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ERRATA:

1. Page 13, Equation (21) is missing.
2. Page 13, Equations (22), (23) and (19) should be Equations (21), (22) and (23), respectively.

3. Page 14, equation (24-B) is missing the factor of 2 in the denominator.
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This report contains the results of a study-to.determine the

rw¥sStebVenantstorsional constant:fordtwenty-five I-shaped cross-sections

ecommoni&susednastgneggngssgd;cgnqgeggﬁbridggsbeams.t.Regu;;s obtained
puted usingxsix.approximate -methods., One of. these methods is showp to
provide'.an.excellent approximation for the shapes investigated.
. ... Results are also presented for seven other cross-sections
used as test examples for the finite difference computer- program. The
. calculated torsional constants agree very well with the accepted
solutionss! - r 45 - wr- Ui g T A ~;
Torsienal’ shear-stress coefficients are tabulated for three

points on each»of the twenty-five beam cross-sections.
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1. INTRODUCTION

1.1 Objective

This report contains the results of a pilot study undertaken
to evaluate the St. Venant torsional constant, KT’ and she;r stress
coefficients for cross-sections used as prestressed concrete I-beams.
AASHO Types I, through VI cross-sections and the nineteen standard
sections currently or previously used by the Pennsylvania Department
of Transportation were investigated (Refs. 2,3,9). Only the basic con-
crete sectioﬁ was considered. Figure 1 shows a typical I-shape and
Table 1 contains the dimensions of the sections which were investigated.
The dimensions for the AASHO Types V and VI beams are idealized to fit
the basic I-shape shown in Fig. 1. Reference 2 contains the true
dimensions. The results presented for these two sections should be con-
sidered as somewhat more approximate than those for the other sections.

Seven different methods were used to compute the torsional
constants. The primary method under consideration is a numerical solu-
tion of the governing differential equation using finite differences.
The resulting equations were solved to find values of the torsional
stress function at discrete mesh points, referred to as points in the
report. The torsional constant was then evaluated by integrating the
stress function over the cross-section by trapazoidal rule with spe-
cial consideration of edge poiﬁts. Details of the analytic procedufe
are presented in Chapter 2. The remaining six methods of computing KT

involve the application of well known equations used for simpler shapes.

()
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These: equations.are used as. a check on the finite difference results.
It is also determined: if.any:of:these six methods yields results which
are consistently closer to the finite difference results than the

other methods..
2 0 s lEm 20T 30 IS TR i el SR St I

The torsional constants presented herein were developed for
use with an existing finite element program for the analysis of eccen-
trically stifféned plates as described in Refs. 4 énd 12. This'program
is currently being used as the basis for research into the lateral dis-
tribution of live load in bridges composed of reinforced concrete decks
supported by prestressed concrete I-beams. The St. Venant torsional
constant of the I-beam cross—section is used as input to this program
and appears in the stiffﬁess matrix of the eccentric beam elements. A
literature survey has shown the need to include KT in a lateral load

‘i

distribution analysis technique (Ref. 13).

1.2 Previous Work

1.2.1 The Membrane Analogy

The mgmbrane‘analogy proposed by Prandtl for solving for the
torsiongl constant and shgar stresses ig used here. This analogy is
based on the similarities existing between the differential equations
defining the St. Venant torsion problem and the shape of a thin in-
flated membrane stretched over a hole shaped like the cross-section

under investigation. The result is that, as stated in Ref. 6:



-"1. The stress function ¢, which is a measure of the torsional
deformation is analogous to the deflection ... of the

membrane.

2. The shear stresses due to torsion correspond to the slopes

of the membrane, and

3. The volume under the membrane is related to the twisting

moment ."

The result is that the following set of equations can be used to define

the torsion problem (Ref. 11)

, awmattey of how ¢ 1o defined

2 2 —~<7
2—9-+ ¢ = -2 In the Region ey
ox? dy?
¢ = 0.0 On the Boundary (2)
Ry =2 [ f ¢ dx dy 3)
¢ =L . T 3%

Xz KT dy - yz KT ox

T is the applied torque, sz and Tyz are shear stresses, x and y are
reference axes in the plane of the cross-section and z is the coordi-

nate perpendicular to the cross-section.

1.2.2 Presentation of Approximate Equations

St. Venant's solution for a rectangular shape can be written

as (Ref. 8)



3
ky = 2y 2 et Q

In Eq. 4, b is the larger dimension and t the smaller dimension of the
cross-section. Tables of V, an end slope reduction factor, are avail-

able in Refs. 5 and 7. Equation 4 is sometimes approximated as Eq. 5

(Ref. 1).

:——10-0635+0052(3)2 )
K . 635+ 0- b

As the rectangular section becomes thinner Egs. 4 and 5 approach Eq. 6

which is also sometimes used as an approximation.

Kp =737 ®

St. Venant also developed an approximation for the torsional
constant which can be applied to a wide variety of solid sections

(Ref. 7). This approximation is given by Eq. 7

Al :
Kp * %0 Ip (7

Ip is the polar moment of inertia 6f the section and A is its area#
Reference 7 also contains a comparison of exact torsional constants and
the approximate values given by Eq. 7 for a variety of solid sections.
Reentrant corners are not permitted in the application of St. Venant's
approximate formula unless the area is subdivided into smaller areas

which do not contain reentrant corners. This is discussed in Chapter 3.



Lyse and Johnston (Ref. 8) developed an equation for trapa-

zoidal sections corresponding to Eq. 4. This is given as Eq. 8.

_ b 2 2 _ b - 4
Kp [—1—2] (t:1 + t2) (tl + tz) VLt2 Vg .VSt1 . (8)

t, is the smaller parallel dimension of the trapazoid and t; is the
larger. VL is the end slope correction for the wider and VS is the end
slope éorrection for the smaller end.

Equations 4, 5, 6, 7 and 8 could be used to develop tor-
sional constants for open sections composed of rectangles and trapazoids
by adding up the various contributions to the constant. Applications of

3% ///t:;\
Eqs. 5, 6 and 7 form\qu; of the six approximate methods used here.
There are also stiffening effects associated with the junction of the
rectangles.and/or trapazoids and with fillets if any are present.
Trayer and March (Ref. 10) suggested that these additional contribu-
tions to torsional stiffness be taken as some factor times the fourth
power of the diameter of the largest circle which can be inscribed in
the junction. Reference 8 contains values for this factor for some
structural shapes. These values were determined by measuring the volume
under experimental membranes and comparing the results with the tor-
sional constant found by summing up the individual contributions.
Reference 5 contains more recent work based on finite differences in
which a calculated torsional constant was compared wi;h.the sum of

individual contributions. Equations for many structural shapes are pre-

sented which give the torsional constant in terms of the individual

N N O N N B B &S G N R B O B B B aE EEm e



contributions, end slope corrections and junction and fillet correc-
tions. El-Darwish and Johnston (Ref. 5) have presented the following

equations for the doubly symmetric I-Section shown in Fig. 2.-

Ky = % bt3 +% (d - 2t) wi+ 2.0 aln‘l' - 0.420 t* 9)

(t+r)2+w[r+%]
Dl - 2r + ¢ (10)

t, d, w and r are illustrated in Fig. 2. Reference 5 contains figures
relating values of al to w/t for various values of r/t for the case of
parallel flanges and for é flange slope of 1:6. For the case of paral-
lel flanges al may be approximated over the interval 0.5 < w/t > 1.0 by

Eq. 11

@ = -0.042 + 0.2204 < + 0.1355 = - 0.0865 = - 0.0725 [3]2 (11)
1 t t 2 ‘ t

The term 0.420 t" in Eq. 9 is the total end slope correction
for both flanges. The value 0.420 is accurate for b/t > 2.0 but is
adequate for b/t > 1l.4.

Unfortunately the I-shapes commonly used for prestressed
concrete beams are symmetric about only one axis. Furthermore an at-
tempt to provide junction correction factors similar to those found in
Refs. 5 and 8 is complicated by additioﬁal considerations involving two
different flange thicknesses and flange slopes for any given I-beam.

Nonetheless a modified version of the results obtained by El-Darwish



and Johnston will be applied to twenty-three of the fwenty-five sec—
tions analyzed by finite differences in this report.

The final approximate method is to comnsider that KT = Ip.
This is true for circles but becomes increasingly less accurate as the

given shape deviates from a circle.

1.2.3 Previous Solutions for Prestressed Concrete Beams

Tamberg (Ref. 9) has presentéd torsional constants and
shear stress coefficients for AASHO girders Types I, II, III and IV
- evaluated by a finite difference approach. Solutions were élso pre-
sented for beam-slab combinations. Tamberg used far fewer points in
the finite difference mesh than was used in this research. The inte—
gration scheme consisted of finding areas of sections parallel to the
major bending axis by a combination of Simpson's rule and triangular
edge pieces. The volume under the membrane was then computed using

the average end area method. The results were then increased 5% to

compensate for the effect of the large mesh interval on values of ¢ and

another 3%% to compensate for the effect of the large-mesh interval on
the volume calculation. These percentages were chosen based on more
exact calculations using the AASHO Type III girder. The results ob-

tained from this previous study are presented in Table IT.
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2 1.1 Finite Difference Equations
.'L: a2l " v L }""

Each beam to be considered is symmetr1c about 1ts minor bend-

el 26 e ” R -

ing axis. Therefore only one—half of each sectlon was analyzed The

S R PO : -

process used here closely parallels the f1n1te d1fference appreaches
used in.Refs;TSiandVQ. The-region.was divided\ihtd:subareas,by a rec-
tangular meEh as showh in Flgﬂ 3-A. Equation 1 can be written in cen-
tral difference notationxferveach point uéing eduations from the litera-

ture. The part1cular equat1ons found in Ref. 11 were used here. For a

‘s s N NSRS IR TN N 2 . IT N LUn . -

typlcal 1nter10r p01nt such as po1nt 1 in Flg 3-A the equation for the
~ 2 - . o 2 Y S T i, - r PR

stress functlon at that p01nt can be wrltten in terms of the nelghborlng

L Lo i TS < JORN

points deflned in Fig. 3-A as:

nes . . .
~dran . 2 s T 3 e

"h2K? y2 ¢; = k2 (9, - 205 + ) + h? (9, - 20, + ¢) = 2h2k2 (12)

e . 4oz <. ce A e e .
- LY A ’ R STl T 3Ty TN RL L e

,f,The:variablesﬂhAapdAkqaraf@efined'iajFig. 3-B. For points

along the line of symmetry.sg%h as point 3:

h2k? v2¢i k2 (2¢2 -9+ h? (9, - 20, + ¢,) = -2h 22 (13)
cemte TOEIRLLLA I

"¢ - For points-along the free edge. such as.point 2:

Y 3 . . - e
PRI EE N [ I » e

{ o :
¢, = 0.0 (14)




Therefore points along the free edge need not be included in the anély-
sis and will not be included in the count of points uséd in a given
mesh. Only points for which ¢i # 0.0 will be included in the count of:
points.

For points where adjacent points would lie outside the cross-~
section, .such as péint 4 in Fig. 3-A, the following equation can be ‘used

as appropriate for a given node point.

_ 2 P S 2
V%, =g th_+h) % -2 [kkl + hh1] * Y & K 28

2 2 _ I
* k1 (k + kl) ¢, * h1 (h + hl) ¢ = 2 v (15)

h1 is the horizontal distance to the face of the cross-section if that

distance is less than a whole mesh interval. Likewise k1 is the vértical

distance to the face if that distance is less than a whole mesh interval.
Once the finite difference operators have been written for

each point a set of linear algebraic simultaneous equations results,

These equations were solved for the value of the stress function at each

node point using subroutines available at the Lehigh University Computing

Center. A Gauss elimination scheme was employed.

2.1.2 Numerical Integration Technique

The volume under the surface defined by the discrete values
of the stress function was found by numerical integration. The point

numbers used in Section 2.1.1 and shown in Fig. 3-A will be used in this

discussion.

-10-

SR IS G0 .N N N A EE h N @ e Em D O e am s

o



For a point 1, the typical interior point, the contribution

to the volume under the stress function could be approximated as:
V=9 (b Kk (16)

The product h * k is the area formed by the four quarter mesh areas sur-
rounding a point 1.
For a point 3, a point along a line of symmetry, the volume

contribution is:

NEE TN (17)
3

If the region were composed of only Type 1 and Type 3 points
this method of computing the volume is an application of the trapazoidal
rule. However, the presence of Type 2 and/or Type 4 points requires
some special considerations.

Consider the Type 2 point adiacent to a Type 1 point sh6wn
in Fig. 4-A. According to the trapazoidal rule as applied using Eqs. 16
and 17 the volume contribution is zero because ¢ = 0.0 at Type 2 points.
However, it is known that the stress function always has the same alge-
braic sign. Therefore, for this application, an improvement on the
volume calculations could be made by including the triangular prism
cross hatched in Fig. 4~A. The volume contribution could be appro%imated

as.
~ 1 .
AV =5 ¢, (b k) (18)

This same volume contribution is used when Type 2 points lie

on a sloping edge. Due to the coding of the integration routine this

-11-



correction could be applied twice in the case of a Type 2 point on a

sloping edge which would create an overestimation of the volume.

follows:

1.

The reasons why this overestimation is quite small are as

In the approximately 75 times this program has been executed
Type 2 péints have fallen on a sloping edge only twice by
chance selegtion of a mesh size. Furthermore, it is always
possible to avoid this situation, if desired, by careful

discretization.

The value of the stress function used is always one of the

smaller values due to the proximity to the free edge.

The area involved is usually one-half of the area used for

an interior point.

The large number of points used here makes the volume con-
tribution of each point a small part of the total. This is

especially true for edge points as mentioned in No. 3.

A type 4 point in a corner for which both sides of the boundary

are adjacent to the mesh lines is shown in Fig. 4-B. The volume contri-

bution could be approximated as:

n <2
3 1 L2
AV = ¢4 [Zh'k+—6'h + k] (19)
1 1 Kk
k <=
1 2
-12-
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This equation is quite approximate but the point shown in Fig. 4-B
occurs at most only once as shown and once with k1 = k/2. 1In this
latter case Eq. 19 is less approximate.

A Type 4 point in which only one side is adjacent to the mesh
line is shown in Fig. 4-C. The volume contribution is approximated by

either equation below.

AV = ¢4 [% hek + 2 h k] (20)
1
. B
AV = ¢4 [5 hek + 5 hek ]

Eq. 20 is used for the Type 4 points on the left side of Fig. 4-C while
Eq. 21 is used for Type 4 points on the bottom of the flange.
A Type 4 point adjacent to a sloping edge is treated in one

of three ways:

o 3l h
AV = ¢4 [7 hek +F h1 k], hl <3 (22)
. 3.+ 1. k
AV = ¢4 [7 hek + £ h kl], k <3 (23)
h o<l
3 1 1 2
AV = ¢4 [>= hek + = h *k ], (19)
4 6 1 1 N ,
k<5

These three cases are shown in Fig. 4-D.
While more sophisticated ways could be developed to handle
points along the sloping edge it is believed that, for the four reasons

enumerated earlier in this section, the methods used here are adequate.

-13-



2.2 Applications of Approximate Equations

Equations 5, 6 and 7 were used as four of the six approximage
ways to compute approximate torsional constants, as stated in Chapter 1,
Eqs. 5 and 6 apply to rectanguiar sectioﬁs. It was therefore necessary
to convert the I-shapes into an assemblage of rectangle§. 'T£is was done
by defining t1 as the thickness of a rectangle corresponding to the por-
tion of the I-shape above the junction of the web and the tdp sloping
flanges as shown in Fig. 1. t2 is a corresponding thickness for the
lower portion of the I-shape. The third rectangle, corresponding to the
web had the dimensions d3 and. b3 as shown in Fig. 1. t1 and t2 are de-

fined by the equations below using the notation of Fig. 1:

d2 (b1 +‘b3) :
1:1 = d1 + S (24-4)
1
d (b3 + b2)
t =d + -
, ; 2 (24-B)

This division of areas results in the idealized shape shown in
Fig. 1-B. The torsional constant was computed as the sum of the tor-
sional constants of the three rectangles using Eqs. 5-A and 6-A below."
t t

3 . .
I b t; 1.0 - 0.63 b—l + 0.052 [— (5-A)
i=1 i i

w|H

KT=

K, = ;bit3 ' | - (6-a)

Wi

—14-
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The dimensions ti and bi are as defined in Section 1.2.
Eq. 5-A includes an approximate end slope correction but does not in-
clude the junction correction. Eq. 6-A was included in this presenta-
tion because, as stated in Ref. 5, the end slope reduction and the
junction increase tend ‘to offset each other when evaluating the tor-
sional constant for a section which is idealized as being built up of
individual rectangles and/or trapazoids. |

Equa;ion 7 was also applied to the idealized section shown in

Fig. 1-B as shown in Eq. 7-A.
, ‘ .
Ky = A — (7-4)

It is noted that there are no reentrant corners in tﬁe ideali-
zation. Reference 7 indicates that Eq. 7 can over or underestimate the
torsional constant for a rectangle by as much as 10% depending on the
ratios of the sides. Summation of individual values of KT using Eq. 7-A
also neglects the junction stiffening of connected rectangles and should
produce a low estimate of KT for the complete section.

Equation 7-A was also applied to the idealization shown in
Fig. 1-C. Junction stiffening was neglected in this case too.

Equations 9, 10 and 11 were also applied to the idealization
shown in Fig. 1-B as the fifth approximate method. It was assumed that
the end slope correction for each flange can be added in separately as
one-half of the total end slope correction which would be computed for a

doubly symmetric section. Two values of D1 and al will be computed on

-15-



the same basis to compute two junction corrections. The fillet radius,

r, will be assumed to be zero. Thus Eqs. 9, 10 and 11 can be rewritten

as 9-A, 10-A and 11-A. t and t2 will be computed using Eq. 24 and the
1

- notation in Fig. 1-B.

1t

l-(b t>+b t3+d t¥) +a D*+a D*
3 71 2 2 3 3 1 1 2 2

X

-0.21 (t: + t:) (9-A)

(10-A)
b2 '
D =t + —3
2 2 4 t
2
b (b )2
a = -0.042 + 0.2204 Ei - 0.0725 ?i
1 1) (11-4)
b b )2
o =-0.042 + 0.2204 t—3 - 0.0725 ?1
: 2 L 2)

It has been assumed that the t's in Eq. 9-A are the smaller of each pair
of dimensions. Thus ta is usually b3 in Fig. 1-B.

The sixth approximate method of computing KT was to equate
KT to the polar moment of inertia. This is the least desirable method

inY9§§§§3sgg‘nx D3 L D4 D8I Ly '

- P . L T oY

.
'

- . . . LR L
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3. PRESENTATION OF RESULTS

3.1 Verification of Finite Difference Results

Seven test examples for which solutions were available were
used to test the computer program which performed the finite_difference
analysié. These examples included a square, three rectangles, an gqui—
lateral triangle and two hypothetic I-beams to which the equations of
El-Darwish and Johnston could be applied (Ref. 5). These equations wefe
quite similar to the earliér work by Lyse and Johnston and were there-
fore considered verified (Ref. 8). The previous work on AASHO sections
was not used as test examples because no corroberating evidence was

found for these results.

3.1.1 Comparison with Theoretical. Solution for a Square

Table III shows various results obtained for a .square using
different numbers of points. As the number of points increases the
value of KT rapidly approaches the theoretically exact value of 2.250 aq
where "a" is a half-side (Ref. 11). The finite difference result of

2.235 a is 0.67% low.
4

3.1.2 Comparison with Theoretical Solutions for Rectangles

Results for three rectangles with ratios of depth to width of
2.0, 3.0 and 4.0 are shown in Table III. "a" and "b" are half-sides

with b > a. The corresponding absolute valued percent errors are 1.14%,

0.59% and 0.167%.

-17-



3.1.3 Comparison with Theoretical Result

for an Equilateral Triangle

Table ITI shows a comparison of finite difference and theore-

tical values of KT for an equilateral triangle. The sides were 10 inches

long. The finite difference result is 0.74% low.

3.1.4 Comparisons with Two Hypothetical I-Beams

Two hypothetical, doubly symmetric I-beams were also investi-
gated. Each was composed of three rectangles of equal dimensions. The
dimension "b" shown in Fig. 5 was 18 inches. The minor dimension of the
component rectangles was 6 inches and 3 inches respectively. The ac-
cepted values of KT for these sections were computed using equations in
Ref. 5. These results and the finite difference solutions are shown in
Table III. For the thinner I-beam there is 1.42% difference; for the

stockier section there is 0.457% difference.

.3.2 Presentation of Results for Twenty-Five Sections

Table IV shows the finite difference results obtained for the
twenty-five sections investigated. Values for the St. Venant torsional
constant and torsional shear stress coefficients are shown. The values
shown in Table IV agree reasonably well with the previous values in
Table II except for the Type III beam. In that case there is about

11.5% difference in the values of KT.

Each beam in Table IV has been analyzed using at least two

finite difference meshes. The first mesh was square and was chosen to

-18-
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put as many points as possible in the'mesh using the existing program.
Between 160 and 185 points for which ¢ # 0.0 were used in each mesh.
These meshes typically had Type 2 points on only one side parallel to a
major or minor axis. Consideration of the integration scheme and ob-
servation of the test examples indicated that it was generally slightly
more accurate to develop a mesh which had Type 2 points on all sideé-
parallel to the major and minor axes. Rectangular meshes were deveibped
which did this. All but one of the values in Table IV resulted from
these rectangular meshes. There was an average difference between the
two types of meshes of only 1.75%. The larger values are shown in
Table IV. | |

The AASHO Type III section was>analyzed with six different
meshes using between 119 and 173 points. Both square and rectangular
meshes were used. There was 1.97% difference between the largest and
smallest values. ‘

The shear stress coefficients have been calculated using equa-
tions presented by Tamberg (Ref. 9). The shear stress at the midpoint
of the edges of the top and bottom flangés and near the midpoint of the

edge of the web are given by Eq. 25.
T= BG ¢ (25)

B is the corresponding stress coefficient in Table IV.

G
Table V contains values of the ratio i for the Poisson's
ratio equél to 0.15 and 0.20. It is these values which are used in the

lateral load distribution study mentioned in Chapter 1.
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Table VI contains the results of applying the various approxi-
mate methods for computing KT to 23 of the 25 sections. The AASHO
Type V and VI beams were not included because these shapes were idealized
to fit the shape shown in Fig. 1-A. Figure 6 shows values of '"percent
of finite difference results" versus 'beam number' for these 23 sections.
Each part of Fig. 6 thus shows the agreement, or lack of agreement, be-
tween one of the six approximate methods and the finite difference re-
sults. Beam No. 1 is the AASHO Type I, Beam No. 4 is the AASHO Type IV,
Beam No. 5 is the 18/30 and Beam No. 23 is the 26/63 section.

Figure 6-A shows that Eq. 5-A always underestimates because
it includes only the end slope correction.

Figure 6-B shows that Eq. 6-A can either under or over-
estimate the finite difference value. This is because Eq.  6-A includes
neither the end slope réduction or the junction addition.

Figurés 6TC and D show that Eq. 7-A also uﬁag;estimates K, for
both discretization; shown in Fig. 1-B and C. This is also because only
the end slope correction was included.

Figure 6-E shows that using the polar moment of inertia always
overpredicted by a large amount. In fhe worst case there was about
1100% error.

Figure 6-F shows that the modified method of El-Darwish. and
Johnston as explained in Section 2.2>yielded consisteﬁtly excellent
results. All of the approximate torsional constants computed in this

manner were within #5% of their respective finite difference value.

-20-
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4. SUMMARY AND CONCLUSIONS

This research has presented and compared St. Venant torsional
constants for twenty-five prestressed concrete bridge beams using seven
different techniques. The results computed-by finite differences are
thought to be the most accurate values.

| The finite difference computer program was tested using séven
example problems. Excellent agreement with accepted solutions was noted.

Torsional shear stress coefficients computed from the finite
difference results were also presented for the twenty-five beams.

A comparison of the six approximate methods of computing KT
versus the finite difference results was also presented. From these
comparisons it was noted that the modifiéd method of El-Darwish and
Johnston provided consigtently excellent approximations. Equating the
torsional constant to the polar moment of inertia was the worst approxi-

mation investigated. The other four methods gave intermediate results.

M}
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G G N

Nam

Type
Type
Type
Type
Type
Type

18/30
20/30
18/33
20/33
24/33
26/33
18/36
20/36
24/36
26/36
20/39
24/42
24 /45
24/48
24/51
24/54
24/60
26/60
26/63

e

I
11
ITI
v
V*
VI*

TABLE 1:

Dl

v 0 N

0 ~N B~ O UL LU NS S W oW

= =
-

a0y APl WLWW LW W W

DIMENSIONS OF I-BEAMS (INCHES)

D2

w W

w w o

D3 D4 D5
11 5 5
15 6 6
19 7% 7
23 9 8
37 10 8
46 10 8
12 8 4
12 8 4
12 8 6
12 8 6
12 8 ' 6
12 8 6
12 8 8
12 8 8
12 8 8
12 8 8
12 8 8
17 10 7
17 10 7
17 10 9
17 10 9
17 10 9
29 10 9
29 10 9
29 10 9

* TIdealized Dimensions Used in This Study
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12
12
16
20
42
42

12
14
12
14
18
20
12
14
18
20
14
18
18
18
18
18
24
26
26

B2

16
18
22
26
28
28

18
20
18
20
24
26
18
20
24
26
20
24
24
24
24
24
24
26
26

B3

W O 00 N N O

o O 0 -

12
14

12
14

0 0 0 0 0 0

10
10



TABLE II: PREVIOUS FINITE DIFFERENCE RESULTS

Ban  poine N 7 7, T,

I 35 4,900 in? 8.4 Go' 5.9 Go' 6.3 Go'
11 40 8,300 9.9 7.7 6.2

III 35 19,000 12.3 9.8 7.6

Iv. 40 34,500 13.7 11.4 8.2

TABLE III: RESULTS FOR TEST EXAMPLES
Type of Example Ky Points Solution
Square 1.353 a* 3 2.250 a*
Square 2.070 6 2.250
Square 2.165 18 2.250
Square 2.193 45 2.250
Square 2.220 84 2.250
Square 2.221 110 2.250
Square 2.235 180 2.250
Rectangle (2:1) 3.622 a’b 168 3.664 a’b
Rectangle (3:1) 4,183 -— 4.208
Rectangle (4:1) 4.503 ——— 4.496
Equilateral Triangle 214.9 in? -— 216.5 in?
I-BM (6:1) 487.0 162 494.0
I-BM (3:1) 4,003.0 180 4,021.0
-24—
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Beam

Type
Type
Type
Type
Type
Type

18/30
20/30
18/33
20/33
24/33
26/33
18/36
20/36
24/36
26/36
24/39
24/42
24/45
24 /48
24/51
24/54
24/60
26/60
26/63

II
III
v

VI

TABLE IV:

No. of

Points

133
177
150
122
147
162

121
145
128
133
136
162
161
170
167
165
165
139
134
169
153
158
166
156
136

FINITE DIFFERENCE RESULTS

in.

4,745
7,793
17,044
32,924
35,433
36,071

5,818
9,142
8,418

12,474

25,576

33,942

11,310

16,119

32,034

42,365

18,723

21,864

25,007

31,295

35,137

39,648

35,165

48,005

55,207
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11

12
14

11

15

12

12
13

17
19

.59
.69
.52
13.
14.
14.

52
33
23

.68
.57
13.
.04
21.
13.
.39
11.
22.
14,
11.

99

01
84

86
76
79
96

.87
.90
.83
13.
13.
.43
.42
14.

91
86

72

o'

.84
.51
.46
11.

35

9.63

Ne]

TR NERNUR-

10

.63

.18
A1
.84
.78
10.
11.
.24
.09
.35
11.

05
31

70

9.17
8.46

10.
10.
11.

12

13
51
55

.03
11.
11.
13.

07
78
49

Go'

0w 0 00 ~N O O

O & 00 WU

14

17
.10
.14
.10
.00
.00

.95
.28
.17
.35
12.

31

.10

6.17

14

~ 00 0 0o o oo o

.55
12.
.48
.65
.32
.38
.35
.27
.27
.73
10.
10.

76

04
16



TABLE V: VALUES OF oK

EL
Beam I Ky (F.D.) %% (n = .15) %% (1 = .20)

Type I 22,750 4,745 0.0907 0.0869
Type II 50,980 7,793 0.0665 0.0637
Type III 125,390 17,044 0.0591 0.0566
Type IV 260,730 32,924 0.0549 0.0526
Type V 521,163 35,433 0.0296 0.0283
Type VI 733,320 36,071 0.0214 0.0205
18/30 27,840 5,818 0.0909 0.0871
20/30 32,596 9,142 0.1219 0.1169
18/33 38,336 8,418 0.0955 0.0915
20/33 44,514 12,474 0.1218 0.1168
24/33 57,195 25,576 0.1944 0.1863
26/33 63,340 33,942 0.2330 0.2233
18/36 50,729 11,310 0.0969 0.0929
20/36 58,976 16,119 0.1188 0.1139
24/36 75,253 32,034 0.1851 0.1774
26/36 83,324 42,365 0.2211 0.2118
20/39 77,514 18,723 0.1050 0.1006
24/42 107,986 21,864 0.0880 0.0844
24/45 140,129 25,007 0.0776 0.0744
24/48 172,692 31,295 0.0788 0.0755
24/51 212,450 35,137 0.0719 0.0689
24/54 255,194 39,648 0.0675 0.0647
24/60 354,888 35,165 0.0431 0.0413
26/60 391,487 48,005 0.0533 0.0511
26/63 470,081 55,207 0.0511 0.0489
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TABLE VI: RESULTS OF APPROXIMATE METHODS

Equation 7-A 7-A 5-A 6-A 9-A
Figure -8 1-C 1-B 1-B 1-B
'* X %
Beam ‘:’/‘K,?" \%’?& %

Type I 3,497 3,770 3,388 4,972 . 4,584
Type II 6,337 6,750 6,142 9,326 7,762
Type III 14,057 15,053 13,630 20,382 16,845
Type IV 27,337 29,402 26,515 39,229 32,265 -
18/30 4,519 4,988 4,381 6,321 5,623
20/30 6,154 6,841 5,970 8,664 8,787
18/33 6,943 7,356 6,723 10,575 8,325
20/33 9,179 9,861 8,890 13,653 12,398
24/33 14,376 15,621 13,850 22,384 125,490
26/33 17,199 18,717 16,669 25,497 32,260
18/36 9,892 10,199 9,567 16,610 11,510
20/36 12,907 13,522 12,494 20,676 16,783
24/36 19,792 21,086 19,080 31,395 32,587
26/36 23,505 25,141 22,750 35,507 41,077
20/39 14,612 15,236 14,140 24,002 19,089
24/42 17,556 18,997 17,017 25,284 21,335
24/45 20,028 21,534 19,399 29,125 24,362
24,/48 26,655 28,018 25,809 41,410 31,696
24/51 30,620 31,976 29,626 49,739 36,395
24/54 35,386 36,703 34,009 62,567 41,505
24/60 29,688 31,569 28,874 43,712 34,558
26/60 37,761 40,377 36,711 53,729 47,001
26/63 44,811 47,637 43,499 64,380 . 55,242
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‘Fig. 2 Doubly Symmetric I-Beam
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Fig. 3-A Types of Mesh Points
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Fig. 3-B Finite Difference Operator
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APPENDIX A

USER'S GUIDE TO PROGRAM '"TORSION"

Program TORSION performs the finite difference analysis dis-

cussed in this report to evaluate the St. Venant torsional constant

for a shape like that shown in Fig. A-1. Degenerate éhapes may also be

analyzed if they are symmetric about at least one axis and provided

that D3 and D7 shown in Fig. A-1 are not zero,

A.1 Input

‘First Card:

Second Card:

Third Card:

Fourth Card:

Fifth Card:

A label of up to ten alphanumeric characters.

Format Al0.

D1, b2, D3, D4, D5, D6, D7 and D8 as shown in

Fig. A-1. Format 8F10.0.

D9, grid dimension '"h", grid dimension "k".

Format 8F10.0.
The ratio k/h.

CODE 1, the minimum number of mesh points desired,
the maximum number ofAmesh points desired.

Format A3, 2F10.0.

~If CODE 1 = yes, the original grid dimensions on the third

card will be the only ones tried. If CODE 1 # yes, an attempt will

be made to find grid dimensions which produce a number of points which

-40~
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falls between the limits set on the fifth card. It is desirable to
have CODE 1 # yes so that any reasonable set of dimensions can be

read in for the grid size. An error message is produced if a suitable
mesh cannot be found from the starting mesh. Remedial action is to

try another mesh size.

Sixth Card: CODE 2. Format A3.

If CODE 2 = yes the subtotals in the volume integration are printed

_out. The normal mode is Code 2 # yes.

A.2 OQutput

Output usually consist of five items.
1. Echo print of input dimensions.

2. The grid dimensions used and the total number of Type 1, 3

and 4 points generated.

3. A plot showing the positions of Types 1, 2, 3 and 4 points in

the cross-section.
4. A table of values of the stress functiom at each. node point.
5. The value of the torsional constant.

1f CODE 2 = yes the integration subtotals for each node will

also be printed.
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SOURCE PROGRAM 'LISTING
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ann

on

®NO

PROGRAM ONE {INPUT,TAPE1=INPUT, OUTPUT=1,TAPE2=0UTPUT)
INTEGER 6P(30,90)

COMMON /CE1/ GPyJsX,OIM,GRIDDEM,L , AK4JMAX,GRTID,SQ,SQEM
COMMON /CE27 ANS({170),ARC170.,1700 o KF 4K1,N,K2(2)

COMMON /CE3/ D2,DD2,04,D3,8,003,004,D6,07,88,D09,D01,0D5
WHRITF (2,40)

RFAD (1,4L1) LABEL

QEAD (1,.45) 01,02,03,04,05,06,07,08,094GRIDDEN,GRID
WRITE (2,42)

© WRITE (2,43) LASEL

WRITE (2,46) 01,02,03,D4,05,06,07,08,09
WRITE (2,44)
READ (1,87) BKB
A=0.
L=0
SQ=GRID*GRID
SQEM=GRIDDEM*GRIDDEM
MAKE ALL POINYS OUTSIDE POINTS
D0 2 K=1,90
DO 2 J=1,30
GP(J,KI=1H
CONTTNUE
SUM DIMENSTONS
0D2=D24D3
DD3=DD2+DS
COL=DD3+D7
D05=DDu+D8
£0X=N1-D4+D6-D9
IF (FOX.NE.0.) WRITE (2,48) FOX
TAKE CARE OF FIRST ROW AND COLUMN
KIP=DDS/GRID+10
LIP=N1/GRIDDEM+1
IF (KIP.GT.20.0R.LIP.GT.20.) WRITE (2,49)
IF (KIP.GT.90.0R.LIP.GT.7C.) STOP
D0 3 J=11,KIP
L=L+1
GP(1,J)=1H3
CONTTNUE N
DO & J=1,LIP
GP(Js10)=1H2
CONTTNUE
SET COUNTERS
JMAX=0
AK=GRID
K=1
J=L 1P
D2 SECTION
CTIM=01/GRIDDEM
IF (AK.LE.N2) 6,7
CALL PTGR
50 70 S
D3 SECTION
8=D1+D2/03*D4
Y=-D4/D3* (AK)+E
DTM=Y/GRIDDEM
J=Y/GRIDDEM+1
IF (AK.LE.DD2) 9,10
CALL PTGR
GO TO 8
05 SECTION
J=(N1-D4) /GRIDDEM+1
DIM=(D1-D4) /GRIDNEM
IF (AK<LE.DD3) 12,13

bl
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13
14

15

16

17

18

20

21

23
24

25

26

27

28

29
30

CALL PTGR =

GO T0 11
07 SECTION

2B8=(D1-D4} -CD3/07*06

Y=D6/07% (AK) +88

DIM=Y/GRIODEM
J=Y/GRIDDEM+1
IF (AK.LE.DD&)
CALL PTGR
GO T0 1&

O/ SECTION

" J=D9/GRIDDEM+1

DIM=Ng/GRIDDEM
TIF (AK.LT.DD%)
CALL PTGR
GO TO 17

CHFCK TO SEE
K1=¥+10
IF (AK.EQ.DDS)
1F (J.LT.2} GO
00 21 Ji=1,J
GP{J1,K1V=1H?2
CONTINUE

15,16

18419

IF THE LAST COLUMN IS ON THE BOUNDARY

20,22
70 22

If (GP{1,K1).EQ.1H2) L=L-1"
IF (A.NE.Q.) GC TO 23

A=1,

READ (1,50) NOi,LL,LU

IF (MB1.EQ.3KHYESY GO TO 27

WFITE (2,51) LL,LU

IF (LeGE.LL+ANND.L.LE.LU) 27,24

IF (A.E0.1) WRITE (2,5%) L,GRYODEM,GRID
TF (A.,NE.1.) WRITE (2,52) L

IF (A.GE.1C) 25,26

WRITE (2,57%)
sSToP

AzA+1

FoK=_L

IF (L.GT.LU) FCK=LU
GRIDNEM=GRTDDEM*L/FNK
CRYD=GRINDEM*BKA

WRTTE (2,54) GPRINDEFM,GRIT

GO TO 1

TF (8.EQ.1.) WPITE (2,549 GRIDLGEM,GRID

po 21 J=2,JMAX
K1=KTP
nr 26 X=19,K1

IF (GPUJ,K).EQ.

1H1) 28,3¢C

IF (GP(J-1,K).EQ.1H ) GO TO 29

IF (GP(J#1,K).EQ.1H
1F IGP({J,K-1).EQ. 1H
TF (GP(J,XK+1).EQ.1H

GO To 29
GP1J,K)=1HL
CONTTNUE

WRTTE (2,52) L

WeITE 0OUT GRID

WRITE (2,56)

GO YO 29
Ge TO 29
GO TC 29

- - -

WRITE (2,57) CI{GP{J,K) K=1,9C),0=1,30)
SET COEFICIENT ARPAY .TC ZEPO

00 31 L=1,LU
00 21 M=1,LU
AR({L,M)=0.
CONTTNUE

SET NUMBE® OF EQUATTICNS TO ZERO

N=0.

WRTTE AN EQUATION FOR FACH VALID PCINT

-l 5=

PP PDPDPDPDDPDDDDDDPBDDPDDDDBPDDDPDDDDBPD PP EBP DD PDDEPD PP DD D

66
65
66
67
68

70
71
72
73
74
75
76
77
78
79
80

82
83
84
85
86
87
88
89
90
91
92
93
94
95
36
97
98
99
100
101
102
102
104
105
1386
107
108
109
110
111
112
113
114
115
116
117
118
119
12¢
121
122
123
124
125
126
127
128
129



32

33
34

35

36
27
38

39

40
41
&2

LG

45
46

47
“8

%9

56
S1

52
53
S4
55

D0 32 J3=1,JMAX

DO 22 XF=10,K1

IF (GP(J,KF).EQ.1H .0P.GP{J,KF).EN.1H2) GO TO 32

CALL GETK?2

N=N+1

IF (GP(J,KFY.EQ.1H1) CALL TYPE1

IF (GP(J,KF).EQ.1H3) CALL TYPEZ

IF (GP(JULKFY.EQ.1KR4) CALL TYPEY

CONTTINUE

READ (1,58) NQUES

TF (NQUES.EQ.3HYES) 33,3°¢

00 34 JLt=1,N

WRITE (2,59 (ARCJL,L,KL) 4 KL=1,NY,ANS({JL)

CONTINUE )
CALL FLMXPK TO SOLVF THE <TMULTANEOQOUS EQUATIONS

CALL SOLV1I (ARLANS N, 1,DET)

WRITE (2,60}

N=1 .

D0 39 J=1,IMAX

1=9

D0 37 x=10,K1

I=T+1

IF (GP(JsX) eEQeiH OR.GP(J4K).FR.1H2) 36,437

AR(I,1)=1.

GO Tn 38

AP(I,19=ANS(N)

N=N#+1

CONT INUE

WHRITE (2,61) (AR (I,1),T=1%,K1)

CONTTNUE

CaLL IRT -

syoP

FOOMAT (1H1)
FOOMAT (A10)
FOPMAT (///777410%,% THIS FROGRAM SOLVES FOR TORSIONAL®*,/,10X,* CO
INSTANTS NF BEAMS BY & FINITE®,/,10X,* DIFFERENCE ANALYSIS*,//)
FORMAT (/,AX,A10)

FOPMAT (10X,* D2 C3 07 08 *,/
1,10%,* tecevescss seecscsce Fo/y10X,*
2e . . . ¥9/410%,* o
K N . o e/ 10X, ®
"0. D(‘ 06 . . ‘Ylving’ . -

5 . - ¥4/41CX4*01. . DS

6. Ve "‘q/,iOY,“ e evs e 00 ecosone

7 . 09 e/ 10%, ¥ N .

B *y/.10%X,* o ' . *e/410
qY,* . . ¥9/910X,* .o

soo.o..o--...oo.'ooo‘.oo..'..cc'.o...oo "y’quX)

FORMAT (8F10.5,/,3F1C.5)

FOPMAT (4X,*REAM DIMFNSTCONS®,/,4X,*D1% ,4X,*D2% ,4X,%D3% , 64X, *D4¥*,4X,
1¥0S* , UX o *DR ¥ 44X, *D7*,UX, ¥NAR® X ,*D9*,/9F 6. 2//)

FORMAT (F10.2?)

FCRMAT (/,10X,*THF Q€AM MUST PC SYMETRTMN *,/,10X,¥A00UT THE Y-AXIS
1 EPRROR= *,EiL.7)

FORMAT (///+11X%X,*¥IF A& MOCE =1 ERRPCR HAS DEVELOPENR*,/,1CX,* IT IS O
1UF TN THE FACT THAT THE FRNAGOAM*,/,10X* WAS DEVELOPEDR FO®*R CONCRE
2TF REAMS AND*,/,10GX®*THIS AFEAM TS TOO SLENDER —----- ¥*,.7+10X4* CORREC
27 , CHANGE GPRID DIPENSTONS®)

FOPMAT (A3,2XeT342%X,T3)

FORMAT (/74,1CX,*THE PROGRAM IS FINDING A GRID VALUE®,/,10X,*WHICH
1LIMITS THE NUMRER OF EQUATIONS BETWFEEN *I3,* AND *,13/)

FORMAT (LX,*NUMBER OF GRTIC POINTS*,4X4T134,7/777)

FOPMAT (10X.* THE NUMRER Nf GRID POINTS TS NOT CONVEPRGING®*)

FORMAT (4X,*GRTD DIMENSTICVM* 32X ,Fholis® ¢X¥,FH b, %0 ¥)

FOOPMAT (4X,*MNUMBER OF GRTN POTHNTS®,4XeT1347,4X4*GRID DIMENSTON*,2YX,

46~
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56

S7
58
S9
60

61

1F6.‘0," X"F6.6’0'{III) .

FORMAT (SX,*IN THE GRID PELON-1 IS AN INSTIDE POINT',/.ZBXQ.Z IS A
1B0RDFR POINT®*,/,23X,*3 IS A DOUBLE POINT®,/,23X,*4 IS A POINT WHIC
2H IS NEXT TO THE QO0RDER *,7//)

FORMAT (90A1)

FORMAT (A3)

FORMAT (30F&.1)

FORMAT (11X,*GIVEN BELOW AFE THE HEIGHT COORDINATES*/,10X,* OF THE

1 ABOVE GRID*//)

FORMAT (22F6.1)
END

" SUBROUYTINE IRT

INTEGER GP(30,90)

COMMON /CE1/ GP4JyKyDIM,GRIDDEM, Ly AK,JMAX,GRID,SQ,SQEM
COMMON /CE2/ ANST170),AR(170,17C) 4KF 3K1,N4K2(2)

COMMON /CE3/ D2,DD2,D%,02,P,0D2,DD4,D6,D07,88,09,01,D05
EXVOL=0.

voL=0.

NN=K1-11

IF (GP(2,K1).EQ.1HG) NN=AN#1

DO 1 KS5=1,NN

VOL=2.%ANS (KS) +VOL

CONTINUE

KS=NN

IF (GP(2,K1) .EQ.1HL) 2,3

Ax=GPID*(K1~-10)

SPACT=DDS5-AK

VCL=VNL-ANS (K5)

CXVOL=GRINDEM®*SPACE/L . *ANS (KS)

DO 6 J=2,JMAX

DO 6 K=11,K1

IF (GPU(JyK)eEQ.1H2.0R.GP(J4K).EQ.1H ) GO TO 6

K5=KS+1

TF (GPU3,K)eEQ.1HL) 4,5

VO=G°IDDEM

HD=GPID

KF=x

IF (GPLJ#1,K)LEN.1H ) CALL VOIFF (VD)

"TIF (GP(J,K-1).EQ.1H ¥ CALL HDIFF (Z,H4HD)

IF (GPUJ,K+1V.EQ.1H ) CALL HDIFF (Z,HD)

CALL FOUR (RJD)

IF (PJJ.FQ.1.) PJJ=3,

VOL=VOL+RJJ*ANS(KS)

IF (PJUJ.EN.3,) RIJ=2./7.

EX=VN*HD/ G, *RJJ*ANS(KS)

EXVOL=EXVOL +FX

GO TN 6 )

TF (GP(J%1,K).EN.1H2) EXVOL=FEXVOL+ANS(KS)*GRID*GRIDDEM/8.,
TF (GP(J,K+1).€0.1H2) EXVOL=EXVOL+ANS(KS5)*GRID*GRIDDEM/8.
IF (GPYJ,K-1).EQ.1H2) EXVOL=EXVOL+ANSI{KS)*GRIB*GRIDDEM/8,
VOL=VOL+4*%ANS(KS)

CONTINUE

TVOL=VOL*GRID*GRIDDEM/ 4, +EXVOL

TVNL=4,¥TVOL

WRITE (2,7) TVOL

RETUPN

FORMAT (10X,*TCPSIONAL CCNSTANT FOR THIS BEAM*,///E12.57/77)
END

SURROUTINE FOUR (RJJ)

INTEGER GP(3C,90)

COMMON /TCE1/ GP, J,K DTM, CRTDOEM,L, 8K, JMAX4,GRID,SQ,SQEM
RJIJ=7.

IF (GP(J,K*l’.EQ.iH Y RJJI=RIJ-1

TF (GP{J,K-1).EN.1H ) PJYI=PJJ-1

TF (GPlJ+1,K).EQ.1H ) RJJ=2JS-1

AR
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TIF (GPU-1,K).EQ. IH ) RJJ=RII~1
RETUPN
END
SUBROUTINE PTGR
THIS SUBROUYTINE SETS INSINE POINTS EQUAL TO 1
AND BOUNDARY POINTS EQUAL TO 2
INTEGER GP(3C,90)
COMMNN /CE1/ GPyJoKyDTIM,CRIDDEM,L 48K, IMAX,GRID,SQySQEM
Ki=KX+1(
IF (J.GT.IMAX) JUMAX=Y
IF (J.LT.2) GO TO 3
00 1 Ji1=2,J
GP(J1,K1)Y=1H1
L=L+1
CONTINUE
IF (U-1.EQ.DIM) 2,3
CP(J,K1)=1H?2
L=L-1
K=K+1
AK=K*GRID
RETUPN
F.ND
SUBRNUTINE TYPEL
THIS SUBPOUTINE WRITES THE EQUATIONS FOR THE GRID POINTS
WITH A VALUE OF 1
INTEGER GP(30,90) :
COMMOM /CE1/7 GPeJeKeDIM,GRIDNDEM,L,AK,JMAX,GRIN, SOQ,SNEM
COCMMNN /CE2/ ANS(170),AR(170,170),KF,K1,N,K2(2)
TF (GPlJsXKF=-1)EQe1H1.CR.GF(JyKF=-1).EQ.1HL) ARI{N,N-13=1,./50
TF (FP(J,KF+1).E0.1H1.0R.GP(JyKF+1).,EQ.1HL) AR(N,N*1)=1,/SQ
IF (GP(J#+1,KF)EQ0.1H1.OR ,GP{J+1,KF) ,EQ.1H&) AR(N,N+K2(1))=1./S0EN
ARIN,N=-K2(2))=1./SQEM
AP (N, N¥==2,/50~-2./SOEM
ANS (N)==2
RETURN
FND
SUBPOUTINE TYPES3
THIS SUBROUTINE WPITES THE EQUATIONS FOR THE GRID POINTS
WITH A VALUE OF
INTEGER GP(30,90) )
COMMON /CE1/ GP,J4K4CIM,CPIDDEM,L,AK,JMAX,GRID,50,SQEM
COMMON /CE2/ ANS(170) AP (17N04170) 4KF4K14N,4,XK2(2)
TF (KFJEN.K1) 1,6
IF (GP(J#1,K1) .EFD.1H2) 2,2
N=N-1
RETURN
CBLL TYPEG
AP (NG N+K2(1))=2.FAR(N,N+K2(1))
FETUON :
IF (GP(JyKF=-1) .T0.1HZ) ARINyN-1)=1,./S5Q
IF (GPTJ,KF+1) ,EN,1H3) ARIN,N+1)=1./S0
IF (GO(U*1,KF) . EQ.1H1.O0R.GP(J¢1,KF) . EQ.1HL) BR{INJN+K2(1V1=2,/S0EM
ARPI(NGyNY)==2,/S0-2./S0EM
ANS (NYVY=-2, '
RFTU®N
END
SURROUTINF TYPEG
THIS SUBROUTINE WRITES THE EQUATIONS FCOR THE GRID POINTS
HTTH A VALUE OF &
INTEGER GP (30, <0)
COMMON /CE1/ GP4JyK4DIM,CRTDDEM,L,AK,JMAX,GRID,SN,SQEM
COMMON /CE2/ ANS(170) ,AR(170,170) 4KF,K1,4,N,X2(2)
COMMNN /CF 3/ D2Z2,002,N4,N2,0,C0D>,004,06,07,88,09,01,0D5
7.=0.
VO=Gr1DDEM
HD=GRID
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CALCULATE THE DISTANCE TC THE BORDER
IF (GPUJ+1,KF).EQ.1H ) CALL VDIFF (VD)
TF (GP(J,XF~1}).€E0.1H ) CALL HDIFF (Z,HD)
IF (GP(J,KF+1).EQ.1H ) CALL HODIFF (Z,HD)
ALPH1=VD/GRIDODEM
ALPHL=HD/GRTID
IF (VD.EQ.GRIDDEM.AND.GP (J+1,KF)aNE.1H2) AR(N,N#X2(1))=1./SQEM
IF (HD.EQ.GRID.AND.GP(J,KF+1) NE.1H2) AR(N,N+1)=1./SQ
IF (GP{JsKFI.EQ.1HI) GO TO 1
AR(Ny,N=-K2(2))1=2.7((ALPH14#1)1%SQEM)

IF (GP(J4KF=1) «NE.1H2Y ARIN,N-1)=2./({ALPH4+1.)*SQ)
AR(N,NI==2,./(ALPH1®*SQEMY-2./7(ALPHL*SQ)

ANS (NYy=-2.

IF (7.E002.’ 2'3

SWITCH THE COEFICIENTS IF THE POINT LIES IN D7

Q=AR(Ny,N+1)
AR(N,N#1)=AR(N,N-1)
AR(NyN-1)=0

RETURN
END
SURPOUTINE HOIFF (Z,HD)

THTS SUBROUTINE CALCULATES THE HORIZONTAL DISTANCE

FROM A TYPE 4 POINT TO THE RORDER
INTEGER GP(3C,92)

TOMMON /CE1/ GP,J,K,DIM,GRIDDEM,L,AK,IJMAX,GRID,SN,SQEM

COMMON /CF2/ ANS(170),AR(170,170) ,KFK1,N, K2(2)

COMMON /CE3s T2,0DD2,04,D%,8,00%,DD4,06,07,88,09,01,DD5
AK=(XF-10)*GRID

IF (AK.LT.DD2) 1,2
X==({(J-1)*GRIDCEM-B)*DZ/CL
HD=X~-AK

Z=1.

REYUPN

TF (KF.NE.K1) 2,4
X={(J-1)*GRICDEM-83)*D7/C6
HD=AK-X

7=2.

RETUPN

-HD=DN5-AK

2=3.

RETURN

END

SURROUTINE VUIFF (VD)
THIS SUSPOUTINE CALCULATES THE VERTICLE DISTANCE
FROM A TYPE & POINT TO THE BORDEP

INTEGER GP130,97)

COMMNON /CE1/ GP'JvKgDIN.GP]DUFM’LvAKoJHAX,GRIDvSQ»SQEN

COMMON /CE27 ANS(170),AR (170,170 4KF,K1,M,K2(2)

COMMON /CEZ/ DZ,DDZ,DA,OZ,P.DOB.DUR.06q07'88,99,01,005

NW=1(J-1)*GPICDEM

AK=(XF-10) *GPIC

IF (AK.LE.D2) 1,2

vVD=D01-QOW

RETURN

IF (AK.LE.DDZ) 3o

=-04/D3*AK+8

VD=Y-QW

RETUPN

IF (AK.LE.DD3) 5,6

v0=D1-D4-QW

RETU®RN

IF (AK.LE.DD&) 7,8

Y=06/D7*AK+8B8

Vo=Y-0W

RETUPN

VD=D9-QHW

49~

et e bt bk b bt bt 4 et b bt et pt e A b et e A <4 M I T T T I I IIIXIIIIIITIITITTIIXTX TOOAOOOAANOODNOOAANAD OGNS

o
-

. s
NEeEWN



GSOO0

(9}

2 XeNeXe)

OO

(e Ke Ke X¥)

RETUPN ~
END
SUBROUTINE GETK2
THTS SUBPOUTINE COUNTS FCRWARD AND BACKWARD YO
FIND THE NUMBER OF EQUATIONS WRITTEN
INTFGER GP(30,90) )
COMMON /CE17 GP4JysXK,DIF,CFTDDEM, Ly AK,JMAX, GRTD+SQy SQEM
COMMNN /CE2/ ANS(170),AR(170,170),KF,K1,N,K2(2)
NX=19 ’
JLL=y : ,
KLL=KF
K2 (NX)=0
K11=%1-1
IF (GP(2,K1).EC.1H2) Ki1=Ki-1
no & LL=10,K11
KLL=KLL*1
IF (KLL.GT.K1) 2,2
Kii=11
JLL=JLL+1
IF ((GFEJILL,KLL).EQ.1H ) .CRP, (GP(JLL,KLL).EQ.1H2)) GO TO &
K2(NX)=K2(NX)+1
CONTTINUE .
IF (GPU(J,KF).E0.1H3) GO TC S
TF (NX.FQ.2) GC TO 5
JLL=JLL=-2
NX=2
GO Tn 1
RETUPN
END
SUBPOUTINE SOLV1 (AR,8,N,L,0ET)

ROUTTNE TO SOLVE THE SYSTFM OF LINEAR
STMULTANFOUS EQUATTIONS A*X=8B,

RFAL AR(170,170),8(1740,1)

TF (N.NE.1) GO TO 2
DET=08°2(1,1)

DO 1 J=1,L
B(1,0)=8(1,J)/CET
RETURN

CONMiEN-1

CET=1.C
No # T=1,NM1
IP1="4¢1

SEAPNH COLUMN I FOR THE LARGEST ARSOLUTE-VALUED
TLEMENT IN ROWS I THROUGH N,

816=0.0

D0 X J=I,N
ARSA=ABSTAR(J,I))

TF (11G.GE. AASAY GO TO 3
BYG=ABSA

THE LARGFSY ARSOLUTE-VALLEC ELEMENT IS IN ROW K OF COLUMN I.

K=J
CONTTINUE

TYCHANGE ROWS K AND I, ONLY IF X TS DIFFERENT FROM T.
IF (X.EQ.T) GO TO 6
DO 6 J=T4N

Z-'-AR(I 'J)
AR(T,J)=A0R(K,J)
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AR(K,J)=Z

DO S J=1,L
7=B(T,J)
B(I,J)=B(K,J)
B(KyJ)=2Z

CHANGE THE STGN OF THE DETERMINANT,
SINCE ROWS HAVE SEEN EXCHANGED.

DET=-DET
T=AR(I,T)

CCNTINUOUS PART-PRODUCT FOR THE DETERMTINANT,

_DET=DET*7

I=1.0/72

.MODYFY ELEMENTS OF A - TFE REDUCTION PROCESS.

MODIFY MATRIX B ALSO,

DO 8 K=IPi,N

N=-AP(K,IV*2

Lo 7 J=1,L
BIlK4J)=B(K,J)+D*R(T4J)

DO 8 J=IP1,N

ARIK, JY=AR(KoJ) +D®AR(I,N)
Z=AR(N,N)

FINAL VALUE OF THE DETERPMINANT,

DFT=PET*2
2=1.0/2

PROCFSS OF BACK-SUBSTITUTICN TO GET THE SOLUTION MATRIX.

pC 10 K=1,L
R(N,K)I=BIN,K)*Z
NO 1N TJK=1,NM1
T=N=-TJK

1P1=T¢1

D=0."

DO 9 J=IP1,N
N=D+AR (I ,J) *B{J,yK)
R(I,K)=(B(T4K)-D)/AR(T,T)
RETUPN

END
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