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ABSTRACT-----

This paper describes an experimental program directed

toward the ,discovery of 't:he. strength and behavio.r of fabricated tubular

columns such as those commonly used in off-shore oil structures.

A series of ten long, fabricate_d, tubula.r steel columns, .of. relqtivelJ'~

large diameter, was tested in compression, with ess'entially pin-ended

cond it ionS'.

As a preliminary to the testing of the long columns, a number

of stub column tests were also made along with an experimental deter-

mination of the residual stresses inherent in a typical fabricated

tubular column. These residual stresses are both circumferential,

due to the process of rolling a tube from a flat plate, and longitudinal,

due to welding of the longitudinal pipe seam. Measurement of these

stresses is considered essential. to any theoretical analysis of column

behavior.

The use of spherical bearing heads in long column tests

allowed observation of the preferred buckling direction, as well as

giVing the maXimU1TI possible s lendern·ess ratio (kL/r). De-tailed obser-

vations are made of various factors affecting column buckling behavior,

including differing yield stresses within a column,.specimen, the.pr~sence
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.o~ longitudinal and. horizontal welded se~ms_" initial ou.t-o~-s~raig1?-tness,

and end rotations.

On the basis of these tests it is found that the current

eRC column strength curve may give an unconservative estimate of

column-strength, if used directly with mill report-yield strength

values, within the range of slenderness ratios tested (L/r = 39 to 83).
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TESTS OF FABRICATED TUBULAR COLU}~JS

D. A. Ross1 and We F. Chen2 , M. ASCE

1. Introduction

A relatively new development in structural engineering is the use

of fabricated, tubular steel beams and columns. This trend is growing parti-

cularly in the design of off-shore oil structures, multi-story structures,

and off-shore thermal energy conversion structures.

Designers of.' such structures face an immed'iate "problem in the

lack of a reliable design guide, since such colwnns are usually fabricated

in diameters far ;greater than those.for which previous research data i~

available. This lack of knowledge on the ~treng~h of these members, suitably

based on experimental evidertce, hampers the designer in his efforts to'~esign

a safe, but r~latively ecorio~ic, structufal mefuber. Ther~ is also "a more

fundamental problem with such structural members,' arising due to the lack of

knowledge of the behavior of members fabricated by relatively new fabrication

processes. Among problems associated \vith prediction of nlember behavior are

the effects of two-dimensional residual stresses in members introduced during

fabrication and the unknown importance of initial imperfections· in fabrication.

A research program, currently. underway at Le'high. Universit.y:i-s

attempting to provide information which will,assist in solving the problems

'of strength and behavior of such members. The, program- has both theoretical

and experimental phases, both of which attempt to provide design a$sistance.

lResearch Assistant, Fritz Engineering Laboratory, IJehigh University, Bethlehem,
Pa .. 18015

2 Professor of Civil Engineering, Fritz Engineering Laboratory, Lehigh Univer
sity, Bethlehem, Pa. 18015
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This paper r:eports the ~xp~~_~~en~al ph?~~__ ._of the" lnvest_igation. Included in

the investigation was an experimental determination of residual stresses in

a typical fabricated tubular column, the testing of three stub columns, and

the test~ng of ten full-scale. long columns under axial load and pin-ended

conditions with slenderness ratios ranging from 39 to 83.

It is appropriate here to consider briefly the manufacturing process

by which fabricated tubular structural members are commonly made in'theU.S.

Usually the tubular member i$ formed by cold-rolling flat plate until opposite

edges come together. A cylinder, or "can" is then formed by welding down this

longitudinal joint. Manufacturing limitations usually limit the length of

,these cans to about 3 meters (10 ft), but any number of these cans may be

welded togetller, "end-to":'end, to fo'rm the d-esired member. A possib-flity of-

longitudinal weld tearing ia a completed member ~len loaded is avoided by

staggering the welds between "cans", usually making the weld in one can about

o180 out~of-phase to the weld in the next £an. (American Petroleum Institute

o
Specifications (1) require at least 90 out-of-phase.)

The rolling process in manufacture clearly introduces circumferen-

tial residual ,stresses which vary through the thickness of the: plate." while

the longit~dinal welding process introduces longitudinal residual 'str~sses.

Particular attention of this research has focussed on the magnitudes and

distributions of these stresses, which are a necessary prelude to any ana"lyti-

cal investigation of the effects of ~hese stresses on beam~column behavior

under load. The measurement was undertaken on a short column, of similar

size to that used in the three stub column tests.
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The stub column tests were undertaken in order to allow derivation

of column buckling strength curves to allow prediction of buckling loads for

long columns. The long columns vary in length from 5.5 to 11 meters (18 to

36 ft.) _and, in diameter from 380 nlffi (15 in.) to 560 ro.ra (22 in..). An impor

tant feature of these tes't.s was the use of spherical end blocks during colUJ."11n

testing. Apart from simulating, as, closely as possible, pin-ended conditions

and thus the longest possible "column effec~ive length", this also allo~4]ed.

a column being tested to determine its own (previously unpr-edictable) buckling

direction.

Table 1. gives the detailed list and dimensions of specime.ns supplied

for testing. The specimens were fabricated in accordance with the require

rnents of American Petroleum Institute Specificati.ons .(1), with welding pro

cedures conforming to American Welding S~ciety (2) requirements. The sections

used to form tile columns were from A36 steel plate in which the original

milling direction was perpendicular to the longitudinal axis of the finished

columns. Two heat lots of steel were included in the specimens and the

properties of these, .as 'found in 'various tensile coupon tests and stub column

tests, 'is recorded in Table 2._ The wall thickness of all specimens "V7as 7.8 mm

(5/16 in.).

3. Preliminary Tests

In this paper it is not intended to detail the common supplementary

tests for column testing. The critical material properties, as determined

from tensile coupon testing, have already been detailed in Table 2. The

stub column tests v]ere CondlJcted in the 5,000,000 lb-·. Bald'tvin Testing }1achine

in the Fritz Engineering Laboratory of Lehigh University, using the technique
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~~pl?r'ted and recommended in Ref. 11. The column buc:1<.ling s.t~~~gth ~urv:~s,

obtained from these tests will be presented. at a la~er stage in this paper.

Detailed derivation of preliminary data is pr~sented ,in Ref. 8.

Furthermore, it is-not proposed to discuss in detail the testing

techniques by which the residual stresse"s' 'were -determined; as these are

adequately covered in Ref. 9. It is sufficient here 'to note that a destruc~

tive "Whittemore Gage Technique", involving the slicing of a column cross

section a-nd-measuring changes in s-train, was used to, measure longitudinal

residual stresses. A "):101e drilling technique", described in Ref. 7, was

used to lneasure circumferential or "through-the-thick_ness" r~sidtJal stresses.

Her'ein, a brief di.scussion D.f the .r,esults obtained by t.hese testing techn.i,ques

is presente·d ..

4. Residual Stresses

L~ngitudinal residual stresses introduced by longitudinal welding

of the fl cans " were measured by a destructive sli.cing technique known as the

method of dissection into individual bars .. The resid~~l stress di~tribution

thtis obtained is shown in Fig. 1. Also shown in Fig~ 1 are the ~n~lytical

approximations possible for approximation of the measured stresses. The solid

line indicates a possible continuous curve" of· the type predicte"d by Marshall

(5) •. We note that -in the region of the weld,~ the m'aterial has effectively.

yielded in tension. As we move furth~r from the. weld there are alter~ating

regions of comp~esive and tensile longitu4inal residual stress, of progressively

decreasing maximum amplitude. -These findings are substantiated by other test

results (6).
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The.dotted straight lines in Fig. 1 represent a proposed straight

line approximation to ,the actual distribution. If x is the distance from

the weld, R the tubular n1ember radius ,. 0"1.. t11e longitudinal residual stress

at a point, and cr the material yield stress, then the following values may
y

be adopted as end points in a straight line approximation~

O"L
1.0 at

x 0= =0- R
Y

O'L
-0.3

x
0.3-= at -~ov R

y

O"L
0

x 1.0 (1)at ........ :.:

cr R
y

O"I.J
0.1

x
1.2- at -~o· R

y

a
IJ

0 at ,2£ > 2.0=
cr R-

y

In these equations tensile stress is assumed to be positive. It is necessary

of course to insist that the sunwation of residual axial stresses around the

tubular colmnn is zero. In the above approximation, however, no attempt has

been made to balance bending moment about an axis perpendicular to the weld,

as the out-of~ba·lanee mOInent was, found to be negligible. Furthermore, initial

imperfection measurements suggest -that a "canu may. ',bend Ylithin, its length,

-'poss,ibly to a-ccorrunodate,any such :out-of-balance residual moment.

Some indication of-the range of applicability of the straight line

approximation. of Fig. 1 is necessary before it should be adopted. Reference 6

suggests that the approximation: may b~ adequate for column radii up to ,&
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nlaximUffi, of abo-ut 380 lTl1l1 (15 in.), that- is,,,,..for radii in excess of this value,

R should be taken as 380 rum (15 inD). This is reasonable when it is considered

that a finite amount 0,£ heat is. added to a "can" in tile longi_tud_inal welding

process. Reference 6 also suggests there may be a minor dependence of the

crL/a ratio on the yield strength of the material and the welding procedurey ,

used.

Circumferential residual stresses were measured by a hole-drilling

technique (7)' in' TN'lli'ch surface measurements were tal~en of ,the strain, r·elease

due to drilling ~t the base of a small diameter hole in the tubulat column

wall. Figure 2 gives the results obtained from these tests. No significant

variation in- circumferential residual stresses was found at' different loca-

tions on the cross section. Figure 2(b) indicates typical experimental

results~ The testing technique was shown to, have a limited range of validity

such that the results near the surface, as well as those- taken near the

center line of the tube were thought to contain possible inaccuracies. Thus

the straight line approximation is dotted in these areas. The hole-d~il1ing

experiment was conducted both from inside and outside surfaces of the tubular

column. Figure 2 (c) sho\vs the average circumferential residual stress pattern·

obtained,

It is appropriate now to consider the analytical prediction of the

circumferential residual stresses. ~rior to e~perimental derivation of th~

distribution shown in Fig. 2(c), predictions of circumferential stresses had

been made (10) as shown in Fig. 3. It is likely.that fully plastic yielding

of the plate occurs during welding, ,giving the' stress distribution shown in

Fig. 3(a). In the manufact~ring proc~s5 the rolled ,plate is then released,
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i.e., allo'W'ed to "spring back. ft
• It was as s.uITted , therefore, that the section

elastically unloaded, a process introducing a stress distribution as shown

in Fig. 3(b). The distribution of Fig. 3(b) ~'las derived by assuming that

all of t~e bending moment applied to create the distribution of Fig. 3(a)

was released. Addition of Figs. 3(a) and 3(b) gave the preqicted circumfer

ential residual stress distribution shown in Fig. 3(c). Figure 4 shows that

this prediction differs markedly from the fileasured distribution [taken from

Fig. 2(c)]. It is noted that the possibiltty of incomplete spring back and

subsequent cooling of the welds may partially explain the discrepancies. Further-

more, it is known that ihe observed results are most ~uspected in the center

line region of the cross section, and the measured results likewise ar~

unlikely to be a good representation.

5. Long Column Testing

5.1 Ge~1:

In the full-scale long column tests, the maximum nominal length, L,

of the column was limited by the height of the Baldwin 5,000,000 Ib testing

machine in Fritz Engineering Laboratory ~bout12 m or 40 ft.), and the minimL~

column radius, R, (and thus the radius of gyration, r) was controlled by the

rolling machine capabilities of the manufacturers.

In the analytical determination of column strength under axial

load, a critical parameter is the effective length to radius of gyration

(kL/r) ratio. A feature of the present tests was the use of spherical

bearing heads at each end of the specimen during testing, in an attempt to

provide" pin-ended conditions. Not on~y di4 this ensure the maximum possible

value of k, but it also allowed valuable information on column behavior to
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be collected. Unlike a column of I or H section, in which the buckling

direction is well defined, it was impossible to predict accurately the

buckling direction of a fabricated tubular column. Thus the use of spherical

bearing heads allowed each column to adopt its preferred buckling direction,

"Z-lhich was then measured.

In any testing it is impossible to attain a true pin-ended condition

because of unavoidable frictional resistance to head rotation, and thus a

method of measuring the effective column length was necessary_ Electric

resistance strain gages .were mounted on each spe~imen at quarter points along

the specimen length and near each end. A good approximation to the true

column effective length of each specimen· was found by plotting the curvatures

measured along the column length in two perpendicular directions.

It has also been mentioned that two different heat lots of steel

were introduced into the specimens, and so the last column of Table 1 specifies

which heat lot the material near center of each specimen was made from ..

This is done since buckling of a specimen is expected near the center of a

pin-ended column sub~ected to axial load.

5 .. 2 Initial JdtlEerfections

At least two types of, initial geometric imperfection were considered

to have significan-t influences on column ~buckling strength and behavior:

out-af-roundness and out-af-straightness. Out-af-roundness measurements were

made on one fabricated speci.men --and it was found that, in general, there was

less than one percent difference between two perpendicular diameters at a

p.articular position along the column length, which was considered negligible .

..·8··



These measurements were, therefore, not made on"subsequent specimens. ,It

was concluded that out-af-roundness was not a significant parameter in the

column performance, due to a high degree of accuracy in manufacture.

The American Petroleum Institute has specifications (1) on the

maximum allowable out-of-straightness of a- specimen. - The specifications

allow 3 nnn (1/8 in.) i.n 3 m (10 ft.) (or one part in. one thousand), with the

restriction that the out-of-straightness not exceed 9 rum (3/8 in'.) in 12 m

(40 ft.)" (or 7.5 parts in ten ;thousand). Since specimen out-of-straightness

can be a critical parameter in determining column per~ormance, particularly

in fixing the buckling direction,.considerable effort was expended to measure

these imperfections.

Clearly there is a problem in establishing diametrical planes on

which to take these out-of~straightnessmeasurements. An attempt was made

to find an ax.is of maximum out-o-f-straightness by rolling the specinien on

a flat surface until a position of unstable equilibrium was reached. The

longitudinal welds, however, hampered this process, and in general, one of

the diametrical plan~s was established close to these weld locati0ns. The

actual out-of-straightness of each specimen was measured with the specimen

in an upright position using a theodolite.

A typical resulting out-of-straightness pattern is shown in Fig. 5,

for an· 11 m long and 0.38 m diameter specimen. The distribution of heat lots

along the specimen is spown in Fig. 5, which also shows a diagram exploded

along line A to show the relative weld positions. Each weld is fixed at

between 25 and 50 ~m (1 and 2 in.) frq~ either line A or line C as indicated,

Table 3 quantifies the magnitude of the out-of-straightness and also the
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form of the out-of-straightness pattern. In general) the API specified
- .

tolerances for out-of-straightness have not been exceeded. It appears that

the out~of-straightness on a diametrical plane nearly parallel to the weld

locations is greater than that on perpendicular diametrical planes.

5.3 Ex~rimental Technique

Lateral deflections at qu~tt~r points along the 'l~ngth of each

specimen and rotations of the spherical end bearing blocks we~e measured.

Since longitudinal lines had been established on each 'specimen for out-of-

straightness measurements, these lines were also used- to -establish points

on the circumf~rence for me~surement of ~xial strain and lateral displacemen~.

Rotations in two perpendicular directions of the bottom bearing

block could readily be measured manually with a dial gage and spirit level

apparatus. (The slope of the base plate could then- be measured relative to

an arm kept horizontal with the aid of the level".) HO'(lever, this same

procedure was difficult for the head rotation measurements because measurement

had to be made at an elevation of up to 12' m (40 ft.). The problem was solved

with the use of two plW11bob-type rotation gages (to measure two perpendicular

rotations) in which the curvature of a sheet metal plumbob support was

measured with electric-resistance strain gages (a separate calibration of

the gages was required).

Because of the unpredictable direction of lateral movement of the

specimen during loading and at buckling, direct measurement of lateral

deflection became difficult. The situation is further complicated by the

desire to 1l1eaSUre deflection of a po.tn~t- on a' curved surface. This' probleul

'" 10-



was solved to an adequate degree of accuracy by constructing a frame on the

testing machine at quarter points of the specimen length, such that a long

horizontal" wire could be attached at one end to a measuring apparatus

attached to the frame and at the other end to a point on the specimen. The

wire length was of the order of 1.6 to 2.0 ffi, allowing the assumption that

movement perpendicular to the wire produced a negligible effect on the gage

reading. The gage could thu~ be taken to be measuring deflections unidirec-

tional1y. The deflections were measured at quarter-points by potentiometers

(four at each level) and also at rnid-height by dial gages (also four).

Alignment -0£ each test specimen was a further problem. Ideally,

alignment is a geometrical condition in which the center of each end of -tI1e

specime~ is' aligned with the center ·of the spherical bearing block at that

end. This is quite 'different to a stub column test in which -e.nd alignment may

be· ensured by a process of trial-~and-error loads until equal straining is

~oted at points on a section circu~ference. F6r these tests, th~ best possible

alignment was obtained, and then the remaining unintentional end eccentricity

noted. Table 4 gives these measured eccentricities and also attempts to give

an indication of the magnitude of these end eccentricities. If the eccentric

moment at buckling, M ,computed as the product of the buckling load and
ecc

measured resultant eccentricity, is divided by the fully plastic moment M
p

of the section, then the resulting ratio tabulated· -1n- Table 4". gives an

indication of the relative magnitude of the end moments caused by the.unin-

tended initial end eccentricities. This end eccentricity is essential in

the theoretical analysis in which the column is treated as a biaxially

eccentrically loaded member.

-11-



J?igure 6(a) sho\vs a typical specimen pr~or t.o testing, 't\1hile Fig.

6(b) shows the S8nle spec:i.tnen after testing. ~Iaximum lateral deflections

measured were of the order of 20 em, b~t ~onsidera~le elastic straightening

of the specimen was noted as the applied load was decreased after the test.

The axial load was applied in increments and the static readings

of column behavior recorded~

5.4 Results and Di~cussion

Axial load-lateral deflect~on curves such as those shown in Fig~ 7

were obtained for each specimen at each quarter point along the specimen

length. - Each of these curves was plotted as an average deflection of two

sides of the specimen (with dial gages and potentiometers active at midheight).

It v18S cllaracteristic that for most specimens SOUle lateral movement was noted

at approximately 70 to 80%-0£ the maximum recorded load. Furthermore, buckling

was a sudden phenomenon, involving the almos~ instantaneous adoption of large

lateral deflections, coupled with a rapid decrease in the load carrying

capacity of the column specimen.

In Table 5 some data is gi.ven of column betlavior at failure, from

which a number of interesting conclusions may be formed. The location of the

criti.cal s..ection (whether by local buckling or by -formation of a plasti.c

hinge with little ~hange in cross, sectional shape) occurred frequently at some

point weil removed from the center of the specimen. It was clearly observable

during testing that either a longitudinal weld in- one can or the preference

of the column to buckle in material of lower yield strength were responsible

for this phenomenon~ It is considered"that the critical load obtained will,
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in.general become_progre.ssively greater than that of ~ llniformca~urnnas th~ critical

section occurs furth'er a't\7ay frOfn the center 'of the specim~n.Tllus the inclusion of longi-

tudinal welds and the insertion of material of higher yield stress at or near

the column center was advantageous in column strength and behavior. Specimens

6 and 9 fail at exceptionally large distances from the center of the specimen

length. It is noted also that they have other unusual behavior. This will

be described later.

Another noteworthy aspect of Table 5 is the buckling direction.

: f In all except one case, the diametrical plane containirig the buckling direction

, 0
makes an acute angle 45 or greater to the diametrical plane containing the

weld. In at least five specimens the brickling direction is perpendicular to

the diametrical plane containing the longitudinal welded seams~ In only one

specliuen, specimen 4, could the buckling direction be said to be parallel

to the plane containi.ng the welds. In this specimen, the bending was such

that the welds in th~ buckling cans were in compression,

The range of (kL/r) ratios tested in this series of experiments

encompasses the transition from the mode ~f local buckling type of failure,

recognized by the checkerboard patter~ of cross section distortion, to the

formation of a plastic hinge as the type of failure mechanism characterized by

general yielding of an entire can and relatively little cross section distor-

tion. From the obtained data, a' (kL/r) ratio of about 50 is, an, indication

of the transition from local buckling to plastic ,hinge formation at failure.

It is noted tllat the critical "can" of column specimen 10 \Vas not

the central can. Examination of the ~ut-of-straightness patterns suggests

these may ha've been a 'factor. The critically yielded "can" of specimens 6

-13-



and 9 was located at exceptionally large distances from. the center of the

specimen length, despite the use of steel from the same heat lot throughout

both specimens. Table 5 also shows that both failed in a local buckling mode

in somew~at unusual buckling directions. In both cases, the critically

yielded zone was only a few inches from a circumferential weld. Examination

of the out~of-straightness patterns shows a possibility that this may ~ave

been an influenc.ing, factor, "Yvith greater than average I1misfit" between the

longitudinal axes of consecutive cans at the critical circumferential welds~

Such factors may determine the position of criti.cal "can" along the column

length.

Two other aspects of post-buckling column behavior are shown i.n

Table 6. The maximum lateral deflections measured at center of the specimen

height are recorded ~umerically and also as a percentage of the nominal specimen

length. It can be seen th~t maximum lateral deflections of the order of 1.0

to 1.7% of the column length were obtained', and at these deflections the

'residual axial load carrying -capacity of the member was usually of ,the order

of 40% of the critical buckling load.

In Table 6 an attempt is also made to verify the importance of

the buckling or post~buckling behavior. In the direction of buckling, the

rotation of the top head, e
T

, is recorded as a fraction of the rotation of

the bottom head, en. Prediction of this ratio could readily be made by

assuming that the buckled.column had all plastic rotatioQ concentrated at

the critical locati6n, i.e., that the deflected shape of a buckled column ~as

essentially bilinear~ Comparison of these observed and predicted values

shows good agreement, except for trilO specimens, for which a relatively

important secondary· critical location could be found.-



Obser"vatton of Tables 1 and, 5 ShOv7S that the l~rger diameter column

specimens all failed in a local buckling mode, and \~ere the only specimens to

so so. -' For the longest of these colun1ns, the failure was initially in formation of a

plastic hinge, followed immediately by local bucl<:ling. This "t·vould suggest that large

diameter columns may have difficulty in sustaining finite rotations of a plastic 11irlge. Local

cross sectional distortion is needed to allow such rotations. However, the

column buckling strength is not a function of column dia~eter. There was' a

-sudden, catastrophic loss of axial load-carrying: capacit)7' i.n specimens which

failed .by local buckling. In contrast, the loss of load-carrying capacity

was less sudden 'tv-hen a pla-stic hinge ~vas formed and a significant plastic

hinge rotation capacity was usually observed.

5.5 COlTIrarison of Predicted and Observed B...uckli.ng Loads

Figure 8 defines both critical axial load, P , and buckling load,
cr

Ph' as obtained during experimentation. The buckling load is essentially

the maximum static load recorded, whereas the critical load is taken as the

maximum load the specimens sustained. Usually the buckling load and critical

loads were within 100 kN (22 kip) of each other.

When )Tield stress values of the steel are considered,. a similar

rate-dependent phenomenon is evident. It is well k~own that the higher the

strain rate at which the specimens are tested, the higher the obtained yield

stress. Herein,'we take the mill-report yield stresses as pseudo-dynamic

yield stresses, while yield stresses taken after a specified waiting perfod

(as in ASTM A370 specifications) as value-.g- of static yield stress. In this

paper, results are presented both as buckling load with 'static' yield strength

material assulued and critical load ~\v7ith. mill-report yield strengt,h materi.a.l

assurned. .u 15...



In ~"'ig. 9, the trlree stub column strength curves are presented

together with the ten long column test results. Static yield stress values

are used in derivation of these curves. Theie curves give a lower bound on

long column strength tests obtained~

Figure 10 presents results compared to. two available design column

strength curves. TIle eRC strength curve (4) is commonly used in design

computations, and the multiple column curve "a" (3) is a more recent proposal

for design of tubular members~ Figurell plots the same information using

static values of yield stress and column buckling load. It can be seen that

both proposed des~n curves may be unconservative in the intermediate range

of (kL/r) ratio, i.e., in the range covered by these tests, if mill report

yield stresses are used, However, if static yield stresses are used together

with column buckling loads) the proposed curves are adequat.e ·in this ·rang-e·

of (kL/r) ratio. Since there is only minor difference between buckling and

critical axial loads, the importance of adopting the correct yield stress is

amply illustrated. From Table 2 it can be shown that adoption of mill report

yield stresses instead of true static yield stress values provides an increase

in yield stress·of 17 and 8% for heat lots I and II, respectively, in the

test sequence reported herein.

6. SunLrnar:Y...~tld Con~lusi9ns.'

This paper presents a 'sumtnary. -of the experimental phase of,· a

rese~rch program currently underway in,Fritz Engineering Laboratory, Lehigh

University. The program is directed toward discovery of the strength and

, behavior of large fabricated tubular s.te.el columns such as are commonly used

in offshore structures. Described herein are various preliminary tests,

-16-



·including the experimental determination of residual stresses and column

buckling predictions based on stub column tests. The major portion of the

paper, however, concerns the testing of ten full-scale tubular columns

subjected to quasi-static axial loads. A feature of the experiments was the

use of essentially pin-ended column conditions, and considerable emphasis is

placed on various aspec.ts of column behavior.

The circumferential residual stresses in a tubular column caused

by the rolling process used in, column manufacture, were found to be as shown

in Fig. 2. Figure. 3 shows the lnaccuractes inherent in a common theoretical

assumption of the form of this stress distribution, which may have been

inaccurate because of incomplete "springback" in tube manufacture. A longi-'

tudinal welding process by which a rolled plate is made into a cylindrical

. .

tube is found to introduce longitudinal residual stresses with a distribution --

of the form shown in Fig. 1. Linear approximation'of this was attempted

since'values of these residual stresses are essential to any theoretical

analysis of long column behavior.

A series of ten long, relatively large, fabricated, tubular columns

was tested in the 5,000,000 Ib Baldwin Testing machine in Fritz Engineering

Laboratory. The use of spherical end blocks not only provided essentially

pin-ended conditions and thus the maximum, possible, (lcL/r) ratio, but also

allowed observance of. the. buckling direction--an unknown previously. For each

specimen, initial out-of-straightness was measured prior to testing, and suffi-

cient data ,vas accunlulated to allow subsequent derivation of axial load-

lateral deflection curves, column effective lengths, and end rotations of

the specimen.

-17-



The. range of (kL/r) ratios tested encompases the transi.ti.on of

failure mode from local buckling, characterized by checkerboard cross

sectional distortion of the critically yielded locatio~ to plastic hinge

formation, characterized by general yielding of a more extensive area and

less cross sectional distortioLl at buckling. 111e bucltling direction in the

critical "can" frequently tended to· be in a plane approximately perpen~licular,

to a diametrical plane containing the weld, but this "7as not universally true.

Out-of-straightness could be shown to be a significant parameter only

infrequently, due possibly to the frequent occurrence of double and .triple

curvature. There appear to be certain beneficial asp~cts of the manuf~ctur~ng

method currently adopted. Since an .perfect column may be expected to buckle

near the center of its ·length, the degree to which this location has been

displaced from the center is some measure of the increase in strength gen..·

erated. The critical "can" location is usually displaced by the presence of

"can" of lower yield strength at a distance fronl the midb.eight of the column,

and also by a desire to place the longitudinal welded seam in an area of

low bending stress.

Comparison of existing column strength curves with experimental

results is presente~ in Figs. 9, 10 and 11. In the intermediate range of

(kL/r) ratio tested the stub column ,tests were shown to adequately predict

the lower bound of column strength. However, the-two proposed column strength

curves for use in design of long columns only give conservative results if

a true stat.i..£,yield stress value isassl1med for ~he material, in. contrast

to the pseudo-dynalnic nature of classical mill report tests.
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D = nominal outside diameter of column
o

E = modulus of elasticity

k - effective length fact9r

L = column length

M
ecc

M
P

Pb

Pcr

p
y

-R

r

x

t

= maximum eccentric bending moment

= fully plastic bending moment of cross section

= buckling load, see Fig. 8

= critical axial load, see Fig. 8

= yield axial load

- column radius

~ radius of gyration

~ distance from base of 'specimen

= wall tllic'kness

= end eccentricity in eastern direction
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~
..- end eccentricity in nortrlern direction

(J = stress

(J - yield stress
y

O'L - longitudinal residual stress

C1 ;: circumferential stress
c

9
B

- bottom head rotation

9
T

::: top head rotation

r:A :=: 1.~1
Tt' E r-
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Specimen
Number

1

2

3

4

5

6

7

8

9

10

Effective Effective Outside
Nominal Length of Length Diameter
Length Buckling Factor D

m(f!.L m..,..J(<L.-f_,t~)n k cm-...;;.,...(~_n_£..,)_

5.5(18) 5.2(17) 0.95 38(15)

5.5(18) 5.2(17) 0.95 38(15)

7.6(25) 6.7(22) O~86 38(15)

7.6(25) 7.3(24) 0.93 38(15)

7.6(25) 5.2(17) 0.68 56(22)

7.6(25) 5.8(19) 0.76 56(22)

11(36) 11.0(36) 1.00 38(15)

11(36) 7.6(25) 0.69 38(15)

11(36) 8.9(29) O~81 56(22)

11(36) 8.5(28) 0.78 56(22)

Control
Heat

a
Lot

I lIb,
I, lIb

II

II

II
c

II
c

II

I,II
b

II
c

c
,II

a The yield stress of }Ieat Lot II was hi.gher than for IIeat Lot I

bCirc~ferential weld near center, different heat lots on each side

cAll pipe Heat Lot II

Table' 2 Material PrQRerties

Origin

Mill
Report

"Static"
Laboratory

a
Test

AST~1 A370
Test

Dynamic a ,MPa(ksi)
y

Static cr ,MPa(ksi)
y

E,11Pa (ks i)

Dynamicay,MPa(ksi)

Static cr ,MPa(ksi)
y

E,MPa(ksi)

Dynamic cr ,MPa(ksi)
y

Static a ,MP~(ksi)
y

E.MPa(ksi)

I

318(46.1)

288 (/+1 ir 7)

271(39.3)

211,000(30,600)

293(42 .. 5)

271(39.3)

214,000(31,000)

II

328(47.5)

321(46.5)

308(44~6)

212,000(30,700)

324(47.0)

308(44.6)

213,000(30,800)

amaximum strain rate = O~64 mm/min (0.025 in/min)
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Specimen Form of
Number Cur,\rature

1 Single

2
Local Imperfection

Near Weld
'" Single.J

4 Single

5 Single

6 Double

7 Triple.

t
8 Double

f'.)

9w Triple
)

10 Triple

Table 3 Column Specimen Out-of-Straightnesses

1.31 4.3(14) Single 0.5 2.4(8)

2.0 2.1(7) Local Imperfection 2.0 2.4(8)Near Central Weld
1.0 6.1(20) . Single 0.5 6.1(20)

0.62 6.1(20) Single' 0.83 4.6(15)

0.32 5.5(18) Single 0.65 5.5(18)

0.63 3.7(12) Triple 0.75 3.0(10)

0.91 7.0(23) Local Imperfection 1.71 2.1(7)
~Near End

1.18 5.8(19) Single 0.67 7.6(25)

1.41 4.9(16) Triple 0.63 5.8(19)

1.45 4.6(15) Single 1.25 3.0(10)

aAPI Specification (1) allows 1.0 mm/m every 3 m



Table 4 Unintended Initial End Eccentricities
(Center of Pipe Relative to End -Block)

Top Head Bottom I-Iead

Specimen M }f
0EIlhl1 (in) °Nmm(in)

ecc °ErruTI (in) °Nmm(in)
ecc

Number M M
p P

1

2 0 -1.0(-0.04) 0.001

3 -2.0(-0.08) 0 0.002

4 -1.5(-0.06) -1.5( 0.06) 0.002

5 0 ';'7.9(-0.31) 0.045 0 0 0

6 4.8( 0.19) 3.3( O~13) 0.029 - 1 •5 ( -0 •0 6) 0 6,008

10 •4 ( O. L~1) 4.8( 0,19)
I

4.8( 0.19) 0 0.0347 0.083

1
8 -7.9(.. 0.31) O.8( 0.03) o.O62~ 0 a 0

{

O.8( 0.03) -1.5(-0.06)
I 10.4(-0.41) 0.0649 0.009! ... 4.8(-0.19)

10 9.7( 0.38) 0 0.053 - 2 •3 ( - 0 . 0 9) 3.3( 0.13) 0.022

----------
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Table 5 Failure Mechanism and .Direction

Specimen
NUlnber

Failure
Mode

Locati.on of
Critical Section

(
x\a
,·1)

Direction
of Buckling
v] • r . t c lJle1d----- Remarks

1

2

3

4

plastic hinge

plastic hinge

plastic hinge

plastic hinge

0.48

0.57

0.62

o
50- 60 to we Id

700
to weld

perpendicular
to weld

parallel to
weld

in lower yield strength
can

in lower yield strength
can

in lower yield strength
can

initial buckle in lower
yield strength can

5 then plastic hinge,
local buclcling

0.38 perpendicular
to weld

out of central can to
avoid high compression
in weld

6

7

8

local bucl~ling

plastic hinge

f>lastic hinge

0.82

0.41

0.64

o60-70 to weld

perpendicular
to \veld

o b45 to vIeld

out of centt~l can to
avoid high compression
in v]e Id

in lower yield strength
can

weld in tension in
lower yield strength
can

9 local buckling 0.27
o b

60-90 to weld buckle in lower can to
avoid weld in compres
sion

10 local buckling 0.56 perpendicular
to weld

in upper can no imme
diate reason obvious

ax measured from base of specimen

bout-of-straightness may be a factor in determining buckling direction of
these specimens
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Table 6 Failure Behavior Data

'Maximuru' Top EndMeasured
0 Rotation, e

T
Predicted

Deflection m

(::)Specimen at Center L Bottom End
Number 0 rom (in) xlO2 Rotation, 8

Bm

1 53(2.07) 0.96 ---
2 57(2.24) 1 ~O4' a.70

b
1.0

3 84(3.31) 1~10 '1.15 1.33

4 96(3.79) 1.2.6 1.0le
1.63

5 79(3.10) 1~O3 0.67 0,61

6 49(1.92)8 4,42b
4.56

7 184(7.26) 1.68 0.57 0,70

8 140(5.50) 1.27 1.53 1.78

9 106(4.16)8 0.32 0.37

10 121(4.77) 1.10 1.74
c

1.27

~aximum deflection closer to a quarter-point

bApproximation taken up to 20° from the buckling direction

cExperimental eVidenc~ that bilinear approximation inadequate

-26-



!f. of -vVe Id

1.0

Tension

~I:

CTRS

cry

0.5 ~~_

a

Compression

Rotation From Weld (rad;ans)

0.757T
I

2.5 o

Distance From We ld
Column Radius

err

Fig. 1 Longitudinal Residual Stress Distribution Obtained from Slicing Method
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a) Column Prior to Testing
(11mxO.38m Diameter Specimen)

b) Buckled Column After Testing

Fig. 6 Column Testing
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