o
a a
1 1
0 g 0 —-E' 0
1 1
0 - ab 0 ab 0

=

O

0 (A.8)

(A.9)

The submatrices pertaining to the inplane stiffness matrix are

evaluated by employing Eq. A.4 as follows:
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_ T N
O KDy = £ Q1 | 0y 0 0p [Q T dds (A.10a)
0 0 0
0 0 0
- =~ uu
™. .[K.1) —ff[]Tro b.. o] [01]dd (A.10b)
12°72%uu  yx Qu 12 u Xy :
Dy, O 0
0 0 0
— ~uu

and so on. Explicit expressions for Egqs. A.10 can be developed by

utilizing:
0 1 0 y - 0 0 0 0 ]
[Qu] = 0 0 0 0 0 0 1 X (A.11)
0 0 1 x 0 1 0 y

The resulting (Dij[Kn])uu matrices are presented in Reference

41. By utilizing:

0 00 -2 0 0 -6x -2y O 0 -6xy O

[Q

¢]= 000 0O 0 -2 0 0 -2x -6y O -6xy (A.12)

10 0 0 0 -2 0 0 =-4x -4y 0 -6x%> -6y2
'and

1 0 o0
az

s1= o L1 o (A.13)

b2
1

0 0 —
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similar expressions for (Di [Kn])u and (Dij[Kn])¢¢ matrices are derived

J ¢
and presented.in Reference 41. However, in the previous research the
remaining matrix operations of Eqs. A.4 to A.6 are left to be completed
by the computer. Since many of the terms in these matrices are equal
to zero, such matrix operations performs many unnecessary multiplica-
tions and additions. Considerable computation time can be saved by
carrying out all matrix operations by hand, so that only direct sub-
stitution is required to get the slab element stiffness matrix. Also,
in a typical analysis as many as 75 load cycles with three iterations
per load cycle may be required, and each slab element stiffness matrix
may be recalculated 225 times, and if there are 50 slab elements, this
amounts to 11,250 stiffness matrix calculations per job. Thus, a

typical reduction in computation time by a factor of 1/100, leads to

sigificant saving all around.

A.2 Element Stiffness Matrices

R i i . i t
eturning to equation A.4 and evaluating the (Dij[Kn])uu

submatrices as given in Ref. 41 yields:

00 0 0 00 0 0
0 Dyy Dy 0 0 D5 Dyy 0
0 D, D 0 0 by, D,, 0
D,.b% D_..a? D..b%2 D..a?
00 0 1; + 33 00 0 1;’ + 23
M..[K]D =
ij* ' uu
00 0 0 00 0 0
0 Dy3 Dy 0 0 Dyg Dy 0
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T
Premultiplying Eq. A.l4 by [Cu}—1 and then postmultiplying

the results by [Cu]-l gives an 8 by 8 [kuu]e, inplane element stiffness
matrix:
e ) o cuf Pas® D e 2 -1 P23 P2 Dss
uu 3 3 2 uu "’ 6 3 4 4
ey o o138 Pas® Pip Py o Pagf Papt
uu 3 3 4 4 uua 6 6
D
k (1,3) = EllE - Eﬁéﬁ k (2,5) = - D138 + 23“ + D12 - P
uu 6 3 au 3 6 4
o (- o1t Das® Pio Pas o o Pasf Page
uu 0 6 3 4 4 uu 3 6
D..B D,.,o
- - i1 33 -
k ,(1:5) = 3t % kuu(2,7) k (18
T S e s VS 2.8y = - 33 D22t Pas
uu "’ 3 6 4 4 Tuu”? 6 6 2
D..B D,.a D
__-11° 733 13 _
D..8 D,.,a D D
_ __13° 23 12 , "33 -
k o (1,8 = 3 e Tt K, (352) =k (2,3)
D .B D,,o D
- _ 1l 33 13
kuu(z,l)- kuu(l,Z) kuu(3’3)' =
e (2.2 = 33%, Paa% D T e s & Ll VRN &
uu 3 3 2 uu 3 3 A 4
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kuu(3’5)

kuu(3’6)

kuu(3,7)

kuu(3’8)

ke (451)

K, (4,2)

kuu(4,3)

k(44

ke (455)

k (4,6)

kuu(4,7)

ke, (4:8)

]

il

PP Dy Dy
6 6 p

_Dy3f Dyg% Dy Dy
6 6 i "%

k (1,5)

k(2,5

K, (1,4)

k_(2.4)

k_ (3,4)

D338 | Pay® Do

3 3 2
k (3,6)
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kuu(5,8)
K (6,1)
k, (6,2)
k (6,3)

kuu(6,4)

]

k_(1,5)
uu

kuu(2,5)

kuu(3’5)

ko (455)

(
kuu\3,3)

K, (3:4)

kuu(l,B)

kuu(2,3)

kuu(1,6)

kuu(2,6)

kuu(3,6)

k, (4:6)



k., (655)

kuu(6,6)

kuu(6’7)

kuu(6,8)

Ky (751)

kuu(7,2)

kuu(7’3)

Ky (754)

kuu(7,5)

kuu(7,6)

= kuu(5’6) kuu(7,7) = kuu(l,l)
= Ky (4:4) k  (7,8) = k_ (1,2)
=k, (1,4) k81 =k (1,8)
= Kk, (2,4) k,,(8:2) =k (2,8)
=k (1,7) k, (8:3) =k  (3.8)
= kuu(2’7) kuu(8,4) = kuu(4,8)
= Kk (3,7) k,,(8:5) =k  (5,8)
= Ky (457) Ky (8:6) = Ky (6.8)
= k,,(5,7) ko @7 =k (7,8
=k, ,(6,7) k . (8:8) =k (2,2)

Combining the appropriate matrix from equation A.5 and Ref.

1 vield , .
41 yields the following (Dij[K.n])u matrix:

¢
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D15

—Dlzu

D3

D8

D3

1@3

o%WJ

1mfu

D33

D33

Dy3  Dyye

Dy48

Dy

Dyg

Dyg Dy,

D ,8

-161~
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By then performing the remaining matrix operation of Eq. A.5

T .
. -1
(i.e. [Cu]

is derived:

ku (1,1)

¢

ku¢(l,2)

ku¢<1’3)
ku¢(1’3)
ku¢(1’5)
ku¢(1’6)

ku¢(1’7)

ku¢(1’8)

ku¢(1’9) =

ku¢

(1,10) =

-1

0 1K D), C,] [T17!) the following 8 x 12 [k, 1° matrix

3 13773
113 Pay D12>
4 a b b

N~

=

Do)

N
—
|
N
=)
[e—y
[y
W
o
W
w
Q




2,3)

ku¢(
2,4)

Ky €

2,5)
iy

2,6)
ku¢(

2,7)
ku (

¢
2,8)
ku¢(
2,9)
ku¢(
(2,10)

Ky

2,11)
ku¢(

N

N =

N

£

N —

N

=

Nof =

————N——
\/\

B Dy,
P33f | Pap?
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ko (2:12) =k, (1,11)

Kk (3,1) = l_(_ P13 Pay Dlz)
ud 4 a 5 5
ku¢(3,2) = ku¢(1,5)

k(33 = %(E}BLB_ £, - D333u)
ko (3:4) = %‘(Dis . 22?3 _ Déz )
ks (3:5) = 1 (_ 2133_B o, 2D§3a
Ky 3-6) = %< ZDgl +Dyq - D33_3 )
R
ki (358) =k ,(1,11)

Kp(3:9) =k, (1,12)

k4 (3,10) =.%.(_ Di3 _ 2233 _ Déz )
Kag o1 = _;_(D_:];;:,E " P12 D233°L )
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ku¢(3’12) = ku¢(1T9)

ku¢(4’1) =

ku¢(4,2)
ku¢(4,3)
ku¢(4,4)
ku¢(4,5)
ku¢(4,6)
ku¢(4’7)

ke (458)

Ry (4:9)

ku¢(4,10) =%

_1(.33 _ -
kyp (4511) = 2( 3 " D3 3

]

1/ 33 Dy Dlz)
A a b a
K (255)

ko (1:8)

ku¢(2’11)

= ku¢(2’12)

- +

1 (2D33 3,53 Dyy )
b a

33 22

D,..B D, )
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NER

ku¢(5,

kyy 5

ku¢

Ky (55

Ky (5

ku¢(5,

ku¢(5,

kyy (55

ku¢

ku¢(5,

ku¢(5,

G,

(S,

| 2,9)
12) = ku¢(.

1) = ku¢(3,10)
2) = ku¢(3,ll)
3) = ku¢(3’12)
4) = —ku¢(3,7)
5) = ku¢(3’8)
6) = ku¢(3'9)
7) = —ku¢(3,4)
8) = ku¢(3’5)
9) =k, (3,6)
10) = —ku¢(3,l)

11) = (3,2)

ku¢
12) = ku¢(3’3)
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ke (651) = =k, (4,10)
kg (652) =k (4,11)
kg (653) =k, (4,12)
kg (654) = =k, (4,7)
kg (6:5) = k0 (4,8)
kg (656) = K (4,9)
kg (6:7) = =k, (4,4)
iy (6:8) =k, (4,5)
kg (659) = K, (4,6)
Ky (6,10) = =k (4,1)
kg (6511) =k, (4,2)
ks (6512) =k, (4,3)
kg (751) = =k, (1,10)
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kﬁ¢(7,2) = ku¢(1,1;)
ku¢(7’3) = ku¢(l’12)
ku¢(7,4) = -ku¢(1’7)
ku¢(7’5) = ku¢(l,8)
ku¢(7’6) = ku¢(l’9)
ku¢(7’7) = —ku¢(1,4)
ku¢(7’8) = ku¢(l’5)
ku¢(7’9) = ku¢(1’6)
ku¢(7’10) = —ku¢(1,1)
ku¢(7,ll) = ku¢(1’2>
ku¢(7’12) = ku¢(1’3)
ku¢(8,l) = -ku¢(2,10)
ku¢(8’2) = ku¢(2’11)
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ky(853) = k 4(2,12)
ky(8:4) = -k 4 (2,7)
kyp(8:5) = k4 (2,8)
ki (8,6) =k 4 (2.9)
kg (857) = =k 4 (2,4)
ky(8:8) = K 4(2,5)
kg (8:9) = Kk ,(2,6)
kyy(8510) = =k 4(2,1)

ku¢(8’11) = ku¢(2’2)

ku¢(8’12) = ku¢(2’3)

Combining in a similar manner the appropriate submatrices

from Eqs. A.6 and Ref. 41 yields the following (Dij[Kn])¢¢ matrix:
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-0L1-

16

-
0 0 0 O : | 0
0 0 0 0 : ; 0
0 0 0 ’ ; 0 0 0
. D
. § - : . 0 0 13 13
=3 22 ab y a
D
Dj3 Dy Dys 0 0 : 0 N ;
a? ab b® : ;
D D D22 | |
L 23 0 0 0 0 23 43
ab b b | b .
D b 2D P 7
0 0 0 11 2 ® : 0 |
T ad B ®
| 0 m D X 4Dyy 2D, N y3 Dy 0 0
a2 333 3ab 3a* 3b° *
0 0 0 D, 2Dyg + Dy3 Dpp2 + R & : 0
ab 322 T 32 33 T 3ap B2
D12 2D23 3D22a
0 0 0 0 ab 2 b 0 0
o 13 D33 Do 0 0 0 PypP + P33 Pip + 233
aZ ab b2 as 5ab  ab ab
| : D33 - | | 0 ) D, . Dig Dy,a + 9D33
aZ ab b2 ab ab b 18"
(A.18)




By then performing the remaining matrix operations of Eq. A.6
T T
1

(tee. (1170 [C,]7" -1

-1 , e
(Dij[Kh])¢¢[C¢] [T] 7) the following 12 x 12 [k¢¢]
matrix is obtained:

k(L) = L, D22 P33 P1a
b a®o  b*B ' 5ab 2ab

P22 D33 Dy

kpo(1:2) = - 35 - 35, 2a

k(1) = -1t P33 P
b7 aq 5b 2b

Dll DZZ 7D33 D12

kyg(1:4) =529 =~ 326 = Sap ~ Tab

Koy (153) = = 35 = 55

D D D D
k. (1,6) = - _ 13 733 12
b 2aq a 5b 2b

k(17 = - Paa P33 Pip
bp ° a®o ' 2b°B  5ab  2ab
£, (1.8) = 23 P22 P33 P1a
o b 2bR © 5a 2a
D.. D
- _ 33
kpp(159) = - 55 = 5p
£ (1.10) = - P11 P22 P33 iy
10N 2a®a  2b*B ' 5ab 2ab
Dy D3 Da3

kyp(1o11) = <= - w5+ 5,
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Dy Dy3  Dig

kgp(L1D) = = g+ 2 5
k¢¢(2,l) = k¢¢(1,2)

kgp(2:2) = Dyq ¥ f’;_233+ -81]%
kgg(2:3) = - Da—? - B Dy,

kpp(253) = 35~ ~ 154

D D
_ _23 13
k¢¢(2,6) = —"""‘68 + T
D

23 Dap P33 Dy

k90D =" " et 52t 7a

2D22 8D33

kpg(2:8) = =55~ = T34

k¢¢(2’9) = (2,6)

Koo

k¢¢(2,10) = -k ¢(1’11)

¢
D 2D
- - _22 33
k¢¢(2,11) = D23 + 3g + 5
kyy(2:12) = -k, (2,6)
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: k¢¢(3,1) = k¢¢(l,%)
k¢¢(3,2) = k¢¢(2,3)
kpp(3:3) = 42;l = Di3 +f§2%?
gy 0 = g 2
k¢¢(3,5) = k¢¢(2,6)
kyy(3:6) = Zzil - i?%?-
k¢¢(3,7) = —k¢¢(1,9)
kyy(3:8) = kg, (2,6)
kpg(3:9) = Egél" %2%?
iy (3,10) = -k, (1,12)
kyy(3:11) = kg0 (2,12)
kpy(3:12) = 2&%" D3 +‘§2%?
k¢¢(4,l) = k¢¢(1,4)
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Ky (4:2) = kyy(2,4)
Iy (453) = Ky (3,4)
ey (454) = Ky (1,1)
Iy (455) = -y, (1,2)
Iy (456) = gy (1,3)
kg (457) = Ty (1,10)
Dy Dy Di3

kyp(4:8) = 3=+ 77 - 3,

D D D
11 13 33
= - +

" 2aq a 5b

]

k¢¢(4,10) k¢¢(1,7)

k¢¢(4,11) —k¢¢(2,7)
k¢¢(4,12) = k¢¢(1,9)

k¢¢(5,l) = k¢¢(1,5)

k¢¢(5,2) = k¢¢(2,5)
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k¢¢<5’3) = k¢¢(395)

Ky (5:4) = kyy (4,5)
4D 8D
_ 22 33
kpp(553) = Dyg + —= + 755
D D
- .23 13 _
kyp(5:6) = - 5= - 55 ~ Dy

k¢¢(537) = ‘k¢¢(438)
D
k¢¢(5,8) =D,, + =5 + —

k¢¢(5,9) = —k¢¢(2,6)

k¢¢(5,10) —k¢¢(1,8)
k¢¢(5,ll) = k¢¢(2,8)

k¢¢(5,12) = k¢¢(2,6)

k¢¢(6,1) k¢¢(l,6)
k¢¢(6,2) = k¢¢(236>

k¢¢(6,3) = k¢¢(336)
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k¢¢(6.4) =

k¢¢(635) =k (5:6)

dd
4D 5D
4Dy 33
ki (6:6) = —37=+ D5 + 755
kyy (6,7) = =k, (4.7)

k¢¢(6,8) = -k, (2,6)

Ll
D 2D
Dy 33
kyy(6:9) = 5=+ D13+ 153

k¢¢(6,10) = (1,9)

Y

k¢¢(6,ll) = k¢¢(2,6)

k¢¢(6,12) = k¢¢(3,9)

k,  (7,1)

40 kpg(1s7)

Ky (752) = &y 0 (2,7)
kg (723) =Ty (3,7)

k¢¢(7,4) = k¢ (4,7)

¢
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. kg (753)

k¢¢(7,6)

k¢¢(7,7)

k¢¢(7,8)

k¢¢(7,9)

k¢¢(7,10)

k¢¢(7,11)

k¢¢(7,12) =

k¢¢(8,l)
k¢¢(8,2)
k¢¢(8,3)

k¢¢(8,4)

k¢¢(8,5)

= k¢¢(5,7)

= k¢¢(6,7)

= k¢¢(1,1)

= k¢¢(l,2)

= -k, (1,3)

]

oo
k¢¢(1,4)

k., (1,5)

Dy, Di3 Da3

Do

2ac a _ 5b

=k (1,8)

]

o

k¢¢(2,8)

k¢¢(3,8)

k¢¢(4,8)

k¢¢(5,8)'
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kg (856) = kyy(6,8) kg (957
kyy (857) = kyy(7,8) Ky (958)
kyg(858) = Kyy(5,5) ki (959)
kg (859) =k, (5,6) Ky (9510)
kg (8510) = kyy(2,4) kyy(9511)
kg (8511) = k40 (2,5) kg (9512)
k¢¢(8,12)== k¢¢(2,6) k¢¢(10,1)
kpg(951) = Ky (1,9) Ky (1052)
ky(952) = Ky (2,9) iy (10,53)
kg (953) =k (3,9) kyy(1054)
kg (954) = Ty (4,9) kg (1055)
k¢¢(9,5) = k¢¢(5,9) k¢¢(10,6)
kg (956) = Ky (6.9) Ky (10,7)

~178-

It

k¢¢(7,9)

= k¢¢(8,9)

= k¢¢(6,6)

= —k¢¢(1,6)

= k¢¢(2,6)

= k¢¢(3,6)

= k¢¢(1,10)

k¢¢(2,10)

= k¢¢(3,10)

= k¢¢(4,10)

= k¢¢(5,10)

= k¢¢(6,10)

= k¢¢(7,10)



k¢¢§10,8)

k¢¢(10,9)

k¢¢(10,10)

k¢¢(10,11)

k¢¢(10,12)

k¢¢(ll,1)

k¢¢(11,2)

k¢¢(11,3)

k¢¢(11,4)

Ko

k¢¢(11,6)

k¢¢(11,7)

k¢¢(11,8)

(11,5) =

k¢¢(8,10)

= k¢¢(9,10)

]

k¢¢(1,1)

—k¢¢(1,2)

-k¢¢(l,3)

k¢¢(1,11)

k¢¢(2,ll)

Il

k¢¢(3,11)

k¢¢(4,11)
k¢¢(5,ll)
= k¢¢(6,11)

= k¢¢(7,11)

= k¢¢(8,11)
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k¢¢(11,9) =

k¢¢(11,10)

k¢¢(11,11)

k¢¢(11,12)

k¢¢(12,1) =

k¢¢(12,2) =

k¢¢(12,4) =

k¢¢(12,5) =

k¢¢(12,6) =

k¢¢(12,7) =

k¢¢(12,8) =

(12,9) =

k¢¢(9,11)

k¢¢(10,11).

=k, (2,2)

b¢

= k¢¢(2,3)

k¢¢(l,12)

k¢¢(2,12)

k¢¢(3,12)

k¢¢(4,12)

k¢¢(5,12)

k¢¢(6,12)
k¢¢(7,12)

k¢¢(8,12)

k¢¢(9,12)




(12,12) =k, (3,3)

It

k, (12,10)

46 kg (10512) ko4 46

k ¢(12,11)

o k¢¢(11,12) (A.19)

In the above matrices the Dij terms for each matrix are
different and are given by Egs. 3.32a; 3.32b, and 3.32c, for the in-
plane, coupling, and bending matrices respectively.

e e e
wlsxs® Kugplaxio ol 12x12

established as above, the total slab element stiffness matrix can be

Once the [ku and [k¢ matrices are
obtained by stacking the component submatrices according to Eq. 3.31.

By doing so the 20x20 slab element stiffness matrix becomes fully

populated as shown by the symbolic matrix Eq. A.20:

II cee II ccc 1T ccc 11 ccc |
II cec II ccc II ccc  II CCC
00 BBB 00 BBBG 00 BBB 00  BBB
00 BBB 00 BBBL 00 BBB 00  BBB
00 BBB 00 BBBL 00 BBB 00  BBB
II cec II ccc II  ccc II  GCC
IT cec II ccc  II ccc  II CCC
00 BBB 00 BBBL 00 BBB 00  BBB
00 BBB 00 BBB 00 BBB 00  BBB
00 BBB 00 BBBL 00 BBB 00  BBB
IT cec II ccc II ccc  II CCC
II cce II ccc II  ccc  II CCC
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00 - BBB 00 BBB 00 BBB 00  BBB

00 BBB 00 BBB 00 BBB 00  BBB

00 BBB 00 BBB 00 BBB 00  BBB

II cce II ccc II  ccC II  CCC

II cec II ccc II  ccc  II  CCC

00 BBB 00 BBB 00 BBB 00  BBB

00 BEB 00 BBB 00 BBB 00  BBB

00 BBB 00 BBB 00 BBB 00 BBB | A.20
where

I = e

Inplane stiffness matrix terms, [kuu]

e

C = Coupling stiffness matrix terms, [ku¢]

T
O = Transpose of coupling stiffness terms, [ku¢]e
B = 1°

Bending stiffness matrix terms, [k¢

¢
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APPENDIX B

BEAM ELEMENT STIFFNESS FORMULATION
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APPENDIX B

BEAM ELEMENT STIFFNESS FORMULATION

B.1 Introduction

The development of the beam element stiffness matrix, which

was outlined in Section 3.6, will be expanded and completed in this

appendix.
The following equations were arrived at in Section 3.6:
igly = o 81,7 [E 108, av (B.1)
tegly =y 31T 161081 v (8.2)
pa, = Bl e il o (.3)
Where
[Byl, = [Q 1 2X][CB] - 2 [0 1 2X][CD] (B.4)
[BB]S = [0 1 2X 3%X2][cwW] - [l X X2][cp] (B.5)
[B]; =[l1=x=x®-1-X-X20 ~Zy, —2Z,,X -3ziAX2
ziB ZiBX zinz] [cc] (B.6)

and where [CB], [CW], [CD], and [CC] matrices are given by equations
3.48 and 3.49.
Treating [EB] as a scalar multiplier and performing the indi-

cated integration in (B.l) yields:
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(2,4) =0
kpp(1:1) =0 kgh
ES
B
’ kpp (2:3) = 5~
kg (1,2) = 0
(2,6) = 0
kgy (1,3) = 0 Kyt
EAg
kgp (2270 = =~
kgy (1,4) = 0
(2,8) =0
kg, (1,3) =0 Kb
| (2,9) =0
kpp (1,6) =0 Kab
ES
B
kpp (2,100 = =~
ka(lJ) =0 b
(3,1) =0
kg, (1,8) =0 kah
k., (3,2) =0
kpp(1,9) =0 Bb
ka(3,3) = %-JIZL <EI - EABZB )
kg (1,10) = 0
2
(3,4) = JIZLZ ( EI, + EAy )
gy (251) = 0 g
\
272 = 5
- k., (3,5) = J14L (— El, + EA 7, /
kpp (252) = 4~ Bb
k,, (3,6) =0
gy (253) = 0 B
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kg, (3,7) = 0 gy (459) = Ky (4,4)

Iy, (3,8) = - Ky (3,3) kg, (4,10) = k. (4,5)

gy (3,9) = Ky (3,4) | kg (5,1) = 0

Iy (3,10) = I (3,5) I, (5,2) = Ky (2,5)

Iy, (451) = 0 gy (5,3) = kg (3,5)

kg (452) = 0 gy (5,4) = Ky (4,5)

kpp (453) = kg (3,4) kg, (353) = EI],:—B' * Jllzst (EIB - EABEBZ)

27 3 _
kg, (4,4) = J148L (EIB - EABZBz)ka(S’6) =0

J1213

kpy, (4:5) = =5 (EIB - EABZISZ>ka(5’7)

= = ka(Z’S)
(4,8) = (4,3 5,10) = B 4 I1212 7. 2)
kpp (458) = - kg, (4,3) kpp (3:10) = = + =7~ | Elg - EAgZy
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gy (651) = 0
Ky, (6,2) = 0
ky (6,3) = 0
kpp, (6,4) =0
kg (6,5) = 0
kg, (6,6) = 0
gy (6,7) = 0
iy, (6,8) = 0
kg, (6,9) = 0
kg, (6,10) = 0
kg, (751) = 0
kpp (722) = Ky, (2,7)

i
[

ka(7,3) =

ka(7’4) =0

ka(7,5) = ka(5,7)

ka(7,6) =0

Ky (7,7) = kg (2,2)

ka(7,8) =0

gy (759) = 0

ka(7310) = ka(S,Z)

ka(S,l) =0
ka(S,Z) = 0
ka(8,3) = ka(B,S)

ka(8:4) = ka(4’8)
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kg (855) = kg, (5,8) Ky (9,7) = 0

kg (8,6) = 0 kg (9,8) = Iy (8,9)
kpp (8,7) = 0 Ky, (959) = kg (4,4)
kpp (8:8) = kg (3,3) kpy (9,10) = ke, (5,4)
kpp(8,9) = = kp (4,3) kg, (10,1) =0

kpy, (8,10) = ; kpy (5,3) kg (10,2) = kg (2,10)
kg (9,1) =0 kpy (10,3) = ky, (3,10)
kg (9,2) =0 kp (10,4) = kg, (4,10)
kpp (953) = kpp (3,9) kpy (10,5) = kg (5,10)
kg, (994) = Ky (4,9) kg (10,6) = 0

kpp, (955) = kg (5,9) kpy (10,7) = kg, (7,10)
kp, (9,6) = 0 kg, (10,8) = kp (8,10)
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ey (10,9) = Ky (9,10)

ka(lo,IO) = ka(S,S) (B3.7)
Where:
- 4 GASB
= -
L GASB + 8EIB

EAB’ ESB’ EIB, and GAS are given by equations 3.59 a, b, c, d.

B

Evaluating the integral in eq. B.2 in a similar manner gives the

following stiffness matrix:

kp (1,1) =0 kp (1,8) =0
kp (1,2) =0 kg (1,9) =0
kp (1,3) =0 ky (1,10) =0
ky (1,4) =0 Ky (2,1) = 0
ky (1,5) =0 kp (2,2) =0
kp (1,6) =0 kp (2,3) =0
kp (1,7) =0 kp (2,4) =0

-188~




kBS(Z,S) =.0
kBs(2,6) =0
kBS(2,7) =0
kBS(2,8) =0
kBS(2,9) =0
kBS(Z,IO) =
kBS(B,l) =0
kBS(3,2) =0

6 3JIL 3J12L3\

kps(3:3) = GASB(SL -5 20 )
(
\" 1

1, 3.111.2 g1t \
10 8o/

kpg(3:4) = GAgy

[ 1 9JL2 J12L‘*)
kpg(3,5) = GAgy \‘E+ 0 " 40

]
o

kg (3,6)
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[
(=]

kBS(3’7) =

kBS(3’8) = _kBS(3’3)

kBS(B’g) = kBS(3’4)

_ 1, 9J1L.2 g1t )
kpg(3:10) = GAgy <z+ %0 " 40

Iy (4,1) = 0

kBS(4’2) =0

kBS(4’3) = kBS(3’4)

N 2L JI1L3® , J1215
kpg(4:4) = GAgy <T§ ~ 120t 480 >

_ L 73112 |, J12L5
kpg(423) = GASB<‘1_2 T 7260 T 7280 )
kBS(4’6) =0

kg (4:7) = 0

Ky (4,8) = k(3,4)
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L Ju® | Jgi12s
kpg (459) = GAgy (‘ 30 " 120 T 480 )

~ /1 73113 | J1%® )
kg (4510) = CAse| 12 - 220 T am0

kBS(S,l) =0
kBS(S,Z) =0
5 (5:3) = I, 3.3)
Ky (548 = kg (415)

_ L JL2 | J12.8 \
kpg(3:3) = GASB( 3~ 12 Y120 )/

ky (5,6) = 0
ky (5,7) =0

;%?;3 kp (5,8) = -k, (3,5)
kp (5,9) = ky_(4,10)

kBs(S,lO) = kBS(B;S)
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kBS(6,1) =0

kBS(6,2) =0
kBS(G,B) =0
kBS(G,A) =0
kBS(G,S) = 0
kBS(6,6) =0
kBS(6,7) =0
kBS(6,8) =0
pa(6:9) = 0
kBS(6,10) =0
kBS(7,1) =0
kBS(752) =0
kBS(7,3) =0

kp (7,4) =0

kp (7,5) =0

kp (7,6) = 0

kp (7,7) = 0

kp (7,8) =0
kpg(7,9) =0
ky,(7,10) = 0

kp (8,1) =0

kp (8,2) =0

kg (8,3) = ky (3,8)
kp (8,4) = kg (4,8)
kp (8,5 = kp_(5,8)
kp (8,6) = 0
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Ky (857)
Ky (8,8)

Ky (8,9)

kBS(S,lO)

I (9,1) =

K (952)

kBS(9,3)

g (9,4)

I, (955)

kBS(9,6)

kBS(9,7)

kBS(9,9)

ol
o

kg (353)

1]

= —kBS(B,IO)

I
o

il
o

Iy (3,9)

=k (4,9)

]

k(5,9

kBS(8,9)

_kBS(3’4)

kpg(4:4)

kBS(9,lO)

kBS(lo,l)

kp (10,2)

kBS(IO,B)

kBS(lo,é)

kBS(10,5)

kp(10,6)

kp(10,7)

kyp(10,8)

I

Ky (455)

kBS(3,1O)

kBS(A,IO)

kBS(S,IO)

kBS(8,10)

kBS(10,9) = kBS(Q,IO)

ky (10,10) = k; (5,5)
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" Performing the indicated integration in eq. B.3, the following

[k]d matrix is obtained:

kd(l,l) =

kd(1,2)

kd(1,3)

ke (1,4)

ky(1,6)

k,(1,7)

kd(1,8)

kg(1,9)

kd(l,lo) = ksc(- -l

Il

=k (
SC

Z
kd (1,3) = ksc (_ 3

]

L
sC

3

—kd(l,l)

Cip )
)

. ( Coa L JIL2
sc 2 8

ZiAL

12

J11.3
48

L

iB”  _ JIL® )
24 tB
k L
sSC
6
—kd(1,6)
-kd(1,3)
3
. (_Zﬂ}_:HLCw>
sc 12 48
ZiBL J1L3 a )
24 TtB
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K, (2,2) = K (1,1) k (3,4) = k2
k (2,3) = -k (1,3) K (3,5) = k_3

Ky (2,4) = =k (1,4) K (3,6) = k,(1,3)
k (2,5) = -k, (1,5) K (3,7) = -k (1,3)
k (2,6) =k (1,7) k (3,8) = -k, (3,3)
£ (2,7) =k (1,6) k,(3,9) =k (3,4)
k (2,8) =k (1,3) k,(3,10) = k,(3,5)
K (2,9) = =k (1,9) K (4,1) = k (1,4)
k,(2,10) = ~k,(1,10) ke (4,2) =k (2,4)
kg (3,1) =k (1,3) | K (4,3) = k (3,4)
k,(3,2) =~k (1,3) K (4,4) = k_ M
k,(3,3) = k_Ml k (4,5) = kM5
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ky(4,6) =k (1,9) ky(5,9) = ky(4,10)

ky(4,7) = =k, (1,9) ky(5,10) = k_ M9
ky(4,8) = =k (3,4) ky(6,1) = id(1,6)
kg (4,9) = k_ M6 ky(6,2) = k(2,6)
ky(4,10) = k_ M7 ky(6,3) = ky(3,6)
ky(5,1) = ky(1,5) ky(6,4) = Kk (4,6)
ky(5,2) =k (2,5) ky(6,5) = ky(5,6)
ky(5,3) = ky(3,5) kg(6:6) = kg(1,D)
ky(5,4) = ky(4,5) ky(6,7) = -ky(1,1)
ky(5,5) = k_ M8 k,(6,8) = -k (1,3)
ky(5,6) = k,(1,10) K (6,9) = ky(1,4)

ky(5,7) = -k4(1,10)

kd(5,8)

—kd(3,5)

kd(6,10) = kd(l,S)

kd(7,1) = kd(1’7)
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kd(7,2)

kd(7,3)

k;(7,4)

kd(7,5)

kd(7,6)

kd(7,7)

kd(7’8)

ky(7,9)

]

]

kg(2,7)

kg(3,7)

ky(5,7)

kd(6,7)

kd(l,l)

kd(1,3)

—kd(194)

kd(7,10).= —kd(l,S)

kd(S,l)

ky(8,2)

kd(8,3)

]

kd(l,S)

kd(2,8)

= k4(3,8)

kd(8,4) = kd(4,8)

kd(8,5)

kd(8,6)

kd(8,7)

kd(8,8)

kd(8,9)

kd(8,10) = —kd(3,5)

kd(9,1)

kd(9,2).=

kd(9,3)

kg (9,4)

kd(9,5)

kd(9,6)

kd(9,7)
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= kd(5,8)

= kd(6,8)

= kd(7,8)

kd<3,3)

= —kd(3 ’4)

= kd(1,9)

= kd(3,9)

= k(4,9

= kd(5,9)

= k4(7.9)

ky(2,9)

kq(6.9)




kd(9,8) = kd(8’9) kd(10,5) = kd(S,lO)

kg (9,9) = ky(4,4) k,(10,6) = k (6,10)
k4(9,10) = k;(4,5) k4(10,7) = k,(7,10)
k(10,1) = ky(1,10) k4(10,8) = k,(8,10)
k(10,2) = k,(2,10) k4(10,9) = k;(9,10)
kd(lO,B) = kd(3,10) kd(lO,IO) = kd(S,S) (B.9)
ky(10,4) = ky(4,10)
Where:
6C2
_ UbA | 3J1L 331213 ,
ML= =+ 5 CaCs * =20 Cis
2 2
wo o oA _gmr oo _oqiEtbo, Pad
10 20 “bA”tB 80 “tB 40 tB
2
R T O 1 R« e L S
2 10 bA tA 8 tB 40 tB
2 3
- 222 L . 2, JIL C . 3125 "
15 120 tB 480 “tB

-198-



o 3 3
5 = - Zia%i8" . Zip 1L ¢ 4 Zyg 1L S G A
12 120 tB 48 tB 240 TtB
2 3
M6 = - ZiAL + ziAJlL c _ + -——leL's c2
30 120 tB 480 “tB
3 T3
- 252 5L . Z,JIL c . Z,pJ1L A
12 120 tB 48 tB 240 TtB
2 3
I ziBL N ZiBJlL c + leLs C2
3 12 tB 120 tB
2 3
MO = Z1g" + 2ypT1L P | s A
6 12 tB 120 "tB
Once the three component matrices, |{ ]e s | ]e s
“3 b10x10 ‘s $10x10
and {k]e , are obtained by the above substitutions, the total beam

Y10x10
element stiffness matrix is obtained by adding the three matrices

together according to eq. B.1O0.

e e e e
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