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ABSTRACT

This report describes an approach for the flexural analysis of

reinforced con~rete slabs using a- piecewise linear tangent stiffness

finite element incremental method applied to a layered pl~te element.

Each layer of each ele~nt is assumed to be in plane state of stress.

Each layer has its own biaxial stress-strain characteristics type stress

strain curve and may have inelastic, cracking, crushing and yielding non

linearities. Comparisons with laboratory tests of six reinforced con

crete slabs and one beam-are presented. The agreement between analytic

and laboratory load deflection curves is quite good. Comparisons with

experimentally observed crack patterns, steel strains, and concrete

strains are also presented if these data were available.



1. INTRODUCTION

1.1 Problem Statement

The research described in this report has been conducted as a

part of the research project entitled "The Overloading Behavior of Beam-

. Slab Type Highway Bridges" (Pennsylvania Department of Transportation

Project 71-12). The goal of this project is the development of an analy

sis technique to predict the response of a beam-slab type highway bridge

superstructure subjected to the passage of an overload vehicle. An over

load vehicle is defined as one which exceeds in some way the ,design

vehicle for which the superstructure was proportioned. Beam-slab super

structures are restricted to those consisting of a reinforced concrete

deck and prestressed concrete I-beams.

The parent project is divided into three ph-ases:

1. The development of an inelastic analysis technique for pre

stressed concrete beams (Refs. 19, 20, 23 and 45)

2. The development of an inelastic analysis technique for reinforced

concrete slabs

3. The combining of the beam and slab analysis techniques developed

in parts 1 and 2 to model the beam-slab superstructure.

This report covers the work conducted in phase 2 above, i.e. the develop

ment· of a methodology to analytically describe the inelastic response of

reinforced concrete slabs.

-1-



The slabs under consideration are assumed:

1. To lie in one plane, i.e. be planar

2. Have arbitrary but rectanlinear bou!!daries

3. Have tension and compression reinforcement ·placed at arbitrary

angles and depths within the slab

4. To be subjected to transverse concentrated and patch loads, i.e.

perpendicular to the plane of the slab, and concentrated in-plane

loads, i.e. that will produce axial forces in the slab and,moments

5. To fail by flexure

1.2 The Scope of the Reported Investigation

The following items have been studied within the framework of

the investi'gation and are presented in this report:

1. An analytical modeling of reinforced concrete slabs using the

'finite element method

2. A biaxial failure envelope together with appropriate stress

strain laws used to develope constitutive relations, i.e.

stress-strain relations, for concrete

3. An analysis technique using a piecewise .linear tangent sti'ffness,

incremental iterative approach

4. A comparison for verification with the results of seven labora

tory tests reported in the literature

-2-



1.3 Requirements Placed on Analytic Model

The model used in this analy'sis must adequately reflect the be-

havior of eccentr~cally stiffened plate systems (Refs. 44,45). This re-

quires the inclusion of three types of structural behavior: out-af-plane

behavior, in-plane behavior and coupling behavior. The out-af-plane re
)

sponse of either isolated reinforced concrete slabs or bridge deck slabs

is its flexural behavior produced by loads, perpendicular to the plate or by

edge moments. The in-plane behavior ,is a membrane stress state. This may

be produced by loads or displacements acting parallel to the plane of the

.plate, or in the case of bridge decks, by the action of the slab as the

compression flange of composite beams. The coupling response is an inter-

action between the in-plane and out-af-plane responses, that is the change

in flexural response due to the presence of membrane forces and vice versa.

,Coupling will' be demonstrated through an example based on the

response of a beam. The beam will have three disp1acelrents: an axial

extension, U, a bending displacement, W, and a bending rotation whi ch is

a derivative ofW. The strain at any point in the beam can be computed

from Eq. 1.1 (Ref. 19), if the cross-sectional axes are principal axes:

(1.1)

The uniaxial stress associated with combined bending and axial load can be

The nonnal f orc~ and bending moment are found by appropriate integ'rations

given by Eq. 1.2
( dU d2W' )

0" = EE = E { -. - z -' .'
. \ dX dX2

(1.2)

over the axes noting that cross-sectional axis, z, is not a function of

the position along the length of the beam described by coordinate x.

-3-



N f a dA f E dU ciA - f E d 2W
dA= = z-

dX
dX2

M J a ZdA f E Z dU dA _ f E Z2 d
2
W dA

dX
dX 2

(1.3)

The only way that coupling terms which involve "EZ" can drop out

is'if the axis defined by Z o is at the centroid of the cross-sectional

stiffness. In the case of an elastic beam under bending about a principal

axis it is always possible to find a point such that! EZdA = O. Likewise

for a beam undergoing symmetric nonlinear flexural response about a prin-

cipal axis this is also possible. But for a beam which has an unsymmetric

distribution of area or material properties or has different properties

in tension and compression, or is under the nonlinear action of a moment

and axial force there is no such point. In general, the strain at any

point will involve a combination of bending and axial contribution and is

said to be coupled. Thus, a nonlinear reinforced concrete beam which

exhibits nonlinear material behavior will always be coupled. The same

phenomenon exists in the nonlinear response of certain plate systems,

such as reinforced concrete plates and eccentrically stiffened plates, but

is much more complicatedll Thts will be discussed further in Chapter 3.

The analytic model must be capable of producing the full range

. response of an iso~ated slab and be applicable to a similar analysis of

bridge superstructures 0 A full range response covers not only the initial

el?stic response and an estimated ultimate load but also the nonlinear

response in between. A nonlinear type of analysis will allow an assess--

ment of the damage to the slab corresponding to some load -level as would

-4-



be. required in an overload analysis (Refs. 23 and 44). An elastic analy

sis or an ultimate strength analysis will not allow for the assessment of

damage for a load between the last elastic load and the ultimate load.

Nonlinear material properties will be required in order to obtain

the full range response. In the case of slabs this will require a non

linear stress-strain relation and failure criteria which are both based

on multiaxial stress states. The analysis technique being reported will

include the cracking and crushing of concrete and the yielding of 'rein

forcing bars.

The analysis technique should he capable of handling a wide

range of load configurations. This is especially important when consider

ing application to the overload response of beam slab bridges. The size,

shape and load distribution of overload vehicles are not standardized and

can be expected to vary from case study to case study.

It is not expected that the reinforced concrete deck slabs on

beam-slab bridges will buckle out of, their plane. Therefore, the analysis

technique being reported will not consider buckling phenomenon.

1.4 Pre~ious Studies

Numerous investigations have been conducted on linear elastic

analysis and ultimate strength analysis of plates. The methods utilized

in these investigations can per~it only the study of the load deflection

hi~tory from the unloaded: state up to the occurrence of the first inelastic

response (linear elastic analysis), or definition of the load corresponding

-5-



to the peak of the load deflection curve (ultimate strength analysis).

The primary interest of the reported study lies in the determination of

full load-deflection history from the unloaded state up to the ultimate

load level (Refs. 4,42,43,44). Therefore, the literature survey will be

restricted to the techniques and investigations which can be or have been

applied to the determination of the full load-deflection historyG

The analytical modeling of slabs and the methods of analysis

employed by previous investigators can be grouped under three distinct

categories: (1) Finite'Difference Technique, (2) Lumped Parameter

Technique, and (3) Finite Element Method. The inclusion of the material

nonlinearities into analysis schemes has proceeded along two main paths:

(1) the use of an assumed moment-curvature relationship for the given

,cross-section, and (2) the use of an assumed stress-strain character

istic for the material and the adoption of a failure surface (Ref. 45).

The methods of modeling and analysis will be discussed'with

respect to the requirements of reinforced concrete slab analysis and more

specifically their applicability to the bridge overload problem in

Section 1.5. In general it can be stated that some of the above techniques

have pronouned drawbacks in their applicability to the bridge overload

problem, regardless of their simplicity in the analysis of certain simple

configurations, e.g. moment-curvature approach as used for one way slabs

made of mild steel.

The finite difference technique has been applied to the inelastic

analysis of plates by relatively few researchers (Refs. 5 and 4~). This

-6-



has been due to the complexities in establishing either the appropriate

nonlinear differential equation, or the assignment of proper stiffness

properties ,in a piecewise linear incremental solution. Furthermore, the

manual algebraic operations required and the coding of these operations

for computer based solutions have always been discouraging. This approach

is further complicated in bridge overload problems by the necessity to

solve coupled in-plane and ou<t--of-plane differential equations which is

discussed in Section 1.3. This aspect alone necessitates the adoption of

a solution technique other than finite differences.

Some of the complexities involved in the finite difference

technique have been eliminated through the use of the lumped parameter

technique. Lopez and Aug (Ref. 29) applied this method to steel plates.

However, its applicability to reinforced concrete slabs, and especially

'to bridge overload analysis, presents a major problem, whose accuracy,

generality and ease" of usage have not been demonstrated as yet.

The finite element method has been extensively used in the

analysis of steel and reinforced concrete plates (e.g. Refs. 1, 9, 10, 41,

44 and 48). Most of the early investigations were confined to plates

made of elastic-perfectly-plastic materials, i.e. mild steel (Ref. 44).

A n·ecess~ry feature of the application of the finite element method as in

pr-eviously described methods, is t6 provide a way of introducing material

nonlinearities into the generation of the stiffness matrix via moment

curvature or stress-strain relationships. This aspect will be treated in

detail in Chapter 2. The use of moment curvature relations for the rein

forced concrete slabs and the bri~ge deck requires the use of



moment-thrust-curvature relations due to the presence of axial forces in

the bridge superstructure (Ref. 45). Furthermore, the biaxial, i.e.

longitudinal and transversal bending of the bridge slab requires the

adoption of two dimensional moment-curvature relationships. Presently

. relationships capable of defining two dimensional moment-thrust-curvature

relationships are not developed enough for general usage.

The basic stress-strain relationships for concrete of various

strengths and for steel reinforcing bars have been well defined and will

be discussed further in Chapter 3 (Refs. 7,19,21,24 and 27)0' There

fore the formulations that make use of these fundamental relationships are

more reliable and applicable to a wide variety of slab bending problems,

as opposed to the use of moment~curvature relationships. The use of

material stress-strain relationships requires the adoption of a modeling

scheme which can account for the penetration of the nonlinearity through

the depth of the slab. This has been accomplished by the use of layering

of the slab (Fig. 2). Excellent agreement has been noted in the previous

investigations that utilized this approach (Refs. 2, 11, 12, 19', 20, 21,

22, 23" 26, 43, 45 and 46).

An extensive survey of the literature has indicated that so far

no analytical study has been undertaken to predict the full inelastic

response of bea~ slab bridges (Refs. 45 and 47)~ Similarly most of the

studies that have been undertaken to predict the inelastic response of

slabs did not use 'a model which was general enough to permit the extension

or'modification.of the analysis scheme to bridges, e.g. exclusion of the

in-plane behavior of the slab' ~ Furth'ermore, the nature of the problem
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requires solution of a large system of simultaneous equations many times.

This requires the use of large scale digital computers. Consequently most

of the investigations have been undertaken within the last decade (Refs. 44,

45 and 47).

1.5 Analytical Model

The- analysis technique reported herein has been designed such

that it will permit the interfacing of this work with the completed study

on the inelastic response of prestressed concrete beams (Fig. 1; Refs. 19

and 23). Thus, the combination of these studies will be able to predict

the overload response of beam-slah highway bridges. It has been observed

that even though the dominant slab nonlinearity is due to flexural response,

the in-plane, i.e. membrane, forces and deformation of the slab must he

considered because of their effect on the total response (Refs. 12 and 26).

It has also been observed that the coupling phenomenon is extremely impor

tant for the correct prediction of the inelastic response of the slab

(Refs. 11, 12, 26 and 46). Therefore the analytical derivations have

been carried out including coupling.

The slab is subdivided into finite elements which are intercon

nected at node points. The finite elements are further subdivided into

"layers through their thickness. Each layer is assumed to be in the state

of plane stress. It is also assumed that the inelastic response and the

progressive collapse of the sl~ is due to the flexu~al behavior and its

associated in-plane and coupling behavior." Punching shear of the slab due

to an overload vehicle has not been considered (Ref. 18.)

-9-



2. THEORETICAL, ANALYSIS

2.1 Introduction

The B·lab analysis procedure being reported is based on the

finite element method. A complete treatment of the finite element method

can be found in numerous books on the ~ubject (Refs. 13, 41 and 48).

Therefore only the major concepts and necessary steps related to this

research will be presented in Section 2.3.

The characteristics of the analytic model, i.e., the mathemati

cal representation of the real structure, must be chaasen to adequately

describe the physical model. In the current· context it is desired to de

scribe the response of pres~ressed and reinforced concrete I-beam highway

bridge superstructures subjected to an overload. Therefore the analytic

,model should satisfy the following requirements:

1. The flexural response, assumed to be the primary load carrying

action in the slab as well as that of the complete superstructure,

must be obtained.

2. The model must permit consideration of multi-axial plate bending.

3. Th'e· slab mode·l must be applicable to the analysis of a highway

bridge superstructure modeled as an eccentrically stiffened plate.

4. Eccentrically stiffened slabs can develop inplane stresses of the

same magnitude or even greater than the bending stresses. There

fore the inplane stiffness' of the slab must be considered.
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5. Membrane boundary conditions corresponding to these inplane

forces (see Chapter 1) are important in reinforced concrete slab

analysis and must be considered (Refs. 11, 12, 26 and 46).

6. The slab model must allow for the inclusion of both concrete and

steel.

7. Material nonlinearities due to cracking and crushing of the con-,

crete and yielding of the steel must be considered.

8. In-plane shear deformation and effects have been considered.

2.2 Assumptions

Several assumptions are employed in the development of the ana

lytical model. These assumptions and associated consequences will be dis

cussed in the following paragrap~s.

2.2.1 Geometry Restrictions

The overall investigation is restricted to right angle bridge

superstructures. Consequently this analysis technique for reinforced con

crete slabs has been developed for rectangular slabs. The sane principles ~

could be extended to non-rectangular slabs. The finite element 'chosen as

the basic modeling unit is the rectangular plate bending element shown in

Fig. 3.

2.2.2 Assumptions Regarding S·train. ,Distribution

Kirchoff's assumption that plane se·ctions nopna.l to the middle

surface of the plate before deformation remain plane and nonmal after

-11-



deformation is employed. Application of Kirchoff's assumption is a usual

practice in bending solutions for thin plates. A thin plate is defined as

a plate whose length and width dimens~ons are considerably greater than

'its thickness. It is also assumed that the sl-ab does not change thickness

due to the applied forces. Thus the strains and stresses normal to the

plane of the slab are neglected. Application of Kirchoff's assumption and

the elimination of the normal strain offer the following simplifications:

1. The reduction of a three dimensional continuum problem requiring

six stress components to define the state of stress at a point to

a two dimensional plate bending problem involving only three

stress components (Refs. 41,48).

2. The strains at any depth in the plate can be computed from the

displacements of the middle plane of the plate.

2.2.3 Small Deformations

The in-plane and bending displacements are assumed to be small

'in co~paris'on to the dimens.ion of the slab. This implies that the rectan

gular finite elements are still rectangular after deformatioue Furthermore

,the geometry of the, element need not be updated as the analysis proceeds.

2.2.4 Small Strains

The reinforced concrete slabs and highway bridge .superstructures

are asswned to be subjected to small strains. Thus the usual linear stra:ln

d~splacement relations c~n be used as opposed to the more involved nonlin

ear equations ne-eessary for the large straln formulations (Refs. 41~48).

-12-



2.2.5 Layering

The inclusion of material nonlinearities will cause the stiff

ness of the finite element to vary with dep~h. These material nonlinear

ities including cracking and crushing of the concrete and yielding of the

steel are inherent in the stress-strain relations. ,The existence of both

steel and concrete in the same finite element also causes a varia'tion of

stiffness through the depth of the element. To facilitate the computation

of the element stiffness, the finite element will be divided into a series

of layers through the depth (Figso 2 and 3). The stiffness of the element

will then be obtained by a summation of the stiffness of these layers.

The stresses within a particular layer will be assumed to be constant

within the layer for the purpose of computing the stiffness of each layer

(Fig. 4B). Thus the stress field through the depth of the slab will vary

in a step-like manner. Increasing the number of layers will improve the

representation of the stress field.

2.3 Review of the Finite Element Me'th"od

The finite element method requires that the continuum be divided

into an assemblage of subunits called finite elements. The elements are

considered to be interconnected at discrete points called node points.

Forces,' displacements and coordinates for a typical note is shown in

Fig. 3. In this context the continuum is a reinforced concrete slab. The

stiffness properties of the elements can be found using the principles of

the finite element method. The result is a set of equilibrium equations

relating node point forces to node point displacements:

-13-



(2.1)

Where: {Fe} = a vector of applied elemental nodal forces

[k
e

] ~ the element stiffness matrix

.{8
e

} = a 'vector of nodal displacements

Assembly of the elements to form the entire structural system results in
I

a set of nodal equilibrium equations usually referred to as the displace-

ment method of analysis. These equations are sho~ in Eq. 2.2:

{F} [K] {8} (2.2)

Where: a v~ctor of the forces applied to the structure at the

nodes

[K] the assembled structural stiffness matrix

{a} = a vector of node point displacements

set of simultaneous equations.

-14-
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(203a)
_IT '

= [C]· IV [Q]T [D] [Q] dvol [C]-l

It can be shown that the element stiffness matrix can be evaluated

This ,presentation will be restricted to an explanation of the matrices ,in

Eq. 2.3 rather than their derivation.

using Eqs. 2. 3a or b, (Refs. 13, 41 and 48)

The unknown node point displacements, {o}, are obtained by solving this



The stress-strain relationships' for a layer can be expressed by

an elasticity matrix, [D], as shown in Eq. 2.4:

{a} = [D] {E} (2.4)

The displacements within an element are assumed to be adequately

described by a polynomial function of pos.ition within the element and

initially unknown constants. This combination of functions and constants

will be calLed a displacement function. Thus it is possible to define

the displacements at any point within the element as:

{L\(x,y)} [P (x,y)] {a} (2.5)

in which: {~(x,y)}

[P(x,y) ]

displacements at any position within the element

defined by the coordinates (x,y)

p,art,icu'lar fun·c·tions of x and y, or the~r derivatives,

use:d to. describ·e. the dis'placement fields

{a} =··-C'onstan..t coefficients of th'e -displacement functions

The individual {a} are evaluated using the boundary conditions given by

the displacements at the node points of the element:

[C] is populated by substituting the coordinates of each node point,

(x ,y ), into Eq. 2.5 where:
~ n

{~(x·· ,y )}
n n

(2.7)

[C] [P (x ,y )]
n n

-15-



Solving EQ.. 2 It 6 for the constant coefficients lead to:,

The differential operators necessary to define the strains in

Eqo 204 in terms of the displacement fields in Eq. 2.5 will be called [f].

Thus:
{s} [f] {~(x,y)}

Substitution of Eq. 205 results in:

[f] [P(x,y)] {a} [Q] {a}

[Q] is a connection matrix relating {E} to {a} within the element. Sub

stitution of Eq. 2.8 yields:

Matrix [B] relates the strains within the element to the nodal displacements.

A summary of the necessary steps in the finite element method

to formulate the elemehtal stiffness matrix is as follows:

1. Choose displacement functions and formulate the displacement

field (Eq .. 205) ..

2. Express the node point displacements in terms of the constant

coefficients by substituting the known nodal point locations

into step 1 (Eqo 206)0

30 Solve for {a} CEq-. 2.8) e

4. Substitute {a} into step 1 CEq. 2.5).

-16-



5. Identify the strain-displacement relations and perform the

required differentiation of the displacement function (Eq. 2.9a,

2.9b or 2.9c).

6. Find the stress-strain relationship, [D] (Eq. 2.4).

7. Subst,itute the necessary matrices into Eq. 2.3 and perform the

indicated integration. The result will b~ the element stiffness

matrix.

2.4 Element Stiffness Formulation

The necessary steps in the formulation of the finite element

method were discussed, abstractly, in Section 2.3. These steps will be

discussed in detail with respect to the nonlinear analysis of reinforced

concrete slabs in the following sections.

2.4.1 Plate Bending 'and Inplane Displacement Functions

The purpose of this section is to present the displacement func

tions and describe the displacement field,' {6(x,y)}.

Displacement functions are chosen so that the deformation of

the finite element can be adequately described. These displacement func

tions are polynomial expressions in terms of the (x,y) inplane coordinate

locations and unknown constants. As present'ed in Chapter 1 both the in

plane and bending displacements must be considered.

The bending deformation of a plate can be fully described by the

vertical displacement W, of the middle plane of the plate via assumptions

-17-



presented in Sec. 2.2. The bending deformation will consist of the

vertical displacement, W, the rotation about the x-axis, e , and the
x

rotation about the y-axis, e. The rotations may be obtained by differ
y

entiating the vertical displacement. Thus the displacement field which

describes the bending deformations can be expressed in vector form as:

w w

e aw
(2.10)x 3y

e aw
y

dX

The ACM-Adini, 'Clough, Melosh (Ref. 1) plate bending finite

element will be used 'in this study. A review of the finite element dis-

placement functions a~d the resulting stiffness matrices for the analysis

of plate bending has been given by Clough and Tocher, (Ref. 9) and Wegmul1er

and Kostem (Refs. 43, 44 and 45). They concluded that the ACM rectangular

finite element' gives very satisfactory results. By increasing the number

of ACM finite eleme~ts used to model a particular continuum an apparent

convergence to classical solutions has been demonstrated for several

example problems (Refs. 9 and 44). ·The ACM displacement function expresses

the vertical displacement, W, as a twelve term polyno~ial (Refso '1, 9, 45

and 48).

W(x,y) A + A x + A Y + A x 2 + A xy + A y2 + A x 3 + A x 2
y + A xy2

1 2 3 4 5 6 7 8 9

-18-
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The inplane deformation is characterized by two displacement

functions U and V. U is defined as the inplane displacement directed

along the x-axis and V is defined as the inplane displacement directed

along the y-axis. The inplane displacement polynomials shown below have

been presented by Clough (Ref. 8):

U(x,y) = B + B x + B Y + B xy
1 2 3 4

(2.12)
V(x,y) = B + B x + B Y + B xy

5 6 7 8

Previous studies using these polynomials have been successfully carried out

(Refs. 44 and 45).

Nodal points are considered to be located at the four corners

of the rectangular finite element positioned on the reference plane in

the middle of the plate. Nodal points are designated by the letters,

I, J,/K, L as indicated in Fig. 3. Thus all nodal poin~ displacements

refer to reference ,plane deformations 0 The terms "reference plane" and

"middle plane" are, considered to be interchangeable in this report. The

total displacement vector is described in terms of five .displacements for

each nodal point, i.e. two inplane displacements and three bending dis-

placements. The total number of displacements per finite element is

twenty, i.e. four nodes at the corners with five degrees of freedom per

node.

The displacement functions W(x,y), V(x,y) and U(x,y) can be

substituted into the displacement vector thereby defining the displace~

ment field {Ll(x,y)} for any location given by the coordinates (x,y):
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u u

v v

{~(x,y)} = W = W (2,13)

e awx
dY

e aw
y - ax

Thus Eq. 2.5 can be established once the displacement functions have been

chosen.

The displacement field {~(x,y)}, can be partioned by separating

it into those involving only inplane displaceme~ts and those involvin~

only bending displacements:

~ (x,y)
u

{~(x,y)} = -------

~¢ (x,y)

U(x,y)

V(x,y)

=
......__ .-m!!t ___

(2,14)

W(x,y)

e(x,y)
x

e (x,y)
y

This will-simplify further discussion of the stiffness matrices in the

following sections. The subscripts u and ¢ refer to the inplane displace-

ments and the bending displacements respectively. Substituting the dis-

placement functions (Eqs. 2.11 and 2.1,2) into the right-hand side of the

above equation leads to Eq. 2.15:
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{

!1 (X'Y)}
{~(x,y)} = :~-----

6</>(X,y)
(2.15)

where [Pu(x,y)] and [P</>(x,y)] correspond to inplane and bending polynomial

expression respectively. The vector {-X-} is the partioned {a} vector

while the matrix [~~~::~~~~----~---] is the partioned [P(x,y)] matrix.
0,1 P</> (x,y)

2.5 Strain-Displacement Relations

The strain-displacement relations are derived using the thin-

plate small-deflection theory as mentioned in Section 2.2. The strain-

displacement relationships for a point at a distance z from the reference

plane are:

(E )
X

Z

au
z

= ax (2.16a)

= distance of point under consideration from the reference

U = displacement in the x-direction at any depth, z
z

(2.16c)

av
z

= .3y

au av
'::::;: __z + __z

ay ax

(c: )
y z

(yxy)
z

plane

(8) :::::: strain in the x-direction at depth z
x z

z

v = displacement in the y-direction at any depth, z
z

Where:
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(E) = strain in the y-direction at depth z
y z

(y ) = shear strain at dep'th z
xy

z

The prescribed displacement functions correspond to reference

plane displacements. The displacements U and V must be expressed in
z Z

terms of these middle plane displaceme~ts. Kirchoff's assumption of plane

sections permits the displacement for a point located at any distance, z,

away from the reference plane to be expressed in terms of the inplane

displacements of the reference plane plus the product of the rotations

about the reference plane and the distance z as shown in Eqs. 2.17:

u u - z
aw

z dX

V V - z
aw

z dy

W W
z

(2.17b)

(2.17c)

Substituting Eqs. 2.l7a and b into Eqs. 2.16a, band c leads to Eq. 2018

in which {s} represents the strain at depth z:
z

au -a2w
E:

dXx dX2

{E: }
3V + z

...... a2w
(2.18)E =

z y dy dy2

3U + av a2w
Yxy -2 --

dy ax dXdY
z
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In the equation above, the strain vector" {E} is separated" into inplane
z

and bending contributions. Id~ntifying the required differentials of

Eq. 2.18 to be [f
u ] and [f<jl]' corresponding to the inplane and bending

functions respectively, leads to Eq. 2019:

{d
z

= [f) [Pu(x,y)] {B} + z [f<jl] [P<jl(x,y)] {A}

Performing the differentiation results in the following equation:

(2.19)

(2.20)

Where: [f ] [P (x,y)]
u u

[Q '] = [r ] [P (x,y)]¢ u

The strains are now expressed in terms of the matrices [Qu] and [Q<jl],

which are obtained by differentiating the functions [P
u

(x,y)], [p <jl (x,y) ],

and multi,plying by the associated "constant t-erms" {B} and {A}.

As indicated by Eq. 2.8, the unknown polynomial coefficients in

Eq. 2.20 can be related to the nodal point displacement vector" {eel. The

inplane and bending displacement fields have been previously defin-ed as

{~u(x,y)} and {~<jl(x,y)} respectively. Substitution of the nodal point

coordinates (x ,y ) into the above displacement fields result in the f01
'n n

lowing expressions:

{~ (x ,y )} = [C ] {B}
u n n u

(2.21a)
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Where: [c ] = [P (x ,y )]
u u n n

[P rh (x ,y )]
"¥ n n

{o~} and {a;} are the inplane and bending nodal point displacements. Solv

ing for the vectors {A} and {B} leads to:

{A} (2.22a)

{} [ ]
-1 {~e}B = C u

u u
(2. 22b)

Substituting Eqs. 2.22a and b into the strain-~isplacernent relation of 2.20

yields Eq. 2.23:

Equation 2.23 is analogus to Eq. 2.9c and represents the strain displace-

ment equation relating the strains at a distance z from the middle plane

to the basic set of unknowns, i.e. the nodal point displacements. For

convenience, the [Bu ] and [B$] matrices, defined in Eqs. 2.24a and b

respectively, are substituted into Eqo 2.23 resulting in a shorter expre~

sian for the strain which is given in Eq. 2.24c:

[B ]
u

{s}
z
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Multiaxial bending of the slab causes a continuously varying

biaxial stress field within the concrete as shown in Fig. 4A. The elas-

ticity matrix [D], for a non-linear material depends on the stress level,

and, therefore, will also vary throughout the finite element. In order to

evaluate the volume in~egral of Eq. 2.3, [D] must be defined over the

volume of the element. Since the explicit definition of the elasticity

matrix for reinforced concrete under biaxial stress is prohibitively com-

plex for solution purposes, this stiffness matrix is evaluated by a combi-

nation of explicit integration and numerical integration. The numerical

integration is performed using a summation process, as explained in the

following paragraphs.

A finite element will be divided into a series of layers as

shown in .Fig. 3. This idealization facilitates inclusion of material non-

linearities through the depth, i.e. layer to layer, and through the plane

of the slabs, i.e. element to element. Each layer can have its own elas-

ticity relations, [D.], which is dependent upon the representative state
l.

of stress existing within that-layer, {cr.}. Th:J,.s implies that there is a
- ~

constant state of stress and stiffness within any particular layer and

that there is a step-like variation of stress and stiffness properties

through the depth of the finite element as shown in Fig. 4B. A

state of plane stress is assumed to exist within each layer.

The representative state of stress in a layer is taken to be

{cr.}, the integrated average stress for the mid-plane of that particular
1
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layer. The location of the mid-plane of layer-i is defined by the distance

z. from the reference plane of the slab. The integrated average stress
1.

can be expressed in terms of the integrated average strain, {E}- using
zi

Eq. 2.25:

By employing Eq. 2.24c the integrated average strain may be defined as:

Where:

{a.} = [D.] {E}~
1. 1. z.

1.

(2.25)

(2e26a)

(2026b)

Substitution of Eq. 2.26a into Eq. 2.25 results in an equation defin~ng the

integrated average stress:
I

f f[[Bu ]

I

[B~]] {-~;-}1 I
{cr .} [D. ] I - (2.27)=-- I z. dxdy

1. Area 1. I 1.
I
I ' ¢
II

Once the representative state of stress, given by {cr.}, is known
1.

the elast,icity matrix, [-D.], can be determined for various :t;egions or
1.

layers. Numerical integration can then be performed and the stiffness

matrix can be evaluated. The elasticity matrix is a function of {ail

which is, in turn, dependent on the elasticity matrix. Thus the stiffness

matrix is stress-dependent and a step-by-step solution scheme is required~

This will be discussed in Section 2.9~

Reinforcing' bars are treated just the same as any other layer

in the summation process but of course a uniaxial elasticity relationship
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is used. A separate steel layer is assumed for each set of reinforcing

bars placed at a particular depth and at a parti1cularangle to the x-axis

'(as illustrated in Fige 5). Idealizing the reinforcing bars as a layer

and not 'as individual entities requires the computation of an equivalent

steel layer thickness. The equivalent thickness of a steel layer must be

such t~at the total area of steel in a cross-section perpendicular to the

bar direction remains· the same. The equivalent thickness for a steel

layer can be represented by Eq. 2.28:

T
s

A
s

h
s

(2 .28)

where A indicates the area of a reinforcing bar and b is the bar spacing.
s s

This approach to modeling steel reinforcement allows consideration of re-

inforcing systems which have variable bar spacing and size from element to

element and are placed in arbitrary directions and depths within the slab.

~rogressive cracking and crushing of the concrete and yielding

of the steel through the depth of the slab during loading can be monitored

by obtaining the stress history for each layer. The direction of princi-

pal stress that causes crushing or cracking of a particular concrete layer

is not predefined by previous cracking or crushing and may vary from layer

to layer through the depth of the slab.

207 Element Stiffness Matrix

From Eq. 2$3b the element stiffness matrix is defined as:

IV [B]T [D] [B] dvol
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in whi,ch matrix [B] relates the strains to the nodal point displacements.

C'omparison C?£ Eqs. 2.9c and 2.24e shows that Eq. 2.3b can be rewritten, in

this context, as Eq. 2.29a:

(2.29a)

Performing the indicated matrix multiplication results in Eq. 2.29b:

[B ]T [D] [B ]
u u

[B ]T [D] z [B ]
¢ u

[B)T [D] Z [Bq)

[B<j>]T [D] z2 [B<j>]

dvol (2.29b)

Th,e submatrices of Eq. 2. 29b will be' defined as shown below for convenience:

[k, ] is the inplane stiffness matrix relating the inplane forces to the
Ull .

[k ] J [B ] T [D] [B ] dvol
Uti vol U u

[k . ] = f [B ] T [D] z [B<j>] dvoluep
vol u

[kepep] f' [B ] T [D] z2 [B<j>] dvol
vol ¢

(2.30a)

(2.30b)

(2.30c)

inplane displacements. [k<j><j>] is the bending stiffness matrix relating

bending forces to "bending displacements. The off diagonal submatrix,

[k
uep

] , is the coupling stiffness matrix which interrelates the bending and

inplane actions. The importance of the coupling stiffness terms has been

discussed in Chapter I.
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As was noted in the discussion of layering in Section 2.6, the

state of stress, and hence the terms of the elasticity matrix are assumed

. to be constant throughout a particular layer. Therefore, [D] is not depen-

dent on x or y coordinates. Likewise, since the displacement functions

were independent of the coordinate z, [BuJ and [B¢l are also independent

of z. Thus the integrations indicated in Eqs. 2.30 may be separated as

shown in Eq. 2.31:

[k ] = ff [B ] T (f [D] dz) [B ] dxdy
uu u u

yx z

[ku¢l = If [B ] T (f [D] zdz) [B¢l dxdy
u

yx z

[k¢¢l = ff [B ]T (J [D] z2 dz ) [B¢J dxdy
yx ¢ z

(2 ~ 31a)

(2.3Ib)

(2 at 31c)

As also mentioned in Section 2.6 a summation proc~ss will be ·used to ap-

proximate the int'egration over z. This will be done by integrating over

each layer and then summing the results and storing them in the appro-

priate [Duul, [Du¢l or [D¢¢l matrix. Thus the terms: [Duul, [Du¢J and [D¢¢l

may 'be defined as shown below:

[D ]
Ull

L
= f [D] dz = L:

Z i=l
[D,] (Z,+ - Zi)

~ ~l
(2032a)

-[D ]
u¢

1 L
= f [D] zdz = - ~

2 ,
Z 1=1

[Di ] (Z7+ - z:)
1. 1 1.

(2.32b)

1 L
= - L:

3 .
:L=l
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Z,+ and Z, delineate the boundaries of layer i. L is the total number
~ 1 ~

of layers •. [Du)' [Du</>] and [D</></>] are often called, respectively, the

inplane rigidity, the coupling rigidity and the bending rigidity.

Substitution of Eqs. 2.32 into Eqs. 2.31 results in the fol1ow-

ing expressions which can be explicity integrated over the area of the

elements:
ff [B ]T[k ] = [D ] [B ] dxdy

Ull u Ull Uyx

[ku</>] = II [B ]T [D </>] [B</>] dxdyu u
yx

[k</></>] = ff [B ] T [D</></>] [B</>] dxdy
yx <P

(2.33a)

(2.33c)

This integration leads to the force-displacement relations for the finite

element give~ by Eq. 2.34:

Fe I oe[k ] I [ku</>]u uu I UI
= ___ .....___-1.______ (2834)I

Fe [k ]T
I oeI [k</></>]¢ u¢ I epI

. {F:} and {F;} are, respectively, the inplane and bending forces applied

to the nodes of the element. {a:} and {a;} are, respectively, the result

ing inplane and bending displacements at the nodes of the element.

2.8 Assembly of the Global Stiffness Matrix

The individual element stiffness matrices are assembled to form

the global stiffness matrix of the entire struc~ure. This global stiffness
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matrix relates the forces at the node points of the structure to the dis-

placements of those node points. The process of assembly entails addi-

tion of the element stiffness terms which contribute to the same force-

displacement location in the global stiffness matrix. The total force at

a particular node is determined by adding up the contributing forces from

the individual elements for that particular node. Thus the force-

displacement relationship for the entire structure can be expressed as:

(2.35)

where i and j correspond to the various degrees of freedom:, at the node

points. The subscript i indicates row positions in the force vector and

stiffness matrix and j indicates row positions in the displacement vector

and column locations in the stiffness matrix. Assembly procedures require

that:
{F. } = E {F:}

1 ~
e

[K .. ] :::i L e
[k .. ]

1J e
1J/

(2.36a)

(2.36b)

where the summation is carried out over all individual elements. The

stiffness term k:. in the above equation relates the force at nodei to
1J

the displacement at node j for element e. Sunnning up the .contributing

stiffness terms from all elements as indicated in Eq. 2~36b gives the

term K.. which populates the (i,j) location in the global stiffness matrix.
1J

A solution for a structural system should satisfy compatability and equi-

libriurn. The assembly procedure guarantees displacement compatibility at
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the node points. Equilibrium of forces at each node point is insured in

the development of Eq. 2.3a~

2.9 Incremental Iterative Solution Technique

The nodal point forces are related to the nodal point displace

ments of the slab by a nonlinear system of equations, symbolically written

as:
{F} [K] {cS}

where the global stiffness matrix, [K], is a nonlinear function of the

nodal point displacements, {a}. Expressing Eq. 2.37 in incremental form

gives:
{F} = [K] {a} (2.38)

where the dot indicates an increment and [K] is the stiffness matrix at

some stress level called a tangent stiffness matrix. [K] is assumed to

be constant over an increment of load and the load-deflection his,tory is

obtained by adding up the increments of forces and displacements:

(2.39a)

The elasticity,matrix [D
i

] for each layer an,d thus the tangent

stiffness matrix, [K], depends upon the current stress level. Therefore

Thus the nonlinear response of the slaq can be obtained in a piecewise

linear fashion by solving the system of linear equations given by Eq. 2.38

for each load step.

(2.39b){a} = l: {cS}
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an ite~ative procedure can be employed during each load step to obtain

convergence of the displacement increment.

A failure criterion is needed in order to identify the onset .of

cracking or crushing within a layer. A biaxial failure envelope is used

here and will be discussed in detail in Chapter 3. This failure envelope

is shown in Fig. 9. The concept required in the current discussion is

that some criteria must be applied to determine if cracking or crushing

has occurred. An upper and a lower tolerance to the biaxial failure

envelope is utilized. A load increment that produces a stress 'state out

side the upper bound of the failure envelope will automatically be reduced

so that the stress states of the next iteration, using the reduced force

increment, will lie within the specified upper and lower bounds. Failure

of the layer is deemed to occur if the stress state falls outside the

lower bound to the failure envelope. Thus only a stress state that ap

proximately satisfies the failure criteria to within the specified toler

ance need be obtained.

A solution for an initial load vector which produces a stress

field well within the elastic range is obtaineds This initial solution

is then scaled up to a specified percentage of the first cracking or first

crushing load, which~ver governs. A solution for an applied dead load

can also be obtained. The dead load solution mqy reflect nonlinearities

su~h as cracking or crushing of the; concrete and yielding of the steel.

The dead load stresses are considered in the initial scaling procedure~

If a layer has cracked~ crushed or yielded during the dead load solution

procedure, then the initial scaling will not take place. After this
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initial solution is obtained either an "incremental" or an "incremental

iterative" solution scheme may be chosen by the analyst. If the·

incremental-iterative option is chosen the following solution scheme is

used until failure occurs:

1. Formulate the element stiffness matrices based on the current

total stress level.

2. Form the glob'a! stiffness matrix by assembling the element

stiffness matrices.

3. Solve for the displacement increment using the global stiffness

matrix and the force increment. Next compute the strain and the

stress increments.

4. If the displacement increment has converged to a specified toler

ance go to step 7, otherwise continue.

5. If the stress state falls outside the.upper tolerance set on the

failure envelope then scale down the applied force increment such

that the· stress is between the upper and lower tolerances.

6. If the maximum number of iteration cycles has been reached go

to step 7; otherwise go to step 1.

7. Unload the excess layer stresses and compute the corresponding

fictious force vector if applicable (Ref~ to Chapter 3)0

8. If the current total stress level has exceeded the lower toler

ance on the fai:Lure envelo'pe set the codes for newly cracked or

crushed concrete layers and new~y yielded steel layers.
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9. Compute the total stress, strain, displacement, and force vectors

by adding together the old to~als and the current increments.

10. Apply 'a new force incre~ent and go to step 1.

An initial stress and displacement increment of zero is chosen for each

load step. Thus the first iteration within a load step uses an elasticity

matrix based on the stress level of the previous load cycle.

If the incremental solution option ,is' chosen, then steps 4, 5

and 6 are not employed and iteration within a load step does not take

place. As the size of the fixed load increment used is reduced the incre

mental solution will approach that of the incremental-iterative solution.

The advantage of the incremental solution procedure over the incremental

iterative pr?cedure lies in the fact that less solution time is needed

for the former than the latter. The disadvantage of the incremental

solution· procedure is that judgment and experience must be used in selec

tion of the size of ·the fixed load increment.
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3. MATERIAL BEHAVIOR

Structural analysis techniques require that some relation be

made between stress and strain. This chapter will present the stress

strain relationships employed in the reported analysis scheme. The elas

ticity matrix, [D],introduced in the previous chapter is populated us~ng the

stress-strain relationships developed in this chapter. As noted in '

Section 2.9, the theoretical analysis· presen.te'd in Chapter 2 is actually

applied in an incremental fashion. The stress-strain relations discussed

in this chapter will sometimes involve both total stresses and strains and

incremental stresses and strains. Incremental quantitites will be distin

guished by a dot over the appropriate symbol.

The 'material stress-strain relations, [D], must be defined for

both th'e steel reinforcin,g bars and the concrete before computing the ele

ment stiffness matrices. Concrete is a heterogeneous mixture of solids

and gel with strength properties influenced by age, time unde~ load,

humidity, and temperature to name a few (Ref. 33). The behavior of con

crete is also dependent on the state of stress existing within the mate

rial. Discontinuities due to micro-cracking and shrink~ge cracks may be

present in the concrete continuum even before load is applied to the struc

ture (Refs. 14 and 33). Thus, any attempt to define the material stress

strain properties of concrete over a specified region of the structure

should be considered as an idealized approximation and by no means exactm
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Steel, on the other hand, can be considered to be a homogeneous

material. The physical properties of steel are less dependent on environ

mental conditions than those of concrete.

3.1 Concrete Stress-Strain Relationships

A beam may be idealized as a one dimensional str'uctural element

in which bending about one axis produces a uniaxial state of stress. A

slab on the other hand should be considered as a two dimensional struc

tural element in whic~ bending about two axes produces a biaxial state of

stress (Fig. 4A). A limited number of experimental investigations of con

crete behavior in the biaxial stress state have been carried out (Refs. 24,

27 and 32). These studies have covered the entire biaxial principal

stress space cons.isting of the compression-compression r,egion, the tension

tension region, and the compression-tension (or,. conversely, tension

compression) reg·ion. These regions are shown in Fig. 6.

Equations for the b·iaxial principal stress-strain relations

used in this inves tigation have, ,been ado'pted from Liu (Refs. 27 and 28)

and were extended to cover the nonlinear compression-tension and tension

compression regions. The idealized biaxial stress-strain curves have, two

basic forms: the nonlinear form and the linear form., The nonlinear equa

tion is used for biaxial stress states where compression is dominant while

the linear expression is used for biaxial 'stress states where tension is

dominant. General nonlinear and linear stress-strain curves are indi

cated in Fig. 7. Figure 8 shows the approximate regions in the biaxial

stress plane where the nonlinear and linear equations are applicablee

~37-



3.1.1 Nonlinear Stress-Strain Equation for Concrete

The nonlinear stress-strain curve for concrete assumed to apply

in the reported study has the following form:

a =
A + BEE

c
(3.1)

Where: a = the stress in the principal direction of interest

E the strain in direction of interest

V Poisson ratio (taken to be 0.2 but other choices are also

permissible)

= the ratio of the principal stress in the orthogonal direc-

tion to the principal stress in the direction of interest

E = initial tangent modulus in uniaxial loading
c

A,B,C,D curve parameters to be determined

A positive stress from Eq. 3.1 denotes compression, and likewise positive

strain denotes contraction.

The- parameters A,B,C,D are determined by considering the basic

,shape of the nonlinear stress-strain curve shown in Fig. 7. It can be

observed that for the nonlinear case:-

1. The curve passes through the point of zero stress and zero

s'train (i.e., the origin).
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2. Under a biaxial state-of stress (i.e., a stress ratio, a, not

equal to zero) and at a zero stress-zero strai~ level, the

initial slope of the stress-strain curve 'can be defined as

E /(1 - va) by employing Hooke's Law for multiaxial stress
c

states. E can be obtained by performing a standard compression
c

cylinder test or through an accepted formula such as the ACI

equation (Ref. 49), the Jensen equation (Refo 16), the ~ognestad

equation (Ref. 27), or the Saenz equation (Ref. 36). These equa-

tions are listed below -in the order mentioned.

E = Wl • 5 33 ~c c

E
6 X 10 6

=
C 1 + 2000

, ft
c

(ACI)

(Jensen)

E
c

E
c

= 1.8 X 10 6 x 460 f'
c

10 5 1fT, c

1 + 0.006 If'
c

(Hognestadt)

(Sae_nz)

In the equations above ft is the 6" x 12ft cylinder strength in
c

(28 days) in psi, 'W is the unit weight in pounds per cubic feet

and E. has the units psi.c .

3. The curve passes through a peak stress-strain point (a ,E ).
P P

4. The slope at the peak stress-strain point is E .
P
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The parameters A, B, C, D can be determined by enforcing these

curve characteristics. Solution for the parameters leads to the following:

A = 0

B = 1

(3.2)
E E E

__2_ + _ ....p_._c_P""",-_

E p (1 - va) a~

E
c

C = a (1 - va)
p

E ED = _1 p__c__

If the peak slope, E , were to be zero as in th,e case for the compression
p

compression region -the curve parameters would reduce to those presented by

Liu (Ref. 27):
A = 0

B = 1

E
C _ o....---:--_c__

(J (1 - va)p

(3.3)

1
D =-

£:2
P

The tangent modulus, i.e. instantaneous slope, of the stress-

strain curve may be obtained by differentiating Eq 0 3.1 resulting in:

Where A = Q'

B = 1
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Some advantage may be gained from the computer programming standpoint if

the tangent modulus is defined in terms of only the principal stresses

rather than in terms of stresses and strains. This change can be accom-

plished simply by solving Eq. 3.1 for the strain in terms of stress then

substituting into Eq. 3.4. Care must be exercised in using the correct

sign for the square rO,ot term in the resulting expression.

The tangent modulus of the stress-strain curve given in

Eq. 3.4 can be used to relate the incremental stress in a principal di-

rection to the incremental strain in that same direction. Thus the

instantaneous slopes of the stress-strain curves for the two principal

directions can be expressed as:

do E= __1 = c__

dE (1 - va, )
1 1

dcr E
Ef)b = de- 2 = (1 c
~ ~ - 'Vet )

2 2

(1 + C E
1 1

, 2
(1 + C E' + D 8 2 ) ,

2 2 2 2

Where: E
lb

and E
2b

are the tangent moduli in the two principal direc

tions 1 and 2 respectively.

a = a /a
1 2 1

a = a /0
2 1 2

D an,d C are the D and C curve parameters evaluated for the
1 1

"one" principal direction using Eq. 3.2.
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D and C are the, D and C curve parameters evaluated for the
2 2

"two" principal directions using Eq. 3.2.

Thus the incremental stress-incremental strain relation can be defined as:

a
1

(3.6a)
a E E

2 "2b 2

or in matrix form: .
E

1b
0

0

cr E
1 '1

=. .
cr 0 E E

2 zb z

(3. 6b)

The curve parameters C and D, which are presented in Eq. 3.2,

can be determined if the following quantities are known: E , \), ct., a
p'c

E
p'

and E . The first three quantities, Young's Modulus, Poisson's ratio
p

and the stress ratio have been previously defined in this section. The '--

latter three quantities (i.e. the peak stress, the peak strain and the

peak slope) will be defined in Sections 3.1.3~ 3.1.4 and 3.1.5.

3.1.2 Linear Stress-Strain Equation for Concrete

The linear stress-strain equation for coner'ete has the general

form shown below.
cr A + B E (3$7)

The curve parameter A and B may be defined by forcing the curve to pass

through the zero stress-zero strain point, i.e., origin, and also through

the peak stress-strain point, as shown in Fig. 7. The curve parameters

are thus defined as:
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A = 0

cr
B =-2.

E
p

(3.8)

The following stress-strain equation is" determined by substituting Eq. 3.8

into Eq. 3.7

a
a
--E..E
E

P

(3.9)

A constant tangent modulus is obtained by differentiating the stress-strain

equation:
a

da p
dE = €

p
(3.10)

The incremental stress - incremental strain relationship follows from

Eq. 3.10 as:

Where:

cr
1

.
a

2

da a
1 _ pI

dE - -E-

2 PI

dO a
=_·_2=~

dE E
2 p2

E
l

.
E

2

(3.l1a)

(3 .lIb)

The

a and a' denote the peak stress for the tl one" and Htwo" directions respec-
pI P2

tively and Ep1 and Ep2 denote the peak strains in those directions.

linear stress-strain curve can be evaluated if the peak stress and peak

. strain values are known.
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In the particular case of the tension-tension region the initial
~

slope of E /(1 - va) is maintained. Thus, 1f the peak stress and peak
c

slope are known, the peak strain in this region can be defined as

E = a (1 - Va)/E .
p p c

3.1.3 Biaxial Failure Envelope - Definition of a
p

Non-dimensional experimental peak stress envelopes for concrete

strengths of 2700 psi and 4450 psi are shown in Fig. 9 (Ref. 24). The

close agreement between the two curves indicate that the basic shape of

the failure envelope is essentially fixed and only the size of the enve-

lope will change with concrete strength. The true envelope can be approxi-

mated by a series of straight lines as shown in Fig. 9. The maximum

increase in biaxial compressive strength over the un~axial compressive

strength for the idealized failure envelope is 20%-. This corresponds to

a value of 1.2 on the non-dimensional plot in Fig. 9.

The characteristic points used to define the peak stress enve-

lope are shown in Fig. 10 and enumerated in the table below:
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Point a a
~ ~

A f' 0.0
c

B' Rf' a Rf'
c B c

C Rf' Rf'
c c

D Rf~/aD Rf'
c

E 0.0 f'
c

F 0
2F

/aF
cr

2F

G -f 0.0
t

H -f -f
t t

I 0.0 ~f
t

J O"lJ ct
J °lJ

The terms used in the table above and on Fig. 10 are defined as:

f' = uniaxial compressive strength from 6" x 12" cylinder test
c

(28 days)

f = direct tensile strength
t

a principal stress in direction 1
1

a = principal stress in direction 2
2

ex a /0
2 1

a peak stress in direction 1
pl

a = peak stress in direction 2
pz

cr •. = stress in direction i at point j
J..J
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a. = stress ratio a ./a .
J 2J 1J

R = increase in strength due to the biaxial compressive stress

state

The following values were used in all test examples included in this

report. These values were selected to provide an acceptable approxima-

tion to experimentally observed biaxial stress states (Refs. 24 and 27).

R = 1.2

1 0.2Q',B = -' = V =
an

1 19.2aF
=- = -

CiJ

a = (J = 0.85 f'
2F lJ c

Equations 3.12 to 3.21 were used to describe the ~line segments defining

the biaxial failure envelope shown in Fig. 10. The equations' have been

left in general form so as to accommodate use of different values than

those used in this study.

I. The Compression-Compression Stress States

1. Point-A to point-B (0 ~ a ~ ct
B

)

=------a
Pl

f'
c

l-~+~
~ ctBR
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2. Point-B to point-C (ctB ~ a < 1)

a = R ff (3.13)
PI c

3. Point-C to point-D (1 :s a :5 an)

R ff

0
C

(3.14)=--
pl a

4. Point-D to point-E (aD ~ ct :5 0:)

f'
a c (3.15)

pI an
a +-- anR

II. Tension-Compression Stress state

1. Point-E to point-F (-~ < a ~ ct
F

)

cr
Pl

2. Point~F to point-G (ct
F

~. a < '0)

f
t

IT = ------
Pl ct a f t-+ -- -,1

elF ct2F

III. Tension-Tension Stress State

1. Point-G to point-H (0 ~ a ~ 1)

a =-f
PI t
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2. Point-H to point-I (1 < a < ~)

cr
pI (3.19)

IV. Compression-Tension Stress States

(J

PI
(3.20)

2. Point-J to point-A (a
J

~ a < 0)

a
pl

f'
c

= -----------a f'
1 + c

a 1J Ct
J

3.1.4 Peak Strain Envelope - Definition of E
p

The nondimensional peak strain envelope shown in Fig. 11 is

idealized as a series of straight lines passing through, or very near to,

the experimental peak strain points indicated in the figure (Refs. 24 and

27). Peak strain.is defined as that strain corresponding to peak stress.

Figure 12 shows the peak strain envelope including the characteristic

points. The characteristic points used to define the peak strain envelope

are, listed below:
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Point a £
-.E..!. --E..l

A' f' E:c c

B' Rf' cc c

C' cr 0,v

D' 0 -V£
c

E' -f -E
t t

F' a VEt

G' act E:
ct

R" f~, v and f
t

are defined in the previous section. The following addi

tional terms used in the table above are defined as:

0v . = peak compressive stress at an a = l/V as obtained

from the peak stress envelope of Section 3.1.3

O'ct,Sct = a peak stress-strain value defini,ng point G'

£ = peak strain for uniaxial compression
c

E
t

peak strain for uniaxial tension

The following values were used for all test examples in this report.

They were selected to provide an acceptable approximation to experimen-

tally observed peB:k strains in biaxial stress states,

R = 1.2

V = 0.2

crct = 0.8 f'
c
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E
ct

E
c

E:
t

=

As in

1150 micros train

2500 micros train

tensile strength divided by Young's modulus

the case of t~e peak stress envelope Eqs. 3.22 to 3.28

which define the line segments used to descr~be the peak strain envelope,

will be left in general form.

I. Compression-Compression Stress State

1. Point-A' to point-B' (0 S ex ~ 1)

E: = E (3.22)
pI c

2. Point-B' to point-C' (1 S a < I/v)-
E: (GEl - (J )

c v
(3.23)E: == R f'pI - a

c v

3. Point-C' to point-D' (1/v_ 2 a < 0:)

VE (Opl - a )
c v (3.24)E:p1

~

a
\)

II. Tension-Compression Stress State

1.. Point-D' to point-E' (-~ ~ a S 0)
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III. Tension-Tension Stress State

1. Point-E' to point-F' (0 ~ a S 1)

E
pI

a (1 ,- va)= _p_l _
E

c
(3.26)

IV. Compression-T'ension Stress State

1. Point-F' to point-G' (-~ ~ a < act)

E:
pI (3.27)

2. Point-G' to point-A' (a < a < 0)
ct - -

E
Pl

(E - E t) (a 1 - f')
= E + c c p c

c (f' - cr )c ct
(3&28)

3.1.5 Peak Slope - Definition of E
P

The peak.slope is defined as the tangent of the nonlinear stress-

strain curve evaluated at the peak stress. According to experimental obser-

vation the peak slope for the compression-compression stress region has a.

value of zero '(Refs. 24, 27 and 32). In the tension-compression regions the

peak slope may range from a value. of zero for stress states near uniaxial

compression to a value equal to the a /E for stress states near uniaxial
p p

tension. In, this study the ratio of peak slope to initial ,slope in that

region/has been'assumed to vary linearly with respect to the stress ratio,

a.The peak slope ratio has a value of zero for. stress states near uniaxial

compression and ranges to a value of 1.0 for stress states near uniaxial tensions

Two peak slope ratios necessary to define the aforementioned

linear variation were scaled from the experimental stress-strain curves
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designated as A and C in Fig. 16, and are listed below along with the

values of a associated with those curves.

Point a Peak Slope
Initial Slope

I -0.203 1.000

II -0.052 0.125

I' -4.900 1.000

II' -19.200 0.125

Points I and II, located in the compression-tension region, were obtained

,by measuring the peak slope ratio for curves C and A respectively.

Points I' and II', located in the tension-compression region, were

obtained by computing the 'reciprocals of the values associated with

pOints I and II respectively.

Points I, II, I', and II' and a plot of the ratio of peak slope

to initial slope as a function of the stress ratio, a, are presented in

Fig. 13.' The peak slope function is represented as a series of straight

lirie segments. These straight line segments and corresponding biaxial

stress plape regions are indicated by the letters A through E in Fig. 13.

The corresponding biaxial stress plane regions designate where that partic-'

"ular straight line segment is applicable. The letters C+ and E+indicate

. that the curve extends to a stress ratio of plus infinity while the letters

c- and E- indicate that the curve extends to negative infinity at the indi-

cated points on the failure envelopee The straight line segments delin-

eated by the points E-, I, II, A and C+ reflect the peak slope ratios for

the compression-tensio~ region through the compression-compression region.

The straight line segments associated with the points C-, II', I', D andE+

describe the peak slope relationship for the tension-compression region

through the tension-tension region. -52-



3.1.6 Stress-Strain Curves for Concrete

The nonlinear stress-strain relation used ~n this investigation,

~q. 3.1, reduces to the Saenz equation for the uniaxial compression stress

(3.29)
E E

ca ==

state for which E and a are both equal to zero (Ref. 36). The Saenz equa
p

tion is given below.

Figure 14 compares experimental (Ref. 38) and analytical uniaxial compres-

sian stress-strain curves for concretes of various strengths. The agree-

ment between the curves is quite good and confirms the applicability of

the uniaxial stress-strain equation to a wide range of concrete strengths.

Figures 15, 16 and 17 compare the idealized and experimental

biaxial stress-strain curves (Ref. 24). Curves A, B, and C in each

figure corresponds to the specific stress ratios listed on the figures.

Two curves are plotted for each stress ratio. One corresponds to a /0
1 0

versus E and the other to a /a versus E. a and a are the principal
1 1 0 2 1 2

stress as shown in the inset of each figure while a is the uniaxial com
o

pressive strength. E and E are the strains in the first and second
1 2

principal ~tress directions respectively.

Analytic stress-strain curves corresponding to an unlimited num-

ber of stress ratios covering the entire biaxial stress space can be gener-

ated using the method presente·d herein. Figures 20, 21, 22 and 23 show the

idealized stress-strain curves corresponding to the selecteq values of

stress ratios indicated i'n Fig. 18 and enumerated in Fig. 19. These

figures show the wide range of biaxial stress-strain curves which are pos-

sible for given values of the stress ratio, a.
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3.1.7 Stress-Strain Relationships for Concrete

The incremental stress-strain relationship for concrete in terms

of principal stresses is 'represented by Eq. 3030 in which the subscrips 1

and 2 identify the principal stress directions and the dots indicate incre-

mental quantities.
·a

1

·,Cr
2

T
12

£:
1

E:
2

(3'.30)

Needless to say the in-plane shear stress T ,will be zero but its pres
12

ence is, required in the princip~l stress vector so as to include the shear-

iug stiffness term in ,the [D] matrix. This is necessary so that transforma

't'ion of the [D] matrix from principal axes to global x-y axes results in

the proper elasticity relationships. The [D] matrix is the stress-strain

relationship for the, principal stress plane. Th~ '[D] matrix can be deter-

mined by using the stress-S'train relationship for anisotropic materials

(Ref. 27).

1 -vz .
E: E' E' 0 a

1 Ib 2b 1

~\J

1· 1 G

(3.31)E: E:' E-r- 0 a
2 Ib 2b 2

E' + E' + 2\J E' J
0 0 lb zb 1 2b

T,y E' E'12 Ib 2b 12
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E' and E t

b are the tangent moduli in the first and second principal
lb· 2

stress directions respectively and V and V are the Poisson's ratios in
1 2

the indicated directions. In the equation above it is assumed that

v IEl'b'~ V IE t

b • Inversion of the above stress-strain relationship leads1 ' 2 . 2

to the [D] matrix used in Eq. 3.30:

[D] =

E'
lb

1 -- V V
1 2

'VI E'2b
1 - v V

1 2

o

\)2 E t

Ib
1 - 'V V

1 2

E'2b
1 - 'V V

1 2

o

o

o

E' E'
Ib 2b

E ' + E' + 2V E '
Ib 2b 1 2b

(3.32),

The analytic stress-strain curves of Section 3 &,1 e 1 relate the

stress ,in a particular principal direction to the strain in that same

direction and only that directione Thus, as indicated by Eq. 3.6a and

3.11a, relationships of the following form are defined:

. .
a = E

1b
E:

1 1. (3.33)
a E2b E:

2 2

Where E
1b

and E
2b

are the effective tangent moduli for the principal

stress plane obtained by differentiating the analytic stress-strain

curves of Sections 3.1.1 and 3.1.2. The terms in the [n] matrix of

Eq. 3.32 must now be related to the known moduli, E1b and E2b in order to

use the stress-strain equation given in general form by Eq. 301.
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The unknown terms in the stress-strain relations may be expressed

as functions of the known E
1b

and E
2b

..~alues by diagonalizing the stress

strain relations of Eq. 3.31. E
1b

and E
2b

are computed from the current

total stress state. Diagonalized relations may ,be obtained by eliminating

cr and a from the first and second algebraic equations, respectively, repre-
12. .

sented by the matrix equation, Eq. 3.31. This is done by subst;ltuti,ng for

.
a and cr the relations given by Eqs. 3.34. The a's are also based on the

1 2

current total stress state so as to be consistent with E
1b

and E
2b

•

-56-

The relation v /E'b = v /E'b allow Eqs. 3.35 to be expressed as:
2 2 1 1

·a
E = _1_ (1 - v a ) (3.36a)E'1 Ib 1 1

0

a
E: = _2_ (1 - v a ) (3.36b)

E'2 2b 2 2

.
a = a ex

2 1 1

• ·a - a a.
1 2 2

The above substitution leads to Eqs. 3 •35a and 3. 35b :

· [_1 _V
2 a 1 ]E a

1 1 E' E'
Ib 2b

[-L _V
1 a 2 ]•

E: a
2 2 E' E'

2b Ib

(3 • 34)

(3.35a)

(3.35b)



Rearranging Eqs. 3.36a and 3.36b leads to the diagonalized stress-strain

relations given by Eqs. 3.37a and 3.37b:

~ ( E' \. lb •
(J

1 ) E (3. 37a)
1 - \) a 1

1 1

~(
E' ). 2b .

a
1 -

E (3.37b)
2 V a 2

2 2

Comparison of Eqs. 3.37a and 3.37b with Eqs. 3.33 shows that the tangent

moduli relating principal stresses to strains in the corresponding direc-

tiona are given by Eqs. 3.,38a and 3. 38b :

E'
E

1b
Ib

=
1 - \) a

1 1

E'
·E

2b
=

2b 1 - v a
2 2

(3.38a)

(3. 38b)

Rearranging Eqs. 3.38a and 3.38b leads to 3.39a and 3.39b which define the

moduli E~b and E~b' needed in Eq. 3.32

(3.39a)

(3'. 39b)

E1b and E2b are defined in Eqs. 3.5a and 3.Sb, respectively,

for the nonlinear case and in Eq. 3.11b for the linear case. The curve

parameters C and D in the aforementioned expressions, are given by Eq. 3~2.
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v and V in Eq. 3.32 must still be obtained. The relation
1 2

V IE' ·-·V /E'b" leads to the following equations.
2 2b 1 1

v = V
A

1.

(3.40a)

(3.4Gb)

where subscripts (A,B) correspond to directions (1,2) or (2,1) whichever

is applicable. Applicability was determined by selecting the combination

that resulted in positive values for both V and v. The reported study
1 2

has used the value of 0.2 for VA. The range of values for VB' resulting

from the application of Eqs. 3.40a and 3.40b for various combinations of

cylinder strength, stress ratios and stress levels, was approximately 0.16

to 0.24, ·or ab"out 80% to 120% of the value assumed for VA.

All terms of Eq. 3.32 can be defined using Eqs. 3.5a, 3.5b,

3.l1b, 3.39a, 3.39b, 3.40a and 3.4Gb. The resulting [n] matrix is the

constitutive relationship for the particular layer expressed in principal

stress directions a Before computing the contribution of this layer to

the element stiffness matrix, the [D]matrixmust be transformed into an

'elasticity matrix, [D], relating stress and strain in the x-y coordinate

'system of the element:
'.
() E:

x x

cr· = [D] E (3. 41)
y y

'T Yxyxy
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This transformation is carried out in the following manner (Ref. 12,48):

[DJ = [T] [n] [T] T

where the transformation matrix, [T] is defined by Eq. 3.43:

(3.42)

[T] =

cose sine

sin2 e

-cose sine

-2 cose sine

2cos6 sine (3.43)

The angle e is defined as the angle between the 1 direction and the x

direction. This angle is positive when measured in a clockwise direction

from the positive x axis.

3.1.8 Concrete Failure Modes

Concrete exhibits physically distinct types of failure modes

which are dependent upon the applied stress ratio as shown in Fige 24A.

Figures 24A and 24B each show one-half of a symmetric region. Four dis

tinct failure modes can be described as follows (Ref.. 32):

I. In the tension-tension region and up to a tensile stress/

compressive stress ratio of -1/30 failure occurs by the forma

tion of one crack perpendicular to the largest tensile force and

perpendicular to the free plane, i.e., unloaded plane, of the

specimen. For a stress ratio of equal tension in both directions

there is no preferred c~ack direction (Ref. 24). This will be

called a Type I failure.
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II. For stress ratios between -1/30 and -1/100 numerous cracks are

formed instead of just a single crack as was the case for the

previous region. These cracks are also perpendicular to the

tensile force and th~ free plane' of the specimen. This will be

called a Type II failure.

III. From a stress ratio of -1/100 in the compression-tension region

to a stress ratio of 3/10 in the compression-compression region,

cracks are not only formed perpendicular to the app~ied tensile

force and free surface of the specimen but also cleavage planes

occur parallel to the free surface of the specimen. This will

be called a Type III failure.

IV. For stress ratios between 3/10 and 1/1 in the compression

compression region only cle'avage cracks parallel to the free

plane of' the specimen occur. This will be called a Type IV

failure.

Kupfer, Hildsorf, and Rusch (Ref& 24) report two general types of failure

modes. They are a Type IV' crushing failure for stress ratios occurring

between 1/1 'and -1/15 (-1/30 according to Ref. 32) and a Type I cracking

failure for stress ratios from -1/15 to -1/-1.

The idealized failure modes used in this report are depicted in

Fig. 24B. From the tension-tension region ·to a stress ratio of -1/15 a

. cracking failure mode is assumed to occur. The direction of the crack(s)

is assumed to be perpendicular to the largest tensile force and to the

free surface of the specimen. From the compression~compressioriregion to
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the stress ratio of -1/15 crushing failure mode is assumed to occur. The

direction of crushing is assumed to be perpendicular to the largest com-

pressive stress and perpendicular to the free surface of the specimen.

3.1.9 Cracked or Crushed Concrete

Cracking or crushing of the concrete is deemed to occur when the

principal 'Stress has exceeded the peak stress as defined in Fig. 9. The

d~rection of cracking or crushing is assumed to be perpendicular to the

direction of the corresponding principal tensile or compressive stress,

whichever is appropriate. The conc~ete layer is assumed to have stiffness

only in the uncracked or uncrushed direction. For example, the constitu-

tive stress-strain relation for a concrete layer which has experienced a

failure caused by the stress in direction 2 would be

.
cr

1

a
2

=

E'
Ib

o

o

o

o

o

o

o

o

8
1

E
2

(3.44)

The first principal direction is still effective in contributing stiff-

ness to the element. The elasticity matrix, In] would then'be rotated

from the principal stress coordinate axis to the x-y coordinate system.

The layer stiffnesses are then computed and used in the summation pro-

cess for the element stiffness formulation.
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3.1.10 Unloading of Cracked and Crushed Concrete Layers

After cracking or crushing of the concrete layer, the layer

will be incapable of .sustaining the stress that caused the failure. This

stress must be reduced to zero within the layer while still maintaining

equilibrium between the external forces and internal· stresses. Thus,

unloading of the layer stress to zero necessit~tes the adjustment of the

internal stress field of the slab. This adjustment or redistribution is

accomplished through the use of fictitious forces which are statical~y

equivalent to the amount of stress to be redistributed to the slabe A

solution of the stiffness equations corresponding to these forces will

cause a redistribution of stresses within the slab.

Recent experimental evidence indicates that after attainment of

peak strength, either tension or compression, the concrete stress

strain curve has a downward leg, i.e., unloading (Refs. 5, 15, 24 and 27)"

It is assumed that this downward portion is a straight line and has a

slope of some finite value (Refs. 19 and 26). Thus unloading proceeds at

some finite rate determined by the slope of the downward portion of the

stress-strain curve.

This unloading branch can also be used to model the tension

stiffening effect due to the gradual transfer of load from the cracked

concrete to the steel reinforcing bars (Ref. 26).

The fictitious force vector can be computed using Eq. 3.45

{a }dvol
r

L[B ]
u

f
vol

{F }
c,
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where the vector {cr } is the increment.of stress in the x-y coordinater

system to be redistributed and {F } is the resulting vector of fictitious
c

forces. The fictitious force vector can be separated into terms involving

only in-plane fictitious forces, {F } and terms involving bending ficti
lie

tious forces, {F<j>c} as shown in Eq. 3.46:

F
ue

T •J [B] {a} dvolu r
(3.46)

If it is assumed that the stress to be unloaded is constant through the

thickness of a layer, integration of Eq. 3.46 with respect to the z direc-

tion over the thickness of the layer results in Eqs. 3.47a and 3.47b
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Eqs. 3.47a and 3.47b.

(3.47b)

{F } = [if [B ] T dx dy ] {cr } (Z'+l - Z,)uc u r . 1. 1.
yx

[ii [B<j>]T dx dy ]
Z.+2 Z:

{F<j>c} {cr } ]. 1 1..

r 2
yx

The amount of stress to be redistributed, {a }, for a particular
r

unloading modulus, (Ref. 19), by the appropriate integrated average strain

load cycle can be computed in principal stress plane by multiplying the

x-y global coordinate system is necessary before substituting into

increment. Transformation of the stress vector from the principal to the



3.2 Stress-Strain Relationship for Steel

The steel reinforcing bars are considered to be in -a uniaxial

state of stress 0 The steel stress-strain curve i's assumed to follow the

Ramberg-Osgood formulation (Refs. 19 and 35) given by Eqo 3.48

E = ~+
E

s

cr
.J:.
E

s
(3.48)

Where: a stress

E = strain

E = initial modulus of elasticity
s

a yield strength
y

n = a constant assumed to be approximately equal to 100 for

mi'ld steel

m = a constant defining a line of slope m.E on the stress
s

strain plot and taken to be .7 for metals

The tangent modulus can be found by differentiating the stress-strain

equation as follows:

E
s=------------

1 + n (1 - m)
m

(3.49)

, The stress-strain matrix for reinforcing bars is given below:
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The [D] matrix is then transformed from the principal stress direction of

Where: D = do IdE
11 1 1

. - ·(J D 0 0 E
1 11 1

. · (3.50)0 = 0 0 0 E
2 2

0 0 0 ·T
Y1212

the reinforcing bars to the x-y axes as shown in Eq. 3.42 where' [T] is as

previously defined by Eq. 3.43. The angle e is the angle between the

x-axis and the longitudinal direction of the reinforcing bars.

Mathematical distinction between yielded and non-yielded steel

need not be made since the Ramberg-Osgood formulation provides a continu-

ous stress-strain curve. Proper selection of the curve parameters can

produce an almost perfectly plastic plateau as would be the case for mild

steel. This plateau will have some finite slope but its value will be so

small that. for all practi~al purposes its effect on the structural behav-

ior can be considered negligible.

3.3 Additional Considerations

.Several further considerations could be incorporated into the

present analysis procedure of reinforced concrete slabs to at.tack more

general problems. Possible items that could be considered are:

1. Shear Retention Factor

2. Dowel Action (in-plane)

3. Transverse Shear~ i.e. normal to the slab

4. Bond Slip
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1. It is believed that they have a negligib.le effect on the struc

tural behavior of the slab at 'load levels which will not cause

substantial damage,

2. The experimental investigations have not demonstrated the need

Ifar their inclusion,

3. It has not been demonstrated that manageable analytical methods

of proveri reliability have been developed for all observed

experimental phenomena, and, most importantly,

"4. Necessary physical constants for some of the phenomena are not

available.

The shear retension factor has been used to model aggregate

interlock "behavior along the crack face (Refs. 7,11,12,25,26,37). In the

present study it was assumed that aggregate interlock f'ailure occurs

innnediately after cracking or crushing. It has been reported that ana

lytic results for the flexural analysis of slabs are insensitive to the

particular value of the shear retention factor chosen (Refs. 11,12,26).

This would be expected in the experimental flexural tests since separation

of the crack faces occurs after the initiation of the flexural failure,

thus red~cing the shearing stiffness along the crack face to zero.

Experimental studies on dowel action of reinforcing bars has

been carried out and is available in the literature (Ref. 30). These

experiments were concerned with investigating dowel action caused by the
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shearing deformation of the reinforcing bars in the plane of the slab .

. The dowel action discussed here should not be confused with the type of

dowel action considered when discussing shear perpendicular 'to the plane

-of the. plate. It was concluded from these studies that after a flexural

type of failure in a reinforced concrete slab, the reinforc~ng bars do not

distort across the cracks. This implies that the reinforc~ng bars do not

carry excessive shearing forces. Thus for the analysis procedure reported

herein, it was assumed that the steel reinforcing bars have a shearing

stiffness of zero. Furthermore, it should be noted that this assumption

is consistent with the ass.umption regarding the stress fields of the rein

forcing bars, i.e., uniaxial stressing.

An approximate method to include the transverse shear perpendic

ular to the plane of the plate in an elastic plate bending analysis has

been proposed in Ref. 10. A more exact analysis scheme to include the

" transverse shear would require a three dimensional elasticity approach.

The three dimensional approach would lead to prohibitive solution time

and sto~age 'requirements as mentioned in Chapter Ie

At high stresses the bond between the concrete and steel may be

broken and the steel may slip relative to the concrete. This slippage

changes the stress distribution in the reinfo'rcing bars and concrete at

the vicinity of the slippage. Slip phenomena has been taken into account

in some analytical studies (Refs. 31 and 34). These investigations have

employed the .continuum approach and used "linkage elements" to model slip

page. Bond slip Gould possibly be incorporated into the present analysis

procedure by use of an appropriate concrete strain-steel reinforcing
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bar slip relationship. Equilibrium would have to be re-established after

the required internal adjustments to the reinforcing bar strain field

have been made through an application of the currently used fictitious

force vector ·concept. It must be emphasized that the above procedure has

not been implemented or verified. Also the required strain-slip relation

ship and its dependence on loading, boundary conditions, physical proper

ties' and material properties associated with reinforced concrete slabs

has not yet been determined. Thus inclusion of bond slip remains hypo

thetical at this time.

3.4 Limitations

The presented method as reported herein, is applicable only to

the reinforced concrete slabs 'whose predominant mode of response is

flexure. The method has been kept general enough to permit various bound~

ary ,conditions. However, if the support resistance is a function of the

deformation of the slab and the loading, then it will be more convenient

to treat such problems via the method under development on the overload

~esponse of beam-slab bridges (see page 1)0 It should be noted that the

presented method cannot and should not be used if the slab failure is due

to shear punch, without any flexural damage. Furthermore the effect of

shrinkage and temperature have not been included in th~ present scheme.

It is strongly recommended that prior to the usage of the wethod presented

herein, the assumptions and their implications be reconsidered as far as

the problem to be analyzed is concerned.
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4. CORRELATIOI~ WITH TESTS

A comparison of experimental and analytical results will be

presented in this chapter to verify that the developed analytical model
"

accurately represents reinforced concrete slabs 0 Solutions for the seven

test cases listed below will be discussed:

No.1: A simply supported reinforced concrete beam (Ref. 50).

l~o. 2: A rectangular slab s'imp,ly supported on two opposi te sides

and free on the other sides (Ref. 6).

No.3: A corner supported square slab (Ref. 17).

No.4: A simply supported square slab with orthogonal reinforcement

(Ref. 39).

No.5: A simply supported square slab with diagnnal reinforcement

(Ref. 39).

No.6: A rectangular slab fixed on two opposite sides and free on

the other two (Ref. 40).

No.7: A square slab fixed on all edges (Ref. 40)~

These examples will show that the analysis technique b'eing reported can

handle various boundary conditions and loadings.

The material properties of the test 'specimens ,are listed in

Table I and a're defined as follows:
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TABLE I: MATERIAL PROPERTIES

£'-4" £' f
t

E f E
Example

c c c y s

(psi) (psi) (psi) (ksi) (ksi) (ksi)

1 5000.* 500. 3450.* 46.3* 30000.

2 5150. * 502. 4330.
J

50.0* 29000.*

3 5500.* 440. 4150.* 40./50. 30000.

4 5540.* 4600. 391. 4323.
J

54.5* 30000.

S 5120. * 4250. 370. 4226. J
61.0* 30000.

6 4300.* 3600'. 324. 3450. A* 44.3* 30000.

7 5060.* 4200. 375. 3100.* 44.6* ' .30000.

* Given

J Jensen

A = ACI

£'-4" = 4" x 4" X 4" cube strength (28 days)
c

ft , - 6 11 ,x 12" cylinde'r strength (28 days)
c

f
t

direct tensile strength (28 days)

E = Young's modulus for concrete (at the time of testing)
c

...

f yield strength for reinforcing steel
y

E = Young's modulus for reinforcing steel
s
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As noted in Table I, not all material properties needed in the analysis

scheme were reported or obtained by the experimenters, In all examples

either the 6" x 12" cylinder strength, f' or the 4" x 4" x -4" cube
c'

strength, f'-4", was reported. If the concrete properties' f and E were
. etc

not experimentally obtained they were computed from f' or f'-4" in the
c c

following manner:

1. If the cube strength is -readily available then it can be con-

verted to cylinder strength by any acceptable relationship such

as the equation below.
f' (0.83) (£'-4")

c c

2. Young's modulus, E , was obtained using an acceptable formula
c

such as those mentioned in Section 3.1.1.

3. The dir~ct tensile strength, f
t

, can be_obtained from Fig. 25

which indicates a relationship between the .cylinder strength and

the direct tensile strengthe This figure was plotted using

values reported in Refe 33. Examples 1 and 2 used tensile

strengths. that had been previously used by other investigators

and hence Fig. 25 was not used in these two examples.

The following material properties were assumed for all test cases:

Poisson's ratio, V 0.2

Compression unloading modulus = 1000 ksi (Ref. 19)

Tension unloading modulus = 800 ksi (Ref. 19)
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Material properties needed for steel are the yield strength,

Young's modulus and the Ramberg-Osgood parameters discussed in Section 3.2.

In all cases except example 3 the yield strength of the steel was reportedo

For example No. 3 two analyses were carried out, one for a yield strength

of 40 ksi and one for a yield strength of 50 ksi. Young's modulus was

assumed to be 30 x 10 6 ps~ if it was not given.

4.1 Reinfo,rce'd Concrete Beam

An 11 foot simply supported beam with a 6" x 12" rectangular

cross section was subjected to third point ,loading (Ref. 50). The loading

produced a pure moment region in the middle third of the beam~ The half

beam was discretized into four finite elements as shown in Fig. 260 Rein

forcement consisted of six No. 5 deformed round mild steel bars each with

a cross sectional area of 0.31 square inches. Three bars were located at

a centroidal distance of 8.75 11 from the top of the beam and three bars

were located at a centroid'al distance of lO~5". The value of Young's

modulus for concrete used in this example was computed from the precracked

load-deflection curve of the test beam. The result was 3450. ksi. Two

analyses were carried out: one using six concrete layers and two steel

layers as shown in Fig. 27 and one using ten concrete layers and two

steel layers.

The calculated and experimental load deflection histories are

shown in Fig$ 28. It can be seen that there is a 'very good agreement

be~ween the experimental and the calculated results. The calculated curves

indicate convergence to' the experimental ultimate load as the, number of

concrete layers is increasedo
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4.2 Simple-Free Slab

This 54" x 40.5" x 4.14" slab (slab B7, Ref. 6) was loaded 'by a

uniformly distributed moment along two opposite sides as shown in FigQ 29.

The constant moment region was idealized as one finite element. This is

an adequate idealization because the stress field does not, theoretically,

vary with position in the plane of the plate. The distributed moment was '

applied on the short sides which were considered as simply supported. The

long sides of the slab were free to displace. Reinforcement consisted of

1/4 r1 diameter deformed bars placed at ±4S Q to the slab edges. The b.ars

closest to the surface of the slab were spaced at 1.5" with a minimum

cover of 3/8". The bars in the next layer were spaced at 1.375" with a

cover of 5/8""

The slab was divided into ten concrete layers and two stee-l

layers as shown in Fig. 30. T in Fig. 30 indicates the' steel layer
s

thickness and e indicates the reinforcing bar angle measured _from the
x

x-axise The location of the steel layers in the model corresponds to the

centroidal location of the steel reinforcing bars in the test specimen.

The experimental and analytical distributed moment versus curvature his-

tories are presented in Fig. 31. The agreement between the experimental

and analytic results is quite good with respect to overall shape, forma-

tion of collapse mechanism, and ultimate load. Figures 32 and 33 show the

applied moment versus concrete compressive strain and the applied moment

versus average steel strain histories respectively for both the experi-

mental and analytic models. It is noted that there is significant scat-

ter of experimental strain readings about their average values for some
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levels of applied moment. However the general agreement between the

experimental and analytic results is quite satisfactory.

4.3 Corner-Supported Slab

This corner-supported 36" x 36" square slab ~as tested under a

center point load. The slab was discretized into sixteen finite elements

per quarter section as shown in Fig. 34 (Ref. 17). The slab 'thickness

was 1.75" with an effective depth of 1.31". A steel percentage of 0.85%

for both orthogonal directions was used to reinforce the slab. The slab

was divided into six concrete layers and two steel layers through the

depth as shown in Fig. 35.

The analytical and experimental load-deflection histories are

shown in Fig. 36~ The analytical load-deflection histories are plotted

for node points 5 and 100 The experimental load-deflection history cor

responds to point itA" which is indicated in Fig. 34. Point itA" is the

closest point to the center 6f the slab for which experimental results

were presented. As seen in Fig. 36 the analytic results for nodes 5 and

10 form a very narrow band in which the analytic result for point "A",

had it been obtained, would lie.

4.4 Simply Supported Slab with Orthogonal Reinforcement

The 6' x 6' x 1. 75" simply s,upported slab,' in this example was

lo-aded using sixteen evenly spaced hydraulic jacks to simulate a uniformly

distributed load. The tensile reinforcement, consisti,ng of 3/16" diameter
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plain round mild steel bars, was placed according to the following

pattern:

Layer til: spacing = 2.5"

cover = 0.1875"

e ~ - 90°
x

Layer 112: spacing = 2.2"

cover = 0.375"

8 = 0°
x

The quarter slab was discretized into sixteen finite elements

as shown in Fig. 37. The hydraulic jack locations are indicated py the

solid squares. The slab was divided into six concrete layers and two

steel layers through the depth as indicated in Fig. 38.

The analytical and experimental load deflection histories of

the center point (node 5) a~e presented in Fig. 39. During this parti

cular test series the loading plates became inclined to the hydraulic

jacks due to the excessive deflections experienced by the slab. Discrep-.

ancies of as much as 10% were reporte-d between the load indicated by the

jacks (higher value) and the load indicated by the load cells at the sup

ports (lower value), (Ref. 39)~ The lower value of load as indicated by

the, supports was used in plotting Fig. 39. The experimental ultimate

Ie-ad exceede-d th-e' ultimate load calculated by the experimenters using the

yield line theory by 64%. Possible ~easons for this discrepancy). giv_en

by the experimenters, were as follows (Ref. 39):

1. A lower bound yield criterion was used in the experimenter's

calculatiqns.

2. Strain hardening of the reinforcement was not included.

3. The development of tensile membrane action was ignored.
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By observing the steel strains obtained using the analytic method pre

sented in this report it was concluded that strain hardening would effect

only the very last portion of the load deflection history. The increase

in strength beyond the yield line theory prediction is apparently due, in

large measure, to tensile membrane action and non-ideal suppo,rt or loading

condition's. Considering the force exerted by the jacks to be defined as

"p" and taking the vertical component as being 90% of P corresponding to

that recorded by the load cells at the supports (i.e., a difference of

10%) results in a horizontal force equal to 43.6% of P which must be

applied in the plane of the slab. Thus for a maximum disc:repancy ,of 10%

at the ultimate load, the slab is under a total vertical force of 26.1

kips, a horizontal in-plane force of 12.6 kips and the resultant force

applied by the jacks of 29.0 kips. The magnitude and direction of the

individual horizontal in-plane force applied by each individual jack is

unknown. Since these in-plane forces are unknown, three models involving

different in-plane support conditions were analyzed:

1. No in-plane restraint (ideal loading and support).

2. In-plane restraint of the exterior boundary of the slab.

3. Partial in-plane restraint at selected interior node points of

the slab.

Model #1 had no additional 'in-plane restraints other than those

required to maintain the proper boundary conditions at the lines of sym-

metry and to eliminate rigid body motion. This model produced an ultimate
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load which agreed with the ultimate load predicted by the yield line

theory but which underestimated the experimental ul~imate load considerably.

Model #2 resulted in an ultimate load 17% higher than the experi

mental value. Tensile membrane cracks developed on top of the slab during

test loading (Ref. 39). These crack patterns indicated that the tension

~field which caused the crack patterns was located in the center portion

of the slab. Both models #2 and #3 would tend to produce a tension field

within the slah. Since model #2 resulted in an overestimation of the

experimental ultimate load it was decided to restrain the jack locations

which correspond to nodes 7, 9, 17,. and 19 from in-plane movement. This

model, designated as model #3, would lead to a tension field limited to a

more centralized region of the slab as compared to model #2. Thus the

apparent stiffness of model #3 would be lower than model #2. The result

ing load deflection history from model #3 is presented in Fig. 39. The

ultimate load computed is within 1.5% of the experimental ultimate load.

The analytic load at which crushing of the concrete and yielding of the

steel occurs is indicated in the above figure. Figure 39 shows that,

despite the many assumptions and approximat~ons which had to be made in

this comparative example, good agreement between experimental and analytic

results has been attained.

4.5 Simply Supported Slab with Diagonal Reinforcement

A second slab from the same test series as the previous example

and. loaded in the same way was also analyzed to further demonstrate the

reliability of the analysis technique. The slab dimensions· were
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6' x 6' X 2". The rei~forcement consisted of 3/16" diameter plain round

mild steel bars and were placed according to the following pattern:

Layer 1F1: spacing = 3.5" .

'cover = 0 .1875 11

e = + 45 0

x

Layer 112: spacing = 3.0"

cover = 0.375"

e = - 45°
x

The' quarter slab was discretized into 'sixteen finite elements

as shown in Fig. 37. Six concrete layers and two steel layers were used

as shown in Fig. 40. The experimental ultimate load exceeded the yield

line collapse load by 73% in this example. The behavior of this slab was

influenced by the same factors as discussed previously in Section 4.4.

To account for the te~sile membrane action the in-plane displacement com-

ponents of nodes 3 and 13 in the x-direction and the in-pl?ne displacement

component of nodes 15 and 13 in the y-direction were restrained.

The analytic and experimental load deflection histories for the

center point are plotted in Fig. 41. The analytic loads at which yield-

ing of the steel and crushing of the concrete begin are also indicated in

that figure. The agreement between the experimental and analytic curves

is comparable to that attained in the last section. As in the previous

example, the in-plane restraints were used to approximate the second order

phenomena arising from the substantial deformations. Limited observa-

tions reported from the actual ~xperiment make accurate determination of

the magnitude and direction of these effects almost impossible.
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4.6 Fixed-Free Rectangular Slab

Two almost identical 12' x 6' x 4" rectangular slabs were tested

under a concentrated center point load (Ref. 40). The load was applied

through a '9" x 9" steel bearing plate. The long sides of the slab were

fixe'dagainst all deformations while the short sides were left free, i. e. ,

unsupported. Reinforcement consisted of 1/4" and 3/8" diameter mild

steel bars orthogonal to the slab edges. Both top and bottom tension re

inforcement was used since tensile stresses are developed on both the top

and the bottom surface of the slab because of the bounda~y conditions.

Although the distribution of reinforcing varied throughout the plate, it

is believed that an adequate model was developed b'y using a constant thick

ness for' each steel layer. There is, however, no analytic difficulty in

extending this formulation to consider a steel layer whose thickness

varies from element to element.

The experimental slab No. 1 was selected for the analytic studyo

Material properties are listed in Table I. A quarter of the slab was

discretized into sixteen finite elements as shown in Fig. 42. The depth

·was divided into six concrete layers and four steel layers as indicated

in Fig. 43.

The load deflection histories for the two experimental slabs and

the analytic model for slab No. 1 are shown in Fig. 44. Shear punch

failure occurred during the experimental tests and caused premature col

lapse of the slabs before their full flexural capacity could be developed.

Since the analytic 'model considers only the flexural action, the shear
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punch type of failure could not be obtained analytically. Enlarged por

tions of experimental and analytic load deflection histories up to the

occurrence of shear punch failure are shown in Fig. 45. The figure indi

cates that when flexural action is dominant a close agreement between

experimental and computed re~ults is obtained.

The analytic and experimental crack patterns for the top sur

face of the quarter slab are shown in Figs. 46A and 46B respectively. The

experimental crack pattern was not perfectly symmetric b,ut it -had essen

tially the same general form for all quadrants of the slab. The bottom

surface crack patterns are shown in Figs. 47A and 47B. The center portion

of the slab exhibited extensive cracking due to the shear punch failure.

As would be expected, the analytic model did not reflect those cracks due

to the shear punch failure. Good agreement was obtained between the

experimental and analytic crack patterns that were caused primarily-by the

flexural action in the slab. Both exp.erimental and analytic results indi

cated a fan shape crack pattern radiating from the center point of the

slab on the bottom surface and extensive crack~ng on the 'top surface along

the fixed edge.

The f~ct that these experimental slabs failed by shear punch

action does not reduce the value of the flexural analysis presented here

when applied to the bridge overload problem. Work currently underway

(Ref. 18) substantiates former conclusions that punching shear failures

are very unlike~y in bridge decks subjected to vehicular loadings.
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4.7 Fixed-Fixed Square Slab

Two 6' X 6' X 6" square slabs were tested as part of the same

experimental study as the two rectangular slabs mentioned in Section 4.6.

The slabs were fixed on all four sides' and loaded by a concentrated center

.point load applied through a 9" x 9" steel plate. As before, 1/4" and

3/8" diameter mild steel bars were placed ort~ogonal to the slab edges.

The analytic model was developed using the material properties

of the first experimental slab of this pair. These properties are listed

in Table 1. A quarter of the slab was discretized into sixteen finite

elements as shown in Fig. 48. The_depth was divided into six concrete

layers and four steel layers as indicated in Fig. 49.

The experimental load deflection histories for the two almost

identical test slabs along with the analytic results are shown in Fig$ SO,'

As was the case for the rectangular 'slabs of the previous section, a shear

punch failure occurred before the flexural capacity of the slab was

developed. The load deflection history up to the initiation of the

shear punch failure is plotted to a larger scale in Fig. 51. The slight

difference between the analytic and experimental load deflection histories

may be attributed to the lack of total fixity observed by the experi

menters. It was estimated that the fixed edge supports were 90% effectiv,e.

The analytic work assumes full restraint along the edges in questiQn~

Thus the analytic model should produce a load deflection history which is

stiffer than that obtained experimentally.
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The analytic and experimental top surface and Qottom surface

crack patterns are presented in Figs. 52 and 53 respectively. Both the

analytic and experimental bottom surface crack patterns developed into a

fan shape pattern radiating from the center point. The top surface

crack patterns in both the experimental and analytic cases/'developed into

a concentric circle-like pattern around the center of the slab~
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5. SUMMARY AND CONCLUSIONS

The reported work deals with the inelastic flexural aD:alysis of

reinforced concrete slabs. This analysis technique provides a method by

which the load deflection response up to a flexural collapse of a rein

'forced concrete slab can be obtained. The state of flexural stress and

strain are also obtained for various load levels.

This work has been performed as a subset of a larger investiga

tion dealing with the overload response of beam-slab highway bridges.

The method presented in this report will eventually be interfaced with a

completed s'tudy on the inelastic analysis of prestressed concrete beams

(Ref. 19) so as to model a complete bridge superstructure:,(Ref. 23)$

The finite element method was used as the basic analysis tech

nique. The slab is discretized into a mesh of rect~ngular finite elements

connected at the node points. These finite elements are further divided

into a series of layers through the depth. The elements provide a means

to monitor the spread of nonlinear behavior through the plane of the

plate, and the layers monitor nonlinear behavior through the depth of the

plate.. .The, ,following material nonlinearities have been considered:

1. Nonlinear stress-strain behavior of concrete,

2. Cracking and crushing of concrete, and

3. Yielding of reinforcing steel.

These nonlinearities have been incorporated into the analysis scheme via:
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1. A nonlinear biaxial stress-strain curve for concrete,

2. A biaxial failure "criteria for concrete,

3. A Ramberg-Osgood stress-strain curve for reinforcing steel, and,

4. A piecewise linear tangent stiffness incremental iterative solu-

tion technique.

The method has been applied to one beam and six slabs from exper-

imental studies available in the literature~ Experimental and analytical

load deflection curves were compared for all problems, and crack patterns

and strain histories were compared where available. Good agreement was

observed between the analytical predictions and experimental tests for

slabs which failed in flexure. The following conclusions can be drawn:

1. The rectangular finite element with coupling can ,be u~ed in an

inelastic flexural analysis of reinforced concrete slahs.

2. Previous work on biaxial stress-strain relations for concrete

has been extended and applied to reinforced concret~ slabs. The

results have ~ndicated that this ide~lization is adequate for

\

the flexural problems.

3. As was previously observed, a nonlinear Ramberg-Osgood stress-

strain curve can be used for reinforcing s~eel.

4. The steel reinforcing bars placed at different angles and depths

within the slab can be modeled as a system" of uniaxially stressed

"layers_.
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5. The downward portion of the stress-strain curve for concrete can

be used to produce' a globally adequate redistribution of the

effects of cracking and crushing. The effe'ct of the downward

portion of the tensile stress-strain curve has been called ten

sion stiffening by some authors.

6. Gross crack patterns can be obtained through the use of the

presented analysis.

7~ The load deflection history up to a flexural collapse can be

obtained. If the basic response is flexural and the failure

mode is punching shear, then the developed method can accurately

predict the load-deflection history up to the initiation of the

shear punch failure.

8. It can be concluded from the example problems in Chapter 4 that

a variety of complex support conditions and loadings can be

handled in the analysis technique which has been presented.
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6. APPENDIX

ELEMENT STIFFNESS MATRICES

A.I Introduction

This appendix is a supplement to Sections 2.3 through 2.7. The

previous development of stiffness matrices will be expanded upon so that

explicit evaluation can be performed. The result~ng explicit matrices

will be presented as an aid to those who may carry the work further. It

will be assumed ·that the reader has read Chapter 2 in detailG

. A.2 Displacement Functions

The displacement functions chosen in this analysis were pre-

seuted as Eq. 2.11 and Eq. 2.12. Substitution of these equations into

Eq. 2.13 yields:

[P (x',y)] = [1
U , O'

x

o

y

o

xy

o

o

1

o

x

o

y

(A. 1)

1 x y x2 xy y2 :K 3 x2 y xy2 y3 x 3y xy3

[P¢(x,y)] = 0 0 1 0 x 2y 0 x 2 2xy 3y2, x 3 3xy2

a -1 0 -2x -y 0 -3x2 -2xy _y2 0 -3x2y _y3

(A.2)

The W(x,'y)' displacement function will be non-dimensionalized to

facilitate the inversion of the [c¢] matrix introduced in Eq. 2.2lb and
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shown inverted in'Eq. 2.22a. This is carried out by substituting the non-

. dimensiona1ized' coordinates (x,y) into W(x,y) defined in Eq. 2.11. Thus

W(x,y) _. [1 x -y --2xy -3
Y

-a-x y

W(x,y) = [W(x,y)] • [R] • {A} (A.4)

Where: x = ax

y = by

[R] is a 12 x 12 diagonal matrix (i.e. all off diagonal elements are zero)

where the diagonal terms consist of the following values: 1, a, b, a 2 ,

. 2 3 2 b 2 b 3 3b b3ab, b , a , a b, a, ,a, and a • The quantities a and bare ele-

ment half lengths in the x-direction and the y-direction respectively and

are shown in Fig. 3. The three bending displacements are given by Eq. 2.108

The derivatives in Eq. 2.10 may now be written as, for example:

dW aW(x,y)
dY = dY (A.5)

Using Eq. 2.14, it is possible to write

(A.6a)

. -
[f¢(x,y)] is a matrix containing the differential operators indicated in

Eq. 2.13. Substitution of Eq. A.4 yields

(A.6b)

Employing the chain rule of differentiation as indicated in Eq. A.5

results in
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The [Cu] and [Cep] matrices can now be obtained by substituting

the nodal point coordinates (xn,Yn) into Eq. A.I for [C ] and (x ,y ) into
u n n

Eq. A.7 for [cep]' (xn,Yn) consists of the set of I, J, K and L nodal

point coordinates (-a,b), (-a,-b), (a,b), (a,-b). (xn,Yn ) consists of the

set of non-dimensionalized nodal point coordinates (-1,1) , (-1,-1) , (1,1)

and (1,-1). The resulting [Cep] and' [C ] matrices are given as:
u .

1 -1 1 1 -1 1 -1 1 -1 1 -1 -1

a 0 1 0 -1 2 0 1 -2 3 ":'1 -3

0 -1 0 2 -1 0 -3 2 -1 0 -3 -1

1 -1 '-1 1 1 1 -1 -1 -1 -1 1 1

0 0 1 0 -1 -2 0 1 2 3 -1 -3

0 -1 0 2 1 0 -3 -2 -1 0 3 1
[Cep] = (A.8)

1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 1 2 0 1 2 3 1 3

0 -1 0 -2 -1 0 -3 -2 -1 a -3 -1

1 1 -1 ".,1 -1 1 1 -1 1 -1 -1 -1

0 0 1 0 1 -2 0 1 -2 3 1 3

0 -1 0 -2 1 0 -3 2 -1 0 3 1
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1 -a b -ab 0 0 0 0

0 0 0 0 1 -a b -ab

1 -a -b ab 0 0 0 0

0 a 0 a 1 -a -b ab
[c ] (A.9)u

1 b ab 0 a 0 0a

0 0 0 0 1 a b ab

1 a -b -ab a 0 0 0

0 ·0 0 0 1 a -b -ab

Thus the nodal point displacements are:

{cS e } = [~ (x ,y )] [C ] {B} (A. 10)
u u n n u

{cSe} = U\p (x ,y )] = [T] [c</J] [R] {A} (A. II)
<P n n

Where:

[t] 0 0 0

0 [t] 0 0
[T] = (A.12)

0 0 [t] 0

0 0 0 [t]

and [t], is defined in Eq. A.7.

A.3 Strains-

Appropriate terms must be included in Eq. 2.18 to reflect

the fact that the bending' displacement function has been non-dimensionalized.

Applying the chain rule again results in:
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-a~w -a2 w
ax2 as(2

-a2 w [8] -a2 w
ay2 ay2

-2a~w -2a2·w
dXdY aXdY

Where:

ax -ax
0 0ax ax

[8] = a lili 03y ay

0 0 ax li
ax ay

(A.13)

(A.14a)

or:

1
0 0

a 2

IS] 0
1

0
b 2

0 0
1
ab

(A.14b)

Thus Eq. 2.18 is modified to reflect the non-dimensionalized coordinates

in the following manner. Substitution of Eqs. 2.12 and Eq. A.4 into

Eq. 2.18 leads to:

{c: }
z

[Q) {B} + Z [8] [Qq) [R] {A}
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in which:

o 1

o

o

o

o

1

y

o

x

o

o

o

o

o

1

o

1

o

o

x

y

(A.16)

0 0 0 -2 0 0 -6x -2y 0 0 -6xy 0

[Q<j) = 0 0 0 0 0 -2 0 0 -2x -6y 0 -6xy
0 0 0 0 -2 0 0 -4x -4y 0 6-2 6-2

- X - Y

(A.17)

The constants {A} and {B} can be found as indicated in Eqs. 2.22

if care is taken to include the new matrices which result from non-

dimensionalizing the bending displacement function •

. Thus:
(A.I8)

(A.19)

Inversion of [e
u

] and [C¢] results in the following matrices.
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2 -1 -1 2 1 -1 .2 -1 1 2 1 1

-3 1 1 -3 -1 1 .3 ~"*1 1 3 1 1

3 -1 -1 ·.. 3 -1 1 3 ~1 1 -3 '-1 -1

0 0 1 0 (' 1 0 0 -1 0 0 -1I.)

-4 1 1 L~ 1 ...1 L~ -1 1 -4' ,-1 -1

[ ]-1 1
0 1 a 0 -1 0 0 1 0 0 -1 0

C :-;::-
cp' 8 1 0 -1 1 0 ·-1 -1 0 -1 -1 0 -1

0 0 1 0 0 ·..-,1 0 0 -1 0 0 1

0 -1 a 0 1 0 0 1 0 0 -1 0

-1 1 a 1 1 0 --I 1 0 1 1 0

1 0 -1 -1 0 1 -1 0 -1 1 0 1

1 -1 a ~l -1 0 -1 1 0 1 1 a

(A. 20)

r-
1 a 1 0 1 0 1 0

1
0 1

0 1
0

1
0a a a a

1
0 1

0 1 a 1 ab - 1- b -b

1
0 1

0 L 0
1 aab ab ab ab

[c
-1 1] = -

u 4 0 1 0 1 0 1 0 1

0
1

0
1

0 1 a 1- - - -a a a a

0
1

·0
1

0 1 a 1
b b b b

0 1
0

1 0, 1 0 1
ah ab ab - ab

(A.21)
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Substitution of Eqs. A.IB and 'A.19 into Eq. A.IS defines the

strains as a functi'on of the nodal point displacements:

After, performing the multiplication of the [R] matrices,

Comparison of Eq. A.23 with Eqs. 2.24 shows that the [B) and [B <1>]

matrices can be defined as:

[B ] = [Q ] [C ]-1
U U U

A.4 Element Stiffness Matrices

(A.23)

(A. 24a)

(A.24b)

Evaluation of the inplane, coupling and bending stiffness

matrices given in Eqs. 2.33 can now proceed. Substitution of Eqs. A.24a

and A.24b into Eqs. 2.33 gives:

(A.25)

[ku<p] (A.26)

(A. 27)
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[Duu] , [Du~] and [D~~] are the rigidities introduced in Section 2.7 and

given in Eq. 2.32. The evaluation of the integrals in Eqs. A.25 to A.27

can be simplified by considering only one element of the rigidity matrix

to be nonzero at a time. This reduces one very laborious evaluation of

each of the three stiffness matrices to six much simpler problems. For

each matrix the results are then summed up in the following form:

[c ]-1 T [D [K] + D [K] + D [K] + D [K]
U 11 1 12 2 13 3 22 4

+ D [K] + D [K] ] [C ]-1
i 3 5 33 6 UU U

(A.28)

+ D [K] + D [K] ]
23 5 33 6 u¢

(A.29)

f
L

D [K] + D
11 1 12

[K ] + D
2 13

[K ]
3

(A. 3D)

The submatrices pertaining to the inplane stiffness matrix are

evaluated by employing Eq. A.25 as follows:
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D 0 a
11

( D ,[K]) = J! [Q] T 0
11 1 Ull Uyx

o

o

o

o

o
Ull

[Q ] dxdy
U

(A.31a)

0 0 D
1 3

. (D [K· ] ) = ff [Q ]T 0 0 0 [Q ] dxdy (A.31c)
1 3 3 Ull U Uyx

D 0 0'
3 1 ·Ull

(D
22

[K
4

] )uu= ff
yx

( D [K] )UU = ff
23 5 yx

o

o

o

o

o

o

D
22

a

o

o

o

a

o

o

D
23

Ull

dxdy

dxdy

(A.31d)

(A.31e)

o 'D 0
32 Ull

a 0 0

(D 33
[K ] ) = ff [Q ]T 0 0 0 [QU] dxdy (A.31£)

6 Ull U
yx

0 0 D
3 3 Ull
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The (D .. ) terms in the above equations correspond to elements of the
~J till

implane rigidities given in Eq. 2.32a. Explicit expressions for Eq. A.31

can be developed by utilizing Eq. A.16. This has been done to generate

the following formulae:
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a

0 0 symmetric

0 1 0

a 0 0 0
[K] = 4ab (A.32c)

3 uU 0 0 0 0, 0

0 1 0 a 0 O'

0 0 0 0 0 0 0

a 0 0
b2

0 0 a a
3

:

0

0 0 symmetric

0 0 0

0 0 0 a
[K ] , = 4ab (A.32d)

4 Ull a 0 0 0 0

0 0 ~O 0 0 0

a 0 0 0 0 0 1

0 0 a 0 0 0 0
a2

3
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In a similar manner the submatrices for the coupling and bending

element 'stiffness matrices can be developed from Eqs. A.l6 and A.I7 and

Eqs. A.26 and A.27. Care must be exercised to insure that the proper

rigidities given in Eqs. 2.32b and 2.32c- are employed. The submatrices for

the coupling and bending stifjness matrices are presented in Eqs. A.33 and

A.34 respectively.
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0 0 0 0 0 0 0 0 0,. 0 0 a

0 0 0
-8b

0 0 a 0 0 0 '0 0-a

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -8b 2
0 0 0 0

[K] = -ra-
(A. 33a)

1 u¢
0 0 0 0 0 0 0 0 0 0 0 0

a 0 0 0 0 a 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 a a 0 0 a 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

a 0 0 0 0 -8a 0 0 0 0 0 0
b

0 0 0 0 0 0 a 0 a 0 0 0

0 0 0 0 0 0 0' 0 a -Ba 0 0
[K] = (A.33b)
, 2, u¢

0 0 0 a. 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 a

0 0 0
-8b

0 0 0 0 0 0 0 a
a

0 0 a 0 o ' 0 -8b 0 a 0 0 0
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0 0 0 0 0 0 a 0 0 0 a 0

0 0 0 0 -8 0 0 0 0 0 ~'8 -8

0 0 0
-8b

0 0 0 0 0 0 0 0
a

0 0 0 0 0 0 -8b 0 -16b 0 0 0

[K] =
3 (A.33c)

3 u¢
a a 0 0 0 0 0 0 0 0 0 0

0 0 0
-8b 0 0 a 0 0 0 0 0

a

0 0 0 0 0 0 0 0 0' 0 0 0

0 0 0 0 0 0 0
_8b 2

0 0 0 a
3a
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0 0 0 0 0 0 0 0 0 0 0 0

0 '0 0 0 '0 0 0 0 0 0 0 0

0 0 0 a -8 0 0 0 0 0 -8 -8

,0 0 a 0 a 0 0
-16a

0 0 0 0
3

[K] = (A. 33£)
.6 U~ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -8 0 0 0 0 0 -8 -8

a 0 0 0 a 0 O· 0 0 0 0 0

0 0 0 0 0 0 a 0
~16b

0 0 0
3
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0

0 0

0 0 0

0 0 0 15 Symmetric

0 0 0 0 0

[K] = 16b
0 0 0 0 0 0

(A.:34a)
1 ¢¢ 15a 3 ,0 0 0 0 0 0 45

0 a 0 a 0 0 0 5

0 a 0 0 0 0 0 0 0-

0 0 0 0 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0 0 15

0 0 0 0 0 0 0 a 0 0 0 0

0

0 0

0 0 0

0 0 0 0 Symmetric

0 0 0 0 0

16
0 0 0 15 0 0

[K2 ] <P<P = 15ab
(A.34b) ,

0 0 0 0 0 0 0

0 '0 0 0 0 0 0 0

a 0 a a 0 0 15 0 ,0

a- D 0 0 0 0 0 15 0 0

0 a a 0 0 0 0 0 0 0 0

0 0 0 0 a 0 a 0 0 0 15 0
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0

a 0

0 0 0

-0 O' 0 0 Symmetric

0 0 0 15 0

[K] = ---!L
0 0 0 0 0 0

(A.34c)
3 ¢¢ 15a2 0 0 b 0 a a 0

0 0 0 0 0 0 30 0

0 0 0 0 a 0 0 10 0

0 0 0 0 0 0 0 0 a a

0 0 a 15 0 0 0 0 0 0 0

0 0 0 15 a 0 0 0 0 0 0 0

0

0 0

0 0 0

0 0 0 o· Symmetric

0 0 0 0 0

[K] = 16~
0 a 0 0 0 15

(A. 34d)
4 <PcP - 1Sb3 0 0 0 0 0 D. 0

0 0 0 0 0 0 0 0

0 0 0 0 0 a 0 0 5

0 a 0 0 0 0 0 0 0 45

0 0 0 0 0 a 0 0 0 0 0

0 -0 0 0 0 0 0 0 0 0 0 15
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0

a 0

0 0 0

0 0 0 0 Symmetric

0 0 0 0 0

[K] =~
0 0 0 0 15 0

(A. '34e)
5 epep 15b2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 10 0

0 a 0 0 0 0 0 0 -·30 0

0 0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 15 0 0 0 0 0 0

0

0 0

0 0 0

0 0 0 0 Symmetric

0 0 0 a 15

, 16 0 0 0 b 0 0

[K~ ]</></> = 15ab
(A. 34£)

0 0 0 0 0 0 0

0 0 0 0 0 0 0 20

0 0 0 0 0 0 a 0 20

0 0 0 0 0 0 0 0 a 0

0 0 0 0 15 0 0 0 0 0 27

0 0 0 0 15 0 0 0 0 a 15 27
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-1
Addition of the submatrices and multiplication by the [T] ,

-1 -1
[C~] and [Cu] matrices shown in Eqs. A.28, A.29 and A.30 are per-

formed in the computer program. The results are the required stiffness

matrices.
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Fig. 4 Biaxial Stress Fields:
Continuum Approach (A) and Layer Idealization (B)
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Steel Reinforcing Bar System:
Actual (A) and Idealized (B)

Fig. 5
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Fig. 8 Biaxial Stress Plane Regions Indicating where the Linear
and Nonlinear Concrete Stress-Strain Curves are Applicable
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