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ABSTRACT

The report presents a methodology developed to predict the elastic

and inelastic response of highway bridge superstructures. Simple span or

continuous multigirder bridges with steel girders and reinforced concrete

deck are considered. Inelastic behavior of the bridge is modeled through

the use of nonlinear stress-strain curves for concrete, reinforcing steel

and structural steel. Initiation of the damage to the superstructure in

the form of cracking or crushing of concrete and yielding of the steel is

detected, progression of the damage is monitored, and load versus deforma­

tion, and damage to the bridge, is developed until the attainment of the

collapse of the structure.

The developed method and the corresponding computer program

BOVAS (Bridge OVerloading Analysis-Steel) are designed to predict the

overload response of the types of bridges described above. The accuracy

and applicability of the method is illustrated by applying the method to

four bridge overload tests that had been conducted elsewhere and reported

in the literature. Good agreement between the test results and analytical

prediction is noted.
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FOREWORD

Prior to the study of the report, the reader should be informed

of the contents of the report, the goals of the reported research, and the

relations between the reported part of the research and the parent research

project. The intent of the foreword is to inform the reader of these

issues. Even though they have been included in various parts of the

reports, they may not be easily recognizable by the reader.

The research project, "Overloading of Steel Highway Bridges,"

is aimed at the development of a computer based tool to be used to rate,

to determine the overload response, and to determine the ultimate load

carrying capacity of bridge superstructures and their main components.

The bridges are steel multi-beam, or multi-girder, superstructures with

reinforced concrete deck (or with monolithic deck with secondary details).

Simple and continuous span bridges are considered. The research program

consists of the fol1owi~g major phases: (1) mathematical model for beam­

slab bridges of idealized materials, (2) overloading response of reinforced

concrete slabs, (3) slip phenomena and its incorporation into the analysis

scheme, (4) mathematical modeling of steel girder reinforced concrete deck

bridges, (5) effects of web buckling, flange buckling, etc., (6) effects

of design details, stiffeners, X-bracings, etc., on the overload response,

(7) parametric studies on the overload of these bridges., and (8) development

of guidelines for "overloading" and user's manual for the developed com­

puter program.

Phases 1 and 2 have been completed within the framework of
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another research project t and the findings have been reported. Phase 3

and part of phase 5 have also been completed and reported in two research

reports. This report provides a summary of the work carried out in Phase

4. The reporting of this phase has been delayed in order to complete the

pilot research in phases 5 and 6. The pilot research have indicated that

the methodology employed in the reported research permits its extension

to more complicated structural configurations.

The report briefly presents, even though it corresponds to about

one quarter of the report, the research methodology of phases 1-3. The

contained information should be sufficient for the reader, if the prime

interest is on the overloading of steel multi-girder bridges. However, for

in-depth study of this report a comprehensive understanding of the summar­

ized research is needed. Thus, full use of the references provided in

this report needs to be made.

Because of the highly theoretical nature of the analytical

developments, efforts have been made to group together the parts of the

formulae that will not be of any interest to bridge engineers or any

researcher, but are essential for those who would like to follow the

derivations. This material is included in the appendices. The reader

could easily dispense with the study of these appendices, unless step-by­

step checking of the theoretical derivations is required.

The developed methodology to predict the overload response of

the steel bridges has been compared against available test data. The

correlation between the analytical prediction and experimentally obtained

results have been satisfactory. The report presents the results of two
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full scale bridge tests, and two scale model tests, an~ the analytical

predictions obtained via the developed method. Good correlation between

the full scale bridges and corresponding analytical results was observed.

The scale model tests and the corresponding analytical results have not

been satisfactory. The reasons for these discrepancies have been postulated

in the report. The authors have preferred to include both the good and the

bad verification studies to inform the readers of the possible pitfalls

that may occur when extrapolations are used.

The developed computer program is acronymed BOVAS (!ridge OVerload

!nalysis-~teel). BOVAS is,under continual expansion and modification to

include various factors associated with the overloading of the steel bridges.

These activities are included in Phases 5 and 6 of the parent research

program.
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1. INTRODUCTION

1.1 Overview of Research

The report presents results of the research on the development

of a computer based mathematical model to predict the overload response

of highway bridge superstructures. The response considered includes

the elastic and inelastic behavior of the superstructure, until its collapse.

The reported research is a part of the overall research program on the

"Overloading of Steel Highway Bridges" sponsored by the Pennsylvania

Department of Transportation (Research Project 77-1). This report is an

interim report of this research project.

The bridges considered in the research consist of steel beams,

or girders, and composite reinforced concrete deck (Fig. 2). Henceforth,

these bridges will be referred to as steel bridges.

In 1966 over 700,000 overweight permits were issued in the

fourty-eight states (Ref. 24). Assuming no changes in regulations and load

limits this total was expected to grow to approximately 1,250,000 by 1975.

The fact that real factors of safety for bridges are not known is reflected

in the widely varying levels of overload permitted by each individual

state. Furthermore, recent information indicates that one in six bridges

in the United States is structurally deficient (Ref. 15). Thus the purpose

of the present research is twofold.

In the short term the methods will allow engineers to analytically

assess any damage, e.g. cracking of concrete or yielding of steel, a bridge

would undergo due to an overload vehicle. Over the long term, experience

with the analytical results, parametric studies and field tests may permit

-1-



correction of any deficiencies in new· design and retrofitting of existing

bridges.

Theoretical work has already been completed on the inelastic

analysis of highway bridge. superstructures consisting of prestressed or

reinforced concrete beams·and a composite reinforced concrete deck' (Ref. 29,

39 and 41). These structures will be referred to herein as concrete

bridges. In addition, theoretical work has been completed on the linear

elastic analysis of steel bridges, including the effects of shear lag of

the deck, shear deformation of the girders, and slip between the slab and

girde~ (Ref. 49). Wherever possible, use will be made of the previous

works, even though the nonlinear behavior of steel bridges requires special

considerations.

1.2 Purpose and Scope of Investigation

As stated earlier, the purpose of the overall research program

is the development of a mathematical model and anaylsis technique to predict

the overload response of steel highway bridge superstructures from initial

dead loads, in elastic range, to complete collapse of the superstructure by

the placement of vehicles with increasing gross weight. The main thrust of

the reported research is the interfacing of the inelastic analysis for

reinforced concrete slabs (Ref. 39) with the linearly elastic analysis for

steel beams (with slip provisions) (Ref. 49), and development of a new

analysis scheme which will model the initiation and spread of nonlinear

behavior of the beams.

This report presents:

1. A summary of the analytical modeling of the reinforced concrete

-2-



slab and steel girder (Chapter 3).

2. A summary of the analytical modeling of the complete stress­

strain behavior for the biaxially stressed concrete and uniaxially

stressed steel, including cracking and crushing of concrete and

yielding of steel (Chapter 2).

3. Analytic modeling of simply supported or continuous highway

bridge superstructures (Chapter 3), and

4. Verification of the analytical model and solution technique

by comparing to experimental tests (Chapter 4).

1.3 Previous Work

Much of the investigation into the behavior of composite beams

started with two papers by Newmark (Refs. 38 and 45). In both papers the

structures were limited to simply supported structures and the effects

of shear lag were neglected. Although the second paper dealt with parti.al

interaction of the beam and slab, it was applicable only to isolated T-beams.

Terazkiewicz expanded on Newmark's second paper to incorporate an effective

width (Ref. 47). Based upon an initial assumption for the effective width,

an iterative process was used to converge to a particular effective width.

Neither Newmark nor Terazkiewicz includes the effects of shear deformations

of the beams in their analyses.

Gustafson and Wright presented a theory capable of analyzing

multi-girder simply supported and continuous bridges using finite elements

(Ref. 18). Wegmul1er and Kostem rederived the basic formulations and showed

favorable comparisons with field tests (Ref. 52). The theory, however,

-3-



while incorporating .shear lag ignored the effects of slip and shear defor-

mation of the beams. An attempt to incorporate slip into the theory was

presented by du Plesis (Ref. 14).

Recent research has been aimed at extending the previous elastic

theories to account for the effects of material nonlinearities. Newmark's

differential equation has been rederived to account for non-uniform

connector spacing, initial strains, and non-linear material properties.

These approaches utilize an incremental approach.

Algorithms developed by Proctor, Baldwin, Henry and Sweeney at

the University of Missouri (Ref. 4 and 43) and by Yam and Chapman at

Imperial College (Ref. 56) handle the boundary value problem as an initial

value problem where equations are solved by successive approximations. The

schemes developed by Dai, Thiruvengadam and Seiss at University of Illinois

(Ref. 12), Wu at Lehigh University (Ref. 55), and by Fu at the University

of Maryland (Ref. 17) use finite differences. None of these works relieves

all the basic inadequacies of shear lag, shear deformation, slip, and

continuous structures.

The finite element formulations have been extended into the non-

linear range in a multitude of ways. Kostem, Kulicki, Peterson, and

Wegmuller have done considerable work at Lehigh University using J theory
2

and a new theory for reinforced concrete. The structures analyzed have had'

J beams and deck (Ref. 53), concrete beams and J deck (Ref. 32) and
2 2

concrete beams and deck (Ref. 29, 39 and 41). They used both an incremental

and incremental-it ar.a.t1;v:e:·t'echniqaes but the basic elastiC. finite element

-4-



algorithm remains as derived by Wegrnul1er and Kostem.

A general finite element formulation, which can be used to perform

elastic analysis of composite single or multibeam, simple or continuous

bridge superstructures, has been presented by Tumminelli and Kostem at

Lehigh University (Ref. 49). The formulation can include the effects

of slip between the slab and the beams, shear deformation of the beams, and

shear lag in the deck.

Several state of the art papers have discussed other aspects of

composite beams and other theorectical work (Refs. 2, 27 and 50), but they

indicate the lack in generally sophisticated enough methods to analyze

steel bridges.

1.4 The Analytical Model

The behavior of the analytical model should adequately describe

the behavior of the real structure. Thus, the developed model for steel

highway bridge superstructures considers: (1) the flexural behavior of the

superstructure, (2) shear deformations of the beams, (3) the composite action

of the beam and the slab, (4) in~plane stresses in the beams and the slabs

developed due to eccentricity of the beams, (5) slip between the beams and

the slab, (6) the material nonlinearities, and (7) the coupling action of

the in~plane and out-of-plane forces and deformations.

Since the material nonlinearities have a great effect on

behavior of the superstructure, in particular, the structural stiffness, a

realistic representation of the material behavior of the component parts

-5-



is essential. The biaxial stress-strain relationship and failure envelope

for concrete slabs developed from experimental and analytical results (Refs.

33, 35, 36 and 37) and implemented in References 41 and 42 have also been

used in the present model. In addition, the stress-strain relation for the

slab reinforcement and the beam steel (Refs. 29, 30, 31 and 44) utilized in

the research is similar to that employed in References 41 and 42 for mild

steel. The variation of material properties through the depth of the beams

and the slab is accounted for by dividing the finite elements into a series

of layers through the depth. By defining the stress-strain relation on a

layer by layer basis the progression of material failure in terms of crack­

ing or crushing of concrete or yielding of steel can be monitored through­

out the superstructure. Through the use of the layering technique excellent

agreement has been obtained in previous investigations (Refs. 5, 19, 20, 29,

32, 34, 40, 53, 51 and 54).

Steel bridges present some special considerations not included

in previous work on the inelastic analysis of concrete bridges. In the

elastic analysis of composite steel bridges (Ref. 49) assumptions were made

regarding which phenomena were considered of primary importance and which

were of a secondary nature. Althoug~ these assmptions were based on a

review of experimental results of composite beam tests and analytical

studies of bridge superstructures, later research may alter some of the

a,ssumptions.

The following phenomena are considered to be of primary impor­

tance in the analysis of steel bridge superstructures:

-6-



1. Slip between the steel beam and concrete slab (Fig. 3a).

2. Shear deformations of the steel girders (Fig. 3b).

3. Shear lag of the concrete deck (Fig. 4).

The following phenomena are considered to be of secondary impor-

tance and are neglected:

1. Minor axis bending of the beams (Fig. 4).

2. Torsion of the beams (Fig. 4).

3. Interaction between the girders and wind bracing and diaphragms

(Fig. 2).

. . 4. Lateral torsional buckling of the beams.

l\lthough these phenomena are ignored in the present analysis, the developed

model does not.preclude their inclusion during the later stages of the

research program. In addition to these assumptions there are some other

general assumptions:

1. Small deformations

2. Failure in a flexural mode

3. Constant slab thickness

4. Static loading

These are covered more in depth in Chapter 3. The shear punching of the

deck is not considered.

-7-





2 • MATERIAL BEHAVIOR

2.1 Introduction

This chapter presents the stress-strain relationships employed

in the analysis scheme herein reported. The material stress-strain relations

are defined for the steel reinforcing bars, the concrete, and the beam or

girder steel. These relations are later used in establishing the stiffness

properties of the bridge components.

The behavior of concrete is very much dependent upon the particu­

lar stress state, i.e. tension or compression, and whether the stress field

is uni~xial, biaxial, or triaxial. A slab could be considered as a two

dimensional structural element in which bending in both the longitudinal

and the transverse direc~~ons produce a biaxial state of stress (Ref. 39).

The inelastic biaxial stress-strain relations of concrete are analyti-

cally described by empirical formulae. These experimentally derived formulae

are summarized in the following sections. The readers are refered to

the previous work mentioned above for an in-depth treatment of the theory

and the derivations.

A beam~ whether composed of concrete or steel, may be idealized

as a one dimensional structural element in which bending in the longitu­

dinal direction produces a uniaxial state of stress (Ref. 29). The elastic­

inelastic uniaxial stress-strain relations of steel can also be described

analytically by an empirical formula. Once the analytic stress~strain

equations are established, they are differentiated to obtain an expression

-8-



for the instantaneous slope, i.e. tangent modulus, of the stress-strain curve.

The tangent modulus °is then used to formulate the elasticity matrix,[D],

which relates the stress increment to the strain increment .
.

{cr} = [D] {E} (2.1)

The elasticity matrix is utilized to establish the slab and beam finite

element stiffness properties (see Chapter 3).

Throughout this report the stress-strain relationships discussed

will involve both total stresses and strains and incremental stresses and

strains. To differentiate between the two types, incremental quantities

will be distinguished by the customary dot over the appropriate quantity,

e.g. Eq. 2.1.

2.2 Biaxial Stress-Strain Relationships

The idealized biaxial stress-strain curves have basically two

fundamental shapes: one nonlinear and one linear. In the region of

biaxial stress where compression is dominant the nonlinear equation governs,

while in the regions of biaxial stress where tension is dominate the linear

expression controls. Figure 6 shows the approximate regions in the

biaxial stress space where the nonlinear and linear equations are applicable.

The peak slope of the stress-strain curve is designated by E in the figure.
p

2.2.1 Nonlinear Stress-Strain Equation for Concrete

The nonlinear stress-strain curve used for concrete has the form

(Ref. 39);
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a
e:Ec= ---------,

(I-va) (I+CE + D€~)
(2.2)

Where: a = the principal stress in the direction of interest

E = the strain in direction of interest

v = Poisson's ratio (taken to be 0.2)

a = the ratio of the principal stress in the

orthogonal direction to the principal stress

in the direction of interest, i.e.

E = Initial tangent modulus in uniaxial loading
c

A positive stress from equation 2.2 denotes compression, and cor-

respondingly a positive strain denotes contraction.

(2.3)

E E E
P c P

(l-va)a 2
P

E E
p c

(l-vCt)a 2
P

1
-:.-T ­E

P

=c

D

The remaining parameters are:

Ec 2

a (I-va) - € +
p p

Where: a is the peak stress
p

f;p is the strain at the peak stress and

E, is the slope of the stress-strain curve
p

at the peak stress

The instantaneous slope of the stress-strain curve is obtained

by differentiating equation 2.2 which gives,

dO'
dE:

-10~



When this equation is applied in the direction of the two principal stresses,

the results are:

El b
dcrl Ec (1-DIE1 2

)= =
(1+CIE:l+DlE:12) 2dEl (I-val)

E2b
dcrz Ec (1-D2 E 2

2
)= = (1+C2E:2+D2'S'2,2) 2dE2 (1-VCt2)

(2. Sa)

(2.5b)

Where: Elb and E2b are the tangent moduli in the two principal directions

land 2 respectively.

D1(Z) and Cl(z) are the D and C curve parameters evaluated for

the "1" ("2") principal direction using equation 2.3.

Thus, the incremental stress-incremental strain relation in

matrix form can be defined as:

(2.6)

The curve parameters C and D, which are presented in equation

2.3, can be determined if the following quantities are known: Ec, v, a, op,

Ep, and Ep. The first three quantities have already been defined, and the

last three quantities will be defined in Sections 2.2.3, 2.2.4, and 2.2.5.

2.2.2 Linear Stress-Strain Equation for Concrete

cr

The linear stress-strain curve used for concrete has the form:

= ~
Ep

-11-
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=

Where the tangent modulus, which is constant, is obtained by differen-

tiating the stress-strain equation:

-~
E:

I'

The incremental stress~incremental strain relationship follows

from equation 2.8 as:

(2.9)

Where: Elb = dOl = ~ (2.10)
dEl cP1

E2b ==
da2 ~
dEz Ep1

O'p1 (S1'1) and O'p2 (spz) denote the peak stress (strain) for the "I" and

"2" principal directions, respectively. Thus, the linear stress-strain

curve can be established once the peak stress and peak strain values are

known.

2.2.3 Biaxial Failure Envelope - Definition of 0p

Nondimensional experimental peak stress envelopes for various con-

crete strengths (Ref. 5, 33 and 39) indicate that the fundamental shape of

the failure envelope is essentially invariant and that only the size of

the envelope will change with concrete strength. The true failure surface

can be idealized as a series of straight lines as shown in Figure 7. The

characteristic points used to define the idealized peak stress envelope are

shown in Figure 8 and the corresponding coordinates and equations defining

-12-



the straight line segments, which are ~xpressed in terms of the character­

istic points and the stress ratio, ~, are given in Refs. 5 and 39.

2.2.4 Peak Strain Envelope - Definition £p

The nondirnensional peak strain envelope, shown in Figure 9 , is

approximated by a series of straight lines passing through or close to,

the experimental peak strain points indicated in the figure (Ref. 33 and 35).

The characteristic points used to define the peak strain envelope are shown

in Fig. 10 and the corresponding coordinates arid equations defining the

straight line segments, which are expressed in terms of the characteristic

points and the stress ratio,~, are given in Refs. 5 and 39.

2.2.5 Peak Slope - Definition of Ep

The peak slope is defined as the tangent of the non-linear stress­

strain curve evaluated at the peak stress. Experimental evidence indi-

cates that this peak slope has a value of zero in the compression-compression

region (Refs. 33, 35 and 37). In the tension-compression region experi­

ments show that the value of peak slope can vary from a value of zero for

stress states near uniaxial compression to a value equal to crp/Ep for stress

~tates near uniaxial tension. The idealization used assumes the ratio of

the peak slope to the initial slope varies linearly with respect to the

stress ratio. This ratio has a value of zero near uniaxial compression

state and a value of 1.00 near uniaxial tension state. An in depth descrip-
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tion of this relations~,p and the resulttng equati,ons defining the straight

line segments are given in Ref. 5 and 39.

2.2.6 Biaxial Constitutive Relationships for Concrete

The incremental stress-stress relationship for concrete in terms

of the principal stresses is: ,

•
cr 12

= (D ]
•
Y12

(2.11)

\Vhere the subscripts land 2 identify the principal stress directions and

the dots indicate incremental quantities.

Even though the shear stress increment, T12, will be zero, its

inclusion is needed in the principal stress vector so as to include the

contribution of shearing stiffness term in the [D] matrix. This is necessary

so that when transforming the [D] matrix from the principal axes to the

global x-y axes the correct elasticity relationships are obtained. The

[D] matrix can be expressed by (Ref. 35).

E~b
1 -v \)

1 2.

\)lE~b

1 -V V
1 2

o

V E'
2 Ib

1 -v V
1 2.

1 -v V
1 2

o

a

o (2.13)

E~ ~nd E' are the tangent moduli on the first and second principal stress
J b 2.·b



directions, respectively and \) 1 and 'J2. are tne 1'0i.sson 's ratios in the same

directions. In the euqation above it is ass~ed that v IE' = V IE' ·
~l J.p 2. 2b

The analytic stress-strain curves of Sections 2.2.1 and 2.2.2

relate the stress in a particular principal direction to the strain in the

same direction only. Thus, the following relationships were formed:

. .
a

1
=

(2.13)

cr
2

=

Where E
1b

and E
2b

are the effective tangent moduli for the principal

stress space. A relationship must now be established between the known

moduli, El b and E
2b

, and the unknown quantities of the [15] matric E ~b '

E~b' VJ.' and V 2'" .
Solving Eq. 2.11 for E and E and noting that a .- a a

1 2 1 2 2

(2.14a)

(2.14b)

v ex
--L.!..,
E2b

\) ct )_1_2

E'
1b·

,I

1• •
E = cr =r-

1 1 Elb

.
( E~bE = a

2 2

. ..
and a = cr ex , leads to:

2. 2 1

Then by noting that V
2

/E
2
'b = V IE' and rearranging yield:

1 lb

•a
1

•cr
2.

=

=

E' •
lb E:

1
1 - v ex

1 2

E~b ')E
21 _ v ex

2. 2.

(2.l5a)

(2.15b)

Comparison of Eq. 2.15 and Eq. 2.13 shows the relationship between

the effective tangent moduli and the actual tangent moduli and Poisson's ratios.



After some rearranging this gives:

= (1 - va)
1 1

(2.16a)

E'
2b = (1 - va)

2 2
(2.16b)

E
1b

and E
2b

are defined in Eq. 2.5 for the nonlinear case and Eq. 2.10 for

the linear case. E
1b

, E
2b

, and the a's are computed using the current

total stress state. The curve parameters C and D in the aforementioned

expressions are given by Eq. 2.3.

v and V in Eq. 2.12 must still be obtained. Again noting the
1 2

relation V lEt - V /E'b the following equations are formulated:
2 2 b 1 1

VA = V

V 1
=B

E~ (1 - vAaA) +~
,

EBb~

(2.17a)

(2.17b)

where the subscripts (A,B) correspond to directions (1,2) or (2,1) which

ever is applicable. The value for VA is chosen as 0.2 and VB is limited

to positive values. Bases upon the various combinations of cylinder strength,

stress ratios and stress levels, VB has been found to range from 0.80 to 1.20

times the value of VA.

Thus all the terms of Eq. 2.12 can be defined, and the resulting

[D] matrix is the constitutive relationship for a particular layer expressed

in the principal stress directions. Before computing the contribution of

this layer to the element stiffness matrix, the [n] matrix must be transformed

into an elasticity matrix [Dl, relating the stress and strain in the x-y

coordinate system of the element.



cos 2e sin2e ~2cosesine

[T] ;:::: sin2e cos 2 e 2cos8sin8

cos6sin6 -cos8sin8 cos 2 e-sin2e

•
ax

cry =.
Txy

vThere (Ref. L, M, N)

[D] = [T] [D]

and T is defined by:

[ D ]

EX

Ey

Yxy

(2.18)

(2 .19)

(2 .20)

The angle e is defined as the angle between the x direction and the "I"

direction, and is positive when measured clockwise from the positive x axes.

2.2, Concrete Failure Mode

Concrete exhibits different types of failure modes which are

dependent upon the applied stress ratio as shown in Figure 12a. The four

physically distinct failure modes are described on (Ref. 5 and 39). The

idealized failure modes used in this report are depicted on Fig. 12b. A

cracking mode failure is assumed to occur from the tension-tension region

to a stress ratio of -1/15. The direction of the crack(s) is assumed to be

perpendicular to the largest tensile stress and to the free surface of the

specimen. From the compression-compression region to the stress ratio

-1/15, a crushing failure mode is assumed to occur. The direction of crush-

ing is assumed to be perpendicular to the largest compressive stress and

perpendicular to the free surface of the specimen.
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The method presented here defines cracked regions and not

individual cracks which may occur. The validity of this method has already

been proven in (Ref. 5 and 39). In addition the effects of cracking or

crushing of concrete on the element stiffness and the stiffness of the

rest of the superstructure is approximated.

2.2.8 Cracked or Crushed Concrete

Cracking or crushing of the concrete is deemed to occur when the

principal stress has exceeded the idealized peak stress as defined on Fig. 8.

The concrete layer is assumed to have stiffness only in the uncracked or

uncrushed direction. For example, the constitutive stress-strain relation

for a concrete layer which has experienced a failure caused by the stress

in "2" would be:

=
o
o
o

o
o
o

(2.21)

The first principal direction is still effective in contributing stiffness

the the element.

After cracking or crushing of the concrete layer, the layer

will be incapable of sustaining the stress that caused the failure. This

stress must be reduced to zero within the layer while maintaining equili-

brium between external forces and internal stresses. This unloading of stress

requires a redistribution of the unloaded stress to other layers. This

redistribution is accomplished through the use of a fictitious force matrix
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which is statically equivalent to tne ,amount of stress to be redistributed.

Including these fictitious forces in the solution of the stiffness equations

will produce the desired adjustments.

Experimental evidience indicates that after attainment of the

peak concrete strength, compressi.on or tension, the stress-strain curve

e~hibits a downward leg (Res. 5,25,26,33,35,42 and 46). For this

research the unloading portion of the stress strain curve has been assumed

to be a straight line. (Refs. 5 and 29) Thus, unloading of the element

will occur with a gradual transfer of stress from tne failed concrete layer

to the steel reinforcing bars (Ref. 34).

2.3 Uniaxial Stress-Strain Relationships

The beam steel and steel reinforcing bars are considered to be

in a state of uniaxia~ stress,- The uniaxial stress-strain curve is assumed

to follow the Ramberg-Osgood formulation (Refs. 29, 32 and 44) given by:

c =
(J

E.
1.

+ (l~m ) as
E·
~

(2.22)

Where: (J = stress

E. = strain

E
i

= initial modulus of elasticity

as = secant yield strangth equal to the ordinate of

the intersection of the stress-strain curve and

a line of slope (m) (E i )

m = dimensionless constant defining a line of slope

(m) (Ei) on the stress-strain curve
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n = a dimensionless constant

The tangent modulus can be found by ~ifferentiating the stress-strain

equation as follows:

(2.23)
E-

1 ( j n-l
=

The constitutive relations between the stress and strain increments are:

D11 a
o 0

o 0

o
o

o· Y12

(2.24)

Where :011= dOl /dsl,as in Eq. 2.23 and the subscript "1" refers to the

principal stress direction.

2.3~. Beam Steel and Slab Reinforcement

The complete stress-strain curve for typical beam steel on

uniaxial tension or compression is approximated with Ramberg-Osgood curves.

(Eq. 2.22). The curve parameters for typical bridge steel are as follows:

as = fy, yield strength of steel

E· = Es ' Young's modulus for steel which may be taken1.

as equal to 29,000 ksi

n = 300

m = 0.67

Since the Ramberg-Osgood formula provides a continuous stress-strain curve

a mathematical distinction between yielded and non-yielded steel is not required.
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O's =

Ei =

n =

m =

The proper selection of the curve parameters can provide an almost perfectly

plastic plateau in the case for mi,ld steels'. Thi.s plateau will have a small

finite slope but its value will be so small that for all practical purposes

its effect on the structural behavior will be negligible.

The stress-strain relation for mild steel reinforcing would have

the following Ramberg-osgood parameters:

fy

29000 ks!

100

0.7

The slight difference in the values of nand m from those of the beam steel

represents a more rounded knee for the reinforcing bar.

Special consideration must be made when the slab reinforcement

is placed at an angle with respect to the longitudinal x-axis of the bridge.

In this case, the "1" direction does not coincide with the x-direction,

and the D matrix of Eq. 2.24 must be transformed to the x-y axes by the

T matrix.
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3. FINITE ELEMENT ANALYSIS

3.1 Introduction

The analytical technique employed in this research is based on

the finite element method. Only a brief review of the finite element

method is presented, and for an in-depth treatment of the method the

reader can refer to numerous text on the subject (e.g. Refs. 48 and 57).

The underlying assumptions that were made and their i~lications with

regards to the finite element model are discussed. In addition the basic

equations and notations used throughout the remainder of the report are

provided.

3.2 Assumptions

The general assumptions made in the development of the analytical

model and any associated implications are discussed in the following

paragraphs.

1. Geometry Restrictions:

At the present time the bridge superstructures to

be analyzed are limited to those which are rectangular

in plan, e.g., right bridges.

2. Assumptions Regarding Strain Distributions:

Kirchoff's assumption·that plane sections normal to

the plate before deformation remain plane and normal

after beam theory is employed, where the plane section
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assumption for beam bending is used but in addition the

effects of shearing deformation are also included. It

is also assumed that the slab behaves as a thin plate,

and that the slab and the beam do not change thickness.

A. These restrictions allow the stresses and strain

normal to the slab to be neglected, and thus

reduce the three dimensional continuum problem to

a two dimensional plate bending problem, and a

one dimensional beam bending problem.

B. In addition, the restrictions permit the strain

at any depth to be computed from the displacements

at the reference plane.

3. Small Deformations:

The in-plane and bending displacements are assumed small

with respect to the dimensions of the slab, thereby, allowing

all calculations to be computed based upon the undeforrned

position of the structure.

4. Small Strains:

The reinforced concrete slab and highway bridge super­

structures are assumed to be subjected to small strains,

therefore, linear strain-displacement relations can be

employed.

5. Layering:

Due to the material nonlinearities, such as nonlinear

stress-strain relations, cracking and. crushing of concrete

and yielding of steel, the finite element stiffness
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properties will vary with the depth of the slab or beam

element. To facilitate the computation of the element

stiffness, the finite element will be divided into a

series of layers through the depth (Figs. 5, 11). The

total stiffness of the element is then obtained by sum­

mation of the stiffness properties of each individual

layer. The stresses within a particular layer will be

assumed to be constant throughout the layer for the

purposes of computing element stiffnesses. Thus, the

stress field on the beam or slab will vary in a step-like

manner. By increasing the number of layers the representa­

tion of the stress field could be improved, and this leads

to increased accuracy.

3.3 The Finite Element Method

The analytical technique employed to establish global,

equilibrium is the displacement-based finite element method, which leads

directly to the familiar set of equilibrium equations (Ref. 57) :

{F} = [K] {a} (3.1)

where

{F} = vector of applied forces at the nodes

[K] = stiffness matric of the structure

{8} = vector of displacements at the nodes
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The structural stiffness matrix is obtained by stacking the element stiff-

ness matrices at each node point for each degree of freedom:

(3.2)

e
where the summation is overall the elements on the structure and [k]i is

the element stiffness matrix for element-i.

The displacement based method presented in Eqs. 3.1 and 3.2

is the most prevalent finite element scheme employed today, and it has

repeatedly shown its reliability as an analytical instrument in previous

research (Refs. 5, 29, 39, 41, 49, 52 and 53).

The primary concern of the analysis technique is the development

of the element stiffness matrix in the equilibrium equations:

(3.3)

where

{F}e = vector of applied forces at the element nodes

{8}e = vector of displacements at the element nodes.

The procedure employed to formulate the generalized coordinate

finite elements can be separated into two parts. The first part is the

derivation of the shape functions from the assumed displacement fields;

and the second is the derivation of the element stiffness matrix from

the shape functions. The second part, although generally available

in the literature, is reviewed in this section to define terminology.

The first part is presented in the following section, which details the

methods used to derive shape functions from displacement fields.
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Zienkiewicy outlined the following formulation, which begins with

shape functions for-the displaceme~t fields within the element as a

function of the element node displacements (Ref. 57):

(3.4)

where

{f} = displacement field of the element

[N] = shape functions.

Customarily the shape functions take the form of polynomials, but the

theory is not restricted to their use.

By differentiation of the displacement field given in Eq. (3.4)

the internal strains are determined.

(3.5)

where

{E} = vector of element strains

[B] = strain-displacement matrix.

Assuming no initial strains or stresses, the stresses can be

obtained from the appropriate constitutive relations:

where

{cr} = [D] {E} (3.6)

{cr} = vector of element stresses

[D] = stress-strain (elasticity) matrix.

Applying a small virtual displacement to the element and equating

internal and external work (i.e. the principle of virtual work) results
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in the formulation of the element stiffness matrix:

[k]e = ~v [B]T [D] [~] dv (3.7)

The successful element formulation is the one that uses the

appropriate shape function to model the desired phenomena and considers

all the internal work terms consistent with the shape functions.

3.4 Shape Functions

The shape functions are derived from assumed displacement fields.

In order to preserve generality and increase computational efficiency,

the displacement field of the element and the node displacements are

written at a reference plane which is parallel to, but at an arbitrary

distance from, the centroidal axis of the element. This technique is valid

so long as the strain-displacement matrix relates the displacements at

the reference plane to the strains within the element. In the reported

research the displacement fields at the reference plane are taken as poly­

nomials. The following procedure is adapted from material presented by

Peterson and Kostem (Ref.39) and Tumminelli and Kostem (Ref. 49) and

begins with the assumed displacement fields:

where

{f} = [P(x,y)] {a} (3.8)

[P{x,y)] = functions of.x and y used to describe the shape

of the displacement fields

{a} = vector of the coefficients of the displacement

functions.
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Enforcing compatibility at the element nodes between the internal

displacement function and the external node displacement defines the co-

efficients of the polynomial. Usually in this type of formulation the

number of coefficients and node displacements (degrees of freedom) are

equal, thereby allowing all coefficients to be determined exactly by the

compatibility equations.

In the present formulation for the beam element the number of

coefficients exceeds the number of element degrees of freedom, so addi-

tional equations must be established. One conventional approach to obtain

additional equations is to introduce internal node(s) which have a suf~

ficient degree of freedom to completely determine all the coefficients.

Then through static condensation techniques the added degrees of freedom

are removed from the resulting stiffness matrix. An uncommon approach,

which is applied in this case, is to relate the polynomials directly to

one another via equilibrium and/or compatibility equations without

introducing new degrees of freedom. Thus evaluating and partitioning of

Eq. 3.8 yields

I{8}

{a}
(3.9)

where

{a} = vector of zeros representing left hand side of

equilibrium and/or compatibility equations.

[el] = matrix consisting of P(x), evaluated at the appropriate

nodes
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[C2] = coefficients of the equilibrium and/or

compatibility equations.

Inverting [el to solve for {a}:

(3.10)

and

(3.11)

where

[ee] = coefficient displacement matrix consisting

of the first n columns of [C]-l where n is

the number of displacements in the vector

Therefore, the shape function is defined:

When performing the detailed derivations, the shape functions

matrix is not a function of x, all derivatives of the shape functions

Since the [eel

(3.12){f} = [P(x,y)] {a} = [P(x,y)] [ee] {o}~ [N] {ole

are not explicitly formed because they are cumbersome.

need be performed on [P(x,y)] only. All of the strains are functions

of x only, thus only [P(x,y)] will be differentiated. The operator

necessary to define the strains derived from the displacement fields

will be called [f], hence:
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{E} =O[r] if} = [f] JP(x,y)] {a} = [Q] {a}

and now substituting for {a}

(3.13a)

(3.13b)

This strain-displacement matrix and the stress-strain matrix can

be substituted into Eq. 3.7 to formulate the element stiffness matrix.

3.5 The Layered Slab Model

In sections 3.3 and 3.4 the general steps required to obtain the

element stiffness matrix were discussed. These steps with regards to the

nonlinear analysis of reinforced concrete slabs will now be presented in

detail. Explicit expressions for matrices used in the layered slab model

can be found in Appendix A.

3.5.1 Plate Bending and Inplane Displacement Functions

The purpose of this section is to present the displacement

functions and to describe the displacement field, {~ (x,y)}.

The bending deformation of a plate can be completely described

by the vertical displacement of the middle plane of the plate via the

Kuchoff's assumption. The bending deformation will consist of a vertical

displac~ment" W, the rotation about the x-axis, ex' and the rotation

about the y axis, Q. These rotations can be obtained by differentiation
y

of the vertical displacement. Expressed in vector form this gives:
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( W

Q
x

l ey

= (3.14)

The ACM plate bending element originally proposed by Adini,

Clough and Melosh (Ref. 13) and a plane stress element originally pro-

posed by Clough (Ref. 11) are used in this research. As noted by

Tumminelli and Kostem (Ref. 49) as long as the reference plane of the

slab is at the midheight, the beam and plate element stiffnesses are

uncoupled and, in addition, the finite element model is conforming and

complete. These requirements are needed to insure convergence and an

upper-bound solution. This element has been successfully used in

previous research and has shown itself to be both accurate and

reliable (Refs. 5, 39, 41,52 and 53). The ACM vertical displacement

field (W) is given by a twelve term polynomial (Refs. 49 and 52).

(3.15)

The plate-in-plane displacement fields are given as (Refs. 49

and 52)

(3.16a)

(3.16b)
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The coefficients, a.' s an~:r b. 's, of these equations correspond
~ 1

to the constant coefficients of the displacement fields, {a}, used in

Eq. 3.8.

The nodal points of the plate element, labeled as I, J, K and L,

as indicated in Fig. 11, are located in the middle of the plate reference

plane and in the four corners of the rectangular finite element. The

element displacement vector, {o}e, consists of five deformation com-

ponents per node or a total of twenty components per element.

The displacement functions, W, U and V are used to define the

element displacement function for any location given by the coordinates

(x,y):

where

T
= {U V w9 g} = {U V W dW/dy - dW/dX}T

x y

{o}.e = node i displacements of element e.
1

(3.17)

Thus Eq. 3.8 can be established once the displacement functions have been

chosen. For added computational efficiency the displacement field is

partitioned into those involving only in-plane displacements and those

involving only bending displacements. For the entire plate element

we have:

{ole = [P(x,y)] {a}
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and by partitioning we get:

e

-1 r
r 0 P (x,y) I 0 a

u
U I u

1
(3.19)= - -- - ---I

P¢(x,y) Jto¢ , 0
I
I ct¢

The subscripts u and ¢ refer to the in-plane and bending displacements

respectively.

3.5.2 Strain-Displacement Relations

Based upon the assumptions of thin plate small-deflection theory

the strain displacement relationships for a point at a distance z from

the reference plane are:

(8) =
x z

u
z

dx

where

v
= _z_

dy

u V
(E ) = _z +_z

xy z dy dx

z = distance of point under consideration from the

reference plane

U = displacement in the x-direction at depth z
z

v = displacement in the y-direction at depth z
z
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(~.) z = strain in x-direction at depth z

(C" ) = strain in y-direction at depth zy z

(Yxy ) z = shear strain at depth z

Using Kirchoff's assumption the displacements U and V
z z

can be expressed in terms of the middle surface in-plane displacements

and the rotation of the middle plane times the distance to the point

under consideration from the middle plane.

u u - aw
= z-z ax

(3.21)

V U -
aw= z-z 3y

Substituting Eq. 3.21 into Eq. 3.20 leads to

(e: rau 1 r a2w

1x ax -D
x

{c} av + z a2w
(3 .22)= e: = -Dz y dY y

YXyJ au + 2. a2w
ay x - dXdY

z

where {E} represents the strain at depth z. Performing the operationsz

outlined in section 3.4 and partitioning the following strain-displace-

ment relation is obtained (Ref. 5).
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{E} -1 e -1 e
(3 . 23)= [Qu][C~.] {~~} - z [Q<j>][Cl<j>] {o <j>}z

where

[Q' ] = [r ] [P (x,y)]
u u u

[Q<j>] = [r<j>] [P<j>(x,y)]

[el .] = [P (xn, yn) ] evaluated at xn, yn.
u u

[CI ] = [P<j>(xn, yn)] evaluated at xn, yn

Using the notation of section 3.4 this reduces to:

[ ] { ~ }e+ z B<j> u<j> (3.24)

3.5.3 Layering

Bending of the slab about both the longitudinal and transverse

directions produces a continuously varying biaxial stress state- with the

concrete. Since the elasticity matrix, [D], is dependent upon the stress

state, it too will vary throughout the finite element. To determine

the plate element stiffness matrix as given in Eq. 3.7, integration

must be performed over the volume of the element. Because of the com-

plexities in explicitly defining the elasticity matrix for reinforced

concrete under biaxial stress, the stiffness matrix is evaluated by

performing numerical integration.

A slab finite element can be subdivided into a series of layers

as shown in Fig. 11. Each layer can have its own elasticity matrix,
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[D .. ], which depends 'upon the state of stress in the layer, {cr.}. This
1 · 1

implies that each layer is in a constant state of assumed plane stress

and stiffness, and that there 'is a step-like variation in the plane

stress and stiffness through the depth of the finite element.

The state of stress for each layer is represented by the

weighted average stress at the middle depth of the layer, which is

defined as being a distance Z. from the reference plane of the slab.
~

This average stress is calculated by multiplying the layer elasticity

matrix times the integrated average strain vector at that depth:

{cr • } = [ D..] {E":.} .
1 1 1 Zl

(3.25)

over the area of the element:

The integrated average strain is found using Eq. 3.24 and integrating

where

{S}zi = 4~b (~~ [B~]dx dy {ou}e +~~i [B¢l dx dy {o¢}e)

(3.26)

1
4 b = area of element in x,y plane.

a

Combining Eqs. 3.25 and 3.26 yield:

{ail = [:;~ (~([Bu] dx dy {ou}e ... '4i~~[B¢J dx dy {o¢}e .)

(3 • 27)
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Because the elasticity matrix, [Di ], is dependent upon the stress, {a
i

},

and visa versa an iterative solution technique is required, as discussed

in Section 3.8.

The steel reinforcing bars are idealized as a layer of steel of

equivalent thickness with uniaxial stiffness properties, and these layers

are included in the integration processes in the same manner as the

concrete layers. The direction in which the uniaxial stiffness acts is

specific with respect to the angle it makes with respect to the

x axis. The steel layer is located at the center of gravity of the

reinforcement, and the equivalent thickness is calculated by:

t
s

A
s

=-
b

s
(3.28)

where As indicates the area of a bar and b s is the bar spacing.

The progression of cracking and crushing of concrete and yielding

of steel through the depth of the slab ~an be monitored by maintaining

a stress history of each layer. The angle of crushing or cracking of any

one layer is in no way predefined by previous cracking and crushing of

another layer, and thus the pattern can vary from one layer to the next

throughout the depth of the slab.

3.5.4 Element Stiffness Matrix

The element stiffness matrix was previously defined as

[k]e ~ [B]T [D] [B] dv (3.7)

in which the matrix [B] relates the strains to the displacements. If the
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matrix [B] is partitioned as in Eq. 3.23, then the element stiffness can

be rewritten as:

or multiplying out

e[k] , =

[B" ]T
u

v Z[B]T
¢

[B ,T [D] [B ] I Z [B ]T [D] [B,+<]
U U I U 't'

-------
I

v Z[B]T [D] [Bull Z2 [B¢]T [D] [B¢]
<P

dv

(3.29a)

(3.29b)

For simplicity the following definitions are made:

[k ]e = f [B .]T [D] [B'] dv
uu u u

v

T

f Te [K ]8 [D] [B¢] dv (3.30a)[k' ] = = Z '(B' .. ]
u~ ¢u u

v

[k¢¢]e = f Z2 [B ]T [D] [B¢] dv
<P

v
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Therefore the element stiffness matrix can be written as:

[k]e =

[k ]8 I
UU I

L
f

TI
[kucj>J

e
I

e
[k~<p]

(3.31)

Where [k ]8 is the in-plane stiffness matrix, which relates in-planeuu

forces and displacements. )[k¢¢J e is the bending stiffness matrix which

e e
relates bending forces and displacements. The [k~¢] and [k¢uJ are the

coupling stiffness matrices which inter-relate bending and in-plane

action (Ref. 40).

Noting from earlier discussions that the elasticity matrix [D]

.is dependent only on z and the matrices [B
u

] and [B¢J are dependent only

on x and y, Eqs. 3.30 can be rewritten as:

[k- ]e = fxh [B ]T (t [D]dZ) [Bu ] dx dy
uu u

[k ]e = Ix h [B)T (t Z [DJdZ) [B¢J dx dy (3.30b)u¢

e /xfy [B¢¢]T (./z Z2[D]dZ) [B¢J dx dy[k¢¢ ] =



Performing ,numerical integration of the quantities in paren-

thesis gives:

L

[DUll ] = fz [D]dz = L [D. ] (Zi+1 - Zi)
1

i+1

Jz Z[D]dz

L

[D' ] = = L [D. ] (Zi+l Z.) 2 (3.32)u¢ 1 1

i+1

JZ2[D]dZ

L

[D<p<p ] L [D. ]
3

= = (Zi+1 - Zi)1

z i+l

Where the sumation is over all of the layers, and Zi+l and Zi are the

Z distances to the top and bottom of layer i.

Substituting Eqs. 3.32 into Eqs. 3.31 yields:

[B' ] T [D ] [B ] dx dy
U Ull U

(3.33)

Thus, performing the integration over the element area will give the slab

element stiffness matrix.
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In Appendix A of Ref. 5 the slab element stiffness matrix form­

ulation is presented in detail, wi~h all components of each matrix leading

up to Eq. 3.33 and all integrations were performed. However, the sub­

matrices in Eqs. 3.33 are left as a series of matrix operations to be

performed by the computer. To reduce computation costs, time and

increase efficiency considerable effort has been made to perform all those

matrix multiplications by hand, so that in the end the formation of the

slab element matrix requires only direct substitution of the parameters.

In Appendix A of this report the resulting 20 by 20 stiffness matrix is

presented. A comparison of the previous matrix multiplication method

and the present method show a reduction in element formulation time of

1/100, and since element formulation is a large percentage of the total

computation time, the value of this new formulation becomes immediately

apparent.

3.6 Layered Beam Element

The theoretical development for an elastic composite finite

element hereafter referred to as the Tumminelli-Kostem element, consisting

of a concrete slab on top and a steel beam on the bottom, is presented

in detail in Ref. 5. This sophisticated element can include the effects

of slip between the bridge deck and the beam, shear deformations in the

beam and shear lag in the deck. Since the goal of the present research

is to develop a model to predict the'inelastic behavior of highway bridges,

some alterations and refinements of the Tumminelli-Kostem element must be

made to model inelastic behavior.
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Since the displacement fields defining the elastic plate portion

of the Tumminelli-Kostem element are identical to those already presented

to describe the inelastic layered slab element, the element stiffness

matrices just developed to model inelastic slab behavior can replace the

Tumminel1i-Kostem plate element without any complications. Therefore, the

major thrust of the discussions to follow is concerned with the beam

portion of the Tumminelli-Kostem element. Figure 13 shows the typical

arrangement of beam and plate nodes, and Fig. 14 defines the node deforma-

tions and sign conventions. It should be noted that the vertical dis-

placement field for the beam and plate is the same, but that the

respective axial displacement and rotation fields are different.

All deformations are written at the reference planes of the

slab and beam.

3.6.1 Composite Displacement Fields

The Tumminelli-Kostem element was derived considering the combined

action of the beam and slab as a unit. After establishing the coefficient

displacement matrix, however, the element development was divided into

four separate components by partitioning the coefficient-displacement

matrix. As will be shown this allows for the separate consideration of

the beam and plate stiffness matrices.

The vertical displacement field (W) used, following the assumptions

of Section 3.2, is:

(3.34)
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This is simply Eq. 3.15 with y held constant. The vertical displacement

for the slab and the beam is assumed to be the same. In order to permit

slip to occur between the beam and the slab the axial deformation for

each must 'be different.

(3.35a)

(3.35b)

The first equation for the axial deformation of the slab is simply

Eq. 3.16a withy held constant. To include the effects of shear deforma-

tion, a separated rotation field for the beam and slab must exist because

the slope of the deformed beam (~:) is not equal to the rotation (9)

(Ref. 5). The rotation of the slab will be given by the differentiation

of the vertical displacement Eq. 3.34 with respect to x, and the rotation

of the beam will be given by:

(3.35c)

Enforcing compatibility between the node displacements and the

~
displacement fields and noting the Q = - dx generates the [CI] matrix of

Eq. 3.9:

or

-43~



ULA 1 0 0 0 0 O' 0 0 0 0 0 0 a bl

b 2

ULB 0 0 0 1 0 0 0 0 0 0 0 0 0 b3

WL 0 0 0 0 0 0 1 0 a 0 0 0 0 c1

C z
Q

LA
0 0 0 0 0 0 0 -1 0 0 0 0 0 c

3

a1

Q
LB 0 0 0 0 0 0 0 0 0 0 -1 0 0 a Z

=
,.

UMA 1 L L2
0 0 0 0 0 0 0 0 0 0 a 3

U
MB

a 0 0 1 L L2
0 0 a a a a 0 a4

d
1

WM 0 0 a 0 0 0 1 L L
2

L
3

0 0 a dz
SMA 0 0 0 0 0 0 0 -1 _2L 2 _3L 2

0 0 a d
3

9
MB

0 0 0 0 0 0 a a 0 a -1 -L _L 2

(3.36)

The sign conventions for node displacements and internal dis­

placement fields are shown in Fig. 14.

There are ten node displacements and thirteen coefficients,

therefore, three more equations must be established. Considering the

equilibrium of the axial forces and the interface shear flow results in

the equations (Fig. 15).
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dNA
+ s---

dx . -
--:1'

and

dNB
dx = - s

where

N = axial force in plateA

NB = axial force in beam

s = interface shear flow.

(3.37a)

(3.37b)

The axial force NA can be found by integrating the axial stress over the

area of plate:

N =
A

(3.38)

Substituting for UA and W interms of the polynomial and differentiating

NA with respect to x yields:

f (d2~A _ Z d3~ )

A dx dx
dA = EA

(3.39)

Performing the required integration:

dNA
-d = 2 EAA b 3 - 6 ESA a4x
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where

~AA = EA x area plate

and

ESA = EA x first moment of inertia of plate with respect

to reference plane

o since reference plane is at mid-height

Performing similar operations for the beam, but noting that the

axial strain is computed using Q
B

and not ~: gives:

(3.40b)

Setting Eqs. 3.40 equal to zero provides the first two of the three

required equations. Even though the interface shear has been set to zero,

no accuracy is lost in the final solution because the restrictions are

made at the lowest level of element formulation. The interconnection

between the beam and slab is accounted for later via the slip stiffness

matrix (Ref. 5).

The last constraining equation is obtained by enforcing compati-

bility between the rotational fields. First, the shearing strain in the

beam must be expressed in terms of the polynomial coefficients. Consider"

the equilibrium of an element of the beam (Fig. 16). In order to maintain

generality, the interface shear flow (8) will not be set to zero until

after equilibrium is established.
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Summing the moments about point 0 (Fig. 16):

(3.41a)

Substituting for sEq. 3.37b and dividing through by dx yields

the shear in the beam

(3.41b)

The average shear strain can be expressed as

(3.42)

where

ASB = shear area of beam

GB = shearing modulus of beam.

dN
B

Now letting dx equal zero (i.e. s = 0) and finding the poly-

nomial expression for:

(3.43)

gives the shear strain in terms of the polynomial coefficients:

(3.44)

where

EIB = EB x second moment of inertia of the beam about the refer­

ence plane of ence plane of beam.

Compatibility between the vert ieal displacement field and the

rotation field requires:
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or, in terms of polynomial coefficients:

(3.45a)

o = - a2
(3.45b)

Enforcing Eq. 3.45b for all possible values of x would yield too

many constraining equations, but previous research shows that sufficient

accuracy is obtained by enforcing compatibility at z = LIZ only:

(3.46)

Combining the three constraining equations into matrix form

yields the [C2] matrix of Eq. 3.9:

0 0 0 2EA
A

o 0 0 0 0 0 0 a 0 0

0 a 0 0 o 0 2~AB 0 0 0 0 0 0 - 2ES {a}
B

0 0 0 0 o 0 0 0 -1 -L
3L

2
1

-L ( L
2

_ 2EIB . )
- -4- 2 4 A

SB
G

B

(3.47)
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/

Combini~g Eq. 3.36 and Eq. 3.37 gives the [C] matrix of Eq. 3.9

which is solved to give the [ee] matrix indicated in Eq. 3.11 where fCC]

consists of the first ten columns of [C]-l:

b
i

I 0 0 0 0 0 0 0 0 0 ULA

b
2

1
0 0 0 0

1
0 ,0 0 0 U

LB
..... -

L L

b
3

0 0 0 0 0 0 0 0 0 0 WL

c1 0 1 0 0 0 0 0 0 0 0 Q
LA

0 1
3ZBJl ZBJ1L ZBJ1L

0
1 3ZBJl ZBJ1L ZBJ1L

9LB
cz L 2 4 Z L 2 4 2

-
3Z

B
Jl ZBJ1 ZBJ1 3ZBJl ZBJ1 Z J1

c
3

0 0 2L - -4- - 0 0 --4- - -2- UMA2 2L

a
l

0 0 1 0 0 0 0 0 0 0 UMB

a Z 0 0 0 - 1 0 0 0 0 0 0 W
M

0 0 3 2
0 0 0

3 1 a SMAa 3 -
L2 L

L
2 L

0 0
2 1

0 0 0
2 1

0 9
MB

a
4 L3 - L2 --

L
3

L
2

d1 0 0 0 0 - 1 0 0 0 0 0

dZ 0 0 3J1 JIL (1 + JIL) 0 0
3J1 J1L (_ 1.+ JIL)-- 4 42 L 2 2 L 2

d
3

0 0
3J1 J1 J1 a 0 3J1 J1 J1
2L 4 2 - 2L -4 -2

(3.48)
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where

The [CC] matrix is then partitioned to handle the displacement

fields separately:

CA

[cc] =
CB

cw

CD

(3.49)

where [CAl, [CB], [CW] and [CD] are coefficient-displacement matrices for

the UA, UB' Wand QB fields respectively.

The internal work of the element consists of four separate and

uncoupled components. The first two are the work due to axial stresses

and strains of the plate and the beam, the third is the work due to shear

stresses and strains in the beam, and the fourth is the work due to the

shear flow and slip at the interface. Therefore, the element stiffness

matrix can be formed as:

(3.50)

stiffness matrix resulting from the consideration of the internal work due

to axial stresses and strains in the plate, axial stresses and strains
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in the beam, shear stresses and strains in the beam, and shear flow and

slip at the interface.

Up to this point in the derivation we have ignored the contri-

bution of the strain (E ) in the y direction of the plate and they

shearing strain (Y ) in the plate. However, as pointed out by Tumminellixy

and Kostem, using the plate element presented in Section 3.5, the beam

and plate elements are of compatible displacement fields, and thus these

added degrees of freedom do not alter the relations just developed.

Thus, the plate element stiffness matrix developed in Section 3.5 with

twenty degrees of freedom, will take the place of the [kA]b matrix.

Performing the required operations on the displacement fields

indicated by [f] in Eq. 3.13a and substituting the coefficient-displacement

matrices for {a} as in Eq. 3.13b results in the remaining strain-displace-

ment matrices. Axial strain in the beam:

(3.51a)

therefore

E
xB

= [[0 1 2x] [CB] - Z [0 1 2x] [CD]] {ole (3.51b)

or

e: = [BB]b {ole (3.51c)
xB

Shear strain in the beam

y dW Q
B

(3.52a)= --B dx
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therefore

or

[B] { ~}eY = B U
B S

Slip at the interface

therefore

2 2
aU = [1 x x-I - x - x a - ZiA - 2Z iA x

(3.52b)

(3.52c)

(3.53a)

(3.53b)

or

(3.53c)

Forming the expressions for the internal work as in Eq. 3.7a

results in the component stiffness matrices of Eq. 3.50:

[kB]b = f T
[EB] [BB]b .dV (3.54)[BB]b

v

[kB]s = f [B ] T [GB] [BB]s dV (3.55)
B s

v

[k]d ~
[B] T [k ] [B]d dx (3.56)

d Be
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where

k = the stiffness of the uniform connection used to
Be

mathematically describe the shear connectors.

It should be noted that k values have not been as yet directly
BC

related to the number shear connector or their arrangement, but that

there does exist an upper bound to k to insure composite action.
BC

where

k 10
max = L2

(3.57)

L = length of element

The matrices developed above are presented explicitly in

Appendix B. The [kB]b' [kB]s and [k]d matrices are added together to

form the beam stiffness matrix, and this in turn would be added to the

plate stiffness matrices according to Eq. 3.2 to result in a total struct-

ural stiffness matrix for the solution of Eq. 3.1.

3.6.2 Layering

As with the slab finite element, the beam finite element is sub-

divided into a series of layers as shown in Fig. 5. Each layer will

have its own elasticity [E]., which depends upon the state of stress in
1

the layer, (cr ) .• For the beam, each layer is assumed to be in a state ofx 1



uniform uniaxial stress, and thus there exists a step-like variation

in stress through the depth of the. element. The state of stress for each

layer is represented by the stress at the mid-depth of the layer.

Referring to the element stiffness matrices present in Appendix B,

there exist four terms which are related to the elasticity of the element:

EAB, ESB, EIB and GASB • First it is assumed that the shearing modulus,

G, is related to E by:

(3.58)E
G = 2 (1 + v)

The four terms above are then calculated in the following manner:

n

EAB = L E. A. (3.59a)
1 l.

i=l

n

ESB = L: E. A. Z. (3.59b)
l. 1. l.

i=l

(3.59c)E. (I. + A. Z.2)
1. 1. 1 1.

n

1
n

GASB = (1 +,,) L: E
i

ASBi (3.59d)
2

i=l

where

E. - the instantaneous slope of stress-strain curve of layer i
1

A. = the area of layer i
1.
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z. = the distance from reference plane to layer i centroid
1

I. = the moment of inertia· of layer i about its centroid
1

ASBi = the shear area of layer i.

Thus, once the rigidity, E., of the layer is established the element and,
1

ultimately, the layer stress can be calculated. However, since the

elasticity, E., is dependent upon the stress level, an iterative process
1

is required.

3.7 Unloading of Cracked or Crushed Concrete

As was noted in Section 2.2.8 when a concrete layer has cracked or

crushed, the layer will be incapable of maintaining the stress that caused

the failure. The stress within the layer in a direction perpendicular

to the crack will be reduced to zero, and the overall internal stress

field will be adjusted accordingly. In order to maintain equilibrium,

however, a statically equivalent fictitious force vector must be applied

to the structure to redistribute to stress loss due to failure. In Ref.

41 the equations for computing the required fictitious force vector are

presented in detail; the reader need only be aware of the necessity of

and not the specifics of the fictitious force vector to understand its

contribution to the solution p~ocess.
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3.8 Solution Scheme

The solution process consists of four main phases:

I Problem Definition

II Dead Load Solution

III Scaling Procedure

IV Overload Solution Procedure

A cursory explanation of each of the phases enumerated above is

presented in the following paragraphs:

I Problem Definition - In this phase the particular

problem to be solved is' defined by supplying the following

data:

A. Bridge Superstructure Geometry - The bridge is

discretized into layered beam and slab finite

elements.

B. Material Properties - All the beam and slab

material properties and stress-strain parameters

are defined.

c. Loading - The dead loads and live loads are

specified.

D. Boundary Conditions - The appropriate displacement

boundary conditions for the node points must be

used to model the -actual structure, employing

where needed any lines of symmetry in this

consideration.
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II Dead Load Solution - Due to the nonlinear behavior

of the overload problem, the initial stress state due to

dead loads cannot be superimposed on a separate overload

solution. The dead load solution must be performed first

to obtain an initial stress state to which the stresses

due to the overload are then applied, as would be the actual

case. The initial dead load solution, reflecting the dead

weight of the slab and beams, is performed assuming only

the beams to be acting. If, after the concrete is hardened,

additional dead loads due to parapets or curbs are added to

the structure, a second dead load solution is performed on

the composite structure.

III Scaling Procedure - The scaling procedure modifies

the initial live load solution so as to increase load to

load level just below which the first crushing or cracking

of concrete or yielding of steel occurs. This technique

eliminates any excessive number of live load solutions

in the elastic range. At the same time if the initia·l

live load is above the first material failure load, the

solution scheme begins at a live load of zero.

IV Overload Procedure - The structural response to

an overload vehicle is obtained by solving the set of

equilibrium equations presented by:
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{F} =.[K] {8} (3.1)

However, because the behavior to- be analyzed is nonlinear in nature, a

piecewise ~r increment approach must be employed. Expressing Eq. 3.1

in incremental form yields:

(3.60)
. .

[K (0 + 0)] {a}
.

{F}

where [K] is dependent upon the current total stress and an unknown.
stress increment. In addition, {F} is the applied force increment and
.

{8} is the resulting displacement increment. Because the unknown stress

increment is dependent upon the stiffness and the stiffness is dependent

upon the stress increment, conventional linear elastic solution tech-

niques cannot be employed.

Using a tangent stiffness approach to the solution of the overload

problem, the system of equations given by Eq. 3.60 is assumed to be

linear in a given load increment. Then at the beginning of each load

increment or step, the tangent to the stress-strain curve, based on

the current stress level, is used for each layer in computing the element

stiffness and ultimately the global stiffness matrix. Equation 3.60 is

then solved for the node point displacements, and using the strain-

displacement and stress-strain relations, the incremental stresses

are calculated. New stiffness matrices are recomputed using the new

increments of stress and the procedure is repeated to obtain a second

set of node point displacements. Since nonlinear behavior in the form of

cracking or crushing of concrete and yielding of steel will be taking

place in each load step, the initial displacement and second set of
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displacements will not match. Thus the entire process must be repeated

until the difference between the displacements of any two cycles con­

verges to within a certain tolerance. When this iteration scheme is

employed, the analytical technique is labeled as the "incremental­

iterative" method. As an approximation the iterative process could be

eliminated leaving simply an "incremental" method, but because at the end

of the first load cycle some error exists due to the failure to update

the stiffness matrix, any succeeding load will only compound the error.

Thus, the "incremental" method generally will produce unreliable results.

Flow charts descibing the basic operations for both the incre­

mental and incremental-iterative solution techniques, as well as in-depth

descriptions of each of the key steps of the two methods, are presented

in Ref. 41.
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4. Experimental Correlation

4.1 Introduction

In order to verify the validity of the analysis technique and the

finite element model comparisons must be made between analytically produced

results and data obtained from experimental testing. A total of four con­

crete slab and steel beam structures, which were previously subjected to

overload testing and reported on in the available literature, were analyzed

by the nonlinear finite element method presented in this report. Two of

the tests were conducted on full scale bridge superstructures, while the

remaining tests were performed on scale models. This report is concerned

with the comparison of the overall elastic and inelastic behavior of the

above mentioned highway bridge structures or models. The development and

verification of the layered slab model and the Tumminelli-Kostem elastic

composite element have been presented elsewhere (Refs. 39 and 49).

4.2 Steel Beam and Concrete Slab Highway Bridge Superstructures

A comparison of experimental and analytical results for four

test cases listed below has been made:

No.1: A simply supported right bridge with a span length of

50' and a width of 15' having three W18 x 60 steel beams

with partial length coverplates (Bridge 3B of Refs. 22 and 23)

No.2: A four span continuous right bridge with span length of

70', 90', 90' and 70' and a width of 34'-6" and having four
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No.3:

No.4:

W36 x .170 steel beams with W36 x 160 with coverplates over

the piers. (Bridge 1, Test - 1300 of Refs.lO and 13)

A two span continuous right bri..dge model with two span

lengths of 9' and a width of 5'-3", with three 86 x 12.5

steel beams and partial length coverplates • (Two span model

of Refs.8, 17 and 21)

A three span continuous right bridge model with three span

lengths of 6' and a width of 5'-3" with three 85 x 10 steel

beams and partial length ooverplates. (Three span model of

Refs. 8, 17 and 21)

4.2.1 Example No.1

This bridge was constructed as part of the AASHTO Road Test

conducted in the early 1960' s (Refs. '22 and 23). The testing consisted of

th~ee phases: (1) a regular test traffic program of 500,000 trips,

(2) dynamic load tests, and (3) increasing load tests, i.e. overload tests.

Bridge 3B was designed as a simply supported composimslab and steel girder

bridge with a span length of 50 ft. center-to-center of bearing. The deck

slab for the bridge had an average measured depth of 6.45 in. and was 15 ft.

wide. Three WI8 x 60 steel beams were placed 5 ,ft. apart and 7/16 in. by

6 in. coverplates extended over 18'-6" of the middle of the span. Figs. 17

and 18 show the shape of the cross section including dimensions and rein­

forcement details.

The loads were applied to the superstructure by moving overload
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vehicles. For the test~ng of Bridge 3B three diffekent overload vehicles

were used (vehicles 97, 98 and 99 as shown in Fig. 19). The loading procedure

consisted of placing weights on the overload vehicle which would then travel

across the bridge, usually thirty times. During the loading process the

midspan deflections of each beam were monitored and recorded. The load was

then increased and another set of runs made. The procedure was continued

until the bridge superstructure collapsed onto the safety crib below the

bridge superstructure.

Because the loads were not applied in a static manner but by

moving vehicles, the moment envelope produced by the passage of the overload

vehicle is of interest. Since the finite element program requires a static

loading pattern which will then be incremented, some equivalent static

loading pattern would correspond to a realistic simulation. In addition,

because three different overload vehicles were used, three different moment

envelopes must be simulated by one constant loading pattern. Based upon

previous experience and numerical computations, the moment envelope could.

be best simulated by a line load (Ref. 42).

Figure 20 shows the superstructure discretized into a series of

finite elements. The node points, element numbering, and element dimensions

are indicated in the figure. Since the structure was assumed to be

symmetric in geometry and loading, only one-quarter of the structure need be

analyzed. A total of eighteen slab elements and twelve beam elements were

used. It should be noted that because a line of symmetry lies along the

axis of the interior beam, only one-half of the interior beam cross-section

is included in the model. The line load was simulated by a series of
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concentrated loads. indicated by tue cros.s-natched squares.

The layered slab and beam models are shown in Fig. 21. A total

of six layers of concrete and four layers of steel reinforcement were used in

the slab finite element. The direction of action of the reinforcement is

indicated by the cross-hatched area and is given along with the thickness,

and bar size/spacing in Table lA. The beam finite element consists of a

total of ten layers as indicated. The cross-hatched layer, which

represents the coverplate, has two sets of material properties. In the

region where there is no coverplate in the actual structure, the material

properties are set to artificially low value·s to simulate the "nonexistence"

of the coverplate. In the area where there is a coverplate the properties

of steel were used.

In Table 2 are presented the material properties of the steel

and concrete used in Bridge 3B, and the corresponding material properties

used in the finite element simulation. The Ramberg-Osgood curve parameters

are also specified for each material.

At the end of the regular test traffic program one of the three

beams of Bridge 3B was discovered to have a fatigue crack at the end of

the coverplate. Even SO~ it was determined that the small permanent set

of the bridge at that stage was due to cracking and crushing of the concrete

slab, and the fatigue crack ,had no effect on the stiffness of the bridge.

During the overload procedure the fatigue crack was repaired with a butt

weld in order to prevent premature fai,lure.

Tne bridge failed in a flexure mode and in Ref. 23 the overload

behavior of the bridge is presented in terms of a plot of the maximum static
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moment in midspan caused by the overload vehi.cle versus th.e average displace­

ment at midspan of the three beams. Figure 22 shows the midspan moment

displacement history of the bridge. The analytical results of program BOVAS

and the test results are represented by the ([]) and «()) symbols as noted.

As can be observed from the plots, the results produced by the two methods

agree relatively well, especially at the beginning, and from a deflection of

4 inches (1/150 deflection to span ratio) to about 10 inches (1/60 deflection

to span ratio). The main discrepancies between test results and the calcu­

lated response occur within two regions: first, from approximately 1.3 inches

to 4.0 inches deflection, and secondly, from about 10 inches in deflection

to the termination of the test.

Some difference between test results and computed results is

to be expected because the loads were applied to the test structure by

three different overload vehicles in motion and the finite element program

applied an approximate equivalent static loading pattern in an incremental

fashion. In addition, as with any finite element model, there exists the

effect of the size of the d·iscretization used. However, in the second region

of disagreement the difference in maximum loads is only around seven percent

and thus within acceptable modelling limits. A considerable improvement can

be made in the modelling scheme if the effects of residual stresses in the

steel beams are included. Residual stress measurements in the beams were

made and reported on in Ref. 22. Assuming a parabolic distributio~ of

residual stresses in both the flanges and the web, an average value of residual

stress in each of these parts of the cross section is calculated. Using

these values of residual stress as"" initial stress values in the beams and
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repeating the finit~ element analysi,s, much better agreement with test

results is obtained, as indicated on Fi~. 22.

A qualitative description of the extent of damage at different load

levels, as reported in Ref. 23, is compared to damage as predicted by

program BOVAS in Table 3,. In general the damage record shows that the

method of failure and the loads at which different types of structural damage

occurred can be predicted by program BOVAS.

4.2.2 Example No.2

This bridge was one of four bridges which were to be inundated as

part of a reservoir in Tennessee ~ef. 10). Bridge 1, referred to as such

by the experimental researchers, was a four span continuous composite

structure with span lengths of 70·, 90~, 90 r , and 7Q~. It was constructed

in 1963 and designed for HS-20 loading. The deck slab was 7 inches deep

and was .34'-6" wide, including the curb (Fig. 23). For the finite element

analysis the curb portion of the superstructure was considered to be in the

same plane and of the same thickness as the slab. A total of four W36 x 170

steel beams was used to support the deck with 8'-4" spacing center-to-

center between the beam. In the negative moment regions there were W36 x 160

steel beams with 1()l-1" by 1" coverplates. A plan view of the superstructure

and the location of the applied loads and points where readings were taken are

shown in Fig. 24.

The loads were applied to the bridge deck by 200 kip center hole

jacks resting on bearing grills. The bearing grills were constructed from two

W14 x 30 steel beams 46 in. long and 30 in. center-to-center, and resting on
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concrete pads poured di~ectly on the bridge deck. The location of the grills

is shown in Fig. 25 by cross-hatched areas.

Due to the symmetry of the loads only one half the structure needs

to be discretized. The node points, element numbering, and element dimensions

of the discretized structure are indicated in Fig. 25. The cross hatched

areas represent the location of the patch loads that must be applied to the

idealized structure. A total of 42 slab finite elements and 28 beam elements

were used, resulting in 90 nodes and 360 degrees of freedom. The area of

main structural interest was that portion of the bridge near the midspan of

the loaded span; therefore, the element discretization is finer in this region

.snd much coarser in other spans. vfuile the coarse discretization of the

unloaded spans will be sufficient to model accurately the stiffness of the

bridge, deflections and stresses in these regions will not be reliable

because of the element size.

The layered slab and beam finite elements are shown in Fig. 26.

A total of six layers of concrete and four layers of steel reinforcement

\fere used. The direction of action of the slab reinforcement is perpendi­

cular to the cross-hatched area and is specified, along with the thickness

and bar size/spacing, in Table lB. The exact reinforcement and pattern in

the slab were not specified in Ref. 10, so a reinforcement distribution based

upon the existing design practices was choasen. The beam fini.te element

consists of ten layers as indicated. Because the length of the cover-

plated sections was not specified, the same beam element was used throughout.

In Table IV the actual material properties of the steel and concrete

used in Bridge 1 and the material properties and parameters assumed for the
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finite element analrsi.s are li.sted.

Bridge 1 was described as being "structurally sound" prior to the

beginning of the experimental tests (Refs. 10 and 13). The bridge had been

in service for approximately five years and pri.or to the testing the average

daily traffic was 600 vehicles per day. Before the ultimate load test was

conducted, other load tests involving lateral load distribution studies and

dynamic response studies to rolling and vibratory loading were carried out.

References 10 and 13 contain all the information concerning the results of

these other tests.

A plot of the load and corresponding average deflection at the

midspan of the loaded span is presented in Fig. 27 for both the analytical

(+) and experimental (*) results. In general, the two curves are in close

agreement except in the range of about five inches (1/216 deflection to

span ratio) to thirteen inches (1/83 deflection to span ratio) deflection.

However, even in this range the maximum difference in load is only five

percent.

Qualitative bridge damage, as reported in Refs. 10 and 13, is

compared to damage as predicted by program BOVAS in Table 5. As can be

seen, considerable difference can be observed between the first cracking

loads for the experiment and the analytical predictions. This noteable

difference is not all that distrubing if one evaluates all the facts. Fi.rst,

the real structure had coverplated sections over the piers, making the com­

posite section in that area more resistant to cracking. Second, and most

important, the finite element discretization in the region near the support

piers is extremely coarse. This leads to poor element stress distribution and
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therefore damage predictions. As mentioned before, however, the coarse

discreti.zation still produces reliable stiffness properties (i.e. overall load

versus deflection results). Lastly, the visual observation of cracking in

the slab does not give any quantitative information on the extent of cracking

through the slab. The reported cracking thus may- be either "surface deep"

or halfway through the depth of the slab. Looking at other recorded damage

the observation of first yield in the beams differs by only ten percent, and

considering the qualitative nature of the observation, this is within

acceptable limits.

As reported in Refs. 10 and 13, at a load just above first yielding

the bridge "lifted off" the abutment nearest the load. The present version

of the finite element model is not capable of simulating this behavior, but

as indicated in Fig. 27 the experimental and analytical results are not very

different. This is in part due to the ~act that when the "lift off" occurred,

the moment capacity of the composite section over the fi.rst pier had reached

much of its capacity. Considering coarseness of the discretization, the

leaving out of the coverplated sections, and the lifting off of the bridge

from the abutment, the BOVAS results are remarkably good.

4.2.3 Examples No.3 and No.4

The testing of these two mu1tispan concrete slab-steel beam

highway bridge scale models was conducted at the University of Maryland as

part of a research project in conjunction with the Maryland State Highway

Adminis,trati,on and the Federal Highway Administration to ascertain
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(1) distribution factors and (2) effective widths of composite bridges at

ultimate load. The concrete slab used in both models measured 216 inches in

length, 63 inches in width, and was 3 inches in thickness. Wire mesh rein­

forcement was placed at mid-depth in both slabs. The two ~pan model consisted

of three twenty-foot long 86 x 12.5 beams composed of A-36 steel and spaced

21 inches apart center-to-center. Over the interior support 5" x 3/8" x 5'

coverplates were welded to the top and bottom flanges to provide negative

moment resistance. The three. span model consisted of three twenty-foot long

85 x 10 beams of A36 steel and spaced 21 inches apart center-to-center'.

Coverplates measuring 5" x 3/8" x 3' were welded on to the top and bottom

flanges over the interior supports. In both models, headed, 1/2" x 2" shear

studs were used in pairs spaced at six inches to insure full composite action.

The total length of each of the models was eighteen feet. This means the

two-span model had two nine foot span lengths and the three-span model had

three six foot span lengths. Typical cross-sectional and elevation views of

the two models are presented in Figures 28 and 29.

The loads were applied with a fifty ton hydraulic jack acting

through a strain gage actuated load cell. For the two span model the load

was centered directly over the interior girder and at mid-span of one of

these spans (Fig. 29). In the ultimate load test for the three span model

the load mechanism was centered directly over the middle beam and at mid-

span of one of these spans (Fig. 29). Prior to the ultimate load test each of

the models was loaded and unloaded several times in the elastic range to check out

-69-



the test set up and equ~pment. The load increment to failure in the ultimate

load test was 2.5 kips and 5.0 kips for two span and three span models respec­

tively.

Figures 30 and 32 show the respective finite element discretizations

for the two span and three span models. The node point and element numbering

and the element dimensions are indicated in each figure. Because of the

inherent symmetry in these structures and their loading only one half of

the two span and one quarter of the three span are required for the finite

element analysis as shown. The two span model uses fifty-seven slab elements

and thirty-eight beam elements with a total of 120 node points. The three

span model has thirty slab elements and twenty beam elements with a total

of 66 node points. The loaded area is indicated by the cross-hatched area

(Figs. 30 and 32). As has been noted earlier, since_ the, longitudinal

axis of the center beam lies along a line of, symmetry, only one half of the

interior beam cross sectional properties is included in each model.

The layered slab and beam finite elements for the two span and

three span models are shown in Figures 31 and 33 respectively. A total of

six layers of concrete and two layers of wire mesh reinforcement were used

in each slab finite element. The size of the actual reinforcement was

3" x 3" -6/8 for the two span model and 4" x 4" -4/4 for the three span model.

The direction of action of the reinforcement is perpendicular to the cross­

hatched area (Figs. 31 and 33), and this direction along with the layer

thickness, wire size and spacing is given in Tables 4A and 4B. The beam finite

elements consists of eleven layers as indicated (Figs. 31 and 33). The cross

hatched layer corresponds to the coverplate; however, since the coverplate does
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not run the full le~gth of the beam, the materi,al stiffness of the coverplate,

in the regions in the actual structure where no plate exists, is set to an

artificially low value to simulate this "nonexistence" of the coverplate. In

all other regions the normal coverplate material stiffness properties were

used.

I.n Table 7 "the materi.al properties of the steel and concrete in

two-span and three-span models are reported (Ref. 8) and the corresponding

material properties used in the finite element analysis. The Ramberg-Osgood

parameters are also specified for each material.

The load versus deflection at midspan of the loaded span of the

two span model is plotted for both the analytical and test results in

Figure 34. Unlike similar plots for Examples 1 and 2, here there exists

considerable differences in analytical and experimental results, even in the

elastic range. The unexpected deviation in the elastic range is considerably

unsettling in that in this range the previous results (Figs. 22 and 27)

show excellent agreement in the elastic region with .a maximum absolute

difference of 3% between analytical and test results. For the two span model,

however, the maximum absolute difference in this region is around 39% for

the center beam. After a careful review of Reference 8, it was discovered

that firstly, during the elastic loading and unloading of the two span model

the deflection gages recorded a noticeable amount, about 0.007 inches of

permanent set; thus, if this fact is not reflected in the ultimate load test

results the deflections reported will all be shifted to the right'. This is quite

possible considering the noticeable kink in the test curve at 10 kips load.

However, shifting the test curve to the left to account for the initial perman-
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ent set would give an i~provement of only· 5% between the two curves. Secondly,

it was noted in Reference 8 that " .••noticeable support movement occurred at

high loadings .•• ". These support movements were measured and the reported

deflecti.ons. were "adjusted" to account for this occurence. However, past

experience has indicated that in the conduct of a test, if the test frame and

the loading devices move, even a minute amount, during the conduct of a test

the establishment of an exact reference plane free of all movements cannot be

easily undertaken without the inclusion of errors of unknown magnitude (Ref.

39). In this light if one looks carefully at the interior beam deflection

curves starting at around a load of 10 kips and up to a load of around 40 kips,

the two curves are almost parallel. In fact, moving the deflection at 10 kips

for both the interior and exterior beam test results to agree with the

ana1yticals shows very good agreement from 10 kips to 35 kips as seen in

Fig. 35. Starting at around 35 kips load, however, the apparent failure of

the exterior beam to take any more load in that there is no further deflection

could account for the separation of the two curves for the interior beam.

The behavior of the exterior beam would suggest that slab was completely

cracked in the longitudinal direction and that the reinforcement was no

longer capable of transmitting additional load. Because wire mesh reinforce­

ment would have little bending stiffness once the slab was cracked, the

excessive differential deflection between the two beams would cause the wire

mesh to be subjected to bending in addition to just axial force effectively

violating the assumptions of the finite element analysis. This additional

bending stress would cause premature attainment of the ultimate load transmitted

between the beams. The center and outside beams would then deviate from
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expected as indicat~d by the test results. The ultimate load obtained during

the test was 65 kips while BOVAS predicted an ultimate load of 57.9 kips. The

fact that the experimental ultimate strength exceeded the program predicted

would seem to contradict the statement just made concerning the dropping off

of the experimental load versus deflection curve; however, BOVAS does not yet

include the effects of strain hardening and this additional capacity might be

attributed to this effect.

One other comparison was made with regards to the two span model.

Based upon information provided by Tall and Beedle (Ref. 7) an estimation of the

residual stresses present in the beams was made. Then the assumed parabolic

distribution in the flanges and web was approximated by uniform average

stresses in the flanges of 9.05 ksi and in the web of -18.66 ksi. The effect

of the assumed residual stresses on the load versus deflection diagram of

the interior beam is shown in Fig. 36. As can be seen, while the effect is

clearly evident, no significant improvement in the results is obtained.

The load versus deflection diagram of the three span model is

presented in Fig. 37. As with the two span model, there exists substantial

differences between the analytical results and test results, even in the

elastic range. While no unloading curves were presented for the three span

model in Ref. 8, it would be logical to assume some small amount of permanent

set occurred during the initial loadings. Support movements were again noted

to have occurred and the reported results were "adjusted" to account for the

support movements.

Thus, as with the two span model, there exists some question

concerning the establishment of the true reference plane. Proceeding as with
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the two span model, but. setting, in thi.s· case, the test resu1ts at 20 kips equal

to the analytical results and shifting the interior and exterior test curves

left, gives Fig. 38. As can be observed, the analytical and test results are

in very good agreement up to 55 kips for the exterior beam and up to about

50 kips for the interior beam. The deviation between the test results and

BOVAS results starting at around 50 kips could again be attributed in part

to the possible bending action of the mesh reinforcement. The ultimate test

load obtained was 80 kips while BOVAS predicted a maximum load of 60.9 kips.

More than likely the effects of strain hardening could not account for all

of the difference b'etween these maximum loads, but certainly it would account

for some of the discrepency. Additional ultimate strength above that

predicted by the finite element analysis and not due to strain hardening

effect might be attributed to the conditions at the exterior supports of

the unloaded spans. At these supports the girders were clamped to the supports

to prevent uplift. Thus, the actual end condition might reflect a partially

fixed support instead of a simple support, and obviously this type of support

would create a larger ultimate load.

As with the two span model, an estimate of possible residual stresses

was made. The analysis was reconducted with·the residual stresses. This

has resulted in a dip, or kink, in the inelastic curve similar to that in

Fig. 22. However, as shown in Figs. 35 and 38, the results without assumed

residual stresses are in good agreement with test results, thus one could

assume the actual residual stresses are probably small and thus have little

effect.

In view of the results presented above, ~nd in particular in

~igs. 35 and 38, sufficient evidence exists to indicate that the test results
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"and BOVAS results do in fact agree quite well up to about 60% of the ultimate

test load for both the two span and three span models. Beyond that point

possible reasons for the difference in the two results are presented above.

These reasons mayor may not be totally correct. Since BOVAS

performed quite well in the actual bridge tests of Examples land 2, there

exists sufficient reason to assume that the computer program is reliable

in the inelastic range. Beyond 60% of the maximum test load, the behavior

i
of the models probably does not reflect the actual behavior of real life

loading conditions and real size bridge structures.
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5. Summary, Conclusions and Other Considerations

5.1 Summary and Conclusions

This report presents a method for analyzing composite beam-slab

type highway bridge superstructures subjected to overloads. The analytical

technique employs a finite element method of structural analysis. The

concrete slab and steel beams are discretized into a series of layered

finite elements. The elements, and particularly the layers, provide a

means to monitor the spread of cracking and crushing of concrete and yielding

of steel throughout the bridge superstructure. In addition, the layering

technique allows for the inclusion of inherent nonlinearities in material

stress-strain curves and for the variation in material properties through

the depth of the element.

The nonlinear and linear stress-strain behavior of the slab con­

crete is analytically described by empirically formulated biaxial stress­

strain laws in terms of principal stresses and directions. In addition, the

establishment of biaxial failure envelopes in terms of peak stress, peak

strain, and peak modulus allows for the determination of the initiation of

the failure of concrete by cracking and/or crushing of concrete. Elastic­

plastic stress-strain behavior of slab reinforcement and of the beam steel

is incorporated into the analysis scheme via nonlinear and linear uniaxial

Ramsberg-Osgood stress-strain formulation.

The analysis technique utilized a linear tangent stiffness approach

in which the solution corresponding to a particular load level is obtained

by summing up the individual solutions obtained from a series of previous
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load increments. Tw? different tangent stiffness methods of analysis have

been p~esented: an incremental-iterative method and an incremental method.

The incremental-iterative technique, which performs iterations and updates

the tangent stiffness matrix within each load step, is the only method

actually used in experimental comparisons because of its more reliable

solutions. In the incremental method, no updating or iterations are perfo~ed

in each load increment.

A total of four composite bridge type structures were investigated

by comparing experimentally produced data and analytically produced results

from the developed finite element model. In general, the layered finite

element program was shown to be capable of reliably predicting the linearly

elastic and inelastic behavior of simply supported or continuous composite

slab-beam highway superstructures. In particular the analytical load (or

moment) versus deformation diagrams were, for each case, in close agreement

with the experimental results after all factors involved were included or

accounted for. In addi~ion, the progression of cracking and crushing of

concrete and yielding of steel was dependably forecast by the developed

analytical model.

The importance of including residual stresses in the beams is clearly

evident in Example No. 1 and to a lesser extent in Examples No. 3 and 4.

Hhile limit data exists for predicting residual stresses without actually

testing for them, even this limited data can produce results which show the

importance of residual stresses in the ultimate strength behavior of beam-

slab bridges. Also of essential importance, as was evident in Examples

No.3 and No.4, is the need for taking the utmost care in the
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conducting of any test.so that there can be no question as to the reliability

of the experimental results. While not the focus of this report, experimental

dat'a which is questionable even to the slightest degree, minimizes greatly

its value.

In particular, while very close agreement was obtained from the

load versus deflection diagrams for the latter examples simply by shifting

the reference point for the experimental results, the question of the

reliability of either analytical and/or especially experimental results is

somewhat in doubt. However, in light of the information presented previously,

the reliability of the finite element program stands up reasonably well even

without including Examples No.3 and No.4, but they are still included as

part of good research practice. As has been demonstrated, the analytical

method even shows good agreement with the two-span and three-span models

after considering all factors.

While in three of the tests the structures were loaded statically,

in the remaining test the loads were Rroduced by moving vehicles. However,

by creating a loading pattern which approximates the actual moment envelope,

the analytical model produced very satisfactory results. In addition, in

each case the beams were subjected to the dead load of the structure. If this

had not been done the ultimate load, as well as the nonlinear behavior, would

have been entirely different because the dead load solution produces initial

stresses in the beams. Finally, the finite element program produced reliable

predictions of the ultimate capacity of each bridge superstructure.

The analytical method thus gives a solution for the flexural response

of the structure in terms of displacements, strains, stresses, and regions of
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cracking and crushing of the concrete and yielding of the steel. Service­

ability criteria can then be evaluated at various load levels up to the

flexural collapse of the bridge superstructure.

5.2 Other Considerations

5.2.1 AASHTO Overload Provision

The 1977 AASHTO specifications nave an overload provision to allow

for the possibilityof infrequent heavy loads. The provision applies to

all loadings except H20 and HS20 loadings. The design truck load is to be

applied to a single lane, increased by 100 percent, and without any concurrent

loading in any other lane. The combined dead, live and impac t stresses

resulting from such loading are not to exceed 150% of the allowable design

stresses. The question arises as to how does this provision relate to

an actual overload analysis such as those presented in this report.

In the first example Bridge 3B of the AASHTO test, the allowable

design stress in the steel beams was 27 ksi, which is greater than the present

M3HTO allowable tension stress for A-36 steel of 20 ksi. The critiBal

section for bridge 3B occurred at the ends of the coverplated section where

the maximum stress was calculated to be 26.9 ksi by assuming an impact ~actor

of 10% and a distribution factor of 33%. However, after measuring ,dead

load stresses and recording the maximum live load stresses due to the regular

test traffic the actual maximum stresses in the three beams were 26.0, 28.8

and 31.0 ksi at the ends of the coverplated sections of 97, 107, and 115 percent
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of the design load. The actual computed moment distributions of the three

beams were 33.8, 33.4 and 32.8 percent confirming the 33% distribution

factor, but the measured impact factor was an average of 18.9%. Thus, part

of the difference between the design stresses and the actual stresses can

be attributed to excess dead load and excess impact factor. In an attempt to

apply the overload provision the stresses at the critical section will be

factored down to a maximum stress of 20 ksi while maintaining the same ratio

of dead load to live load. By then doubling the live load plus impact

stress in accordance with the overload provision the total maximum average

stress becomes 28.9 ksi or 145% of the design stress. Thus, according to

the overload provision the bridge would be sufficient as designed. However,

in the process of performing the necessary steps to get these results a

number of important factors are overlooked in this simplified overload

provision.

Firstly, as was evident, the actual design stress was exceeded

even in this carefully controlled test; thus, an actual multigirder, multi­

lane bridge superstructure will also have a possibility of design stresses

being exceeded with normal live loads. Thus, if an overload is to occur

it would be possible that although the bridge met the specifications, the

actual stresses could be greater than calculated by simplified means.

Secondly, the arbitrary nature of the overload provision does not allow for

a vehicle by vehicle analysis nor does it allow for any quantitative or

qualitative analysis of the bridge subjected to the overload. For example,

if the vehicle weight limits were to be increased, how does one then apply
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the code and is it possible th,at even if the 15Q% limit is exceeded will the

structure behave reliably.

With program BOVAS such q~astions and others can easily be answered

because the engineer will have a grasp on what is happening at each particular

load level and any loading condition. From the damage record for Bridge 3B

with residual stress effect in Table 3, it can be seen that localized yielding

begins at 762 kip-ft. but that the load deformation curve remained linear

up to l059 kip-ft. However, when t~e residual stress effect is not included

then yielding does not begin until 1167 kip-ft. Thus, the importance of

including the residual stress effect which is ignored in conventional analysis

becomes extremely important. At the same time both the test results and BOVAS

clearly show that the bridge could successfully take a design load of 27 ksi

without any detrimental effect. Since the stress calculation is so dependent

upon the ratio of the live load to dead load, the distribution factor,

the impact factor and residual stresses, all of which are complex and variable

factors, the use of ·a simplifi.ed overload provision becomes questionable.

Jor the overload calculation, which arrived at a maximum stress of 28.9 ksi,

this corresponds to a maximum static moment of 815 kip-ft. Depending on

how one views this value in light of the damage record, it could be considered

as a conservative value or as an unsafe value. However, in light of the

fact that in the actual test results it was noted that even at loads much in

excess of first yielding the bridge had only a small permanent set. The

815 kip-ft. limit would appear to be conservative.
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5.2.2 Fatigue

While program BOVAS cannot account directly for tne effects of

fatigue, the results from the finite element analysis can be used to

establish an estimate of the fatigue life of the component parts. By

simply recording all element layer stresses in the vicinity of each parti­

cular type of detail and corresponding to a particular overload, a stress

range can be calculated for the detail. Then using published S-N curves

established for each category of detail, the estimated cycle life can be

found. If the bridge has had many years of service an approximation of the

number cycles already made and the corresponding stress range can be used

in conjunction with the above information to perform a root-mean-square

summation of the stress range effects to arrive at a fatigue life prediction.

5.2.3 Local Instability

In addition to failure by yielding or by fatigue, there exists

the possibility of failure due to local instability or localized or general

buckling of the steel member or a component of the steel member. This

could amount to buckling of the compression flange, lateral torsional

buckling, or buckling of the web due to shear. At the present time an

analysis similar to the one performed for the fatigue analysis could be

made where a stress check is made of the element layers and then compared

to critical buckling values. Determining when this type of failure would

occur would be extremely important in any overload analysis, because if the

member component buckled at some given load, but the analysis did not
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reflect this fact, then the performance of the structure beyond the

buckling load would be unreliable. While the compression flange in the

positive moment region is unlikely to buckle due to the restraining effect

of the concrete slab, the compression flange of beams over interior

supports in continuous bridges in negative moment regions could buckle

because there is no such restraint. However, to perform a correct flange

buckling analysis an appropriate critical buckling formula must be

established, such as

O'er = k* (TIEl (12 (I-v) 2 (bit) 2 ))

from Ref. 28. BOVAS could then be modified to flag the occurrance of such

stresses, and although the post buckling performance would not reflect the

buckling phenomena, the engineer would know when buckling occurred.

Similarly, a critical stress could be established for lateral torsional

buckling of the entire beam section in the negative moment region, such as:

=
2 {/ .

C;. EI h V1 + C2 +
28 (KL) 2 . 2

X

from Ref. 28. L, K, C , C are constants depending upon boundary and
1 2

loading conditions and span length. However, since the above equati'on is

for doubly symmetric sections, only some adjustment would have to be made.

As far as web buckling due to shear is concerned, experiments and theory show,

unlike the first two local instability effects, a considerable amount of

post buckling strength. However, the ~jor task in investigating web

and post buckling strength remains in determining which. of the many web
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shear buckling models c~n be used in analysis and tney can reliably predict

post buckling behavoir. Thus a major effort remains to determine the

significance of these features and to what extent they can be included in

the finite element analysis.

5.2.4 Details and Floor Systems

The effects of secondary details of the main girder, such as

transverse stiffeners, longitudinal stiffeners, and cross bracing on the

behavior of the bridge superstructure, is not accounted for by program

BOVAS at this time. In general, transverse stiffeners are used to control

the shear in thin webbed plate girders, and their effect on the behavior of

the bridge in the elastic range is minimal, but due to the possibility of

web shear buckling, they could become important. However, the effect of

~hese vertical stiffeners can be accounted for in connection with the web

shear problem above. Longitudinal stiffeners could be accounted for by

using an element layer to simulate their effect while ignoring any possible

beneficial effect on shear capacity. Cross-bracing would be difficult to

include in the analysis without increasing the degrees of freedom of the

finite element model, and such a manuveur might not be warranted in light

of its secondary nature. However, some type of back subsituation involving

relative displacement of slab and girders in transverse and vertical

direction might allow for the calculation of approximate cross-bracing

stresses.

As far as changing the program to model floor systems composed

of a deck slab, longitudinal stringers, transverse floor beams and longitu-
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dinal main girders,. some approximations could be made. However, consider-

able effort should be made via parametric studies to insure exactly what effect

these members have on each other. For example, when ~he stringer is attached

to the floor beams twisting moments are introduced to the floor beams, and

as of the present time, the beam finite element does not include the effects

of torsion. In addition, the beams wi,11 run transversely as well as

longitudinally and care must be taken not to violate any assumptions already
i

made concerning slab-beam interaction. Thus, while BOVAS can handle many

typical bridge superstructures, some further refinements are necessary to

insure a wider range of applicability. However, some features mayor may

not be realistically included in the analysis scheme without majo~ changes.
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TABLES
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TABLE lA

REINFORCEMENT EXAMPLE 1

REINFORCEMENT EXAMPLE 2

Centroidal Distance
from Midheight

(Positive Downward)
(inches)

-1.435

-0.935

0.935

1.435'

Centroidal Distance
from Midheight

(Positive Downward)
(inches)

-1.6875

-1.0625

1.0625

1.5625

e
x

(degrees)

-90

o

o

-90

TABLE IB

e
x

(degrees)

-90

o

o

-90
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Thickness

(inches)

0.0620

0.0550

0.0550

0.0620

Thickness

(inches)

0.05636

0.03875

0.03875

0.05636

Size/Spacing

5 @ 5"

3 @ 20"

3 @ 20"

5 @ 5"

Size/Spacing

5 @5.5"

5 @ 8"

5 @ 8"

5 @5.5"



TABLE 2

MATERIAL PROPERTIES

EXAMPLE NO. 1

Concrete Slab

Actual
Finite Element

Model

Compressive Strength, f'
cTensile Strength, f

t
Initial Modulus, Ec
Unload Modulus camp., Ed.

e
Unload Modulus tension,Ed

tRamberg-Osgood m
Ramberg-Osgood n

5.74 ksi

5,200 ksi

5.74 ksi
.4592 ksi
5,200 ksi
1,000 ksi

800 ksi
0.77

9.0

Reinforcing Steel

Actual Finite Element

Yield Strength, f
Modulus, E Y

s
Ramberg-Osgood m
Ramberg-Osgood n

61.2 ksi
28,800 ksi

Steel Beam

61.2 ksi
28,800 ksi

0.70
100.0

Yield Strength, flange, f
Yield Strength, web, f Y
Yield Strength, coverplate, f
Modulus E Y

sRamberg-Osgood m
Ramberg-Osgood n

-88-

Actual

35.1 ksi
39.9 ksi
38.9 ksi

30,000 ksi

Finite Element

25.1 ksi
39.9 ksi
38.4 ksi

30,000 ksi
0.• 67

300



TABLE 3

LOAD VS DAMAGE RECORD - EXAMPLE NO. 1

Load
(kip-ft) Damage .- Test

Load
(kip-ft) Damage - BOVAS

762 Yielding of exterior beam
bottom flange @mid span

906 Yielding of interior beam
bottom flange @mid span

1059 Yielding of coverplate of
exterior beam @mid span

1156 Yielding of exterior &
interior beam bottom flange
at end of coverplate

1333

1493

Yielding of bottom
flange near ends of
coverplate

Almost complete yield­
ing of bottom flange
except near supports,
extensive coverplate
yielding

1364

1455

Complete yielding of exterior
beam coverplate. 85% of
exterior beam bottom flange
has yielded

Complete yielding of interior
beam coverplate. 85% of
interior beam bottom flange has
yielded

1883 The web of exterior beam has
yielded over 70% of its depth

1662 Bottom layer of slab has a
transverse crack all the way
across at mid span

2000

2277

Web yielding is clearly 1919
evident

Extensive web yielding 2296
and tension cracks in slab
halfway through depth in
coverplated section

-89-

The web of interior beam has
yielded over 70% of its depth

The slab has a transverse
crack through 50% of its depth
at mid span and 33% through
depth in coverplated section.
The web has yielded through
86% of depth at midspan



TABLE 4

MATERIAL'PROPERTIES

EXAMPLE NO. 2

Concrete Slab

Compressive Strength, f'
cTensile Strength, f

Initial Modulus, E t
c

Unload Modulus camp., Ed
c

Unload Modulus tension, Edt
Ramberg-Osgood m
Ramberg-Osgood n

Actual

6.87 ksi

Finite Element
Model

6.87 ksi
0.4898 ksi

4,776 ksi
1,000 ksi

800 ksi
0.77

9.0

Reinforcing Steel

Actual Finite Element

Yield Strength, f
Modulus, E Y

sRamberg-Osgood m
Ramberg-Osgood n

Yield Strength, f
Modulus, E Y

sRamberg-Osgood m
Ramberg-Osgood n

40 ksi
29,000 ksi

Beam Steel

Actual

40 ksi
30,750 ksi

-90-

40 ksi
29,000 ksi

0.7
100.0

Finite Element

40 ksi
30.750 ksi

0.67
300



TABLE 5

LOAD VS DAMAGE RECORD - EXAMPLE NO. 2

Load
(kip-ft)

620

Damage - Test

First yielding of steel
appears to occur at this
load - shortly after
yielding started the
bridge "lifted off" the
abutment nearest the load

Load
(kip-ft)

259.5

402.5

446.7

556.4

590.9

625.5

Damage - BOVAS

Up to this point there has
only been longitudinal crack­
ing of the slab in the bottom
layers at the center line of
the bridge under or near the 1
load

The first transverse cracks
appear in the top layer of
the slab near first pier

Transverse cracks appear in
the top of slab near the
second pier

First yielding begins in
bottom flange of interior
beams in area under the load

First yielding begins in
bottom of web of interior
beams in area under the load.

The transverse crack over the
first pier is now through 50%
of the slab depth

650 Tension cracks visible in
deck slab over first pier

700 Tension cracks which
extend across the slab
and through the curb at
second pier

710.4

757.5

The first transverse crack in
the bottom of the slab in the
area under the load now
appears

The slab over first pier is
now completely cracked
longitudinally through the
complete depth, however, the
reinforcement is still functional

-91-



Load
(kip-ft) Damage - Test

TABLE 5--Continued

Load
(kip-ft)

767.8

819.3

851.6

925.4

991.6

1029.2

1072.6

1119.9

1202.3

-92-

Damage - BOVAS

The slab over second pier
is now cracked completely
through the depth in the
longitudinal direction

Yielding of the bottom flange
of the exterior beams in the
area of the load has started

The slab between the interior
and exterior beam at the
second pier is now also cracked
through 60% of its depth in
the longitudinal direction

The bottom transverse rein­
forcement in the slab in the
area of the load has now
yielded in tension

Yielding in compression of the
bottom flange of interior beam
at first pier

The transverse crack in the
bottom of the slab under the
load is now halfway through
the slab depth in the area
near the center of the bridge

The web of interior beam under
the load is now fully yielded

First crushing of slab at load
point

"Yielding in compression of top
transverse slab reinforcement
in area under load. Yielding
in tension of top longitudinal
slab reinforcement near the
first pier. Yielding on tension

. of bottom longitudinal slab
reinforcement in area under"
the load.



Load
(kip-ft) Damage - Test

TABLE 5--Continued

Load
(kip-ft)

1221.2

Damage - BOVAS

The interior beam in the
area under the load has
now fully yielded forming
a plastic hinge in the beam

1265

1254.7

Maximum load reached.
Compression failure
of curb section.

-93-

The web of exterior beam
under point of loading has
now fully yielded



TABLE 6A

REINFORCEMENT EXAMPLE 3

REINFORCEMENT EXAMPLE 4

Centroidal Distance
from Midheight

(Positive Downward)
(Inches)

0.00

0.00

Centroidal Distance
from Midheight

(Positive Downward)
(Inches)

0.00

0.00

e
x

(Degrees)

-90

o

TABLE 6B

e
x

(Degrees)

-90

o

-94-

Thickness

(Inches)

0.02667

0.0200

Thickness

(Inches)

0.0100

0.0100

Size/Spacing

W8 @ 3"

W6 @ 3"

Size/Spacing

W4 @4"

W4 @4"
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TABLE 7

MATERIAL PROPERTIES - EXAMPLE NO. 1 AND EXAMPLE NO. 2

Concrete Slab

TWO SPAN THREE SPAN
Actual F .E.M. Actual F.E.M.

f ' 4.83 ksi 4.83 ksi 3.99 ksi 3.99 ksi
c 0.3946 ksi 0.3591 ksi-- --

3600 ksi* -- 4044 ksi 3900 ksi* 3640 ksi
Ed -- 1000 ksi -- 1000 ksi
, ~dt -- 800 ksi -- 800 ksi

-- 0.77 -- 0.77
-- 9.0 9.0

* Secant Modulus

Reinforcement Steel

TWO SPAN THREE SPAN
Actual F. E .M. Actual F.E.M.

High Strengtl 64 ksi High Strength 64 ksi
29000 ksi* 29000 ksi 29000 ksi* 29000 ksi

-- 0.7 -- 0.7
00 200 -- 200

* As.given by
manufacturer

Beam Steel

TWO SPAN THREE SPAN
Actual F.E.M. Actual F.E.M.

Yield Strength, f 40 ksi 40 ksi 40 ksi 40 ksi
Modulus, E Y 30000 ksi 30000 ksi 30000 ksi 30000 ksis

0.67 0.67Ramberg-Osgood m -- --
Ramberg-Osgood n -- 300 -- 300
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Fig. 3 (a) Composite Beam With and Without Slip

(b) Deflections Due to Bending and Shear
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Fig. 4 Longitudinal Stress Distribution in Deck and

Traverse Deflection of Beams

-100-



-101-



OJ
0'"1

C

c

ll.

I -Linear

II - Non Linear. Ep#:O

ill -Non Linear. Ep=O

m

I T

T
..--.---t--~---------------------o-2

Fig. 6 Linear and Nonlinear Goncrete Stress-Strain Curve Regions

-102-



1.20 Camp.

/

/
Symmetric

0.90

Curve (ref) Uniaxial Strength-OQ

A(Kupferetal) 4450 psi

B(Kupfer at 01) 2700 psi

C-Idealized

0.60

C

0.90

0.30

/

/
0.30//

/".

/

0.60

(ill
0-2 -0 - 0"""2

Camp. 10i

B

/

Fig. 7 Actual and Idealized Concrete Failure Envelopes

for the ·Biaxial Stress Space

1.20

-103-



10- 1

0-2 - D ... 0-2

tcrl

Camp.

B c

HLl------------~F
G

Comp.
1.2

Fig. 8 Idealized Biaxial Failure Envelope with Characteristic Points

-104-



o

3000 Camp.

o

A

2000

8

EI (n:ticrosfroin)

1000

D

1.0

. 0.8

C,omp.
1.2

0-1 8a:o 0.6 1.0 A0 0"'1

0-0

0.4
D C

CT2/crO

0 Ref. Liu

x Ref. Kupfer at 01

-Idealized

Fig. 9 Peak Strain Envelope

-105-



1.2

I.0

0.8

CTI/flc -0.6

Camp..

Al

Fig. 10 Peak Strain Envelope with Characteristic Points

-106-



a a

K Ref. PI.

~
'

Z.L _.

:===~:~~~~~~-..-_-_...._~_-_-~-_-_-_...._..._-_---4 ~ zi+

z y

ex '
....-- u ----....x

w

~
z

Fig. 11 Rectangular Slab~Finit~ Element:

Layering and CObrdinate ~System

-107-



I

Ten.

Comp.

(A)

0-2--

Camp.

OJ.

Ten.
(B)

Fig. 12 Actual (A) and Idealized (B) Concrete Failure Modes
... ./- ."

~l

-108-



Y (DECK)

x (DECK)

______tzY (BEAM)
NODES

Z (DECK) Z(BEAM)

.......

OOF PER DECK NODE DOF PER BEAM NODE
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Fig. 17 Cross Section, Example No. 1

(AASHTO Bridge 3B)
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Fig. 18 Beam Elevation, Example No. 1 (AASHTO Bridge 3B)
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Fig. 20 Example No. 1 (AASHTD, Bridge 3B)

Finite Element Discretization
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Slab and Beam Layering

-117-



MIDSPAN DEFLE"CTION (in.)

. y Ip 1~ 292800

35000
2400 "

.~

I

"........

a.

~

..31:::

~ 30000

2000 ~
.x:

r-
--'

z
I-

W
~ 25000 ..

1600 ~
~

~

0
I ~

/
u

........ 20000

1200 1-;

........
(X) u

~

I -
-ן

m

c:::(

~ 15000

o AASHTO Bridge Test :E
800 ::>

~

o Program SaVAS ~-
:::>

x
~ 10000

A saVAS with Residual Stresses
<{

x
,

400 ~

«
~

o 50 100 150 200 250 300 350

MIDSPAN DEFLECTION (mm)

Fig. 22 Example No. 1 (AASHTO, Bridge 3B) - Moment versus Deflection Diagram

_._---_ ...._-



178mm (7")

Fig. 23a Example No.2 Actual Cross Section
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Fig. 23 Test Bridge, University of Tennessee
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Fig. 26 Example No.2 (University of Tennessee)

Slab and Beam Layering
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-124-



I372mm
(54")

Load Cell

445 kN Jock (50 tons)

254mm x 305mm Steel Pod (IO"x 12
11

)

762mm 762mm

(301l
) (30ll

)

2743mm 2743mm

(IOa ll
) ( 10S,II)

... 5486mm (,216") ..
Fig •. 29a Example No. 3 (University of Maryland) - Two Span Elevation

445 kN Jock (50 tons)

254mm x 305mm Steel Pod (IOlix 1211
)

(36")
914mm

Load Cell _.

I
........
N
lJ1
I

457mm 457mm

"(18")"1<18 I')
457mm 457mm

'( 181')1....(1811
)

1829mm 1829mm 1829mm
(72") ( 72") (72 11

)
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~o Span Slab and Beam Layering
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Three Span Slab and Beam Layering
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Fig. 34 Example No. 3 (University of Maryland) - Two Span Load versus

Deflection Diagram for Interior and Exterior Beams



DEFLECTION AT MIDSPAN OF LOADED SPAN (in.)

0.1 0.2 0.3 0.4' 0.5 0.6 0.7 0.8
I .
60

I I t"O--O-- 1l-n :za 75""'C[]: I
250

~~ II I /
50

~

CI)

~ 200r- 11 ~ I a.-~
..........

40 0
0 «

I . « 9....... 0 150
lJJ ..J.......

30 -JI
..J

• Test Results Interior Beam «
~ ....

00 100 o SaVAS Interior Beam I:-....
20

A Test Results Exterior Beam

o SaVAS Exterior Beam
50h{d' liD

o 3 6 9 12 15 18
DEFLECTION AT MIDSPAN OF LOADED SPAN (mm)

Fig. 35 Example No. 3 (University of Maryland) ~ Two Span Adjusted Load versus

Deflection Diagram for Interior and Exterior Beams



, DEFLECTION AT MIDSPAN OF LOADED SPAN (in.).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9

250

,......
200z

.Jt;
.....",

0

I

<t

to-

o 150
w

J

N·
I

..J

~
0
I-

o

o Test Results E'xterior Beam

C SOVAS No Residual Stresses

b. SaVAS With Residual Stresses

3 6 9 12 15 .18

DEFLECTION AT MIDSPAN OF LOADED SPAN (mm)

60

50

..........
(/)

40 .e-
~
..........

o
«

30:' 9
-'
~

20 0
I-

10

Fig. 36 Example No. 3 (University of Maryland) - Two Span Adjusted Load versus Deflection

Diagram for Exterior Beam Including Effect of Residual Stresses



DEFLECTION AT MIDSPAN OF LOADED SPAN (in.)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

I
t-'
W
Vol
I

350

...........

o
«
o
--'
...J

~o
I-

• Test Results Interior Beam

[J BOVAS- Interior Beam

A Test Results Exterior Beam

o SaVAS - Exterior Beam

0.·8,
80

70

,...,.
60 ~

~.....,

50 0
<:(
·0
..J

40 ..J
«
t-

30 ~

20

10

o 3 6 9 12 15 18
DEFLECTION AT MIDSPAN OF LOADED SPAN (mm)

Fig. 37 Example No. 4 (University of Maryland) - Three Sp~n Load versus Deflection

Diagram for Interior and Exterior Beams



DEFLECTION AT MIDSPAN OF LOADED SPAN (in.)

0.1 0.2 0.3 0.4 · 0.5 0.6 0.7 0.8
I I i I I I

- 80
I I ~ I

350
I I .~- I

70

60,..... , I Lr ~~ I .,--.
U)

.Q.
......... ...:.::

50 --'
.0 0I

~ 200)--A «
lJ,.)

40 3+:-- -I
I

...J • Test Results Interior Beam --I« 150
30 ~..... e SaVAS - Interior Beam0

I- O.

A Test Results Exterior Beam t-

o SaVAS - Exterior Beam
20

50U -lID

o 3 6 9 12 15 18

DEFLECTION AT MIDSPAN OF LOADED SPAN (mm)

Fig. 38 Example No. 4 (University of Maryland) - Three Span Adjusted Load versus

Deflection Diagram for Interior and Exterior Beams



NOMENCLATURE

-135-



NOMENCLATURE

= Cross-sectional area

Area of steel reinforcement in slab

= Layer area

Effective shear area in beam

Curve parameters=

A

A
s

A.
1.

C,D

= Constant associated with shear connector stiffness, k
se

DIl ,D I2 ,

D13 ,DZ2 '

D23 ,D 33

= Components of the rigidity matrices

E Modulus of Elasticity

EA

EI

ES

= Axial rigidity (EXA)

= Flexural rigidity (ExI)

= Modulus of Elasticity x first moment of inertia (ExS)

= Initial tangent modulus in uniaxial loading for concrete

= Downward slope of concrete stress-strain curve for

compression

E.
1.

= Downward slope of the concrete stress-strain curve for

tension

= Initial modulus of elasticity for the Ramberg-Osgood

stress-strain relationship

-136-



(E) .
1.

E
p

F

G

I

I,J,K,L

I.
1.

Jl

L

M

N

S

u

v

Beam element layer stiffness

= Tangent modulus at the peak stress

= Initial modulus of elasticity for steel

= Tangent moduli for the two principal stress directions

Tangent moduli for the principal stress directions

employed in formulating [D]

= Generalized nodal forces

= Shear modulus

= Second moment of inertia

= Nodal points for slab element

= Moment of inertia for layer i about its centroid

Parameter in beam element formulation

= Beam element length

= Moment

= Axial Force

= First moment of inertia for beam

= Axial displacement for beams or in-plane displacement

in x-direction for plate

In-plane or axial displacement in x-direction at depth z

= In-plane displacement in y-direction for plate

= Shear in heam
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w

z

z.
1

a,b

= I~-plane displacement in y-direction for plate at depth z

= Displacement in z direction

Layer boundaries for layer i measured from the reference

plane in the vertical direction

Vertical distance between reference planes for slab and

beam

= Centroid location of layer i measured from reference

plane in the vertical direction

= Vertical distances from reference plane for slab (A)

and for beam (B) to the plane of intersecting two

element

Vertical distances from reference plane for slab (A) and

for beam (B) to their respective centroids

Slab element half lengths

a.,a. = Coefficients in polynomials for vertical displacement
~ J

fields, i = 1, .•. ,12, j = 1, ... ,4

b.,b.,c. = Coefficients in polynomials for in-plane and axial
~ J J

displacement fields, i = 1, ••• ,8, j = 1, .•• ,3

b = Reiriforcing bar spacing for slabs

Ctb = Distance from centroid of beam to top of beam

CbA = Distance from centroid of slab to bottom of slab

d. = Coefficients in polynomials for rotation field in beam
1

i = 1, ••. 3

£ ' = Representative uniaxial compressive cylinder strengthc
for concrete
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f
t = Direct tensile strength for concrete

f = Yield strength steely

k ,k~, = Slab element submatrices
Ull U

kH

kBb,kss ' = Beam element submatrices

kL\

k = Stiffness of uniform medium used to model shear connectorsse

m,n = Parameters used in Ramberg-Osgood stress-strain relation-

ship

s

t
s

=

=

Shear flow at interface

Equivalent thickness of a reinforcing bar layer for the

slab

x,y

x ,y
n n

z

= Local cartesian coordinates

= Nodal point coordinates

Vertical distance from reference plane

=

=

=

The stress ratio or the ratio alb

The stress ratio for principal direction 1, 02/01

The stress ratio for principal direction 2, .01/a2

The ratio b/a

.
y

Shear strain at depth Z

= Shear strain increment

= Shear strain in beam
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8 ,8 ,
X Y

Yxy

e

e ,8
x Y

a

cr
p

cr
s

cr , a ,
x y

Lxy

a ,0 ,
x y

---T
xy

= Strain in principal stress direction

= The concrete strain at peak stress

= Concrete strains at the peak stress for the two

principal stress directions

= Pea~ strains for uniaxially stressed concrete in

tension and compression respectively

= Normal and shear strain increments in the x-y coordinate

system

= Strains in principal stress directions

= Angle which defines principal stress directions

= Rotations about x and y axes

= Rotations for slab and beam respectively

= Poisson's ratio

= Poisson's ratio in principal directions

= A principal stress

The peak stress in a principal direction

= The peak stress for the two principal directions

Secant yield strength used in Ramberg-Osgood stress­

strain relationship

= Normal and shear stress increments in x-y coordinate

system

= Normal and shear stresses in x-y coordinate system
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Stresses in principal directions

= Shear stress increment

Matrices

[B], = Strain displacement matrices

[BU][Bepl ,

[BB]b[BB]s'
[B]Li

[C]

[CI] ,

[CI ],
u

[Cl<j>]

[eZ]

= Matrix relating polynomial coefficients to element node

displacement using compatibility and constraining

equations

Compatibility matrices = [P(x,y)] evaluated at nodes

= Matrix of constraining equations

[CA],[CB] = Coefficient-displacement matrices for axial fields in

beam and slab

fCC] = Coefficient-displacement matrix for all displacement

fields

[CD]

few]

Coefficient-displacement matrix for rotation field

Coefficient-displacement matrix for vertical

displacement field

[D] = Elasticity matrix based on current state of str~ss

which relates the stress increment to strain increment

in x-y coordinate system
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[D.J = Elasticity matrix for layer i
~

[D], = In-plane, coupling, and bending rigidity matrices
Ull

[Du~]' respectively

[D~4>]

[n] = Elasticity matrix in the principal stress space

{F} = Vector of generalized nodal forces

if}, = Vector of shape functions

{Ll(xy)}

[K] = Global stiffness matrix

[K1J, .•• = Component matrices of the slab stiffness matrix

[K
6

]

[k]e = Element stiffness matrix

In-plane stiffness matrix for slab element

= Coupling stiffness matrix for slab element

= Bending stiffness matrix for slab element

= Axial and bending stiffness matrix for beam element

= Shearing stiffness matrix for beam element

= Slip stiffness matrix for beam element

[N] = Matrix defining shape functions

[P(x,y)] = Polynomial functions used to describe the displacement

field
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A connection matrix relating strains within an element

to the constant coefficients of the displacement field

[8] = A coordinate transformation for curvatures

[T] = Use to transform the elasticity relation from the

principal to the x-y coordinate system

{a} = Vector of polynomial coefficients

Vector of strains

{~} = Vector of incremental strains

[f] = Operator matrix to compute strains from the displacement

fields

{oJ = Vector of generalized node displacements

{8} = Vector of incremental generalized node displacements

{cr} = Vector of stresses

Vector of incremental stresses

{cri } = Vector of integrated average stress for layers

Notes:

1. The use of subscripts u, ~, b, s, and d on matrices indicates that

the matrix is derived from the consideration of in-plane deformations

(u), bending deformations (~), axial and bending deformations (b),

shear deformations (8), and slip (~).
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2. The use of· the subscripts uu, u~, and ~~ on matrices indicates

that the matrix is derived from the consideration of in-plane

deformations (uu), coupling deformations (u~), and bending

deformations ($$).

3. The use of the subscripts A and B used alone indicates the parameter

is associated with either the plate (A) or the beam (B).

4. The use of L or M as a subscript indicates that the quantity is

at node L or M.

5. The use of ('), primes, indicates quantities expressed in skew

coordinates.

6. The use of superscript, e, on vectors or matrices indicates that

the quantities are applicable to the element.

7. The use of 1,2 as subscripts indicates that the quantities are

with respect to the directions of principle stress.

8. A (.) dot used over any term indicates an incremental quantity.
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APPENDIX A

SLAB ELEMENT STIFFNESS FORMULATION

A.I Introduction

In the basic development of the slab element stiffness matrix,

as outlined in Section 3.5 and presented in detail in Appendix A of

Reference 41, the following stiffness equations are derived:

T
[C ]-1 ff [Q ]T [D

uu
] [Qul d d [C ]-1

u yx u x y u

T
= [C ]-1 ff [Q ]T [D

u
"'] [S] [Q",] d d [C ]-l[T]-l

u yx u ~ ~ x y <t>

(A. I)

(A.2)

T T
[k<jl<jl]~2x12 = [T]-l [C<jl]-l :fit [Q<jl]T [S]T [DH ] [S] [Q<jl] dxdy

[C ]-1 [T]-l
~

(A.3)

The evaluation of the integrals in Eqs. A.I to A.3 can be simplified

by considering only one element of the rigidity matrices [D
uu

]' [Du<jl] ,

and [D<jl<jl] , which are defined by equations 2.13, 2.23, and 3.32, to be

nonzero at a time. Equations A.I to A.3 thus become:

T
= [C ]-1

u
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(A.5)

(A.6)

T T
[k~~]~2x12 = [T]-l [C~]-l [D11[K1] + D12 [K2] + D13 [K3] + D22 [K4] "

+ D23 [KS] + D33 [K
6

] ]~~ [C~]-l [T]-l

where:

1

0 b

0 0 a symmetric

a 0 0 1

0 0 0 0 b

[T]-l
0 0 0 0 0 a

=
0 0 0 0 0 0 1

0 0 0 0 0 0 0 b

0 0 0 0 0 0 0 0 a

0 0 0 0 a 0 0 0 a 1

0 0 0 0 0 0 0 0 0 0 b

0 0 0 0 0 0 0 0 0 0 0 a (A.7)

2 -1 -1 2 1 -1 2 -1 1 2 1 1

-3 1 1 -3 -1 1 3 -1 1 3 1 1

3 -1 -1 -3 -1 1 3 -1 1 -3 -1 -1

0 0 1 0 0 1 0 0 -1 0 0 -1

-4 1 1 4 1 -1 4 -1 1 -4 -1 -1
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[C ]-1=.!.
0 1 0 0 -1 - 0 0 1 0 0 -1 0

<p 8
1 0 -1 1 0 .-1 -1 0 -1 -1 0 -1

0 0 1 0 0 -1 0 0 -1 0 0 1

0 -1 0 0 1 0 0 1 a 0 -1 0

-1 1 0 1 1 0 -1 1 0 1 1 0

1 0 -1 -1 0 1 -1 0 -1 1 a -1

1 -1 0 -1 -1 0 -1 1 0 1 1 0 (A.8)
~

1 0 1 0 1 0 1 0

1
0 1

0
1

0 1
0a a a a

1
0 1

0 1
0 1

0b -b b -1)

1 a 1
0 1 a 1

0- ab ab ab - ab

[C ]-1= 1:.
u 4 a 1 0 1 0 1 0 1

0
1

0
1

0 1
0 1- -a a a a

0
1

0
1

0
1

0 1
b -1) b - b

0
1

0 1
0 1

0
1

- ab ab ab - ab CA.9)

The submat+ices pertaining to the inplane stiffness matrix are

evaluated by employing Eq. A.4 as follows:
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(D11 [K1] ) := f f [Q ]T D
il

0 0 [Q
u

] d d
uu yx u x y

0 a 0

0 0 0
uu

T
0 0 [Qu] d d(D12 [K2]) = If [Q ] D

I2uu yx u x y

D21 0 0

0 0 0
uu

(A. lOa)

(A. lOb)

and so on. Explicit expressions for Eqs. A.IO can be developed by

utilizing:

0 1 0 y 0 0 0 0

[Qul = a 0 0 0 0 0 1 x (A.I1 )

0 0 1 x 0 1 0 y

The resulting (D .. [K]) matrices are presented in Reference
l.J n uu

41. By utilizing:

0 a 0 -2 0 0 -6i" -2y 0 a -6XY 0

[Q<j>] = 0 0 0 0 0 -2 0 0 -2x -6y 0 -6xy (A.12)

0 0 0 0 -2 0 0 -4x -4y 0 -6x2 -6y2

and

1 0 0

a 2

[8] 0
1

0 (A.I3)=
b 2

0 0
1

ab
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similar expressions for (D .. [K ]) ~ and (D .. [K ])~~ matrices are derived
~J n u~ ~J n ~~ .

and presented in Reference 41. However, in the previous research the

remaining matrix operations of Eqs. A.4 to A.6 are left to be completed

by the computer. Since many of the terms in these matrices are equal

to zero, such matrix operations performs many unnecessary multiplica-

tions and additions. Considerable computation t~e can be saved by

carrying out all matrix operations by hand, so that only direct sub-

stitution is required to get the slab element stiffness matrix. Also,

in a typical analysis as many as 75 load cycles with three iterations

per load cycle may be required, and each slab element stiffness matrix

may be recalculated 225 times, and if there are 50 slab elements, this

amounts to 11,250 stiffness matrix calculations per job. Thus, a

typical reduction in computation time by a factor of 1/100, leads to

sigificant saving all around.

A.2 Element Stiffn~ss Matrices

Returning to equation A.4 and evaluating the (D .• [K ])
1.J n uu

submatrices as given in Ref. 41 yields:

0 0 0 0 0 0 0 0

0 D
Il

D
13

0 0 D
13

DI2 0

0 D13 D
33

0 0 D
33

DZ3 0

0 0 0
D11b 2 D

33
a 2

0 0 0
D

13
b 2 + D23a

2

(Dij [Kn ]) uu = 3 + 3 3 3

0 0 0 0 0 0 0 0

0 D
13

D
33

0 0 D
33

DZ3 0

-157-



T
Premultiplying Eq. A.14 by [C ]-1 and then postmultiplying

u

the results by [C ]-1 gives an 8 by 8 [k ]e, inplane element stiffness
U uu

o

oo 0

matrix:

k (1,1)
D

11
(3 D

33
ct D

l3 k (2,3)
D13S D23u DI2 D33= --+---- =-------+-

uu 3 3 2 uu 6 3 4 4

k (1,2)
D

13
S D

23
a D

I2
D

33 k (2,4)
D33S D

22
(t

- --+------ =-----
uu 3 3 4 4 uu 6 6

k (1,3)
DIIS D33u

k (2,5)
D13S DZ3a DI2 D33

= -6- - -3- = ---+--+---
uu uu 3 6 4 4

k (1,4)
D13S D23Ci. DI2 D33 k (2,6)

D33S D22Ci.

= -----+--- = - --+--uu 6 3 4 4 uu 3 6

k (1,5)
DllS D33a,

k (2,7) = k (1,8)=---+--uu 3 6 uu uu

ns Del D D D33 S DZZa DZ3k (1,6) = - -..1l- +~ - ~ + -.ll k (2 8) =------+-
uu 3 6 4 4 uu ' 6 6 2

k (1, 7)
DIIS D33C(, D13 k (3,1) = k (1,3)=------+-uu 6 6 2 uu uu

De DC(, D D
k (1,8) = - -l:.L -~ +~ + 21 k (3 2) = k (2,3)uu 6 6 4 4 uu ' uu

k (2,1) k (1,2) k (3,3)
DIIS D33a D13= =--+--+-uu uu uu 3 3 2

k (2,Z)
D33a DZZCi. DZ3 k (3,4)

D13a DZ3 Ci. DI2 D13
= --+---- =--+--+-+-

uu 3 3 2 uu 3 3, 4 4
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k (3 t 7) = k (1,5)
Ull uu

k (3,8) = k (2,5)
uu uu

k (4,1) = k (1,4)
Ull uu

k (4 t 2) = k (2,4)uu uu

k (4,3) = k (3,4)
Ull uu

k (4 t 5) = k (3,6)
Ull Ull

k (4)7) = k (1,6)uu uu

k (4,8) = k (2,6)
Ull uu

-159-

k (5,1) = k (1,5)
uu uu

k (5,2) = k (2,5)
Ull uu

k (5 t 3) = k (3,5)
uu uu

k (5,4) - k . (4,5)
uu uu

k (5,5) = k (3,3)
Ull Ull

k (5,6) = k (3,4)
Ull uu

k (5 t 7) = k (1,3)
Ull uu

k (5,8) = k (2,3)
Ull uu

k (6,1) = k (1 6)
Ull Ull '

k (6,2) = k (2,6)
uu uu

k (6,3) = k (3,6)
Ull uu

k (6,4) = k (4,6)
Ull Ull



k u(7,Z) = k (2,7)u uu

ku (7,6) = k .(6,7)u uu

k (7,8) = k (1,2)uu uu

k (8,1) = k (1,8)
Ull uu

k (8,2) = k (2,8)
UU Ull

k (8,3) = k (3,8)
Ull Ull

k (8,4) = k (4,8)
Ull Ull

k (8,5) = k (5,8)
UU Ull

k (8,6) = k (6,8)
Ull uu

k (8,7) = k (7,8)
Ull Ull

k (8,8) = k (2,2)
Ull Ull

Combining. the appropriate matrix from equation A.5 and Ref.

41 yields the following (D •. [K ]) ~ matrix:
1J n u't'
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000 o o o o o o o o o

o 0 0 -DIla -D13 -D1Z(l o o o o -D
13

-D
I3

0 0 0 -D13B -D
33

-D
23

(l 0 0 0 0 -D
33

-D
33

0 0 0 0 0 0 -D
13

b
1 2 2 1

0 .0
• 8 I - 3Dl! f3b - ¥'33a - ¥'13b - 3D23aa -D1Za.......
0\
t-&

•• I
0 0 0 0 0 0 0 0 0 0 0 0

o 0 0 - D
13S -D

33
-D

23
a

o 0 0 - DI2S -D23 -D22u

o

o

o

o

o

o

o

o

-D
33

-D
33

-D23 -DZ3

o o o o o o -D
12

b 1 2 2 1
- 3D13 f3b - "JD23a - JD33b - JD22aa -D23a o o

(A.16)



By then performing the remaining matrix operation of Eq. A.5
. -1T . -1 -1

(~.e. [C] (D .. [K ]) ,h[C,h] [To] ) the following 8 x 12 [k ]e matrix
U 1J n U\fI 't' U

is derived:
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ku<p (1,12) = ~ (_ ~;1f3 + D;3<X )

1 (' 2D D D \
ku<p (2, 1) = 4" - a

33 + ~3 + ;2)
I

ku~(2,2) = 1 ( D33S 2D a~ 2 - ---- + D - 22
3 23 3

k (2,3) =! (
2D

13 f3 DZ3 ctu<p 2 3 - D12 + ---3-

ku~(2,4) = l (2D33 D23 D12
'f 4 a - b + a

\

k (2 5) = l D33f3 2D22<x \
uep' 2 --+-~ 1

33)

k (2,6) = !(D
I3 f3 DZ3Ctu<p 2 3 - D12 - -3-

k ~(2,7) = l 2D33 3D23 D12
U,;, 4 a - --b - a
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(
3D 2D D)

k (3 1) = 1:. - --ll -~ + 2
uep' 4 a b b

k
u

<j>(3,2) = k
u

<j>(l,5)

k
u

<j>(3,3)
I (DU I3 _ D3}a.)

=2 -3-+ D13

k
u

</>(3,4) = 1:. (D l3 2D33 D12 )
~ 4 -+----

a b b

k
u

</>(3,5)
= 1:. (_ Dl3S _ D _ 2D23a. )

2 3 12 3

k u </>(3,6) = 1:. ( 2DU D33 )
2 3 + D13 - -3-

(3D 2D D)
k (3 7) = 1:. --ll +~ + 2u<P' 4 a b b
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ku~(4,3) = ku<p(1,8)

k
u

<jl(4,4) = ..!. ( 2D33 + D23 _ D12 )
4 a b a

ku </>(4,5) = .!. ( _ D33 l3 _ D _ 2D22 )
2 3 23 3

ku~(4,6)
_ 1 ( 2D13f3 D23 C1. )

.. - 2 3 + D12 + ---3-

: = .!.( 2D33 + 3D23 _ D12 )ku </>(4,7) 4 a b a I
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k.~(4,12) = k ~(2,9)
u~ ' u~

k ~(5,9) = k ~(3,6)
u~ ·u~
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k ~(6,1) = -k ~(4,10). u~ u~
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k ~(7,11) = k ~(1,2)
U't" . U'f
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Combining in a similar manner the appropriate submatrices

from Eqs. A.6 and Ref. 41 yields the following (D .. [K ])~~ matrix:
, 1J n 'i'\f'
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0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
D

11
b D

I3
D

IZ 0 0 0 0
D

13
D

13
ar- 7 ab 7 7

0 0 0
D

13
D

33
D

23 0 0 0 0
D

33
D

33
7 ab 1)2 ab ab

0 0 0
DI2 D

23
D

22
a

0 0 0 0
D

Z3
D23

ab 1)2 };3 1)2 1)2
1
~

16 I"-J 3D
11

b 2D
13

D
I20

I· 0 0 0 0 0 0 0 0 0as ar- ab

0 0 0 0 0 0
2D

13 D11b 4D33 2D 13 2D23 DI2 0 0
~

~+-- ~+~-3a 3ab 3a 3b ab

0 0 0 0 0 0
D

I2
2D

I3
2D

23
D

22
a 4D

33
2D23 0 0

ab ~ + 3b"2 3b3 + 3ab b"2"

0 0 0 0 0 0 0
D

12
2D

23
3D

22
a

0 0
ab b"2" b 3

0 0 0
D

I3
D

33
D23

0 0 0 0
D11b 9D33 DI2 D33

7 ab 1)2 --:-g- + -- -- + -a 5ab ab ab

0 0 0
D

13
D

33
D

Z3
0 0 0 0

D
IZ

D
33 Dzza 9D33

7 ab 1;"2 -+- ~+ 5abab ab
(A.I8)



By then performing the remaining matrix operations of Eq. A.6

_IT. _IT -1 -1 e
(i.e. [T] [C</>] (Dij[Kn])</>cp[C</>l [T] ) the following 12 x 12 [kcp</>]

matrix is obtained:
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-174-



-175-
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D D D D
k (7 12) = --!l'_ --.!l - -.l2. - ~

<pep' 2ao. a 5b 2b

-177~-



-178-~-



-179~



In the above matrices the D.. terms for each matrix are
1J

different and are given by Eqs. 3. 32a, 3. 32b, and 3-. 32c, for the in-

k~~(12,10) = k~~(10,12)

k~~(12,11) = k~~(11,12) (A.19)

plane, coupling, and bending matrices respectively.

e e e
Once the [kuu]SxS' [ku~]Sx12 and [k~~]12x12 matrices are

established as above, the total slab element stiffness matrix can be

obtained by stacking the component submatrices according to Eq. 3.31.

By doing so the 20x20 slab element stiffness matrix becomes fully

populated as shown by the symbolic matrix Eq. A.20:

II eee II eee II eee II eee

II eee II eee II eee II eee

00 BBB 00 BBB 00 BBB 00 BBB

00 BBB 00 BBB 00 BBB 00 BBB

00 BBB 00 BBB 00 BBB 00 BBB

II eee II eee II eee II eee

II eee II eee II eee II eee

00 BBB 00 BBB 00 BBB 00 BBB

00 BBB 00 BBB 00 BBB 00 BBB

00 BBB 00 BBB 00 BBB 00 BBB

II eee II eee II eee II eee

II cee II eee II eee II eee
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where

00 BBB 00 BBB 00 BBB 00 BBB

00 BBB 00 BBB 00 BBB 00 BBB

00 BBB 00 BBB 00 BBB 00 BBB

II eee II eee II eee II eee

II eee II eee II eee II eee

00 BBB 00 BBB 00 BBB 00 BBB

00 BBB 00 BBB 00 BBB 00 BBB

00 BBB 00 BBB 00 BBB 00 BBB A.20

I =

e =

o =

Inplane stiffness matrix terms, [k ]e
uu

Coupling stiffness matrix terms, [kUq)e
T

Transpose of coupling stiffness terms, [k ]8
u<p

B = Bending stiffness matrix terms,

-181-'

e
[k<j><p ]



APPENDIX B

BEAM ELEMENT STIFFNESS FORMULATION
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APPENDIX B

BEAM ELEMENT STIFFNESS FORMULATION

B.l Introduction

The development of the beam element stiffness matrix, which

was outlined in Section 3.6, will be expanded and completed in this

appendix.

The following equations were arrived at in Section 3.6:

[~]b Iv T
[EB] [BB]b dV (B .1)[BB]b

[kB]s = Iv [B ] T [GB] [BB]s dV (B.2)
B s

[k]d h [B] T [k ][B]d dx (B.3)
d se

Where

[0 I 2X][CB] - Z [0 1 '2X] [CD] (B.4)

and where [CB], [ew] , [CD], and fCC] matrices are given by equations

(B.6)

(B.5)

3.48 and 3.49.

Treating [EB] as a scalar multiplier and performing the indi­

cated integration in (B.I) yields:



~b (2,4) = 0

~b(2,6) = 0

~b (2, 7)
E~

=--
L

~b(2,8) = 0

kBb (1,9) = 0 k
Bb

(3,2) = 0

kBb(l,lO) = 0 k.:ab(3,3) = ~ J1
2L(EIB - E~ZB

2

)

k
Bb

(2,1) = 0 k.:ab(3,4) = J1:L2
( _ EI

B
+ ~ZB

2
)

E~ J1 2L2 ( - \k.:ab (2 ,2) = L kBb (3,5) = - EIB + E~ZB
2

)4

~b(3,1) = 0k.:ab(1,8) = 0
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~b(4,1) = 0

~b(5,1) = 0

~b(4,7) = 0
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~b(6,1) = 0 .

~b(6,2) = 0

~b(6,3) = 0

~b(6,8) = 0

~b(6,9) = 0

~b(6,10) = a

kBb (7,3) = 0

~b(7,4) = 0

kBb (7,8) = 0

~b (7,9) = 0 .

~b(8,2) = a
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~b (10,1) = 0

~b(10,2) = ~b(2,10)

~b(10,4) = ~b(4,10)

~b(lO,6) = 0

-187-



Where:

(B.7)

E~, ESB, EIB, and GASB are given by equations 3.59 a, b, c, d.

Evaluating the integral in eq. B.2 in a similar manner gives the

following stiffness matrix:

~s(1,5) = a

~s(lJ6) = 0

~s(1,7) = 0

~s(2,1) = 0

~s(2,4) = 0
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~s(2,5) = 0

~s(2,9) = 0

~s(2,10) = 0

~ (3,3) = GA -(.!.. _3JIL + 3J1
2
L

3
\

S SB 5L 5 40 J

~s(3,4) = GA ,(_ ~ + 3JIL
2

_ J12L~ )
SB 10 40 80 I

~ (3,5) = GA (_ 1:. + 9JIL
2 J12L~)

s SB \ 2 40 - 40
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I<ns(3,7) = 0 .

~ (3,10) = GA (1 + 9JIL
2

J1
2
L

4
)

S SB 2 40 - 40

~s(4,1) = 0

I<ns(4,2) = 0

~ (4,4) = GA (2L _ JIL
3

J1
2

L.
5

)
S SB 15 120 + 480

~s(4,5)=GA (_L 7JIL
3

J1
2
L

5
)

SB 12 - 240 + 240

~s(4,7) = 0

~s(4,8) = -k(3,4)
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~s(5,1) = 0

~s(5,2) = 0

~s(5,6) = 0

-191-



~s(6,1) = 0

~s(6,2) = 0

~s(6,4) = 0

~s(6,5) = 0

~s(6,6) = 0

~s(6,10) = a

~s(7,4) = 0

~s(7,5) = 0

~s(7,6) = 0

k:Bs(7,7) = 0

k:Bs(7,lO) = 0

kB (8,4) = k (4,8)s· -~s
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~s(~,7) = 0

~s(9,1) = 0

~s(9,2) = 0

k (9,5) = ~ (5,9)
-~s . -~s

kB (9,8) = kB (8,9)s . s

k
B

(9,,9) = k
B

(4,4)
s s.

~s(10,2) = 0

~s(10,6) = 0

k--- (10,10) = k
B

.(5,5),--Bs s

-193-
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- Performing the indicated integration in eq. B.3, the following

[k]d matrix is obtained:

k L
se

kd(l,l) = -3-

= k (_ ZiB
L

_ JIL
3

C )
kd (1 , 5) Be 3 24 tB

k Lsc
kd(1,6) = -6-
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kd(3,3) = k MlBe

k
d

(3,4) = k M2
sc

k
d

(3,5) = k M3sc

kd (4,4) = k M4se

kd(4,5) = k M5
sc

-195-



kd (4,9) = k M6
se

kd(4,lO) = k M7
se

kd(5,5) = k M8Be

kd (5 , 10) = k M9se
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kd (7,4) = kd (4·~ 7)
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(B.9)

Where:

6Cb
2

3 1 2 3
Ml = ---! + 2...1: c c + 3J1 L C2

5L 5 bA tB 40 tB
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M5 = -

M7 =

Once the three component matrices, [~]~ , [~]e ,
lOxlO slOxlO

and [k]e , are obtained by the above substitutions, the total beam
ulOxlO

element stiffness matrix is obtained by adding the three matrices

together according to eq. B.lO.

e
[k]BEAM =

-199---

(B .10)
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