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ABSTRACT

Ultimate strength (load carrying capacity) of rectangular

steel-concrete composite box girders under flexural loading (bending

and shear) without torsion is examined. Depending on the relative

dimensions of the webs and the flanges, the load carrying capacity

may be governed by failure of the webs, the flanges, or total plasti­

fication of the girder cross section. Interaction between bending

and shear is included and both positive and negative bending moment

conditions are considered. Detailed (although length) formulas are

derived for different failure modes. The computed ultimate strength

of two box girders compared well with test results. The procedure

of this study is applicable to composite plate girder strength

evaluation.
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1. INTRODUCTION

A thin-walled box girder subjected to flexural loading without

torsion may be considered .as equivalent to two thin-walled plate

girders. The two webs of ;the box girder carry practically all the

vertical shear and the two flanges carry most of the bending moment.

The strength of the box girder is controlled by the development of the

web tension field and by' the strength of the flanges to resist direct

compression or tension. This equivalency of box girders to plate

girders has been confirmed by tests and computations(l,2,3,4). The

procedure for the ultimate strength prediction of composite box

girders or composite plate girders in flexural loading, however, has

not been developed and is derived in this report.

In the investigation of the ultimate strength of plate girders

loaded in shear, Basler(S) proposed a uniform stress tension field

model neglecting the effects of flange rigidity. The tension field

in a web panel is assumed to be anchored by the neighboring web panels

and the transverse stiffeners.• Rockey and Skaloud(6,7,8) suggested

a model which took into consideration the effects of the flange rigid-

ity but the tension field'was taken along the panel diagonal.

Fujii(9,lO) assumed a tension field model with the interior plastic

hinges assigned at the midpanel. Chern and Ostapenko(ll) developed a

model consisting of two uniform stress bands and a panel mechanism.
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Komatsu's model(l2) assumed the flange interior plastic hinge to be

independent of the extent and inclination of the tension field. More

recently, Porter, Rockey and Evans(l3) presented a model of single

tension yield band with the position of the interior plastic hinges

defined by the plastic moment capacities of the flanges. The optimal

inclination of the tension field is determined by trial. This model

provides identical lower and upper bound solutions, and it has been

shown that many of the existing models are the special cases of this

solution.

The interaction of shear and bending moment in the evaluation of

load carrying, capacity of thin-walled plate girders was first examined

by Basler(l4). It is assumed that interaction would take place only

when the external moment exceeds the flange plastic moment, the

moment which can be carried by the flanges alone. Akita and Fujii(l5)

modified the interaction diagram of Basler's. One of the termini of

the interaction diagram is, determined by the shear buckling load of

the web panel 'and the flange plastic moment. The other is defined by

the ultimate shear computed by assuming no flange rigidity together

with the reduced flange plastic moment computed by considering flange

forces due to bending plus tension field action. Chern and Ostapenko(l6)

proposed a step-by-step calculation of stresses in both the tension

and the compression flanges while the web is loaded into the post-

buckling stage. The "Strength of a plate girder would be controlled

by one' of the following: failure of the web, buckling of the com-

pression flange, and yielding of the tension flange.

-2-



Since consideration.of the effects of flange rigidity on the

tension band width is particularly important for composite girders,

the model proposed by Porter, Rockey and Evans(13) together with the

procedure by Chern and Ostapenko(16) for interaction between shear and

bending is adopted for the strength evaluation of composite box

girders.

-3-



2. GIRDERS UNDER SHEAR AND POSITIVE BENDING

A composite box girder subjected to flexural loading causing

positive bending is shown in Fig. 1. A cross-section symmetrical

with respect to its vertical centroidal axis. may be considered as

composed of two composite plate girders as depicted in Fig. 2. To

account for the effects of shear lag, the equivalent flange widths

computed by the procedure of Ref. 17 will be used throughout the

strength evaluation.

2.1 Strength by Web Failure

The shear strength (V ) of a panel (ABeD) of one web consists
u

of buckling (V ) and post-buckling (Vt ) contributions.cr

A. Buckling

The critical stresses at buckling, cr
1

' 02 and T
c C c

of Fig. 3 can be computed using the procedure of Ref. 17

in conjunction with appropriate buckling coefficients.

The shear buckling force, V ,of one web can be approxi­cr

mated by the product of the average shearing stress, L
C

'

and the area of one web, A •
w

v = T A
cr c w

~4-
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B. Tension Field Action

Beyond the web buckl~ng load, the additional vertical shear

force is resisted by webs thro.ugh the development of tension

fields, and the corresponding additional moment is conserva-

tively assumed to be taken by the top concrete deck and the

bottom steel flange only. Three additional assumptions are

made: (a) the web buckling stresses remain constant during the

development of tension field and are additive With the' tension

field membrane stress, cr (5); (b) the linearly varying normalt .

stresses at web buckling may be idealized as uniform tensile

and compressive stresses(l6) as shown in Fig. 4; and (c) the

ultimate strength of the panel is considered to:be reached

when the combination of the idealized stresses of Fig. 4 and

the tension field membrane stresses, crt' reaches the yield

d
. Ie (16)con l.tl.on .

The tension field may be divided into ~ive sub~bands as

depicted in Fig. 5. The innermost band, with width dl , is

identical to that proposed by Basler(5). The extents of the

outer bands, dZ and d3 , depend on the'rigidities of both"

flanges. If the flanges are rigid enough, the' tension field

yield zone may spread beyond the- two interior plastic h~nges,

E and F, and form the outermost bands, d4 and dS' which are

not contributing to the panel shear strength(13i.

-5-



(a) Tension Field Shear Capacity

Let the tension field inclination angle be

designated 0 (Fig. 5), the optimal value of which is

yet to be determined by maximizing the tensile membrane

stress, crt- By expressing the idealized buckling

stresses of Fig. 4 in terms of new cartesian coordinates

aligned with 0, the resulting stresses can be combined

directly with crt- By introducing these combined stresses

in the Von Mises's yield criterion, the expression for

crt is obtained_

cr J[1
a +.a (....L.) - 26)J2crt = (..1£) cos(2~

yw 8 (J 2 a
yw yw

2 cr 2 1
+ [1 - 3 (....L.) - (...1.£..-) ] _ ['8 0"2ca 4a

yw yw

+1 r cos(20 - 26)J2

where

cr :::: yield stress of the web,
yw

cr 2 2
r -" (~) + If4 c

and
ITel1 -1

4
{) = - tan

2 0"2c

(2b)

(2c)
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The tension band widths d1 , dZ' and d3 are determined

by

d1
= b cos0 - a sin0 (3a)

dZ c
1

sinV' (3b)

d
3

= Cz sin0 (3c)

where

a = panel length, may be taken to be the

distance between two transverse

stiffeners,

b = panel height, or the web clear height,

C1,CZ = distance from the corner hinge to the

interior hinge of top and bottom flanges,

respectively.

With the tension field band widths and intensity known,

the shear capacity V of one web is obtained as
t

Vt = crt twb (sin0 cos0 - ac sin
2

0)

where

t = web thickness,w

and

(4a)

(4b)

Equation 4a is identical to the ~Vcr formula derived by

Basler(S), except that the effects of flange rigidities

are incorporated in the ~ term.
c

-7-



Because both crt and ac are functions of 0, differen­

tiating Eq. 4a to optimi4e the tension field inclination

angle 0 becomes highly complicated. However, crt is not

sensitive to ~(5), and a does not change much with ~
c

in its common range of magnitude, as can be concluded

from the expressions of c
1

and Cz to be derived later.

Thus, if cr and a are treated as constants with respect
t c

to 0, maximization of Eq. 4a would lead to the

following expression.

tan0
ao

(5)

where 0 is the approximate optimal tension field
ao

angle. The corresponding tension field shear capacity

of one web is then given by

(6)·

where crt .computed from Eq. 2 using 0ao from Eq. 5.

Equations 5 and 6 provide a good approximation

to the tension field shear strength V
t

, A procedure(18)

has been developed to find the optimal tension field

angle 0 from 0 by plotting V against 0 + ~0.
a ao t ao

The maximum value of V
t

can be found accordingly.

(b) Locations of Interior Plastic Hinges

The locations of the interior plastic hinges

in the flanges caused by the tension field force are

determined by the flange plastic bending moment

capacities, which are influenced by the presence of

-8-



axial forces in the flanges. For the equivalent

rectangular bottom flange, the modified plastic moments

at the corner hinge D and the interior hinge F (Fig. 5)

to account for the existence of axial stresses are given

(19)as

M C

P

where

c
cr

= M [1 _ ( bf )2]
p (J Y

bf

cr i
= M [1 _ ( bf )2]

p cr y
bf

(7a)

(7b)

M
C

M
i = the modified plastic moments at the

p' p

corner and the interior hinges,

respectively, in the bottom flange in

the width we2 (Fig. 2),

we2 = half of the equivalent width of the

bottom flange plus the small projecting

width beyond the web,

M = the full plastic moment capacity of the
p

bottom flange in the width w
e2

,

c i
0b£ ,obi = the corresponding normal stresses at

the corner and the interior plastic hinges,

and,

= the yield stress of the bottom flange.

-9-



where

(9b)

(c) Normal Stresses or Forces at the Hinges

To calculate the hinge locations c1 and cz' the

modified plastic moment capacities of the flanges at the

hinges to account for the axial forces need to be

evaluated. This requires that the axial forces present

at the hinges be found before the computation of modified

plastic moments. The axial stresses or forces at the

onset of web buckling will be found first.

At the corner hinge D of the bottom flange (Fig. 1)

the normal stress is:

1 Vcr (L - zl)Ybfcr C = - _

bf I /2
x

At the interior hinge

(lOa)

cr il
bf

where

Vcr (L - zl - cZ)Ybf

I /2
x

(lOb)

v = shear buckling strength of the panel of one
cr

web in question,

Zl = distance from the left support to the left

boundary of the panel,
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= distance from the mid-thickness of bottom

flange to the centroid of the equivalent

box girder cross-section (Fig. 2) and,

I = moment of inertia about the horizontal,
x

centroidal (x) axis of the same equivalent

box girder cross-section.

For the compression flange cross-section consisting

of concrete deck ~nd top steel flanges, the longitudinal

strain through the thickness is assumed as uniform,

thus the total axial force in the combined section is

acting at the elastic centroid. The location of the

elastic centroid (Fig. 2) is given as

(11)

t =
ec

where

O. Agt + t Z> + ( - : A (t - t: + 0.5 ttZ>

At

(n -.1) As2 (tz + O.Sttf)
+ --------------

At

t = distance from the mid-thickness of the top
ec

steel flange to the elastic centroid of the

combined compression flange cross-section,

A = t
• W l' the gross concrete area in the

g c e

width we!'

we! = half of the equivalent width of the concrete

deck,

t = thickness of the concrete deck,c
-12-



ttf = thickness of the top steel flange,

Atf = cross-sectional area of the top steel flange,

n = E IE , the modular ratio,s c

E = the elastic modulus of steel, taken to be
s

203,550 MN/m
2

(29,500 ksi) for both rein-

forcing bars and steel component plates,

E = the elastic modulus of concrete,c

As! = total area of longitudinal reinforcement

of top layer in the width we!'

As2 = total area of longitudinal reinforcement of

bottom layer in weI'

t l = the distance from the center of top longi­

tudinal reinforcing bars to the top fiber

of concrete deck,

t z = the distance from the center of bottom

longitudinal reinforcing bars to the

bottom fiber of concrete deck, and

At = nAtf + Ag + (n - 1) (As1 + As2) , the

transformed area of the combined section

in the width weI-

At the corner hinge B the axial force in the combined

section of the width we! is given by

F cl
cf

-,13~·

At
n



At the interior~ hinge E, it is

F il
cf (12b)

If the concrete deck is handled as an elastic plane stress

orthotropic plate as suggested in Ref. 17, then the longi-

tudinal elastic modulus E has to be used, and Eqs. 11 and
z

12 revised accordingly for calculating the axial force at

the hinges at web buckling.

il cl
In addition to the stresses and forces, crbf ' 0bf

F il and F cl developed at the onset of web buckling,
cf cf'

there are forces induced by the horizontal component of

the tension field stresses as well as by the external

moment necessary for equilibrium with the tension

field shear V
t

.

The horizontal component of the' tension field force

in the innermost (Basler) band d1 (~ig. 6) is computed

by

(13)

It is assumed that half of this horizontal component

is carried'in compression by the" bottom flange and the

at the two corner hinges, D and B, respectively.

That is

H"fc =

-14-.

(14)



where

Hbf
c = the horizontal normal force, induced by the

tension field action, acting at the mid-

thickness of the bottom flange, and

H C = the similar horizontal normal force acting
tf

at the mid-thickness of the top steel

flange.

It is to be noted that the tension field inclination

angle may be such that the HtB value is negative. If

this occurs, it is assumed that no horizontal com-

panent of the tension field stresses is taken by the two

corner hinges. Thus, Hbf
c = Htf

C = o.

At the interior hinges, F and E, where the

horizontal components of bands dZ and d3 act, the total

horizontal normal forces are

H i = H C + cr t c
1

sin0 cos0
tf tf t w

(15a)

(15b)

which are acting at the mid-thickness of the respective

flange.

The normal forces created by the external moment

. c2 i2equilibrium are des1gnated as Fbf and F
bf

and

F c2 d F i2 f h d·· h · fcf an cf or t e corner an lnter10r 1nges 0

the bottom and top combined flanges, respectively.

The location of F c2 and F i2 is naturally at the
hf bf

-15-



mid-thickness of the bottom flange, whereas that of

Fcf
c2 and Fcf

i2 is assumed to be at the plastic

centroid of the combined section of the concrete deck

and top steel flanges_ The· plastic centroid of the

combined section in the' equivalent width weI is shown

in Fig. 7 and is computed by(20)

t
pc

where

, y'
= [0.425 f c Ag (tc + ttf) + (crsl - 0.85 f c) Asl (tc

- t l + 0.5 ttf) + (crs~ - 0.85 f~) As2 (t2

+ 0.5 ttf)]/Fc~
(16a)

t = .distance from the mid-thickness of top
pc

steel flange to the plastic centroid, and

F u= the ultimate concentric load of the combined
cf

section in wel -

. u
The fo~ce Fcf is given by

FC~ = 0.85 f; Ag + crt~ Atf + (crsi - 0.85 f~) Asl

+ (0" y - 0 - 85 f ') A 2
s2 c s (16b)

Once t is determined,pc

the forces are computed (Figs. land 2) by

F c2 =
b£

(lla)

-16-



F i2
V

t (L - z - c Z)
1=

bf
b' + t

pc

F c2
V

t
(L - z - a)

1=cf
b' + t

pc

F i2
V

t (L - z - a + c
1

)
1=cf

b ' + t
pc

(17b)

(17c)

(17d)

where b' is the distance from the mid-thickness of bottom

flange to that of top steel flange.

The total normal stress, including buckling and post-

buckling stages, in the bottom flange at the corner hinge

D is

(l8a)

and that at the interior hinge F is

(ISb)

where

~f = t bf we2 , the bottom flange area in the

equivalent width, weZ '

t bf = thickness of the bottom flange.

By substituting Eqs. 18 into Eqs. 7, the

modified plastic moments at the hinges of the bottom

flange can be found.

-17-



(d) Ultimate Moment Capacities at the Hinges of

Top Flange

In evaluating the ultimate moment capacities at

the hinges of the compression flange, general

assumptions used in the reinforced concrete design

are followed. The maximum usable strain at the

extreme concrete compressive fiber, E ,is taken
ell

to be 0.003,- and the rectangular equivalent stress

block is used(2l). The stress-strain relationship

of the reinforcing bars and top steel flange is

idealized as elastic-perfectly-plastic as shown

in Fig. 8.

The interior hinge E is treated first. Figure

7 depicts the strain and force diagrams of the

hinge. From the strain diagram it is deduced

k
u

where

0.003
Etf + 0.003

(19)

k = a coefficient for determining the neutral
u

axis; and .

Etf = the strain at the mid-thickness of the

top steel flange.

The forces in the equivalent deck width of we! are

computed as follows:

~18~-



By the equilibrium of the plastic moments and the

vertical components of the tension field stresses in the

segment DF shown in Fig. 6 the interior hinge location,

Cz, can be computed.

2(M C + M i)
-_P_-_P- < a

• 2~
crt t w S1n '(.J

(8a)

For the ~ompression flange, which has the combined

section of the concrete deck and two top steel ,flanges,

the modified ultimate moment capacities have to be

found by trial, and will be discussed later. The

location of the interior hinge, c1 ' can be computed in

the same manner as for c
2

•

2(M c + M i)
u u < a (8b)

c iwhere M and M are the ultimate moments at t~e corner
u u

and the interior hinges, respectively. Both c1 and Cz
are limited by the panel length a. If both are equal to

a, the web panel boundary frame will form a panel

mechanism as suggested in Ref. 16. If the computed

values of c
l

and Cz from Eqs. 8 are such that c
1
~ a

and Cz > a, a case often occu:r:s to composite box

girders, then Eqs. 4 become

(9a)

-10-



(20a) (20a)

(Z"Ob) (20b)

(20e) (ZOe)

(20d) (20d)

where

Cs1 = the total compressive force in the

reinforcing bar area A
s1

minus the

corresponding concrete force in the

same area,

as! = the stress in the bar area Asl '

C = the total concrete force in the
c

equivalent rectangular stress block,

f = concrete strength,
c

S1 = a fraction taken as 0.85 for concrete
, 2

strength f up to 27.6 MN/m (4 ksi),
c

and reduced continuously at a rate of

0.05 for each 6.9 MN/m2 (1 ksi) of

strength in excess of 27.6 MN/m2

(4 ksi) (21) ,

t 3 = t c + 0.5 ttf (Fig. 7),

Ts2 = total tensile force in the bar area As2 '

crs2 = the stress in the bar area As2 '

T
tf

= total tensile force in one top steel

flange, Atf , and

qtf the stress in Atf ·

-19-



The equilibrium of the horizontal forces gives

rise to

,
0.00255 ~c f=3 1= €tf + 0.003

t 3 weI + ' Asl
A (cr 1 - 0.85 f ) A
tf S C tf

F il + F 12 + i
cf cf Rtf

A
tf

(21)

The neutral axis can be located by trial using Eq.

21. Because at ultimate moment the A
sl

bars are most

likely at yielding, asl = asl
Y can first be assumed.

An appropriate value of the stress in As2 bars is

then assumed by judgment according to the top steel

flange area A
tf

, From the idealized stress-strain

relationship of Atf its stress and strain (Otf and Etf)

can be determined. The value of k is then computed
u

from Eq. 19. The strains Esl and Es2 can be obtained

from the strain diagram and the corresponding stresses

as! and 0s2 determined from their individual stress­

strain relationship. This process can be repeated

until the assumed and computed values of Os! and 0s2

agree satisfactorily.

With the neutral axis located, the forces as

defined in Eqs, 20 can be determined. The ultimate

moment capacity M i at the interior hinge E of ~he, u

compression flange in the equivalent width we! (Fig. 7)

is computed by

-20-



The ultimate moment at the corner hinge B bends the

- k)t - t ]u 3 pc (22)

compression flange concave-downward. The moment capacity

is reached when the tensile reinforcing bars As!

attain the rupture strain or the concrete compressive

strain at the bottom fiber arrives at its crushing

value of 0.003. These cases are treated separately

below.

When the tensile reinforcing bars As! rupture, the

compressive strain of the top steel flange may be less

than the yield strain and the corresponding bottom

fiber strain of the concrete deck less than the

idealized yielding value (Fig. 7)(c
sl

= c
sl

u ,

< Etf , E < E ).
c - cy

Fig. 8a, it is deduced

From the strain diagram in

k
u (23)

-21-



The forces in the equivalent width weI are:

(24a)

(24b)

where

Ts1 = the total tensile force in the bars As!'

C = the concrete force in the elastic, triangular
c

stress block,

f = concrete stress at extreme compressive fiber,
c

t 4 = t c - t 1 + 0.5 ttf'

C
s2

= total compressive. force in the bars As2

minus the corresponding concrete force in the

same area, with the concrete stress con-

servatively taken as' f , and
c

C
tf

= total compressive force in one top steel

flange of area A
tf

•

-22-



- 0.5 f c

The equilibrium of horizontal forces results in

(t4 - 0.5 ttf) weI
A
tf

A 1 A F cl + F c2 + H C

Y S _82 + cf cf tf+ cr --- - (cr - f )81 Atf 82 c Atf Atf

(25)

,Equation 25 can be used for locating the neutral axis

by trial. Appropriate values of f
c

and cr
s2

are first

assumed. The values of cr
tf

and E
tf

are then deter­

mined through the idealized crtf - E
tf

relationship.

The neutral axis can be located by Eq. 23 and the

strains E and E 2 obtained. The corresponding
c c

stresses f and cr 2 can be re-evaluated through the
c s

idealized stress-strain relationships. The procedure

is repeated until the assumed stresses agree satis-

factorily with those computed. After the neutral axis

and the horizontal forces are determined, the ultimate

moment capacity at hinge B in the equivalent width we!

can be computed by

-23-



+ F C
1 ( k) + F c2 (t - k )

cf tee - u
t 4 cf pc u t 4 (26)

It is to be noted that if ku t 4 < 0.5 ttf + t z' then As2

is in tension. The f term in both Eqs. 24c and 25
c

has to be dropped and the sign of cr
s2

changed to

negative. However, Eq. 26 is.still valid.

When the tensile reinforcing bars A
sl

rupture, the

top steel flange may remain elastic, and the concrete

bottom fiber may have exceeded the idealized yield but

not reached the crushing strain. The force diagram

of this case is shown in Fig. 9b. Since € has not
c

reached its crushing value, a trapezoidal stress block

is used. In Fig. 9b, t s defines the distance from the

neutral axis to the concrete fiber where the strain

is equal to € • Equation 23 remains applicable.
cy

The forces in the concrete and the reinforcing bars

are:
,

eel = f (k
t1

t
4

- 0.5 ttf - t S) wel (27a)c

,
Cc2 0.5 f t s weI (27b)

c

f

C
a2

= (cr - f ) A
s2

(27c)
82 c

t s
€cy

(27d)= u t 4€tf + 8 81
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(27e)

(27£)

where

c = total concrete force corresponding to thecl ,
block of uniform stress f

c'

ee2 = total concrete force in the stl:ess triangle

of Fig. 8b corresponding to the distance

t s' and

C
s2

= total compressive force in As2 minus the

corresponding concrete force in the same

area; if the concrete stress at the A
s2

level
,

is smaller than f , it will be conservativelyc .,
taken as f .

c

Equations 27e and 27£" are identical to Eqs.

24a and 24d, respectively. The equilibrium of the

horizontal forces gives the expression for crtf .

(t4 - 0.5 ttf)we1
Atf

A 1 I A
s2+ cr y __8__ - (cr - f )

s1 A
tf

82 c A
tf

F cl + F c2 + H c

+
cf cf tf

(28)
Atf

-25-



Again, the neutral axis can be located by trial. In

this case only the stress crs2 needs to be assumed.

After the forces are calculated, the ultimate moment

capacity is computed by

(29)

If the top steel flange A
tf

is relatively small,

the plastic hinge B may be formed because of the crushing

of the concrete (Fig. ?c).· By the same procedure as

employed previously, the following equations are.arrived:

k 0.003
=

€sl + 0.003u

Tsl = O'sl Asl
,

C = 0.85 f ~l kut 6 we!c c

,
Cs2

= (0' - 0.85 f ) As282 c

Ctf
=

y
O'tf Atf

(30)

(31a)

(3Ib)

(31c)

(31d)
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where t 6 = t c - t 1 , the distance from Asl to concrete

extreme compressive fiber. The expression for the

stress in bars As1 is:

When locating the neutral axis by trial using Eq.32,

only the stress crs2 needs to be assumed for the first

trial. The ultimate moment capacity at hinge B is

MC
= T (1 - k )t

6
+ C (1 - a 5 Q )k t

U 81 u C • ~l u 6

c+ Cs2 (kut 6 - t Z) + (Ctf - Htf) (ku t 6 + 0.5 ttf)

cl - c2 -+ Fef (tee - k ut 6) + Fef (tpe - ku t 6) (33)

(e) Determination of Interior Hinge Locations

C i c iSince the magnitudes of M M M and M all dependp' p' u u .

upon the hinge locations c
i

and cz' which in turn are

functions of these ultimate moments, the determination of

C1 and Cz must be conducted by iterationo The following

process is suggested:

( 1) Assume c 1 = Cz = a/2.

(2)
c1 i1 c

and Hb~ with crt fromCompute "'hf , O"bf ' Rbf

, and c2
and

i2
with V

t
from Eq.Eqs. 2 5; and Fbf Fbf '

6. Compute M
C and Mi.
p P

-27-



cl(3) In a way similar to step (2), compute F
cf

'

il c c2 i2 i
Fcf ,Rtf' F and Fcf Compute Mu by Eq. 22,

cf
c

and M by Eq. 26, 29 or 33, whichever is applicable.
u

(4) Compute Cz and c
1

by Eqs. 8.

(5) Repeat steps 2 through 4 until satisfactorily

steady values of c1 and Cz are obtained.

(6) Compute optimal angle 0 and the associated
o

crt and V
t

by Eqs. 4 or 9. Repeat steps 2, 3 and 4

using the optimal values of crt and V
t

until satisfac­

torily steady values of c1 and c
2

are obtained.

By using the values of c
1

and Cz obtained from

step 6, the tension field shear capacity of the panel

of one web, V
t

, is determined.

The ultimate shear capacity of the panel of one

web is the sum of the buckling and post-buckling

contributions.

v = V + V
tu cr

(34)

The ultimate load P , which causes failure of the panel
u

of two webs of the box girder (Fig. 1), is computed by

p
u

2 Vu=--
ct

(35)

where ~ is a factor defining the location of the

load.



2.2 Strength by Flange Failure

A box girder panel, subjected to bending moment and shear with-

out external load on the panel, has a bending moment higher at one end

than that at the other. The bottom flange may yield or the concrete

deck may crush at the end of the higher moment before full development

of the tension field.

At the web panel buckling, normal stress and force in the steel

bottom flange and in the composite top flange are, respectively,

cr V (L- zl) Ybf
(J

cr
= I /2

bf x

V (L - zl)(Ytf + t pc) At
Fcf

cr cr
= I /2 n

x

(36a)

(36b)

For simplicity, F
cf

cr is computed at the plastic centroid instead of

at the elastic centroid. The additional tensile force needed to cause

yielding of the bottom flange in the width w
e2

is

'(37a)

and the additional compressive force needed to cause failure of the

combined compression flange section (weI) is

(37b).

where Fcf
u

is from Eq. l6b. If the smaller of &Fbf and &cf is denoted

as 6F which controls the strength, then the shear strength corresponding

to the failure of the flange is
,

~F (b + t )pc

-2"9-

(38)



Equation 38 is conservative in that the capacity of the web in resisting

bending after buckling has been neglected. However, it is unconserva-

tive in that the normal force in the concrete deck due to incomplete

tension field have been also neglected. These effects are assumed to

compensate each other. The ultimate shear capacity of one web is the

sum of the buckling strength and V
f

-

v = v + V
fu cr

The ultimate load, P , can be computed by Eq. 35.
u

For most composite box girders the neutral axis is close to

(39)

the concrete deck, thus yielding of the bottom flange occurs prior to

failure of the compression flange. Because most of the structural

steels have good ductility and are capable of strain hardening, unless

the bottom flange plate is very thin, the final failure of composite

box girders in bending would most likely be by crushing of the concrete

deck with bottom flange stresses in the strain hardening range. In

this case, the 6Fbf value computed using abf
u , the ultimate tensile

strength of the bottom flange plate, in place of the abf
Y term in Eq.

37a would be larger than the ~Fcf from Eq. 37b. Thus the latter would

be used as ~F in Eq. 38 for strength computation.

2.3 Strength by Full Plastification of the Cross Section

Ifa web panel does not buckle prior to the yielding of the

bottom flange within that panel, the yielding may penetrate into the

webs and result in full plastification of the cross section. Let T

andcr be the average shear and the normal stress at the general

-30-



yielding o~ the web, as shown in Fig. 10, then the ultimate shear ca-

pacity of one web is

v = 'T A
u w

and from the von Mises's yield condition,

V
(.2!)2 + (~)2 = 1
V (J

P yw

where V = cr A /13 is the plastic shear of the web.
p yw w

(40)

(41)

Figure 10 depicts two cases of plastification:· one with neutral

axis in the webs and the other in the concrete deck. For the case where

the neutral axis is in the webs, Fig. lOa, the forces in half of the

equivalent cross section are computed by

c = 0.85 f A (42a)
c c g

(a Y
,

Cal = - 0.85 f ) As! (42b)
81 c

y
,

Cs2 = (O's2 - 0.85 f ) As2
(42c)

c

C
tf

y (42d)= O"tf Atf

C = cr t (k"d - t - t ) (42e)
w w u c tf

T = (J t [(1 - k
u

) d - 0.5 t bf ] (42£)w w

T
bf = O"bf

Y L\f (42g)

where

C ,T = the compressive and tensile force in the webw w

·portion above and below the neutral axis,

respectively,

d = t c + ttf + b + 0.5 t bf , and

T
bf

= the tensile force in the bottom flange in the width

WeZ -

--31-



The condition of equilibrium of horizontal forces enables the

evaluation of the coefficient k for determining the neutral
u

axis.

where

k = k
u 1

(43a)

(43b)

(43c)

The ultimate moment of half of the equivalent box girder

cross section is given as

(44a)

where

1 2
vI = 2 t w (k1 d - t c - ttf) (44b)

v
2

= ~ t
w

[(1 - k 1) d - 0.5 t bfJ
2

(44c)

2
mS = s'1' t w d (44d)

m6 = m1 - rn2 - m3 + ID4 (44e)

m1 = Cc (k1 d - 0.5 t c ) + Csi (k1 d - t 1)

+ CsZ (k1 d - t c + t Z) + C
tf

(k1 d

- t c - 0.5 ttf) + Tbf (1 - k1)d (44f)

1
t d [(1 - 2k

1
)d + t c + ttf - 0.5 \fJmZ = - sZ 1 w

1 :
t d (k1 d - t ttf)m

3
= - s -2 . 1 w c

1
d [(1 - k 1)d - 0.5 tbfJm4 = 2" s 1 t

w

(y4g)

(44h)

(44i)



. By the equilibrium of internal and external moments at

the panel boundary Z = zl (Fig. 1), it is derived

v
u-=

v
p

(45)

Equation 45 in conjunction with the interaction equation, Eq.

41, can be used to solve for V and cr graphically. With
u

V Iv as the ordinate and a/a the abscissa, the intersecting
u p ~

point of the two curves gives the solution values of V /V and
u p

a/cr After V is determined, the ultimate load P can be
yw u u

computed by Eq 35 •

For the case where the neutral axis is in the concrete

deck (Fig. lOb), the forces are
,

C 0.85 £ ~l k d w 1 (46a)
c cue

(O'si - 0.85
,

Cal = f ) A
sl

(46b)
c

T = Y (46c)
82 CJ82 A s2

T
tf

= Y (46d)a
tf

A
tf

T = aA (46e) .
w w

T
bf

= Y (46£)O"bf Abf

By the same procedure as employed previously, the following

equations are arrived:

(47a)
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where

where

A
k = w

2 0.85 ~1 d ~el

V3 2 m7
M = ... cr + (v4 +vS +-

f
') cr+maU f c

c

v = -0.5 ~1 k2 d A
3 w

v = -0.5 ~l k3 d A
4 w

Vs = Aw (d - 0.5 t bf - O.S b)

m = -0.5 ~1 k2 d(Ts2 + Ttf + Tbf - C
s1

)
7

rna = -0.5 f3 1 k 3 d(Ts2 + Ttf + Tbf - C
s1

)

(47b)

(47c)

.- (48a)

(48b)

(48c)

(48d)

(48e)

(48£)

Vu 1
....-- = -----
Vp Vp(L - Zl)

2
v3 cr 2

[ ~ (cr ,.
f -;-)

c yw

(49)

Eq. 350 '

graphic method and the ultimate load P is then determined by
u

Again, Eqs. 41 and 4'9 are used for solving V and cr by the
u

-34~



Because the tension (bottom) flange is capable of strain

hardening, and contributes a large portion of the ultimate ~moment of

the cross section, the moment capacity computed without considering the

hardening effects underestimates the strength. To incorporate the

strain-hardening contribution of the bottom flange, the yield stress

0bfY in Eqs. 42g and 46f can be replaced by the strain-hardening

st
stress 0bf . All other equations for the evaluation of ultimate shear

· V • h H • st. d d hcapac~ty u rema~n t e same. owever, s~nce abf ~s epen ent on t e

strain, the solving of V Iv must be by repetition.
u p

-35-



3 • GIRDERS UNDER SHEAR AND NEGATIVE BENDING

A composite box girder subjected to negative bending is shown in

Fig. 11. Based on the results OI elastic analysis and experiments

(Ref. 17), the partial deck thickness in conjunction with the equivalent

top flange,width we! are adopted for stress evaluation up to web

buckling. Thereafter, only the reinforcing bars in weI are considered

effective. For the bottom, compressive flange with adequate longi­

tudinal and transverse stiffeners to prevent local buckling(22), the

equivalent width we2 by shear lag analysis is assumed. If the longi­

tudinal stiffeners are insufficiently provided, an effective width be2
(23) ,

may be computed and adopted. Because the effective width is stress

dependent, that computed·" at yield stress is conservatively used in this

analysis for the web buckling and post-buckling stages, flange failure,

or full plastification of the cross section.

3.1 Strength by Web Failure

For each half of the effective box girder (Fig. 11), the web

tension field shear capacity V and the locations of the interior
t

plastic hinges in the flanges, c1 and c Z' are computeq by the same

formulas (Eqs. 6, 8 and 9) as derived for the positive bending

condition. However, the axial stresses and forces at the plastic

hinges are different and have to be computed.

-36-



At the onset of web buckling, the normal stress at the corner

hinge D of the bottom flange (Fig. 11) is computed by

Vcr (L1 - zl - a)Ybf
=---~------I /2x

(50a)

and that at the interior hinge F is by

where

v = shear buckling strength of the panel ABeD ofcr

one web,

Zl = distance from the left support to the left

boundary of the panel in consideration,

= distance from the mid-thickness of the

bottom flange to neutral axis of the

effective box girder cross section,

and

I = moment of inertia, computed using the
x

partial deck thickness about the horizontal,

centroidal (x) axis of the same effective

box girder cross section.

-37-
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Since the concrete deck is subjected to tension, the axial

forces induced in the deck are assumed to be taken only by the rein-

forcing bars and the top steel flanges. The elastic centroid of the

reinforcing bars and top steel flanges is shoWn in Fig. 12 and is

located by

t
ec

where

(51)

t distance from the mid-thickness of the top steel flangeec

to the elastic centroid, and

Ats = Atf + Asl + As2 ' the sum of the areas of one top steel

flange and all the reinforcing bars in the width weI'

At the corner hinge B the axial force in the width weI is computed by

V (LI - zl)(Ytf + tec)~
F cl = _c_r ~---_--
cf I /2x

and at the interior hinge E by

A
ts

(52a)

-1 V (LI - zl - c1)(Ytf + t e-c )
Fcf1. = _c-r_--I-/~2-------- , A

ts
x

Above the web buckling load, the axial forces due to tension

(52b)

field action at the corner hinges D and B (Fig. 11) are given by Eqs,

13 and 14. Those at the interior hinges F and E are computed from

Eqs. 15.
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Equilibrium of external moment creates normal forces

c2 i2 c2 F i2Fcf ' Fcf ,Fbf and bf at the corner and interior hinges of

the top (tension) and the bottom (compression) flanges. The

2 i2
forces Fc~ and Fcf are as'sumed to be at the plastic centroid

of the area consisting of one top steel flange and the rein~

forcing bars (As! and As2) in the width weI- The plastic

centroid is located by

t =
pc

(53a)

(53b)

where

t distance from the mid-thickness of top steel flangepc

to the plastic centroid, and

Fc~ = the ultimate concentric load of the area Ats '

The forces created by the moment equilibrium are then obtained

from the moment at the respective hinge locations as follows:

F c2
V

t
(L - z - a)1 1

=
bf

b l + t
pc

F i2
V

t
(L - zl - a + C Z)1=hf

b l + t pc

F c2
V

t
(L1 - zl)

=
cf

b l + t pc

,...·39-·

(54a)

(54b)

(54c)



F i2 ;:;
cf

V
t

(L1 - zl - ~cl)
,

b + t
pc

(54d)

The total normal stress induced at the web buckling and

post-buckling stages in the bottom flange at the corner hinge

D is

(55a)

and that at the i~terior hinge F is

where

i i1
I'"r = (fb£ +'-'hf

F i2 + i
bi Rbf

Abf
(55b)

Abf = t bf be2 + Ast ' the bottom flange area in the

effective width be2 plus the areas of the

longitudinal stiffeners, if any,or

Ab£ = ~bf we2 + Ast ' if applicable.

The modified plastic moments at the hinges of the bottom flange

can be computed by sutstituting Eqs. 55 mntio Eq. 7.

What remains to be established for the evaluation of

tension field shear capacity Vt is the equations for the

ultimate moment capacities at the hinges of the top (tension)

flange. At the corner hinge B, the contribution of concrete

is ignored in computing the ult~mate mome~t capacity because

most of the deck is in tension. Figure 12 depicts the strain

and force diagrams of the corner hinge. By the same procedure
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as employed previously for composite box girders under shear

and positive bending, the following equations are obtained:

u

k = I -
€sl

u
€tf +

u
esl

T
sl

= crsi As1

Ts2
= cr82 As2

Ctf = cr tf Atf

(56)

(57a)

(57b)

(57c) .

where the forces TsI ' Ts2 and Ctf are those contributed by

the steel reinforcing bars and the top steel flange in the

width weI' and

A A
s2

F cl + F c2 - H
t

C

fcr y ~ + cr --- _ cf cf
crtf = sl A

tf
s2 A

tf
A
tf

(58)

The neutral axis can be located by trial using Eq. 58. A value

of O's2 is assumed. The top steel flange stress 0tf is then

computed, from which the strain €tf is obtained. The location

of the neutral axis can be calculated by Eq. 56, and the

resulting strain € 2 checked against the assumed cr 2 value.s - s

The ~rocedure is repeated until satisfactory results are

acquired, The ultimate moment capacity at hinge B in the

width we! is~

+ (C
tf

c F cl
(tee k t

4
)Rtf) ku

t -:
4 cf u

F c2. (t - k t
4

)
cf pc u

-41-::
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At the interior hinge E, the concrete is mostly subjected

to compression and is assumed to be effective. The ultimate

moment capacity of the hinge is computed in accordance with

three different strain conditions as shown in Fig.l~:

(a)

(b)

(c) IS = E:
c eu

uWhere €tf is the rupture strain of the top steel flange.

For case (a) when the top steel flange reaches rupture strain

and the top fiber strain of concrete is below its idealized

yield value ~~ig. 13a) the location of neutral axis and the

hinge forces are given by the following equations:

u

k 1 -
E: tf

=
u

esl + u
€tf

C = 0.5 f (k
u

t 4 + t l ) we!c c

~ (<1 I - f ) A 1s c s

-42-
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(61a)

(61b)

(61c)

(61d)



Also, from equilibrium of the forces,

F il + F i2 _ H i
cf cf tf

Asl

(62)

Again, the neutral axis can be located by trial. A

procedure is as the following:

(1) Assume f and O's2·e

(2) Determine O's! and es1
using Eq. 62 and the

idealized cr - € relationship of the bars A
sl

.

(3) Locate the neutral axis by Eq. 60.

(4) Compute €c and €s2 and obtain the corresponding

stresses, f c and crs2 ' from their individual idealized 0' - e

relationship.

(5) Check the computed and assumed stresses f and
c

0'82' and repeat the procedure until satisfactory results are

obtained.

The ultimate moment at the interior hinge E in the width weI

is given as

i
- 0.5 ttf - t 2J + (Ttf + Htf) (1 - ku )t4

F i1 [(1 - k)t -~. ] - F i2 [(1 - k)t - t ]cf u 4 ec cf u 4 pc

(63)
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u
For the case of 8 tf = 8 tf and 8 cy < 8 c < 8cu (Fig. 13b) ,

Eq. 60 remains applicable. If it is defined

e;
ey

the horizontal forces at the hinge are

, ...

eel = f (k t - t s + t 1) weIc u 4

ee2 = o.s £' t s weIe

Cs1
=: (0' - f') Asl81 c

From the equilibrium of horizontal forces, it is obtained

u O.S E: t 4 weI +I €tf + cy
, , t 3 we!

O"sl = f f - f
c es1 + u Asl

c c A
sl€tf

A
s2

A
tf

F il + F i2 i

+ (Jt~ A -
cf cf -- Rtf

(Js2 A
sl

+ A
sl81

(64)

(65a)

(65b)

(65c)

(65d)

(65e)

(66)

The neutral axis can be located by assuming 0s2 in Eq.66 and

following the· same trial procedure as employed for Eq.62. The'

ultimate moment capacity at hinge E in the width weI is

i 2
Mu = 0.5 eel (ku t 4 + t 1 + t s) + 3 ce2 t s + csl ku t 4
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For the case where the concrete is crushed, € = ec ell

(Fig. 13c), the equations are

k
0.003

== (68)u E:
tf

+ 0.003

,
C = 0.85 f [31 k u t 3 weI (69a)c c

,
Cs1 == (O-sl 0.85 f ) A

s1 (69b)c

T = cr82 As2 (69c)82

T
tf

= 0'tf At £ (69d)

and
0.00255 f ~1 t 3 weI + , A

slc
(O"s1 - 0.85 f )O'tf = E:

tf
+ 0.003 Atf c A

tf

A
s2

F il + F i2 i
cf cf - Rtf

(70)- cr -- + A
tf

82 A
tf

The neutral axis can be determined by the same trial procedure

as that for Eq. 21. The ultimate moment capacity at the

interior hinge- E in weI is given as

When the expressions for the ultimate moment capacities

at the hinges are derived, the interior hinge locations c1 and

C
z

can be determined by the same iterative process as that

employ~d for a panel in the positive moment region.



Finally, the ultimate shear strength of the panel of one

web (V ) and the corresponding ultimate load (P ) causing
u u

failure of a box panel of two webs (Fig. 11) are respectively

v = V + V
tu cr

P = 2 V
u u

3.2 Strength by Flange "Failure

At end Be of panel ABeD in Fig. 11.

(72)

(73)

the bending moment

is higher than that at end AD. The steel bottom flange or the !

effective top tension flange of reinforcing bars plus the top

steel flanges may yield at the end of higher moment prior to

the failure of the web.

At web panel buckling the normal stress and force in the

bottom flange and in the effective top tension flange are,

respectively,

V (LI - zl)Ybfcr cr
O'bf = I /2

x

V (LI - zl) (Y t £ + tpe)F cr cr A= I /2cf tsx

(74a)

(74b)

The additional compressive force to cause yielding of the bottom

flange in the effective width be2 (or we2) is

(7Sa)
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and the additional tensile force to cause yielding of the

effective tension flange in weI is

F F U _ F cr
A cf = cf cf

(75b)

where Fc~ is from Eq •.53b. The smaller value of 6 F
bf

and

A Fcf ' designated as ~ F, controls the flange failure. Thus,

the shear capacity contributed by the failure of the flange is

~ F(b' + t )
v = pc

f L 1 - Z 1

The ultimate shear capacity of the panel of one web is

v = V + Vu cr £

and the ultimate load, P , is given by Eq. 73.
u

3.3 Strength by Full Pl~gtifi~~tidrt·6f·th~~CrdssS~ction

If the top steel flanges yield in tension before the

webs buckle, full plastification of the cross section may

result. The web shear strength and the yield condition as

given by Eqs. 40 and 41. are still applicable.

(76) .

(77)

Figure 14 depicts the case of plastification where

t~e neutral axis is in the webs. The forces at full plasti-

fication are:

Ts1 = cr Y As1 e7Ba)sl

Ts2 = (J Y A
s2 (78b)s2

Ttf
= Y Atf (7Sc)O'tf



These forces are acting in half of the effective cross section.

T = crt (k d - t - t ) .(78d)w w u c tf

C = crt [(1 - ku)d -0.5 tbfJ (78e)w w

Cbf = O'b~ Abf (78f) .

k = k
u 1 (79a) -

The neutral axis is located by

8
2- -cr

where k
1

is given by Eq. 43b', and .

(79b)

The ultimate moment of half of the effective cross section

is

(BOa)

where vI and v
2

have been given in Eqs. 44b" and 44c~ and

(80b)

(80c)

+ Ttf(k i d - t - O.5ttf) + Cbf(l - k1)d (BOd)c

1
t d[(!- 2k1)d +' t c + ttf - 0.5 tbfJ (BGe)mla = - s

2 2 w

I
t w d(k1 ,d - t ttf) (80£)mil =- s -2 2 c

1
t d[(I - k )d - 0.5 tbfJ (BOg)ml2 == 2: s 2 w 1

-:-48-



The equilibrium of internal and external moments at the

panel boundary z = z1 (Fig. 11) gives

V 1 (£.-)u
[(vI + v 2)-= (j

Vp(LI - z'l)
yw (j

V yw
P

S-z m13 C!
(J.:!l) + m14] '(81)

(j fJyw

Equation 81 is limited'by the yield condition of Eq. 41, and

can be solved graphically for V and a as described before.
u

The ultimate load is twice the value of V (Eq. 73).
u

For composite box girders with normal cross-sectional

configuration and geometry, it is unliely that the neutral axis

of full plasticification is in the bottom flange. If this is

the case, it can be analyzed by the same procedure as employed

for the case where the neutral axis is in the webs.
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4. LOCAL FAILURE OF 'FLANGES

4.1 Overall Buckling of Compression Flange

Thus far, all the equations for web failure, flange failure,

and full plastification of a box girder cross section under negative

-bending moment have been derived on the assumption that the bottom

flange is capable of attaining the yield stress at the longitudinal

stiffeners. This requires that the longitudinal stiffeners be

properly provided, that a compression flange panel between transverse

stiffeners not buckle as a stiffened'plate panel, and that the entire

compression flange not huckle as a unit. These topics have been

studied extensively (24,25) and are not unique to composite box

girders. It suffices to assume here that no compression flange failure

occurs prior to yielding.

4.2 Pull-out of Stud Shear Connectors

It has been assumed that complete composite action between

the steel portion and the concrete deck can be developed through suf­

ficient stud shear connectors. It has also been assumed that the

composite deck can anchor the" vertical components of the tension field

forces. These vertical components'induce tensile forces in the shear

connectors. This, in turn, may cause pull-out of the stud connectors

from the reinforced concrete deck by a shear cone mechanism.
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If the concrete surround~ng a stud shear connector has adequate

space to develop a full shear cone as shoWn in Fig. 15a, the ultimate

tensile capacity of the shear cone is(19) .

p = 4 Af ~ (82)ue c c

where

Afc = 127f L (L + D ), the area of a full conical
e e s

surface,

L = embedment length of the shear connectors,
e

D = diameter of the connector head, and
s ,

f = concrete strength.
c

The reduction factor of 0.85 for concrete subjected to shear(2l) is not

included in Eq. 82. When the shear connectors are closely placed such

that the shear cones overlap (Fig. ISb) , the corresponding reduced

ultimate tensile capacity of a partial shear cone is

where A = area of the partial cone.pe

RPue =4A Rpc c
(83)

If n is the number of rows of shear connectors within the seg­
r

ment c
1

between the. two plastic hinges E and B (Fig. 15c), n thes .

number of shear connectors in each row, g. the distance from ith row to
1.

the corner hinge' B, P the force in one shear connector in the row
s

farthest from B :(the first row), and if it is assumed that the top

steel flange rotates as a rigid bar about hinge B where a web trans-

verse stiffener exists, then by the equilibrium of moment at B:
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2 . 2~
at .t, c

1
s~n

p w
(84)s n 2

r g.
2n i: 1

s i=l gl

If the computed c1 indicates that the tension field extends over the

entire panel at the web-to-deck junction (c
1
~ a), then the maximum

deflection between the steel top flange and the concrete deck is at mid-

panel (Fig. l5d), and Eq. 84 becomes

(J t
2 · 20a S1n

P
t w

,(85)=s n 2
r g.

8n E 1

s gl
i=l

The force P must be smaller than P or RP ,whichever is applicable,s ue uc

in order to avoid separation between the concrete deck and the top

steel flanges through the formation of shear cones-.

It is worth noting that' the equivalent flange widths, we! and

we2 , used in this chapter are obtained from the procedure developed in

Ref. 17 where no web buckling is involved. For the strength of a girder

governed by web failure, web tension field develops in the panel in

question. The portion of concrete deck and bottom flange within

the length of that panel is subjected to the vertical com~onents of the

tension field stresses in addition to the normal forces developed for

equilibrium with the external moment. Because of the pulling due to

web tension field action, the equivalent widths at the plastic hinges

in the flanges may be smaller than those obtained from the procedure
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of Ref. 17. However, o~ing to lack of better information, the effect

of the vertical pulling from the tension field on the equiva,lent widths

of the flanges is neglected in the present derivations.
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5. RESULTS AND COMPARISONS

The method developed in this report is for evaluat~ng the

ultimate strength of composite box girders subjected to flexural

loading. It can be applied to composite plate girders, steel box

girders, and unsymmetrical and hybrid steel plate girders as well.

The experimental strength of two box girders are compared here with

the results of computation according to the procedure developed in this

report.

One composite box girder (D1) (Fig. 14)(4)was tested to failure

by a symmetrical flexural load at midspan. The material properties

of this girder are listed in Table 1., The analysis indicated that the

bottom flange at midspan would yield' before the buckling of web panel

7 or 8 and full plastification of the cross section would govern the

strength. The neutral axis was in the concrete deck, thus Eqs. 46 to

49 were employed. An ultimate load of 254.1 kN (57.1 kips) for P was
u

obtained. However, at this load the bottom flange was in the strain

hardening range. By assuming that the onset of strain hardening was

at 12 cbf
Y (0.0126) and the hardening modulus was 4826.5 MN/m2 (700 ksi) ,

an ultimate load of 324.0 kN (72.8 kips) was obtained~ This computed

load is 6.3% lower than the'measured value of 345.8 kN (77.7 kips). A

further improvement to the' computed value could be made by considering

the strain-hardening effects in the webs.
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A small steel box girder specimen (MZ) was tested to failure in

f1exure(1,2). The details of the specimen are shown in Fig. 17 and

the material properties are listed in Table 1. The interior hinge

locations c1 and Cz and the optimal tension field inclination angle

~ are calculated to be:o

Panel 4 Panel 5

c
1

= 62.7 rom (2.47 in.) c1 = 70.6 rom (2.78 in.)

C2 = 18.3 mm (0.72 in.) Cz = 18.8 rom (0.74 in.)

o = 36.7° 0 = 30.0°
o 0

The computed ultimate capacity of 10.59 kN (2.379 kips) is comparable

to the measured value. The measured ultimate load lies between

10.46 kN (2.35 kips) and 11.79 kN (2.65 kips) because of relaxation

of the solder joints of the specimen and nonzero strain rate. For

this model box girder, an ultimate load of 10.50 kN (2.360 kips) was

estimated in Ref. 1 using an approximate buckling strength computation.

The buckling loads are computed here by using charts of buckling

coefficient corresponding to the state of stresses at the web panel

boundary(27). The results of strength evaluation are listed in Table

2.

No other experimental study could be found in the literature on

the ultimate strength of composite plate girders. It appears that

testing of thin web composite plate girders and additional testing of

composite box girders in flexure are needed for better confirmation

of the theoretical development of this study.
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6. SUMMARY "AND CONCLUSIONS

This report presents a procedure of ultimate strength evaluation

of rectangular composite box girders under flexural (bending and

shear) without torsion. A single-cell rectangular box girder is

considered as the sum of two parallel composite plate girders. Shear

lag effects may be incorporated in determining the dimensions of

composite plate girders.

In the ultimate strength evaluation, the buckling and post­

buckling behavior of web panels" are studied. Failure of the composite

top flange and of the steel bottom flange under both positive or

negative bending moment are considered. Full plastification of cross

section is a possible mode of failure ~nd is also studied.

For box and plate girders with slender webs, the post-buckling

strength relies on the development of tension field action which

depends on the bending rigidity of the composite deck and the steel

bottom flange. Tension field strength is reached when the two flanges

have developed plastic hinges and are pulled in by the tension field

action. The ultimate strength of a slender-web plate girder is the

sum of the web buckling strength and the post-buckling strength of

tension field action.

Although comparison of computed and test results from two box

girders indicates the applicability of the'procedure of this study,

-56-



more tests need to be conducted for further confirmation of the theo­

retical development. Meanwhile, strength· of common dimension composite

box and plate girders may be estimated us~ng this analytical procedure.
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TABLE JL· ..~ MATERIAL PROPERTIES OF SPECIMENS

(All stresses in MN/m2
(ksi)

~ecimens .
Properties . ..~

D1 M2

Steel

Small Top Flanges

Yield
Webs

Bottom Flange

213.9

(31.0) I
j

I
i

f

224.4
(32.5)

210.3
(30.5)

216.1
(31.3)

Concrete

Deck

Young's Modulus of Elastic~ty

Shear Modulus of Elasticity

Poisson's Ratio

Compressive Strength*

Young's Modulus of Elasticity

Shear Modulus of Elasticity

Poisson "s Ratio

203,550
'(29,500)

78,315
(11~350)

O~3

34.5
. , (5.0)-'

25,530
,"(3700)

10,902
(1580)

'0·.17 .

~tI Yield Stress of Deck Reinforcement~t 483
!-_. . .. -~.;.....-.----....----....;:(:.-7-0~) -----~
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TABLE 2 COMPARISON OF ULTIMATE STRENGTH

Computed Strength Test Results
Box Girder - Panel kN (kips) kN (kips)

Dl - 7 or 8 324.0 345.8
(72.8) (77.7)

Ml - 4 10.6
(2.38)

10.5 IV 11.. 8

M2 - 5 10.9
(2.35/V 2.65)

(2.46)
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Fig. 3 A Plate under Combined Shearing and

Normal Stresses at Critical State
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a

b
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NOTATIONS

Area

Area of bottom steel flange in width we2
Area of full conical surface of shear connector

Gross concrete area in width wel

Area of partial cone

Total area of longitudinal reinforcement of top and bottom

layer, respectively, in weI

Transformed area of width we!

Area of one top steel flange

Total area of steel in top flange in weI

Area of one web of box section

Panel length

Panel height, clear depth of web

Distance between mid-thickness of top and bottom steel

flanges

Force in bottom flange

Total concrete force

Compressive force in reinforcing bars As1 ' As2

Total compressive force in Atf

Compressive force in web

Distance from corner plastic hinge to interior plastic

hinge of top and bottom flange~ respectively

Diameter of shear connector head
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NOTATIONS (continued)

Width of tension field

Elastic modulus of concrete and steel, respectively

Axial force at corner and interior hinge, respectively,

in width we! of concrete

Normal force in composite top flange at web buckling

Ultimate concentrated load of top flange in width, we!

Concrete stress at extreme fiber

Compressive strength of concrete

Distance from corner hinge to a row of shear connectors

Horizontal normal force at cor~er hinge and interior hinge,

respectively, in bottom flange, due to tension field

Horizontal component of tension field force in width, d1

Horizontal normal force at corner hinge and interior hinge,

respectively, in top steel flange, due to tension field

Moment of inertia about horizontal centroidal axis of

equivalent box section

Notations (non-dimensional) for simplifying computation

Coefficient for determining neutral axis

Span length

Embedment length of shear connector

Plastic moment capacity of bottom flange of width, we2

Modified plastic moment at corner and interior hinge,

respectively, of compression flange in width, weI

Ultimate moment for half of box section
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NOTATIONS (continued)

Ultimate moment at corner and interior hinge, respectively

of compression flange in width, we!

Notations of moment for simplifying computation

Modulus ratio, n = E IE
s c

Number of rows of shear connector

Number of shear connectors in a row

Tensile force in a shear connector

Ultimate load of composite box girder

Capacity of concrete ·shear·.·¢on~

Resultant stress r = Ie + T 2
c

Tensile force in bottom flange in width, we2

Tensile force in top steel flange

Tensile force in longitudinal reinforcing bars

Tensile force in web

Thickness or distance

Thickness of bottom and top steel flange, respectively

Thickness of concrete deck

Distance from mid-thickness of top steel flange to

elastic centroid of combined compression flange

Distance from mid-thickness of top steel flange to

plastic centroid of combined compression flange

Thickness of web

Buckling strength of one web panel

Tension field strength of one web panel
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NOTATIONS (continued)

Ultimate strength of one web panel

Notations of volume for simplifying computations

Half of the equivalent width of concrete deck of box

girder

Half of the equivalent width of bottom steel flange of

box section

Centroidal distance to mid-thickness of bottom and

top steel flange, respectively, of equivalent box

section

Distance from left support to left boundary of panel

Coefficient of distance, defining position of load from'

left support

alb (1 -
C1 + Cz

ct = )
c a

= alb (1
Cz

ex .- -)
c a

Coefficient for height of equivalent rectangular concrete

stress block

Angle of resultant stress r

Strain in steel bottom flange at web buckling

Strain in concrete

Strain in longitudinal reinforcing bars

Strain, at mid-thickness of top steel flange

Critical compressive stress at top edge of web panel

Normal stress at bottom edge of web panel, concurrent

to ale
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NOTATIONS (continued)

'" bottom l-ayer, respectively

Yield stress of bottom and top steel flange, respectively

Norna! stress in bottom flange concurrent to M C
P

and M i, respectively
p

Normal stress in bottom flange 'at web buckling

in longitudinal reinforcing bars in top andStress

C (J i
O"bf' bf

(J cr
bf

Y (J Y
O'bf' tf

crs1 'O's2

asl
y y, 82

crt

O"tf

cr
yw

··ucr- .

T

T
c

0

0ao

°0

Yield stress of longitudinal reinforcing bars

Tension field stress

Stress in top steel flange

Yield stress of web

Ultimate tensile strength of steel

Shearing stress

Shearing stress in web panel, concurrent to ale

Tension field angle

Approximate optimal tension field angle

Optional tension field angle
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