Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1974

Inelastic analysis of reinforced concrete slabs, Final

Version, May 1974.
W.S. Peterson

C.N. Kostem

J. M. Kulicki

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

Recommended Citation
Peterson, W. S.; Kostem, C. N.; and Kulicki, J. M., "Inelastic analysis of reinforced concrete slabs, Final Version, May 1974." (1974).

Fritz Laboratory Reports. Paper 444.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports /444

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact

preserve@lehigh.edu.


http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/444?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

OF
" RESEARCH

DR. CELAL N. KOSTEM ’

thEg ng13
. Lehigh rsity
Bethlehem, PA 18015 USA

ERSITY LIBRARIES

\l\\|\\\I\\\\\l\l\\\\\l\\\\I\\\\\|\\I\\\\\I\\\\\l\\\\\\l\\\l\l\\

THE INELASTIC ANALYSIS
OF REINFORCED
CONCRETE SLABS

RITZ ENGINEERING

‘LABORATORY LIBRARY

by
William S. Peterson

Celal N. Kostem
~ John M. Kulicki

Fritz Engineering Laboratary Report No. 378B.3



COMMONWEALTH OF PENNSYLVANIA
Department of Transportation

Bureau of Materials, Testing and Research

Leo D. Sandvig - Director
Wade L. Gramling - Research Engineer
Kenneth L. Heilman - Research Coordinator

Project 71-12: Overloading Behavior of Beam~Slab
Type Highway Bridges

THE INELASTIC ANALYSIS OF REINFORCED

CONCRETE SLABS

by

William S. Peterson
Celal N. Kostem
John M. Kulicki

This work was sponsored by the Pennsylvania Department of Transportation
and the U. S. Department of Transportation, Federal Highway Administration.

The contents of this report reflect the view of the authors
who are responsible for the facts and the accuracy of the data
presented herein. The contents do not necessarily reflect the
official views or policies of the Pennsylvania Department of
Transportation or the Federal Highway Administration. This
report does not constitute a standard, specification, or
regulation.

LEHIGH UNIVERSITY
Office of Research

Bethlehem, Pennsylvania
May, 1974

Fritz Engineering Laboratory Report No. 378B.3




TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

1.1 Problem Statement

1.2 The Scope of the Reported Investigation
1.3 Requirements Placed on Analytic Model
1.4 Previous Studies

1.5 Analytical Model

THEORETICAL ANALYSIS
2.1 Introduction
2.2 Assumptions
2.2.1 Geometry Restrictions
2.2.2 Assumptions Regarding Strain Distribution
2.2.3 Small Deformations
2.2.4 Small Strains

2.2.5 Layering

© 2.3 Review of the Finite Element Method

2.4 Element Stiffness Formulation

2.4.1 Plate Bending and Inplane Displacement'Functions

2.5 Strain-Displacement Relations
2.6 Layering

2.7 Element Stiffness Matrix

10

10

11

11

11

12

12

13

13

17

17

21

25

27




2.8 Assembly of the Global Stiffness Matrrix

2.9 Incremental Iterative Solution Technique

MATERIAL BEHAVIOR

3.1 Concrete Stress-Strain Relationships
3.1.1 Nonlinear Stress-Strain Equétion for Concrete
3.1.2 Linear Streés—Strain Equation for Concrete
3.1.3 Biaxial Failure Envelope — Definition of Gp
3.1.4 Peak Strain Envelope - Definition of ep
3.1.5 Peak Slope - Definition of Ep
3.1.6 Stress-Strain Curves for Concrete
3.1.7 Constitutive Relationships for Concrete
3.1.8 Concrete Failure Modes
3.1.9 Cracked or Crushed Concrete

3.1.10 Unloading of Cracked and Crushed Concrete Layers

3.2 Stress-Strain Relationship for Steel
3.3 Additional Considerations

3.4 Limitations

CORRELATION WITH TESTS

4.1 Reinforced Concrete Beam
4.2 Simple~Free Slab

4.3‘ Corner-Supported Slab

4.4 Simply Supported Slab with Orthogonal Reinforcement

30

32

36
37
38
42
b4
48
51
53
54
59
61

62

64
65

68

69
72
73
74

74




4.5 Simply Supported Slab with Diagonal Reinfor cement 77
4.6 TFixed-Free Rectangular Slab 79
4.7 Fixed-Fixed Square Slab 81
SUMMARY AND CONCLUSIONS 83
APPENDIX 86
ACKNOWLEDGMENTS 106
. FIGURES ' 107

REFERENCES 159



ABSTRACT

This report describes an approach for the flexural analysis of
reinforced concrete slabs using a piecewise linear tangent stiffness
finite element incremental method applied to a layered plate element.
Each layer of each element is assumed to be in‘plaﬁe state of stress.
Each layer has dits own biaxial stress—strain characteristics type stress-
strain curve and méy have inelastic, cracking, crushing and yielding non-
linearities. Comparisons with laboratory tests of six reinforced con-
crete slabs and one beam- are presented. The agreement between analytic
and laboratory load deflection curves is quite good. _Comparisons with
experimentally observed crack patterns, steel strains, and concrete

strains are also presented if these data were available.



1. INTRODUCTION

1.1 Problem Statement

‘The research described in this report has been conducted as a
part of the research project entitled "The Overloading Behavior of Beam-
-Slab Type Highway Bridges'" (Pennsylvania Department of Transportation
Project 71-12). The goal of this project is the development of an analy-
sis technique to predict the response of a beam-slab type highway bridge
superstfucture subjected to the passage of an overload vehicle. An over-
load vehicle is defined as one which exceeds in some way the design
vehicle for which the superstructure was proportioned. Beam-slab super-
structures are restricted to those consisting of a reinforced concrete

deck and prestressed concrete I-beams.
The parent project is divided into three phases:

1. The development of an inelastic analysis technique for pre-

stressed concrete beams (Refs. 19, 20, 23 and 45)

2. The development of an inelastic analysis technique for reinforced

concrete slabs

3. The combining of the beam and élab,analysis techniques developed

in parts 1 and 2 to model the beam—-slab superstructure.

This report covers the work conducted in phase 2 above, i.e. the develop-
ment of a methodology to analytically describe the inelastic response of

reinforced concrete slabs.




The slabs under consideration are assumed:
To lie in one plane, i.e. be planar
Have arbitrary but rectanlinear boundaries

Have tension and compression reinforcement placed at arbitrary

angles and depths within the slab

To be subjected to transverse concentrated and patch loads, i.e.
perpendicular to the plane of the slab, and concentrated in-plane

'

loads, i.e. that will produce axial forces in the slab and,moments

To fail by flexure

1.2 The Scope of the Reported Investigation

The following items have been studied within the framework of

the investigation and are presented in this report:

1.

An analytical modeling of reinforced concrete slabs using the

finite element method

A biaxial failure envelope together with appropriate stress—
strain laws used to develope constitutive relations, i.e.

stress—~strain relations, for concrete

An analysis technique using a piecewise linear tangent stiffness,

incremental iterative approach

A comparison for verification with the results of seven labora—

tory tests reported in the literature



1.3 Requirements Placed on Analytic Model

The model used in this analysis must adequately reflect the be-
havior of eccentrically stiffened plate systems (Refs. 44,45). This re—
quires the inclusion of three types of structural behavior: out-of-plane
behavior, in-plane behavior and coupling behavior. The out-of-plane re-
sponse of either isolated reinforced concrete slabs or bridge deck slabs
is its flexural behavior produced by loads perpendicular to the plate or by
edge moments. The in-plane behavior is a membrane stress state. This may
be produced by loads or displacements acting parallel to the plane of the
plate, or in the case of bridge decks, by the action of the slab as the
compression flange of composite beams. The coupling response is an inter-
action between the in-plane and out-of-plane responses, that is the change

in flexural response due to the presence of membrane forces and vice versa.

Coupling will be demonstrated through an example based on the
response of a beam. The beam will have three displacements: an axial
extension, U, a bending displacement, W, and a bending rotation which is
a derivative of W. The strain at any point in the beam can be computed

from Eq. 1.1 (Ref. 19), if the cross—-sectional axes are principal axes:

du a%w

E = e - 7 (l'l)
dx?

dx

The uniaxial stress associated with combined bending and axial load can be

given by Eq. 1.2 2 ..
G=E€=E{/%——zﬂ- (1.2)
: \ dx®

The normal force and bending moment are found by appropriate integrations
over the axes noting that cross-sectional axis, z, is not a function of

the position along the length of the beam described by coordinate x.
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) ' 2
N=f0dA=fE%dA—sz-d—wdA (1.3)
2
dX
2
M=fGZdA=fEZ%(J-dA—fEZZMdA (1.4)

dx?

The only way that coupling terms which involve "EZ" can drop out
is if the axis defined by Z = 0 is at the centroid of the cross—sectioﬁal
stiffness. In the case of an elastic beam under bending about a principal
axis it is always possible to find a point such that J EZdA = 0. Likewise
for a beam undergoing symmetric nonlinear flexural response about a prin-
cipal axis this‘is also possible. But for a beam which has an unsymmetric
distribution of area or material properties or has different properties
in tension and compression, or is under the nonlinear action of a moment
and axial force there is no such point. In general, the strain at any
point will involve a combination of bending and axial contribution and is
said to be coupled. Thus, a nonlinear reinforced concrete beam which
_exhibits nonlinear material behavior will always be coupled. The same
phenomenon exists in the nonlinear response of certain plate systems,
such as reinforced concrete plates and eccentrically stiffened plates, but

is much more complicated. This will be discussed further in Chapter 3.

The analytic model must be capable of producing the full range

- response of an isolated slab and be applicable to a similar analysis of
bridge superstructures. A full range response covers not only the initial
elastic response and an estimated ultimate load but also the nonlinear
response in between. A nonlinear type of analysis will allow an assess—

ment of the damage to the slab corresponding to some load level as would

b=



be required in an overload analysis (Refs. 23 and 44). An elastic analy-
sis or an ultimate strength analysis will not allow for the assessment of

damage for a load between the last elastic load and the ultimate load.

Nonlinear material propertieé will be reduired in order to obtain
the full range response. In the case of slabs this will require a non-
linear stress-strain relation and failure criteria which are both based
on multiaxial stress states. The analysis technique being reported will
include the cracking and crushing of concrete and the yielding of rein-—

forcing bars.

The analysis technique should be capable of handling a wide
range of load configurations. This is especially important when consider-
ing application to the overload response of beam slab bridges. Thelsize,
shape and load distribution of overload vehicles are not standardized and

can be expected to vafy from case study to case study.

It is not expected that the reinforced concrete deck slabs on
beam~slab bridges will buckle out of their plane. Therefore, the analysis

technique being reported will not conmsider buckling phenomenon.

1.4 Previous Studies

Numerous investigations have been conducted on linear elastic
analysis and ultimate strength analysis of plates. The methods utilized
in these investigations can permit only the study of the load deflection
history from the unloaded:. state up to the occurrence of the first inelastic

response (iinear elastic analysis), or definition of the load corresponding



to the peak of the load deflection curve (ultimate strength analysis).
The primary interest of the reported study lies in the determination of
full load-deflection history from the unloaded state ﬁp to the ultimate
load level (Refs. 4,42,43,44). Therefore, fhe literature survey will be
restricted to the techniques and investigations which can be or have been

applied to the determination of the full load-deflection history.

The analytical modeling of slabs and the methods of analysis
" employed by previous investigators can be grouped under three distinct
categories: (1) Finite Difference Technique, (2) Lumped Parameter
Technique, and (3) Finite Element Method. The inclusion of the material
nonlinearities into anal&sis schemes has proceeded along two main paths:
(1) the use of an assumed moment-curvature relationship for the given
.cross-section, and (2) the use of an assumed stress-—strain character—v

istic for the material and the adoption of a failure surface (Ref. 45).

The methods of modeling and analysis will be discussed with
respect to the requirements of reinforced concrete slab analysis and more
specifically their applicability to the bridge overloaa problem in
Section 1.5. In general it can be stated that some of the above techniques

have pronouned drawbacks in their applicability to the bridge overload

problem, regardless of their simplicity in the analysis of certain simple
" configurations, e.g. moment-curvature approach as used for one way slabs

made of mild steel.

The finite difference technique has been applied to the inelastic

analysis of plates by relatively few researchers (Refs. 5 and 47). This



has been due to the complexities'in establishing either the appropriate
nonlinear differential equation, or the assignment of proper stiffness
properties in a piecewise linear incremental solution. Furthermore, the
manual algebraic operations required and the coding of these operations
for computer based solutions have always been discouraging. This approach
is furthef complicated in bridge overload problems by the necessity to
solve coupled in-plane and out~of-p1aﬁe differential equations which is
‘diséussed in Section 1.3. This aspect alone necessitates the adoption of

a solution technique other than finite differences.

Some of thé complexities involved in the finite difference
technique have been eliminated through the use of the lumped parameter
technique. Lopez and Ang (Ref. 29) applied this method to steel plates.
However, its applicability to reinforced concrete slabs, and especially
to bridge overload anal&sis, presents a major problem, whose accuracy,

generality and ease of usage have not been demonstrated as yet.

The finite element method has been extensively used in the
analysis of steel and reinforced concrete plates (e.g. Refs. 1, 9, 10, 41,
44 and 48). Most of the early investigations were confined to plates
made of elastic-perfectly-plastic materials, i.e. mild steel (Ref. 44).
A neceséary feature of the application of the finite element method‘as in
previously described methods, is to provide a way of introducing material
nonlinearities into the generation of the stiffness matrix via moment
curvature or stress—-strain relationships. This aspect will be treated in
deﬁail in Chapter 2. The use of moment curvature relations for the rein-

forced concrete slabs and the bridge deck requires the use of



moment-thrust-curvature relations due to the presence of axial forces in
the bridge superstructure (Ref. 45). Furthermore, the biaxial, i.e.
longitudinal and transversal bending of the bridge slab requires the
adoption of two dimensional moment-curvature relationships. Presently
‘relationships capable of defining two dimensional moment-thrust-curvature

relationships are not developed enough for general usage.

The basic stress—-strain relationships for concrete of various
strengthé and for steel reinforcing bars have been well defined and will
be discussed further in Chapter 3 (Refs. 7, 19, 21, 24 and 27). There-
fore the formulations that make use of these fundamental relationships are
more reliable and applicable to a wide vériety of slab bending problems,
as dpposed to the use of moment-curvature relationships. The use of
material stress—strain relationships requires the adoption of a modeling
scheme which can account for the penetration of the nonlinearity through
the depth of the glab. This has been accomplished by the use of layering
of the slab (Fig. 2). Excellent agreement has been noted in the previous
investigations that utilized this approach (Refs. 2, 11, 12, 19, 20, 21,

22, 23, 26, 43, 45 and 46).

An extensive survey of the literature has indicated that so far
no analytical study has been undertaken to predict the full inelasti;
response of béaﬁ slab bridges (Refs. 45 and 47). Similarly most of the
studies that have been undertaken fo predict the inelastic response of
slabs did not use'a model which was general enough to permit the extension
or'modification_of the anélysis scheme to bridges, e.g. exclusion of the

in~plane behavior of the slab. Furthermore, the nature of the problem

_a-



requires solution of a large system of simultaneous equations many times.
This requires the use of large scale digital computers. Consequently most
of the investigations have been undertaken within the last decade (Refs. 44,

45 and 47).

1.5 Analytical Model

The analysis technique reported herein hasvbeen designed such
that it will permit the interfacing of this work with the completed study
on the inelastic response of prestressed concrete beams (Fig. 1; Refs. 19
and 23). Thus, the combination of these studies will be able to predict
the overload response of beam—slab highway bridges. It has been observed
that even though the dominant slab nonlinearity is due to flexural response,
the in-plane, i.e. membrane, forces and déformation of the slab must be

- . considered because of their effect on the total response (Refs. 12 and 26).
It has also been observed that the coupling phenomenon is extremely impor-

- tant for the correct prediction ofvthe inelastic response of the slab

(Refs. 11, 12, 26 and 46). Therefore the analytical derivations have

been carried out including coupling.

The slab is subdivided into finite elements which are intercon-

nected at node points. The finite elements are further subdivided into
layers through their thickness. Each layer is assumed to be in the state
of plane stress. It is also assumed that the inelastic response and the
progressive collapse of the slab is due to the flexural behavior and its
aésociated in-plane and coupling behavior. Punching shear of the slab due

to an overload vehicle has not been considered (Ref. 18.)
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2. THEORETICAL. ANALYSIS

2.1 1Introduction

The slab analysis procedure being reported is based on the
finite element method. A complete treatment of the finite element method
can be found in numerous books on the subject (Refs. 13, 41 and 48).
Therefore only the major concepts and necessary steps related to this

research will be presented in Section 2.3.

The characteristics of the analytic model, i.e., the mathemati-
cal representation of the real structure, must be choosen to adequately
describe the physical model. In the current context it is desired to de-
scribe the response of prestressed and reinforced concrete I-beam highway
bridge superstructures subjected to an overload. Therefore the analytic

model should satisfy the following requirements:

1. The flexural response, assumed to be the primary load carrying
action in the slab as well as that of the complete superstructure,

must be obtained.
2. The model must permit consideration of multi-axial plate bending.

3. The slab model must be applicable to the analysis of a highway

bridge superstructure modeled as an eccentrically stiffened plate.

4. Eccentrically stiffened slabs can develop inplane stresses of the
- same magnitude or even greater than the bending stresses. There~

fore the inplane stiffness of the slab must be consildered.



5. Membrane boundary conditions correspon&ing to these inplane
forces (see Chapter 1) are important in reinforced concrete slab

analysis and must be considered (Refs. 11, 12, 26 and 46).

6. The slab model must allow for the inclusion of both concrete and

steel.

7. Material nonlinearities due to cracking and crushing of the con-—-

crete and yielding of the steel must be considered.

8. In-plane shear deformation and effects have been considered.

2.2 Assumptions

Several assumptions are employed in the development of the ana-
lytical model. These assumptions and associated consequences will be dis-

cussed in the following paragraphs.

2,2.1 Geometry Restrictions

The overall investigation is restricted to right angle bridge
superstructures. Consequently this analysis technique for reinforced con-
crete slabs has been developed for rectangular slabs. The same principles
could be extended to non-rectangular slabs. The finite element chosen as
thevbasic modeling unit is the rectangular plate bending element shown in

'bFig. 3.

2.2.2 Assumptions Regarding Strain Distribution

Kirchoff's assumption that plane sections normal to the middle

surface of the plate before deformation remain plane and normal after

~-11-



deformation is employed. Application of Kircﬁoff's assumption is a usual
practice in bending solutions for thin plates. A thin plate is defined as
a plate whose length and width dimensions are considerably greater than
its ;hickness. It is also assumed that the slab does not change thickness
. due to the aéplied forces. Thus the strains and stresses normal to the

plane of the slab are neglected. Application of Kirchoff's assumption and

the elimination of the normal strain offer the following simplifications:

1. The reduction of a three dimensional continuum problem requiring
six stress components to define the state of stress at a point to
a two dimensional plate bending problem involving only three

stress components (Refs. 41,48).

2. The strains at any depth in the plate can be computed from the

displacements of the middle plane of the plate.

2.2.3 Small Deformations

The in-plane and bending displacements are assumed to be small
in comparison to the dimension of the slab. This implies that the rectan-
gular finite elements are still rectangular after deformation. Furthermore

.the geometry of the element need not be updated as the analysis proceeds.

2.2.4 Small Strains

The reinforced concrete slabs and highway bridge superstructures
are assumed to be subjected to small strains. Thus the usual linear strain-
displacement relations can be used as opposed to the more inyolyed nonlin-

ear equations necessary for the large strain formulations (Refs. 41,48).

-12-



2.2.5 Layering .

The inclusion of material nonlinearities will cause the stiff-
ness of the finite element to vary with depth. These material nonlinear-
itiesAincluding cracking and crushing of the concrete and yielding of the
steel are inherent in the stress-strain relations. Thé existence of both
steel and concrete in the same finite element also causes a variation of
stiffness through the depth of the element. To facilitate the computation
of the.element stiffness, the finite element will be divided into a series
of layers through the depth (Figs. 2 and 3). The stiffness of the element
will then be obtained by a summafion of the stiffness of these layers.

The stresses within a particular layer will be assumed to be constant
within the layer for the purpose of computing the stiffness of each layer
(Fig. 4B). Thus the stress field througﬂ the depth of the slab will vary
in a step—like.manner. Increasing the number of layers will impfove‘the

representation of the stress field.

2.3 Review of the Finite Element Method

The finite element method requires that the continuum be divided
into an assemblage of subunits called finite elements. The elements are
considered to be interconnected at discrete points called node points.

. Forces, displacementg and coordinates for a typical note is shown in

Fig. 3. 1In this context the continuum is a reinforced concrete slab. The
stiffness properties of the elements can be found using the principles of
the finite element method. The result is a set of equilibrium equations

relating node point forces to node point displacements:

-13-



{F®} = k%] (&%} _ (2;1)

Where: {r®} = a vector of applied elemental nodal forces
[ke] = the element stiffness matrix
{6%} = a vector of nodal displacements

Assembly of the elements to form the entire structural system results in
a set of nodal equilibrium equations usually referred to as the displace-

ment method of analysis. These equations are shown in Eq. 2.2:

{F} = [x] {6} | (2.2)
Where: {F} = a vector of the forces applied to the structure at the
nodes
[K] = the assembled structural stiffness matrix
{8} = a vector of node point displacements

The unknown node point displacements, {8}, are obtained by solving this

set of simultaneous equations.

It can be shown that the element stiffness matrix can be evaluated

using Eqs. 2.3a or b, (Refs. 13, 41 and 48)

T

k%1 = (17" s, (@l (] [Q] dvol [c]7 (2.3a)

(%] = /, B]1T [D] [B] dvol (2.3b)

This presentation will be restricted to an explanation of the matrices in

Eq. 2.3 rather than their derivation.

14—



The stress—strain relationships for a layer can be expressed by

an elasticity matrix, [D], as shown in Eq. 2.4:
{c} = [D] {e} (2.4)

The displacgments within an element are assumed to be adequately
‘described by a polynomial functioq of position within the element and
initially unknown constants. This combination of functions and constants
will be called a displacement function. Thus it is possible to define

the displacements at any point within the element as:
{A(x, )} = [P(x,y)] {o} (2.5)
in which: {A(x,y)} = displacements at any position within the element

defined by the coordinates (x,y)

[P(x,y)] = particular functions of x and y, or their derivatives,

used to describe: the displacement fields
{a} = constant coefficients of theldi3placement functions

The individual {0} are evaluated using the boundary conditions given by

the displacements at the node points of the element:
{6%} = [c] {a} (2.6)

[C] is populated by substituting the coordinates of each node point,

(Xn’yn)’ into Eq. 2.5 where:
{6°}

G,y )}
(2.7)

[c] = [P(x ,y )]

~15~



Solving Eq. 2.6 for the constant coefficients lead to:
=1
{a} = [c]7" (&%} (2.8)

The differential operators necessary to define the strains in
Eq. 2.4 in terms of the displacement fields in Eq. 2.5 will be called [I'].

Thus:
{e} = [T'] {A(x,y)} (2.9a)

Substitution of Eq, 2.5 results in:
{e} = [I'] [P(x,y)] {a} = [Q] {a} (2.9b)

[Q] is a connection matrix relating {e} to {a} within the element. Sub-

stitution of Eq. 2.8 yields:
{e} = [l [c1™ 6%} = [B] {6%) . (2.9¢)
Matrix [B] relates the strains witﬁin the elément to the nodal displacements.
A summary of the necessary steps in the finite element method

to formulate the elemental stiffness matrix is as follows:

1. Choose displacement functions and formulate the displacement

field (Eq. 2.5).

2. Express the node point displacements in terms of the constant
coefficients by substituting the known nodal point locations

into step 1 (Eq. 2.6).
3. Solve for {a} (Eq. 2.8).

4. Substitute {a} into step 1 (Eq. 2.5).

-16=



5. Identify the strain-displacement relations and perform the
‘required differentiation of the displacement function (Eq. 2.9a,

2.9b or 2.9c).
6. Find the stress-strain relationship, [D] (Eq. 2.4).

7. Substitute the necessary matrices into Eq. 2.3 and perform the
indicated integration. The result will be the element stiffness

matrix.

2.4 Element Stiffness Formulation

The necessary steps in the formulation of the finite element
method were discussed, abstractly, in Section 2.3. These steps will be
discussed in detail with respect to the nonlinear analysis of reinforced

concrete slabs in the following sections.

2.4.1 Plate Bending and Inplane Displacement Functions

The purpose of this section is to present the displacement func—

tions and describe the displacement field, {A(x,y)}.

Displacement functions are chosen so that the deformation of
the‘finite element can be adequately described. These displacement func-
tions are polynomial expressions in terms of the (x,y) inplane coordinate
"locations and unknown constants. As presented in Chapter 1 both the in-

plane and bending displacements must be considered.

The bending deformation of a plate can be fully described by the

vertical displacement W, of the middle plane of the plate via assumptions

-17-



presented in Sec. 2.2. The bending deformation will consist of the
vertical'diSplacement, W, the rotation about the x-axis, Gx, and the
rotation about the y-axis, ey. The rotations may be obtained by differ-
entiating the vertical displacement. Thus the displacement field which

describes the bending deformations can be expressed in vector form as:

g r
S0 )

\6 . E-vz

ay

ow
LGYHJ L-—B“)Z‘

- (2.10)

fhe ACM-Adini, Clough, Melosh (Ref. 1) plate bending finite
element will be used in this study. A review of the finite element dis-
placement functions and the resulting stiffness matrices for the analysis
of plate bending has been given by Clough and Tocher (Ref. 9) and Wegmuller
and Kostem (Refs. 43, 44 and 45). They concluded that the ACM rectangular
finite element gives very satisfactory results. By increasing the number
of ACM finite elements used to model a particular continuum an apparent
convergence to classical solutions has been demonstrated for several
e%ample problems (Refs. 9 and 44). The ACM displacement function expresses
the vertical displacement, W, as a twelve term polynomial (Refsa‘l, 9, 45

and 48).
W(x,y) =A +Ax+Ay+Ax>+Axy+Ay2+AxP+AxPy+Axy’
1 2 ‘ 3 L 5 6 7 8 9

+A v+ A Xy +A xyd ‘ (2.11)
10 1 12

1
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The inplane deformation is characterized by two displacement
functions U and V. U is defined as the inplane displacement directed
along the x-axis and V is defined as the inplane displacement directed

along the y-axis. The inplane displacement polynomials shown below have

been presented by Clough (Ref. 8):

U(x,y) =B + B x+By+3Bxy ,
1 2 3 Y
(2.12)

]

V{(x,vy) B +Bx+By+B xy
5 6 7 8

Previous studies using these polynomials have been successfully carried out

(Refs. 44 and 45).

Nodal points are considered to be located at the four corners
of the rectangular finite element positioned on the reference plane in
the middle of the plate. Nodal points are designated by the letters,

i, J, K, L as indicated in Fig. 3. Thus all nodal point displacements
refer to reference plane deformations. The terms ''reference plane" and
"middle plane" are considered to be interchangeable in this report. The
total displacement vector is described in terms of five displacements for
each nodal point,.i.e. two inplane displacements and three bending dis-
placements. The total number of displacements per finite element is
twenty, i.e. four_pgdes at the corners with five degrees of freedom per

node.

The displacement functions W(x,y), V(x,y) and U(x,y) can be
_ substituted into the displacement vector thereby defining the displace~

ment field {A(x,y)} for any location given by the coordinates (x,y):
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-
(v ) [ v
v v
A=)} =| W | = W (2.13)
< - < g
0 W
oy
0 _ oW
y 9x
. o . J

Thus Eq. 2.5 can be established once the displacement functions have been

chosen.

The displacement field {A(x,y)}, can be partioned by separating
it into those involving only inplane displacements and those involving

only bending displacements:

~ 3 U(X,Y)
A (x,y) '
V(x,y)
{8z, 0} = | ===~ L = | - (2.14)
| W(ix,y) I
LA (x,y)J 0_(x,y)
8_(x,y)
L 7 -

This will simplify further discussion of the stiffness matrices in the
following sections. The subscripts u and ¢ refer to the inplane displace~
ments and the bending displacements respectively. Substituting the dis-
placement functions (Eqs. 2.11 and 2.12) into the right-hand side of the

above equation leads to Eq. 2.15:
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A (x,¥) P (x,y) | .0 B
{A(x,y) } ={-emamm } = | B -} (2.15)
Ay (x,y) RFIC A

where [Pu(x,y)] and [P¢(x,y)] correspond to inplane and bending polynomial

expression respectively. The vector {TE—} is the partioned {a} vector

P (%:¥) 0

while the matrix is the partioned [P(x,y)] matrix.

0

a.-';.r___ -

P¢(x,y)

2.5 Strain-Displacement Relations

The strain-displacement relations are derived using the thin-
plate small-deflection theory as mentioned in Section 2.2. The strain-
displacement relationships for a point at a distance z from the reference

plane are:

BUZ
(ex) = T (2.16a)
z ‘
SVZ
€ = — 2,16b
€ =5 - (2.16D)
BUZ BVZ
(‘ny)z = 3&—— + E{— (2.16¢)
Where: z = distance of point under consideration from the reference
plane
Uz = displacement in the x-direction at any depth, =z
Vz = displacement in the y-direction at any depth, =z
(ex) = strain in the x~direction at depth z
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]

(ey) strain in the y-direction at depth z

N

2

N
I

shear strain at depth z

The prescribed displacement functions correqund to reference
plane displacements. The displacéments UZ and Vz must be expressed in
terms of these middle plane displacements. Kirchoff's assumption of plane
sections permits the displacement for a point located at aﬁy distance, z,
away from the reference plane to be expressed in terms of the inﬁlane
displacements of the reference plane plus the product of the rotations

about the referenée plane and the distance z as shown in Eqs. 2.17:

W

Uz =U-z N (2.17a)
- W

v, = V-2 (2.17b)

W= W ‘ (2.17c)

Substituting Eqs. 2.17a and b into Egqs. 2.16a, b and ¢ leads to Eq. 2.18

in which {e}z represents the strain at depth z:

_ - r - - '
: U -3%w
X o9x ax2
-52 >
{e} =4¢ SR Al L+z1 3 W (2.18)
z y oy 3y2
5U . v %W
ny 5§'+ ox -2 0x0y
L —JZ L . J . .
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In the equation above, the strain vector'{s}z is separated into inplane
and bending contributions. Identifying the required differentials of
Eq. 2.18 to be [Fu] and [F¢], corresponding to the inplane and bending

functions respectively, leads to Eq. 2.19:

{e}, =IT_1 [P (Ge;)] (B} + 2 [T,] [P, Gx,y)] {a}  (2.19)

" "o

Performing the differentiation results in the following equation:

{E}z = [q] {B} +z [Q,] {A} (2.20)

¢

Where: [Qu] [Pu] [Pu(X,Y)]

L]

(] = [T] [P (x,)]

The strains are now expressed in terms of the matrices [Qu] and [Q¢],
which are obtained by differentiating the functions [Pu(x,y)], [P¢(x,y)],

and multiplying by the associated constant terms {B} and {A}.

‘h%As iﬁéicated by Eq. 2.8, the unknown polynomial coefficients in
Eq. 2.20 can be related to the nodal point displacement vector {6°}. The
inplane and bending displacement fields have been previously defined as
{Au(x,y)} and {A¢(x,y)} respectively. Substitution of the nodal point
coordinates (xn,yn) into the above displacement fields result in the fol-

lowing expressions:

{63} = {8 (x,y )} =1Ic] {B}  (2.21a)
L . - | .
{6¢} = {A¢(xn,yn)} = [c¢] {a} .(2.21b)
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]

Where: [Cu] [Pu(xn’yn)]

eyl = [ByGx oy

¢

{63} and {Gz} are the inplane and bending nodal point displacements. Solv-

ing for the vectors {A} and {B} leads to:

-1

{a} = [c¢] {62} (2.22a)
{8} = [c 1 {Gi} (2.22b)

Substituting Eqs. 2.22a and b into the strain-displacement relation of 2.20
yields Eq. 2.23:

170 (6%} (2.23)

le}, = [o,) [e,17" {673 + 2 [q,] [c 5

¢

Equation 2.23 is analogus to Eq. 2.9c and represents the strain displace-
ment equation relating the strains at a distance z from the middle plane
to the basic set of unknowns, i.e. the nodal point displacements. For

convenience, the [Bu] and [B,] matrices, defined in Eqs. 2.24a and b

¢

respectively, are substituted into Eq. 2.23 resulting in a shorter expre-

sion for the strain which is given in Eq. 2.24c:

(8,0 = [q1 [c 1™ (2.24a)

[B¢] = [Q¢] [C¢]—l } (2.24b)
e e '

fe}, = [B ] {8 }+z [B¢] {6¢} (2.24c)
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2.6 Layering

Multiaxial bending of the slab causes a continuously varying
biaxial stress fieid within the concrete as shown in Fig. 4A. The elas-
ticity maﬁrix [D], for a non-linear material depends on the stress level,
and, therefore, will also vary throughout the finite element. In order to
evaluate the volume integral of Eq. 2.3, [D] must be defined over the
volume of the element. Since the explicit definition of the elasticity
matrix for reinforced concrete under biaxial stress is prohibitively com-
plex fof solution purposes, this stiffness matrix is evaluated by a combi-
nation of explicit integration and numerical integration. The nuﬁerical
integration is performed using a summation process, as explained in the

following paragraphs.

A finite element will be divided into a series of layers as
shown in Fig. 3. This idealization facilitates inclusion of material non-
linearities through the depth, i.e. layer to layer, and through the plane
of the slabs, i.e. element to element. Each layer can have its own elas-
ticity relations, [Di]’ which is dependent upon the representative state
of stress existing within that layer, {Ei}. This implies that there. is a
coﬁstant state of stress and stiffness within any particular layer and
that there is a step-like variation of stress énd stiffness properties
through the depth of the finite element as shown in Fig. 4B, A

state of plane stress is assumed to exist within each layer.

The representative state of stress in a layer is taken to be

{Gi}, the integrated average stress for the mid-plane of that particular
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layer. The location of the mid-plane of layer-i is defined by the distance
Ei from the reference plane of the slab. The integrated average stress
can be expressed in terms of the integrated average strain, {E}E using

i
Eq. 2.25:

{Bi} = [D, ] {E}Ei (2.25)

By employing Eq. 2.24c the integrated average strain may be defined as:

. } e
{5} =L f_[ [B]E— B dxd u 2.26
Tz Area TR 24 [ ¢] ¥y 176" (2.262)
i ! 8
i ¢
Where:  AREA = _ [°/% dxdy = 4ab (2.26b)

Substitution of Eq. 2.26a into Eq. 2.25 results in an equation defining the

integrated average stress:
-5 _ 1
{Oi} ~ Area [Di] f_[ I:Bu]

Once the representative state of stress, given by {Ei}, is known

Ge
11 dxdy - (2.27)
Ge

¢

[B

N

the elasticity matrix, [Di], can be determined for wvarious regions or
layers. Numerical integration can then be performed and the stiffness
matrix can be evaluated. The elasticity matrix is a function of'{ai}
which is, in turn, dependent on the elasticity matrix. Thus the stiffness
' matrix is stress-dependent and a step-by-step solution scheme is required.

This will be discussed in Section 2.9.

Reinforcing bars are treated just the same as any other layer

in the summation process but of course a uniaxial elasticity relationship
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is used. A separate steel‘layer is assumed for each set of reinforcing
bars placed‘at a particular depth and at a pérticulaf angle to the x—axis
(as illustrated in Fig. 5). Idealizing the reinforcing bars as a layer
and not as indivi&ual entities requires the computation of an equivalent
stéel layer thickness. The equivalent thickness of a steel layer mﬁst be
such that the total area of steel in a cross—section perpendicular to the
bar direction remains the same. The equivalent thicknesé for a steel
layer can be represented by Eq. 2.28:

T =

s (2.28)

c‘|:>
®

9]

where AS indicates the area of a reinforcing bar and bS is the bar spacing.
This approach to modeling steel reinforcement allows consideration of re-
inforcing systems which have variable bar spacing and size from element to

element and are placed in arbitrary directions and depths within the slab.

Progressive cracking and crushing of the concrete and yielding
of the steel through the depth of the slab during loading can be monitored
by obtaining the stress history for each layer. The direction of princi-
pal stress that causes crushing or cracking of a particular concrete layer
is not predefined by previous cracking or crushing and may vary from layer

to layer through the depth of the slab,

2.7 Element Stiffness Matrix

From Eq. 2.3b the element stiffness matrix is defined as:

(%1 = f, (81" (D] [B] dvol (2.3b)
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in which matrix [B] relates the strains to the nodal point displacements.
Comparison of Eqs. 2.9c and 2.24c shows that Eq. 2.3b can be rewritten, in

this context, as Eq. 2.29a:

[5,] |
[ke] = / . [D] l[[Bu] ' z[B¢)] ] dvol (2.29a)
vol z[B¢]

Performing the indicated matrix multiplication results in Eq. 2.29b:

T T

o/ )" 01 8] 1817 (D) 2 (8]
k7] = | dvol (2.29b)
vol [[8,1' [0] 2 (8] (8,17 D] 2* [B,]

The submatrices of Eq. 2.29b will be defined as shown below for convenience:

[k 1]

w s [Bu]T [P [B,] dvol | (2.30a)

vol

kol = / [Bu]T (D] z [B,] dvol | (2.30b)
vol

‘[k¢¢] = [B¢]T [D] z* [B¢] dvol (2.30¢)
vol

[kuu] is the inplane stiffness matrix relating the inplane forces to the

inplane displacements. [k, ] is the bending stiffness matrix relating

ol
bending forces to bending displacements. The off diagonal submatrix,
[ku¢], is the coupling stiffness matrix which interrelates the bending and

inplane actions. The importance of the coupling stiffness terms has been

discussed in Chapter 1.
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As was noted in the discussion of layéring in Section 2.6, the
‘state of stress, and hence the terms of the elasticity matrix are assumed
© to be constant throughout a particular layer. Therefore, [D] is not depen-
dent on x or y coordinates. Likewise, since the displacement functions

were independent of the coordinate Z, [Bu] and [B,] are also independent

¢

of z. Thus the integrations indicated in Eqs. 2.30 may be separated as

shown in Eq. 2.31:

[k, J = /f [Bu]T (/ [D] dz) [B] dxdy (2.31a)
vX zZ
[kyyl = /7 [Bu]T (f [D] zdz) [B¢j dxdy (2. 31b)
VX z
- = 1L 2
[k¢¢] = §£ [B¢] | (i [D] z%dz) [B¢] dxdy (2.31c)

As also mentioned in Section 2.6 a summation process will be used to ap-
proximate the integration over z. This will be done by integrating over
each layer and then summing the results and storing them in the appro-

priate [Duu], [Du ] or [D,,] matrix. Thus the terms:[Duu], [Du¢] and [D¢¢]

¢ oo

may be defined as shown below:

L
[Duu] = [ [D] dz = ‘z [Di] (24, - zi) (2.32a)
Z 1=3
(D 1=/ [D] zdz = = : (D,] (22, - z2) (2. 32b)
wpt T T EE T 2 M T '
2 1 L 3 3
[D¢¢] = i [D] z°dz = 3-151 [Di] (zi+1 - zi) (2.32¢)
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Zi+1 and Zi delineate the boundaries of layer i. L is the total number
of layers. [Duu], [Du¢] and [D¢¢] are often called, respectively, the

inplane rigidity, the coupling rigidity and the bending rigidity.

Substitution of Eqs. 2.32 into Eqs. 2.3l results in the follow-
ing expressions which can be explicity integrated over the area of the

elements:

_ T

[kuu] = ii [Bu] [Duu] [Bu] dxdy (2.33a)
' T

[ku¢] = i}j; [Bu] [Du¢] [B(b] dxdy (2,3§b)
_ T

[k¢¢] = ii [B¢] [D¢¢] [B¢] dxdy (2.33c)

This integration leads to the force-displacement relations for the finite

element given by Eq. 2.34:

e | e

>Fu [kuu] ; [ku¢] Gu

—— b = | e—— e do e ——— (2.34)
e T ! e
F (egol™ 1 gy %

¢

e

¢

to the nodes of the element. {6i} and {6@} are, respectively, the result-

'{Fi} and {F,} are, respectively, the inplane and bending forces applied

ing inplane and bending displacements at the nodes of the element.

2.8 Assembly of the Global Stilffness Matrix

The individual element stiffness matrices are assembled to form

" the global stiffness matrix of the entire structure. This global stiffness
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matrix relates the forces at the node points of the structure to the dis-
placements of those node points. The process of assembly entails addi-
tion of the element stiffness terms which contribute to the same force~-
displacement location in the global stiffness matrix. The total force at
a particular node is determined by adding up the contributing forces from
the individual elements for that particular node. Thus the force-

displacement relationship for the entire structure can be expressed as:

{Fi} = [Kij] {Gj} (2.35)

where i and j correspond to the various degrees of freedom. at the node
points. The subscript i indicates row positions in the force vector and
stiffness matrix and j indicates row positions in the displacement vector

and column locations in the stiffness matrix. Assembly procedures require

that: e _
{Fi} = i {Fi} (2.36a)
e
[Kij] = 2 [kij] ~ (2.36b)

where the summation is carried out over all individual elements. The
stiffness term kij in the above equation relates the force at node i to
the displacement at node j for element e. Summing up the contributing
stiffness terms from all elements as indicated in Eq. 2.36b gives the

term Kij which populates the (i,j) locatioﬁ in the global stiffness matrix.
A solution for a structural system should satisfy compatability and equi-

librium. The assembly procedure guarantees displacement compatibility at
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‘the node points. Equilibrium of forces at each node point is insured in

the development of Eq. 2.3a.

2.9 Incremental Iterative Solution Technique

The nodal point forces/are related to the nodal point displace-
ments of the slab by a nonlinear system of.equations, symbolically written
as:

{F} = [K] {6} (2.37)
where the global stiffness matrix, [K], is a nonlinear function of the
nodal point displacements, {§}. Expressing Eq. 2.37 in incremental form
gives: . .
{r} = [K] {6} (2.38)
where the dot indicatgs an increment and [K] is the stiffness matrix at
some stress level called a tangent stiffness matrix. [K] is assumed to
be constant over an increment of load and the 1oad—def1ection history is

obtained by adding up the increments of forces and displacements:

(F} = % {F} (2.392)

]

(6} = £ {8} | (2.39b)

1]

Thus the nonlinear response of the slab can be obtained in a pilecewise-
linear fashion by solving the system of linear equations given by Eq. 2.38

for each load step.

The elasticity matrix [Di] for each layer and thus the tangent

stiffness matrix, [K], depends upon the current stress level. Therefore
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an iterative procedure can be employed during each load step to obtain

convergence of the displacement increment.

A failure criterion is needed in order to identify the omnset of
cracking or crushing within a layer. A biaxial failure envelope is used
here and will be discussed in detail in Chapter 3. This failure ehvelope
is shown in Fig. 9. The concept required in the current discussion is
that some criteria must be applied to determine if cracking or crushing
has occurred. An upper and a lower tolerance to the biaxial failure
envelope is utilized. A load increment that produces a stress'staée out~
side the upper bound of the failure envelope will automatically be reduced
so that the stress states of the next iteration, using the reduced force
increment, will lie within the specified upper and lower bounds. Failufe
of the layer is deemed to occur if the stress state falls outside the
lower bound to the failure envelope. Thus only a stress state that ap-
proximately satisfies the failure criteria to within the specified toler-

ance need be obtained.

A solution for an initial load vector which produces a stress
field well within the elastic range is obtained. This initial solution
is then scaled up to a specified percentage of the first cracking or first
crushing load, whichever governs. A solution for an applied dead load
can also be obtained. The dead load solution may reflect honlinearities
such as cracking or crushing of the concrete and yielding of the steel.
The dead load streéses are considered in the initial scaling procedure.
If a layer has cracked, crushed or yielded during the dead load solution

procedure, then the initial scaling will not take place. After this
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initial solution is obtained either an "incremental" or an "incremental-
iterative" solution scheme may be chosen by the analyst. If the
incremental-iterative option 1s chosen the following solution scheme is

used until failure occurs:

1. Formulate the element stiffness matrices based on the current

total stress level.

2. Form the global stiffness matrix by assembling the element

stiffness matrices.

3. Solve for the displacement increment using the global stiffness
matrix and the force increment. Next compute the strain and the

stress increments.

4., If the displacement increment has converged to a specified toler-

ance go to step 7, otherwise continue.

5. If the stress state falls outside the upper tolerance set on the
failure envelope then scale down the applied force increment such

that the stress 1s between the upper and lower tolerances.

6. If the maximum number of iteration cycles has been reached go

to step 7; otherwise go to step 1.

7. Unload the excess layer stresses and compute the corresponding

fictious force vector if applicable (Ref. to Chapter 3).

8. If the current total stress level has exceeded the lower toler-
ance on the failure envelope set the codes for newly cracked or

crushed concrete layers and newly yielded steel layers.
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9. Compute the total stress, strain, displacement, and force vectors

by adding together the old totals and the current increments.

10. Apply a new force increment and go to step 1.

An initial stress and displacement increment of zero is chosen for each
load step. Thus the first iteration within a load step uses an elasticity

matrix based on the stress level of the previous load cycle.

If the incremental solut;on option is chosen, then steps 4, 5
and 6 are not employed and iteration ﬁithin a load step does not take
place. As the size of the fixed load increment used is reduced the incre-
mental solution will approach that of the incremental-iterative solution.
The advantage of the incremental solution procedure over the incremental-
iterative procedure lies in the fact that less solution time is neeéded
for the former than the latter. The disadvantage of the incremental
solution procedure is that judgment and experience must be used in'selec-

tion of the size of the fixed load increment.

=35




3. MATERIAL BEHAVIOR

Structural analysis techniques require that some relation be
made between stress and strain. This chapter will present the stress-
strain relationships employed in the repbrted analysis scheme. The elas~
ticity matrix, [D], introduced in the previous chapter is populated using the
stress-strain relationships developed in this chapter. As noted in -
Section 2.9, the theoretical analysis presented in Chapter 2 is actually
applied in an incremental fashion. The stress-strain relations discussed
in this chapter will sometimes involve both total stresses and strains and
incremental stresses and strains. Incremental quantitites will be distin-

guished by a dot over the appropriate symbol.

The material stress-strain relations, [D], must be defined for
both the steel reinforciﬁg bars and the concrete before computing the ele-
ment stiffness matrices. Concrete is a heterogeneous mixture of solids
and gel with strength properties influenced by age, time under load,
humidity, and temperature to name a few (Ref. 33). The behavior of con-
crete is also dependent on the state of stress existing within the mate-

rial. Discontinuities due to micro-cracking and shrinkage cracks may be

present in the concrete continuum even before load is applied to the struc-
ture (Refs. 14 and 33). Thus, any attempt to define the material stress-
strain properties of concrete over a specified region of the structure

should be considered as an idealized approximation and by no means exact.
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Steel, on the other hand, can be considered to be a homogeneous
material. The physical properties of steel are less dependent on environ-

mental conditions than those of concrete.

3.1 Concrete Stress-Strain Relationships

A beamfmay be idealized as a one dimensional structural element
in which bending about one axiskproduces a uniaxial state of stress. A
slab on the other hand should be considered as.a two dimensional struc-
tural element in‘which bending about two axes produces a biaxial state of
stress (Fig. 4A). A limited number of experimental investigations of con-
crete behavior in the biaxial stress state have been carried out (Refs. 24,
27 and 32). These studies have covered the entire biaxial principal
stress space consisting of the compression-compression region, the tension-
tension region, and the compression-tension (or, conversely, tension~

compression) region. These regions are shown in Fig. 6.

Equations for the biaxial principal stress-strain relations
used in this investigation have been adopted from Liu (Refs. 27 and 28)
and were extended to cover the nonliﬁear compression~tension and tension-
compression regions. The idealized biaxial stress=-strain curves have two
basic forms: the nonlinear form and the linear form.. The nonlinear equa-
tion is used for biaxial stress states where compressién is dominant while
the linear expressioﬁ is used for biaxial stress states where tension is
dominant. General nonlinear and linear stress-strain curves are indi-
cated in Fig. 7. Figure.8 shows the approximate regions in the biaxial

stress plane where the nonlinear and linear equations are applicable.
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3.1.1 Nonlinear Stress-Strain Equation for Concrete

The nonlinear stress-—strain curve for concrete assumed to apply
in the reported study has the following form:
A+ BeE
c

g = C3.1)
(1 - va) (1 + ce + De?) '

Where: a = the stress in the principal direction of interest
€ = the strain in direction of interest
vV = Poisson ratio (taken to be 0.2 but other choices are also
permissible)
o = the ratio of the principal stress in the orthogonal direc-

tion to the principal stress in the direction of interest

E = initial tangent modulus in uniaxial loading
A,B,C,D = curve parameters to be determined

A positive stress from Eq. 3.1 denotes compression, and likewise positive

strain denotes contraction.

The parameters A,B,C,D are determined by considering the basic
shape of the nonlinear stress-strain curve shown in Fig. 7. It can be

observed that for the nonlinear case:

1. The curve passes through the point of zero stress and zero

strain (i.e., the origin).
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2. Under a biaxial state of stress (i.e., a stress ratio, o, not
equal to zero) and at a zero stress-zero sfrain‘level, the
initial slope of the stress-strain curve can be defined as
Ec/(l - Vo) by employing Hooke's Law for multiaxial stress
states. Ec cgn be obtained by performing a standard compression
cylinder test or through an aﬁcepted formula such as the ACI
equation (Ref. 49),.the Jensen equation (Ref. 16), the Hognestad
equation (Ref. 27), or the Saenz equation (Ref. 36). These équa—

tions are listed below in the order mentioned.

E, = wle® 33 VT:: (ACI)
6 x 10° -
Ec = 5000 (Jensen)
1+ T
f
c
Ec = 1.8 x 10° x 460 fé (Hognestadt)
10° /fé »
E = (Saenz)

¢ 14 0.006 /fé

In the equations above fé is the 6" x 12" cylinder strength in
(28 days) in psi, w is the unit weight in pounds per cubic feet

and E_ has the units psi.
3. The curve passes through a peak stress—strain point (Gp,sp).

4. The slope at the peak stress-strain point is EP.
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The parameters A, B, C, D can be determined by enforcing these

curve characteristics. Solution for the parameters leads to the following:

A=0
B=1
: 'Ec 2 E E ¢
¢ = —m—————1r ——"+—E———":'C E'—" ' (3'2)

ag 1 - v €
b ( )

1 ___p e
~2 2
5 1-va) o
P ( ) P

If the peak slope, E_, were to be zero as in the case for the compression-
compression region the curve parameters would reduce to those presented by

Liu (Ref. 27):

ﬁ A=0
B=1
oo 2 (3.3)
| op(l - va) - ep
p=21
82
P

The tangent modulus, i.e. instantaneous slope, of the siress-

strain curve may be obtained by differentiating Eq. 3.1 resulting in:

2
i Ec (1 - De*) (3.4)
:1.6—_ 242 ’
(L - va) (1L + ce + De®)

Whéxe A=0
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Some advantage may be gained from the computer programming standpoint if
the tangent modulus is defined in terms of only the principal stresses

rather thaﬁ in terms of stresses and strains. This change can be accom-
plished simply by solving Eq. 3.1 for the strain in terms of stress then
subsfituting into Eq. 3.4. Care must be exercised in using the correct

sign for the square root term in the resulting expression.

The tangent modulus of the stress—-strain curve given in
Eq. 3.4 can be used to relate the incremental stress in a principal di-
rection to the incremental strain in that same direction. Thus the
instantaneous slopes of the stress-strain curves for the two principal

directions can be expressed as:

dcl : EC a - Dlei)
E = = (3'53)
— 2
b de (1 -Va) g 4o 4 pe?)
11 1 1
i = E (1L - D €?)
E. =—2 < 2 5 (3.5b)

2b d€2 (1 —\)01.2) (lL+cCc¢e +D€2)'
2 2 2 2

Where: . E1b and Ezb

tions 1 and 2 respectively.

are the tangent moduli in the two principal direc-

o =0 Jo

D and C are the D and C curve parameters evaluated for the
1 1

"one" principal direction using Eq. 3.2.
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D2 and C2 are the D and C curve parameters evaluated for the

"two' principal directions using Eq. 3.2.

Thus the incremental stress—incremental strain relation can be defined as:

o =E £
1 1b
. . - (3.6a)
02 - 2b 2
or in matrix form:
g E 0 €
1 1b 1
. = . (3.6b)
g 0 E €
2 2b 2

The curve parameters C and D, which are presented in Eq. 3.2,
can be determined if the following quantities are known: Ec, V, O, Op,
Ep’ and Ep' The first three quantities, Young's Modulus, Poisson's ratio
and the stress ratio have been previously defined in this section. The

latter three quantities (i.e. the peak stress, the peak strain and the

peak slope) will be defined in Sections 3.1.3, 3.1.4 and 3.1.5.

3.1.2 Linear Stress—Strain Equation for Concrete

The linear stress-strain equation for concrete has the general
form shown below.
o=A+B¢e (3.7)
The curve parameﬁer A and B may be defined by forcing the curve to pass
through the zero stress-zero strain point, i.e., origin, and also through
thé‘peak stress—strain point, as shown in Fig. 7. The curve parameters

are thus defined as:
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(3.8)

The following stress-strain equation is determined by substituting Eq. 3.8
into Eq. 3.7

o
o = ER £ (3.9)
P

A constant tangent modulus is obtained by differentiating the stress-strain

equation:

do

de (3.10)

™ I*UQ

T

The incremental stress ~ incremental strain relationship follows from

Eq. 3.10 as:
01 b 0 €1
. = . (3.11a)
o 0 E €
2 2b 2
Where: do o]
E., =—L=_-PL
1b de €
2 P1
(3.11b)
do 0]
E = —2 - P2
2b de €
2 pa

Opl and 0#2 denote the peak stress for the "one' and "two" directions respec-

tively and €p1 and €P2 denote the peak strains in those directions. The

~ linear stress-strain curve can be evaluated if the peak stress and peak

"strain values are known.
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In the particular case of the tension~tension region the initial
slope of EC/(l - Vo) 1s maintained. Thus, if the peak stress and peak
slope are known, the peak strain in this region can be defined as

e =0 (1 - va)/E .
N )/E_

3.1.3 Biaxial Failure Envelope - Definition of op

Non-dimensional experimental peak stress envelopes for concrete
strengths of 2700 psi and 4450 psi are shown in Fig. 9 (Ref. 24). The
close agreement between the two curves indicate that the basic shape of
the failure envelope is essentially fixed and only the size of the enve-

" lope will change with concrete strength. The true envelope can be approxi-
mated by a series of straight lines as shown in Fig. 9. The maximum
increase in biaxial compressive strength over the uniaxial compressive
strength for the idealized failure envelope is 20%. This corresponds to

a value of 1.2 on the non-dimensional plot in Fig. 9.

The characteristic points used to define the peak stress enve-

lope are shown in Fig. 10 and enumerated in the table below:

-



Point g g
Pl _p2
A f! 0.0
c
(I '
B Rfc aB Rf
c Rf' Rf'
C
1 : 1
D Rfc/ocD RfC
E 0.0 f!
F o} o, o
2F/ F 2F
G —ft 0.0
H —ft -ft
I 0.0 —ft
J OIJ o OIJ

The terms used in the table above and on Fig. 10 are defined as:

fé = uniaxial compressive strength from 6" x 12" cylinder test
(28 days)
ft = direct tensile strength
of = principal stress in direction 1
1
0 = principal stress in direction 2
2
o =0 /o
201
Gpl = peak stress in direction 1
Opz = peak stress in direction 2
Oij = gtress in direction i at point j
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Q
il

stress ratio 0_, /o
2" "1

N

=
]

increase in strength due to the biaxial compressive stress

state

The following values were used in all test examples included in this
report. These values were selected to provide an acceptable approxima-

tion to experimentally observed biaxial stress states (Refs. 24 and 27).

R =1.2
1
a, =-—=Vv =20.2
B O
I‘ —-!'—=_
Op o 19.2
= = !
OzF o7 0.85 £

Equations 3.12 to 3.21 were used to describe the line segments defining
the biaxial failure envelope shown in Fig. 10. The equations have been
left in general form so as to accommodate use of different values than

those used in this study.

I. The Compression—Compression Stress States

1. Point-A to point-B (0 < o < aB)

(3.12)

46—



2. Point-B to point-C (aB o<l

Gp1 = R fé (3.13)

3. Point-C to point-D (1 < o < aD)

R fé
Gpl =3 (3.14)
4. Point~D to point-E (aD <o g ®
f'
_ c
Opl = 3 (3.15)
o +-—2 -0
R D
ITI. Tension-Compression Stress State
1. Point-E to point-F (-« < o < aF)
f'
- c
Opl 7 (3.16)
O, —— - a_ + a
F o - F
2F
2. Point-F to point-G (aF <a <0)
ft
g = 3.17
P1 o a ft : ( )
a—'l- S -1
F 2F
i o _ III. Tension-Tension Stress State
1. Point-G to point-H (0 < a £ 1)
¢ = _f (3.18)




2. Point-H to point-I (1 < a < «)

f -
t
0o ===
b1 S (3.19)
IV. Compression-Tension Stress States
1. Point-I to point-J (-« < o < uJ)
1
g = - (3.20)
PL %5 4 1
.....___.f_.+_o___
t t 1J
2. Point-J to point-A (aJ <a<0)
f'
o =— = (3.21)
pl o f! o ’
Lt e ol T o
w % %

3.1.4 Peak Strain Envelope - Definition of sp

The nondimensional peak strain envelope shown in Fig. 11 is
idealized as a series of sfraight lines passing through, or very near to,
the expefimental peak strain points indicated in the figure (Refs. 24 énd
27). Peak strain is defined as that strain corresponding to peak stress.
?igure 12 shows the peak strain envelope including the characteristic
points. The characteristic points used to define the peak strain envelope

are listed below:
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Point P1 p1
Al f! €
c c
B' Rf' e
c c
c' o 0
V
D' 0 -VE
c
' —_ —
E ft Et
1
F 0 Vet
]
¢ Oct ect

R, fé, vV and ft are defined in the previous section. The following addi-

tional terms used in the table above are defined as:

qv . = peak compressive stress at an 0 = 1/V as obtained
from the peak stress envelope of Section 3.1.3

Gct’ect = a peak stress-strain value defining point G'

€. = peak strain for uniaxial compression

€, = peak strain for uniaxial tension

The following values were used for all test examples in this report.
They were selected to provide an acceptable approximation to experimen—

tally observed peak strains in biaxial stress states,

R = 1.2
v =0.2

= |
Opp = 0-8 £L
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€at = 1150 microstrain
€. = 2500 microstrain
gt = tensile strength divided by Young's modulﬁs

As in the case of the peak stress envelope Egs. 3.22 to 3.28
which define the line segments used to describe the peak strain envelope

will be left in general form.

I. Compression-Compression Stress State

1. Point-A' to point-B' (0 < 1)

A
Q
A

€ =€ (3.22)

2. Point-B' to point-C' (1 < o < 1/v)
e (o, -0)
_ ¢ pl Y
e = T (3.23)
pl R fC Ov

3. Point-C' to point-D' (1/v < a < «)

ve (0. -0)
= [ pl Y
epl 0\) (3.24)

II. Tension-Compression Stress State

1. - Point-D' to point-E' (-« < a < 0)

o
= - _p1 -
€p1 (et vec) ( ft + 1) ,Et (3.25)
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ITI. Tension-Tension Stress State
1. Point-E' to point-F' (0 < a < 1)

Opl (1 - va)

e = (3.26)
Pl E,
IV. Compression-Tension Stress State
1. Point-F' to point-G' (-= < q < act)
| 7y
epl = (Ect - vet) 5 + Ve, (3.27)
ct
2. Point-G' to point-A' (act <0 <0)
(e -¢e ) (@, -f£")
I i T (3.28)
P1 ¢ et

3.1.5 Peak Slope - Definition of EP

The peak slope is defined as the tangent of the nonlinear stress—
strain curve evaluated at the peak stress, According to experimental obser-
vation the peak slope for the compression-compression stress region has a
value of zero (Refs. 24, 27 and 32). In the tension-compression regions the
peak slope may range from a value of zero for stress states near uniaxial
compressién to a value equal to the Op/sp for stress states near unilaxial
tension. In this study the ratio of peak slope to initial slope in that
region has been assumed to vary linearly with respect to the stress ratio,
o. The peak slope ratio has a value of zero for stress states near uniaxial

compression and ranges to a value of 1.0 for stress states near uniaxial tension.

Two peak slope ratios necessary to define the aforementioned

linear variation were scaled from the experimental stress-strain curves
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designated as A and C in Fig. 16, and are listed below along with the

~values of o associated with those curves.

‘ Peak Slope

Point o Initial Slope
I -0.203 A 1.000

II -0.052 0.125
v ~4.900 1.000
I’ ~19.200 0.125

Points I and II, located in the compression-tension region, were obtained
‘by measuring the peak slope ratio for curves C and A respectivel&.

Points I' and II', located in the tension-compression region, were
obtained by computing the reciprocals of the values associated with

points I and II respectively.

Points I, II, I', and II' and a plot of the ratio of peak slope
to initial slope as a fﬁnction of the stress ratio, o, are presented in
Fig. 13.' The peak slope function is represented as a series of straight
line segments. These straight line segments and corresponding biaxial
stress plane regions are indicated by the letters A through E in Fig. 13.
The corresponding biaxial stress plane regions designate where thét partic—

‘ular straight line segment is appiicable. The letters C+ and E+ indicate

.thaé,the‘Curve extends to a stress ratio of plus infinity while the letters
C~ and E- indicate that the.curve extends to negative infinity at the indi-
cated points on the failure envelope. The straight line segments delin-
eated by the points E-~, I, IL, A and Ct+ reflect the peak slope ratios for
the compression-tension region through the compression—éompression region.
The straight line segments associated with the points C-, II', I', D and B+
describe the peak slope relationship for the tension-compreséion region

through the tension-tension region. ~59-



3.1.6 Stress-Strain Curves for Concrete

The nonlinear stress-strain relation used in this investigation,
Eq. 3.1, reduces to the Saenz equation for the uniaxial compression stress
state for which Ep and o are both equal to zero (Ref. 36). The Saenz equa-

tion i i below.
ion is given below e E

G = c (3.29)

e (ea) (Me)

P

Figure 14 compéres experimental (Ref. 38) and analytical uniaxial compres-—
sion stress-strain curves for concretes of various strengths. The agree-
ment between the curves is quite good and confirms the applicability of

the uniaxial stress-strain equation to a wide range of concrete strengths.

Figures 15, 16 and 17 compare the idealized and experimental
biaxial stress-—strain curves (Ref. 24). Curves A, B, and C in each
figure corresponds to the specific stress ratios listed on the figures.

Two curves are plotted for each stress ratio. One corresponds to 01/00
versus €1 and the other to 01/00 versus €2. 01 aﬁd 02 are the principal
stress as shown in the inset of each figure while 00 is the uniaxial com-
pressive strength. 61 and 62 are the strains in the first and second
principal stress directions respectively.

Analytic stress-strain curves corresponding to an unlimited num-
ber of stress ratios covering the entire biaxial stress space can be gener-
ated using the method presented herein. Figures 20, 21,v22 and 23 show the
idealized stress-strain curves corresponding to the selected values of
stress ratios indicated in Fig. 18 and enumerated in Fig. i9. These
figures show the wide range of biaxial stress-straiﬁ curves which are pos-—
sible for given values of the stress ratio, a.
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3.1.7 Stress-Strain Relationships for Concrete

The incremental stress~strain relationship for concrete in terms

of principal stresses is represented by Eq. 3.30 in which the subscrips 1

and 2 identify the principal stress directions and the dots indicate incre-~

mental qg@ntities.

a o T
(e} €
1 1
lo L =[m14d¢ ¢ ‘ (3.30)
2 2
,L‘rlzd 12

Needless to say thé in-plane shear stress %12, will be zero but its pres-
ence is required in the principal stress vector so as to include the shear-
' ing stiffness term in the [D] matrix. This is necessary so that transforma-
‘tion of the [D] matrix from principal axes to global x-y axes results in
the proper elasticity relationships. The [D] matrix is the stress-strain
relationship. for the principal stress plane. The {5] matrix can be deter-

mined by using the stress-~strain relationship for anisotropic materials

(Ref. 27).
~ - -\) ' -
L] r_ l . 2 rr— L]
€ T OFT 0 o
1 Eb Eob o 1
. ) l ' °
- 82 o= —E—'—l— E-'—— O b 62 o (3'31)
1b 2b
1] 1 ]
. o . E1b + Ezb + 2v1 E2b %
Y - E' E' — 12
L - 1b T2b - 4
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E;b and E;b are the tangent moduli in the first and second principal

stress directions respectively and Vv and v are the Poisson's ratios in
: 1 2

“the indicated directions. In the equation above it is assumed that

vl/E;b,= OZ/E;b. Inversion of the above stress—strain relationship leads

to the [5] matrix used in Eq. 3.30:

] |
Elb Vo E1b 0
1=-vv 1-vv
1 2 12
v, Ef E!
=y 1 "2b 2b
D] =| 7= T v 0 (3.32)
1 2 . 1 2
1] \
0 0 Elb Ezb
E' + E' + 2v E'
B 1b 2b 1 2b |

The analytic stress-strain curves of Section 3.1.1 relate the
stress in a particular principal direction to the strain in that same
direction and only that direction. Thus, as indicated by Eq. 3.6a and

3.11la, relationships of the following form are defined:

O’1 = Elb €1
. . (3.33)
02 = Ezb 82

Where Elb and E2b are the effective tangent moduli for the principal

stress plane obtained by differentiating the analytic stress-strain
curves of Sections 3.1.1 and 3.1.2. The terms in the [ﬁ] matrix of

Eq. 3.32 must now be related to the known moduli, E and E2 in order to

1b b

use the stress-strain equation given in general form by Eq. 3.1.
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The unknown terms in the stress-strain relations may be expressed

as functions of the known E1 and E2 .values by diagonalizing the stress-

b b

strain relations of Eq. 3.31. E and E
1b 2b

total stress state. Diagonalized relations may be obtained by eliminating

are computed from the current

01 and Gz from the first and second algebraic equations, respectively, repre-

sented by the matrix equation, Eq. 3.31. This is done by substituting for

G and G the relations given by Eqs. 3.34. The a's are also based on the
1 2 :

current total stress state so as to be consistent with EIB and Ezb'
5 =0 a : (3.34)
2 1 1
G =0 a
1 2 2
The above substitution leads to Eqs. 3.35a and 3.35b:
o ° l v o ] ‘
e =0 |gF - é, 1 (3.35a)
1 L R 2b
° ° 1 Voo ) ‘
€ =0 - é, 2 . ' (3.35b)
2 2 2b 1ib

" The relation vz/E;b = Vl/E;b allow Eqs. 3.35 to be expressed as:

o
e = E%— (1 - v al)— (3.36a)
1b ‘ ‘
S
€ =-E%— (1 - vz uz) (3.36b)
2b
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Rearranging Eqs. 3.36a and 3.36b leads to the diagonalized stress-strain

| relations given by Eqs. 3.37a and 3.37b:

E' \
° 1b °
01 = ( T-v o / € (3.37a)
1 1
El
© _| ——_2b .
02 —< 1= \)2 °L2 ) ez (3.37b}

Comparisonvbf Egqs. 3.37a and 3.37b with Eqs. 3.33 shows that the tangent
moduli relating principal stresses to strains in the corresponding direc-

tions are given by Eqs. 3.38a and 3.38b:

E'b
1
Fp TTTV o (3.382)
1 1
El .
& —_2b (3.38b)

b I -V a
2 2

Rearranging Eqs. 3.38a and 3.38b leads to 3.39a and 3.39b which define the

. [ 1 N
moduli Elb and Ezb’ needed in Eq. 3.32
E' =E - : 3.
b b (1 Vl al) (3.39a)
' =E - 3.39%
By »b (1 v, az) ( )

E . and E are defined in Eqs. 3.5a and 3.5b, respectively,

1b b
for the nonlinear case and in Eq. 3.11b for the linear case. The curve

parameters C and D in the aforementioned expressions, are given by Eq. 3.2.
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Vl and vz in Eq. 3.32 must still be obtained. The relation

(- I .
vz/Ezb- \)l/Elb leads to the following equations.

VA =y (3.40a)

v, = 1. (3.40b)
B EAb (1 - N uA) o
EBb VA B

where subscripts (A,B) correspond to directions (1,2) or (2,1) whichever

is applicable. Applicability was determined by selecting the combination

that resulted in positive values for both v and v . The reported study
1 2

has used the value of 0.2 for v The range of values for vB, resulting

Al
from the application of Egs. 3.40a and 3.40b for various combinations of
cylinder strength, stress ratios and stress levels,was approximately 0.16
to 0.24, or about 80Z to 120%Z of the value assumed for Vyo
All terms of Eq. 3.32 can be defiped using Eqs. 3.5a, 3.5b,

3.11b, 3.39a, 3.39b, 3.40a and 3.40b. The resulting [D] matrix is the
constitutive relationship for the particular layer expressed in principal
stress directions. Before computing the contribution of this layer to
the element stiffness matrix, the [D] matrix must be transformed into an

‘elasticity matrix, [D], relating stress and strain in the x-y coordinate

system of the element

Fc‘)_ h -'-é R
X X

Jo, L=mnje | | (3.41)
Xy Txy

. B . o
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This transformation is carried out in the following manner (Ref. 12,48):
= T
[D] = [T] [D] [T] . (3.42)

where the transformation matrix, [T] is defined by Eq. 3.43:

cos?0 ~ sin?6 -2 cosH sinb
[T] =| sin?6 cos?8 2cosH sind (3.43)
cosb sinb -cosb sinb cos?6 - sin?H

The angle 0 is defined as the angle between the 1 direction and the x
direction. This angle is positive when measured in a clockwise direction

from the positive x axis.

3.1.8 Concrete Failure Modes

Concrete exhibits physically distinct types of failure modes
which are dependent upon the applied stress ratio as shown in Fig. 24A.
Figures 24A and 24B each show one-half of a symmetric region. Four dis-

tinct failure modes can be described as follows (Ref. 32):

I. In the tension-tension region and up to a tensile stress/
compressive stress ratio of -1/30 failure occurs by the forma-
tion of one crack perpendicular to the largest tensile force and
perpendicular to the free plane, i.e., unloaded plane, of the
specimen. For a stress ratio of equal tension in both directions
there is no preferred crack direction (Ref. 24). This will be

called a Type I failure.
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II. For stress rgtios between -1/30 and -1/100 numerous cracks are
formed instead of just a single crack as was the case for fhe
previous region. These cracks are also perpendicular to the
tensile force and the free plane of the specimen. This will be

called a Type II failure.

III. From a stress ratio of -1/100 in the compression-tension region
to a stress ratio of 3/10 in the compression-compression region,
cracks are not only formed perpendicular to the applied tensile
force and free surface of the specimen but also cleavage planes
occur parallel to the free surface‘of the specimen. This will

be called a Type III failure.

IV. TFor stress ratios between 3/10 and 1/1 in the compression-
compression region only cleavage cracks parallel to the free
plane of the specimen occur. This will be called a Type IV

failure.

Kupfer, Hildsorf, and Rusch (Ref. 24) report two general types of failure

modes. They are a Type IV crushing failure for stress ratios occurring

between 1/1 and -1/15 (~1/30 according to Ref. 32) and a Type I cracking

failure for stress ratios from -1/15 to -1/-1.

The idealized failure modes used in this report are depicted in
Fig. 24B. From the tension-tension region to a stress ratio of -1/15 a
-cracking failure mode is assumed to occur. The direction of the crack(s)
is assumed to be perpendicular to the largest tensile force and to the

free surface of the specimen. From the compression-compression region to
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the stress ratio of -1/15 crushing failure mode is assumed to occur. The
direction of crushing is assumed to be perpendicular to the largest com-

pressive stress and perpendicular to the free surface of the specimen.

3.1.9 Cracked or Crushed Concrete

Cracking or crushing of the concrete is deemed to occur when the
principal stress has exceeded the peak stress as defined in Fig. 9. The
direction of cracking or crushing is assumed to be perpendicular to the
direction of the corresponding principal tensile or compressive stress,
whichever is appropriate. The concrete layer is assumed to have stiffness
only in the uncracked or uncrushed direction. For example, the constitu-
tive stress-strain relation for a concrete layer which has experienced a

failure caused by the stress in direction 2 would be

. = I ~ * -

ol E1b 0 0 €,

. - .4 e |

0'2 L 0 0 0 9 €2 (3.44)
T, J 0 0 O L Yy,

The first principal direction is still effective in contributing stiff-
ness to the element. The elasticity matrix, [D] would then be rotated
from the principal stress coordinate axis to the x-y coordinate system.
The layer stiffnesses are then computed and used in the summation pro-

cess for the element stiffness formulation.
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3.1.10 Unloading of Cracked and Crushed Concrete Layers

After cracking or crushing of the concrete layer, the layer
will be incapable of sustaining the stress that caused fhe failure. This
stress must be reduced to zero within the layer while still maintaining
equilibrium between the external forces and internal stresses. Thus,
unloading of the layer stress to zero necessitates the adjustment of the
internal stress field of the slab. This adjustment or redistribution is
accomplished through the use of fictitious forces which are statically
equivalent to the amount of stress to be redistributed to the slab. A
solution of the stiffness equations corresponding to these forces will

cause a redistribution of stresses within the slab.

Recent experimental evidence indicates that after attainment of
peak strength, either temnsion or compression, the concrete stress
strain curve has a downward leg, i.e., unloading (Refs. 5, 15, 24 and 27).
It is assumed that this downward portion is a straight line and has a
slope of some finite value (Refs. 19 and 26). Thus unloading proceeds at
some finite rate determined by the slope of the downward portion of the

stress—-strain curve.

This unloading branch can also be used to model the tension
stiffening effect due to the gradual transfer of load from the cracked

concrete to the steel reinforcing bars (Ref. 26).

The fictitious force vector can be computed using Eq. 3.45

T
{F} = \fml L] z[B(b]] {6} dvol (3.45)
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where.the vector {dr} is the increment of stress in the x-y coordinate

system to be redistributed and {Fc} is the resulting vector of fictitious
forces. The fictitious force vector can be separated into terms involving
only in—piane fictitious forces, {Fuc} and terms involvihg bending ficti-

 tious forces, {F¢c} as shown in Eq. 3.46:

F J [Bu]T {6r} dvol
—_— 1= (3.46)
F | S [B¢]T {ér} z dvol

If it is assumed that the stress to be unloaded is constant through the

=
n

thickness of a layer, integration of Eq. 3.46 with respect to the z direc-

tion over the thickness of the layer results in Eqs. 3.47a and 3.47b

.{Fuc} - [;f{ [Bu]T dx dy] {6r} (zi+1 -2,) (3.47a)
z, 2 -2z
{7y} = [ff [Bq)]T dx dy;' {o_} ——1—+—12——1- (3.47b)

X

The amount of stress to be redistributed, {6r}, for a particular
load cycle can be computed in principal stress plane by multiplying the
unloading modulus, (Ref. 19), by the appropriate integrated average strain
increment. Transformation of the stress vector from the principal to the
x-y global coordinate system i1s necessary before substituting into

Eqs. 3.47a and 3.47b.
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3.2 Stress-Strain Relationship for Steel

The steel reinforcing bars are considered to be in a uniaxial
state of stress. The steel stress-strain curve is assumed to follow the

Ramberg—Osgood formulation (Refs. 19 and 35) given by Eq. 3.48

e=Z+ (1;m) -EX(%—)“ (3.48)
s s y ,
Where: 0 = stress
€ = strain
ES = initial modulus of elasticity

0 = yield strength

y

n = a constant assumed to be approximately equal to 100 for
mild steel

m = a constant defining a line of slope m.Es on the stress-—

strain plot and taken to be .7 for metals

The tangent modulus can be found by differentiating the stress-strain

equation as follows:

> S , (3.49)

" The stress-strain matrix for reinforcing bars is given below:
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f o D 0 o0 £
1 11 1
{0 }+ = 0 0o 0 |V ¢ - (3.50)
2 2
L IZJ 0 0 0 \.'le,‘

Where: D = do /de
11 1 1

The [D] matrix is then transformed from the principal stress direction of
the reinforcing bars to the x-y axes as shown in Eq. 3.42 where [T] is as
previously defined by Eq. 3.43. The angle 6 is the angle between the

x—-axis and the longitudinal direction of the reinforcing bars.

Mathematical distinction bétween yielded and non-yielded steel
need not be made since the Ramberg-Osgood formulation provides a continu-
ous stress-strain curve. Proper selection of the curve parameters can
pfoduce an almost perfectly plastic plateau as would be the case for mild
steel. This plateau will have some finite slope but its value will be so
small that for all practical purposes its effect on the structural behav-

ior can be considered negligible.

3.3 Additional Considerations

.Several fufther considerations could be incorporated into the
present analysis procedure of reinforced concrete slabs to attack more
general problems. Possible items that could be considered are:

1. Shear Retention Factor
2. Dowel Action (in-plane)
'3. Transverse Shear, i.e. normal to the slab

4. Bond Slip
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These considerations were not included in the present analysis scheme due

to one or more of the following reasons:

1. It is believed that they have a negligible effect on the struc—
tural behavior of the slab at load levels which will not cause

substantial damage,

2. The experimental investigations have not demonstrated the need

‘for their inclusion,

3. It has not been demonstrated that manageable analytical methods
of proven reliability have been developed for all observed

experimental phenomena, and, most importantly,

4. Necessary physical constants for some of the phenomena are not

available.

. The shear retension factor has been used to model aggregate
interlock behavior along the crack face (Refs. 7,11,12,25,26,37). In the
present stu&y it was assumed that aggregate interlock failure occurs
iﬁmediately after cracking or crushing. It ﬁas been reported that ana-
lytic results for the flexural analysis of slabs are insensitive to the

particular value of the shear retention factor chosen (Refs. 11,12,26).

This would be expected in the experimental flexural tests since separation
of the crack faces occurs after the initiation of the flexural failure,
' ' )

thus reducing the shearing stiffness along the crack face to zero.

Experimental studies on dowel action of reinforcing bars has
been carried out and is available in the literature (Ref. 30). These

experiments were concerned with investigating dowel action caused by the
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shearing deformation of the reinforcing bars in the plane of the slab.
-The dowel action discussed here should not be confused with the type of
dowel action considered when discussiqg shear perpendicular go the plane
-of'the_piate. It was concluded from these studies that after a flexural
type of failure in a reinforced concrete slab, the reinforcing bars do not
distort across the cracks. This implies that the reinforcing bars do not
carry excessive shearing forces. Thus for the ;nalysis procedure reported
herein, it was assumed that the steel reinforcing bars have a shearing
stiffness of zero. Furthermore, it should be noted that this assumption

is consistent with the assumption regarding the stress fields of the rein—

forcing bars, i.e., uniaxial stressing.

An approximate method to include the trénsvefse shear perpendic-
. ular to‘the plane of the plate in an elastic plate bending analysis has
been proposed in‘Ref. 10. A more exact analysis écheme to include the
. transverse shear wéuld require a three dimensional elasticity approach.
The three dimensional approach would lead to prohibitive solution time

and storage requlrements as mentioned in Chapter 1.

At high stresses the bond between the céncrete and steel may be
broken and the'steel may slip relative to the concrete. This slippage
changes the stress distribution in the reinforcing bars and concrete at
the vicinity of the slippage. Slip phenomena has been taken into account
in some analytical studies (Refs. 31 and 34). These investigations have
employed the .continuum approach and used '"linkage elements" to model slip-
page. Bond'slip could poésibly be incorporated into the present énalysis

procedure by use of an appropriate concrete strain-steel reinforcing
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bar slip relationship. Equilibrium would have to be re-established after
the réquired internal adjustments to the reinforcing bar strain field
héve been made through an application of the currently used fictitious
fofce vector concept. It must be emphasized that the above procedure has
not been implemented or verified. Also the required strain-slip relation-
ship and its dependence on loading, boundary conditions, physical proper-
ties and material properties associated with reinforced concrete slabs

has not yet been determined. Thus inclusion of bond slip remains hypo-

thetical at this time.

3.4 Limitations

The presented method as reported herein, is applicable only to
the reinforced concrete slabs whose predominant mode of response is
flexure. The method has been kept general enough to permit various bound-
ary conditions. However, if the support resistance is a function of the
‘deformafion of the slab and the loading, then it Will be more convenient
to treat such problems via the method under development on the overload
fesponse of béam-slab bridges (see page 1). It should be noted that the
presented method cannot and should not be used if tﬁe slab failure is due
to shear punch, without any flexural damage. Furthermore the effect of
shrinkage and temperature have not been included in the present scheme.
It is strongly recommended that prior to the usage of the method presented
herein, the assumptions and their implications be reconsidered as far as

the problem to be analyzed is concerned.
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4. CORRELATION WITH TESTS

\

A comparison of experimental and analytical results will be

presented in this chapter to verify that the developed analytical model

accurately represents reinforced concrete slabs. Solutions for the seven

test cases listed below will be discussed:

No.

No.

No.

No.

No.

No.

No.

1:

7:

A simply supported reinforced concrete beam (Ref. 50).

A rectangular slab simply supported on two opposite sides

and free on the other sides (Ref. 6).
A corner supported square slab (Ref. 17).

A simply supported square slab with orthogonal reinforcement

(Ref. 39).

A simply supported square slab with diagonal reinforcement

(Ref. 39).

A rectangular slab fixed on two opposite sides and free on

the other two (Ref. 40).

A square slab fixed on all edges (Ref. 40).

These ekaﬁples will show that théAanalysis technique being reported can

handle various boundary conditions and loadings.

The material properties of the test specimens are listed in

Table I and are defined as follows:
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TABLE I: MATERIAL PROPERTIES

fé—4" £ £, E, fy E,
Example
(psi) (psi)  (psi) (ksi) (ksi) (ksi)
1 5000.%  500.  3450.% 46. 3% 30000.
2 5150.%  502.  4330.7 50.0% 29000. *
3 | 5500.%  440.  4150.% 40./50.  30000.
4 5540.%  4600. 391, 43237 54.5% 30000.
5 5120.%  4250. 370.  4226.7 61.0% 30000.
6 4300.%  3600. 324, 3450.5% 44 3% 30000.
7 5060.%  4200. 375.  3100.% 44 6% 30000.
* Given

J = Jensen

A = ACI

fé—4" = 4" x 4" x 4" cube strength (28 days)

\fé = 6" x 12" cylinder strength (28 days)
ft = direct tensile strength (28 days)
| EC = Young's modulus for concrete (at the time of testing)
fy - = yield strength for.reinforcing steel
E = Young's modulus for reinforcing steel
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As noted in Table I, not all material properties needed in the analysis
scheme were reported or obtained by the experimenters, In all examples
either the 6" x 12" cylinder strength, fé, or the 4" x 4" x 4" cube
strength, fé—4", was reported. If the concrete properties'ft and EC were
not experimentally obtained they were computed from fé or fé—4" in the

~following manner:

1. If the cube strength is readily available then it can be con-
verted to cylinder strength by any acceptable relationship such

as the equation below.
fé = (0.83) (fé—4")

2. Young's modulus, Ec’ was obtained using an acceptable formula

such as those mentioned in Section 3.1.1.

3. The direct tensile strength, ft’ cén be obtained from Fig. 25
which indicates a relationship between the cylinder strength and
the direct tensile strength. This figure was plotted using
values reported in Ref. 33. Examples 1 and 2 used tensile
strengths that had been previously used by other investigators

and hence Fig. 25 was not used in these two examples.
The following material properties were assumed for all test cases:

Poisson's ratio, Vv = 0.2
Compression unloading modulus = 1000 ksi (Ref. 19)

Tension unloading modulus = 800 ksi (Ref. 19)
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Material properties needed for steel are the yield strength,
Young's modulus and the Ramberg-Osgood parameters diécussed in Section 3.2.
In all cases except éxample 3 the‘yield strength of the steel was reported.
For example No.‘3 two analyses were carried out, one for a yield strength
of 40 ksi and one for a yield strength of 50 ksi. Young's modulus was

assumed to be 30 x 10° psi if it was not given.

4.1 Reinforced Concrete Beam

An 11 foot simply supported beam with a 6" x 12" rectangular
cross section was subjected to third point loading (Ref. 50). The loading
produced a pure moment region in the middle third of the beam. Thg half
beam was discretized into four finite elements as shown in Fig. 26. Rein-
forcement consisted of six No. 5 deformed round mild steel bars each with
a cross sectional area of 0.31 square inches. Three bars were located at
a centroidal distaﬂce of 8.75" from the top of the beam and three bars

were located at a centroidal distance of 10.5". The value of Young's

- modulus for concrete used in this example was computed from the precracked

load-~deflection curve of the test beam. The result was 3450. ksi. Two

analyses were carried out: one using six concrete layers and two steel
layers as shown in Fig. 27 and one using ten concrete layers and two

steel layers.

The calculated and experimental load deflection histories are
shown in Fig. 28. It can be seen that there is a very good agreement
between the experimental and the calculated results. The calculated curves

k)

indicate convergence to the experimental ultimate load as the number of

concrete layers is increased.
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4.2 Simple~Free Slab

This 54" x 40.5" x 4.14" slab (slab B7, Ref. 6) was loaded by a
uniformly_distributed moment along two opposite sides as shown in Fig. 29.
The constant moment region was idealized as one finite element. This is

an adequate idealization because the stress field does not, theoretically,

vary with position in the plane of the plate. The distributed moment was °
applied on the short sides which were considered as simply supported. The
long sides of the slab were free to displace. Reinforcement consisted of
1/4" diameter deformed bars placed at *45° to the slab edges. The bars
closest to the surface of the slab were spaced at 1.5" with a minimum
éover of 3/8". The bars in the next layer were spaced at 1.375" with a

cover of 5/8".

The slab was divided into ten concrete layers and two steel
layers as shown in Fig. 30. TS in Fig. 30 indicates the steel layer
thickness and Bx indicates the reinforcing bar angle measured from the
x—axis. The location of the steel layers in the model corresponds to the

centroidal location of the steel reinforcing bars in the test specimen.

The experimental and analytical distributed moment versus curvature his-

tories are presented in Fig. 31. The agreement between the experimental
aﬁd analYtic results is quite good with respect to overall shape, forma-
tion of collapse mechanism, and ultimate load. Figures 32 and 33 show the
applied moment;versus concrete compressive strain and the applied moment
versus average steel strain histories respectively for both the experi-
ménﬁal and analytic models. It is noﬁed that there is significant scat-~

ter of experimental strain readings about their average values for some
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levels of applied moment. However the general agreement between the

experimental and analytic results is quite satisfactory.

4.3 Corner—Supported Slab

This corner-supported 36" x 36" square slab was tested under a
cenfer point load. The slab was discretized into sixteen finite elements
per quarter section as shown in Fig. 34 (Ref. 17). The slab'thickness
was 1.75" with an effective depth of 1.31". A steel percentage of 0.85%
for both orthogonal directions was used to reihforce the slab. The slab
was divided into six concrete layeré and two steel layers through the

depth as shown in Fig. 35.

The analytical and experimental load-deflection histories are
shown in Fig. 36. The analytical load~deflection histories are plotted
for node points 5 and 10. The experimental load-deflection history cor-
responds to point "A" which is indicated in Fig. 34. Point "A" is the
closest point to the center of the slab for which experimental results
were presented. As seen in Fig. 36 the analytic results for nodes S-and
10 form a very narrow band in which the anélytic result for point "A",

- had it been obtained, would lie.

4.4 Simply Supported Slab with Orthogonal Reinforcement

The 6' x 6' x 1.75" simply supported slab in this example was
loaded using sixteen evenly spaced hydraulic jacks to simulate a uniformly

distributed load. The tensile reinforcement, consisting of 3/16" diameter
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plain round mild steel bars, was plaéed according to the following

pattern:
Layer #1: spacing = 2.5" Layer #2: spacing = 2.2"
cover = 0.1875" cover = 0.375"
6 = - 90° 6, =0°

The quarter slab was discretized into sixteen finite elements
as shown in Fig. 37. The hydraulic jack locations are indicated by the
solid squares. The slab was divided into six concrete layers and two

steel layers through the depth as indicated in Fig. 38.

The analytical and experimental load deflection histories of
the center point (node 5) are presented in Fig. 39. During this parti-

cular test series the loading plates became inclined to the hydraulic

jacks due to the excessive deflections experienced by the slab. Discrep-

ancies of as much as 10% were reported between the load indicated by the
jacks (higher value) and the load indicated by the load cells at the sup-
ports (lower value), (Ref. 39). The lower value of load as indicated by
the supports was used in plotting Fig. 39. The experimental ultimate
load exceeded the ultimate load calculated by tﬁe experimenters using the
yield line theory by 64%. Possible reasons for this discrepancy, given

by the experimenters, were as follows (Ref. 39):

1. A lower bound yield criterion was used in the experimenter's

calculations.
2. Strain hardening of the reinforcement was not included.

3. The development of tensile membrane action was ignored.
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By observing the steel strains obtained using the analytic method pre-
sented in this report it was concluded that strain‘hardening would effect
only the very last portion of the load deflection history. The increase
in strength beyond the yield line theory prediction is apparently due, in
large measure, to tensile membrane action and non-ideal support or loading
conditions. Considering the force exerted by the jacks to be defined as
"P" and taking the vertical component as being 90% of P corresponding to
that recorded by the load cells at the supports (i.e., a difference of
107%) results in a horizontal force equal to 43.6% of P which must be
applied in the plane of the slab. Thus for a maximum discrepancy of 10%
at the ultimate load, the slab is under a total vertical force of 26.1
kips, a horizontal in—piane force of 12.6 kips and the resultant force
applied by the jacks of 29.0 kips. The magnitude and direction of the
individual horizontal in-plane force applied by each individual jack is
unknown. Since these in-plane forces are unknown, three models involving

different in-plane support conditions were analyzed:
1. No in-plane restraint (ideal loading and sqpport).
2. ‘In—plahe restraint of the exteriorbboundary of the slab.
3. Partial in-plane restraint at selected interior node points of

the slab.

Model #1 had no additional in-plane restraints other than those
"required to maintain the proper boundary conditions at the lines of sym-

metry and to eliminate rigid body motion. This model produced an ultimate
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load which agreed with the ultimate load predicted by the yield line

theory but which underestimated the experimental ultimate load considerably.

Model #2 resulted in an ultimate load 17% higher than the experi-
mental value. Tensile membrane cracks developed on top of the slab during
test loading (Ref. 39). These crack patterns indicated that the tension
‘field which caused the crack patterns was located in the center portion
of the slab. Both models #2 and #3 would tend to produce a tension field
within the slab. Since model #2 resulted in an overestimation of the
exﬁerimental ultimate load it was decided to restrain the jack locations
which correspond to nodes 7, 9, 17, and 19 from in-plane movement. This
model, designated aé model #3, would lead to a tension field limited to a
more centralized region of the slab as compared to model #2. Thus thé
apparent stiffness of model #3 would be lower than model #2. The result-
ing load deflection history from model #3 is presented in Fig. 39. The
ultimate load computed is within 1.5% of the experimental ultimate load.
The analytic load at which crushing of the concrete and yielding of the
steel occurs is indicated in the above figure. Figure 39 shows that,
despite the many assumptions and approximations which had to be made in

this comparative example, good agreement between experimental and analytic

results has been attained.

4.5 Simply Supported Slab with Diagonal Reinforcement

A second slab from the same test series as the previous example
and. loaded in the same way was also analyzed to further demonstrate the

reliability of the analysis technique. The slab dimensions were
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6' x 6' x 2". The reinforcement consisted of 3/16" diameter plain round

mild steel bars and were placed according to the following pattern:

Layer #1: spacing = 3.5" . Layer #2: spacing = 3.0"
‘cover = 0.1875" cover = 0.375"

= ° = - °

ex + 45 Gx 45

The quarter slab was discretized into sixteen finite elements
as shown in Fig. 37. 8Six concrete layers and two steel layers were used
as shown in Fig. 40. The experiﬁental ultimate load exceeded the yield
line collapse load by 73% in this example. The behavior of this slab was
influenced by the same factors as discussed previously in Section 4.4.
To account for the tensile membrane action the in-plane displacement com-
ponents of nodes 3 and 13 in the x-direction and the in-plane displacement

component of nodes 15 and 13 in the y-direction were restrained.

The analytic and experimental load deflection histories for the
center point are plotted in Fig. 41. The analytic loads at which yield-
ing of the steel and crushing of the concrete begin are also indicated in
that figure. The agreement betwegn the experimental and analytic curves
is comparable to that attained in the last section. As in the previous
example, the in-plane restraints were‘used to approximate the second qrder
phenomena arising from the substantial deformations. Limited observa-
tiéns reported from the actual experiment make accurate determination of

the magnitude and direction of these effects almost impossible.
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4.6 Fixed-Free Rectangular Slab

Two almost identical 12' x 6' x 4" rectangular slabs were tested
under a concentrated center point load (Ref. 40). The load was applied
thropgh a 9" x 9" steel bearing plate. The long sides of the slab were
fixed against all deformations while the short sides were left free, i.e.,
unsupported. Reinforcement consisted of 1/4" and 3/8" diameter mild
steel bars orthogonal to the slab edges. Both top and bottom tension re-
inforcement was used since tensile stresses are developed on both the top
and the bottom surface of the slab because of the boundary conditions.
Although the distribution of reinforcing varied throughout the plate, it
is believed that an adequate model was developed by using a constant thick-
ness for each steel layer. There is, however, no analytic difficulty in
.extending this formulation to consider a steel layer whose thickness

varies from element to element.

The experimental slab No. 1 was selected for the analytic study.
Material properties are listed in Table I. A quarter of the slab was
discretized into sixteen finite elements as shown in Fig. 42. The depth
was divided into six concrete layers and four steel layers as indicated
in Fig. 43.

The load deflection histories for the two experimental slabs and
the analytic model for slab No. 1 are shown in Fig. 44. Shear punch
failure occﬁrred during the experimental tests and caused premature col-
iapse of the slabs before their full flexural capacity céuld be developed.

Since the analytic model considers oﬁly the flexural action, the shear
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puhch type of failure could not bé obtained analytically. Enlarged por-
tions of experimental and analytic load deflection histories up to the
occurrence of shear punch failure are shown in Fig. 45. The figure indi-
cates that when flexural action is dominant a close agreement between

experiméntal and computed results is obtained.

The analytic and experimental créck patterns for the top sur-
face of ﬁhe quarter slab are shown in Figs. 46A and 46B respectively. The
experimental crack pattern was not perfectly symmetric but it had essen-
tially the same general form for all quadrants of the slab. The bottom
surface crack patterns are shown in Figs. 47A and 47B. The center bortion
of the slab exhibited extensive cracking due to the shear punch failure.
As would be expected, the analytic model did not reflect those cracks due
to the shear punch failure. Good agreement was obtained between the
experimental and analytic crack patterns that were caused primarily by the
flexural action in the slab. Both experimental and analytic results indi-
cated a fan shape crack pattern radiating from the center point of the
slab on the bottom surface and extensive cracking on the‘tép surface along

the fixed edge.

The fact that these experimental slabs failed by shear punch
action does not reduce the value of the flexural analysls presented here
when applied to the bridge overload problem. Work currently underway
(Ref. 18) substantiates former conclusions that punching shear failures

are very unlikely in bridge decks subjected to vehicular loadings.
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4.7 TFixed-Fixed Square Slab

Two 6" x 6' x 6" square slabs ﬁere tested as part of the same
experimental study as the two rectangular slabs mentioned in Seétion 4.6.
The slabs were fixed on all four sides and loaded by a concentrated center
' point load applied through a 9" x 9" steel plate. As before, 1/4" and

3/8" diameter mild steel bars were placed orthogonal to the slab edges.

The analytic model was developed using the material properties
of the first experimental slab of this palr. These properties are listed
in Table 1. A quarter of the slab was discretized into sixteen finite
elements as shown in Fig. 48. The depth was divided into six concrete

layers and four steel layers as indicated in Fig. 49.

The experimental load deflection histories for the two almost
identical test slabs along with the analytic results are shown in Fig. 50.
As was the case for the rectangular slabs of the previous section, a shear
punch failure occurred before the flexural capacity of the slab was
developed. The load deflection history up to the initiation of the
shear punch failure is plotted to a larger scale in Fig. 51. The slight
difference between the analytic and experimental load deflection histories
may be attributed to the lack of total fixity observed by the experi-
menters. It was estimated that the fixed edge supports were 907% effective.
The analytic>work assumes full restraint along the edges in question.
Thus the analytic model should produce a load deflection history which is

stiffer than that obtained experimentally.
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The analytic and experimental top surface and bottom surface
crack patterns are presented in Figs. 52 and 53 respectively. Both the
analytic and experimental bottom surface crack patterns developed into a
fan shape pattern radiating from the center point. The top surface
crack patterns in both the experimental and analytic casesideveloped into

a concentric circle~like pattern around the center of the slab,
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5. SUMMARY AND CONCLUSIONS

The reported work deals with the inelastic flexural analysis of
reinforced concrete slabs. This analysis technique provides a method by
which the load deflection response up to a flexural collapse of a rein-
forced concrete slab can be obtained. The state of flexural stress and

strain are also obtained for various load levels.

This work has been performed as a subset of a larger investiga-
tion dealing with the overload responselof beam~slab highway bridges.
The method presepted in this report will eventually be interfaced with a
completed study on the inelastic analysis of prestressed concrete beams

(Ref. 19) so as to model a complete bridge superstructure.(Ref. 23).

The finite element method was used as the basic analysis tech~
nique. The slab is discretized into a mesh of rectangular finite elements
connected at the node points. These finite elements are further divided
info a series of layers through the depth. The elements provide a means
to monitor the spread of nonlinear behavior through the plane of the
plate, and the layers monitor nonlinear behavior through the depth of the

plate. The following material nonlinearities have been considered:

1. Nonlinear stress-strain behavior of concrete,
2. (Cracking and crushing of concrete, and

3. Yielding of reinforcing steel.

These nonlinearities have been incorporated into the analysis scheme via:



A nonlinear biaxial stress-strain curve for concrete,

A biaxial failure criteria for concrete,

A Ramberg-Osgood stress-strain curve for reinforcing steel, and,
A piecewise linear fangent stiffness incremental iterative solu-

tion technique.

The method has been applied to one beam and six slabs from exper-

imental studies available in the literature. Experimental and analytical

load deflection curves were compared for all problems, and crack patterns

and strain histories were compared where available. Good agreement was

observed between the analytical predictions and experimental tests for

slabs which failed in flexure. The following conclusions can be drawn:

1.

The rectangular finite element with coupling can be used in an

inelastic flexural analysis of reinforced concrete slabs.

Previous work on biaxial stress-strain relations for concrete
has been extended and applied to reinforced concrete slabs. The
results have indicated that this idealization is adequate for

the flexural\problems.

As was previously observed, a nonlinear Ramberg-Osgood stress-

strain curve can be used for reinforcing steel.

The steel reinforcing bars placed at different angles and depths
within the slab can be modeled as a system of uniaxially stressed

layers.
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The downward portion of the stress—strain cﬁrve for concrete can
be used to produce a globally adequate redistribution of the
effects of cracking and crushing. The effect of the downward
portion of fhe tensile stress~strain curve has been called ten-

sion stiffening by some authors.

Gross crack patterns can be obtained through the use of the

presented analysis.

The load deflection history up to a flexural collapse can be
obtained. If the basic response is flexural and the failure
mode is punching shear, then the developed method can accurately
predict the load-deflection history ub to the initiation of the

shear punch failure.

It can be concluded from the example problems in Chapter 4 that
a variety of complex support conditions and loadings can be

handled in the analysis technique which has been presented.
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6. APPENDIX

ELEMENT STIFFNESS MATRICES

A.l Intrbduction

This appendix is a supplement to Sections 2.3 through 2.7. The
previous development of stiffness matrices will be expanded upon so that
explicit evaluation can be performed. The resulting explicit matrices

will be presented as an aid to those who may éarry the work further. It

will be assumed that the reader has read Chapter 2 in detail.

- A.2 Displacement Functions

The displacement functions chosen in this analysis were pre-
sented as Eq. 2.11 and Eq. 2.12. Substitution of these equations into

Eq. 2.13 yields:

1 x y xy 0 0 0 O
[P (7)1 = ] -1
0 0 0 O 1 x y xy
1 xy x® xy y* x° 2y xy? y® xly xy®
[P¢(x,y)] =10 0 1 0 x 2y O x?  2xy 3y? x®  3xy?

0 -1 0 -2x -y 0 =-3x> -2xy -y> 0 -3x’y —y?

(A.2)

The W(x,y) displacement function will be non-dimensionalized to

facilitate the inversion 6f the [C,] matrix introduced in Eq. 2.21b and

¢
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shown inverted in Eq. 2.22a. This is carried out by substituting the non-

~dimensionalized coordinates (kx,y) into W(x,y) defined in Eq. 2.1l. Thus

WER =1 % ¥y ¥ ox ¥y X %y O ¥y B (A.3) ‘

W(x,y) = [W(x,y)] * [R] - {A} . (A.4)
Where: X = aX
y = by

[R] is a 12 x 12 diagonal matrix (i.e. all off diagonal elements are zero)
where the diagonal terms consist of the following values: 1, a, b, a?,
éb, b2, ad, a’b, ab2, b3, a’b, and ab®. The quantities a and b are ele-

ment half lengths in the x-direction and the y~direction respectively and

are shown in Fig. 3. The three bending displacements are given by Eq. 2.10.

~ The derivatives in Eq. 2.10 may now be written as, for example:

W _ 3W(x,y) _ BW(X,y) 3y _ B ez Sy1 OF
dy dy 9y 53‘: =5 [W(x,y)] 5 [R] {A} (A.5)

Using Eq. 2.14, it is possible to write
A(b(x,y) = [f¢(x,y)] [W(x,y)] {a} = [P(p(x,y)] {A} (A.6a)

[F (x,y)] is a matrix containing the differential operators indicated in

¢
Eq. 2.13. Substitution of Eq. A.4 yields

8y Gx,y) = [f¢<x;y>1 [W(X,5) ] [R] {A} (A.6b)

’Employing the chain rule of differentiation as indicated in Eq. A.5

results in
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By (xy) = [t] [f¢(§,§)] [W(x,y)]1 [R] {A} = [t] [P¢<§,§)] [R] {a} (A7)

Where:
'
1 0 0 1 0 0
[t] = 0 3?/3y 0 = 0 1/b 0
Lo 0 0%/0x | 0 0 1/a

The [Cu] and [C,] matrices can now be obtained by substituting

¢

- the nodal point coordinates (xn,yn) into Eq. A.1l for [Cu] and (§n,§n) into

Eq. A.7 for [C,]. (xn,yn) consists of the set of I, J, K and L nodal

¢

point coordinates (-a,b), (-a,-b), (a,b), (a,-b). (in,§n) consists of the
set of non-dimensionalized nodal point coordinates (-1,1), (-1,-1), (1,1)

and (1,-1). The resulting [C, ] and [Cu] matrices are given as:

¢

[C ] = (A08)
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1 -a b -ab 0 0 0 0 ]
0 0 0 0 1 -a b -ab
1 =-a -b ab 0 0 0 0
0 0 0 0 1 -a =-b  ab

[c,] = (A.9)

] 1 a b ab 0 0 0 0
0 0 0 0 1 a b ab
1 a b -ab 0 0 0 0

| 0 0 0 0 1 a -b  -ab |

Thus the nodal point displacements are:

(653 = [, Ge Ly )T = [c,] (B) (4.10)
(85} = [8,,55)1 = [1] [c,] [R] {a} (A.11)
Where:
[1e1 o 0 0]
0 [t] 0 0
[T] = (A.12)

and [t] is defined in Eq. A.7.

A.3 Strains

Appropriate terms must be included in Eq. 2.18 to reflect
the fact that the bending displacement function has been non-dimensionalized.

Applying the chain rule again results in:
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( —ES.ZWw [ o2y )
9x2 BE?
-52 .Y
4 =2 he s8] { CR UG (A.13)
dy? 952 ‘
-293%W -23%w
X3y ——
L J L 9x0y )
Whgre:
9% 9% ]
?x 0x 0 _ 0
= 9y 9y
[s] 0 3 By 0 . (A. 14a)
9% 3§
0 0 5% Dy
or:
L 0 o
22
- | L
[s1]=1]0 = 0 (A. 14b)
b2 :
1
0 0 ;f)-

Thus Eq. 2.18 is modified to reflect the non-dimensionalized coordinates

~in the following manner. Substitution of Eqs. 2.12 and Eq. A.4 into

Eq. 2.18 leads to:

{az} = [q,] {B} + z [s] [Q¢] [R] {A} (A.15)
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in which:

[Qu] = |0 0 0 0 0 0 1 X (A.16)

0 0 0 -2 .0 0 -6 -2§ O 0 -6xy O
[QJ=f0o 0o 0 o 0 -2 o0 0 -2x -6y b -6%y
0o 0 0 0 -2 0 0 -4x =4y 0 -6%X* -65°

(A.17)

The constants {A} and {B} can be found as indicated in Egqs. 2.22
if care is taken to include the new matrices which result from non-

dimensionalizing the bending displacement function.

V Thus: {B}

[c,~'1 {83} S (A.18)

Ty ety {68} (A.19)

_ -1
{A} - [R ] [C ¢

¢

Inversion of [Cu] and [C¢] results in the following matrices.
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-1
[Cq]

=

W i

T

o

|
T =

-1 2
1 3
1 3
L 0

-1 4 |
.O 0
S —

-1 0
0 0
0 -1
i -1
0o -1

0

0

0

0

1
1
a
1
b

1
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Substitution of Eqs. A.18 and A.19 into Eq. A.15 defines the

strains as a function of the nodal point displacements:

17 6% (a.22)

¢

-1 e, . -1‘
(6}, = 101 (6,17 (6 + 2 181 10,0 11 (117" [c,

After performing the multiplication of the [R] maﬁrices,

e}, = [, [c, 17 {65} + = [s] [Q ] [c,1™" (217 (63} (a2
Comparison of Eq. A.23 with Eqs. 2.25 shows that the [B ] and [B,]
matrices can be defined as:

(8,1 = [o [c 17 | - (A.24a)
[B,) = [s] IQ,] [c,I™ (117 | | (A.24b)

A.4 Element Stiffness Matrices

Evaluation of the inplane, coupling and bending stiffness
matrices given in Eqs. 2.33 can now proceed. Substitution of Eqs. A.24a
and A.24b into Eqs. 2.33 gives:

T

[k = e iﬁ (0,17 b, [Q] dxdy [c 1™ (4.25)
k = [ ]'lef ]T S dxd ]"1 T]'1 (A.26)
[ u¢] = Cu o [Qu [Du¢] [S] [Q¢] xdy [C¢ [ .
[k, ] = [T]‘IT [c ]‘IT 57 10" 1817 o1 18] [0.] axdy [617) 17

oo " o e o6 ol Y 1Cy

(A.27)
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[Duu], [Du¢] and [D¢¢] are the figidities introduced in Section 2.7 and
given in Eq. 2.32. The evaluation of the integrals in Eqs. A.25 to A.27
can be simplifiea by considering only one element of the rigidity matrix
to be nonzero at a time. This reduces one very laborious evaluation of
each of the three stiffness matrices to six much simpler problems. For

each matrix the results are then summed up in the following form:

_1T
[k, 1= [c,] [Dll [K1+D [K]+D [K]+D K]

' -1
+ Dz,3 [Ks] + D33 [KG] ]uu [Cu] (A.28)

...1T ['
eyl = L™ D IK1+D [K1+D [KI+D K]

-1 -1
+D [K1+D  [K] ]u¢ [cyl™" [z (A.29)

T T
i 1= et I

b ¢ LD, [Kl] + D12 [K2] + D13 [K3]

-1 -1
#D KI+D [K1+D_ [KGJ](M) fe,1™" 1] (4. 30)

The submatrices pertaining to the inplane stiffness matrix are

evaluated by employing Eq. A.25 as follows;
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K1 )y

K1)
.2 !

uu

K1 )

| [Kq] )uu'

K1 )y

K] )eu

S
yx

s
yx

Ir
yx

Ir
vX

IS
yX

Ir
yx

" [
[1" [

0
(1" o
0

(o,1" [
’0
[ 1" o
0

22
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[Q,] dxdy

uu

o

[Qu] dxdy

uu

13

(@)

[Qu] dxdy

uu

0 [Q,] dxdy

uu

D23 [Qu] dxd?

uu

0 [Qu] dxdy

33] uu

(A.31a)

(A.31b)

(A.31c)

(A.314d)

(A.31e)

(A.31f£)




The (Dij)uu terms in the above equations correspond to elements of the
implane rigidities given in Eq. 2.32a. Explicit expressions for Eq. A.31
can be developed by utilizing Eq. A.16. This has been done to generate

the following formulae:

0
0 1 symmetric
0 0 0
b2
0 0 0 3
K] = v : 4ab (A.32a)
1w 0o 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
— I
0
0 0 symmetric
0 0 0
_ 0 0 0 0
K] = hab (A.32b)
2 uu 0o 0 0 0 O ~
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0
0 O symmetric
0 1 0
0 0 0 0
K] = 4ab (A.32¢)
3w 0 0 0 0 0

2
0 0 0 E%— 0 0 0 O
~ -
0
0 o0 éymmetric
0 0 o0
0 0 0 O
[K] = ‘ 4ab (A.324)
4 uu 0 0 0 0 O
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0 O symmetric

K] = _ 4ab (A. 32e)

0 0 1 0 0 1 0
2
oooa?oooo
L— —
O.
0 0 symmetric
0o 0 1

[K6] = 4ab (A.32£)

0 0 1 0 0 1

0 0 O 0 0 0 o0

. ’ )2
0O 0 o0 Q o0 0 O 3

—

In a similar manner the submatrices for the coupling and bending
element stiffness matrices can be developed from Eqs. A.16 and A.17 and
Egqs. A.26 and A.27; Care must be exercised to insure that the proper
rigidities given in Eqs.v2.32b and 2.32c are employed. The submatrices for
the coupling and bending stiffness matrices are presented in Eqs. A.33 and

A.34 respectively.
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0 0 0 == 0 0 0 0 0 0 0 0
0 0 0 0 0 0 o 0 0 0 0 O©
-8b?
0 0 0 0 0 0 0 o 0 0 0 O
[Kl]u¢ = (A.33a)
. 0 0 0 0 0 0 o0 0 0 0 0 ©
0 0 0 0 0 0 o0 0 0O 0 0 0
0 0 0 0 0 0 O 0 0 0 0 O
0 0 0 0 0 0 o0 0 0 0 0 0
— -
0 0 O 0 0 0 0 0 0 0 0 0
O 0 0 0 0 :%2 O 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 o0
, 0 0 0 0 0 0.0 0 0 -8a 0 O
E (4.33b)
2. u 0 0 0 0 0 0 0 0 0 0 0 o0
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[K3]U¢ -

[K41u¢ =

~100-

0 0
0 0
0 0
3
0 0
0 0
0 0
~8b?
3a 0

-8a
3b

-8

-8

(A.33c)

(A.334d)



O 0 0 0 0 0 0 o 0 0O 0 0
O 0 0 0 0 0 0 o0 0 o 0 0
0 0 0 0 0 —‘—SE 0 0 0 O 0 0
-8a2
- 00 0 0 0 0 0 0 0o 0
[K] = : (A.33e)
s uf 0o 0 0 0 0 0 ©0 0 0 o 0 0
O 0 0 0 O llfﬁ 0 0 0 O 0 0
o 0 0 0 -8 0 0 0 0 0 -8 -8
-16a
0 0 0 0 0 0 0 0 ~8a 0 0
o 3 a g
O 0 0 0 0 0 0 0 O 0 0 0
O 0 0 0 0 0 0 0 O 0 0 0

| O 0 0 0 0 0 0 213—63 O 0 0 0
[K ] = ) (A. 33f)
s up o 0o 0 0 0 0 0o o 0 0 0 0
O 0 0 0 -8 0 0 0 o o0 -8 -8
O 0 0 0 0 0 0 O O 0 0 0
0o 0 0 0 0 0 0 O —"-—159-‘?- 0 0 o0
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0

0 0

0 0 0

0 0 O 15 Symmetric

. - 16b A. 34
[ T4 | (A. 34a)

15a3 |0 0 o 0 0 0 45

o -
0 0
0 0 O
0 0 0 0 Symmetric

(A.34b)




_ 16
[K3]¢¢ ) 15a®
- 16a

[0

15

15

15

Symmetric
0
0 0
0 o0 0

0 0 30 0

0 o 0 10 O
0 0 0 0 0 o0
0 O 0 0 0 0
0 O 0 0 0 o0
Symmetric

15

0 0

0o 0 ©0

0 0 0 5
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(A.34d)




[ o -
0 0
0 0 0
0O 0 0 o0 Symmetric
0 0 0 0 0 |
6 |0 0 0 0o 15 0 .
K], 6 =— (A.34e)
° ¢¢_ 1210 0 0 0 0 0 o0
0 0 0 0 0 o o0 0
0 0 0 0 0 0 0 10 o0
0 0 0 0 O o o0 o0 30 0
0 0 0 0 o0 15 0 0 0 0 o0
0 0 0 0 0 15 0 O 0 0 0 0
- -
0 0
0 0 0
o o0 o0 O Symmetric
0 0 0 0 15
60 0 0 0 0 0 w35

[Koloo = T5a5
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-1
Addition of the submatrices and multiplication by the [T] ,

-1 -1
[C and [Cu] matrices shown in Eqs. A.28, A.29 and A.30 are per-

¢

formed in the computer program. The results are the required stiffness

matrices.
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Fig. 2 Layered Elements Used to Idealize a Beam and Slab
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Fig. 4 Biaxial Stress Fields:
Continuum Approach (A) and Layer Idealization (B)
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Fig. 5 Steel Reinforcing Bar System:
Actual (A) and Idealized (B)
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Fig. 6 The Biaxial Stress Plane
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Fig. 7 General Linear and Nonlinear Concrete
Stress~-Strain Curves
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Fig. 8 Biaxial Stress Plane Regions Indicating where the Linear
and Nonlinear Concrete Stress-Strain Curves are Applicable
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Fig. 9 Concrete Failure Envelopes for the Biaxial Stress Space
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Fig. 10 Idealized Biaxial Failure Envelope with Characteristic Points
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Fig. 18 Stress Paths in the Biaxial Stress Space Corresponding
to Selected Values of the Stress Ratio
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Fig. 20 Idealized Concrete Stress-Strain Curves:
Compression~Compression Region
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