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ABSTRACT

This report provides a means of estimating the stress concentration

effects when predicting the fatigue life of several welded details. The

results of an analytical study of the fatigue behavior of welded stiff­

eners and cover plates were compared with the test data reported in NCHRP

Reports 102 and 147. The comparison indicated that the variation in tes.t

data could be accounted for by considering the probable variation in

initial crack sizes and crack growth rates.

The stress gradient correction factors developed for stiffeners and

cover plates welded to beam flanges provide the necessary analytical tools

for estimating the applicable stress intensity factors. In this study" a

lower bound crack shape relationship was utilized which was derived from

cracks that formed at the weld toes of full size cover-plated beams.
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1. INTRODUCTION

1.1 Objectives and Scope

It is well known that geometric stress concentration plays a signi­

ficant role in fatigue crack growth at welded details. In fact, the

categories of details established in the AASHTO Code(2) primarily reflect

differences in stress concentration conditions. Hence, in order to

analytically predict the fatigue life of a detail, one must account for

the local stress distribution as determined by the sudden change in

geometry.

The primary objective of this report is the inclusion of stress

concentration effects in the prediction of fatigue life. The coverage

includes fillet-welded details of the stiffener and cover plate type.

However, the basic techniques employed in the study could have been

extended to any type of detail, even those which dontt involve welding.

Besides stress concentration, fatigue life prediction also neces-

sitates an understanding of the influence of crack shape on growth

rates. A secondary objective of this report is clarification of the

relationship between stress concentration and crack shape effects. Also,

there is some investigation of crack shape variation during crack growth.

One implicit assumption made throughout the report is that the

nominal stress range at the detail is known. Clearly, inclusion of
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stress concentration in the analysis is of little use if the basic

stress range is seriously in error.

1.2 Fatigue Life Prediction

Recent years have seen great strides in the development of techniques

to analytically predict fatigue life. Fatigue crack growth per cycle,

dafdN, can be empirically related to stress intensity factor, K, from

linear fracture mechanics, as follows:(27)

da _ n
dN - C(M) (1)

where LiK is the range of stress intensity factor and C and n are based

on material properties. By rearranging Eq. 1 and integrating between

1
N =C

1

(LiK)n
da

If the stress range is included in the expression, it takes on the

following form:

-2-



N =[~ ]
1.

S -n =AS -n
r r

(3)

Fisher experimentally found that parameter A changed value for

diff'erent types of welded details. (10) The slope of the S -N curves,
r

-n, is approximately constant at -3.0 for all categories.(10,11) C can

be taken as constant' for typical bridge steels (A36, A441, A514). (10,11)

Initial crack size, a., is known approximately for some welded details(31,36)
1.

and a
f

, being much larger than ai' is usually of little consequence.

Henc~, fatigue life prediction for crack propagation rests primarily on

the evaluation of the stress intensity factor range at the detail.

The range of stress intensity factor is often expressed as 8K for.

a central through crack in an infinite plate under uniaxial stress,

adjusted by numerous (superimposed) correction factors. (1,22,28,29,37)

aK = CF ~~ S ~TCa = F F F F . -;t( S .,.jna
r s w e g r

(4)

CF is the combined correction factor as a function of crack length-plate

width ratio afw, crack shape ratio alb, and geometry. F is the car­
s

rection associated with a free surface at the crack origin (the front

free surface), F accounts for a free surface at some finite length of. w

crack growth (also called the back surface or finite width correction),

-3-



and F adjusts for shape of crack front (often assumed to be elliptic
e

with maJor semidiameter b and minor semidiameter a). While in fracture

problems stress intensity often includes a plastic zone correction

factor, F , it is usually disregarded in fatigue analyses since small
p

stress ranges and reversed yielding cause the crack tip plastic zone to

b 11 (22,23,30,37)e sma .

F is the factor which accounts for either a nonuniform applied
g

stress (such as bending) or a stress concentration c~used by the detail

geometry. This stress gradient should not be confused with that which

always occurs at the crack tip. F corrects for a more global condition
g

than exists at the crack tip. Yet, for stress concentration situations

F corrects for a more local condition than the nominal stress (strength
g

of materials type) at the detail. Whether the applied stress is non-

uniform or a stress concentration exits, S represents an arbitrarily
r

selected stress range (usually the nominal maximum value at the detail).

Therefore, F is inseparably linked to the choice of S .
g r

Values of the various correction factors are dependent on the

specific overall geometry, crack shape, and distribution of applied

stress. Solutions for CF of many idealized problems are avail-

bl
(23,32,34,35)

a e. However, practical bridge details present distinct

analytical difficulties - particularly in evaluating F. Cracks normally
g

emanate from weld toes(9,lO) near which varying degrees of stress concen-

tration exist. For some geometries the crack quickly grows out of this

concentration region; for othe~ geometries the effect of concentration

-4-



is sustained over a broad range of crack sizes. Fillet-welded connections

have the added difficulty that they present a theoretically singular

stress condition (neglecting yielding) right at the weld toe. Therefore,

F has been impossible to obtain in a closed-form fashion. Numerical
g

techniques such as the finite element method normally must be employed.

1.3 F Evaluation Approaches
g

Based on Eq. 2 life prediction involves summing the cycle lives for

increments of crack growth.

be known for each increment.

F as well as other correction factors must
g

Three approaches are available for deter-

mining F for varying crack size; all approaches involve finite element
g

analyses. The first, normally. termed a compliance analysis, nece~sitates

analyzing the detail for different lengths of embedded crack. The

strain energy release rate ,it , is found as a function of the slope of

the compliance-crack length curve. (18) Irwin showed that there is a

direct relationship between~and the stress intensity factor. (19,20)

Thus, K can be found and compared, if desired, with some base K for a

specimen lacking the influence of a stress gradient (i.e., F = 1.0).
g

The ratio of the two stress intensity factors yields F for the actual
g

detail under investigation.

A second relatively new approach incorporates special elements with

inver/se singularity for modeling of the crack tip. These elements

permit accurate resolution of the displacements and stresses in the
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crack tip region. Both displacement and stress are directly related to

stress intensity and, as before, F is found by dividing by some base K.
g

Once again, a separate analysis is required for each crack depth.

Both of the above methods can be very expensive and require extensive

time. A compliance analysis also presents accuracy difficulties at very

small and very large crack depths. A more reasonable alternative exists

which requires only one stress analysis for a given detail geometry.

Bueckner and Hayes showed thatlt can be found from the stresses in the

crack free body which act on the plane where the crack is to later

exist. (8,16). Irwin implied this when he foundU by considering the

energy needed to reclose a crack. (19) Based on this concept (often

called sup·erposition or difference state) it is po~sible to describe

known stress intensity solutions for stresses or concentrated loads

applied directly to crack surfaces as Green's functions for loading

remote from the crack. (28,34,35) The stress or concentrated load is

simply adjusted to suit the stress distribution along that plane with'

the crack absent. (A concentrated load is represented by stress· applied

to an incremental area. Through integration, numerical or closed-form,

any stress di'stribution can be represented.) Depending on which Green t s

function is used, F alone or a combination of correction. factors can be
g

evaluated. The only requirement is that the crack path be known. Since

... (7 9 10 12)
actual tests have prov1ded 1nformat10n on crack patha, ", method

thre~ is employed in the study.

-6-



1.4 Previous Work on the Stress Concentration/Stress Intensity

Relationship

Accurate analysis of the influence of stress concentration on

stress intensity stems from Bowie's ~ork on cracks emanating from circular

holes. (6) Since then good estimates of K have been determined for

cracks growing'from elliptical holes, rectangular cutouts, and all sorts

f t h (24,26,32,34) w~ h d 11 Id d ~o no c es. 1t regar to fi et-we e connect1ons,

Frank's work on cruciform joints marks an early intensive effort to

develop an expression for F . (12) A similar .study was pursued by Hayes
g

and Maddox shortly thereafter. (15) Unfortunately, the numerical conclu-

sians of these two investigations weren't in agreement. Further, the

accuracy of each was questionable at very small crack sizes. Gurney

later tried to resolve the differences and did succeed in producing

several helpful graphs involving the geometric variables. (14) However,

no general formulas were developed and the accuracy at very small crack

sizes was not known. Moreover, there was no assurance that graphs or

expressions developed by any of the three studies could be applied to

other, more complex, fillet-welded bridge details.

The analytical approach used to find F in Refs. 12, 14, and 15 was
g

that of a compliance analysis 'based on finite element discretization of

the joint. The Green's f~ction tec~i~e was early used by Kobayashi, (21)

, . (28 35)
who successfully estimated Bowie's results, and others .. ' Later,

Albrecht developed an approach to F for fillet-welded j Q,ints using a
g

Green's function. (1) However, no parametric study was conducted.

-7-



· Use of finite elements with inverse singularity to analyze welded

details has not yet appeared in the literature although this approach

has promise for the future. One current need is the development of

three-dimensional elements with the singulari~y condition.
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2. STRESS CONCENTRATION EFFECTS

2.1 Crack Free Stress Analysis

2.1.1 Analytical Models

The overall detail geometries for the stiffener and cover

plate investigations are shown in Figs. 1 and 2, respectively. In

both cases the detail was assumed to exist on both sides of the

beam web which, therefore, marks a plane of symmetry. Uniform

stress was input to the details at a position far enough removed

from the fillet weld so as to exceed the limit of stress concentra­

tion effects. In both details the flange width was held constant.

The fillet weld angle was set at 45 -degrees.

The thickness of a stiffener is generally small compared to

the flange thickness, T
f

. Hence, the stiffener itself was omitted

from Fig. 1. The variable under investigation was the weld leg, Z.

Z can be expected to range between 0.25 T
f

and 1.00 T
f

. The three

values of Z selected for this study were 0.32 T
f

, 0.64 T
f

, and

0.96 T
f

. A stress concentration analysis was c.ompleted for each

value.

A pilot study on the cover-plated detail (Fig. 2) revealed

that stress concentration reaches a plateau with increasing attach­

ment length. Hence, the length of cover plate was set so as to

-9-



ensure maximum concentration conditions. The width of cover plate

was held constant and the weld size was assumed constant along the

cover plate edge. The variables studied were the weld leg, Z, and

cover plate thickness, T The weld leg sizes considered were the
cp

same as for the stiffener detail and the cover plate thickness was

taken as 0.64 T
f

, 1.44 T
f

, and 2.0 T
f

.

Both of the detail~ were initially analyzed three-

dimensionally. However, in order to reduce costs this first level

of investigation was only of sufficient accuracy to provide reason-

able input to a more local, two-dimensional stress analysis. For

the two details studied, fatigue cracks normally originate along

. (9 10)
the weld toe and propagate through the flange thickness. '

Hence, the plane of interest for two-dimensional stress analysis

was the section shown in Figs. 1 and 2. Pilot studies showed that

the stress concentration increases slightly as the section gets

nearer the web line. Therefore, the specific section for two-

dimensional analysis was taken right at the web line.

An existing finite element computer program, SAP IV, (4) was

used for the entire ~tress analysis effort. The program is intended

for elastic analysis only; Young's modulus was set at 29,600 ksi

and Poisson's ratio was taken to be 0.30. A three-dimensional

'coarse mesh, using brick elements, was established for each detail

and subjected to uniform stress. Nodal displacement output from

the 3D mesh was then input to a two-dimensional fine mesh. Nodal

-10-



displacement output from the fine mesh was subsequently input to an

ultra fine mesh which was very local to the weld toe. Finally, the

element stress concentrations were extrapolated to give a maximum

stress concentration factor, SCF, right at the weld toe.

Figures 3 and 4 show the coarse meshes used for each detail.

The dashed lines are intended to indicate how the variable cover

plate thickness and/or weld leg dimension were effected. In all

cases the flange discretization and actual thickness (0.78 in.)

were held constant. Also, the first line of weld elements adjacent

to the overall weld toe had constant size. For both models, dis­

placements perpendicular to lines of symmetry were prevented.

Displacement perpendicular to each plan view was prevented along

the web line and, in the stiffener case, also along the weld line

of symmetry (to simulate the stiffener).

Figures 5 and 6 show the fine and ultra fine meshes which were

common to both detail investigations. Planar elements of constant

thickness were used throughout. The heavy lines denote the outline

of previous mesh elements. Displacements at common mesh nodes

along the border were known from the prior analysis; displacements

at newly created nodes at the boundary were found by linear inter­

polation between known values.

The need for an ultra fine mesh deserves further explanation.

The assumed geometry at the weld toe creates- an elastic stress

-11-



singularity condition. Hence, a decrease in mesh size adjacent to

the toe yields ever higher stress values. However, the stresses

somewhat removed from the toe become stabilized and the distance to

stabilization decreases with decreasing mesh size. Since the

analyst is interested in accuracy of stresses beyond the initial

crack size, it seemed reasonable to ensure the mesh size was at

least as small as the initial crack size. For the assumed flange

thickness (0.78 in.), the minimum mesh size was 0.001 in. Several

investigations have established this as a lower limit of initial

crack size. (31,36)

A hypothetical maximum stress concentration factor was obtained

by fitting a fourth order polynomial through the averaged concentra-

tion values on either side of the node line down from the weld toe

in the ultra fine mesh.

2.1.2 Stress Concentration Results

The SCF values for each stiffener and cover plate geometry

analyzed are plotted in Fig. 7. SCF increases for increasing

stiffener weld size, but decreases for increasing cover plate weld

size. These trends are similar to Gurneyfs findings for non-load-

~ dId .. ~ f ~ ~ (14)carrYlng an oa -carrylng cruel arm JOlnts. Apparently, a

transition from a non-load-carrying to load-carrying condition

occurs as the attachment length along the beam increases.

-12-



Regression analyses for the stiffener and cover plate data

~ . (38)
suggest the followlng equatlons:

Stiffeners:

Cover Plates:

SCF =1.621 log (i )+ 3.963
f .

(5)

SCF =-3.539 log (i )+ 1.981 log (~cp) + 5.798 (6)
f f

The standard errors of estimate, s, for Eqs. 5 and 6 are 0.0019 and

0.0922, respectively.

Stress concentration factor decay curves for sample stiffener

and cover plate details are plotted in Fig. 8. Each K
t

curve

eventually drops below 1.0 due to the equilibrium requirements.

The cover plate is seen to cause much more disruption to stress

flow than does the stiffener. In both cases the stress concentra-

tion is most pronounced at small crack sizes. Unfortunately, most

of the fatigue life is expended in the same range. (9)

-13-



2.2 Stress Gradient Correction Factor

2.2.1 Green's Function

The Green's function or superposition approach makes use of

stress intensity solutions for loading directly on the crack surface.

Use of the Greents function suggested by Albrecht and Yamada leads

to the following stress intensity expression: (1)

a

K=cr~*~ f
o

dQ (7 )

where a is the nominal stress on the section and K
t

is the crack

free stress concentration factor at position Q. Since a~ is

the stress intensity for a through crack under uniform stress, the

stress gradient correction factor, F , at crack length a is:
g

a

F = 2 /g J(

o

Kt---- dQ

Va2
- li

(8)

If crack length, a, and distance, Q, are both nondimensionalized by

the flange thickness, T
f

, Eq. 8 becomes:

F =g
2
IT

a

/
o

Kt---dA

Va2_)..2

(9)

-14-



where ex = a/T
f

Occasionally it is possible to express K
t

by a polynomial

equation such as:

(10)

where A, B, C, and D are dimensionless constants. For such a

representation of stress concentration, Eq. 9 can be solved in a

closed-form manner. (37,38)

F
--8- =
SCF 1 + 2A N + B 2 + 4C 3 + 3D a4

n u 2 a 3rr a 8 (11)

Equation 11 can be applied to polynomials of lesser order by merely

equating the appropriate decay constants to zero.

It is difficult to make use of Eq. 11 for stiffeners and cover

plates since the typical concentration curves· (Fig. 8) are not well

suited to polynomial representation. Hence, Eq. 8 usually can't

be solved in a closed-form manner. However, a numerical solution

(1)
is easily devised as suggested by Albrecht.

F =
g

2
It

[arCSin (~ ) - arcsin (:j)]

-15-
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in which K
tj

is the stress concentration factor in element j of the

finite element discretization or the average of two adjacent elements,

both of equal distance along opposite sides of the crack path.

Limit m is the number of elements to crack length a.

2.2.2 Typical Results

Figure 9 shows the predicted trend of the stress gradient

correction in relation to stress concentration at typical welded

Each decays to adetails. Both the F
g

and K
t

curves begin at SeF.

level below 1.0 although the F decay is less rapid. In general,
g

the separation of the two curves at any point other than the origin

depends on detail geometry.

Figure 10 presents F decay curves (F /SCF) for sample stiffener
g g

and cover plate details. Usually, the curves for cover plates are

below those for stiffeners since the SCF values are higher. It is

also apparent that details with similar SCF often have different

decay rates. This fact means that the F curve is related to a
g

different mix of geometrical parameters than is SCF.

2.2.3 Prediction

It is highly advantageous to have a means of obtaining F for
g

different details without individual finite element studies. One

approximate method is to represent the F equation as:
g

-16-



F
--L =
SCF

1 (13)

For a typical stiffener geometry, Table 1 shows constants d and q

can be taken as 0.3602 and 0.2487, respe~tively. An average cover

plate detail is reasonably represented by values of 0.1473 and

0.4348.

A second, more precise method of obtaining F is also available.
g

It can be seen that the characteristics of the F curve (Fig. 9)
g

·are quite similar to features of stress concentration decay (based

on gross section stress) from the end of an elliptical hole in an

infinite, uniaxially stressed plate. (5,25) Each curve begins at

the maximum concentration factor, SCF, and decays to a value near

one. (The asymptote for the elliptical hole is exactly 1.) There-

fore, it is possible to correlate a hypothetical hole to actual F
g

curves (Fig. 10) such that any F curve can be estimated from the
g

appropriate hole shape and size.

The elliptical hole shape determines the maximum stress concen-

tration factor.

SCF = 1 + 2 ~
h

-17-

(14)



in which g and h are the hole major and minor semidiameters,

respectively. Conversely, given the maximum concentration at a

detail (Egs. 5 and 6), the correlated hole shape can be determined.

Figure 11 shows the stress concentration factor decay from an

elliptical hole is dependent on both the hole shape and its absolute

size. A smaller hole has a more rapid concentration decay. In

order to predict Fg from the elliptical hole K
t

curve, it is neces­

sary to establish the proper ellipse size - semidiameter g. Such

correlation is here based on equal life prediction for crack growth

through the flange thickness.

Stress concentration decay along the major axis of an elliptical

hole (uniaxial tens10n in minor axis direction) can be expressed

a8:(5)

(15)

+ sinh(2f1) {COSh(2f1 ) + ~ cosh(2)') - ~} ] / ( cosh(2f1)-1 ) 2

in which ~ is the general elliptic coordinate and y is the specific

value of ~ associated with the hole perimeter. The elliptic

coordinate can readily be evaluated.

-18-



cosh(y) = [~ (16)

cosh(I1) ={I + i} cosh(y) (17)

--~--- ----

For any given geometry and assumed value of crack length, a, the

stress concentration factor, K
t

, is known if g is known. Further,

if g has been correlated to equate Kt and Fg , then the stress

gradient correction factor is also established.

A correlation study for the geometries investigated related

the optimum ellipse size to the various geometrical parameters and

initial crack size, a .. The regression curves which resulted are:(38)
1

Stiffeners:

2t- = -0.002755 + 0.1103 (i ) - 0.02580 (i )
f f f.

(18)
2

+ O. 6305 (;i) - 7. 165 (;i)
f f

Cover Plates:

.~ = 0.2679 + 0.07530 (i )- 0.08013 (if) 2
f f

(19)
T . 2

+ 0.2002 log ( Tcp ) + L391(;i)- 11.74 (;i)
f f f

-19-



The standard errors of estimates, s, for Egs. 15 and 16 are 0.0041

and 0.0055, respectively.

Figure 12 compares the K
t

curve at q sample cover plate detail

with the actual F curve from the Green's function CEq. 12) and the
g

F curve from the correlated ellipse. It is apparent the two Fg g

curves are in close agreement and cross over each other twice.

Such is also common for stiffener details.

-20-



3. STRESS INTENSITY

3.1 Other Correction Factors

3.1.1 Crack Shape Correction - F
e

F is based upon Green and Sneddon's solution for the openinge

displacement of an embedded elliptical crack under perpendicular

stress. (13) Irwin(29) made use of Westergaard's relationship

between crack opening displacement and stress intensity. The

resulting F for any position along the crack front, described by
e

angle $ to the major axis, is:

1 [ 2 2] 1/4
Fe =E(k) 1-k cos ~ (20)

where k is 1.0 minus the ratio alb squared and E(k) is the complete

elliptic integral of the second kind. Interest is usually directed

to the minor axis end of the ellipse where $ =n12. For this

particular position:

Fe
1= E(k)

-21-
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Equation 20 was derived on the basis of uniform tension across

the crack surface. While it may be argued that variable tension

will modify the result, such is taken into account by the Fg

correction later described. Hence, F is maintained in its original
e

form for stress intensity estimates.

3.1.2 Front Free Surface Correction - Fs

F is generally necessary for edge cracks since stress, nots

displacement, is zero on the free boundary. A girder web as well

as attachments like stiffeners and cover plates can provide some

restriction to displacement at weld toes or terminations. The

magnitude of such restriction is not known to any specific degree

although it is estimated to be modest. Furthermore, inclusion of

an F other than 1.0 usually leads to a lower bound or conservatives

fatigue life estimate. Hence, front free surface displacement

restriction by attachments is disregarded in this report.

Tada and Irwin have tabulated t~e variability of Fs with the

distribution of stress applied to the crack. (34,35) Table 2 shows

this variability for the types of crack shapes and stress distri-

butions of interest at welded stiffener and cover plate details.

If a through crack exists and the stress is uniform over the crack

"length, F is 1.122. If the stress varies linearly to zero at the. s

crack tip, F is 1.210. And if a concentrated load exists at the
s
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crack origin, F is 1.300. Obviously, if the stress distributions

decreases from the crack origin more rapidly than the linear con-

dition, F must have a value between 1.210 and 1.300.s

Reference 35 also directs attention to the half-circular

crack. For a uniform stress over the entire crack plan area, F ats

the crack tip is 1.025. For a stress which varies linearly to zero

at the crack tip, F at the same location is 1.085. The solutions

for a concentrated load at the crack'origin is not known. F fors

this condition is estimated at 1.145, which incorporates twice the

increment increase exhibited by changing from a uniform to a linear

stress pattern.

3.1.3 Back Free Surface Correction - Fw

The solutions for F consider infinite half spaces. When the
s

space is not infinite, thought must be given to the back surface

correction, F. Once again the form of the correction depends onw

stress distribution and crack shape. However, F also is quitew

sensitive to whether or not the section is permitted to bend as

crack growth occurs. The bending tendency is natural for any strip

in which crack growth is not symmetrical with respect to the strip

centerline.
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The literature often cites two forms of F (almost interchange­w

ably) for the symmetrical crack cases presented in Fig. 13. (28,32,34,35)

These two expressions are also applicable to nonsymmetrical crack

configurations where bending is prevented by imposed boundary

conditions. Hence, the strips in Fig. 14 are comparable to those

in Fig. 13. At real structural details the roller supports might

be provided by a web, stiffener, and/or cover plate.

Bending amplifies the back surface correction - particularly

at high vaiues of a/w where more bending occurs. If the rollers on

either strip of Fig. 14 are removed, the back surface correction

takes on the following form: (34,35)

[ ] 1/2F = Q* ~a tan (~a) (22)
w

0.37 [I-sin (~a) ]
3

0.752 + 2.02a +
where Q =

1.122 cos (~a)

aa = -
w

The coefficient, Q, ?y which the tangent correction is modified is.

plotted in Fig. 15.
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Table 3 gives the back surface corrections for through cracks

with and without bending permitted. Without bending the familiar

secant correction is used for a uniform stress while the secant is

amplified as stress concentration occurs at the crack origin. This

amplification has maximum value 1.297 ~n/2ffor a concentrated load

at the crack origin and ~ = 1.0. Both no bending solutions stem

from a finite width plate with a central through crack. (34) A

linearly varying stress case is assumed to be the average of the

two extremes. A sharper stress decay has a correction somewhere

between the concentrated load and the linearly varying stress

values.

The back surface corrections associated ~ith bending show

significant amplification of the secant correction. Since the

tangent and secant corrections are similar, Fig. 15 gives a good

indication of the amplification for both cases when uniform stress

is applied. The amplification factor for a concentrated load is

much higher than that for a uniform stress. For example, at a = 0.6

the uniform stress amplification is 1.97 while the concentrated

load amplification is 6.07 (Table 2). These back surfaces solutions

are directly linked to front surface corre'ctions since bending

demands lack 'of symmetry. The combined correction factors for

through cracks found in Refs. 34 and 34 were divided by the asso­

ciated front surface corrections (Table 1) to isolate the back

surface correction factors.
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The choice between bending and no bending depends on the

structural detail as well as how the crack is growing. Fatigue

crack growth at welded stiffeners, cover plates, and other common

girder attachments is rarely symmetrical.. Yet, bending is usually

limited by virtue of the girder web and/or the attachment itself. (7)

Hence, the no bending corrections are considered to be most appli-

cable in typical bridge structures.

To this point all discussion of back free surface correction

factors has centered on the through crack configuration (alb = 0).

(23)
Maddox recently condensed the work of numerous researchers and

estimated how F varies for crack shape ratios and a values between. w

zero and 1.0. Uniform stress and unrestricted bending were assumed.

His results essentially agree with Table 2 when alb equals zero,

but vary nonlinearly to almost 1.0 for any ~ value when alb equals

1.0. In other words, F might well be disregarded for the half­w

circular crack. The net ligament on either side of the crack

inhibits bending and significantly limits the crack from sensing

the upcoming free surface.

The curves Maddox produced are approximations 'since few data

points exist for crack shape ratios between zero and 1.0. Never-

theless, it is reasonable to assign F a value of 1.0 for any a if the
w

crack shape is circular, regardless of the bending and stress

distribution considerations. The fact that some references show an

F value slightly above 1.0 when a is large and alb = 1.0 is not
w

important since most fatigue life is expended at small a.
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3.2 Crack Shape Effects on F
g

The entire development of Chapter 2 was based upon a through crack

configuration (alb = 0). Implementation of each of the analytical

approaches to F usually involves this assumption although solutions for
g

other crack shapes are actually possible. Moreover, it is worthwhile

noting F varies with crack shape and such variance should be taken into
,g

account in the fatigue life prediction process.

Table 4 has been developed using through, and circular crack Green's

functions for a crack in infinite solid. (1,35) The table sh~ws that the

values for F diverge as the streis decay becomes more rapid. The
g

limiting ratio, Y, for a concentrated load at the crack origin is esti-

mated to be 0.548. This number represents twice the deviation from 1.0

recorded between the uniform and linear stress cases.

3.3 Crack Shape Variations During 'Growth

A major factor affecting correction factors is the crack shape

during growth. Gurney has found that the importance increases as the

" d"l "" (14) N 11 kstress concentrat10n or" eta1 severlty 1ncreases. orma y, crac s

are idealized as elliptical although experimenters have recognized that

k 11 '" 1 " h (29 ,33)most crac s are actua y lrregu ar In s ape.

Crack shape ratio, alb, is dependent upon several variables. One

of them is the proximity of free surfaces, as distinguished by the ratio
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a/w. Another is the overa! geometry of the detail which affects F and, in
g

turn, a/b. Therefore, plates of different width (or thickness if crack is

growing in that direction) can cause different crack shapes to occur. (37)

Also, study has shown that cracks begin at several sites along a trans­

, (10 37)
verse weld toe, but eventually they coalesce. ' Coalescence occurs

several times during the growth process.

In order to establish a crack shape relationship it is necessary to -

rely on actual measurements of crack size during growth. These measure-

ments can only be performed accurately by breaking apart structural details

at different crack growth stages. Reference 37 has reviewed and compared

the available crack shape variation equations for growth at the toe of a

transverse fillet weld. References 10 and 23 provide equations relating

single crack shape to crack depth that are in marked disagreement with

each other. The relationship suggested in Ref. 23 provides a lower bound

(conservative) characterization of early crack shapes. This equation is:

b = 0.132 + 1.29 a (23)

where a = crack depth and ellipse minor semidiameter (in.)

b half surface length of crack and ellipse major semidiameter (in.)

The relationship suggested in Ref. 10

b = 1.088 aO. 946

was observed to provide an upper bound relationship.

-28-

(24)



When coalescence begins Eq. 23 or 24 no longer applies since the

shape trend is toward flatter rather than more circular cracks. The multi-

pIe crack data in Ref. 10 suggested the following crack shape relationship:

b = 3.284
1.241

a (25)

However, an examination of cracks at the weld toes of full size cover-plated

beams suggested that a lower bound for the crack shape during the coales­

cence phase was provided by the relationship. (39)

b = 5.462 1.133
a (26)

All four of the crack shape relationships are plotted in Fig. 16 and

compared with the data for full scale cover-plated beam details. The

intersection of Eqs. 23 and 26 is near a crack depth of 0.055 in. These

two equations are employed for use at all transverse "welds , regardless of

detail geometry, pending further studies.

3.4 Total Stress Intensity

Fatigue life analysis of typical welded details involves estimating

the stress intensity for a nonuniform stress distribution. Figure 17 shows

the type ,of distribution which is common to any stress concentration region.

This distribution may be separated into uniform and variable constituents.

Since stress intensity is linear in'stress, cr, superposition applies pro­

vided the crack displacement" mode is unchanged. (34,35) Hence, the total
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stress intensity can be found by adding the stress intensitities, K and
u

K , for two "sub" stress distributions which sum to the total stress dis­v
I

tribution. The stress intensity correction factors for the uniform stress

distribution are known while the correction factors applicable to the

variable subdistribution can be estimated. (37)

Consideration must also be given to crack shape effects on stress

intensity. Thus, an approximate procedure is adopted whereby the total

stress intensity defined above is established for the extremes of crack

shape (alb = 0 and alb = 1). A linear interpolation between these limits

approximates the stress intensity for the actual crack shape at any crack

depth. Obviously, a very important input to stress intensity estimates is

the crack shape variation.

3.4.1 Through Crack '(alb = 0)

Using the correction factors of Art. 3.1 (no bending) the stress

intensity for uniform stress can be written as:

* cr & * [ (1Tll ]1/2K 1.122 * Ktet sec 2) (27)
u

where C't = a/T
f

T
f

= flange thickness

KtC't = stress concentration factor at rosit·ion

'Since this is a through crack, F is 1.0. It is apparent that for
e

uniform stress the stress gradient correction has constant value K
t

.
OJ
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pevelopment of the stress intensity for varying stress is more

complex. Table 2 shows that F is between 1.300 and 1.210. The cor­
s

reet intermediate value depends on the shape of the actual stress con-

centration factor decay curve (K
t

) relative to a linear decay line.

Figure 18a demonstrates that the proximity to a linear condition

varies with a. As a increases, F increases from 1.210 to a value
s

near 1.300.

If Fs ! represents the desired value of Fs ' then:

Fsl = 1.300 - ¢ (1.300-1.210) = 1.300 - 0.09 W

"where ~ = measure of proximity to linearity; has value 1.0 if

actually linear.

~ can be evaluated on the basis of Fig. 18b. ~ represents that

(28)

value of ~ at which the slope of the stress concentration decay curve

equals the slope of a hypothetical straight decay line from SCF to a."

The lower limit of ~ is zero while the upper limit is a/2. Thus,

1J; is taken as:

¢=~=~
a/2 a (29)

Proper resolution of Eq. 29 depends on knowledge of the concen-

tration f'actor decay curve which varies for each detail geometry.

However, since the change in Fsl is usually small over the full
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range of ~ .values, reasonable accuracy is attained by using an

approximate equation of the following form for all cases:

1= (30)

where

~ = position in the crack growth direction

C, P = constants.

If the stress gradient results for average stiffener and cover

plate geometries are used, the values of c and p summarized in

Table 1 result.

Equation 30 can be used to evaluate the indicated sl?pes at

A = Ci and A =~. A nonlinear ttcharacteristic" equation results

which must be solved for ~.

1 t 2P + ~ ~P _ £. eP -1 + 1 = a
c 2 S c S D S

(31)

where D =
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The solution of Eq. 31 is readily obtained for any given a by the

bisection method. Thus, ~ can be calculated and FsI defined.

~ is also employed in calculating the appropriate back free

surface correction, F , for the variable stress subdistribution.w

From Art. 3.1.3 the expression for F can be developed in a manner
w

similar to F
sI

.

(32)

where

The stress gradient correction factor for the subdistribution,

F , is related to F calculated for the whole distribution.
g g

Albrecht's Green's function CEq. 7) in nondimensional form yields:

where Gh = a(KtA-K
ta

) for the subdistribution.

(33)

Hence, (34)
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Equation 9 yields the following relationship:

F = F - Kg g tCt

The stress intensity expression for, the variable stress

(35)

subdistribution can now be esti~ated using Eqs. 28) 32 and 35.

(36)

Combining Egs. 27 and 36· results in the total stress intensity

expression for stiffeners and cover plates with through cracks.

(37)

'i
t
( (F -K )

ga tCt

It is helpful to rearrange Eq. 37 in the following form:

K = [F '(~C + (1.122-Fs1*C) * X] (38)81

[ ] 1/2~k F '(t( cr ~na i( secGa) .g

where X
K
ta= F
g
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Evaluation of X in Eq. 38 can be performed with the stress

gradient correction provided by the artificial ellipse correlation

given in Art. 2.2.3. It is also possible to use the approximate

equation for F which sacrifices little accuracy.
g

F
~=
SCF

1 (39)

For average stiffener and cover plate geometries, d and -q are given

in Table 1. By combining Eqs. 30 and 39, X becomes:

x =
1 + 1 aP

c

(40)

-3.4.2 Half-Circular Crack (alb = 1) .

The stress intensity for the uniform stress subdistrib'ution on

a half-circular crack can be defined a8:(35)

K = 1.025
u

(41)

Crack shape correction, F , is represented by 2/n and F is assumed
e W

to be 1.0.
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For the varying stress condition Fs is represented by Fs2 :

Fs2 =1.145 - 0.06 * ~

~ is the same value calculated for the through crack case.

(42)

The stress gradient correction associated with the circular

crack front, F' is defined:. g'

Y' =F' - Kg g ta (43)

Article 3.2 recognized that F f is not of the same numerical value
g

as F calculated for the through crack Green's function unless the
g

applied stress has uniform distribution.

Equations 42 and 43 can be used to develop the stress intensity

factor for the variable stress subdistribution.

K = F * (F t -K ) * ~ * a~v s2 g ta IT
(44)

Adding K to K CEq. 41) gives the total K for the half-circular
v u

crack shape.

~kK ~k~+F
tCl It s2

'!~ (F' -K ) '!~ ~ 1~I~ a ..jna
g tel 7t J

(45)
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Rearranging Eq. 45 gives:

F
gCi * ~ * a .Jnan (46)

where
F'

y = J
F

g

Evaluation of ratio Y is assisted by Table 4. However, it

must be borne in mind that F and F' are evaluated for the total
g g

stress distribution, not just the variable subdistribution. The Y

ratio for the total distribution is dependent on the relative

influence of the variable stress subdistribution as compared with

the uniform stress distribution. Hence, Y is taken as the sum of

two parts.

where

y = W "i':: y' + (l-W) "itC y"

Y' =0.548 + 0.226 * ~

Y" = 1.000

(47)

W = weighting factor of variable stress subdistribution

relative to the uniform stress subdistribution.

Factor W may be based upon the ratio of the two shaded areas

under the concentration decay curve in Fig. 19.

w=
A

v
A

u
= = - 1 (48)
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Substituting Eq. (5) into (23) gives:

w=

Cl

f
a

1 dJ\
1 + .! l\P

c

1 + .! riP
c

- 1 (4,9)

The integral in the numerator can be evaluated numerically; there-

fore, factor W is easily obtained. However, W decreases with

increa$ing relative crack length and must be reevaluated for each

crack position.

For the benefit of later calculations it is worthwhile multiplying

and dividing Eq. 46 by the secant radical~

K =
Fs2 * Y + (1.02S-Fs2 ) * X

[sec(~a)r/2
~k F

g
;~ 2 *

7t
(50)

3.4.3 Interpolation for Half-Elliptical Cracks (0 < alb < 1)

An intermediate ,position between Egs. 38 and 50 is necessary

for half-elliptical crack shapes. Comparison of the two equations

reveals that'each contains the F factor and the secant radical.
g

These are henceforth termed the combined stres_s gradient and back

free surface correction factors, respectively. It is also apparent

that each equation contains the appropriate, isolated, crack shape

correction factor, F. (F = 1.0 is implied in Eq. 38.) Therefore,
e e
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use of the normal elliptical integral (Art. 3.1.1) for the combined

crack shape correction is warranted. This integral automatically

provides a nonlinear interpolation.

Only the leading bracketed expressions in each equation remain

to be adjusted for half-elliptical crack shapes. While not precise,

the simplest approach is a linear interpolation based on the crack

shape ratio, a/b. The interpolated value represents the combined

front free surface correction, F .s

+ a ..'.-b 1\

~) * {F 'i~ C + (1.122-F -/<C) 1( X}
b 81 81

F * Y + (1.025-F ) * X82 82

(51)

The combined stress intensity correction factors for stiffeners

and cover plates are summarized in Table 5.

3.4.4 F Variation at Typical Detailss

The values of front free surface correction factor (Table 5)

depend on detail type, detail geometry, crack shape, and crack

depth. In order to indicate the trend pt typical details, a sample

stiffener geometry was selected. The geometry consisted of a one-

inch flange and a 5/16 inch weld leg. The resulting variations of

F with a are plotted in Fig. 20.
s
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It is apparent that the crack shape is of major importance to

the value of F for stiffeners. The more half-circular the crack
s

shape, the lower F. However, even with a constant shape, F
s s

decays as a increases. The decay is more rapid for shapes nearer

the half-circle. These characteristics are also valid for cover

plate details.
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4. FATIGUE LIFE CORRELATIONS

The correction factors developed in Chapter 3 (Table 5) can be used in

fatigue life predictions. After replacing stress, 0, with stress range,

S , in the stress intensity expressions, the resulting range of stress
r

intensity is inser-ted in Eq. 2. It is rare that this equation can be

solved closed-form - particularly when the combined correction factor, CF,

is a complicated function of crack length, a. Therefore, the cycle life

is commonly estimated on the. basis of the following numerical integration:

m

N
1 L 1

t1a. (52)= -
C (l\Kj)n J

j=l

2.0*10-10
. 11/2

where C1
1.u. (Refs. 10, 17)= mean

3
kip cycles

3.6*10-10 in. 11 / 2 ..,

C2 = upper bound (Ref. 39)
kip

3
cycles

'M< = range of stress intensity, ksi lin.

6.a = crack length increment, in.

A sense of the relative importance of stress range and initial and

final crack sizes in life estimates may be developed by again considering

Eq. 2. If the combined correction factor is assumed (for this exercise)

to be constant, the cycle life is predictable in closed-form fashion'.
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where a. = initial crack size
~

a
f

= final crack size

[
-1/2 -1/2 ]a

i
- a

f (53)

Since stress range is cubed and both crack lengths have a square root

sign attached, error in the nominal stress range is much more important

than errors in the initial and final crack sizes. Lik~wise, error in

the correction factor, CF, is more important than crack size. Even

though CF in reality depends on crack size, added importance is obviously

attached to establishment of the correct form of each individual cor-

rection factor.

The negative radical associated with each crack length typically

places the weighted importance on initial crack size. Experimental work

outlined in Refs. 9 and 10 used an excessive deflection (net section

yielding) criterion for fatigue failure and the establishment of a
f

. A

more recent study terminated fatigue life with fracture, although this

life was close to that found using a generalized yielding condition. (7)

Both definitions of failure generally cause a
f

to be much larger than

a
i

. The greater the difference between a
i

and af' the greater the

impor~ance of a~.
1.

:In light of the relative importance of a., it is indeed unfortunate
1

that a
i

is much more difficult to estimate than af. Such is even true

-42-



for a test specimen where the crack surface is exposed after failure (a
f

is usually clearly evident). Nevertheless, several investigations have

established lower and upper limits of initial crack size for weld toes of

a stiffener or cruciform joint at about 0.003 in. and 0.02 in., respec­

tively. (31,36) The average a. is between .003 in. and .004 in.
1

Given the expression for stress i~tensity and infor~tion on initial

crack sizes, the analyst is in a ,position to make fatigue life (cycle)

estimates. Several sample details are subsequently investigated and

their lives are compared with those found under actual fatigue test condi-

tiona.. Since stiffener and cover-plated beams had welds that were perpen-

dicular to the stress field, it was assumed t~at the fatigue cracks

coalesced. Hence Eqs. 23 and 26 were used to describe the crack shape

relationship for the analysis described hereafter.

4.1 Transverse Stiffeners Fillet-Welded to Flanges

Reference 10 provides. a broad experimental base for fatigue failure

at stiffeners. Stiffeners fillet-welded to flanges are therein designated

Type 3. One particular series (in this case the SGB-SBB combined series)

is selected for investigation and values of the crucial geometric variables

are tabulated in Table 6. (Appendix E of Ref. 10 notes that the actual

weld size was closer to 0.25 in. rather than the 0.1875 in. dimension speci-

fied.) The objective is to assess how accurately the result of the esti-

mate ~pproach, Nest' predicts the actual cycle life, Nact . All lives are

also recorded in Table 6.

-43-



The actual cycle life i~ Table 6 relates to the logarithmic average of

data points for the 'given series and stress range (TableE-3 of Ref. 10).

Logarithmic average means that variable N is assumed log-normally distri-

buted (base 10) and the mean is approximated by the average logarithm of

the data points. For this particular series and stress range, eight data

points are available. On average, failure occurred after the crack had

fully penetrated the flange and was growing in a through crack configura-

tion. Since the life estimates are based on cycle life for growth through

the flange, 96 percent of the actual life found by the logarithmic average

is recorded.

Four estimated lives were derived from the stress intensity relation-

ships (Table 5). They represent approximate average and maximum initial

crack sizes and crack growth rates. In comparison with N t (average) inac

Tab'le 5, -it is seen that the theoretical results all provide life estimates

that are conservative. The res~lts are also plotted in Fig. 21 and com-

pared with the results of regression analyses of all of the test data. It

is probable that Eq. 25 represents a more reasonable crack shape relation-

ship for transverse stiffener details. The use of Eq. 26 provides a more

severe condition.

Reference 10 provides two regression equations which can be used to

estimate life. The mean equation for all stiffeners (not just those con-

nected to the flange) is as follows:

log N = 10.0852 - 3.097 log S
r
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Since 96 percent of N is to be used for comparison purposes, Eq. 54 can

be modified accordingly.

log (.96N) 10.0675 - 3.097 log S
r

(55)

The mean equation for Type 3 stiffeners only (all series) is:

log N = 10.5949 - 3.505 log S (56)r

For 96 percent of N the regression equation appears as follows:

log (.96N) = 10.5772 - 3.505 log S
r

(57)

It is noted that neither regression equation has a slope of exactly

-3.0. However, the discrepancy is minor. In fact, the estimates by

Eq. 54 and 56 or 55 and 57 are normally quite close due to the adjustment

provided by the equation constants (Fig. 21}. A common slope of -3.0

guided the AASHTO Specifications(2) although round off of stress range

values left the slope slightly off of the mark. Regardless, equating n

to 3.0 is reasonable in the life integral procedure (Eq. 52).

Since both of the above regression equations are ba.sed upon the

specific series under study here, close agreement between predicted and

actual cycle life is expected and, indeed, found (Table 6 and Fig. 20).

However, it is also fruitful to compare the value at the (approximate)

upper 95 confidence limit. Again assuming log-normal distribution and
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incorporating the standard deviation (5 = 0.1024) from the Type ~ regres-

sion analysis, Eq. 57 is adjusted to the upper 95 percent confidence

limit.

log (.96N) = 10.5772 - 3.505 log S + 28r
(58)

= 10.7820 - 3.505 log Sr

The large separation between the upper confidence limit and the

mean value emphasizes the wide variability of experimental data. This

separation thereby gives a measure of accuracy of the unified estimate

at the average initial crack size.

4.2 Cover Plates With Transverse End Welds

Reference 9 is a source of considerable data on cover plates.

Combined series eWE-eWe was selected for investigation and the important

geometrical parameters are summarized in Table 6. (Series CWA had a

slightly different flange thickness, Table D-2 of Ref. 9, and was there-

fore omitted from the combination.) The stress range assumed is 16 ksi.

Thus, using the logarithmic average of the twelve available data points

(Tables F-2 and F-3 o~ Ref. 9), the 96 percent life is set at 0.356

million cyclese

The life estimates for the average and maximum initial -crack sizes

and crack growth rates are given in Table 6 and Fig. 22. The estimates
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given in Table 6 bound the average life N t for both crack growth rates.ac

The results plotted in Fig. 22 are compared with the results of regres-

sian analyses of all of the test data.

Reference 9 gives the following. regression equation for all cover

plates with transverse end welds:

log N = 9.2920 - 3.095 log Sr (59)

Incorporation of the 96 percent life for crack growth through the flange

modifieds Eq. 59 as' follows:

log (.96N) = 9.2743 - 3.095 log S
r

(60)

For the specific stress range in Table 6, it can be seen that the esti-

mated life from Eq. 60-(by chance) precisely equals the actual life for

the particular series being studied. By making use of the standard

error for Eq. 59 (8 = 0.101), it is again possible to define the equation

for the upper 95 percent confidence limit.

log (~96N) = 9.2743 3.095 log S + 28
r

(61)

= 9.4763 - 3.095 log Sr

Equations 60 and 61.are plotted in Fig. 22. Reasonable agreement is seen

to exist between the predicted fatigue life and the experimental results.
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The minimum and maximum life estimates correlate well with the lower and

upper confidence limits of the test data.

It is apparent from this analysis that the crack shape relationship

and the crack growth rate both have a significant effect on the fatig~e

life estimate. It seems reasonable to expect the wide variation in fa­

tigue life that is experienced in laboratory studies considering the

random nature of initial crack size, stress concentration conditions and

crack growth rates that are known to exist.
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5 • SUMMARY AND CONCLUS IONS

In this report the stress concentration effects on fatigue cracks

that grow at weld terminations has been investigated. Finite element

studies were used to develop the stress concentration factor decay curves

for stiffener and cover plate details. These results were then used to

express the stress concentration conditions in. terms of joint geometry

and weld size.

To permit a fatigue-life analysis of typical welded details, the

total stress intensity at the weld toe was developed including the stress

gradient correction factor, the crack shape correction, the front free

surface correction and the back free surface correction. These correc-

tion factors were used together with a lower bound crack shape relation-

ship to estimate the fatigue life of transverse stiffeners welded to the

flange and cover-plated beams with transverse end welds using the Paris

power law.

The results of the analyses were compared with the experimental

results reported in NCHRP Reports 102(9) and 147(10). Good agreement was

experienced between the predicted fatigue life and the experimental test

data. When extreme conditions of initial crack size and crack growth rate

were assumed, the predicted life fell near or below the lower confidence

limit of the test data. When the average crack size and crack growth rate
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were used, the predicted life was between the mean and upper confidence

limits.

The correlation of the analyses and experimental data indicate that

the model can provide a useful tool for estimating the crack growth

behavior of other welded details.
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TABLE 1

Decay Constants of Approximate Stress Concentration and
Stress Gradient Correction Factor Curve Formulas

Kti\ IV 1
SCF = -1-+-_-1-A-P

c

F
ga ,..., 1

SCF = -1-+-.!-Cl-q
d

Cover
Constant Stiffener Plate

c 0.3546 0.1159

I
p 0.1543 0.3838

I d 0.3602 0.14731

I
q 0.2487 0.4348

I
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I
lJl
W
I

STRESS
DISTRIBUTION

CRACK
SHAPE

r~

'I

t

I 6~~

1.122 1.025

I
~

1.210

1.300

1.085

rv 1.145

Table 2 Front Free Surface Correction Factor for Various
Crack Shapes and Stress Distribution (28, 32, 34, 35)



I
lJl
~
I

STRESS NO BENDI:NGDISTRIBUTION BENDING

I
I [0.752 + 2.02a + 0.37 h_Sin('IT2a)[]

1.122 cos Cia)g:rn
1T 1/2 . 1/2

_ a _ 1
[sec ( i)] * ['IT~ sin ('IT2a)]

- -- 1
I
i [ ('ITa)] 1/2aa=- * sec --w 2

[1.297 - 0.297 cos ('IT2a)] [3.52 4.35 ]

I
3/2 - 1/2 + 2.13 (1- a)

(1 - a) (1- ct) -

t ['ITa ('IT )]1/2 1 [ ('ITa) ]1/2
1 * "2 cosec ~ ~ 1.30 cos "2

-- w -..... , ..-..-

* rsec ('IT2a)(/2
net 1/2

~
~ * [sec (2)]
I

Table 3 Back Free Surface Correction Factor for Through Cracks with
Various Stress Distributions and Bending Conditions (28, 32, 34, 35)



STRESS
DISTRIBUTION

CRACI{
SIIAPE

:3J &,Z
RATIO

y

I
In
VI
I

1.0
E
E
~

(J)

~ ~ j l ~) J~ j ~

,- a - I

1eOOO

0.363

1.000

0.281

1.000

0.774

lAO I

Table 4 Comparison of Stress Gradient Correction Factors for
Various Crack Shapes and Stress Distributions (1, 35)
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TABLE 5

Summary of Combined Correction Factors for

Stress Intensity Expression for Stiffeners and Cover Plates

Front Free Surface, F
s

Fx2 * Y + (1.025 - FsZ) * X

[secr~)]1/2

Crack Shape, F
e

Back Free Surface, Fw

Stress Gradient, Fg

1
E(k)

r" ~1/2
~ec (rr~)J

as evaluated by the correlated stress decay
from an elliptical hole in an infinite plate
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TABLE' 6

Cycle Life Comparisons for
Sample Stiffener and Coverplate Details

N * N *est est
Detail S [ksi] T

f
[in] Z [in] T [in] N * -10** C=3.6*10- 10**r cp act C=2*10

Stiffener 1.304 0.724
Fillet-Welded (a

1
=0.003") (a

i
=-O.OO311

)

to Flange 18.4 0.50 0.25 1.346

(Ref. 10, 0.919 0.511
Series SGB-SBB) ~ (a. =0.02" ) (a.=O.02")

I 3- 1
ln
........
I

Coverplate with 0.492 0.274
Transverse (a.==1.00311

) (a.=.003")
End Weld 16.0 0.393 0.25 0.55 0.356 1 1

(Ref. 9, 0.430 0.239
Series CWB, ewC) (a.=0.02) (a.=.02)

1 1

*Al1 cycle lives in millions
. 11/21n

~'(*" 3
kip cycles
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Fig. 1 Detail Geometry for Transverse
Stiffener Investigation
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a

a.
1.

A

84l NOMENCLATURE

= crack size; minor semidiameter of elliptical crack

= initial crack size

= final crack size

= number of cycles when stress range equals 1.0; stress concen-

tration decay polynomial coefficient

A = area of uniform stress subdistribution
u

A = area of variable stress subdistribution
v

b = major semidiameter of elliptical crack

B = stress concentration decay polynomial coefficient

c = stress concentration factor decay coefficient

• c = crack growth coefficient; stress concentration decay polynomial

coefficient; coefficient for back surface correction secant

radical to account for nonuniform stress distribution

CF = combined total correction factor for stress intensity

d = stress gradient correction factor decay coefficient

D = stress concentration decay polynomial coefficient; constant in

characteristic equation for ~

E(k) = complete elliptic integral of the second kind

F = crack shape correction factor
e

F = stress gradient correction factor
g

F t = stress gradient correction factor for circular crack'
g'

F = stress gradient correction factor for variable stress subdistri-
g

bution avplied to through crack
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NOMENCLATURE

(continued)

Ft = stress gradient correction factor for variable stress subdistri­
g

bution applied to circular crack

F = plastic zone correction factor
p

F = front free surface correction factor
s

FsI = front'free surface correction factor for a through crack with

variable stress distribution

Fs2 = front free surface correction factor for a half-circular crack

with variable stress distribution

F =back free surface correction factorw

g = major semidiameter of elliptical hole in an infinite plate

li = strain energy release rate

h = minor semidiameter of elliptical hole in an infinite plate

k = 1 - (a/b)2

K = stress intensity factor

K
t

= stress concentration factor

Kta = stress concentration factor at position a

KtA = stress concentration factor at position A

K = stress intensity factor for uniform stress subdistribution
u

K = stress intensity factor for variable stress subdistribution
v

~ = range of stress intensity factor

~ = distance along crack path from orig~n

log = logarithm to base 10
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NOMENCLATURE

(continued)

L

m

n

N

p

q

Q

s

S
r

SCF

= attachment length

= number of finite elements to crack length a

= crack growth exponent; negative slope of log-log S -N curve
r

= fatigue life

= stress concentration factor decay exponent

= stress gradient correction factor decay exponent

= amplification coefficient for F to account for bending
w

= standard error of estimate

= nominal stress range

= maximum stress concentration factor; stress concentration factor

for the crack origin

T
f

= flange thickness

T = cover plate thickness
cp

w = plate dimension in direction of crack growth (T
f
); crack

length at which rate of growth becomes infinite

W = ratio of area of variable stress subdistribution to area of

uniform stress subdistribution, A fA- v u

W
f

= flange width

x = ratio of stress concentration factor at a to stress gradient

correction factor for a

Y = ratio of F t for circular crack to F for through crack for total
g g

stress distribution
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NOMENCLATURE

(continued)

yt = ratio of F' for circular crack to F f9r through crack for
g g

variable stress subdistribution

y" = ratio of F' for circular crack to F for through crack for
g g

uniform stress subdistribution

Z = weld leg size

a = nondimensionalize~ crack length, a/T
f

or a/w

y = value of ~ associated with elliptical hole perimeter

n = elliptic coordinate

= nondimensionalized distance, ~/Tf or ~/w

~ = value of ~ at which slope of decay curve equals s~ope of straight

line from SCF to K
t

at a

a = stress

~ = angle from major semidiameter of elliptical crack

~ = measure of proximity of variable stress distribution to' linearity;

has value 1.0 if actually linear
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