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ABSTRACT

This dissertation presents the results of an in-depth investiga-
tion concerning the vibrational characteristics and seismic analysis
of ground supported, circular cylindrical liquid storage tanks subject
to a horizontal component of earthquake ground motion. The scope of

the study includes empty, partially full, and completely full tanks.

Simple analytical expresSions; in the form of cubic polynomials?
are developed for empty tanks which accurately predict frequencies and
radial mode shapes corresponding to the fundamental mode of vibratiom.
These expressions form the basis of simplified procedures for deter-
‘mining shell stresses and displacements, base shears, and overturning
moments induced in empty cylindrical tanks by earthquake ground motion.
The effects of a roof structure and support conditions upon the vibra-

tional characteristics of cylindrical tanks are also examined.

Analytical expressions; also in the form of cubic polynomials,
are developed which accurately determine the fundamental natural fre-
quency of the shell and the impulsive fluid mass., These expressions
are applicable to tanks both half full and completely full with liquid.
Simple procedures for assessing impulsive hydrodynamic wall pressures,
and the resulting shell streéses, base shears; and overturning moments
induced in flexible tanks by a horizontal component of earthquake
ground motion are presented., Numerical comparisons which verify the
accuracy of the procedures developed in this investigation are

provided.




1. INTRODUCTION

.1.1 Introduction

The performance of liquid storage tanks during a seismic
event is well documented in the literature (Refs. 10, 19, 25 and 57).
Special importance is assigned to this matter because of the poten-—
tially disastrous results associated with liquid storage tank
failures. For example, uncontrolled fires in the wake of a major
earthquake could result if the water supply is disrupted, and cause
more damage than the earthquake itself. Spillage of flammable
petroleum products and tokic chemicals can cause damage which extends

far beybnd the values of the affected tanks and contents.

The circular cylindrical tank, built on grade and usually
constructed in steel (or aluminum) or prestressed concrete is one of
the most common forms of liquid storage vessels. Damage surveys of
tanks that were subjected to actual earthquakes have shown various
modes of failure for these tanks (Refs. 25, 48, 55 and 57). For
steel tanks the most common form of failure observed has been the
buckling of the tank walls due to the develbpment of high compressive
stresses, induced by seismic forces causing an overturning moment at
the base of the tank. Damage to concrete tanks raﬁges from cracking
(produced by tensile hoop stresses which develop due to shaking

induced hydrodynamic pressures between the liquid and the tank wall)
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to total collapse. Damage to fixed or floating roofs can also

result from 1iquid sloshing if sufficient freeboard does not exist.

The foregoing ekamples illustrate the need for simple,
accurate, and practical analytical methods capable of predicting
pressures exerted by the liquid on the tank wall and of determining
the resulting shell stresses, base shear, and overturning moment.

The present study addresses this need.

The following sections of this chapter present the
objectives and scope of the present investigation, and a brief review

of previous research conducted in the subject area.

1.2 Previous Research

The development of the early seismic response theories of
liquid storage tanks considered the container to be rigid. One of
the first investigators, Jacobsen (Refs. 31 and 32), developed
equations for effective hydrodynamic mass and mass moment for the

contents of cylindrical tanks subject to horizontal translationmn.

Graham and Rodriguez (Ref. 23) simulated the behavior of
the liquid contents of rectangular tanks by an equivalent multi-
degree-of~freedom mechanical spring-mass system, where the different
masses and spring stiffnesses represented the contributions of the

different sloshing modes of vibration (Ref. 30).

Housner (Refs. 27 and 28) developed a simplified procedure
for estimating liquid response in seismically excited rigid,

-3-




rectangular and cylindrical tanks. In that study, the response was
considered to be composed of separate convective and impulsive com-
ponents. The Housner procedure was later refined and amplified by

the Atomic Energy Commission (Ref. 63).

The aerospace industry has also made significant contri-
butions to résearch on the dynamic behavior of liquid storage
vessels. The "slosh problem" as related to liquid propellants for
rockets or space vehicles was thoroughly investigated, both analy~
tically and experimentally, by Abramson (Ref. 1). The problem was
further studied by Bauer who developed a comprehensive mathematical
model for applications in the design of fuel tanks in space

vehicles (Ref. 9).

Edwérds (Ref. 20) was the firét‘investigator to consider
tank flexibility in.estaBlishing the hydrodynamic forces exerted on
ground supported, cylindrical tanks subject to horizontal earthquake
ground motions. He was also the first of several investigators to
employ the finite element technique to the dynamic analysis of liquid

storage tanks. Subsequent finite element investigations were con-

ducted by Shaban and Nash (Ref. 60), and Haroun (Ref. 26). 1In his
study, Haroun also considered effects which complicate the dyngmic
behavior of liquid storage tanks such as the effect of initial hoop
stress dﬁe to hydrostatic pressure, the effect of coupling between
liquid sloshing and shell vibration, and the effect of soil flexi-
bility. 1Imn all three of the aforementioned finite element investi-

gations it was assumed that the base of the tank was uniformly and

b=



continuously connected about its periphery to a rigid foundation,

and that the tank had no roof structure.

Veletsos (Ref. 64) presented a simple procedure for eval-
uating the hvdrodvnamic forces induced in flexible liquid filled
cylindrical tanks. _This method was based on the assumptions that the
tank behaved és a single-degree-of-freedom system, thaﬁ the cross-
section of the tank remained circular during vibration, and that the
heightwise distribution of the deflection was of a prescribed form.
Simplified formulas to obtain the fundamental natural frequencies of
both empty and completely filled (with liquid) cylindrical storage
tanks by the Rayleigh-Ritzvmethbd were later presented by Veletéos
and Yang (Ref. 65). In both of these studies it was also assumed
that the periphery of the tank base was ﬁniforml& and continuously

attached to a rigid foundation and that the tank had no roof structure.

The dynamic response of flexible, liquid-filled cylindrical
tanks subject to a vertical excitation éf the base was investigated
by Yang (Ref. 68), and then by Kumar (Ref. 45). In his study Kumar
presented a géneral modal superposition procedure for the analysis

of the shell-liquid system subject to a vertical transient excitation

of arbitrary time variationms.

Limited experimental invesfigations of the behavior of
shallow cylindrical liquid storage tanks were conducted by Clough
(Ref. 13), ahd‘simiiaf investigations of tall cylindrical liquid
storage tanks were conducted by Niwa (Ref. 54). The results of

these experiments indicated that higher order circumferential modes
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of vibration (i.e. cos n@; refer to Section 2.1 for detailed explana-
tion) may be excited by a lateral earthquake-like disturbance of

the base of the cylindrical tanks, due to inherent imperfections in

the geometry of the shell.

1.3 Objectives

The primary objectives of the present investigation are:
1. To provide information for a better understanding
of the vibrational characteristics of both empty and

liquid-filled cylindrical storage tanks.

2. To develop simplified procedures applicable to the
dynamic (response spectrum) seismic analysis of
cylindrical liquid storage tanks subject to lateral

earthquake ground motion. .

Among the unique contributions of the reported study are:
1. An evaluation of the effects of boundéry conditions
on the vibrational characteristics of cylindrical

tanks,

2. Assessment of the effect of roof structures on the
vibrational characteristics of‘éylindrical tanks,

3. Development of simple analytical expressions which
accﬁrately determine the vibrational characteristics
(frequency and mode shape) of flexible cylindrical

storage tanks, and



4. The development of simplified procedures for assessing
the seismic response (i.e. hydrodynamic pressures,
shell stresses, base shears, and overturning moments)

of flexible cylindrical liquid storage tanks.

The investigation described herein was performed in four

phases:

Phase I - Vibrational characteristics of empty
cylindrical tanks

Phase II - Vibrational characteristics of liquid-
filled cylindrical. tanks

Phase III — Seismic analysis of empty cylindrical
storage tanks

Phase IV ~ Seismic analysis of liquid-filled

cylindrical storage tanks

The subject matter of these studies is covered in four chapters, the
scope of which is defined in the following section. Each chapter is
written in a self-contained manner, and may be read essentially in-

dependently of the others.

1.4 Séope of Study

The vibrational characteristics (i.e. natural frequencies
and mode shapes) of empty cylindrical storage tanks both with and
without roof structures are examined in Chapter 2. This comprehensive

study encompasses a class of tanks having a height to diameter ratio,
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Ho/Do’ within the range of 0.1 to 1.5, inclusive, thus including

the transition from shallow (HO/Do < 0.5) to tall (Ho/Do > 0.75)
tanks. Special emphasis is placed upon the free vibration aspects
associated with a circumferential wave number, n, equal to one, and
an axial wave number, m, equal to one (refer to Section 2.1 for
defails). Simple analytical expressions, in the form of cubic poly-
nomials, are developed which accurately determine the natural
frequencies and mode shapes of empty cylindrical tanks associated

with the n = 1 and m = 1 mode.

An evaluation of the effects of discrete boundary (dr
support) conditions at the tank base upon‘the vibrational characfer—
istics of cylindrical tanks are also provided in Chapter 2. The
effects of roof structure on the vibrational characteristics of
empty tanks are also assessed in this chapter. Analytical‘expres—
sions, similar to those developed for open-top cylindrical tanks,
for predicting natural frequencies and mode shapes of tanks with

roof structure are also presented.

Chapter 3 deals with the vibrational characteristics of
liquid-filled cylindrical storage tanks without roof structure
possessing a height to diameter ratio within’the range 0.1 to 1.5
inclusive. Tanks both completely full and half-full with liquid
are‘coﬁéidered. Simple analytical expressions, also in the form of
cubic polynomials, for estimating the natural frequencies associated

with the n = 1, m = 1 mode are introduced.



In Chapter 4 simplified procedures for assessing the dynamic
seismic response, by the response épectrum technique, of empty
cylindrical storage fanks, both with and without a roof structure,
are presented. For simplicity in the analysis, the tank is idealized
as a continuous, single-degree-of-freedom system. Simple expressions
to estimate shell displacements and membrane stresses, base shears,
and overturning moments induced by a horizontal component of earth-

quake ground motion are presented.

The dynamic seismic (via the response spectrum technique)
response of both rigid and flexible liquid-filled, open-top cylindri-
cal tanks subjeqteédto horizontal earthquake ground motién is con~
sidered in Chapter 5. Both the impulsive and convective effects in
rigid tanks are analyzed. Simplified procedures for assessing the
impulsive effects (i.e. hydrodynamic pressures, shell membrane
stresses, base shears, and overturning moments) induced in.flexible
tanks due to earthquake ground motions are developed. The convective
effects are considered to be independent of tank flexibility and
therefore may be assessed by existing methods available for rigid

tanks.




2. VIBRATIONAL CHARACTERISTICS OF EMPTY TANKS

2.1 Introduction

A cylindrical shell undergoing free vibration may be de-
Aformed in a variety of ways as shown in Figs. 1 and 2, where several
configurations are given. The natural modes of free vibration are
defined by two integers: the number of circumferential waves, n;
and the number of axial waves, m. Cases of n equal to 0, 1, 2 and 3
are represented in Fig. 1 and the axial wave forms corresponding to
m equal to 1, 2, 3 and 4 are presented in Fig. 2. (The variation of
the circumferential response is defined by cos (n@)). Theoretically

an infinite number of such modes defined by n and m are possible.

Of particular interest in this investigation are the modes
of free vibration associated with circumferential wave number n
equal to 1, which may be excited by unidirectional lateral excitation
of the base of a uniformly supported cylindrical shell (Fig. 3). The
lowest mode of this type (that corresponding to axial wave numbef
m equal to 1) is referred to as the flexural mode in which the radial

displacement of the middle surface, w, is predominant (Fig. 3).

Modes of vibration corresponding to circumferential wave
numbers, n, greater than one are usually not associated with the
classical case of the lateral vibration of a cantilever cylindrical

shell with uniform boundary conditions at its base (Refs. 68 and 43).
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However, as often occurs in practice, the base of the shell is at-~
tached to its foundation at discrete locations about the circumference.
This practice introduces imperfections into the systems, causing the
mode of vibrations to deviate somewhat from the mode shape which
corresponds to n = 1 and be influenced by higher ordef circumferential
modes (n greater than 1). Such infiltration of higher circumferential
modes, due to noncontinuous boundary conditions at the base of the

shell, is among the aspects of the free vibration of cylindrical

shells also examined in this investigation.

2.2 Mathematical Model for a Shell

The geometry of shells (i.e., where one dimension, the
thickness, is much smaller than the other dimensions) does not warrant,
in general, the consideration of thevcomplete three dimensional
elasticity equations. In the development of thin shell theories,
simplification is accomplished by reducing the shell problem to the
study of the deformations of the reference surface of the shell
(Fig. 4). The geometry of a shell is entirely defined by specifying
the form of the reference surface and the thickness of the shell at

each point.

The two-dimensional reference surface which describes the

shell, is specified mathematically by (Ref. 35)

x = f; (Cl, Cz)

y = £, (5, g, (2.1)
z = f3 (Cl’ 2;2)

~11-




where x, y and z are Cartesian coordinates and ] and g, are coor-
dinates on the reference surface (Fig. 4). The parameters Cl and ;2
constitute a system of curvilinear coordiﬁates for points on the
reference surface, the position of any point on the sprface being
determined by the values of z, and czyat that point (Fig. 5). The

parameter C3 defines the thickness of the shell at the specified point.

The governing equations for a shell require the following

information about the reference surface (Ref. 35):

1. The components of metric

2. The components of curvature

The "metric'" describes the geometry of the chosen coordinate system
Cl’ ;2 on the reference surface (Ref. 35). It gives the relationship
between an increment in a coordinate and the arclength along the
coordinate curve between the points separated by the increment.

Curvature describes how the surface curves.

The g, curve alone is first considered (Fig. 5). The metric
component of the €1 coordinate, denoted by dl’ is defined as the

uantity by which dz., must be multiplied to obtain the length ds, =
q 1 1

(PQl); thus

ds1 =0y d;l (2.2)

>
Introducing the unit tangent vector for the g, curve as t,,
then
T dr |
dSl tl = E_EI dCl | (2.3)
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-
where r is the position vector from the origin of the Cartesian coor-
dinate systems to the point P on the reference surface. Substituting

ds1 from Eq. 2.2 into Eq. 2.3, the result is

>

? _dr
% 553

3 (2.4)

<>
Thus the metric component o is the magnitude of %%—, and can be
1

determined from

-

dr dr '
o, = —_—, = (2.5)
1 dCl dCl

d+ d+

¥ of r

o = ——* —_— (2.6)
2 &, &,

The procedure for determination of the metric components, al

and Oys as summarized in Ref. 35, is as follows:
-
1. Write the position vector r of a point on the

reference surface as

T=x1+ y3-+ zk (2.7)

where I, ? and k are constant unit vectors along the x,
y and z axes respectively.

2, Substitute for x, y and z iﬁ Eq. 2.7, the description
of the reference surface given in Eq. 2.1.

3. Differentiate ; with respect to Cl and Cz, and determine

%y and o, from Eqs. 2.5 and 2.6.
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Directions on the reference surface are defined by unit
> >
tangent vectors tl and t2 for the Cl and CZ curves respectively.

The direction away from the reference surface is defined by the

-y
unit tangent vector t3, determined from

- -> ->
t, = ¢t t

3 1

X t, (2.8)

Variables of the shell, such as displacement and forces, can be

resolved along these unit vectors.

2.2.1 Axisymmetric Shells

Shells for which'the geometry (rgference surface) and
material properties are symmetric with respect to one straight
axis are known as axisymmetric shells. The reference surface of
an axisymmetric shell is obtained by drawing any plane curve and
revolving it about an axis lying in the plane of the curve (Figs. 6
and 7). This curve is called the meridian; Axisymmetric shells
are very common structural elements and are used extensively in

various kinds of containers, tanks, and domes (Ref. 66).

The simplification in the analysis, when going from a
general shell to an axisymmetric sheil, is considerable. This is
so because the geometric and materialAparameters for an axi-
symmetric shell depend on one coordinate only (rather than two for
a general shell). This transition analysis from the general shell

to an axisymmetric shell is treated in Refs. 35, 43 and 66.
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Because the geometric and material parameters of an axi-
symmetric sheil depend on one coordinate only, the governing equations
can be reduced to a one~dimensional form, thus facilitating the
applications of methods of analysis that are available for the
solutions of boundary value problems which are goverﬁed by ordinary

differential equations (Refs. 8 and 35).

2.3 Governing Equations for Axisymmetric Shells

As was cited in the previous section, for an akisymmetric
shell (Fig. 6) significant.simplifications from the general shell
model can be made. The curvature componehts, Cl and CZ’ for an axi-
symmetric shell ére 8 and s, respectively, where 8 is the circum-
ferential coordinate angle and s is the arclength along the meridian.

The arclength s is defined by
ds = R¢ dg , ' (2.9)

where § is the angle between the axis of the shell and the shell
normal, %3, and R¢ is the radius of curvature of the meritdian. The
metric components for an axisymmetric surface, 0y and Ogps become

r (Fig. 6) and 1, respectively (Ref. 35).

Referring to Fig. 8 for identification of force and moment
resultants for an element of an axisymmetric shell, the equations

of equilibrium are as follows:
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dN N . Q
1 0, g6 , cosP _8 -
rd T3 T (Ngaf"Nwo)J’Rg"'Pe‘o (a)
dN dN Q
1 _"e¢ @ , cosf ] -
T +dS + = (N¢-‘N9)+R¢+p¢—0 ’ (b)
., dQ dQ N N
18 @ . cosp 8., 8 -
rde % Tx Q¢'R9+R¢)+P3“° (e)
M dM
19 #6 , cosf _ -
rde T a tr (Mgg t Mgy - Q=0 (D)
M dM
1 o¢ g , cos@ -
T T T My-My -Q=0 (e)
(2.10)
The stress-strain equations are:
Ng =K (€9 + ve¢) " (a)
N¢ =K (€¢ + \)eg) (b)
N = 2=V
N9¢ = N¢9— 5 K (ag + a¢) ()
Mg =D (kg + \)k¢) : (d)
My =D (k¢ + Vkg) (e)
oy 1=V '
M9¢ = M¢9- 5 D (6¢ + 69) (f)
(2.11)
E b’ E h>
where K = 7 and D = ———————, in which E 1is Young's modulus
1-v 12 (1 - V%)

h is the shell thickness, and V is Poisson's ratio.

16~




The strain-displacement relations are:

where u¢, uy

unit wvectors

du
1l "8, cosf w
=T a0 + r u¢ + T (a)
du
-2 (5)
s R¢
du
_1 "¢ cosf
“rdae T~ r Yo (e)
du
=8
" ds ()
_ dw ﬁ¢
T T ds +R¢ (e)
dg
__9
T ds : €
dg .
_ 178  cosf
=T® T % (e)
dB
_1""90 cosf
T r de r 69 (h)
dB
4] .
- (1)
__ldaw %o .
=--pt ; &)

(2.12)
and w are the displacement components parallel to the

?¢, ?9 and ¥3 respectively (Fig. 6).
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Axisymmetric deformation of cylindrical shells (Fig. 9)

admit simpler solutiomns. .

By making the substitutions s = z,

-y

R

r=a, and § = 900, and setting all torsional variables equal

the governing equations for a cylindrical shell are:

l.

2.

3.

Equilibrium

dN

z e
dz + Pz =0

2z

sz 2]

&Z "a "P3T0

3

a

dM
—_— =0

dz A

Stress-Strain

Ng = K(gy + Ve ) = Eh 1;- + W_
Nz = K(ez + veo)

My = D(kQ + vkz)

gz =D (kz + vkg)

Strain-Displacement

= ¥
89 T a
kg =0
€ =f‘ll‘£'=-_\)ﬂ+_N_z-
Z dz a K
dw
kz T dz
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to zero,

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
(2.21)

(2.22)

(2.23)



2.4 Features of Shell Vibration

‘The common mathematical models for thin shells admit a strain
energy expression that consists of two parts: extensional (or
stretching, or membrane) and flexural (or bending). In general, the
extensional energy is produced by the extensional and shear strains in
the middle surface, and it is proportional to the shell thickness.
Flexural energy is produced by the changes in curvature and torsion
of the middle surface, and it is proportional to the cube of thé
thickness (Ref. 38). Because of the curvature in a shell, the two
systems of differential equations governing the extensional and
flexural deformations are coupled, and pufe extensional or flexural

modes cannot exist.

Lord Rayleigh (Ref. 46) suggested that during vibration the
resulting displacement field of a shell will, in general, include
terms for both stretching and bending, and any expression for the

energy will be of the form

Ah (extensions)2 + Bh3'(bending)2
where A and B are constants, and h is the shell thickness. The
question of whether the flexural or extensional energy terms are the
dominant ones in the vibrations of thin shells was finally resolved
by Ross (Ref. 59). He found that if the boundary conditions involve
any one of the displacements that are tangential to the middle surface;
then the lowest frequency is independent of the shell thickness (for
a cylindrical shell, the lowest frequency would be that associated

with a circumferential wave number n = 1, and an axial wave number
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m = 1), Thus, ;he overall problem of the idenfification of the
parameters that govern the frequency can be directly related to the
boundary conditions. If the tangential displacements of the mid-
surface are restricted at an edge, the flexural energy will become
negligible in comparison to the extensional energy for sufficiently
small values of thickness. For shells with free edges, the exten-

sional energy is negligible.

In the present investigation, the vibration of cylindrical
storage tanks such as those depicted in Figs. 9, 10 and 11 are pri-
marily extensional in nature. Therefore, the fundamental natural
frequencies (m = 1, n = 1) of these shellé are independent of their
thickness. This critical fact was the underlying principle in the
development of the simplified expressions for the determination of
the natural frequencies of cyliﬁdrical tanks which are presented

in Section 2.6 of this investigation.

2.5 Solution Scheme for Shell Free Vibration Problems

Although the general shell equations can be regarded as
known since 1898, and the specific procedure for obtaining the
complete solution of the free vibration problem of a finite cylin-
drical shell was contained in Love's work (Ref. 47) in 1927, numer-
~ical solutions of the complete free vibration problem began to
appear only in the mid to late 1930's (Ref. 38). The complete
boundary value problem was solved in detail by Arnold and Warburton
(Ref. 5) and the effect of edge conditions on the natural
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frequency of free vibration of a finite cylindrical shell was
examined by F&rsberg (Ref. 22). However, the free vibration
problems treated in the aforementioned case studies were intended
to reveal general behavior of a vibrating shell and ;he methods of
analysis employed do not lend themselves favorably to practical
applications. For certain classes of shell geometries, however,
specialized methods (other than the finite element method) are
available. One such method developed by Kalnins (Ref. 33) is

employed in this investigation.

The Kalnins method used a computer-oriented procedure that
ca n be applied to the free vibration proBlem of an arbitrary shell
of revolution. The method is applicable to general boundary value
problems governed by any number of ordinary first order differential
equations. In the absence of any external loads, the fundamental

equations can be written in matrix form:

afly ()} L
= @] y@) (2.26)

where x is an independent variable, {y(x)} is a columm matrix whose
elements represent m fundamental variables, and [A(x)j is an (m, m)
coefficient matrix whose elements are piecewise in an interval of x
denoted by (a, b), whefe a<x<b. The sys£em of Eqs. (2.24)

together with m/2_homogeneous boundary conditions at each end point

of the interval (x = a and x = b), form an eigenvalue problem.
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The variables of the classical theory of shells used in this

analysis are assumed to be separable in the form

(W N\ r Wn N
g Yon
B | Bon
Q Q ( cos (n8)
RV { ] (2.25)
N¢ N¢n | sin (nd)
Ng b Non
M¢ M¢n
M M
~ g) § on J
-
\
e ] r Yon
- BQ ! Bgn 1
JZ ;h B ‘; l’sin (n9) !
<N, & = < N ' J (2.26)
ve Pén [cos (nd)
M¢9 M¢9n
gQQ / ~ QOn 4

where n = any integer. The independent variable x can be regarded as
either the angle @ between the normal and the axis of symmetry of the

shell, or the distance s, as shown in Fig. 12,
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The (8,1) matrix of fundamental variables, {y(x)} is
defined as A r N\
LACY
ug, (%)
Yon ()
By, (¥)

Ay (0} =< () L (2.27)

The non-zero elements Ai i of the (8,8) coefficient matrix [A (x)] can
b

be written in the form (when x is defined as s)

=1 -
Ao~ R, Ay a=1s
A, ., ==-P, A, ,=-Vcosf, A, , = - —
2,1 » S92 cos¥, f9.3 r’
1 sin 2§
A, ., ==, A, .= ne ==-=F
2,6 K’ 3,1 I
_ sing
A3,2 =n (1 - GDJ E;r—-)/r,
_ sing cos¢ _ sin
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3,7 2
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where
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K= —= o and

a - vh

! = a non-dimensional frequency parameter,
which is defined as the ratio of the product
of the natural frequency and some 1engtﬁ

characteristic, L, of the shell to the speed

of sound (%L)

where

c = the speed of sound.

The solution of the boundary value problem govermed by the
system of Eqs. 2.24 is outlined as follows. At .the ends of interval

(a,b) the boundary conditions are
[r,1 {y@1} + (1,1 {y®)} = {g} (2.28)

where [Ta], [Tb] are given (m,m) matrices and {g} is a given (m,1)
matrix. The solution of Eqs. 2.24 is

{y(x)} + [Wx)] {c} = {dx1} (2.29)
where [W(x)] is an (m,m) matrix whose columns represent m linearly
independent solutions of the homogeneous governing equations, {d(x)}
is a particular solution of Egs. 2.24; and {c} denotes a column

matrix of m arbitrary constants.

Since the only requirment of the columns of [W(x)] is that
they be linefarly independent solutions of the system of Egs. é.24, in
place of [W(x)] in the interval (a,b) a matrix of linear combina-
tions of the solutions of Eqs. 2.24 may be employed, which at x = a
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reduces to a unit matrix [I]. This is done by evaluating Eqs. (2.29)

at x = a
{y(a)} = [w(a) {c} + d(a)} (2.30)

solving for {c}

e} = @1t {y@?} - @1t {da)} (2.31)

and replacing ¢ in Eqs. (2.29) by Eqs. (2.31) to give

@} = 1] {y@} + {2} (2.32)

where
[Y(x)] = W 1[Wa)] ™" (2.33)
{2z} = {d@} - W@ W@ ] {d(a)} (2.34).

The columns of [Y(x)] and {z(x)} are solutions of the m initial

value problems given by

4@ @iy, @1 = (1] (2.35)
4 {200} _ 1460 {20, {2(a))} = 0 (2.36).

Evaluating Eqs. (2.32) at x = b and substituting into Eqs. (2.28),

then solving for {y(a)}, the result is

{y(@l} = (T ]+ [T,] [y 1™ (g} - [T,1 {z®)}) (2.37).

At this point all unknowns at the beginning of the interval have
been determined. The solutions can be regarded as determined
throughout the interval from one more solution of initial value

problem.
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For free vibration problems, Eqs, (2.32) constitutes a
linear homogeneoﬁs system of %‘equations'with-% unknown elements of
{y(a)}. Requiring the vanishing of the determinant of the coefficient
matrix of this system of equations gives the frequency equation and
natural frequencies of the systems and a solution for'{y(a)}. Once
all elements of {y(a)} are known, the mode shapes corresponding to

a particular frequency can be obtained from Eqs. (2.32). Details of

this procedure can be found in Ref. 33.

2.6 Free Vibration of Open-Top Cylindrical Tanks

In this section of the investigaﬁion, gimplified ekpfessions
for the determination of natural frequencies and mode shapes for open-
top cylindrical storage tanks, similar to the one shown in Fig. 8,
are developed. The frequencies and mode shapes of concern are those
associated with a circumferential wave number n = 1, and an axial
wave number m = 1, These simplified expressions are applicable to a
class of tanks whose height (Ho) to diameter (Do) ratio (Ho/Do) falls
within the range 0.1 - 1.5 inclusive. This range encompasses the
categories of both shallow (Ho/Do_i 0.5) and t&ll (HO/DO‘E 0.75) tanks,
and includes all‘tanks within the practically important range of

0.1 <H /D <0.7.
— 0" 70—

To develop a data base for the fundamental frequencies and
mode shapes for the aforementioned class of cylindrical tanks, a
detailed parametric study was conducted. The prototype tanks (Fig. 9)

had the following dimensions and material properties:
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Do (diameter) = 30.48 o (100.0 ft)

hg(shell wall .thickness) = 6.35 mm (0.25 in)

Eg (Young's Modulus) = 206900 MN/m2 (30,000 ksi)

o, (mass demsity of shell) = 20.3 (Kg/m’) (.000733 Ib
(.000733 1b-sec.2/in")

V (Poisson's ratio) = 0.3

The tank height, Ho’ was varied from 3.048 m (10 ft) to 45.72 m

(150 ft) at 3.048 m increments to accommodate the aspect ratio
(Ho/Do) range of 0.1 to 1.5. Since the shell natural frequency cor-
responding to an axial wave number m = 1 and a circumferential wave
number n = 1 is not\affected by the wall tﬁickness, h (refer to
Section 2.4) a constant value for the wall thickness for all pro-

totype tanks is justified.

In this phase of the study, the tank model did not
include any roof structure. It was assumed that the tank was fixed
to a non-yielding support, with uniform boundary conditions at its

base defined by the shell displacement constraints

The analytical technique employed for the free vibration
analysis was that described in Section 2.5, which was implemented

through computer program KSHEL (Ref. 34).

The results of the free vibration analysis for the natural
frequencies are represented in Fig. 13. The values of the natural
frequency, w, are non-dimensionalized with respect to the maximum
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frequency in the group (52.52 cycles/sec), that correspond to a
(HO/DO) ratio = 0.1, and are plotted against the tank height to

diameter ratio (Ho/Do)'

A regression analysis was con&ucted on the frequency data
generated in the parametric study for the purpose of attaining a
simple expression to delineate the relationship between the non-
dimensionalized frequencies (Fig. 13) and tank aspect ratio (HOIDQ).

The resulting expression, a cubic polynominal, is given by

H
f (—59) =G, +C, (H /D) +C, (Ho/Do)z +c, (HO/DO)3
(o)
(2.38)

where E.(Ho/Do) is the non-dimensionalized frequency function for any
particular (Ho/Do) ratio, and Cis> Cys Cyq and C, are the cubic poly-
nomial coefficients. To guarantee the greatest possible accuracy of
the polynomial approximation, two sets of coefficients were extracted

from the regression analysis; one set applicable to the ramge 0.1 <
H
o

D
o

arrangement also facilitates the transition from shallow to tall

Ho/Do < .65, and the other set for the range 0.65 < < 1.5. This
tanks without appreciable error. The coefficients to be used in con-
junction with Eq. 2.38 are presented in Table 1. In Fig. 14 the com-
parison of the analytical results for w/wmax‘versus Ho/Do with those

obtained from Eq. 2.38 is illustrated; excellent correlation is noted.

As was explained in Section 2.4, since the natural frequency
of a cylindrical shell associated with a circumferential wave number

n = 1 and an axial wave number m = 1, is primarily extensional in
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nature, the natural frequencies of the class of cylindrica; tanks
under consider;tion are independent of their thickness. Therefore,
the natural frequency of any cylindrical tank having an (HO/DO) ratio
within the range 0.1 to 1.5 inclusive, may be determined from Eq.
2,38, used in conjunction with certain characteristics of the height
and diameter ;f.the tank only. The simplified éxpression relating
the natural frequency (n = 1, m = 1) to the (HO/DO) ratio of the

cylindrical tank is given by

B D £

{fH_/D )]
=—2 9 ¢ (2.39)
o] .

where f is the natural frequency of the tank in cycles per second,
EKHO/DO) is the non-dimensionalized frequency function determined by

Eq. 2.38, C. = 1600.2 m/sec (5252.0 ft/sec) is the frequency constant,

£
and D is the diameter of the tank in meters (feet).

To test the accuracy of Eq. 2.39, numerical comparisons were
made with the findings of several other investigators. The bench
mark case is a cylindrical tank first analyzed by Edwards (Ref. 20).

The empty cylindrical tank had the following dimensions and material

properties:
H_ = 25.92m (40 ft) E_ = 206,900 MN/m® (30,000 ksi)
D_ = 36.58 m (120 ft)
| 3 2, 4
Py = 20.3 kg/m~ (.000733 lb-sec. /in')
h = 25.4 mm (1 in) v = 0.3
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The natural frequency (corresponding to the n = 1, m = 1 mode)
determined from Eq. 2.39 was 34.08 cycles/sec. This result is compared
with those obtained by Shaaban and Nash (Ref. 60), Haroun. (Ref. 26),
and Edwards (Ref. 30), and values are presented in Table 2. The

validity and accuracy of Eq. 2.39 are verified by this comparison.

Although the data base for the formulation of Eqs. 2.33 and
2.34 was compiled from the analytical results for a steel structure
having material properties ES = 206,900 MN/m2 (30,000 ksi) and ps =
20.3 kg/m3 (.000733 lbesec.z/in4), Eq. 2.39 may be modified to accom-
modate tanks fabricated from any linearly elastic material. The

modified expression is given by

[EG /o)1 c. . [Ep_
£ = 20 £ E: : (2.40)
' S

(o]

where E and p are Young's Modulus and the mass density, respectively,

of the material used for fabrication of the tank.

The mode shape (m = 1, n = 1) for a cylindrical shell can be

completely defined by the three displacement components v, u and w

the circumferential, axial, and radial displacements respectively.
For all three components, the variation along the length or height
of the shell is similar; zero at the fixed base of the shell,
increasing to their maximum value at the top. The magnitudes of u,

v and w are normalized with respect to the largest value of dis~
placement in the field so that the maximum value is 1.0. The
maximum normalized values of u, v and w which occur at the top of the
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shell are summarized in Table 3 for fifteen wvalues of (HO/DO) in

the range 0.1 - 1.5. From Table 3 it can be observed that the axial
displacement component u is relatively insignificant for phe entire
range 0.1 - 1.5. It can also be observed that for va;ues of (HO/DO)
< 0.4, the circumferential displacement v is also relatively insig-
nificant. However for larger values of Ho/Do the circumferential
displacement becomes more significant and is approximately equivalent
in magnitude to the radial displacement at Ho/Do = 1.5. This suggests
that for tanks with an (HO/DO) <0.4, the m=1, n=1 mode'shape is
accompanied by very little distortion of the cross-—section, that is,
the shell cross-section remains circular during vibration. Howeﬁer,
for larger valﬁes of Ho/Do’ significant circumferential displacements
occur, thus causing the cross-section to deviate from its circular

shape and assume more of an eliptical form.

Therefore, allowing for varying degrees of distortion in the
cross—-section, due to circumferential displacements, the mode shape
of the tank may be essentially described by the radial displacement
component w. The variation of w along the height of the tank is
illustrated in Fig. 15 for several cases of (HO/DO). The maximum
displacement occurs at the top of the tank an@ all other values are
non-dimensionalized with respect to that quantity, so that the
maximum value is always equal to 1.0. For each of the free vibration
analyses conducted in the parametric study, a regression analysis
was performed on the radial displacement component data, in a manner

similar to that done for the natural frequencies. The resulting
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expression, also a cubic polynomial, describes the relationship
between the radial displacement, w, and the tank height paraméter

(z/Ho). This expression is given by

G’(z/Ho) =C, +¢C, (z/Ho) + Cq (z/Ho)2 +c, (g/Ho)3

(2.41)
where g:(z/Ho) is the radial displacement function, (z/Ho) is the
height parameter such that 0 < (z/Ho) < 1.0, and Cl, CZ’ C3 and C4 are
cubic polynomial coefficients. These coefficients, which are a

function of the (HO/DO) ratio, must in turn be determined from the

expression

_ 2 3
C;=Ap; +4ay, ® /D) +Ay, H/D)" +4,, EH/D),

[T
il

1, 2,3, 4 (2.42)

wherg Ali’ AZi’ ABi and A41 are also cubic polynomial coefficients,
which themselves were determined from a regression analysis of the Ci
coefficients, and are listed in Table 4. Finally, to minimize the

error in determining the.coefficients C, of Eq. 2.41, and to ensure

i
that the maximum radial displacement component is equal to 1.0, the
corrected expression relating radial displacement versus tank height

becomes

w (z/Ho) = % (z/Ho) c, ' (2.43)
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where G'(z/Ho) is the radial displacement parameter determined from

Eq. 2.41 and

To test the accuracy of the simplifiéd expressions of Eqgs.
2,41, 2.42 and 2.43 numerical comparisons with the results of other
investigators were made. For the bench mark case referred to
previously in this section, the fundamental mode of vibration of the
radial displacement w was computed and is presented in Table 5 along
with the results of Ref. 26. Once again, excéllent correlations

are noted.

2.7 Effect of Roof Structure on the Free Vibration of Empty Tanks

In practice, very rarely are cylindrical storage tanks
constructed without somé sort of roof structure. The American
Petroleum Institute (Refs. 3 and 4) defines two basic categories of
roof systems: (1) self;supporting roof and (2) supported roof; an

example of the former which is supported only at its periphery is

illustrated in Fig. 10. An ekample of the latter, supported by
rafters and trusses, is illustrated in Fig. lé. In either case,
the mass of the roof system can represent an appreciable portion of
the mass of the total structure, thus significantly influencing the

overall vibrational characteristics of the tank.
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The parametric study for open-top cylindrical shells dis-
cussed in Sectién 2.6 was extended to include tanks with roof
structures. In this phase of the investigation a circular plate
attached at its periphery to the top of\the shell was incorporated
into the cylindrical tank model (Fig. 17). The roof mass was then
related to the mass of the tank cylinder via the tank wall thickness

in the following manner.

Realizing that

Do2
m o hr (2.44)
and - )
m_ o 7D Hh (2.45)
c o o
it follows, that
. Do hr‘ :
E— = 4 H h (2.4.6)
c o
and h- =K h (2.47)
T T
4 o Ho
where Kr == T (2.48)
c o)

Therefore, through the use of Eq. 2.47 any roof structure may be

represented by aﬁ equivalent circular plate of thickness hr (Eq.
2.47); where mr is the mass of the roof and 'its supéorting rafters
and trusses, and m, is the mass of the tank cylinder. It should be
noted here that since the roofs of typical cylindrical storage tanks
have a very small pitch, the approximation of a circular plate at the

top of the cylinder is not unreasonable for most instances.
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The free vibration analysis was conducted over the same
(HO/DO) range épecified for the open-top tanks, 0.1 to 1.5 inclusive,
and for values of roof mass coefficient, Kr = 1.0, 2.0 and 3.0. The
results of the free vibration analysis for the natural frequencies for
the cases corresponding to Kr = 1.0, 2.0 and 3.0 and kr = 0 (open-top
case) are plotted in Fig. 18. The values of the frequencies are
normalized with respect to that of an open-top tank with (Ho/Do) ratio
= 0.1 (52.52 cycles/sec). From these results it can be concluded that
the net effect of the roof mass is to lower the natural frequency of
the structure. The reduction in frequency is more critical in the
lower Ho/Do range, or shallow tanks, where the roof mass represehts a
greater portion of the total mass of the structure, than it is in the
higher HO/D° range (tall tanks). The increase in stiffness provided
the structure due to the addition of roof structure is negligible,
since the vibratiohal mode of the shell is primarily extensional in

nature.

A regression analysis was conducted on the frequency data
obtained in theAfree vibra&ion analysis of tanks with roof structure.
The relationship of non-dimensionalized frequency versus tank aspect
ratio (HO/DOJL for values of roof mass coefficient K. = 1.0, 2.0 and
3.0 was modeled with a cubic polynomial in a'manner similar to that
done for the case of the open-top tanks. Thus the natural frequencies
of cylindrical tanks with roof structures may also be determined from
Eqs; 2.38 and 2.39. The cubic polynomial coefficients to be used in

Eq. 2.38 for the cases Kr = 1.0, 2.0 and 3.0 appear in Table 6.
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To determine the frequency of tanks whose roof mass parameter Kr is

not exactly equal to 1.0, 2.0 or 3.0, linear interpolation is recom—

mended.

A regression analysis was also performed on the radial dis-
placement component data obtained from the freé vibr;tion analysis of
cylindrical tanks with roof structures. Once again, a cubic poly-
nomial was selected to represent the relationship between the radial
displacement, w, and the tank height parameter (z/Ho). The expres-
sions given by Egqs. 2.41, 2.42 and 2.43 to be used for the analysis of
open~top tanks are also applicable to the analysis of tanks with roof
structures. The coefficients Ali’ AZi’ Aﬁi and A4i to be used in Eq.
2.42 to determine the Ci coefficients for use in Eq. 2.41 are listed
in Table 7, (a), (b) and (c) for roof mass parameters,Kr =1.0, 2.0 or
3.0, respectively. To determine the mode shape of cylindrical tanks

whose roof mass parameter Kr is not exactly equal to 1.0, 2.0 or 3.0,

linear interpolation is recommended omce again.

To summarize, the roof structure of cylindrical storage tanks
has been modeled by an equivalent circular plate attached at its peri-
phery to the top of the cylinder. The roof structure contributes very
little to the overall stiffﬁess of the structure, yet can increase the
total mass of the system appreciably, such tﬁat the net effect is a
lowering of the natural frequency of the tank. The same expressions
used for the determination of natural frequency and mode shape for
the open~top tanks, are applicable to the free vibration analysis of
tanks with roof structures as well, merely by implementing the appro-

priate coefficients into these expressions.



2.8 Effect of Support Conditions on the Vibrational Characteristics

of Cylindrieal Tanks

In the analyses conducted up to this point, it has been
assumed that the shell base is uniformly supported aloné its perimeter.
In practice however this is rarely; if ever, the situation.
Usually}the tank is connected at its base to a foundation by anchor
bolts located at discrete locations along the periphery. A typical
"anchorage detail for the cylindrical storage tank of Fig. 10 is

illustrated in Fig. 11 (a) and (b).

The object of this phase of the investigation is to determine
whether the vibrational characteristics (i.e. frequency and mode shape)
of cylindrical storage tanks are significantly influenced by the
manner in which the shells are attached to their foundation. TFor
this study, the finite element method‘of analysis was employed.
Because of the flexibility of the finite element method in defining
different structural configurations with minimal changes in the basic
analytical procedure, it offers great advantages. . However, the major
shortcoming of the method is the possible need to employ a large
number of degrees of freedom to accurately describe the vibrational
characteristics of the structural system. Therefore, in order to
define the optimal finite element discretization, a pilot investi-
gation was undertaken, the findings of which are summarized in Refs.

41 and 42.

The shell was discretized as a combination of rectangular
flat shell elements with flexural and membrane stiffness capability
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using the general purpose finite element program SAPIV (Ref. 7). The
membrane action is defined by a combination of four constant strain
triangles. Even with a coarse finite element discretization, this
type of representation would yield fully acceptable results provided
that there will not be a very steep gradient of membréne stresses
within the shell element (Ref. 6). The flexural behavior of the
element is defined by combining four.1inear—curvature—compatible
(LCCT9) triangular plate bending elements (Refs. 15, 21). Past
experience with this plate bending element in simulating the earth-
quake response of circular chimneys has been fully satisfactory

(Ref. 40).

The finite element investigation included a family of tanks
with aspect ratios, (HO/DO), of 0.1, 0.3, 0.5, 0.75; 1;0, 1;3, 1.5
and 2.0. The results of the analysis for the case of Ho/Do = 1.0
typify the general trends observed in the investigation; Therefore,

only the findings pertaining to this single case are examined here.

The structure under consideration (HO/DO = 1.0) had the

following dimensions and material properties:

9.14 m (30 £t)  E_ = 206,900 MN/m> (30,000 ksi)

==
]

20.3 Kg/m3 (0.000733 1b-sec2/in4)

o
I

= 9.14 m (30 ft) Py

h = 4,76 mm (0.1875 in) v= 0.3

”H;vl The circular cross—section of the shell was modeled as a polygon
due to the use of the flat shell elements., A massless bottom plate,

having the same thickness as the shell wall, h, connected at its
-40-



‘periphery to the base of the cylinder was incorporated into the model
to simulate an& circumferential and radial constraint which may exist
in practical situations. The complete finite element model consisted
of 164 flat plate elements and 174 nodal points (approximately 1000
degrees of freedom). An isometric view of the discretization is

shown in Fig. 19.

A horizontal cross-section of the finite element diséretiza—
tion is illustrated in Fig. 20. From this figure it can be seen that
the nodal points are symmetrically located around the perimeter of
the tank at increments of twenty degrees; The boundary conditions
at the base of the tank are determined frém the constraint of the
displacement field assigned to these nodes along the perimeter of the

tank bottom. Four cases of anchorage conditions were investigated

1. Supports at 20° (assumed full fixity)
2., Supports at 40°
3. Supports at 60°

4, Supports at 120°
The specified boundary conditions for each case are as follows:

Case 1: wu, v, w, B¢ = 0 at each nodal point
Case 2: u, v, w, B¢ = 0 at every other nodal point

u = 0 elsewhere

I
o

Case 3: u, v, w, B¢ = (0 at every third nodal point,

u = 0 elsewhere

L}
o

Case 4: u, v, w, B¢ at every sixth nodal point,

u = 0 elsewhere.
=41~ 7




An illustration of these four support conditions is also represented

in Fig. 20.

The natural frequency for the tank (HO/D0 = 1.0) under the
condition of full base fixity (Case 1) was determined to be 51.58 cps,
* with the mode shape exhibiting the familar characteristics of the
m =1, n =1 configuration. Frequencies for this tank corresponding
to higher circumferential modes, n = 2 through n = 10, are listed in
Table 8. These frequencies were non-dimensionalized with respect to
that value of frequency corresponding to n = 1 (51.58 cps), and the

relation w/w versus n is presented in Fig. 21; where @ is the
h -

=1
natural frequency corresponding to any cifcumferential wave number

n, and w1 is the natural frequency corresponding to circumferential
wave number n = 1, From this relationsﬁip it is observed that the
natural frequency of the tank decreases as the number ofvcircum-
ferential waves increase, until the minimum value is attained at

n = 7; from that point on, a very gradual increase in frequency is

cited with increasing number of circumferential waves. This trend is

typical of all cylindrical shells.

The circumferential mode shapes corresponding to the axial
modé m = 1, for boundary condition cases 2, 3 and 4, are presented
in Figs. 22, 23 and 24 respectively. The circumferential mode shapes
appearing in these figures do not resemblé the n = 1 wave, but
exhibit a form influenced by higher circumferential wave numbers,

n =4 and n = 5 specifically. The natural frequencies associated

with these modes are listed in Table 9. These results tend to
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indicate that the non~uniform boundary conditions of cases 2, 3 and
4 promote participation of higher circumferential wave forms

resulting in a lowering of the natural frequency of the tank.

It must be understood that the circumferential modes
resulting in the non-uniform boundary condition cases are not the
pure n = 4 or n = 5 modes, but rather are a consequeﬁce of a
blending or coupling of the n = 1 mode with the n = 4 or n = 5 modes.
The extent of this '"mode coupling" can be assessed quantitatively
by an examination of the pertinent mode shapes (Figs. 22, 23 and 24)
and frequencies (Table‘9). The obvious general conciuéion is that
for a decreasing number of support pointé, the participation of the
higher circumferential modes is more prominent during vibration.
Stated in another manner, as the boundary conditions at the base of
the tank deviate from the ideal uniformly fixed condition, the 'mode

coupling" phenomenon becomes increasingly stronger.

The sensitivity of the shell vibrations to increased
thickness of the bottom plate was also examined, however, no

significant contribution could be ascertained.

In summary, the dynamic characteristics of the shell are
affected by the manner in which it is attached to its foundation.
The basic consequence of non-uniformity of boundary conditions at
the base of the tank upon free vibration is the coupling of the
n = 1 circumferential mode with higher circumferential modes, such
asn =4 and n = 5, The greater the deviation from the fully fixed
base condition (or for fewer connection points), the greater is the
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"mode coupling" or influence of higher circumferential modes upon
the free vibration of the shell. This mixed-mode response is not
disadvantageous provided it is realized that the associated
frequency can be materially less than that corresponding to the

n = 1 mode.

To be sure, these findings, based on 64 finite element case
studies, are by no means conclusive. Yet to be determined is the
relationship between mode coupling and natural frequency with the
number of discrete support locations for any particular shell.
Further insight into this complicated phenomenon warrants additional

research.

.



3. VIBRATIONAL CHARACTERISTICS OF LIQUID FILLED CYLINDRICAL TANKS

3.1 Introduction

The results of the investigation of the horizontal free vibra-
tion of liquid-filled cylindrical storage tanks are presented in this
chapter. The system considered is shown in Fig. 25. It is a circuiar
cylindrical tank of diameter D (radius a) and height H_ fixed to a
rigid base. The tank is presumed to be filled with a liquid of mass
density, DL, to a level hL (Fig. 25). The upper surface of the liquid

is considered to be free.

There are two major cases of vibration aésociated with the
system under consideration, for which the circumferential variation
of the response is described by cos(n®) (n is called the circumfer-
ential wave number and @ is the circumferential coordinate angle;
refer to Section 2.1 for a detailed explanation). Case (1) corres-
ponds to solutions with n = 1 (Fig. 1) and is often called lateral
sloshing. Case (2) is often called breathing vibration, and it
corresponds to all vibrations where n does not equal one (Fig. 1).
This investigation is concerned with Case (1) only, that is lateral

sloshing modes with n = 1.

The liquid and the shell structure are two separate systems
that are coupled. Each system, acting alone, has an infinite number

of modes of free vibration. If the coupled system is excited with
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some forcing frequency i, then the response will also have the
frequency . The magnitude of the response will depend on the
location of the forcing frequency, ), with respect to the natural

frequencies of the coupled system (Ref. 34).

In this chapter the simulation of the coupling of the shell
with the liquid is described and simplified expressions which accur-
ately determine the fundamental natural frequencies of the liquid-

shell system are developed.

3.2 Basic Concepts and Theory

The general behavior of fluid vibrating in a tank can be
described based upon the experimental and analytical results pre-~
sented in Refs. 1, 27, 28 and 37. The fluid contained in.the tank
is essentially divided inﬁo two zones (Fig. 25). The lower zoﬁe of
fluid represents a mass which is constrained and tends to move as a
rigid body with the motion of the vessel. The upper zone of fluid

represents a mass which tends to move in a sloshing mode.

The exact mathematical procedure for describing fluid
oscillations in a moving container is extremely complex. Therefore,

the following simplifying assumptions are generally employed (Ref. 1):

1. Nonviscous fluid
2. Incompressible fluid
3. Small displacements, velocities and slopes

of the liquid free surface
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4, Irrotational flow field

5. Homogeneous fluid

The assumption of irrotational flow insures the existence of a fluid

velocity potential, ® , which must satisfy the Laplace equation (Ref. 1)

8 =0 | | (3.1)

Referring to the cylindrical coordinate system (r, z, 8) shown in
Fig. 25, the Laplace equation of motion for the fluid can be written

as

) 2% 3%

2
r .

o = :—E +

Jr

2 o}
v
or 392 Bzz

R

The mathematical boundary conditions for the solution for & are as

follows (Ref. 1):
1. At the tank walls (@ r = a, refer to Fig. 25)

30 _ bw
= =5 (3.3)

where-%% is the normal component of the tank wall
velocity.
2. At the tank bottom (@ z = 0), the axial component

of the liquid velocity must equél zero, therefore

9 _
oz

0 (3.4)
3. At the liquid free surface (@ z = hL), imposing the
condition that the fluid particles must stay on the

surface, it follows that
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-——2'+ga—z'=0 (3.5)

where g is the acceleration of gravity.

The dynamic pressure can be determined by imposing Bernoulli's
law and is given by

' 1)

where pL is the mass density of the fluid. The total pressure p is
the sum of the dynamic pressure P4 and the hydrostatic pressure P and
is e#pressed by
a9
P=Pgt P, =Pt ee by -2 (3.7).

Conceptually, it is advantageous to replace a fluid whose
behavior is governed by Eqs. 3.2 through 3.5 with a system of lumped
masses and springs. Such mechanical models have been formulated
(Refs. 1, 28 and 63) by introducing the assumption that the tank can
be considered as rigid. One of the objectives of this chapter will
be to describe a procedure for determining natural frequencies of a
flexible shell-fluid system from modified concepts of the mechanical

analogs devised for rigid container systems. .
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3.3 Mechanical Analogs for Liquids Sloshing in Rigid Cylindrical

Containers

According td the theoretical developments of Ref. 1, a com-
plgte mechanical analog for transverse sloshing must include an
infinite number of oscillating masses, one for each of the normal
sloshing ques. Such a systgm, referred to us a complex mechanical
analog, is depicted.in Fig. 26. It consists of one mass, m_, rigidly
attached to the container at elevation ho and an infinite number of
masses m_ (n=1, 2, 3, ...@) attached‘to the container with springs
at elevations hn' The mass m_ represents the "constrained" fluid
which tends to move as a rigid body with the motionAof the vessel,
and the masses m represent the fluid which tends to move in a
sloshing mode. ihe springs which attach the sloshing masses to the

walls of the tank have a stiffness Kn'

The equation of motion of the'nth sloshing mass for free

vibration is

d2u

- n
m - +K u =0 (3.8)
n dtz n n

. th
where u is the displacement of the n mass relative to the tank.

Then the natural frequency of t:he'nt'h sloshing mass is determined

from

K
2 _mn

w "= , (3.9)
n
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Physicglly, each mass in the mechanical system corresponds
to the effective mass of the liquid that oscillates in each particular
slosh mode, and, from its relative size, it 1s possible to assess
how significant that mode is. A detailed analysis conducted in
Chapter 6 of Ref. 1 indicates that the size of these spring-mass
elements decreases rapidly with increasing mode number (i.e. as n
increases). Thus it is generally acceptable to include in the
mechanical model only the spring-mass corresponding to the fundamental
mode, without appreciably affecting the dynamic response of the

system,

A simple mechanical model for cylindrical tanks 1s shown in

Fig. 27. An analytical derivation of the model parameters m, , Kl’

h1 and ho is included‘in Ref. 1, where
m, = equivalent mass of fundamental sloshing mode
Kl =4spring constant for fundamental sloshing mass
hi = height of sloshing mass m, measured from base
of tank
hé = height of stationary mass m measured from

base of tank

The analytical expressions for the determination of these model
parameters are presented in Table 10. The fixed or stationary mass

m_ can be calculated by the equation

mo=my - m (3.10)

where M is the total mass of fluid in the tank.
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In thg development of some simple mechanical models (Refs.
28 and 63), the stationary fluid mass, m_, is given the value it
would have if all the modal sloshing masses w (n=1, 2,... ©) were
- included in the model. Thus, since only one of the modal masses is
actually included, the total fluid mass of the real system, T is
slightly larger than the fluid mass of the simple mechanical model
(m, + m), that is

() >m_ +m
real system

1 (3.11)

However, experimental evidence has shown that this mass total
discrepancy is very minor (Ref. 1). Nevertheless, regardless of the
model employed, the fundamental sloshing frequency, wl’ is always

determined from the expression given by

w, =\/ — ‘ | (3.12)

3.4 Free Vibration of Flexible Shell Fluid Systems

As was stated in Section 3.2 it is assumed that the fluid can
be separated into two distinct layers. The mass in the lower layer,
referred to as the stationary mass does not participate in sloshing,
it simply moves with the walls of the shell. The mass in the upper
layer, referred to as the sloshing mass, participates in sloshing.
Therefore the coupled shell=fluid system is considered to consist of

two separate systems:
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" 1. The shell together with the stationary mass

2. The sloshing mass

Under this assumption, the coupled fluid-shell system can
be represented by a two-degree-of-freedom system as shown in Fig. 28,
where m, is the mass of the fluid that ﬁarticipates in sloshing, K

1

is the equivalent spring constant of the sloshing mass, M is the

1

equivalent ﬁass of the shell, which inciudes both the mass of the
shell material and thg stationary maés of fluid m and K is the
equivalent shell stiffness, calculated under the same conditions as M.
The vibration of the coupled systems is then modeled by the simple
mechanical analog éhown in Fig. 27. The values of the model para-
are determined from the éppropriate‘exPres—«

meters m,, m_, K. and h

1

sions presented in Table 10, A procedure for determining values for

1 1

K and M is detailed in subsection 3.4.1.

Once the values of m, KI; ﬁtéﬁ&ik:HaVé"bééﬂvagférmined;""
the natural frequencies of the coupled systems of Fig. 28 can be
computed from classical methods of mechanical vibrations (Refs. 24,
61 and 62). The natural frequencies of the two¥mass, two—-degree-of-

freedom systems of Fig. 28 are then given by the expression

wz A+ V A2 - B (3.13)

where
K K
_ K 1 1
A= (—M + v + —-ml)lz

and

K
1, K
B= ()@
1 -52—



Indeed, the most difficult part of the analysis is the cal-
culation of thé equivalent mass M, and equiValent stiffness K for the
shell together with the stationary flpid mass, m_. Kalnins (Ref. 37)
has developed a procedure to calculate M and K, which is employed in

this investigation and is summarized in the following subsection.

3.4.1 Equivalenﬁ Mass and Stiffness of Shell-Fluid System

The equation of motion of the mass M (Fig. 28) which
represents the shell and the stationary fluid mass m when vibrating

in the lowest mode, is

M—5 + Kx -K; (xl -x) =0 (3.14)

where x is the displacement of mass M and Xy is the displacement of
mass m . The equivalent -equation of motion for a shell is obtained
from a paper by Kraus and KalninsA(Réf;‘44). When the shell vibrates
in the lowest mode (i.e. the mode corresponding to a circumferential
wave number n = 1, and axial number m = 1), then from Ref. 44 its
displaéement vector can be written as

a

>
u

1 q(t) (3.15)

-
where u, is the displacement vector of the lowest mode of free

vibration and q(t) denotes the generalized coordinate of the system.

The equation of motion of the coupled shell-fluid system then becomes

2
dg 2 4=
Ml dt2 + Ml w . q Fl

(3.16)
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where uﬁais the natural frequency of the lowest mode, M. and F, are

1 1
Elieé generalized mass and generalized force respectively where,
- > :
Ml = /ph up . Uy ds (3.17)
g .
) _ > -
F, = /p . 4, ds (3.18)
S .

and p is the mass density, h is the shell wall thickness, S is the
reference surface of the shell, and 3 is the shell surface load
vector.(Ref. 44) that is causing the vibration of tﬁe shell. (A
detailed discussion of generalized force and generalized mass is

presented in Chapter 4).

It is assumed that the spring—mass systém;of,fhe;sloéhingi*
fluid my is attached to the shell at one latitude circle which is
located at a height'hl'above the base of the tank as shown in Fig.

27. Thus the spring must exert a horizontal force to the shell at

that location of magnitude

F =K, (¥l - %) _ (3.19)

The shell surface load vector, 3, which appears in Eq. 3.18,
must be determined in such a way that it represents the applied load
F in Eq. 3.19. Since F is applied to one value of x, where x is the
meridional‘arclength of the shell, then its distribution with x must
be the Dirac Delta function (Ref. 61). It is also assumed that the
force F is acting horizontally and parallel to the X axis, as shown
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in Fig. 29. Thus it follows that

e Gip) sx-x) T | (3.20)
S % |

where R0 is the radius of the latitude circle at the location Where
>

the spring is attached, &(x) is the Dirac Delta function, and 1 is a

unit vector parallel to the Xy axis (Fig. 29). Substitution of 3

from Eq. 3.20 into Eq. 2.18 for the generalized force yields

2m b
Fy s 1.4, d 0 (3
F, = (2Tr Ro) (x - xo) i.u dxrd (3.21)
o a

where a and b are the end points of the meridian of the shell and X,
is the value of x where the spring is attached. Applying the property
of the Dirac Delta function (Ref. 56) that

b
J/. 8(x - xo) f(x) dx = f(xo) ’ A (3.22)

a

Then F. becomes

1
Fl =F Ul (3.23)
where Ul is the displacement of the shell parallel to the Xy axis at
the height, hl’ where the spring is attached (Fig. 27). Ul is

obtained from the free vibration mode shape of the shell and the

stationary fluid mass m vibrating in the lowest mode (m = 1, n = 1).

For an axisymmetric shell U, is expressed by the usual shell

1

displacements as

U1 = (ul - ug)/Z 55 (3.24)




where

ul = w ginf + ug cosf (3.25)

and w, u¢, and ug are the normal, meridional, and circumferential
displacements of thé refefénce surface of the shell. The direction of
uy is shown in Figs. 30a and 30b. The cirgumferential variation

of these displacements is cos®; all other 6 variations vanish when
integrated with respect to 8 when going from Eq. 3.21 to Eq. 3.23.
This is a direct consequence of the assumﬁtion that F, exerted by

the attached spring, is uniformly distributed around the circum-
ference. For the special case of a cylindrical shell, @, the angle

between the axis of the shell and the shell normal, is equal to 90°.

Therefore Eq. 3.25 is reduced to

u, = (3.26)

and Eq. 3.24 becomes

Uy = (w - ug)/z (3.27)

Substituting F from Eq. 3.19 into Eq. 3.23 yields

= K -
Fl 1 (xl ‘x) Ul (3.28).
Then, su.bstituting'Fl from Eq. 3.28 into Eq. 3.16 gives
w S8y W2 gax ) U (3.29)
1 271978 ¥ X5 .
dt
The relationship between x and Ul is given from Eq. 3.15 as
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which gives Eq. 3.29 the form

M 2 Ml 2
2) 2 + ( 2) whx = K1 (x1 - X) (3.31).

U1 dt Ul

This equation reveals the equivalence of the vibration of the shell
with that of the two-degree-of-freedom system shown in Fig. 28.

Equation 3.31 becomes identical to Eq. 3.14 by relationships

M
U
U
and
M
K = sz (—iz-) (3.32b)
U, ‘

These expressions give the equivalent parameters for repre-—
sentation of the shell and the stationary fluid mass, m, by a spring
mass. system. The calculation of the lowest mode of free vibration
for the shell-fluid system is obtained by implementation of program‘
KSHEL (Ref. 34). TFrom the results of the KSHEL free vibration
analysis, the parameters w,,, Ml and U1 are obtained. M and K can
then be determined from Eqs. 3.32a and 3.32b, respectively, -and the
natural frequencies of the coupled system (shell plus stationary

fluid mass m with sloshing fluid mass ml) can be calculated from

Eq. 3.13.

3.4.2 Implementation of Free Vibration Procedure

This subsection contains the implementation of the free

vibration procedure for flexible shell-fluid systems described in
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the preceding sgbsections. The most critical aspect of the pro-
cedure is the joining of the shell with the stationary and sloshing
fluid masses. For the case of a rigid shell it makes no difference
whether the stationary fluid mass m and the sloshing fluid mass my
are attached to the shell at single points (as is iliustrated by
Fig. 27) or are distribﬁted over portions of the shell wall; for an

elastic shell, the manner of shell-fluid joining does make a dif-

ference (Ref. 37).

It is not reasonable to attach the stationary fluid mass m
to a single point on the shell wall, since this practice will result
in. a' .gross misrepresentation of the modetshape. The precise distri-
bution of the stationary mass along the shell wall can be determined
from the fluid mechanics problem, a very time consuming and different
process. A simple and reasonable solution, suggested by Kalnins
(Ref. 37), is to distribute the stationary fluid mass mo, as cal-
culated from the formulas of Ref. 1, uniformly along the shell wall
from the base of the shell to the point where the spring of the

sloshing fluid mass m, is attached, at elevation.hl (Fig. 27). The

1

""" addition of the stationary fluid mass m_ can then be effected by
increasing the mass density of the shell material by the amount of
mb/V, where V is the volume of the shell wali from the bottom of
the shell to the point where the sloshing spring Kl is attached
(Fig. 27), that is

V=mD_ hh (3.33)

where Do.is the diameter of the shell, h is the shell wall thickness
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and h., is the distance from the bottom of the shell to the point

1
where the sloéhing spring is attached. Such a procedure will

result in better approximations of M., U, and Wy of the lowest mode

1’ "1
of free vibration (m = 1, n = 1) since the mode shape will not be
distorted as it would by attaching the stationary fluid mass m  at

one point on the shell wall.

Attaching the sloshing mass my at one point as located by
the distance hl (Fig. 27) seems reasonable, because that location

is needed only for the determination of U, in the shell—-mo free

1
vibration problem (Ref. 37), and the sloshing fluid mass does not
affect the mode shape of the shell-fluid system. Although the

spring of the sloshing mass in reality should be distributed over

a vertical portion of the shell wall, it is reasonable to assume

that its effect on the shell will not change appreciably when that
portion is narrowed, since natural frequencies are overall character—

istics of systems, and are not significantly affected by local re-

distributions of mass or stiffness properties.

3.4.3 Practical Application

As a practical application of the procedure detailed in
subsection 3.4.2, a shell-liquid system analyzed by Haroun (Ref. 26)
is considered. The shell-liquid system has the following dimensions

and physical properties:
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H = 21.946 m (72.0 £t) E = 206900.0 MN/m® (30,000 ksi)
D_ = 14.63 m (48.0 £r)  p_ = 20.3 kg/m> (0.000733 lb-sec?/in")
h = 10.92 mm (0.43 in.) v = 0.3

It is completely filled with water (pL = 2.6 kg/m3). " The following

model parameters are calculated from the relationship presented in

Table 10:
m, = 9599.4 kg (21163.1 1b-sec?/in)
m = 1454.4 kg (3206.4 1b-sec’/in)
m_ = 8144.9 kg (17956.6 1b-sec’/in)
K, = 1391330.0 N/m (7944.7 1b/1n)
hl = 17.94 m (707.5 in)

The volume of the shell wall, from the base of the tank to the point

where the sloshing fluid mass, Mi, is attached, is calculated by

Eq. 3.33 as

B

Py = VQ-= 902.89 kg/m3 (0.032619 lb—secz/inA)
o

Thus the equivalent mass density of the shell wall, P from the base

to elevation hl is

3
Pg = QS + pmo = 923,18 kg/m~ (0.032619).

A free vibration analysis for-theAlowest mode (m = 1, ﬁ = 1)
was conducted on the shell—mb system, modified as prescribed in the
foregoing, by employment of program KSHEL (Ref. 34). The values of
natural frequency, mM, and generalized mass, Ml’

system resulting from the analysis were given as

for the shell-mO
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Wy = 23.1849 rad/sec
M, = 2701.8 kg (5956.5 1b-sec?/in)
The dimensionless shell wall displacements, uy and Ugs at the point

where the sloshing fluid mass m, was attached were given as

u w = 0.896

1

ug = - 0.873
from which the horizontal displacement, Ul’ as calculated by Eq.
3.27 is

Ul = 0.8846.

The equivalent mass, M, and the stiffness, K, of the shell—m0
system, that are needed to represent it as a spring mass system
similar to that illustrated in Fig. 28, are given by Eqs. 3.22a and
3.22b, respectively, as

M = 3452.5 kg (7611.4 lb-sec’/in)

K

7.17 x 108 N/m (4.09 x lO6 1b/in).

Finally, the two natural frequencies of the coupled shell-mb

system and the sloshing mass, m;

freedom system, are obtained from Eq. 3.3l as

, when regarded as a two-degree-of

€
il

1.57 rad/sec (0.2503 cps) ~- sloshing fluid frequency

II
w

23.208 rad/sec (3.69 cps) - shell-mb frequency.

These results are compared with those obtained by Haroun (Ref. 26)

in Table II where excellent correlation is noted.
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Examination of the resulting frequencies w; and wlt indicates
that the sloshiag of the fluid is much too weak to affect the free
vibration of the shell—mo system. This fact is immediately evident
by comparing the frequency of the shell—mo system alone kwM = 23,185

rad/sec), with the frequency of the coupled shell-.-m.o component in the

I

two-degree-of-freedom system-(mt = 23,208 rad/sec). The difference

between wM and wII is negligible. Thus it is reasonable to assume

that the sloshing mass frequency, wI, and the frequency of the shell
1T

m system, W.  or W
o %Y M

independence of sloshing fluid mass and stationary fluid mass plays

, are independent of one another. This vibrational

a key role in simplifying the dynamic analysis of liquid storage

tanks (Chapter 5).

Alﬁhough the sloshing fluid mass, m,, has virtually no
effect upon the frequency of the shell—-mo system, the natural frequency
of the shell system alone is significantly affected by the stationary
fluid mass; m . The frequency of the empty shell was calculated to
be 120.5 rad/sec, versus 23.208 rad/sec for the coupled shgll—mo
system (refer to Table 12 for summary and comparison of pertinent

shell and shell fluid frequencies).

3.5 Simplified Free Vibration Analysis of Flexible Fluid Filled

Tanks

In this section simplified expressions for the determina-
tion of natural frequencies for fluid filled, open-top cylindrical

tanks, similar to the one illustrated in Fig. 25, are developed.
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The procedure for the free vibration analysis of flexible

liquid storage tanks detailed in Section 3.4 was utilized to perform

the parametric study.

Because the coupling effect of the sloshing mass, m s with
the shell—mo system is weak (refer to subsection 3.4.2), it is pos-
sible as well as convenient to consider the total problem as two
uncoupled systems:

1. The shell—m.o system

2. Liquid sloshing, m;, in a similar rigid container.
Therefore, only the shell—m0 (stationary fluid mass) system was con-
sidered in the free vibration analysis. The natural frequency of the

sloshing fluid mass m, in a flexible tank system is determined from

1
the appropriate model parameters for a similar rigid tank and is
expressed by Eq. 3.12. A comparison of the fundamental sloshing -
frequency in a tall tank (Ref. 26) full of water as calculated by the
procedure outlined in Section 3.4, with that obtained by Eq. 3.12 for

a similar rigid tank is made in Table 13. The two values are

practically indistinguishable.

The results of the free vibration analysis for the natural
frequencies of the shell--mo system are represented in Figs. 31 and 32
for completely full and half full tanks, reééectively. In each case
the values of the natural frequency, w; are non-dimensionalized with
respect to the maximum frequency occurring in the Ho/Do rangé ratio
of 0.1 to 1.5, which is that corresponding to an aspect ratio

(19.32 cps) refers to the

(H /D) = 0.1. Thus in Fig. 31 (©] 007 max
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natural frequency of a tank completely full of water with an
(HO/DO) = 0.1. Similarly, in Fig. 32, (wso)max (40.11 cps) refers
to the natural frequency of a tank half full of water having aspect

ratio H /D = 0.1.
o' "o :

A regression analysis, similar to that done for empty tanks
in Section 2.8, was conducted on the frequency data generated iﬁ the
parametric study for the purpose of attaining a simple expression
to delineate the relationship betweenbnon—dimensionalized frequencies
(Figs. 31 and 32) and tank aspect ratio. This relationship was

modeled with a cubic polynomial.

For convenience sake, the same non-dimensionalizing frequency
paramter was used for both the completely full and half full cases.
That parameter, (wo)mak (52.52 cps), is the natural frequency of an
eppty tank with aspect ratio (Ho/Do) = 0,1, Therefore, the frequency
versus height to diameter ratio relationships for both the completely

full and half full cases may be determined from the expression

- 2 4 3
f (HO/DO) + cl + 02 (HO/DO) + 03 (Ho/Do)v + C (HO/DO)

(3.34)
where §'(H0/Do) is the non-dimensionalized frequency function for any

(HO/DO) within the range 0.1 to 1.5 and C C, and C4 are the

1> €20 C3

cubic polynomial coefficients.

To guarantee the greatest possible accuracy of the poly-
nomial approximation, two sets of coefficients, for both the

completely full and half full cases, were extracted from the
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regression analysis; one set applicable to the aspect ratio range

0.1 E_HO/Do 2_6.4, and the other set for the aspect ratio range

0.4 < Ho/Do < 1.5. These coefficients, to be used in conjunction
with Eq. 3.34, are presented in Tables 14 and 15 for the completely
full case (hL/Ho = 1.0) and half full case (hL/H0 = 6;5) respectively.
Comparisons of the analytical results for u)/((uo)max versus Ho/Do with
those obtained from Eq. 3.34 are made in Fig. 33 for the tank com-
pletely full of water and in Fig. 34 for the tanks half full of water.

Excellent correlation is noted for both cases.

3.5.1 Features of Free Vibration

Similar to the (n = 1, m = 1) vibration form of empty
shells, the fundamental vibration mode of fluid~filled tanks is
primarily extensional in nature. However, unlike empty shells, the
natural frequencies of fluid-filled shells are not independent of

their wall thickness.

For an empty shell, both the shell mass (for open-top cylin-
drical tanks) and the shell stiffness are directly proportional to
the shell wall thickness. Therefore, the ratio of shell stiffness
to shell mass (which is in turn proportional to the square of the
natural frequency) is constant for any shell wall thickness, and the
natural frequency of the shell remains unchanged for any wall thick-
ness. For a fluid-filled shell, the total mass of the system is
increased by the added mass of the fluid, while the stiffness remains
unchanged for any wall thickness. TFor a fluid-filled shell, the

total mass of the system is increased by the added mass of the fluid
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while the stiffness remains unchanged. Now considering two fluid-
filled shells i&entical in every way except for shell wall thickness,
the shell with the thinner wall has a smaller overall stiffness than
the shell with the thicker wall, but at‘the same time the ratio of
shell stiffness to shell mass is the same for both sﬁells. Conse-
quently, the total stiffness to mass ratio of the shell with the
thiﬁner wall is reduced comparatively more by the addition of the
fluid mass than is that of the shell with the thicker wall. Thus
the shell-fluid system with the thinner shell wall will evidence a
natural frequency which is lower than that of the identical shell-

fluid system with the thicker wall.

Therefore, in the development of an expression for the
determination of natural frequencies for fluid filled cylindrical
tanks, a term to account for shell wall thickness was incorporafed.
The equation for the fundamental natural frequency of a tank com-

pletely filled with fluid is given as

T@E/D) Jc nop
f=(¢. L —2 0O -a_ v (3.35)
£ Do pL Do

and the expression for the natural frequency of a tank half filled
with fluid is given by
f=cC £ (Ho/Do) \//&a h'pw +\//6b Pw (3.36)
£ 2D " p, D '
o] L "o

pL Do
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where,

£ . = natural frequency in cycles per second
Cf = 1600.8 m/sec (5252.0 ft/sec)
£ (HO/DO) = non-dimensionalized frequency parameter

~ determined from Eq. 3.34.

C, = 1.2 for S.I. units (100 for English units)

Cp = 15.24 for S.I. units (50 for English units)
D, = diameter of tank in meters (feet)

h = average thickness of tank wall in mm (inches)
Py = mass density of water

Pr, = mass density of fluid in tank

As was mentioned previously in this section, the data base
for the formulations of Eqs. 3.35 and 3.36 was derived from the
analysis of a steel shell structure having a modulus of elasticity
ES = 206900 MEN/m2 (30,000 ksi) and mass density DS = 20.3 kg/m3
(0.000733 1b-sec.2/un.4). Equations 3.35 and 3.36 may be modified
to accommodate tanks fabricated of other linear elastic materials
in the following manner. To make the corrections for the stiffness
properties, or modulus of elasticity, multiply the frequency, f, as
determined from Eqs. 3.35 or 3.36 by /§7E;, where E is the elastic
modulus of the tank wall material. To accouﬁt for difference in
mass density, replace h in Eqs. 3.35 and 3.36 by an equivalent
thickness, he’ where
_ h,ps

h =
e P

(3.37)
and P is the mass density of the tank wall material.
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The effect-of liquid depth in cylindrical storage tanks upon
the natural frequency of the shell-fluid system is illustrated in
Fig. 35. In this comparative study, three cases of liquid depth are
considered:

1. Empty tank‘(ﬁ— = 0.0)
)

2. Tank 50% full of water (;E-= 0.5)
o

h
3. Tank 100% full of water (—I-{l‘- = 1.0)
. 0

All frequencies are normalized with respect to the frequency

((wo)max = 52.52 cps) of an empty tank having height to diameter
ratio HO/Do = 0,1, From this figure it is observed that as the level
of fluid in the tank increases, the natural frequency decreases. This
is the obvious result since the mass of the shell-fluid system
increases with the level of fluid, while the structure stiffness
properties remain unchanged.

It is also noted, from a careful examination of Fig. 35,
that the reduction in the tanks' natural frequencies, due to the
increase in fluid level, is much more significant for the shallow or
broad tanks (HO/D0 < 0.5) than it is for tall tanks. This can be
explained by the fact that the amount of fluid mass in the tank is
directly proportional to the square of the tank diameter (Do) and to
the tank height (Ho)' For a shallow tank, the largest dimension is

the diameter, and for a tall tank the largest dimension is the

height. Thus since the fluid mass is proportional to the product
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(HODOZ), the increase in fluid mass is relatively more for a shallow

tank than it is for a tall tank.

Another interesting aspect of the free vibration of liquid-
filled tanks is illustrated by Fig. 36. This figure represents the
relationship between the relative amount of.fluid mass, m,

pating in sloshing and the tank aspect ratio, Ho/Do’ for both com-

, partici-

pletely full an& half full tanks. For shallow tanks, the greater
portion of the total fluid mass participates in sloshing, while for
tall tanks the major portion of the fluid mass vibrates with the
shell. Obviously, this relationship is significant in assessing the

dynamic response of fluid-shell systems.

In Figs. 37 and 38 the mode shapes for some selected aspect
ratios (HO/DO) are shown. In Fig. 38 the radial displacement mode w
is presented for a shallow tank (HO/D0 = 0,333) for the cases of
completely full and half full with water. The radial displaéeme‘nt
mode for a tall fluid filled tank (Ho/Do = 1.5) is represented in
Fig. 37. Examination of these figures reveals that the radial dis-
placement mode, w, is of the same order of magnitude and similar
to the fundamental mode of vibration of an empty shell, Fig. 15,
for the case of the tall tamk, Fig. 37. For'small aspect ratios
(shallow tanks, Fig. 38) the radial displacement becomes compara-
tively much larger at the lower portion of the tank than at the top,
and does not resemble the vibration mode of an empty tank; This is
also an important factor in the assessment of the seismic response

of liquid-filled tanks presented in Chapter 5.
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To verify the acturacy of the frequency approximations
developed for liquid~filled tanks (sﬁecifically, Eqs. 3.35 and 3.36)
which were presented in the previous subsection, several numerical

o examples are considered. The results obtained by the present analysis

are compared with those of other investigators. Examples of both

shallow and tall tanks are analyzed for each of two cases:

1. Completely full with water (%E.= 1.0)
. o

2. Half full with waterv(;L-= 0.5)
o

The shell dimensions and material properties, as well as the

essential fluid properties are as follows:

a. Tall Tank (HO/DO = 1,5)

H = 21.946 m (72.0 ft)

D = 14.63 m (48.0 ft)

=i
[

206900.0 MN/m> (30,000 ksi)
v =0.3

o = 20.3 kg/m> (0.000733 Ib-sec’/in")

p. = 2.6 kg/m> (0.000094 1b-sec. 2/in™)
h = 25.4 mm (1.0 in), 10.92 mm (0.43 in),
7.315 mm (0.288 in)

'hL = 21.946 m (72.0 ft), 10.973 in (36.0 ft)
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b. Shallow Tank (Ho/Do = 0.333)

H = 12.192 m (40.0 ft)
D = 36.576 m (120.0 ft)
E = 206900.0 M¥/m’> (30,000 ksi)
v =20.3
3 2,. 4
p_ = 20.3 kg/m~ (0.000733 lb-sec”/in')

p, = 2.6 kg/m3 (0.000094 lb—secz/inA)

ot
]

25.4 mm (1.0 in)

12.192 m (40.0 ft), 6.096 m (20.0 ft)

r_i:!"

In Téble 16 the numerical results obtained by the present
analysis for the natural frequencies of a shallow liquid filled tank
are summarized, and compared with the numerical results obtained
by Haroun (Ref. 26) and Edwards (Ref. 20). In no instance is the
discrepency greater than 2%. The numerical results for the natural
frequencies of a tall liquid filled tank, obtained in the present
analysis, are compared with the results. obtained in the investigation
of Ref. 26, and are presented'in Table 17. In this comparative
study, the effect of shell wall thickness upon the natural frequency
of the shell-liquid system can be observed. Excellent correlation

is also cited in these comparisons.

This comparative study clearly indicates that the simple
expressions developed in thisvinvestigation can determine the natural
frequencies of liquid filled cylindrical tanks without appreciable

error. Moreover, the numerical results obtained in the present

=71~




analysis involve only the evaluation of a few simple analytical

expressions.
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4. SEISMIC ANALYSIS OF EMPTY CYLINDRICAL TANKS

4.1 Introduction

Simplified expressions for conducting seismic analyses of
empty cylindrical storagé tanks are developed in this chapter. These
expressions form the basis of accurate, yet easy-to-apply pro-
cedures for éétermining shell stresses, base shears, overturning
moments, and shell displacements induced in cylindrical tanks by

horizontal earthquake ground motion.

The seismic analysis of thin walled cylindrical shells
described in this chapter is based upon the response spectrum concept,
which has been pioneered by Biot (Ref. 11) and Housner et al (Ref.
29), aﬁd the classical approach of normal mode vibration (Refs. 24,

61 and 62). The pertinent parameters entering into the normal mode
analysis (i.e. generalized force, generalized mass, and mode parti-
cipation factor) are defined and calculated with the use of shell

theory, rather than from equivalent lumped-mass or beam models, thus

ensuring the accuracy of the procedures described herein.

In the present investigation, only 6ne mode of free vibra-
tion  is considered, that corresponding to an axia1 wave number m = 1
and a circumferential wave number n = 1 (refer to Section 2.1 for a
detailed explanation). The contribution of higher axial modes has

previously been determined to be negligible (Ref. 39), and it will

-73~




be shown (Subseqtion 4.2.2) that horizontal vibration excludes all
but the n = 1 circumferential mode. The natural frequency of the
shell structure is determined from the appropriate simplified
expressions developed in Chapter 2, and the corresponding mode
participation factor is determined from expressions developed in

Subsection 4.4.1.

The analytical derivation of the mode participation factor
,for axisymmetrical shells presented in Refs. 36 and 39, is sum-
marized in Section 4.2. 1In Subsection 4.2.2, the solution for
mode participation for a general axisymmetric shell is condensed

for application to the special case of a cylindrical shell.

4,2 Dynamic Response of an Axisymmetric Shell

4,2,1 Systems and Assumptions

The shell under consideration is a structure which is
symmetric about a straight axis oriented vertically with respect
to a horizontal foundation which is capable of moving only hori-
;ontally (Ref. 39). The main objective of this phase of the investi-~
gation is to find the response of the shell ﬁo a given horizontal
motion of the foundation. Mathematically, the problem consists of
finding the stresses and displacements of the shell when it is
subjected to time dependent boundary conditions at one end, the rest

of the shell being free of any constraints.
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It is assumed that a continuous axisymmetric boundary
surface of the~shell has been chosen and that a thickness has been
assigned at every point of the reference surface. The locations of
the material points within the thickness are given by the two axi-
symmetric shell coordinates @ and 6, on the reference surface, and
by the distance C, which is measured from the reference surface along

>
its positive normal t, (Fig. 39).

c
A general mathematical model for the deformation of a thin
shell is based on the hypothesis that the displacement field G is

linear in ¢ in the form (Ref. 39)
+
S (8, 8, 8) =4 (B, 0)+C B, ) (4.1)

>
Since the reference surface is defined by £ = 0, then u is the dis-
placement vector of the material points lying on the reference

surface. Thus it is resolved

a = uy gb + ug Zé +we (4.2)
-> ES
B = B¢ tgt By gg t BC tr (4.3)

> > - .
where t¢, tg, and t is a triad of unit vectors, tangent to the @,

C
@ and C coordinate curves, respectively (Refer to Fig. 39). For

infinitesimal deformations, B¢ and Bg, are the angles of rotation of
the normal in the directions of Zb and %é, respectively, while BC

times the thickness gives the change in thickness of the shell.

To obtain the conditions that the foundation imposes on the

six shell displacements ug, ug, B¢, Bg, w and BC, at the points where

the shell is in contact with the foundation, it is assumed that the
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base of the shell is continuously and rigidly attached to a rigid

foundation (Fig. 39). It is further assumed that the foundation

experiences a horizontal time dependent displacement given by

ﬁ; =u £ (t) ' (4.4)

where U, is some amplitude factor and fx is the time variation.

(It is also assumed that the foundation displacement ﬁ% is the same

as the ground motion x(t)). The displacements of the foundation are

transferred to the shell by the following conditiomns at its base:

u = U, cosh fX (t) (a)
ug = - U_sind £ (t) (b) (4.5) |
By = By = By = O ()

where u, is the displacement perpendicular to the axis of symmetry.
'Torexpress the displacements of the foundation in terms of the shell

displacements, the following transformation is employed

It

u cosf . (a)

Yp

w

(4.6)
u sing (b) |

]

Finally, the problem becomes to find the response of the shell

when the displacements

u¢ = UX fx (t) cosf cosO (a) |
u, = -U_f_ (t) sin® (b) %
07" Ux fx @.7)
w o= UX fX (t) sin@cosO (c)
Ba = By =8B, =0 (d)
A ~76-



are prescribed at the circle of contact between the reference surface
of the shell and the foundation, the rest of the shell being free of

any constraint,

4,2,2 Mode Participation Factor

The displacement response to time dependent boundary conditions

is constructed in the form (Ref. 36)

(@, 8, t) =u (F, 0) +u (P, 8) T F(t) (a)
B (B, 8, t) = 8% (P, 8) + B(#, 0) T F(t) (b)

(4.8)
The terms with the superscript s identify variables of a static solu-
tion for the shell when it is subjected to the boundary conditions
given by Egs. 4;7 with the time functions omitted; : and § give the
displacement field in the fundamental mode (m = 1) of free vibration;

I' is the mode participation factor (Ref. 39) given by

I'=J/(uM) (4.9)
where
f{ o +}d (4.10)
J = p.u . urds : .
0 .
s
M = {p.u - ulds (4.11)
0
/

and F(t) denotes the Duhamel integral (Refs. 24, 61, 62) defined as

t
F(t) = [ ®(1) sin w(t - Tdr (4.12)
0
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where X(t) is the horizontal ground acceleration. Thus we can have

x(t) = U fX (t) (4.13)

where the dots denote time derivatives.

| The integrals J and M can be interpreted as the generalized
force and generalized mass (Ref. 14), respectively, in the fundamental
mode (m = 1) of vibration. They must be evaluated over the entire
reference surface, S, of the shell, with shell density measures

given by r
2

Po =/ P(@, 8) dr = ph (4.14)

“1

where Cl'and CZ denote the distances of the boundary surfaces of the
shell from the reference surface, p denotes the mass density of the

shell material, and h denotes the shell thickness.

For an axisymmetric shell (Fig. 39), excited horizontally
through its foundation, the static solution (with superscript s) is

represented by a rigid body movement of the whole shell through a

horizontal distance UX (Ref. 39). With reference to Eqs. (4.7),

such a rigid body solution throughout the shell is given by

W% = U_ cosf cosé t, - U_ sind t, + U_ sind cosP t
u = % cosy) cos t¢ - % sin t¢ % sin) cos tg
(4.15)
| and
>
g¥ =0 , (4.16)
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while all other (stress) variables are identically zero. Using
Eqs. 4.15 and 4.16 from the static solution, and expressing for a
shell of revolution the surface integral for J as an integrated.

integral, J from Eq. 4.10 can be written as

S2 2T
J = f /_ﬁs . (po _5) r dO ds (4.17)
s1 0

where s is the arclength along the meridian (curve of intersection of
reference surface and a plane through the axis of s?mmetry; refer to
Fig. 6),51 and s, are the endpoints of the meridian, 6 is the cir~
cumferential angular coordinate, and r is the distance to a point on

the reference surface from the axis of symmetry (Fig. 39).

The free vibration solutions are separable in the @ and o

coordinates in the form (Ref. 39).

ug (g, 0) = Ugn (@) cosn® : | (4.18)

with similar expressions for all other variables. Theoretically
there is an infinite number of resonant modes of the shell for each
given value of the circumferential wave number n, and all the modes,
for all wave numbers, must be used in the'infegrand of Eq. 4.17.
However, when the terms of the scalar products of Eq. 4.17 are
integrated with respect to 0, only the modes for n = 0 and n = 1 sur-
vive. This can be illustrated by considering the first term of the

first scalar product in the integrand of Eq. 4.17 in the form
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52

2T
J =/ / {(po Ux cosfP cos8) u¢n u¢n cos nB} r dO ds
81 0 .

(4.19)

where n =0, 1, 2, 3...®

Noting that ' !
2m |

. 2w, for n ' :
/ cos nd de ={ (4.20)

0 0, forn >1

Il
o -

and

2m

M, for : '
/cosO cos nB de =[ ‘ (4.21)

. L 0; forn > 2

0
It is _obvious that out of all the modes of free vibration, as given
by Eq. 4.18 withn =0, 1, 2, ..., only those withn=0and n =1
participate in the general solution of the problem. Moreover, since
this investigation is concerned with horizontal excitation of the
~shell only, the solution corresponding to n = 0 also does not

participate.

Thus, for the problem at hand, the expression for J can be

simplified to

her
where s, 21
j = / / fo, (u¢ cos - ug + w sinf)} r do ds
S1 0 (4.23)
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Therefore, it is obvious that the participation factor for horizontal
motion involves only the n =‘l circumferential mode, with modal dis-
placéments u¢, ug and w. No modes with circumferential wave numbers
other than n = 1 enter into the general solution. Similarly, the

generalized mass for the n = 1 mode is given by

s2 2m
M=//p{<u)2+<u)2+(w)2}rdeds (4.24)
0 ) 9 :
sl 0

For the special case of a cylindrical shell (where the
angle @ between the axis of symmetry and the shell normal at the

reference surface (Fig. 39) is 900), Eqs. 4.23 and 4.24 can be

simplified to

2T
hj ;J/’ DO (u9 +w) r dO ds ‘ (4.25)
o , .
and 32 2m
M =[ [ o {(u¢)2 + (ue)2 + (w)z} r do ds
S1 o - (4.26)

N .
The static solution, represented by v® and ES in Eq. 4.8,

is given by Eqs. 4.15 and 4.16. Since the u° terms represent

a rigid body motion of the shell (which is the same as that of the

>
foundation), the u® terms in the response can be omitted if the
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displacements u,, u

0 and w are measured with respect to the founda-

>
tion. No change is needed for BS, because according to Eq. 4.16,

Finally, the response of the shell may be expressed by

(Ref. 39)
A=U BT F(t) : (4.27)

where the symbol A represents any desired variable of the solution
(such as displacement br stress) and B represents the same variable
taken from the solution of the fundamental mode (m = 1, n = 1) of
free vibration. The mode participation factor, I', is given by

(Ref. 39)

I'=3/(wm (4.28).

The Duhamel integral in Eq. 4.27, F(t), contains the acceleration of

the horizontal motion, %(t). The complete response of the shell, as

given by Eq. 4.8 is determined once the time variation F(t) is known.

The following section is concerned with finding the peak value of

F(t) from the response spectrum.

4.3 Response Spectrum

If a deterministic response to a known ground motion is
desired, the Duhamel integral, given in Eq. 4.12, must be evaluated
at various times t, which then provides the time dependence of the
response in the solution, Eq. 4.27 (Ref. 39). However, seismic

design is concerned with a ground motion that is expected to occur
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in the future, so that its deterministic record cannot be anticipated.
The use of an ;cceleration'record of a previous earthquake in Eq.

4.12 is possible, but often proves to be not very judicious. A more
logical, commonly employed procedure for seismic design is the

Response Spectrum approach (Refs. 12, 16, 50, 51, 52, 53 and 58).

The response spectrum is defined as a graphical relation-
ship of a single degree of freedom system with damping to dynamic
motion or forces (Ref. 58). The most usual measures of responses-are
maximum displacement, Sd’ which is a measure of strain in the spring
element of the system, maximum pseudo relative velocity, Sv’ which
is a measure of energy absorption in the épring of the system, and
maximum pseudo acceleration, Sa’ which is a measure of the maximum

force in the spriﬁg of the system.

More specifically, if it is assumed that horizontal ground
acceleration records of some past earthquake are available (i.e. in
Eq. 4.12 x(t) is known for a sufficient range of .t), then it is

possible to evaluate the function

.- t
F(t) = / %(T) sin w(t -7) dt (4.29)
0

for a given value of w, and record only the maximum value of F(t),

denoted by

V = max [F(t)] (4.30)

over all times t (note that V is equal to the maximum pseudo relative

velocity of the system Sv)' Repeating this calculation for a wide range
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of frequencies, . a plot of the relationship between V (or Sv) and W,
for a single earthquake can be produced. Such a plot is called the
velocity response spectrum of an earthquake.r An example of a
velocity response sbectrum obtained from the ground accelerations
recorded at El Centro, California, 18 May 1940 (N - S component) is

presented in Fig. 40.(reproduced from Ref. 52).

Although actual response spectra for earthquake motions are
quite ifregular, they have the general shape of a trapezoid (Ref. 58).
A generalized spectrum is shown in Fig. 41,‘plotted on a logarithmic
tripartiﬁe graph, and modified so that the various regions of the
spectrum are smoothed to straight line portions. On the same graph
are shown the maximum values of grqund acceleration, velocity, and
displacement. The figure therefdre indicates that the spectral
values of acceleration, velocity, and disﬁlacement (i.e. Sa’ Sv and
Sd, respectively) may be interpreted as the ground motion maxima

multiplied by amplification factors. Details for constructing such

spectra are described in Refs. 2, 49, 50, 51 and 53.

Regardless of the nature of the response spectrum, the
relationship between spectral displacement, Sd’ psuedo spectral
velocity, Sv’ and pseudo spectral acceleration Sa’ at any specific

frequency,w, are defined by the expressions

S =us ~ (4.31)
and

S =T" (4.32).
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4.3.1 Application of Response Spectrum Technique

A design estimate of the response of a cylindrical tank to
horizontal earthquake motion, can be obtained from a revised form of

Eq. 4.27, given as

A=BT Sv (4.33)

where ﬁhe symbol A represents any desired variable of the response
(such as displacement or stress), B represenﬁs the same variable
taken from the solution of the fundamental mode of free vibration
(m=1, n=1), I' is the mode participation factor defined by Eq.
4,28, and Sv is the pseudo spectral velocity which is determined

from an appropriate design spectrum, such as that illustrated in

Fig. 41. The determination, from simplified expressions, of pertinent
values for B and I', to be used in Eq. 4.33, is one of the concerns

of the following section.

4.4 Procedure for Seismic Analysis

The pertinent stress variables necessary for evaluating the

seismic response of thin walled, cylindrical tanks are the axial

membrane stress resultant, N¢ (or Né) and the circumferential stress
resultant (hoop stress), Ng (refer to Fig. 75. The most significant
shell displacement component describing the general vibratory form
“of the shell is the radial displacement, w. The variables repre- .

senting Nz, N, and w, which correspond to the parameter B in Eq. 4.33,

0

as well as the variable representing the mode participation factor,
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I'y can be determined from the results of the free vibration analysis

of empty cylindrical tanks described in Chapter 2.

The development of simple expressions, from the free
vibration data previously mentioned, for the shell stress and dis—
placement variables, and mode participapion factor are detailed in
the following subsections. Simplified expressions.for base shear

and overturning moment are also developed in this section.

4.4.1 Mode Participation Factor

The result of ;he free vibration analysis conducted in
Chapter 2, for the class of tanks exhibiting an aspect ratio (HO/DO)
range of 0.1 to 1.5, for the mode participation factor, I'(as deter-
mined by numerical integration (Ref. 34)»of Eqs. 4.25, 4.26 and 4.28)
is represented in Fig. 42. The values of T' are normalized with
respect to the maximum factor in the group, Pmax (0.02437 sec.),
which corresponds to HO/D0 = 0.1, and are plotted against tank aspect

ratio (Fig. 42).

A regression analysis was conducted on the mode participa-
tion data generated in the parametric study for the purpose of
'''' attaining a simple expression to delineate the relationship between
the non-dimensional participation function and tank aspect ratio.
The resulting expression, a Qubic polynomial, is given by
T(H—°)=c +C (H—°)+c (—1—{2)2+c (-Hﬂ)3
1 2 Do 3D0 4 D0

(4.34)
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Where‘f(Ho/Do) is the non-dimensional mode participation function
for any pafticﬁlar Ho/Do ratio in the range 0.1 -~ 1.5, inclusive; and
Cl’ Cz, C3 and C4 are the cubic polynomial coefficients extracted
from the regression analysis, which are presented in Table 18, The
comparison of the analytical results for F/Pmax versus Ho/Do’ with
those obtained from Eq. 4.34 is illustrated in Fig. 43. Excellent

correlation is noted.

From examination of Eqs. 4.25, 4.26 and 4.28, it is observed
that the mode participation factor is independent of the shell thick-
ness, and is conditional only to the modal displacgment components
Uys u¢ and w, and the natural frequency, @. Therefore, the mode
participation factor, I', for any cylindrical tank having an Ho/Do
ratio within the range 0.1 to 1.5, méy be determined frbm Eq. 4.34
used in conjunction with certain characteristics of the height and
diameter of the tank. The simple expression relating the mode

participation factor to the aspect ratio of the tank is given by:

H
T - T (-9
.0, T G (4.35)
)
where F(HO/DO) is the non-dimensional mode participation function

determined by Eq. 4.34, c = 0.0017952 sec/m (0.0005472 sec/ft) is

a constant and Do is the diameter of the tank in meters (feet).

Although the data base used for the formulation of Egs.
4,34 and 4.35 was generated from the analysis of a steel structure
having a modulus of elasticity ES = 206700 MN/m2 (30,000 ksi), and

mass density Py = 20.3 kg/m3 (0.000733 lb—secz/inA), Eq. 4.35 may be
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modified to accommodate tanks fabricated of materials with different

properties, resulting in the expression given as

— Ho
ChD I GO

I' s ————— (4.36)
2 -
Vs

where E and p are the elastic modulus and mass density, respectively,

of the shell material.

Equations 4.34, 4.35 and 4.36 are also applicable to cylin-
drical storage tanks having a roof structure. The values of the
cubic polynomial coefficients, Cl’ C2, CB_and C4, to be used in
Eq. 4.34, are presented in Table 19 for roéf mass coefficients
K_= 1.0, Kr = 2,0 and,Kr = 3,0 (refer to Section 2.7 for an explana-

r

tion of the roof mass coefficient).

4.4.2 Shell Displacement and Stress Variables

Having established a procedure for approximating the mode
pafticipation factor for empty cylindrical tanks, both with and with-
out a roof structure, the evaluation of the shell displacement and
stress variables (that is, the parameter B) to be used in Eq. 4.33

is considered.

As was previously stated in this section, the relevant dis-
placement variable is the radial'displacement'component, w. The
critical stress variables are the circumferential stress component,
Ne’ and the axial stress component, Nz (Fig. 44). Simplified |
expressions for evaluating the radial displacement variable,
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;-(Z/Ho), have been developed in Section 2.6, and are represented
by Eqs. 2.41, 2.42 and 2.43. The remainder of this subsection is
devoted to the development of similar expressions for the membrane

stress variables N9 and Nz.

From the results of the free vibration analyses of empty
tanks conducted in Chapterlz, data pertaining to the variation of
the circumferential stress resuitant, NO’ and the axial stress
resultant, Nz’ along the height of the tank were recorded and plotted
for each case in the parametric study. Typical stress distributions
are illustrated in Figs. 45 and 46 for NZ and NO’

define the relationship of membrane stress resultant (NO and Nz)

respectively. To

versus tank height, with a simple analytical expression, a regression
analysis was performed on the accumulated stress resultant data for
each case in the free vibration study. The resulting expression, a

quadratic polynomial, is given by

N (z/Ho) =C, +¢, (z/Ho) +Cy (z/Ho)z (4.37)

where ﬁ'(z/Ho) is the non-dimensionalized stress function representing

either N, or Nz, z/HO is the height parameter such that

e

z
< =<
0 H_ < 1.0, for N,

and

z .
0.2 f_ﬁ;-j_l.o, for Ng

For values of z/H° < 0.2, the N vérSus z/H0 relationship becomes

B

discontinuous; however, N9 can be conservatively estimated as vNZ

‘in this range, where V is Poisson's ratio.
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The qugdratic polynomial coefficients, Cl’ C2 and C3’ of
Eq. 4.37 are a function of the tank aspect ratio (Ho/Do)’ and must
in €¥rn . be determined from the quadratic expression given by

H H 2
= _O. 0. P
Ci Ali + AZi (Do) + A3i (Do) s 1 l’ 2’ 3 (4.38)

where Ali’ AZi and A31 are quadratic polynomial coefficients also.

The "A" coefficients pertinent to ﬁ; are listed in Table 20, and. those

pertaining to N, are listed in Table 21.

e

The stress variables ﬁ;jand ﬁé (determined from ﬁz or ﬁé)
are expressed as

¥ &) =cgh %(ff) (4.39)
e} (o} ’

where ﬁ'(z/Ho) is the stress variable for Nz or N ﬁ'(z/Ho) is the

9;
non-dimensionalized stress function for Nz,or Ng (determined from
Eq. 4.39; h is the shell thickness in meters (inches); Cy is a

constant such that

1396000.0 1b

. _ 2933.7T MN
% =7 3 &y -Tp 3
z o m z o in
and
c. = 10675.7 MN . = 5080000.0 1b
N, D 3 “UN D )
¢ o m 8 o in

where D0 is the diamter of the tank in meters (feet).
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Equations 4.37, 4.38 and 4.39 are also valid for determining

‘the membrane stress resultants in tanks having a roof structure. The

quadratic coefficients Ali’ AZi’ etc. to be used in conjunction

with Eq. 4.38 for the determination of ﬁé are listed in Tables 22(a),
(b) and (c), respectively, for roof mass coefficients Kr =1.0, K_=
2.0 and Kr = 3.0 (refer to Section 2.7 for explanation of roof mass
coefficients). For the determination of ﬁé, the appropriate Ai
coefficients to be used in Eq. 4.38 are listed in Tables 23(a), (b)

and (c) for roof mass coefficients Kr = 1.0, Kr = 2.0 and Kr = 3.0,

respectively.

In summary, a design estimate of the response of an empty
cylindrical tank subjected te horizontal earthquake motion, can be

obtained from the expression

A=BTS (4.33)
where the symbol A may represent either the radial displacement
w, Oor thé axial stress resultant Nz, or the circumferential stress
resultant NQ. B represents the corresponding variable of the free
vibration response W, ﬁé or ﬁé (determined from Eq. 2.43 for w, and
Eq. 4.39 for N, or NO)' I' is the mode participation fac;or deter—

mined from Eq. 4.35, and Sv is the pseudo spectral velocity in m/sec

(inches/sec) determined from an appropriate design spectrum.

As a specific illustration, the distribution of the axial
membrane stress resultant, Né’ along the height of the tank at a cir-
cumferential coordinate angle 8 equal to zero degrees, as determined

from Eq. 4.33 has the form
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Loz = .z
N, (ﬁ—) =N, (ﬁ-) r S, (4.40)
(o] (o]

The circumferential variation of any displacement or stress variable

determined in this fashion is given as cos8.

For tanks constructed of materials other than steel
(ES = 206900 MN/mz; 30,000'ksi) the displacement variable, w, and
the stress variables, N, obtained from Eq. 4.33, must be multiplied
by the ratios ES/E and E/ES, respectively; where E is the elastic

modulus of the shell material.

4.4.3 Base Shear and Overturning Moment

In addition to the displacement and stress variables, the
subject of the previous subsection, the shear force developed at
the base of the tank and the overturning moment of the structufe,
induced by earthquake motion, are also of particular importance
in assessing the response of the system. This subsection is .
concerned with the development of. simple eipressions to estimate the
base shear and overturning moment of empty cylindrical tanks subject -

to horizontal earthquake ground motion.

The base shear and overturning moment cannot be determined
directly from the results of the free vibration analyses conducted
in Chapter 2. Therefore, to accommodate a simple derivation of
expressions for base shear .and overturning moment, the cylindrical
tank is idealized as a cantilever column (Fig. 47). The forces

developed in the structure during an earthquake may be found most
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reliably in terms of the effective inertia forces, which depend upon
the effective (spectral) acceleration, Sa (Ref. 14). The effective
inertia force per unit length, q(z), along the structure is given

by (refer to Fig. 47)
q(z) = u(z) Y(z) Tw Sa (4.41)

where H(z) is the mass per unit length, Y(z) is the shape function
(which may be reasonably approximated by w(z), Eq. 2.4, T is the
mode participation factor determined from Eq. 4.35, w is the natural
frequency of the system in radians per second, and Sa is the spectral

acceleration.

The maximum base shear force, Qmax’ is given by the integral

of all the effective inertia forces acting over the height of the

structure: )
H H
. .0 (o]
Qax = / q(z) dz =T wSJlD(z) u(z) dz (4.42)
0 ' 0

The overturning moment, MbTM’ is defined as the sum of the
moments of the effective inertia forces about the base of the tank.

Thus the overturning moment is expressed by the itegral

H H
MOTM = /o q(z) zdz =T w Sa fo P(z) u(z) z dz
0 0 (4.43)

For tanks with roof structure, the expressions for base

shear and overturning moment, respectively, are given by
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H

o
Qo = I'w sa ‘/; Y(z) Hu(z) dz + ﬁr (4.44)
and I H

o
= T '
MOTM w Sa -fo Y(z) U(z) z dz + m_ Ho (4.45)

where mr is the mass of the roof structure.

4,4.4 Flow Diagram

To facilitate application of the seismic design procedures
presented in this section, a flow diagram is provided (Table 24).
It is envisioned that this flow diagram will grant the investigator
the contingency to quickly identify, and properly implement the
pertinent expressions for the analysis at hand, At the investigator's
discretion, ope or morée of the steps outlined in the flow diagram

may be omitted.

—94~



5. SEISMIC ANALYSIS OF LIQUID-FILLED CYLINDRICAL TANKS

5.1 Introduction

In this phase of the investigation the seismic response of
open—-top, liquid-filled cylindrical storage tanks is considered.
Simple expressions for evaluating the seismic response of the flexible
shell-liquid system are presented in this chapter. These expressions
provide for an uncomplicated, but accurate procedure for determining
the hydrodynamic pressures induced in cylindrical liquid storage
tanks subject to horizontal eérthquake motion. Expressions for cal-
culating the resulting shell stresses, base shears and overturning

moments are also presented.

The more exact analyses show that the hydrodynamic pressures
can be separated into impulsive and convective parts (Ref. 27). The |
impulsive pressures are those associated with inertial forces produced
by accelerations of the walls of the container and are directly pro-
portional to these accelerations. The convective pressures are those
produced by the oscillations of the fluid and are therefore the
consequences of the impulsive pressures (Ref; 63). In this investi-
gation the impulsive and convective pressures are treatedfsepafately.
The fluid is assumed to be incompressible and the fluid displacements

are assumed to be small,

The shell~fluid system investigated is illustrated in Fig.

48. It is a circular cylindrical tank of diameter, D, (radius a) and
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height, H . The tank is filled to a height, b, with a liquid of mass
density OL. It is assumed that the base of the tank is contiﬁuously
fixed to a rigid foundation which is excited by a horizontal com-
ponent of earthquake ground motion of acceleration X(t). The loca-
tion of points within the shell-fluid system are specified by the

cylindrical coordinate system r, © and z (Fig. 48).

The shell-fluid system is analyzed by implementation of a
modified version of the procedure for rigid containers,rfirst pre~
sented by Housner (Ref. 27) and later amplified by the Atomic Energy
Commission (Ref. 63). Both the impulsive and e¢onvective effects in'
a rigid shell-fluid system subject to lateral ground motion are
investigated. However, only the impulsive effects in flexible
sheli—fluid systems are considered, the reason being that the
convéctive effects are insensitive to shell flexibility and therefore
can be determined from the procedures developed for the analysis of

rigid containers (Refs. 20, 26, 68; also refer to Section 3.4).

5.2 Hydrodynamic Pressures in Rigid Containers

5.2.1 Impulsive Pressures

The maximum impulsive hydrodynamic pressures, P> exerted
against the wall of a rigid tank (refer to Fig. 48) may be expressed

in the form (Refs. 63, 65)

(2, 8) = o X -3 -1a-5? 3tanh<f§D°>
Py Z, —pLXh.L hL 2 hL Zh.L

(5.1)
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where X is the maximum horizontal ground acceleration, z is the
elevation measured from the base of the tank, and 6 is the circum-

ferential coordinate angle.

If the tank is slender, having an aspect ratio (HO/DO) and
liquid depth ratio (hL/Do)_greater than 0.75 (Ref. 63), the entire
mass of fluid below a depth of 0;75 DO tends to respond as a rigid
body as far as the impulsive pressures are concerned. Therefore, for
pﬁrposes of evaluating the impulsive pressures, pi(z, 8), the con-
tainer can be regarded as a tank with a fictitious bottom at a datﬁm
0.75 Do below the liquid surface, and supported on a solid mass
extending from the fictitious bottom to the actual bottom (Fig. 49).
Equation 5.1 is applicable to the portion above the datum, but the
pressure at depths below the fictitious bottoﬁ'are given by (Ref. 63)

D

= ., __O‘ .
pi(z, 8) PL X7 cosO | (5.2)

5.2.2 Convective Pressures

When the walls of a fluid container are subjected to accel-
erations, the fluid itself is excited into oscillations, and this
motion produces pressures on the walls of the container. The con-
vecti&e hydrodynamic pressure, pc(z, 0), exefted againgt the wall
of a rigid tank (refer to Fig. 48) may be expressed in the form

(Ref. 63)
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: D 2 2
- _Jv3 0 _ctos™®@ 'sin’®
p.(z, 8) =Vg o —— 6, (1 3 7 )

-z
cosh (2 ‘/zg— —h—I-I;————)
0
W ’ (5.3)

/21 .

R
(o]

coso
sinh (2

where 0 is the circumferential coordinate angle,(ul is the natural
frequency of the fundamental sloshing fluid mass (refer to Chapter
3 for a detailed explanation), andv9h is the angular amplitude of free |
oscillation at the liquid surface (Ref. 63). The quantities Wy and

Oh, respectively, are expressed by

2 3.68 g hy '
() = —
| . tanh (3.68 =) (5.4)
(o] [o]
d -
and. 3.068 (s b
T Tdy ' By,
Qh = o —= tanh (3.68 Do) (5.5)

where g is the acceleration of gravity and (Sd) is the spectral
1
displacement, determined from an appropriate response spectrum (refer

to Section 4.3), of the fundamental sloshing fluid mass.

Finally, the maximum water-surface displacement (height of
sloshing) dmax (Fig. 25), induced in a cylindrical tank subject to

horizontal earthquake motion is given by

0.204' D coth (3.68 M1,
: o T Do
- - (5.6)

- 1.0

-98-



5.2.3 Base Shear and Overturning Moment

The hydrodynamic base shear for the structure, representing
the total dynamic force (impulsive and convective) exerted by the
liquid on the tank, may be determined by consideration of the simple

mechanical analog illustrated in Fig. 27, and expressed by

Q)

max

(5.7)

]
=]
bl

and

(Qc) (5.8)

I

B
~~
(%

o
N’

max 1

where Qi and Qc represent the impulsive gnd convective components of
base shear, fespectively, m is the impulsive mass of liquid, m, is
the convective mass of the liquid that particiﬁates in the first
sloshing mode (analytical expressions for the model parameters m

and m, are presented in table 25), (Sa)l is the spectral acceleration

of the fundamental sloshing mass, and X is the maximum ground

acceleration.

The hydrodyﬁamic overturning moment for the structure,
representing the total dynamic force exerted by the liquid on the
tank, may also be determined by consideration of the simple

mechanical analog (Fig. 27). ' The impulsive (MOTM? and convective
i

(MOTM? components of overturning moment, respecti&ely, are given
o
by
(MOTM)i =m h ¥ (5.9)
and
(MOTM)c =m h1 (Sa)l (5.10)




where ho and hl.are the vertical distances measured from the tank
bottom to the impulsive mass, m s aﬁd the mass of the first sloshing
mode, m réspectively. In Table 25, where the analytical expres~
sions for the various model parameters are presented, two expressions
for h0 exist; ho(IBP) and ho(EBP), where the abbreviations IBP and
EBP designate "including bottom pressure" and "excluding bottom
pressure", respectively. For calculation of the impulsive hydro-

dynamic overturning moment, (Mb , by application of Eq. 5.9, ho

m
(IBP) must be used. Use of ho(EBP) in Eq. 5.9 will result in the
calculation of the maximum impulsive bending moment on a cross-

section of the tank just above the base.

A conservative estimate of the absolute maximum value of the
total hydrodynamic (impulsive and convective components) base shear
and overturning moment may be obtained by taking the numerical sum
calculated from Eqs. 5.7 and 5.8 for base shear, and Egqs. 5.9 and
5.10 for overturning moment. Using this approach it is assumed that
the spectral acceleration of the sloshing fluid mass, (Sa)l, and the

maximum ground acceleration, X, occur simultaneously. More judicious

methods for combining the modal maxima are prescribed in Ref. 17.

5.3 Impulsive Effects in Flexible Shell-Liquid Systems

In this section a simple procedure for determining the
magnitude and distribution of hydrodynamic forces, and the subsequent
shell stresses, induced in a flexible shell-liquid system subjected to

horizontal earthquake ground motion is presented. The effects of
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tank flexibility on impulsive base shear and overturning moment are
also considered. The scope of the investigation is limited to tanks
completely filled (hL/Ho = 1.0) and partly filled (hL/Ho = 0.5) with

liquid.

Because the oscillations of the convective effects are
dominated by natural frequencies much lower than those characterizing
the impulsive effects (refer to Section 3.4), they cannot be apprec-
iably affected by tank fléxibility (Ref. 65). Therefore, it is anti-
cipated that the convective effects in flexible tanks can be accur-

ately assessed by the procedures applicable to rigid tanks (Refs. 27,

63 and 70).

5.3.1 Hydrodynamic Pressures

From the results of the present study, an expression
governing the impulsive component of the hydrodynamic pressure
exerted on the walls of a flexible tank is proposed. That

expression is given by

. | z 1 z 2 /r' v@ Do
p;(z, 8) = {p % h[(1=-:2) -5 @ =-7) 1/3 tanh ()

b, by,

+ oy DG (5, - Dy (1 - EH*1} cosd

(5.11)
The first portion of the expression is recognized as Eq. 5.1, which
governs the distribution of the impulsive wall pressure in a rigid
tank. The second portion of the expression, developed in this study,
represents the contribution of shell flexibility to the generation of

hydrodynamic wall pressures. ™




Both the "rigid tank" and "flexible tank" components of

. Eq. 4.51 are functions of the dimensionless height parameter, z/hL.
The term [1 - (z/hL)z], determined from the results of the free
vibration analysis of liquid-filled tanks conducted in Chapter 3,
governs the variation of the hydrodynamic pressure along the height
of the tank. The term w(z/Ho), which represents the tank defection
configuration, determined fron an analytical examination of the mode
shapes associated with the free vibration analyses conducted in
Chapter 3, governs the variation of the wall acceleration along the

height of the tank. The deflection configuratiom, w(z/Ho) is given by

Z" Y Tz
w(ﬁ;) = gin (iz; (5.12)
: Z
for 0 < Z— < &, ‘and
(o] [o] _ -
-1.0*-%—
Z N ™ (o]
w(§r9 = sin PE— G—————:;ﬁ] (5.13)
(o] m
1.0 - T
o
zZ
for ﬁg < §~.i 1.0.
(o] (o]

The dimensionless parameter zm/Ho represents the relative height of
the tank at which the wall acceleration attains its maximum value.
Values of zm/Ho for tanks having an aspect ratio within the range

0.1 to 1.5, inclusive, and for liquid levels corresponding to hL/Ho =

0.5 and hy/H_ = 1.0 are presented in Table 26.

From a careful examination of Eq. 5.11, it is noted that the
most significant distinction between the "flexible tank" contribution

and the "rigid tank" contribution to hydrodynamic wall pressures
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involves the nature of the acceleration component employed. In the
"rigid tank" portion of Eq. 5.11 the hydrodynamic pressures are pro-
portional to the maximum ground acceleration; X. In the "flexible
tank" portion of Eq. 5.11 the hydrodynamic pressures are propor-
tional to the maximum spectral acceleration, Sa' The spectral
acceleration, Sé, is evaluated for the natural frequency of the
flexible shell-fluid system, which may be determined from the
appropriate expressions (Eqs. 3.34, 3.56 aﬁd 3.36) presented in
Chapter 3. Depending on the value of this frequency and the design
spectrum employed in the analysis, the spectral acceleration, Sa’
may be substantially greater than the maximum ground acceleration,
X, the value applicable to rigid tanks. It follows that the tank

flexibility may increase significantly the impulsive component :0f :

the hydrodynamic effects (Ref. 65).

5.3.2 Shell Stresses in a Flexible Tank-Fluid System

As was previously stated in Section 4.4, the pertinent
stress variables necessary for evaluating the seismic response of
thin walled, cylindrical tanks subject to horizontal earthquake
ground motion are the circumferential membrane stress resultant, NG’
and the axial membrane stress resultant, Nz (refer to Fig. 44). The
circumferential component of stress can be determined directly from
the hydrodynamic impulsive wall pressure (which is governed by Eq.
5.11), and is expressed by the(equation
p,(z, 0) D

2, 0) = Lo (5.14)

Ng(
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A typical distribution of the axial'membrane stress resul-
tant, Nz, along the height of the tank is represented in Fig. 50. A
reasonable approximation of the maximum value of axial stress, which
occurs at the base of the tank, can be obtained from the bending
moment computed about a cross section at the base of the tank (Ref.

20) . This bending moment at the tank base, MﬁM’ is given by

MBM =m Sa ho + m Sa gg (5.15)
where m is the impulsive fluid mass, m_ is the mass of the shell, ho
is the vertical distance from the bottom of the tank to the impulsive
mass, Ho is the height of the tank, and Sa is the spectral acceler-
ation of the flexible shell-fluid system. The model parameters m
and hO can be dgtermined from the appropriate expressions presented

in Table 25. When calculating MﬁM from Eq. 5.15, ho(EBP) must be

used.

The maximum axial stress resultant, (Nz)_ , which occurs
max
at the tank base (or at z = 0), can be determined from the relation

given by
MB Dh
_ BM "o
(Nz) =7 ‘ (5.16)
max
where I is the moment of inergia‘of the tank cross section about the
™D ~h
diameter, and is equal to = g Substitution of this value for I

into Eq. 5.16 results in

=v4fMBﬁ‘
max D 2

(o]

(Nz) (5.17)
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The heightwise variation‘of the circumferential membrane
stress, Nz, wﬂich is ‘illustrated in Fig. SQ, can be reasonably
approximated in a conservative manner by the linear function
a - z/HO). Therefore, the axial membrane stress resultant variable,
Nz(z), may be éxpressed as

4 My (1';_0)

Nz(z) = 5 (5.18).

™D
o

A comparison of the NZ stress distribution described by Eq. 5.18
with the actual stress distribution is also illustrated in Fig. 50.
It is noted that Eq. 5.18 will always yield a slightly conservative

value for Nz'

5.3.3 Impulsive Base Shear and Overturning Moment

For liquid filled cylindrical tanks having an aspect ratio,
Ho/Do’ within the range 0.1 to 1.5, a reasonable upper bound estimate
of the absolute maximum. hydrodynamic base shear due to horizontal
earthquake ground motion may be obtained from the corresponding
solution for a rigid tank. This is accomplished merely by replacing
the maximum ground acceleration, X, in Eq. 5.7 with the spectral
acceieration, Sa’ corresponding to the fundamental natural frequency
of the flexible shell-liquid system. The resulting expression for the
total impulsive base shear (including the mass of the tank) in a

flexible tank is given by

(Qi)mx = (m0 +m) s, (5.19)
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where m is the. mass of the impulsive liquid (refer to Table 24 for

analytical expression for mo) and m_ is the mass of the shell.

For values of Ho/Do much greater than 0.5, this approach
for calculating the maximum impulsive base shear'(Eqa 5.19) is
generally too comnservative. .This is so because the analytical
expression for m (Table 25) tends to overestimate the impulsive
fluid mass participating in the fundamental mode of vibration in
that aspect ratio range. A more plausible estimate of the impulsive
base shear for tanks having an aspect rétio and liquid depth ratio
(hL/DO) greater than 0.5 can be made by gffectively reducing the
impulsive fluid mass, m . Based on the results of a study con-
cerning'the participation of the iﬁpulsive fluid mass in the first
mode of vibration of the shell-liquid system (Ref. 65), a modified
version of Eq. 5.19 is proposed. It is expected that more accurate
results for impulgive base shear for liquid filled cylindrical tanks
(where hL/Ho = 1.0) having aspect ratios within the range 0.5 <

Ho/Do_ﬁ 1.5 can be attained by the expression given by

H
Q) =m [L.1-0.2 (59)] s, +m_ S, (5.20)
max (o]

Finally, a conservative estimate of the impulsive overturning
moment for a flexible tank may also be obtained from the corresponding
solution for a rigid tank. This may be accomplished simply by
replacing the maximum ground acceleration, X, which appears in the
expression applicable to rigid tanks (Eq. 5.9), by the spectral

acceleration, Sa’ corresponding to the flexible shell-liquid system.
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Thus the expression goverhing the impulsive overturning moment in a

flexible, cylindrical liquid storage tank is given by

m_ H
(MOTM)i = (mh; + —S— 20 - 25, (5.21)

The model parameters m and h0 can be determined from the appropriate

expressions presented in Table 25. In the calculation of (MOTM) by
i
Eq. 5.21, hO(IBP) must be used,

5.3.4 Flow Diagram

To facilitate application of the procedures for the
seismic analysis (impulsive effects) of dylindrical liqudid storsge
tanks detailed in this chapter, a flow diagram is presented
(Table 27). It is envisioned that expedient identification and
implementstion of the appropriate expressions developed in this
chapter will be enhanced by it. One or more of the steps outlined in

the flow chart may be omitted at the investigator's discretion.

5.3.5 Numerical Comparisons

To verify the sccuracy of the expressions for seismic
analysis developed in this section, numerical comparisons were made
with the results of another investigation (Ref. 26). An example of
both a tall tank and a shallow tank are analyzed. The physical
characteristics of the open-top, shell-fluid systems under considera-

tions are as follows:
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(a) Tall Tank (Ho/Do = 1.5)

Hé = 21.95 m (72 ft)
D = 14.63 m (48 ft)
h = 25.4 mm (1.0 in)
E_ = 206900.0 MN/m® (30,000 ksi)
S
o, = 20.3 kg/m> (0.000733 1b-sec’/in®)
v =0.3
3 2, 4
Py = 2.6 kg/m™ . (0.000094 1lb-sec /in')
h, = 21.95 m (72 ft)

(b) Shallow Tank (HO/DO = 0.333)

B =12.19 m (40 ft)
D°'= 36.58 m (120 ft)
E = 206900.0 MN/m2 (30,000 ksi)

"h = 25.4 m (1.0 in)

o = 20.3 kg/m> (0.000733 lb-sec’/in")

s
v =20.3

3 2,, 4
o = 2.6 kg/m~ (0.000094 1b-sec”/in")
hL = 12,19 m (40 ft)

The input ground motion was thé N-S component of the 1940 El
Centro Earthquake. The maximum horizontal ground acceleration for
this case was 0.348 g. The spectral accelerétion, Sa’ for the flexi—
ble shell-fluid systems were determined to be 0.858 g and 0.813 g, for

the tall tank (f = 5.5 cps) and shallow tank (f = 6.23 cps), respec—

tively (where g is the acceleration of gravity). The modal damping

ratio for the shell-liquid systems was assumed to be 2% (Ref. 18).
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A comparison of the impulsive hydrodynamic pressure at

three locations along the tank height,(located’on a vertical plane
defined by eircumferential coordinate angle 8 equal to Oo)Ais pre~
sented in Table 28 for the tall tank. The results obtained by the
present analysis are in close agreement with those oBtained by the
finite element method (Ref. 26). However,’the impuléive.hydrodynamic
pressures calculated by the 'rigid tank" approach are substantially
less than those obtained by either the present analysis or the finite
element method. At the tank's midheight, the impulsive hydrodynamic
pressure was calculated to be more than 3 times greater for a flexi-

ble tank than for a rigid tank.

In Table 29 a similar comparison of the axial stress resul-
tant, N_, in a tall tank is made. Once again, the results ffom the
pfesent analysis are in close agreement with the results of the
finite element analysis (Ref. 26). The unconservétiveness of the
rigid tank analysis is also made evident by this comparison. The maxi-
mum axial stress in a flexible tank (occurring at the base, z/Ho =
0.0), as determined by the present analysis, is approximately 2.5

times greater than that calculated for a rigid tank.

Comparisons of impulsive base shears and overturning moments
in the tall tank are made in Table 30. Excellent correlations of the
results obtained by the present analysis with those obtained by the
finite element analysis (Ref. 26) are noted. However, the results for
base shear and overturning moment obtained by the rigid tank analysis

are unconservative by factors of 2.1 and 2.5, respectively.
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- In Table 31, numerical comparisons of the impulsive hydro-
dynamic wall pressures in the shallow tank are made. Once again,
excellent agreement of the results obtained in the present study with

those of Ref. 26 is cited. The pressures calculated by the "rigid

tank" theory are consistently unconservative by a factor of 2 or more.

Finally, the numerical results of maximum impulsive axial
stress, base shear, and overturning moment for the case of the shallow
tank are presented in Table 32. Excellent correlation with the
results of the present study and the finite element investigation
(Ref. 26) is again noted. However, the values for axial stress,vbase
shear an& overturning moment calculated b& the methods developed in
the present study exceed those obtained by the‘"rigid tank" procedure

by factors of 2.3, 2.4 and 2.5 respectively.

The numerical comparisons described in the foregoing
validate the acéuracy of the simplified procedures for the seismic
analysis of liquid-filled cylindrical tanks developed in this investi-
gation. ‘These comparisons also illustrate the uﬁconservativeness of
the "rigid tank" analysis procedures which are currently employéd by

many practicing engineers.
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6. SUMMARY AND CONCLUSIONS

6.1 Summary and Conclusions

The reported investigation, dealing with the dynamic behavior
of cylindrical liquid storage tanks, was conducted in four separate,
but related phases:
1. Vibrational Characteristics of Empty Cylindrical
Storage.Tanks;

2. Vibrational Characteristics of Liquid-filled
Cylindrical Storage Tanks.

3. Seismic Analysis of Empty Cylindrical Storage
Tanks.

4, Seisﬁic Analysis of Liquid-filled Cylindrical

Storage Tanks.

The results of the study pertaining to the vibrational
characteristics of empty cylindrical tanks were presented in Chapter
2. Special emphasis.was assigned to thg tank free vibration aspects
_asssociated with a circumferential wave number, n, equal to one and
an axial wave number, m, also equal to one. ISimple analytical
expressions, in the form of cubic polynomials, which accurately
predict the natural frequencies and radial mode shapes affiliated
with the n = 1, m = 1 mode were developed. Since the nature of the

vibration of this mode (n = 1, m = 1) is primarily extensional,

-111-




it was concluded that the natural frequency of the system is indepen-—

dent of the shell wall thickness.

The free vibration study concerning empty tanks was éxtended
to include tanks having a roof structure. The roof system was repre-
sented in the shell model by an equivalent circular plate contin-
uously connected at its periphery to the top of the cylinder. The
results of this aspect of the study indicated that the primary
effect of the roof structure upon the vibrational characteristics
of the shell system was a reduction in natural frequency. The obvious
explanatiéﬁ for this phenomenon is that the addition of a roof
structure increases the total mass of the.system but at the same time
contributes negligibly to the stiffness of the system. Moreover, the
reduction in frequency due to the addition of a roof structure was
more substantial for shallow tanks than for tall tanks. The feason
for this response was attributed to the fact that the roof structure
in a shallow tank represénts a relatively greater portion of the
total mass of tﬁe tank than does a similar roof structure in a tall
tank. Finally, simple analytical expressions were also developed
which accurately predict the natural frequency (n = 1, m = 1) and A

mode shape of tanks having a roof structure.

The effect of boundary conditions upon the vibrational
characteristics of empty cylindrical storage tanks was also examined
in Chapter 2. The results of a finite element study indicated that
the basic consequence of noncontinuous (i.e. discrete support points)
boundary conditions at the base of the tank upon the free vibration
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of the system~is a coupling of the n = 1 mode with higher order

(i.e. n > 1) circumferential modes. The greater the deviation from
the ideal, continuous boundary conditions at the base of the tank, the
more prevalent was the mode coupling phenomenon (or the influence of

higher circumferential modes upon the free vibration of the shell).

In Chapter 3 the results of the investigation concerning the
free vibration of liquid-filled cylindrical storage tanks were pre-
sented. The shell-liquid system was considered to comsist of two
separate systems:

1. The shell structure together with a stationary fluid

mass

‘2, The sloshing fluid mass

From the results of the free vibration study it was concluded that the
vibration of the sloshing fluid mass was unaffected by the vibration
of the shell and stationary mass, and vice versa. It was also con-
cluded that the vibration of the sloshing fluid mass was insensitive

to shell flexibility.

Simple analytical expressidns; in the form of cubic poly-
nomials, which accurately determine the natural freqﬁency (correspon—
ding to the m = 1, n = 1 mode) of the flexible shell together with
the stationary fluid mass were developed in Chapter 3; The funda~
mental natural frequency of the sloshing fluid mass (in flexible
containers), it was concluded, can be accurately determined from the

existing expressions applicable to rigid containers.
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In Chapter 4 simplified procedures for conducting a seismic
analysis (by the response spectrum technique) of empty cylindrical
storage tanks were presented. The results of the free vibration
studies of empty tanks, described in Chapter 2, form the basis of
these seismic analysié procedures. For the simplified analysis, the
empty tanks were idealized as continuous, single-degree-of-freedom"
systems. However, the pertinent vibrational parameters (éuch as
generalized force, generalized mass, and méde participation factor)
were defined and calculated with the use of shell theory, rather than
from'equivalent lumped-mass or beam models; thus assuring the
accuracy of the procedures; Simple analftical expressions, in the
form of cubic and quadra?ic polynomials, were developed which
accurately predict shell stresses; shell displacements, base shears
and overiurning moments induced in empty cylindrical storage tanks
(both with and without a roof structure) by horizontal earthquake

ground motion.

Simplified procedures for conducting a seismid (response
spectrum) analysis of flexible, liquid-filled cylindrical storage
tanks were presented in Chapter 5. Both totally full and half full
liquid storage tanks were considered. The hydrodynamic pressures
developed when a fluid container is subjected to Horizontal accelera-
tions were separated into impulsive and convective barts, and were
treated independently. The‘convective pressures, which are those

produced by the oscillations of the sloshing fluid mass, can be
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accurately determined from the existing expressions applicable to

rigid containers.

Simple analytical expressions, applicable to both completely
full and half full tanks, which accurately determine . impulsive hydro-
dynamic wall pressures, shell stresses, base shear, and overturning
moment were developed for cylindrical tanks subjected to horizontal
earthquake ground motion. Favorable numerical comparisons for several
case studies of the results obtained from the present study with those
obtained in other investigations were made, thus verifying the
accuracy of the simplified procedures. These numerical comparisons
also illustrated the unconservativeness éf the "rigid tank"

procedures currently employed by many practicing engineers.

6.2 Recommendations for Future Research

A

The results of the investigations into the vibrational char-
acteristics and seismic analysis of cylindrical liquid storage tanks
presented iﬁ this dissertation are by no means final or complete.

To the contrary, the findings of the investigation reported herein
indicate several aspects of the subject area which warrant further
study. It is recommended that research be continued or initiated on

the following topics:

1. The effect of roof structure on the vibration of
shallow, liquid-filled cylindrical tanks. Since
the greater portion of the liquid mass in shallow

tanks participates in sloshing, the mass of the roof
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structure may have significant impact on the
natural frequency of the shell-liquid

system.

The effect of roof structure on the higher order

(n > 1) circumferential modes of vibration

which have been found to be excited

when the boundary conditions at the base of the
tank deviate from the ideal, cohtinuous condition.
Additional studies on the effect of base boundary
conditions on the vibrational characteristics of
eylindrical‘tanks is needed.> The relationship
between mode coupling and natural frequency with
the number of discrete support locations for

any particular cylindrical tank is yet to be
determined;

The performance of anchor bolts on cylindrical

tanks during past earthquakes has been poor. The

localized stress conditions which develop in the tank

wall in the vicinity of anchors, which attach the
tank to its foundation, of liquid storage tanks
subject to horizontal ground moeion is an area
in which no research information exists to date.
Obviously this is another area in need of future

investigations.
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5. The effect of the roof structure on the response of
iiquid filled tanks where the freeboard is less than
the sloshing height warrants investigation. In this
case the sloshing action of the convective fluid
mass 1is restricted and thus could alter’and compli-
cate the overall response of the shell-fluid
system; " Also, significant hydrodynamic pressures
against the roof structure would develop in this
situation which would undoubtedly affect design

recommendations for the tank roof.

Research into the aforementioned topics will undoubtedly
result in a better understanding of the vibrational characteristics
of cylindrical liquid storage tanks, and lead to the development of

new and more realistic analysis and design procedures.
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TABLE 1

CUBIC POLYNOMIAL COEFFICIENTS FOR NATURAL FREQUENCY

"(OPEN 'TOP TANKS)

(2738)’

c, c, c, c, RANGE
T
1.01233 | 0.262992 |- 4.10171 3.76038 | 0.1 <32 < 0.65
(o]
N Ho
1.08245 |- 1.34536 0.686224 | - 0.128323[ 0.65 < 5% < 1.5
(o]
- I.Io Ho 2 I-Io 3
f=C1'l'C2 (B—)+C3 (D—-) +C4 (]—)—')
[o] [o] . [o]
TABLE 2
NUMERTCAL COMPARISONS - NATURAL FREQUENCY
(OPEN TOP TANK)
H = 25.92 m (40 ft) E_ = 206,900 MN/m® (30,000 ksi)
D, = 36.58 m (120 ££)  p_= 20.3 Kg/m> (0.000733 1b-secZ/in’)
h = 25.4 mm (1.0 in) v =0.3

(NATURAL FREQUENCY IN CPS FOR n = 1, m = 1 MODE)
| Present Analysis | Ref. 20 | Ref. 67 | Ref. 26 | Ref. 68
34.29 34,03 | 34.08 34.04 34.66
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TABLE 3

MAXTMUM NORMALIZED SHELL DISPLACEMENT 'COMPONENTS

OCCURRING AT Z/Ho = 1.0

Ulo

0.1 | .036 | .0428| 1.0
0.2 | .0713| .166 | 1.0
0.3 | .109 | .355 | 1.0
0.4 | .140 | .533 | 1.0
0.5 | .164 | .666 | 1.0
0.6 | .185 | .759 | 1.0
0.7 | .202 | .822 | 1.0
0.8 | .215 | .866 | 1.0
0.9 | .226 | .897 | 1.0
1.0 | .233 | .920 | 1.0
1.1 | .238 | .937 | 1.0
1.2 | .242 | .950 | 1.0
1.3 | .243 | 960 | 1.0
1.4 | .243 | .968 | 1.0

1.5 | .242 } .974 1.0
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TABLE 4

CUBIC POLYNOMIAL COEFFICIENTS FOR FUNDAMENTAL VERTICAL MODE

RADIAL DISPLACEMENT VARIABLE w (OPEN TOP TANKS)

w <;—o> - (ﬁ;)cw

o

2y = Z
(H)—C]_+C2 (Ho)+C

i Al A2 A3 A4 RANGE
H
-0.089975 | 0.798316 | - 1.32103 0.725883| 0.1 <> < 0.7
1 (o}
H
0.139783 | -0.149235 0.08672 |- 0.020660 | 0.7 <> < 1.5
0
H
2.21298 | -2.498860 3.75593 |- 2.859850 | 0.1 < 3> < 0.7
2 o
H
1.823820 | -0.538976 | - 0.314666 | 0.139689| 0.7 <> < 1.5
(o]
H
-2.28703 5.258140 | - 4.64918 1.79064 | 0.1 < =% < 0.9
3 (o]
H
~2.76497 4.58248 | - 2.18674 0.405458 | 0.9 < > < 1.5
' (o]
H
0.95334 0.260315 | -13.5113 18.5019 0.1 <5><0.5
4 o]
L
0.184601 | -0.504041 0.0826718| 0.003546 | 0.5 < =< 1.5
(o]
H, B2 H 3
Ci = Ali + AZi ("5—)4' A3i ('D——) + A4i (D—) v 1=1, 2, 3, 4 (2.42)
(o] (o] (o]
W

s &2+, &0 <10 (2
(o] o o
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where (CW = 1.0/2'2 Ci)

i=1

(2.43)



" TABLE 5

NUMERICAL COMPARISONS - FUNDAMENTAL VERTICAL MODE SHAPE

(RADIAL DISPLACEMENT w)

z Present‘

T Analysis Ref. 26 Ref. 67

(o]
0.1 | .2186 2245 2242
0.2 | .3615 .3765 .3773
0.3 | .4874 4920 | .4920
0.6 | .s973 | .603s .6036
0.5 | .6927 7052 | 7054
0.6 | .7750 .7946 .7949
0.7 | .8456 .8699 8702
0.8 | .9056 .9294 .9298
0.9 | .9567 .9716 .9720
1.0 | 1.0000 1.0000 | 1.0000
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TABLE 6

CUBIC POLYNOMIAL COEFFICIENTS FOR NATURAL FREQUENCY
(TANKS WITH ROOF STRUCTURE)
Kr = Roof Mass Coefficient
K. C; c, Cy C, RANGE
, , H
0.786567 =~ 1.17223 1.07850 - 0.514795 (0.1 < 59-5_0.65
(o}
1.0
HO
0.74771 - 0.90676 0.492937 - 0.104452 [0.65 < 5 <15
- 0
. Ho
0.723751 - 1.34884 1.51371 - 0.751037 |0.1 f_B—-i 0.65
(o]
2.0
. Ho
0.60062 - 0.710395 0.388042 =~ 0.0841134|0.65 5_5—-5_1.5
(o]
HO
0.689968 - 1.54628 2.,05999 - 1.12655 |[0.1 5_5—-5.0 65
3.0 °
H0
0.513494 - 0.587046 0.307777 - 0.0632645]/0.65 < E;-f_l.s
(o]
- | HO HO 2 HO 3 2 38
f=C +C, ) +Cy )" +C, G (2.38)
(o] (o] 0
mr HO
Kr =4 2D (2.48)

o B B
] i it

(=]
[}

c o

mass of tank cylinder
height of tank

diameter of tank
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TABLE 7 (

a)

CUBIC POLYNOMIAL COEFFICIENTS FOR FUNDAMENTAL VERTICAL MODE

RADIAL DISPLACEMENT VARIABLE w

(Tanks with Roof Structure, K. = 1.0)

A

A

A

1 2 3 4 RANGE
H
~0.0806288 | - 0.305919 | - 0.661456 0.734952 | 0.1 _F"—_ 0.5
0
H
-0.157613 0.496401 | - 0.419872 0.113917 | 0.5 53_ 1.5
o
H
2.13641 - 9.80437 39,1597 -43.5108 0.1 _ 3"— _ 0.5
- o}
H
2.65479 - 2.9480 1.90195 |- 0.515507 | 0.5 D—°_ 1.5
O
H
-4.43301 19.0397 | -62.3857 69.3175 0.1 _ 3> _ 0.5
(o]
H
-5.78996 10.8499 |- 6.67043 1.36473 0.5 > _ 1.5
o
H
3.33493 |- 8.75453 | 20.7375 | -23.0417 (0.1 _ 3% _ 0.5
. (o]
HO
4.49493 | - 9.47946 6.66519 |- 1.56211 |0.5 > _ 1.5
Q
Ho Ho Ho'3
Cl = Ali + AZi (3-) + A3i (3—) + A4i (F‘) , 1=1, 2, 3, 4
(o] o (o]

_ (2.42)
v =c +c. &) +rc. 3B &3 (2.41)
H 1 2 ‘H 3 'H 4 ‘H .

o (o) (o] (o]
VA : 4
W (H—) =w (I—zi-_) CW where (Cw = 1.0/Z Ci) (2.43)
o o i=1
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TABLE 7 (b)

CUBIC POLYNOMIAL COEFFICIENTS FOR FUNDAMENTAL VERTICAL MODE

RADIAL DISPLACEMENT VARIABLE w

(Tanks with Roof Structure, Kr = 2.0)

-124-

i | Al A2 A3 ' A4 RANGE
. H
0.0830497 |- 1.314960 4,828940 5.255215 {0.1 iDi < 0.5
1 (o]
. H
-0.0794525 0.313819 0.320369 0.103063 0.5 < D—o < 1.5
o
: H
-1.112680 20.352000 |-48.378000 | 36.336700 0.1 < D_o < 0.5
2 o] .
Ho
2.0787270 |- 1.581730 1.018400 |- 0.359951 (0.5 < b—-ﬁ 1.5
o
. HO
3.7241200 {-46.806300 |[117.415000 89.121700 (0.1 iD— < 1.5
3 (o]
H
-2.7532500 2.7705 - 0.225263 |- 0.258464 (0.5 < 39- <1.5
o
H
-1.2752700 | 24.1728 -63.738200 | 48.406300 (0.1 _<__~]-)2 < 0.5
4 4 o
I-Io
1.6724500 |- 1.3582 - 0.521523 0.504622 0.5 < D—'_<_ 1.5
' o
HO Ho 2 HO 3
Ci = Ali + AZi (-]-)—) + A31 (—1-)-—-) + A4i 5 > 1= 1, 2, 3, 4 (2.42)
o o o
- .z z z 2 z 3 z
w (H—) = Cl + C2 (ﬁ_) + C3 (ﬁ-') = C4 (ﬁ—) » 0 < ' < 1.0 (2.41)
o o o o o
- ' 4
v =% & c, where (C_ =1.0/T C,) (2.43)
fo) o i=1



TABLE 7 (c)

CUBIC POLYNOMIAL COEFFICIENTS FOR FUNDAMENTAL VERTICAL MODE

RADTAL DISPLACEMENT VARIABLE w

(Tanks with Roof Structure, Kr = 3,0) .
A1 A2 A3 A4 RANGE
0.1019380 1.620500 6.297910 7.233600 O.l_i'ﬁ— 0.4
)
H 15
-0.0951424 0.388558 |~ 0.416326 0.139522 | 0.4 <'52 *
~ )
: H
~0.39744 | 14.498500 |-33.773500{ 24.543300 0.1 < =% < 0.5
o
H
2.09972 1.910130 1.477480f - 0.542978 {0.5 <'52 1.5
o
: H
2.52294 -34.172000 84.48100 -63.313300 | 0.1 < Bg' 0.5
o
A H
~-5,90120 15.801400 | ~-16.4294 5.992700 {0.5 < 52 1.5
o
H
-0.928958 18.5036 —48.1153 36.512000 {0.1 5.52 0.5
)
H
3.13965 - 7.61006 7.32423 - 2,498780 | 0.5 < 52 1.5
o
Ho Ho 2 Ho’3
Ci = Ali + AZi (ﬁ;) + A3i (ﬁ;) + A4i (5;9 i=1, 2, 3, 4
(2.42)
el 2z z )2 z 33 .2
w (HO = Cl + C2 (Ho) + C3 (HO) + C4 (Ho) 0 < Ho 5_1.0
(2.41)
— ,Z : z c i 4
v () =% €90 where (¢ =1.0/3 cC) (2.43)
o o w =1 <
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TABLE 8 -

NATURAL FREQUENCIES FOR COS n6 MODES (m = 1)

(Opeﬁ Top Tank)

= 9.14 m (30 £t) E_ = 206,900 MN/m” (30,000 ks1)
= 9.14 m (30 ft) Pg = 20.3 kg/m3 (0.000733 lb—seczlin4)
= 4,76 mm (0.1875 in) v = 0.3
Circumferential Wave (n) ' " 'Natural Frequency (cps)
1 51.58
2 25.7
3 14.18
4 8,746
5 "5.97
6 4,58
7 4,109
8 4,284
9 4.897
10 5.789
" "TABLE 9

EFFECT OF BOUNDARY CONDITIONS UPON NATURAL FREQUENCY OF
CYLINDRICAL TANK (Axial Wave m = 1) ‘

Boundary Case Circumferential Wave Frequency (cﬁs)
1 1 51.47
2 4 -5 39.90
3 5 31.00
4 5. 16.40
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where,

‘TABLE 10

MODEL PARAMETERS FOR CYLINDRICAL TANK

(Simple Model - Refer to Fig. 27)

: 1 2
Ty = Z'pL T Do hL
D . hL
— o ——
m, = m (ZTZ—EZD tanh (3.68 3 )
)
My = Mp =My
Kl = m, Cifig———) [tanh (3.68 ;L)]z
' hL o
D s
21 =-§T%§ tanh (3.68 ;f)
2
_.EE [EE - % 1 -2 El
o mo 2 8 hL 1 m
hy =h -4
by =y - 8

mass density of liquid in tank
acceleration of gravity
diameter of tank

height of liquid in tank

-127-




TABLE 11

NATURAL FREQUENCIES FOR A TALL FLUID FILLED TANK

Present Analysis (Ref. 26)

Coupled Shell-—mo System 3.69 cps 3.56 . cps
Sloshing Fluid Mass my 0.2503 cps 0.2497 cps
where
Ho = 21.95 m (72 ft) E = 206900 MN/m2 (30,000 ksi)
D_ = 14.63 m (48 ft) p_ = 20.3 kg/m>
h =10.92 m (0.43 in) o, = 2.6 kg/m®
v =0.3 hL = 14.63 m (48 ft)
TABIE 12

EFFECT OF STATIONAR? AND SLQSHING FLUID MASSES ON NATURAL

FREQUENCY OF A TALL CYLINDRICAL TANK

System Frequency (rad/sec)
Sloshing mass my 1.57
Shell m_ (coupled) 23,208
Shell m (uncoupled) 23.1849
Empty Shell 120.5
TABLE 13

FUNDAMENTAL SLOSHING FREQUENCY IN A TALL CYLINDRICAL TANK

System Frequency (cps)
Flexible Tank 0.2503
Rigid Tank 0.2505
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TABLE 14

CUBIC POLYﬁOMIAL COEFFICIENTS FOR NATURAL FREQUENCY

(Tank Full with Liquid; == = 1.0)

H‘
(o]
?(——H°)=c +C. /D) +¢C @ /DHYE+c, @ /)3
Do 1 2 o' 7o 3.oo 4 o' “o

Cl C2 C3 | C4 RANGE
. H
0.801874 - 5.76702 17.4727 .- 17.9596 [ 0.1 <2<
. ’ﬁo
0.256054 - 0.316141 0.148879 - 0.0242073) 0.4 < B—gﬁ 1.5
(o]
TABLE 15

CUBIC POLYNOMIAL COEFFICIENTS FOR NATURAL FREQUENCY

o
(Tank Half Full with Liquid; z= = 0.5)
(o]
= ' ‘ 2 3
£ (—D—;-) =C, +C, (/D) +Cq (HO/DO) +¢C, (H_/D)
¢, c, C, c, RANGE
H
1.76195 - 14.0309  44.9335 - 48,4143 [0.1 << 0.4
o
H .
0.369341 - 0.401425 0.215224 - 0.049211 0.4 < % < 1.5
(o]
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TABLE 16

NATURAL FREQUENCIES OF A WATER FILLED SHALLOW CYLINDRICAL TANK

Ho = 12,19 m (40 ft) v=20.3
Do = 36,58 m (120 ft) E = 206900 MN/m2 (30,000'ksi)
h = 25.4 mm (1 in) o = 203 kg/m> (0.000733 lb-sec’/in’)
Water Depth, Natural Frequency (cps)
hL/Ho Ref. (26) (Ref. (20) | Present Analysis

1.0 6.18 6.20 6.23

0.5 9,88 —_— 9.70

0 34,04 34.03 34.29

TABLE 17

NATURAL FREQUENCIES OF A WATER FILLED TALL CYLINDRICAL TANK

H
o

D
o

21.95 m (72 ft) E.

14.63 m (48 ft) p

206900 MN/m2 (30,000 ksi)

20.3 kg/m> (0.000733 1b-sec’/in™)

Water Depth

by /H,

Shell Wall Thickness,

Natural Frequency (cps)

h Ref. (26) |Present "Analysis
1.0 25.4 mm (1.0 in) 5.31 5.43
1.0 10.82 mm (0.43 in) 3.56 3.63
1.0 7.315 mm (0.288 in) 2.93 2.97
0.5 25,4 mm (1.0 in) 11.42 11.492
0.5 10.92 mm (0.43 in) - 9.18
0.5 7.315 mm (0.288 in) - 7.67
0 —_— 19.26 19.18
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TABLE 18

CUBIC POLYNOMIAL COEFFICIENTS FOR MODAL PARTICIPATION FACTOR, T

(OPEN-TOP TANKS)

C1 | : C2 C3 C4

RANGE

0.0684453 0.0896858 0.0994536 0.0055273

2]

o
. < .
0.1 <5%< 1.5

o

H H 2

TABLE 19

H 3

= O O _9
Fac +C, D +C, G +¢,
0o o . (o}

(4.34)

CUBIC POLYNOMIAL COEFFICIENTS FOR MODAL PARTICIPATION FACTOR

(TANKS WITH ROOF STRUCTURE)

Kr - Roof Mass Coefficient

Kr Cl ‘ 02 C3 C, RANGE
' H

1.0 10.0339638 0.245286 - 0.0366713 0.0531889} 0.1 f_Bg'f_l.S
o

Ho ,

2.0 | 0.040868 0.040868 -~ 0.0705786 0.05515 0.1 f_ﬁ—-i_l.S
: o
‘ ' H

3.0 | 0.0558758 0.290178 - 0.0470643 0.0553761] 0.1 f_sg-ﬁ_l.S
o

H ' H 2 H 3
(4.34)

T oo _0. _0 _0.
I =c¢, +¢, (D ) + Cq (D )+ C, (D )
(o] o [o]

-131-




TABLE 20

QUADRATIC POLYNOMIAL COEFFICIENTS FOR AXIAL STRESS VARIABLE

z| |
N

(OPEN-TOP TANKS)

i A A, Aq RANGE
H
- 0.442257  4.,18610 - 2.97839 0.1 <5><0.7
’ (o}
1
H
1.38914 - 0.453727 0.00377905 | 0.7 < 3% < 1.5
. [o]
H
0.714654 - 6.60974 4.55015 0.1 <5%><0.7
(o]
2
, H
~ 2.26655 0.740323 - 0.008797 0.7 <5>< 1.5
[o]
| H
- 0.266922  2.37431 - 1.55248 0.1 <5><0.7
’ (o]
3
| H
0.858539 '~ 0.289564 0.00815617 | 0.7 < 5> < 1.5
o

H (EQ 2

o o
Cy = Apy + Ay, (——D ) + Ay D_ » 1 =1, 2, 3 (4.38)
(o]

- 2

N Z = 2 Z Z_
Nz(ﬁ—) c, +¢C, ( )+C3(H),O<H <1.0

1 2 'H
o o 0 o

(4.37)
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QUADRATIC POLYNOMIAL

TABLE 21

COEFFICIENTS FOR CIRCUMFERENTIAL STRESS VARIABLE

Jo
(OPEN-TOP TANKS)
i A A, Ag RANGE
H
0.191939 - 0.547297  0.442259 [ 0.1 <> < 0.6
(o]
1
H .
0.0511747 - 0.0731962  0.0261525 | 0.6 < 3% < 1.5
o
| H
0.978298 .12189 - 2.05627 0.1 5525_ 0.6
2 (o]
H
0.767036 - 0.938242  0.291029 | 0.6 < 5> < 1.5
[s]
H
0.0650312 - 1.86341 2.64265 0.1<3%<0.6
3 [o}
H
- 0.344946 .499699 - 0.180198 | 0.6 < =< 1.5
(o]
H, H 2
C, =A +A, G +4y, G, 1=1,2,3 (4.38)
[o] [o]
FoE) =c +c B+ (‘"‘—)2 0.2< Z<1.0
o H 17 %2 'H 3| 0 H o~
(o] (o] (o) o]
(4.37)
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TABLE 22(a)

QUADRATIC POLYNOMIAL COEFFICIENTS FOR AXTAL STRESS VARIABLEiﬁz

TANKS WITH ROOF STRUCTURE, Kr = 1.0

A A, A, RANGE
H
0.265048  2.6922 - 2.31527 0.1 <5><0.6
- o
) H
1.12862 0.0138629 - 0.21145 0.6 <= < 1.5
(o]
: H
- 0.165426 =~ 3.43119 2.49912 0.1 <5><0.6
o
H
- 1.46742 0.0583485  0.173056 0.6 <2< 1.5
(o]
- 0.103181  0.847816 - 0.388429 0.1 <35%><0.6
o]
H
0.211874  0.159939 - 0.066615 0.6 <2< 1.5
o
H H 2.
C, = Ay, + Ay, (5;) + Asi_(b:) , 1=1,2,3 (4.38)
= .z 2 z 2 z
Nz(ﬁ—_)=cl+cz(ﬁ—)+c3(ﬁ—_)’ 0<ﬁ‘—_<_l.0
(o] o o}
(4.37)
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TABLE

QUADRATIC' POLYNOMIAL COEFFICIENTS

22(b)

FOR AXIAL STRESS VARIABLE EZ

TANK WITH ROOF STRUCTURE, Kr = 2.0

i Ay A, Ay RANGE
I-IO
0.478068  2.48205 - 2.37272 0.1 <-=<0.6
1 [o]
. H_
1.29212 - 0.24022 - 0.12052 0.6 <> < 1.5
(s}
| H
- 0.431494 - 2.98807 2.67065 0.1 _<_]—)25 0.6
: ) (o]
2
H
- 1.23845 - 0.190285 0.288065 0.6 <5>< 1.5
(o]
. | H
- 0.019253  0.395888 - 0.130243 0.1 <-%<0.6
’ o]
3 .
0.0111039  0.346697 - 0.141286 0.6 < 3> < 1.5
o
H B2
Ci=4p; + Ay, (i) + Ag, (i) , i=1, 2,3 (4.38)
- 2 Z
N = Z 23 0 <g21.0
Nz = Cl + 02 (Ho) + C3 (Ho) Ho

(4.37)
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TABLE 22(c)

QUADRATIC  POLYNOMIAL COEFFICIENTS FOR AXIAL STRESS VARIABLE 'N'z

TANKS WITH ROOF STRUCTURE, K = 3.0
i Ay A, Ay RANGE
H
0.608212  2.57544 - 3.05494 0.1 <5%<0.5
(o]
l .
) 0
1.36414 - 0.370922 - 0.0642124 | 0.5 <3><1.5
o
) H
- 0.557884 - 3.1266 '3.6894 0.1 <5><0.5
| . .
2
. H
- 1.39594 0.198098 0.117251 0.5 <5><1.5
) (o]
H
. |- 0.033353  0.542025 - 0.618857 0.1 <5%<1.5
(o]
3 .
- 0.00627 0.291839 - 0.119137 0.5 < 5% < 1.5
[o]
H_ H 2
C; =4y, + 4y, (-5;-) + Aq (3;) » 1=1, 2, 3(4.38)
= Z 14 Z 2 ‘Z
Nz(ﬁ_ = Cl + C2 (‘I:I—') + C3 (ﬁ—) , 0< ﬁ_—i 1.0
(o] (o] o (o}
(4.37)
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TABLE 23(a)

QUADRATIC POLYNOMIAL COEFFICIENTS FOR CIRCUMFERENTIAL STRESS VARIABLE

No

TANKS WITH ROOF STRUCTURE, Kr = 1.0

i Ay A, A, . RANGE
H
0.0821146 - 0.121017 0.0352807 | 0.1 <> < 0.8
o
1
H
0.0469199 - 0.0668164  0.0244768 | 0.8 < 59_5 1.5
. o]
' H
- 0.0710643 0.339102 =~ 0.19281 0.1 <5><0.8
o]
2
H
0.228774 = 0.260197 0.0783451 | 0.8 <2< 1.5
o
, H
0.636397 - 1.51931 0.906262 0.1 <3><0.8
o]
3
. H
0.0325932 - 0.0537606  0.0237666 | 0.8 <> < 1.5
o
‘ - H_ H_ 2
= 2 2 Z 2 Z
Ne(ﬁ—O = Cl + 02 (E—D + C3 (ﬁ—J , 0.2 f_ﬁ—'f_l.o
(¢] [o] (o] (o]
(4.37)
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TABLE 23(b)

QUADRATIC POLYNOMIAL COEFFICIENTS FOR CIRCUMFERENTIAL STRESS VARIABLE

T
TANKS WITH ROOF STRUCTURE, K = 2.0
RANGE
Ay ) Aq
HO
0.352785 - 1.24997 1.11839 0.1 <35%><0.7
o
H
0.0093189 - 0.0017308 - 0.003029 | 0.7 <> < 1.5
o
| H
- 2.80075  14.5698 - 18.9509 0.1 <5><0.4
(o]
- . H
0.126277 - 0.1447742 0.0465587 | 0.4 <=2 < 1.5
o
HO
1.33861 - 2.42524 - 1.54085 0.1 <5%<0.4
) (o]
HO
0.0582763 - 0.0755686 0.0267977 | 0.4 < =2 < 1.5
o
H_ B2
Ci = Ali + AZi (i) + A3i (']‘)';) ’ i=1, 2, 3 (4.38)
— Z V4 2 2 Z
—_—) = = [l — < 2= <
NG(H) ¢, =¢C, (H)+03 G > 0.2 <4210
[o] o (o] (o]
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TABLE 23(c)

QUADATRIC POLYNOMIAL COEFFICIENTS FOR CIRCUMFERENTIAL STRESS VARIABLE

Ng

TANKS WITH ROOF STRUCTURE, Kr = 3.0

1 A A, A, RANGE
| | H,
0.148724 - 0.329932 0.149165 | 0.1 <35> 0.5
1
H
0.0414211 - 0.062895 0.0244114 | 0.5 <3 <1.5
o]
H
- 1.56127 . 8.25974 - 11.6807 0.1 <35> <0.4
O
2
H
0.0275444  0.00954823 - 0.0170391 | 0.4 <35> < 1.5
» o
H
0.358804  2.51895 - 7.38195 0.1 <35> <0.4
(o]
3
‘Ho
0.119292 - 0.198201 0.0834478 | 0.4 < 3> < 1.5
. . (o]
H H 2

c,=A,+A,(—-‘i)+A31(—D—9-), i=1, 2, 3(4.38)
. Q
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TABLE 24

FLOW DTAGRAM - SEISMIC ANALYSIS OF EMPTY CYLINDRICAL TANKS

Given: Ho’ D,E, p

=

Determine Natural Frequency

1) £, Eq. 2.38

2) £, Eq. 2.39

Determine Mode Shape
(radial displacement component, W)

1 c, i=1,2, 3,4, Eq. 2.42

| 2) w, Eq. 2.41

3) w, Eq. 2.43

Calculate Mode Participation Factor, T

1) T, Eq. 4.34

2) T, Eq. 4.36

Determine Spectral Quantitites

SV’ Sa’ Sd’ From Appropriate

Response Spectrum

)
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TABLE 24 (continued)

-t
/
Shell Membrane Shell Radial . Base Shear and
Stress Resultants‘ Displacement, w ‘Overtufning Moment
(Ng, N)
1) Ci’ 1) Ci’ A 1) ¥(z), Eq. 2.43
i=1,2,3 Eq. 4.38 i=1,2,3,4 Eq. 2.42 2) q
= - : : max,
2) N, Eq. 4.37 2) w, Eq. 2.41 Eq. 4.42 (h.4b)
3) N, Eq. 4.39 3) w, Eq. 2.43
’ . ’ 3 Moy
4) Ny, or N_, . 4) w, Eq. 4.33 Eq. 4.43 (4.45)
Eq. 4.33
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TABLE 25

MODEL PARAMETERS FOR CYLINDRICAL TANK

(SIMPLE MODEL - REFER TO FIG. 3.3)

1
- Z'pL ﬂDo

my, =

2

b,

D
m, tanh (/ﬁ'iﬁz)

m -
° /3D,
by
D by
= _9 L
m, = 0.159 hL tanh (3.68 DO) m,
h (EBP) = 3
0 g Mo
_.].-_ 4.0 -
ho(IBP)— 3 S 1.0 hy
tanh (/3 2hL)
/3 %
2hy
cosh (3.68 gé) -1.0
- - ~ 0
h, (EBP) = | 1.0 W -
3.68 5= sinh (3.68 5°)
0 o o
L_ s -
cosh (3.68 %59 - 2.01_1
h, (IBP) =|1.0 - 9
1 B B "L
3.68 5 sinh (3.68 o
5 o ‘ 0 B
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TABLE 25 (continued)

MODEL PARAMETERS FOR CYLINDRICAL TANK

(SIMPLE MODEL - REFER TO FIG. 3.3)

2
_0.585 by,
K1 = m, g(tanh 3.68 5;&

by
where,

Py, = mass density of liquid in tank

g = acceleration of gravity
Do = diameter of tank
height of liquid in tank

L
1]
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TABLE 26

RELATIVE LOCATION OF MAXIMUM WALL ACCELERATIONS IN

LIQUID-FILLED CYLINDRICAL TANKS

H ‘n

i A

o ;’;— = 1.0 % = 0.5
0.1 0.05 0.03
0.2 0.11 0.07
0.3 0.18 ©0.15
0.4 0.28 0.17
0.5 0.40 0.18
0.6 |  0.49 0.19
0.7 0.57 0.21
0.8 0.62 0.23
0.9 0.67 0.25
1.0 0.70 0.27
1.1 1.0 0.28
1.2 1.0 0.29
1.3 1.0 0.30
1.4 1.0 0.31
1.5 1.0 0.33
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TABLE 27

FLOW DIAGRAM -~ SEISMIC ANALYSIS OF CYLINDRICAL LIQUID STORAGE

TANKS (IMPULSIVE EFFECTS)

Given: H_, D, h, ¢, E, By, 0y; By

Determine model parameters

m , h - Table 25
o’ "o

. Determine natural frequency of
flexible shell-liquid system.
1) £, Eq. 3.34

2) £, (a) Eq. 3.35 forhgé-= 1.0
o

(b) Eq. 3.36 for ;L-= 0.5
: 0

{

Determine spectral acceleration, Sa’ for flexible

shell-liquid system from appropriate response spectrum
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"TABLE ‘27 (continued)

1) pi(O, z), Eq. 5.11
Z

(a) EE’ Table 26
(o]

o

Calculate Impulsive Hydrodynamic‘Preséures

) v&), Eq. 5.12 (;E-= 1.0) or Eq. 5.13 (;E-= 0.5)

o (o]

\

Calculate Shell

Membrane Stresses

1) Ny, Eq. 5.14

2) N_, Eq. 5.18

(a) MEM’ Eq. 5.15

Calculate Base Shear

and Overturning Moment"

1) (Qmax) , (a) Eq. 5.19,
i

o)
&

for 0.1 <3
(o]

=

i 0.5

(b) Eq. 5.20,

H
for 0.5 < 5> < 1.5
(o]

OTM) » Eq. 5.21

2)
‘ i
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NUMERICAL COMPARISONS OF IMPULSIVE HYDRODYNAMIC PRESSURES

TABLE 28

FOR A TALL TANK

z Present Rigid
o Analysis Ref. 26 Tank
0.083 | ' 48125.4 Pa 51848.6 Pa 33853.2 Pa
(6.98 psi) (7.52 psi) (4.91 psi)
0.1 51021.2 Pa 57916.0 Pa 33646.4 Pa
(7.4 psi) (8.4 psi) (4.88 psi)
0.5 83978.1 Pa | 81702.9 Pa | 25510.6 Pa
(12.18 psi) (11.85 psi) (3.7 psi)

TABLE 29

NUMERICAL COMPARISONS OF AXIAL STRESS RESULTANT, Nz

FOR A TALL TANK

P I
0.0 1.48 M¥/m - 0.602 M¥/m
(8.47 k/in) (3.44 k/in)
0.0958 1.48 MN/m 1.47 MN/m -
(8.46 k/in) | (8.38 k/in)
0.125 1.36 MN/m 1.25 MN/m -
(7.76 k/in) (7.12 k/in)
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TABLE 30

NUMERICAL COMPARISONS OF IMPULSIVE HYDRODYNAMIC BASE

SHEAR AND OVERTURNING MOMENT FOR A TALL TANK

Present Rigid
Analysis Ref. 26 Tank
Base 24,1 MN 22.7 MN 11.4 MN
Shear (54.2 x 102 kips)| (51.1 x 10° kips) | (25.6 x 102 kips)
Overturning 232,7 MN~-m - 92.9 MN-m
Moment (1.69 x 10° k-ft) : (6.86 x 10* k-ft)
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TABLE 31

NUMERICAL COMPARISONS OF IMPULSIVE HYDRODYNAMIC PRESSURES

FOR A SHALLOW TANK

z_ Present Rigid

Ho Analysis Ref. 26 - Tank

0.1 72463.9 Pa 65707.0 Pa 35370.1 Pa
(10.51 psi) (9.53 psi) (5.13 psi)

0.5 61914.9 Pa 58743.3 Pa 26820.6 Pa
(8.98 psi) (8.32 psi) (3.89 psi)

0.9 8894.2 Pa 17788.5 Pa 6798.2 Pa
(1.29 psi) (2.58 psi) (0.986 psi)

TABLE 32

NUMERICAL COMPARISONS OF MAXIMUM AXIAL STRESS RESULTANT, Nz IMPULSIVE

HYDRODYNAMIC BASE SHEAR, AND IMPULSIVE HYDRODYNAMIC OVERTURNING

MOMENT FOR A SHALLOW TANK

Present Rigid
Analysis Ref. 26 Tank
) 0.182 M¥/m  [0.190 MN/m 0.078 MN/m
max (1.04 k/in) |(1.08 k/in) [ (0.446 k/in)
Base 41.1 MN 39.7 MN ‘ 17.4 MN
Shear (92.4 x 102 W[(89.2 x 10% V| (39.2 x 10? k)
Overturning 572.8 MN-m - 244,0 MN~-m
Moment (4.2 x 105 k-ft) (1.8 x 105 k-ft)
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n=2 : | n=3

Fig. 1 Circumferential Vibration Mode Shapes

-150-



/ //
/
// / //
[ .
/ / !
’ \
l \
\
m = | m=2
\ //
\
\ \ //
\ (
\ \ \
/ / \
, / )
// (/ P e
\ \ <
m=3 m=4

Fig. 2 Axial Vibration Mode Shapes
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Fig. 3 Cylindrical Tank Uniformly Attached to a Rigid

Foundation
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Fig. 4 Two-Dimensional Reference Surface
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Fig. 5 Metric Components and Normal Vector
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Contour Shell
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-y

Fig. 7 Differential Element of An Axisymmetric Shell
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(a) Force Resultants

 Mgg +dMgg

Mo

(b) Moment Resultants

Fig. 8 Force and Moment Resultants for an Element of an

Axisymmetric Shell
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Fig. 9 Displacement Components and Dimensions

for a Cylindrical Shell
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Fig. 10 Typical Storage Tank Details

-157-




< &5 7]

Conti P Stiffener Plates
ontinuous L :

Bolt Ring . /
Tank Wall Il —Anchor Bolt

Foundation —__|

- —— — — —

B
B

(@) Anchor Bolt Detail
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Fig. 11 Typical Anchor Bolt Details
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Fig. 12 Coordinates of an Axisymmetric Shell
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Fig. 13 Frequency versus Tank Aspect Ratio
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Fig. 14 Natural Frequencies of Open-Top Cylindrical Tanks
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Fig. 15 Fundamental Vertical Mode Shape
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Fig. 16 Storage Tank with Supported Roof
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Equivalent Flat Plate Roof -

Fig., 17 Cylindrigal Shell Model with

Circular Plate Roof
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Fig. 18 Effect of Roof Mass on Natural Frequency of
Cylindrical Storage Tanks
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Fig. 19 Typical Discretization for Finite

Element Parametric Study
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® Boundary Case | = Anchors @ 20°
/\ Boundary Case 2 - Anchors (@ 40°

O Boundary Case 3 - Anchors @ 60°
O Boundary Case 4 - Anchors @ 120°

Fig. 20 Various Cases of Boundary Condition at Base

of Cylindrical Storage Tank
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Fig. 21 Natural Frequency versus Number of

Circumferential Waves
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Fig. 22 Circumferential Mode Shape for Boundary
Condition Case 2 (Anchors @ 40°)
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Fig. 23 Circumferential Mode Shape for Boundary
Condition Case 3 (Anchors @ 600)
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Fig. 24 Circumferential Mode Shape for Boundary

Condition Case 4 (Anchors @ 1200)
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Fig. 25 Fluid Sloshing in a Cylindrical Tank
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Fig. 26 Complex Mechanical Model for a Cylindrical Tank
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Fig. 27 Simple Mechanical Model for a Cylindrical Tank
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Fig. 28 Analytical Model of Shell-Liquid System

Fig. 29 Distribution of Sloshing Fluid Spring
Force in the Shell
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Meridian

(a)

(b)

Fig. 30 Shell Displacement Components
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Fig. 31 Frequency versus Aspect Ratio for Cylindrical
Tanks Full with Water
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Fig. 32 TFrequency versus Aspect Ratio for Cylindrical
Tanks Half Full with Water
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Fig. 33 Natural Frequencies of Tanks Full with Water
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Fig. 34 Natural Frequencies of Tanks Half Full with Water
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Fig. 35 Natural Frequencies of Empty, Half Full, and
Completely Full Cylindrical Tanks
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Fig. 36 Sloshing Fluid Mass versus Tank Aspect Ratio
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Fig. 37 Radial Displacement Mode Shapes for a Liquid-
Filled Tall Tank
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Fig. 38 Radial Displacement Mode Shapes for a Liquid-
s Filled Shallow Tank
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Fig., 39 Axisymmetric Shell on Moving Foundation
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Fig. 41 Sample of Earthquake Design Spectrum
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Fig. 42 Mode Participation Factor versus Tank Aspect Ratio
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Fig. 43 Mode Participation Factor for Open-Top
Cylindrical Tanks
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Fig. 44 Cylindrical Shell Model
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Fig. 45 Typical Axial Stress Resultant Distribution in an

Empty Cylindrical Tank Undergoing Lateral Vibration
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Fig. 46 Typical Circumferential Stress Resultant Distribution
in an Empty Cylindrical Tank Undergoing Lateral

Vibration
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Fig. 47 Representation of Cylindrical Shell by
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Fig. 49 Idealization for a Slender Container
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Fig. 50 Linear Approximation for Axial Stress Resultant
Distribution in a Liquid-Filled Cylindrical Tank

Undergoing Lateral Vibration
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NOMENCLATURE

any desired variable (such as displacement or stress)
of the forced vibration solution

polynomial coefficient

" variable corresponding to A, taken from the free
vibration solution

frequency constant (1600.2 in/sec; 5252 ft/sec)
polynomial coefficient

mode participation constant (0.0617952 in/sec;

0.0005472 ft/sec)

circumferential stress constant (lQ%ZELZ-MN/m3;
o o
5083000.0 lb/in3)
o] .
axial stress constant (gg§%LZ-MN/m3;
C ' o
1398000.0 1b/in.3)
o

radial displacement constant

| shell elasticity constant (D = Eh3/12(1 - V2)
diameter of a cylindrical tank

" Young's modulus

Young's modulus for steel (206900.0 MN/mB;
30,000 ksi)

horizontal force exerted by spring of sloshing

fluid mass to shell wall
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F(t) - = Duhamel integral

Fl = generalized force for sloshing fluid mass
PR fean 2‘.A
1+
Kr
: - Lm0
()
I = moment of inertia about a cross section at the

base of the tank

J = generalized force for an empty cylindrical shell

K = shell elasticity constant (K = —_EELE?
1-v
Kn = spring stiffness of liquid mass participating in

nth sloshing mode
K = roof mass coefficient
K1 = spring stiffness of liquid mass participating

in first sloshing mode

L = characteristic length of shell
M = generalized mass for empty cylindrical shell
MBM = bending moment about a cross section at the base

of the tank

Mo = equivalent mass of shell and'stgtionary fluid mass
(MbTM) = convective hydrodynamic overturning moment

(MOTM)E = impulsive hydrodynamic overturning moment )
Ml = generalized mass for shell and stationary fluid

mass
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moment resultants

stress variable for Nz or NQ

non-dimensional stress function for Nz or N9

membrane stress resultants

1 sinf

+V
R r
/]

convective hydrodynamic base shear

impulsive hydrodynamic base shear

transverse shear resultants

radius of the latitude circle at the location where
the sloshing fluid mass spring is attached
radius of curvature of the meridian

length of the normal between any point on the
reference surface and the axis of rotation
arclength along the meridian

maximum pseudo spectral acceleration

spectral acceleration of fundamental sloshing
fluid mass

maximum spectral displacement

spectral displacement of fundamental sloshing
fluid mass

maximum pseudo velocity

amplitude factor for horizontal foundation

displacement
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al

-horizontal time dependent displacement of the

foundation

displacement of shell wall parallel to the xl—axis
at the location of the fundamental sloshing fluid
mass spring

volume of the shell wall from the bottom of the
shell to the point where the sloshing mass spring
(Kl) is attached |

radius of cylindrical shell

maximum water surface displacement

natural frequency, cycles per second

non~dimensional frequency function

time variation of horizontal foundation displacement

acceleration of gravity

shell wall thickness

height of liquid in tank

height to sloshing fluid mass, m measured from
the base of the tank

thickness of tank roof blate

height £o stationary fluid m;ss, mo; measured from
the base of the tank

height to fundamental sloshing fluid mass, m,,

measured from the base of the tank
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g

g

L 2

]

1]

unit vectors parallel to the x, y and z axes,

respectively
distance measured from
liquid to the locatiomn
mass, m

o
distance measured from
liquid to the location
mass, m

o

distance measured from

liquid to the location

mass participating in the first mode of vibration, m

axial wave number

mass of tank cylinder

the free surface of the

of the nth sléshing fluid

the free surface of the

of the stationmary fluid

the free surface of the

of the sloshing fluid

th

mass of liquid participating in the n

sloshing mode

mass of tank roof structure

total mass of fluid in

stationary liquid mass

tank

mass of liquid participating in the first

sloshing mode

circumferential wave number

dynamic wall pressure

convective hydrodynamic wall pressure

impulsive hydrodynamic wall pressure

hydrostatic wall pressure

=201~
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o4
]

"shell surface load vector ‘

q(t) = generalized coordinate for axisymmetric shell
q(2) = effective inertia force per unit length of shell
r = radius of curvature of the parallel

r, 8, z = cylindrical coordinates

> .

r = position vector from the origin of the Cartesian
coordinate system to a point on the reference
surface

> . '

tl = unit tangent vector for the Cl curve

> .

ty = unit tangent vector for the g, curve

>
ty = unit vector determined from the cross product
> -+
of ty and t,
> - > .
t¢, tg, tC = triad of unit vectors tangent to the ¢, 6 and ¢

coordinate curves, respectively

u, = sghell displacement perpendicular to the axis
of symmetry
Ugs Ugs W= displacement of the middle surface in the

meridional circumferential and radial directiomns,

respectively

o
u = displacement vector of points lying on the
reference surface

> . . s
uy = displacement vector of lowest mode of free vibration
- 2 , , \ =
wig = corrected radial displacement functions (= wa(ﬁ—a)

0 o
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W&

o
x(t)

X(t)

X, ¥, 2z
[A(x)]
[I]
[T(x)]
[W(x)1]

{c}
{d(x)}

radial displacement function

horizontal component of earthquake ground motion
horizontal component of earthquake ground
acceleration

maximum value of horizontal earthquake ground
acceleration

Cartesian coordinates

matrix of shell differential equation
identity matrix

transformation matrix

matrix of homogeneous solutions to shell
differential equations

matrix of arbitrary constants

matrix containing particular solutioms to
shell differential equations

matrix of fundamental variables

mode participation factor

non-dimensional mode participation function

il

Brz

fluid velocity potential

.

P 2)
9z

2
p) 1

+ == — +
Br 2 52

L1
Tr

Laplace operator (=

shape function for determining wall accelerations
in a fluid-filled tank

deflection configuration for empty cylindrical tank
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o = metric component of ;1

1
Qy = metric component of Cz
B¢ = angle of rotation of the normal in the meridional
direction
Bg : = angle of rotation of the normal in the

circumferential direction

BC = describes change in thickness of shell wall

§(x) = Dirac delta function

€¢’ eg = normal strains on the reference surface

Cl’ C2 = coordinates on the reference surface

e = circumferential coordinate angle

Qh, = angular amplitude of free oscillations at the
liquid surface

u(z) = mass per unit length

v = Poisson's ratio

3 = displacement field for an axisymmetric shell

p = massvdenéity of sheil material

Pr = equivalent mass dgnsity of shell wall material
plus stationary fluid mass

PL = mass density of liquid in tank

Pn = density measure of stationary fluid mass over

° shell wall volume, V
Pg | = mass density of steel (20.3 kg/m3;

0.000733 lb—secz/in4)
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II

mass density of water (2.6 kg/m3;

0.000094 lb-secz/inA)

density measure of shell wall (= ph)-

angle between the axis of symmetry of the shell
and the shell normal

natural circular frequency, radians per second
natural frequency of coupled shell and stationary
fluid mass

natural frequency of fluid mass participating in
the nth sloshing mode

natural frequency of fluid mass participating in
first sloshing mode

sloshing fluid frequency (first mode) determined
for the coupled shell-liquid system (from Eq. 3.13)
natural frequency of shell and stationary fluid
mass for the coupled shell-liquid system

(from Eq. 3.13)
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