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ABSTRACT

This dissertation presents the load distribution behavior of
skewed, beam~slab highway bridge superstructures. Bridges with pre=
stressed concrete I-beams and prestressed concrete spread box-beams
are investigated. The finite element method is employed to analyze

beam~slab bridges under statically applied design vehicular loads.

A study is made of the effects of skew on the design moments
and on the lateral distribution of the loads. The effects of skew on
bridges of different widths, span length, number of beams and number
of design lanes are correlated and an empirical relationship between
skew and distribution factor is presented. The applicability of the
method of analysis to bridges with curbs and parapets, and with in-
terior-gspan diaphragms is demonstrated. The suitability of the method
of analysis to related composite steel-girder bridge superstructures,

and to continuous bridge structures is also shown.

The effect of the skew is to reduce the distribution factor
in the interior beams and increase the distribution factor for the
exterior beams, This effect is largely a function of the skew angle

and of the bridge span and beam spacing.

The effect of curbs, parapets and diaphragms is to distribute
the load more uniformly to the beams of the bridge. However, these
effects becomes insignificant for longer bridges or when the bridge

is fully loaded.



1. INTRODUCTION

1.1 Object ahd Scope of the Investigation

Skewed beam-slab bridges are common structures in modern
highway bridge construction. The live load distribution provisions for
these bridges however, are not covered in the current specifications
(Refs, 2, 3),

| Field tests of in-service beam-slab type, prestressed con-
crete bridges in Pennsylvania indicated the need to refine the specifi-
cation provisions on live load distribution for right bridges (Refs. 7,
8,16,21,22,31,57), and to include provisions for skew bridges
(Ref. 51). The investigation on simply-supported right bridges with
prestressed concrete spread box-beams has resulted in the new live load
distribution provision for this fype of bridge (Refs. 2,38). A similar
study is underway to develop the load distribution formulae for the
right bridges with prestressed concrete I-beams (Ref. 62). Howevér,
very little work has been done on skew bridges, and virtually no work
has been done on skewed beam-slab bridges with prestressed concrete

I-beams or with prestressed concrete box-beams (Ref. 63).

This investigation will extend the live load distribution
studies in prestressed concrete bridges to include the effects of skew.
Design recommendations are proposed for the I-beam bridges based on the
analyses of numerous bridges with varying width, spacing, span, number

of beams and angle of skew. These design recommendations cover the




interior and exterior beams. Due to the limited scope of the box-beam
studies, only preliminary recommendations are presented for the box-
beam bridges.

This study will also demonstrate: (1) the effects 6f curbs
and parapets in the load distribution behavior of right I-beam bridges,
(2) the effects of midspan diaphragms, or multiple diaphragms along the

span, and (3) the extension of the study to continuous bridges.

The two basic beam~-slab bridge sections utilized in this
study are shown in Fig. 1. Fig. la shows a typical cross-section of
the bridge with prestressed concrete I-beams. Fig. 1b shows a typical
section with prestressed concrete box-beams. The beams are equally
spaced, and are parallel to the direction of traffic (Fig. 2). The
design loading on the bridge is the HS20-44 standard truck shown in
Fig. 3 and described in Ref. 2. The vehicle used in thé field testing
of bridges is also shown in Fig. 3. The test vehicle simulates the
HS20-44 design vehicle. This vehicular loading is employed in the cor—
relation studies between the field test and the results of the analyt-
ical formulation.

The skew angle in this study is defined as the acute angle
between the support line and the longitudinal axis of the beams
(Fig. 2b). When the angle is 90 degrees, the bridge structure becomes
a right bridgé (Fig. 2a). A distinction, however, should be made be-
tween the skewness and the angle of skew of a bridge. For example, a
60 degree skew bridge has a small skew. but a large skew angle. On the
other hand, a 30 degree skew bridge has a large skew but a small skew

angle. -3



1.2 Previous Studies

The problem of lateral load distribution in bridges has been
investigated by many researchers in thé past. A summary of the com-
pleted research and a bibliography is reported in Ref. 63. A detailed
description of the studies in beam-slab bridges including the different
methods of analysis is given by Sanders and Elleby in Ref. 49, by
Motarjemi and VanHorn in Ref. 38, and also by Wegmuller and Kostem in
Ref. 58.

Sanders and Elleby indicated the methods of analysis appli-
cable to load distribution by investigators and discussed their re-.
sults (Ref. 49). Sanders and Elleby then used the theoretical methods
and test results of these investigators on the different types of high-
way bridges to arrive at a proposed load distribution criteria for
highway bridges. The resulting proposéls for distribution of live load
in highway bridges were complicated and not quite practical as a design

aide. The study did not include the skew bridges.

Motarjemi and VanHorn developed a method of amalysis suitable
for spread box-beam slab type bridges (Ref. 38). 1In this method, the
bridge superstructure is reduced to an articulated structure by intro-
ducing a series of beam and plate elements. Using the flexibility ap-
proach, the bridge superstructure is solved for stresses and displace-
ment. This method of analysis had been used to arrive at the newly
accepted provision on load distribution for spread box-beam

bridges (Ref. 2).




Wegmuller and Kostem used the finite element method in the
analysis of prestressed concrete I-beam bridges (Ref. 58). In the
method, the bridge superstructure is discretized into plate and eccen-
trically attached stiffener elements. The method was applied to field
tested beam-slab type highway bridges constructed with prestressed con-
crete I-beam bridges. A study of several variables that affect load
distribution was made. The authors showed that a stiffened plate
superstructure can be adequately idealized by the given model and fi-
nite element approach. The analytical modeling technique for the above

approach is given by Kostem in Ref. 29.

The finite element approach with the use of plate and eccen-
trically attached stiffener elements as applied to highway bridges was
reported by deCastro and Kostem (Ref. 13). Zellin, Kostem and VanHorn
used the method of analysis to determine live load distribution
factors for prestressed concrete I-beam bridges (Ref. 62). Distribu-
tion factors were determined for several bridge configurations with
varying width, spacing, number of beams and span length under the
critical HS20-44 vehicular loadings. Based on the results, simplified

distribution factor equations were obtained for the interior beams and

exterior beams of right bridges.

Very little experimental data is avallable on skewed beam-
slab bridges (Ref. 63). A field test comparison of an actual 45° skew
spread box-beam bridge with that of a right bridge of nearly identical

dimensions is reported by Schaffer and VanHorn in Ref. 51. A



laboratory test on a 60° skew composite bridge with steel I-beams is

reported by Hondros and Marsh in Ref. 25.

The field test results for the 45° skew spread box-beam
bridge indicated that the experimental distribution factor for interior
girders was considerably less than the design distribution factor
(Refs. 42,51). However, for exterlor girders, the experimental values
were greater than the design values. The authors in the same study
indicated the desirability of including the curbs and parapets in
future design procedures. The observation from the 60° skew composite
bridge with steel I-beams was that the skew caused a general reduction

in the beam strains of about 17 percent (Ref. 25).

Among the analytical studies in skewed beam~slab structures,
two major works are noted: the work by Chen, Newmark and Siess

(Ref. 9); and the work by Gustafson and Wright (Ref. 23).

Chen, Newmark and Siess used the finite difference method in
the analysis of skew bridges. Finite difference operators in skewed
coordinates were generated and the system of difference equations was
solved by computer. The major assumptions employed in addition to

those usually made for plates are (Ref. 9);
1. There is no composite action between the beam and the slab;
2. Diaphragms and their effects are neglected;

3. The beam acts on the slab along a line and not distributed

over a finite width;

-fm




4. There is no overhang at the edge of the bridge; the edge beams

are located at the sides of the bridge; and

5. The value of Poisson's ratio is assumed to be zero.

Influence values for moments and deflections are computed for
various ratios of spacing and lengths, relative stiffness of the beam
to the slab, and for different angles of skew. Influence surface for
moments and deflections are then derived for some of the structures
studied. Moment coefficlents for skew bridges subjected to standard
truck loadings were determined and some general relatlonships pertain-

ing to design had been derived.

Because of the assumptions, the analysis procedure and re-
sults are applicable to noncomposite steel I-beam bridges. For com-
posite bridges, the procedure could still be made applicable by using
the composite section in the beam stiffnéss computation. However, the
accuracy of the results with this approach cannot be assessed. More-
over, because of the third assumption, the width of the beam which af-
fects the load distribution in prestressed concrete I-beam bridges as
reported in Ref. 62, cannot be taken into account. Finally the analy~

sis procedure was carried out only for five-beam bridges.

Gustafson and Wright (Ref. 23) presented a finite element
method of analyéis employing parallelogram plate elements and eccentric
beam elements. Two typical composite skew bridges with steel I-beams
were analyzed and the behavior due to the skew, and the effects of add-

ing midspan diaphragms were illustrated. The parallelogram plate

-7-



elements used did not satisfy slope compatibility requirements at ele-
ment boundaries and therefore, accuracy could not be agcertained. The
work was not carried out to cover load distribution analysis of general

skewed beamslab structures.

The other works on skew bridges are summarized in Ref. 63.
Most of these reports on skew are on skew slab bridges, skew cellular
‘bridges, and skew bridges with only edge beams. Thus, their contribu-.

tions are not directly applicable to the présent study.

1.3 Method of Analysis

The finite element method is chosen as the analytical basis
for this research.. Among the many methods of analysis as listed in
Ref. 63, and the drawbacks'of some of the methods as mentioned in
Section 1.2, the finite element method of analysis can model the skew
bridge structure realistically. The method can take directly into ac-
count the loading procedures and information necessary for a lgteral
load distribution analysis. The loading procedure involves the appli-
cation of the design vehicular load anywhere on the bridge structure;
and the information necessary is. the beam and slab moments at the

critical sections.

There are two basic approaches to the finite element method
of analysis: (1) the stiffness approach, and (2) the flexibility ap-
proach. It has been found that for complex structures of arbitrary
form, the displacement method over the flexibility method provides a

more systematic formulation (Ref. 65). Consequently the computer
-8



programming is simplified and an efficient solution of large and com-
plex structural systems 1s obtained. The displacement approach is

therefore adopted in this study.

The basic concepts and steps necessary in the deyelopment of
the analysis procedure for a finite element analysis avxe given in this
Section, . A general formulation is presented. Its extension to the
elements used in beam-slab superstructure is shown in subsequent

chapters.

1.3.1 Introduction to the Finite Element Method of Analysis

The basic concept of the finite element method is that the
structure may be idealized into an assemblage of individual structural
components, or elements. The structure consists of a finite number of
such elements interconnected at a finite number of joints, or nodal

points (Ref. 65).

The finite element method of analysis may be divided into the
following basic steps: (1) structural idealization, (2) evaluation of
element properties, (3) assembly of the force displacement equations,

and (4) structural analysis.

Structural idealization is the subdivision of the original
structure‘into‘an assemblage of discrete elements. These elements are
generally simple structural components of sizes and shape that retain
the material and physical properties of the original structure. The
proper structure idealization is obtained by using element shapes that

. follow the shape and boundaries of the original structure.
. =9a



The structural idealizations for the beam-slab bridge struc-
tures considered in this research are shown in Figs. 4 and 5. Fig. 4
illustrates the idealization of a beam-slab bridge with prestressed
concrete I-beams into plate elements and eccentric beam elements. The
plates are general in shape and follow the beam delineation and struc-
tural boundaries. The beams are eccentrically attached to the plate

elements along the element boundaries.

Figure 5 illustrates the structural idealization of a
spread box-beam bridge. Plate finite elements model the deck and the
top and bottom plate of the box~beams. Web elements model the web of

the box-beams and interconnect the top and bottom plate elements.

The finite element idealization requires that each element
deform similarly to the deformations developed in the corresponding
region of the original continuum. This is accomplished by prescribing
deformatién patterns which provide internal compatibility within the
elements and at the same time achieve full compatibility of displace-

ments along the boundary (Ref. 65).

Since the elements are interconnected only at the nodes, the
elastic characteristics of the element must be adequately represented
by the relationship between forces applied to a limited number of nodal
points and deflections resulting therefrom. The force deflection rela-
tionship}is expressed conveniently by the stiffness properties of the

finite element.

~10=




Once the element properties have been defined, the analysis
of stresses and deflections become a standard structural problem. As
in any structural analysis, the requirements of equilibrium, compati-
bility and force displacement relationship must be satisfied by the
solution. In the finite élenent model, internal element forces must
equilibrate externally applied forces at -the nodes and'element deforma-
tions must be such that they are compatible at the nodes and boundaries
before and after the loads are applied. It should be noted that this
analysis procedure does not insure equilibrium of stresses along ele-
ment boundaries. In general stresses in adjacent elements are not

similar. Intuitively, finite elements that satisfy compatibility

along the boundaries would give better results.

1.3.2 Basic Equations of the Finite Element Theory

The displacement method of analysis consists basically of the
following operations (Ref. 65). First, the stiffness properties of the
individual structural elements are evaluated, usually in a convenient
local coordinate system. Second, the element stiffness matrix is
transformed from its local coordinate system to the global coordinate
system of the complete structural assemblage. Third, the structural
stiffness matrix at each node is assembled by the superposition of the
individual element stiffnesses contributing to the nodal point.

Fourth, equilibrium equations are formulated by expressing the rela-
tionship between the applied forces {R} at the nodes and the resulting

nodal displacements {r}:

=]l



{R} = [K] {r} (1.1)
The system of equations is solved for the unknown displacementsA{r}
with the cognizance that the stiffness matrix [K] is generally sparsely
populated, banded and well conditioned. Finally element deformations
are evaluated from the computed nodal displacements by kinematic rela-
tionships. Element forces are then determined from the element defor-

" mation by means of the element stiffness matrix.

From the assumed finite element deformation pattern, the
stiffness properties of any element can be evaluated in the following

procedure (Ref. 65):

1. Express the element displacement field {v} in terms of dis-
placement functions [M] and generalized coordinates {al}:
v} = [M] {a} (1.2)

The number of independent functions in M should equal the

number of nodal point displacement components.

2. Evaluate the nodal displacements in terms of the generalized

coordinates:

‘{vi} = [A] {o} | (1.3)

The matrix [A] is obtained by evaluating the displacement

functions at the nodes.

3. Express the generalized coordinates in terms of the nodal
displacements by solving for {a} in Eq. 1.3:
o} = A1 (v} (1.4)

«l2=




4, Express internal displacement field in terms of the nodal dis-

placements by substituting Eq. 1.4 to Eq. 1.2:

{v} = ] [a17t {v,} (1.5)

5. Evaluate the strain {e}
{e} = [B] {a} (1.6)

where [B] is obtained from Eq. 1.2 by the appropriate differ-

entiation of the displacement function.

6. Evaluate the stress field {0} in terms of the nodal point

displacements:

1

{o} = [p] {e} = [D] [B] [A]H” {v;} (1.7m

The specific characteristics of the finite element material

3

are represented in the stress-strain matrix [D].

7. With the use of the principle of virtual displacement, evalu-

ate the element stiffness matrix [k]:

(k] = [a71] f (817 [p] [B] av [A]”* (1.8)

Equation 1.5 expresses the displacement field in terms of the
nodal displacements. With the use of special coordinates, the dis-
placement function can be expressed directly using the concept of
interpolation polynomial (Refs. 5,33). Steps 2 to 4 and the inversion
of matrix [A] can be bypassed with the proper choice of interpolation

function. Thus,

=] 3=



v} = 191 Iy} (1.9)
where the matrix [®] contains the necessary interpolation functions
which are based on shape functions assumed for the element (Refs. 17,33),

The nodal strains can then be obtained by differentiation of
Eq. 1.9 and evaluating the strains at the node points. Hence,

'{ec} = [@c]'{vi}} (1.10)

where the columm vector’{ec} contains the components of the strain at
the nodes and the matrix [Qc] is the matrix [®] differentiated and

evaluated with corresponding nodal point coordinates.
Given the nodal strains, the strain field can be expressed

by a strain interpolation function [®€]

e} = [@el'{ec} (1.11)

The strain interpolation functions in general are of an order lower

than [®] and describes the strain variation within the element.

By using Eq. 1.10 and Eq. 1.11, it can be seen that,
e} =101 [0.) {v;} (1.12)
wherein the strains are expressed directly in terms of the nodal point

displacements.

Application of the principle of virtual displacement: leads to

the following form of stiffness matrix expression (Ref. 33).

1=




_ T T
[K] = (2] f (01" (D1 (8.1 av [e] (1.13)

The resulting relationship therefore between element forces

{Fi} and displacements {vi} at the nodes can be written as

'{Ei} = [k]'{vi} (1.14)

where [k] is given by Eq. 1.8 or Eq. 1.13. The stiffness matrix is of

the form

e

11

L7 I (98]

[k] = . ° * (1.15)

r“ L] ° L] L] ° ° L] k‘"
Iy 4] [k,

e

S—

in which [kii], [kij]’ etc,, are submatrices of size £ x % where % is the

number of force components or degrees of freedom considered at a node.

1.3.3 Static Condensation Procedure

The additional:nodes necessary in order to make use of all

the temms of the assumed displacement functions can be conveniently
located inside the element (Ref. 17). These interior nodes can be
eliminated from the stiffness expression given in Eq. 1.15 by a static
condensation procedure (Refs. 17,18). This procedure is particula'rly
useful in complex-shaped structures where the interior nodes would be
practically unmanageable in terms of input preparation (Ref. 18). 1In
terms of computational effort, a decrease in the size of the problem

can be obtained. «15=



The element stiffness equation expressed by Eq. 1.15 can be

written in the following form:

el Tl B e —- (1.16)
Fr *IE ! krr t V1
where .4‘{FE} = Applied nodal forces at extemal nodes
'{FI} = Applied nodal forces at interior nodes
'{VE} = Nodal displacements at exterior nodes
‘{VI} = Nodal displacemeﬂts at interior nodes

kEE’ kEI’ kIE’ kII = the partitioned element stiffness

matrices corresponding to'{FE} and {FI} withf{vE} and‘{vr} respectively.

Solving for'{vI} in the second part of Eq. 1.16 and substi=
tuting the result to the first part of Eq. 1.16 results in the following

expression:

. - -1 .
{FE} = Ikpp kpq ] {FI} = [kpp = kpp kpp  kpgl {vE} (1.17)

Defining the modified force vector as:

HE'Y = R - Dk kII"] {F} (1.18)

The element stiffness matrix for the element with the reduced number of

nodes is: , —y
k'] = [kEE - kEI kII kIE] (1.19)

=] G



1.3.4 Assembly and Solution

The condition of overall equilibrium for the element is satis—
fied by Eq. 1.14. It is then necessary to establish equilibrium condi-

tions at the nodes of the complete structure.

The system of nodal displacement for the element may be
listed in the order of the nodal displacement of the structure {r}.
Corresponding to these nodal displacements are the external forces on

the structures applied at the nodes: {R}.

At a typical node i, the sum of component forces contributed
by the elements meeting at node i is equated to applied nodal force at

Ri' Thus, . ‘
{R,} = ¢ {F.} (1.20)
1 1

The summation is for all the elements at node i.

Using the sub-matrices of Eq. 1.15, the above equation can
be rewritten for all the nodes n (Ref. 64)
M

'{Ri} = I

[k, ] {r} (1.21)
m=i

The summation in Eq. 1.21 is taken over all the elements M of the struc-
ture. If the element contains no sub-matrices corresponding to node i,

its contribution to the summation is zeyo,

The system of equations resulting from Eq. 1,21 can be solved
once prescribed support and boundary conditions have been imposed.

Where components of the displacement at a node are zero, the number of -
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equilibrium equation can be reduced by deleting the corresponding equa-

tion corresponding to that particular component.

The time consuming procedure of eliminating terms in Eq. 1.21
and reorganizing computer storage to account for boundary conditions
can be avoided by using a numerical technique. Instead of eliminating
the equilibrium equation at which displacement is specified, the diago-
nal term of the assembled matrix [K] at the node of the associated dis-
placement component is multiplied by a large number (Refs. 58,64). The
resulting system of equations is then solved for all displacement
components.

Once the solution of unknown displacements has been obtained,
it is a matter of substitution to compute internal stress and forces by

Eq. 1.7.

‘1.4 Development of Bridge Design Criteria

The 1971 AASHO Bridge Specifications (Ref. 1) provides the
live load distribution factor equation for which the interior and
exterior beams of beam-slab bridges must be designed. The expressions
are different for different types of bridges, and are functions of the
center-to-center spacing of the beams only. In 1973, AASHTO adopted
the new specification provision including the width, length, number of
lanes, and number of beams among the parameters governing the load
distribution in spread box-beam bridges (Ref. 2). A similar refinement
to the specification provisions for prestressed concrete I-beams is

given in Ref. 62.




This research is aimed at developing the specification
provisions that will include the skew among the load distribution
criteria; Three major steps are involved: (1) the theoretical devel-
opment of an analysis procedure suitable for genefal skew beam-slab
structures subjected to vehicular loadings, (2) the application of the
method of analysis to highway bridges that represent general beam—-slab
bridge configurations; and from the results, (3) development of a
simple expression for the determination of design load of interibr and

exterior beams.

The analytical developments are presented'in Chapters 2 and
3. The application to highway bridges with prestressed concréte I-beam
bridges is presented is Chapter 4 where the development of a simplified
equation is also shown. The additional theoretical development for the
analysis of box—beam}bridges is presented in Chapter 5.V The applica-
tion to highway bridges with spread box-beams and the development of a

simplified design. equation are also presented in that chapter.




2. ANALYSIS OF SKEWED ELASTIC PLATES

2.1 Introduction
Plate problems with arbitrary geometrical boundaries are in-

variably complex and difficult to analyze. Their solution however, is
of considerable importance in enabling the construction of safe and
efficient structures like skew slabs, skew bridges, swept wings and
skew-shaped floor systems. The clagsical solutions, e.g. theory of
elasticity, for these problems are limited; and, in general restricted
to the very simple cases. However, the finite element method is power-
ful enough to handle arbitrary geometry, boundary conditions and load-
ing configurations. The finite element approach to these types of

problems has already been demonstrated (Refs. 10,11,18,35,56,64).

. This chapter presents a finite element analysis technique
for skew plates. The formulation has been kept general enough to
permit its extension to skew, eccentrically stiffened structures (see
Chapter 3). Because of the eccentricity of the beams to the plate in
these structures, the plate develops in-plane and plate bending re=
sponse. Thus, both the in~plane and plate bending analyses are

included.

The elements representing the in~-plane and out-of-plane be-
havior of the plate will make up the basic plate finite element that
is used in the analysis of general stiffened plates in Chapter 3,
skew bridges with prestressed concrete I-beams in Chapter 4, and skew

bridges with prestressed concrete spread box-beams in Chapter 5.



2.2 Skew Plate In-Plane Analysis

The skew plate also known as a parallelogram is a special
case of a quadrilateral plate when opposite sides are parallel
(Fig. 6). The acute angle between two adjacent sides is called the
skew angle as shown in the figure. The rectangular plate is a special

case of the skew plate when the skew angle is 90°.

2.2.1 Methods of Solutions

The solutions to skew in-plane problems have been airived at
by using the theory of elasticity in rectangular,oblique and polar co-
ordinate systems (Ref. 37). As reported by Morley in Ref. 37, solu-
tions in rectangular and oblique. coordinates have been obtained by
Hemp, Favre, Lardy and Theodorescu; and solutions in the polar coordi-
nate system have been obtained by Coker and Filon,IWilliams, and
Mansfield. Solutions in terms of the Airy stress‘function expressed
in complex variables, trigonometric series, and infinite series have

been obtained by Green and Zerna (Ref. 20) and Pickett (Ref. 44).

2,2.2 Assumptions and Basic Equations

The skew plate under any in-plane forces is assumed to be a
plane stress problem. Stresses Oy 0& and Txy and the generalized
forces Nx,A Ny' and ny in an infinitesimal glement are shown in Fig. 7.
The components.of stress and generalized forces shown in the figure
indicate the assumed positive direction. The generalized forces are

the stresses integrated over the thickness of the element.
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The displacement at any point of the plate is defined by the

components of the vector field {v}:

. u
{v}l = [ ] (2.1)
v

where u and v are in the x and y directions respectively. The strain

-field at any point is defined from the displacement field by the

relationship:
A ( 3 h
u
. Cxx ox
: | ov
= € = o (2.2
€=<e p=g XS (2.2)
du , dv
ny oy + ox

\. J \.

where € € are the well known components of strain.
xx? YY’ ny mp

The usual stress-strain relationship as defined by Eq. 1.6

for the general orthotropic case is given by Ref. 64:

( 3 ~ - n )
Gx n n\)z, 0 E-:x
E :
{o p=——2—|mn 1 0 e e o (2.3)
y (l_n\)Z) 2 y
2
0 0 1 -ny?
Xy m( vy,) Yy
\ J — - \ /
where E
n= 3zt
2
it
m=g
2
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in which E1 and E2 are the principal elastic moduli in the x and y

direction, v2 is the Poisson's ratio, and G is the shear modulus.
2

For the isotropic case, E1 =E,V =V, andm = L

) T2+ V)¢

2.3 In-Plane Finite Element Analysis of Skew Plates

2.3.1 Geometry and Displacement Field

Consider a quadrilateral in-lane finite element as shown in
Fig. 8. The local coqrdinate‘system with the origin at the centroid of
the element is indicated by { and 7. The nodes are numbered counter-
clockwise with the node at the centroid being the fifth node. The
edges 1~2 and 3-4 of the quadrilateral are represented by { = -1 and

= 1. The edges 2-3 and 4~1 are represented by 7| = =1 and 7| = 1.

The in-plane element has eight external and three intetrnal
degrees of freedom (Fig. 8). The external degrees of freedom are the

displacements u, and Vi specified at the external nodes i, 1 = 1 to 4.

i
The three internal degrees of freedom are the displacements u5 and v5
and the strain ¥xy. The displacement u5 and v5 are specified at the
fifth node while the strain ny is assumed to be constant throughout
the element. This element was originated by Doherty who designed the

element based on physical concepts and was derived by Williams using

concise variational formulation (Ref. 59).

The geometrical relationships between the global coordinates
and the local coordinates can be expressed in matrix form by the fol-

lowing expressions:



X ) 0 X,
X 1
{ } = (2.4)
y 0 o V. ~

1
3 a+ cci) a1+ nni)

]

L=
fi

1
F(+zz) (1 +m)

in which X and y; are the global coordinates of node i, and ng and Ci

are the local coordinates of node i.

The displacement function for the element is assumed to be a
linear shape function for the corner points and a quadratic interpola-
tion function for the interior point. The internal shape function
selected is the quadratic interpolation scheme with vanishing values at
the boundaries (Ref. 59). Thus, Eq. 1.9 in Section 1.3 for this ele-

ment can be written as follows:

u £ 0 f 0 f 0 f 0 £ 0 u
1 2 ) 4 5 i
= (2.5)
v 0 f 0 £ 0 £ 0 f 0 £ v
1 2 3 b 5 i
where,
u T
i
= U VvV u Vv u v u Vv u v (2.5a)
v, 1 1 2 2 8 3 4% 4 5 5
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and, £ =7 Q-0 @-n (2.5b)
£=p@+D - (2.5¢)
E =7 A+D @+ (2.54)
£, =2 -0 @+ (2.5¢)
f =(@1-2%) (1-n?» (2.5f)

2.3.2 Derivation of Element Stiffness Matrix

The strain field can be derived from the standard strain dis~
placement relationship. With the assumption of constant shear strain
and with the additional strain degree of freedom, the strain components

can be written (Ref. 59)

r € x u o0 O F u,
y eyy L= 0 VvV 0 4 v+ (2.6)
ny 0 0 1 o
L J L 4J v J
where o E)fi
U = I (2.6a)
Bfi ‘

and 0 is the generalized coordinate associated with the constant shear
strain degree of freedom. The derivatives-of the functions in
Eqs. 2.6a and 2.6b can be written with the help of the chain rule

(Ref. 45):
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Y- y _ i 3y
i_ 9% o on 9z 2.7
X  dx 3y _ 3x 3y )
14 on an 3¢
G T ML
1_59n on o " 9ot (2.8)
oy & 3y _ Bx | 3By :
.14 on on 14

The evaluation of the element stiffness for the resulting
finite eleﬁent model is given in Appendix A. The final stiffness
matrix is obtained by the application of the static condensation proce-
dure on the interior node as described in Section 1.3.3. The element

is known as Q8D1ll.

The explicit integration of the stiffness matrix integral is
a lengthy process and difficult. The usual procedure in this case is

to use the numerical integration procedure (Refs. 45,59,64).

In the procedure, the terms of the matrices are evaluated at
several points call integration points. The Gaussian quadrature formu-
lation is found to be most useful for the present problem. In the
formulation, the polynomial function is integrated as the sum of the

weighted values at Specified points.

‘ 1
Thus, a function f—i f(z)dz can be replaced by a summation

I~MmB

1
f11 f(r)dag = W £(a)) (2.9)

j=t



where Wj are the weight coefficients and aj are the values‘of the

~function at the n specified points.

The double integral of the form

I= j‘l J‘l £ (¢,M) dC dn (2.10)

can be replaced by the following summation (Ref. 64):
n n

I = W, W, £ .»b, 2.11
izi jzé ]t (aJ’ 1) { )

The numerical values of the coordinates at the integration
points and the weight coefficients for different values of n are
given by Zienkiewicz (Ref. 64). For this element, William has shown
that the 2 x 2 Gaussian quadrature formula provides better results
in stiffness than the improved 3 x 3 Gaussian integration scheme
(Ref. 59)., The coordinates of the integration points are shown in

Fig. 9 and the weight coefficients are equal to 1 (Ref. 64).

The  following should be noted in connection with this
element. First, since a different shape function is used to describe
individual displacement and strain components, the variation of
displacement is not homogeneous. The stiffness property of the
element is therefore directional. Secondly, monotonic convergence
and boundedness is lost according to the Melosh criterion (Ref. 34).
This criterion requires that interpolation function of internal nodes
must be lower than the external node. However, this element has
been shown to give more flexible and better results among the 8

degree of freedom family displacement models (Ref. 59).



The Q8D11 element has been tested and compared with other
finite elements by William (Ref. 59). .The same study showed the
efficiency and accuracy of the element among the other finite
elements. This element will be combined with the plate bending
element in Section 2.5 to make up the basic plate element used in
this study. Numerical examples are provided to illustrate the

accuracy of the element.

2.3.3 Numerical Examples and Comparisons

The accuracy of the finite element solution for rectangular
plate problems as compared with theoretically exact answers has been
reported and shown by Zienkiewicz, and Tottenham and Brebbia (Refs.
56,64) ., Unfortunately, very little data is available for skew plate

problems except for the very simple cases.

The method of analysis must be applicable for all angles of
skew. Therefore, the first test example is a rectangular plate under
uniform edge loading and under pure shear loading. The plate proper-
ties and dimensions are shown in Fig. 10. The skew angle is 90° and
the exact solution can be found from the theory of elasticity. The
results are tabulated in Tables 1 and 2. It can be noted that uni-
form strain for these loadings is accurately predicted by the element.

The CST, ‘that is, constant strain triangle (Ref. 52), finite element
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solution is also shown in Tables 1 and 2 for comparison. The CST dis-
cretization in this example was with the use of 8 triangular elements

formed by connecting two opposite corner nodes of the complete plate

and connecting the midpoints of opposite sides.

The second exémple i1s a skew plate under uniform edge loading
as shown in Fig. 11. The state of stress for this proSlem'is uniform
throughout the element and can be found directly from equilibrium. The
example illust:ates the applicability of the element to platé problems
with a parallelogram shape. The discretization into four rhombic ele-
ments is shown in Fig. 1lla. The discretization into eight triangular
elements for the CST analysis follows the same procedure as the first
example. The numerical results are tabulated in Table 3. Since the
exact solution is that of constant strain, the analytical results veri-

fied the analytical model.

The third example is a skew plate under in-plane concentrated
loads. The plate shown in Fig. 12 is fixed at the supports and sub-
jected to two concentrated loads near midspan. This problem is chosen
to illustrate the accuracy of the element under this type of loading.
There is no exact solution for this problem. The solutions are pro-
vided by using linear strain equilateral -LSE (Ref. 60), constant
strain triangle -CST - (Ref. 52), and the reported values from Ref. 59.

The results are tabulated in Table 4.

Q8D8 refers to the quadrilateral element with only four nodes
and two degrees of freedom at each node. Q8D11(3) refers to the de-
rived finite element using the 3 x 3 integration rule. The Q8D11(2)
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refers to the element formulation using the 2 x 2 integration rule.

The accuracy of the element using the relaxed integration rule

can be seen from the table.

The final example is the problem of the beam with inclined
faces under a concentrated load at midspan. The structure is shown on
Fig. 13a and the two selected discretizations are shown in Figs. 13b
and 13c. The analytical solution is compared to the solution by
Sisodiya and Cheung (Ref. 53) who used a higher order element that
gives good results for the given type of structure and loading. The
‘results are tabulated in Table 4. The advantage of the element over

the standard Q8D8 is made obvious in this example.

It should be emphasized that this example 1s the most severe
case the element will be subjected to. In the application of this
element to the beam slab problem, the element will represent the
in-plane behavior of the deck slab. As such, the typical type of load-
ing would be in-plane loads in the direction of span thus producing
column behavior rather than beam behavior. The results of this example
are the reasons for the choice of another element to represent the

in~-plane behavior of webs for box-beam bridges in Chapter 5.

2.4 Skew Plate Bending Analysis

2.4.1 Methods of Solutions

The exact solution to the differential equation of skew

plates in bending is difficult to obtain if at all possible. For the
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simple cases, the problem is solved by direct integration of the dif-
ferential equation under associated boundary conditions, or by the
application of conformal mapping (Ref. 27). Subsequently, a number of
studies have been concerned with investigations of the methods of solu-
tion, the most common being the series solutions and the method of
finite difference (Ref. 26). Solutions in oblique coordinates, trigo-
nometric series, and finite difference solutions by several authors are
listed and referenced by Morley in Ref. 37. Solutions by polynomials
and trigonometric functions have been obtained by Jumppanem (Ref. 27)

and Kennedy and Simon (Ref. 28).

Based on model tests Rusch (Ref. 48) produced design data in
the form of influence surfaces for bending and torsional moments of
simply-supported slabs with various angles of skew. A series of thir-
teen skew slab models of different side to length ratio were investi-
gated. The slab models tested were all simple span structures and made
of gypsum plaster. As in any model study, it was not possible to inves-

tigate all parameters.

One of the earliest solutions using the finite difference
methods was made by Jensen (Ref. 26). This was followed by Chen et al.

in 1957 and by Robinson in 1959 (Refs. 9, 47).

Within the past decade, the finite element technique has been
employed successfully to analyze plates of arbitrary shape (Refs. 5,10,
18). Zienkiewicz and Cheung, and Melosh used the technique to analyze
plates in bending (Refs. 34,64) using rectangular elements. Based on
the same deformation pattern used in the rectangular plate element



Dawe (Ref. 11) developed the stiffness matrices for parallelogram ele-
ments. Subsequently triangular elements were introduced, the most com-
mon being those by Zienkiewicz and Cheung (Ref. 64) and by Clough and
Tocher (Ref. 10). Further improvements in accuracy were subsequently
obtained by Felippa and Clough (Ref. 18), and Bogner et al. (Ref. 5)

with the use of refined and higher order elements.

2.4.2 Assumptions and Basic Equations

A typicalvelement from a skew plate structure is shown in
Fig. 14. »The element is of differential dimensions whose sides are
parallel to the orthogonal x-y system of coordinates. The reference
plane is assumed to lie on the mid-plane of the plate. Forces, dis-
placements and the adopted sign conventions are shown in the positive
directions in Fig. 14. The plate is assumed to be elastic, homogeneous,
orthotropic and of uniform thickness, t. The standard assumptions in

small deflection theory of plates are employed:

1. Stresses normal to the plate are negligible

2. Deflections are small relative to the plate thickness

3. Deflection in the z direction is a function of x and y only
4. Shear strains Yxz, Yyz in the x and y faces of the element

and in the direction of z are equal to zero.

The consequence of the above assumptions is that normals to

the plate remain normal after deformation.
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From the above assumptions, the displacement equations may be

written as:

w-z¥ | (2.12a)

u(z) Z 5

V(z) (2.12b)

where U(z) and V(z) are the displacement components of the point at
distance z from the reference plane; and u, v, and w are the displace-

ment components of the point on the reference plane.

Equations 2.12a and 2.12b can be differentiated to obtain the

relationship of the strains to displacements:

( ) r ou 32w )
Ex Rl
ov 32w .
e =d _ 0w . (2.13)
Rl A
' 22-+~§Z - 2z w_
nyJ L 3y © ox 9xdy
~ J

The stress—-strain relationship given by Eq. 2.3 in Section 2.2.1 can
then be rewritten explicitly by substituting the above expressions for

g ey and y_

Xy
2 2
o =2¢C du _ z &w +C & _ z 3w (2.14a)
X 11 ox 3X2 12 3Y ay2 :
‘ \ » ,
o =0 du %W ) 4 v 8w (2.14b)
y 21 o0x 9x2 22 oy 3y?



ny= CSS (

where C , C , C ,.C
11 12 21 33

Eq. 2.3.

Ju
oy +

ov

9x

3%w
- 2z dx9y )

(2.14¢)

are the material constants evaluated from

The stress resultants per unit of the plate shown in Fig. 14b

are found by integrating over the thickness.

Thus,

t/2
5 - [
x ; -t/2

t/2
M/
y -t/2
t/2
M=/
Xy -t/2

c_ z
X

g 2z
y

dz

dz

z dz

(2.15a)
(2.15b)

(2.15¢)

Using Eq. 2.14 and the assumption of plane sections, the

above equations can be integrated easily resulting to the following

" equations in matrix form:

X 11

12

22

=3l

33

-2

ox3dy |

(2.16)




where

c t?
D — -—-1-1——.
11 12
c 2t:3
D =D - -
12 21 12
c t?
D = —af "

33 12

Equation 2.16 is the explicit form of Eq. 1.7 applied to

plate bending.

2.5 A Finite Element Analysis of Skew Plates in Bending

In this section, the general quadrilateral element is pre-
sented. The element is developed by Feiippa and reported in Ref. 18.
This element is employed in the reported investigation. The element
has been tested under a variety of boundary conditions and the results

compare favorably with the theory of elasticity solutions (Ref. 18).

The quadrilateral element is a conforming element formed from
four triangular elements which satisfy deflection and slope continuity
along the boundaries. Each one of the triangular elements is known as
the LCCT-11 or the linear curvature compatible triangle with eleven
fundamental degrees of freedom. The LCCT—il is a simplified form of
the triangular element LCCT-12 %hich has twelve degrees of freedom.

The LCCT-11 is obtained from LCCT-12 by imposing the linear variation

of the slope normal to one side of the triangle.
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The element formulation is outlined in the following sec-

tions. Detailed derivations can be found in Refs. 17, 46 and 50.

2.5.1 Element Coordinate Systems

The geometry of a triangular element can be expressed by the
projected dimensions in cartesian coordinate system (Fig. 15), by
intrinsic dimensions (Fig. 16), or by dimensions in the natural coordi-

nate system (Fig. 17).

In Fig. 17, Al, A2, A3 are the three subtriangles subtended

by point P such that

b

i

Ci =1 (2.17)

where the index i = 1, 2, or 3 designates the number of the corner

opposite to Ai and A is the total area of the complete triangle.

From Fig. 16, Eq. 2.17 can also be written as

(2.18)

where n, is the normal distance of ‘point P.and hi is the height of
node i from side i. These relationships are used to simplify the

expressions in the element stiffness formulations.

The relationship between cartesian and natural coordinates

is expressed as follows (Ref: 33):




) — = AR
1 1 1 1 Cl
< x > = x X, x| Cz \ (2.19)
y Yl Y2 ys Cs
. J L -\ J

where Xy and y, are the coordinates of the nodes i, i=1, 2, 3.

The inverse relationship can be obtained by solving for Cl,

Cz, and Ca from Eq. 2.19:

C 2A b a 1
1 1 1 1
1
g €2 o 2A .'ZA2 b2 32 4 X P (2.20)
2A b
L C3 J 3 3 aa.A i y J

where a, and bi are the projected dimensions shown in Fig. 15.

i
The derivatives of a function f(cl, Cz’ ca) with respect to
the x, and y axes and a tormal “1 can be obtained by the chain rule
]

(Ref. 33):

of _ 1 of of _ oy . of
on, — 2A (aci Q'i+32;j (di jz":'L)‘ ‘ack di) (2.21)

af _ 1 [af Of L of
s = 2 (BC b1 + 5 b2 + Y3 3) (2.22)

1 - 2 3

f 1 [ae B¢ f
v = 2A (‘acl a + 5z a, + aca as) (2.23)
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where coordinates di and li are shown in Fig. 16.

The above relationships are used in the formulation of the
element displacement field and stiffness properties in Sections 2.5.2

and 2.5.3.

2.5.2 Construction of the Element Displacement Field

The twelve fundamental degrees of freedom for the LCCT-12

element at the external nodes of the triangular element are shown in

Fig. 18. These can be expressed as components of the nodal displace-

ment vector {r}: :

. T - .
e} = w0, 8, w, 0,0, w 0,6,80,86, 07 (2.24)

where wi, exi and eyi are the transverse displacement, rotation about
the x-axis, and rotation about the y-axis respectively of node 1i. eu,
95 and 96 are normal slopes at the midside nodes of the element

boundaries.

As proposed by Felippa (Ref. 17) the element is subdivided
into three subtriangles or subelements as shown in Fig. 18. Each sub-
element has three displacement components at each node and one rotation
component at the midpoint of the outer side (Fig. 18). Point 0 is
located at thé centroid of the complete triangular element. Indepen--.

dent cubic displacement functions are then assumed for each subelement.

The nodal displacements for each triangle can be listed as

follows:



o T .
e (1) R ; ,
{? } {Wz exz eYZ ws exa eya WO gxo eyo e5} (2.25a)

@y '
{(x*’} ={w. 6. 6. _w 6 6 w 6 6 01} - (2.25b)

38 X3 y3 1 X1 y1 0 X0 YO 6

T ; ‘ i
'{r(a)} ={w 6 6 w 6 6 w 6 6 061} (2.25¢)
1 X1 Y1 2 X2 y2 0 X0 yo 7

Since each subelement has ten degrees of freedom a complete

cubic polynomial expression can be used (Ref. 18)., Thus for subelement i:
v = ey Wy (2.26)

where [Q(i)] is the interpolating polynomial that relates displacements
within the element to the nodal displacements as defined in Eq. 1.9.
1)

The explicit expression for ¢ for i=1 has been derived and presented

by Felippa in Ref. 18:

z2 (3 - 2515'+ 6u'(‘) LTt

2 W - ( )C ) + (b(l) (1) (1)) 223

1 ] 2
2 @, - <1> W, (1) KO}
t2 (a, )t t) + (a a'h g

2 _ (1)
C2 (3 2C2) + 6A ClCzCa

T
2@ o | 2 Wy - (‘)c Y+ 0 ey p o o
3 3 3 1 2 3

2
(1) ey
2(a1 Cs— c)+

2 -
%, @3 2C3)

1)y _ (1), 1)
(a, 3, Ay ) BEE,

22 Mg - Mgy
2 1 2

éZ (a(l)c - a(l); )
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where, A, =
and, H, =1-2

The above interpolation function is a complete polynomial
based on the choice of nodal system for n=3, i.e. cubic polynomial

(Refs. 17,33).

The subscripts used in the above correspond to the renumbered
node in Fig. 19; and therefore the function is the same for the other

elements except for the superscript.

The vector of all the nodal displacements is. expressed
in the order given by Eq. 2.25. The displacement w of the complete tri-

angular element can then be expressed by:

[ )] (s o |-
‘e (o]
r
@b oo o e (2.28)
e (o]
w® o @ Fo
L .j | © o

‘where the superscripts refer to the subelement number and

@e refers to.the interpolation polynomial associated with

the displacements {re} at the external nodes, and

® refers to the interpolation polynomial associated with

the displacements'{ro} at the internal node
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Transverse displacement of two adjacent subelements are iden-
tical along the juncture line. However, along this line their normal
slopes differ. To impose slope compatibility along the internal edges,
additional nodes 7, 8 and 9 are located ét midpoint of these edges
(Fig. 20). The normal slopes are computed from Eq. 2.21 and evaluated
at nodes 7, 8 and 9. The resulting compatibility equations are then
used to evaluate the displacements at the internal node'{ro} in terms

of the displacements at the external nodes'{re}.

The final displacement field is then written only in terms of

the external degrees of freedom:

EEON B e
i O 6(%) A{r} (2.29)
(3) NOR
L) LY
A1)

The explicit expression for ¢ is given in Appendix B for

ready reference.

2.5.3 Derivation of the Element Stiffness Matrix

The stiffness matrix for each subelement can be derived fol-
lowing the procedure outlined in Section 1.3.2 together with the dis-

placement function given in Eq. 2.28.

From Eq. 2.16, {e} is defined to be:



e} w4 (2.30)

-2

L 0x0dy J

and is known as the curvature field.

For subelement i, the curvature field can be obtained by pro-
per differentiation of the displacement function given by Eq. 2.28, and

the use of Eqs. 2.22 and 2.23

A(4) |
e®y - 0% e} = (7D {2} (2.31)

0x9y
- -

-2

The nodal values of the curvature can be obtained by evalu-

ating Eq. 2.30 at the nodes. .Thus
'{éii)} - [@éi)]'{r} (2.32)

where'{ééi)} is the vector of nodal curvatures and [@él)] is the matrix

[Tcl)] evaluated at the node points of element i.



The linear curvature variation within the subelement can now
be expressed in terms of the nodal curvatures by a linear interpolating

function [@e] such that

where i )
¢ ¢, &t 0 o o0 o0 0 O
1 2 3
eP1-10 o o ¢ ¢ r o o0 o
€ 1 2 3
o 0 0 o0 0 0 ¢ T ¢z
i 1 2 s |

With Eqs. 1,13, 2.16 and 2.32, the stiffness matrix can

be evaluated:

Dy = rpDq" (1), (1) (1)
[°] = [957] f[cl»E 1 (o] [e;'1 aa [0, ] (2.34)

Since the stiffness matrix of a subelement is expressed in
terms of the same set of nodal coordinates, the stiffness matrix of the
complete triangular element is obtained by adding the contributions of

the three subelements, thus,

Four of these triangular
quadrilateral. The midpoint nodes
lateral are however undesireable.

ming procedures for identification

elements are assembled to form the
at the outermost side of the quadri-
These nodes require special program-—

in input and in the calculation of

the global stiffness matrix. Moreover, these nodes increase the band
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width of the assembled equations. In order to avoid this difficulty,
without violating compatibility requirements, the midside node can be
eliminated by imposing the normal slope to vary linearly along the side
(Ref. 18). For example 6“ in Fig. 18 caﬁ be expressed as the average
of the corresponding slope at nodes 1 and 2. Since Gq is expressed now
in terms of 6_ and ey at nodes 1 and 2, Eq. 2.28 is reduced to eleven
components. The resulting element is the LCCT=11.

The partially constrained elements are assembled to a quadri-
lateral element such that there are no midside nodes at the exterior
edges (Fig. 20). The resulting general quadrilaferal has nineteen
degrees of freedom and more commonly known as Q-19. The seven internal
degrees of freedom are eliminated by a static condensation procedufe as
discussed in Section 1.3.3. Thus the final quadrilateral is fully com=
patible, with linear variation of normal slopes at the edges. Thé ele-
ment has twelve degrees of freedom: one translation and two rotations

at each of the corner nodes.

2.5.4 MNumerical Examples and Comparisons

Several example problems are presented to illustrate the ap-
plication of the quadrilateral element to plate bending problems. Dif-
ferent discretization schemes are used in some of the problems to com—
pare the accuracy and convergence of the solution with tests and other
reported solutions. The different cases studiéd for each problem are

depicted in Fig. 21.



The first example is the square plate shown in Fig. 22. The
dimensions of the plate are shown in Fig. 22a. Due to symmetry only a
quarter of the plate is analyzed. The discretization schemes used for
this problem are illustrated in Figs. 22b to 22f. The three cases con-
sidered for this prpblem are: (1) concentrated load at the center of
the plate with completely fixed supports, (2) concentrated load at the
center of the plate with simple supports, and (3) uniform load through-
out the plate with simple supports. For all these cases Poisson's

ratio is assumed to be equal to 0.3.

The error in percent of deflection at the center of the plate
resulting from the analyses and those reported in literature are shown
in Figs. 23 and 24 and Tables 6 and 7 for the first two cases. 1In
these figures, the lines corresponding to elements developed by
‘WegmulierdKostem (WK), Adini, Clough and Melosh (ACM), Melosh (M), and
Pappenfuss (P) are taken from Ref. 58. The bending moﬁents M.x and My
for the third case are shown in Fig. 25. Shown also in this figure are
the theoretical moments from Ref. 55. The above example shows the good

convergence of the displacements and moments.

The second problem is a skew plate with uniform load and
simply supported on all sides. The plate is ideally a rhombic plate,
all sides of which are equal, and whose skew angle is varied (Fig. 26,
inset). The plate is discretized into 64 equal skew elements. Rotation
about the skew supports is allowed except at the cormers which are com-
pletely fixed. The reduction in the deflection at the center of a skew

plate due to the increase of skew is depicted in Fig. 26. The change
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in the principal moments M1 as the skew angle is varied is shown in
Fig. 27. For comparison, the finite difference and series solutions
from Ref. 37 are also shown. The large decrease in deflection and in

moment especially at skew angles beyond 60° can be observed.

The third example is a 45° skew plate which is simply sup-
ported on two sides;.Ihe plate is subjected to a concentrated load P at
the center.- Plate dimensions, material properties and the discretiza-
tion for this problem are illustrated in Fig. 28. The theoretical re-
sults for the deflection and principal ﬁoments using finite difference,
finite element and experimental values are listed in Table 8. The fi-
nite element results are comparable with the numerical values of the ex~
periment. In most cases, the finite element results are between the ex-

perimental and the finite difference solution employing the finer mesh.

The fourth example is a skew slab model made of gypsum plas-
ter. 1Two cases are studied: one with uniform load throughout the slab
model and another with a concentrated load at the center. The test re-
sults are reported by Rusch in Ref. 48. The slab model is shown in
Fig. 29 with the properties and dimensions indicated. : Points A, B, and
E are specifically selected for comparison of moments. Point A is at
midspan and near the edge, point B is at the center of the slab and
point E near the obtuse corner of the support (Fig. 29). Three dis-
cretizations have been tried as shown in Figs. 29 and 30. Different
discretizations are used so that finer discretization could be employed
near the points of interest. Table 9 shows the comparison of moments

at points A, B, and E between the model test and the finite element




solutions for a uniform load of 100 psi., Table 10 lists the results for
a concentrated unit load at the center of the plate. The values of the
moments at points A and B are quite comparable with the experimental
values. However, at point E, large discrepancies are observed. The
third discretization gave only slightly improved results for point E.
It is important to note here that computed values near the obtuse angle
corners are questionable since they are near a region of high moment
gradient.

The final example is a skew plate supported on two sides with
varying angle of skew but with constant width to span ratio. The de-
flections and moments at the center of the plate using the finite dif-
ference solution and the finite element procedure are shown in Figs. 31
and 32. Good correlation is observed between finite difference and fi-
nite element except at the 60° skew where the available value of the
width to span ratio is 0.52 instead of 0.50. A sharp decrease in the
principal moment is observed for the skews beyond 60° and a much

sharper decrease in deflection is obtained beyond 75°.

2.6 -Sﬁmmagz
| The analysis of skew plates under in-plane and lateral forces
have been presented in this chaptér. The development of the analysis
technique with the use of the finite element method of analysis was
illustrated for the in-plane and the plate bending elements. Numerical
éxamples were shown to demonstrate the application of the method of
analysis to skew in-plane and plate bending problems subjected to uni-

form and concentrated in-plane and lateral forces.



3. ELASTIC ANALYSIS OF SKEW STIFFENED PLATES AND BRIDGES

3.1 Introduction

In this chapter, the analysis of a general stiffened struc-
ture using the finite element procedures is presented. As was done for
rectangular stiffened plate problems by Wegmuller and Kostem (Ref. 58),
the structure is discretized into deck plates and stiffener elements
(Fig. 4). The stiffness matrices of the finite elements for in-plane
and out-of-plane plate behavior in Chapter 2 are used for the deck
slab. An eccentric beam finite element with shear deformation proper-

ties is introduced to represent the beam and the spacers or diaphragms.

The method is used to analyze skew and right bridges. Com~
parisons are made with available solutions and field tests. The appli-
cability of the method of analysis to beam-slab highway bridge super-
structures is demonstrated. The behaviér of highway bridges with and

without curbs and parapets, and diaphragms are also shown and discussed.

3.2 Methods of Analysis of Stiffened Structures

A brief survey of the methods of analyzing plates with stiff-
eners is given by Wegmuller and Kostem in Ref. 58. In general, the
methods of analysis may be classified according to the followingvstruc-
tural idealizations: (1) orthtropic plate model, (2) equivalent grid
model, (3) plate and stiffeners model, and (4) folded plate model.

Each method has limitations imposed on it because of the associated

modeling scheme (Refs. 58,59).
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The equivalent plate model idealizes the behavior of stiff-
ened plates by plate bending action. In this method the properties of
the stiffeners are "smeared" to the plate, and the resulting structure

is analyzed as a plate problem.

In the equivalent grid model the structure is idealized as a
grillage of beam elements. Where only the slab connects the longitudi-
nal stiffeners, the slab is modeled by transverse beam elements at suf-
ficient intervals. The énalysis follows the standard structural analy-

sis procedure.

The difficulty with the equivalent plate or equivalent grid
model is twofold. First is the determination of the adequate plate and
beam properties that will truly represent the actual structure. Second
is the computation of the actual stresses in the beams and the slab

from the analyzed equivalent structure.

The plate with stiffeners model and the folded plate model
have gained full acceptance in the analysis of stiffened plates
(Refs. 23,58,60). The actual properties of the plate and the stiff-
eners are used, and the actual stresses are derived directly from the
analysis. In the reported investigation, the plate and stiffeners
model is used for the I-beam bridges and the folded plate model is used

for the box-beam bridges.

The analysis of structures with plate and stiffeners can be
formulated by combining the classical plate and beam theories (Ref. 58).

The standard assumptions for the plate are listed in Section 2.4.2.



For the beam, the assumption is that all deformations can be described
in terms of the vertical displacement of the longitudinal axis and ro-
tation of the beam section. This assumption neglects the deformation
of the cross-section of the beam, and hence strains normal to the -
longitudinal axis of the beam are not conisdered. The classical ap-
proach results to a system of equation which is not easily solved
except for the ver§ simple loads and boundary conditions. The problem

becomes even more involved for skew structures.

From the objectives of the overall study as mentioned in
Section 1.1, and the requirements set forth in Section 1.5, the method
of analysis must be sufficiently general so that design details may be
considered separately without "smearing". The method should also be
applicable to a variety of structural configurations and loading con-
siderations without difficulty. Since the finite element method of
analysis meet these requirements, this method is used in this

investigation.

3.3 A Finite Element Analysis of Skewed Stiffened Plates

The type of structure considered in this section is shown in
Fig. 4. The plate or deck in this case can have arbitrarily shaped
boundaries. The stiffeners or the beams can be eccentrically or con-

centrically attached to the deck.

When the stiffeners are eccentrically attached-to the plate,
the bending of the stiffeners causes in-plane deformations in the plate

in addition to the plate bending deformations. These in-plane
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deformations are normally not considered in classical plate theory. In
the finite element method of analysis, the in-plane and out-of-plane
behavior can easily be represented with the use of in-plane and plate

bending elements.

The in-plane and out-of-plane plate elements have been des—
cribed in Chapter 2. In this section, the stiffener element is des—
cribed. Since the plane of reference for the plate elements has been
defined at the midplane of the plate, the behavior of the stiffener or

beam element is also defined about this plane.

Five displacement components are selected at each node in the
present finite element approach. These are the displaéement u, v, and
w In the x, y and z directions respectively, and two slopes Bx and ey

about the x and y axis respectively (Fig. 33).

3.3.1 Derivation of the Beam Element Stiffness Matrix

The stiffener element with the plane of reference as the
middle plane of the plate is shown in Fig. 33. It is assumed that the
stiffener is attached to the plate along the boundary of a plate ele~.
ment. It is further assumed that external loads are applied only to
the plate elements or directly at the nodes. Bending about the z-axis

is neglected.

In order to satisfy compatibility of displacement along the
juncture of the plate and the stiffener elements, the displacement

functions of the plate along the juncture must be the same as for the
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sfiffener element. Since the assumed in-plane behavior of the plate is.
linear and the out—-of-plane behavior is cubic, a linear displacement
functions is assumed for the in-plane behavior of the beam, and a cubic
displacement function is assumed for the out-of-plane behavior of the
beam. Furthermore, since the normal slope of the plate is assumed to
vary linearly along the boundary, the twist of the beam along this

boundary is assumed to be linear.

The geometry of the beam element can be described in terms of

non~dimensional coordinates:

_L-x
Cl == ‘(3.1a)

=X
C2 =1 (3.1b)

where L is in the direction of the x—axis.

The linear displacement function for u and the cubic dis-

placement function for w can then be written as

[
I

og +C¢C {3.2)
11 2 2

0z +az +azr +arg (3.3)
31 h 2 51 2 6 1 2

E
]

In matrix notation:

1 2
= 2 { o } (3.4)

2 Pt ozt
1 1
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where - '{u}T ='{u1 az as au as as} are unknown coefficients.

The coefficients al and az can be determined from the two in-
plane model displacements at the two nodes, and as, a“, as, and us can
be determined from the two out—-of-plane displacements and two rotations

at the two nodes.

The nodal displacements can be written as,

{rs} = {ui W, eyi u W eyk} (3.5)

where ui and uk are the in-plane displacements, and Wis Wps , and

eyi
GYk are the out~of-plane displacements and rotations, at nodes i and k

respectively. Gy can be expressed by definition and the use of the

chain rule,

) =.§_‘i=ﬂ"’_.3§_1_+al_.__2_ (3.6)
y  ox Bgl ox 8C2 ox
The nodal displacements can now be expressed in terms of the

unknown coefficients from Eqs. 3.4 and 3.6

rou, 1 0 0 0 0 0 o )
) (o,
W, 0 0 1 0 0 0 o
1 2
-3/L 1/L
byt 0 0 / 0 / 0 o r
0
j uk 0 1 0 | 0 0 a“
0
W 0 0 0 1 0 o
8 0 o0 0 3/L 0 -1/L o J
k yk/ . 6




The vector of unknown coefficients can be expressed in terms

of the nodal displacements by solving for {a} in Eq. 3.7. Hence,

0 1 0 0 0 0 O (u, )

1 1

a 0 0 0 1 0 O W,

2 1

o 0 1 o0 0 0 o0 o .

3 yi \
< = 3

) 0 0 0 0 1 0 u

b k

o 60 3 L 0 0 0 W,

) 0 0 0 0 3 -L 0 1
\ 6 ) ~ yR S/

(3.8)

Substitution of Eq. 3.8 into Eq. 3.4 leads to the displace-

ment function expression in the form of Eq. 1.9:

u f 0 0 f 0 0
s1 s2
- {=}
v 0 fsa fsu 0 fss fss
where fsl = Cl
fSZ é Cz
3 2
f = + 3.
s3 Cl ;1€2
_ 2
sy - 55, L
3 2
= 3
ss 2;2 C1C2
- 2
fS6 = CICZ L

«54m

(3.9)

(3.9a)
(3.9b)
(3.9¢)
(3.9d)
(3.9)

(3.9£)



It should be noted that the resulting interpolation functions
are the same functions as the in-plane and plate bending elements along

the boundary.

. Ju 33w .
Defining €, = s~ , and C = = —— to be the strain and the cur-
v X 0x 35>

vature respectively, at any point along the reference axis of the stiff

ener element, then from'Eq. 1.10:

) o, of
e, =2 0 0 2 0 0
1 }. ) 2 2 2 2 {rs}
52f, 32f, 82f, 52f,
c 0 0
. ax’ x> %’ 9x°
a | @ay

The components of C can be determined with the use of the

chain rule,

. . 2 2
9 Cha ° + 207 ° . °, 22 Eg— (3.12)
BEICZ 9x ox 3§Z ox

The normal strain and curvature at the nodes can be evaluated
by applying Eq. 3.12 to Eq. 3.1l and substituting coordinate values of

the node under consideration:



u,
i
-y | ]
€, -1/L 0 0 1/L 0 0 Wi
, ayi
{¢ p=| 0o -6 -am 0 e 21 |< © (3.13)
u
k
C 0 6/L> 2/L 0 -6/L% 4/L W
L k J k
\eykj
or {ec} = [@c] '{rs} (3.13a)
s s
where ‘{ec} = €. Ci’ Ck are the normal strain and curvatures at
node 1 and k
{@ ] = Normal strain and curvature iﬁterpolating functions
c

evaluated at the rodes.

With the assumption that plane sections remain plane before
and after deformation, the displacement equation for any point on the

beam at a distance of z from the reference plane can be written as:

ow
U(z) = u- 2z By (3.14)

The normal strain €, can be defined by differentiating

Eq. 3.14, from which the stress-strain relation for the beam becomes

8 9%

2
ou _ dw ’

56



where OS = stress on a stiffener element at distance z from the

reference axis

ES = is the modulus of elasticity of the beam

assuming only a uniaxial state of stress for the beam.

The generalized forces acting on the beam section can be

evaluated by integrating Eq. 3.15,

t/2
N =f o dA (3.16)
s —t/2 S

t/2
M = / 0 =z dA (3.17)
<] —t/2 s

These generalized forces can then be expressed in matrix form as,

B T r )
NS AS SS -g;{q
- E_ 3 \ (3.18)
M s. I - At
] = S S | 3}{2
. J

where AS = Cross-sectional area of the stiffemer
SS = First moment of the stiffener area with respect to the
plane of reference
IS = Moment of inertia of the stiffener area with respect to

the plane of reference
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Given the normal strain and curvatures at the nodes as
expressed by Eq. 3.13, the strain and curvature expressions can be

written in terms of strain interpolation functions. Thus

[ du ] B 17 )
D% 1 0 0 €y
. - = { Ci } (3.19)
32w
- — 0 ¢ z C
L 3x2 J 1 2__ L kA
or {e} = (8,1 {e} (3.20)
s s :
: du 3%w
where {e}s = Normal strain and curvature'gg and ~ — along the .
ox

axis of the beam element about the reference plane

[¢€l3= Strain interpolation functions which express a con-
stant variation of normal strain and a linear vari-
ation of curvature

‘{eé}- = Normal strain €_ and curvature C at the nodes
8

The specific characteristics for the beam element can be

expressed from Eq. 3.18 to be,

[D]S (3.21)

which are already integrated for the complete beam section.

The integral of the triple product in the expression for
'Eq. 1.13 can be evaluated from [@ejs from Eq. 3.20, and [D]S from Eq.

3.21. Thus after integration,




i SS SS ]
S
T Ss Is Is
./r[leg [D]S [¢€] dx = E, L 7 3 (3.22)
S I I
s s s
2 6 3
. —

The integration in Eq. 3.22 is carried out only through the
length because [D] is already expressed for the cross-section in
Eq. 3.18.

The stiffness matrix expression for the beam element can now

be evaluated with Egqs. 3.13 and 3.22:

_ T T
(1, = 101" f[(bels (DI, [0,] & [0 )

s S
AS SS AS SS
. 0 T "1 0 "L
121 61 121 61
s __s 0 _ s __s
L3~-~ L2 L3 .L2
41 S 61 21
5 - S -8 5
L L L2 L
_ (3.23)
AS SS
T 0 T
121S 6IS
i 3 2
Symmetric L L
41
-8
L. L -
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It should be noted that the above expression is only for the
bending stiffness of the beam. The torsional stiffness is derived

separately in the following paragraphs.

For the present analysis, only St. Venant torsion is con-
sidered. It has been shown that for rectangular and stocky beam cross-
sections, most of the applied twisting moment is resisted by St. Venant

torsion (Ref. 58).

The twisting moment TS in the beam element is related to

e Ve

the angle of twist ¢ by the relation:

Ts.v. = GKt o' | (3.24)
where o' = g; ( %%-) or the rate of change of angle of twist
G = shear modulus
kt = St. Venant torsional constant

With the assumption that the angle of twist varies linearly
along the length of the element, and recognizing that the angle of
twist at the nodes corresponds to the rotation about the longitudinal
axis of the beam, the torsional rotatiom function can be written in

terms of linear interpolation functions and the nodal rotations. Thus

xi
{¢} = 2. ¢)] (3.25)

yi




47 - [-11— £ ] xf (3.26)
yi

Following the procedure for the beam bending element and

using the given rotation function, the following matrices.can be

defined:
[D]t = th (3.27)
[@el = [1] (3.28)
t
1 17
] = [-— 1 (3.29)
ey L L |
From the expression for the stiffness matrix, given by
Eq. 1.13, integration along the length leads to
w1, = 1017 (1617 (0] [0 & [2.],
t cL et et c't
:th -1 -1
ol (3.30)
-1 1

3.3.2 Assembly of the System Stiffness Matrix

The stiffness matrices of the individual elements are assem-
bled to form the structural stiffness matrix of the complete system.
The procedure follows the requirement of Eq. 1.21. In the following,

the assembly of the elements is illustrated in matrix form to show the

~6le



interaction of individual elements as defined by the global force and

displacement vectors.

The in-plane and bending plate elements are assembled first
to form a combined element with five degrees of freedom at each node.
Since the in-plane plate element and out-of-plane plate element both
lie on the same referencelplane, there is no interaction between them.

Hence, for example

|
1
|
[kii] -———%-——--- (3.31)
I
E

where kI is a 2 x 2 matrix associated with u and v displacement compo-
nents and kII is a 3 x 3 matrix associated with the w, ex, Gx displace-

ment and rotation components.

For the whole plate element with nodes 1, 2, 3 and 4,

s ™ ( N
F r
1 1
FZ > r2

= [k,.] (3.32)
1 s 14 ﬁ .

3 3
F r

¢t L ")

where the submatrices of [kij] are in the form of Eq. 3.31, and

E Y e, E L F oMM ) (3.33)

xi "yi Tzi xi yi

{ri}— {ui v, Wy eXi eyi} . (3.34)
fori=1, 2, 3, or 4.
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The bending and torsional stiffness matrices of the beam ele-
ment are assembled in a similar manner. The stiffness terms associated
with the neglected displacement component are taken as zero in forming
the complete five degrees of freedom system at the node. Hence, from

Eq. 3.23 and Eq. 3.30 at beam nodes i and k,

.r e
) 7N
F AL%20 0 0 S1L? -AL20 O 0 -s L2 [u
xi [ s S s i
F_, 0 0 0 0 0 0 0 0 0 v
yi i
F . 121 0 =-6IL 0 0 -12I 0 -6I L| | w,
21 S S S S 1
Gk Gk
__to2 Tt
M EstL 0 0O 0 0 e 0 6,
M, 4112 -s120 6I1L 0 2112 |6
yi s s s s yi
. [ ) A
F ok AL* 0 0 0 s L Uy
Fyk 0 0 0 0 e
sz Symmetric IZIS 0 6ISL vy
Gk
—_—r 2
Mok ES%' 0 || %
2| | o
MykJ 41 L Ik
- L ' _ \. J
(3.35)

The stiffness matrix expression for the beam element in
Eq. 3.35 can be modified to include the additional deflection due to

shear (Ref. 45). Defining
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~ 12 EsIs

GAL :
s's
The beam stiffness matrix can be rewritten to include the shear
deformation (Ref. 45).
2 2 - 2 2
ASL 0 O 0 SSL ASL 0 o0 0 _SSL
0 O 0 0 0 0 O 0 0
121S . -GISL 0 o -1ZIS . f‘6ISL
(1+0) (1+T) (14 (1+)
Gk, . Gk
—12 0 0 0 0 -—t2 0
E E
S S
E (441 L2 61 L (2-7)1 L2
[k]_=—% STs g1z g8 o s
5 La (1+) s (1) (141
ASL2 0 O 0 s L2
0 0 0 0
121S 6ISL
Symmetric D 0 Térso)
Gk ,
E——L 0
S
(4+T) ISL2
(1+D)
L . -
(3.37)
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The beam stiffness matrix is given for the beam element whose
longitudinal axis is parallel to the x-axis. When the beam elements
are not parallel to the x—axis, standard tensor transformation must be
applied to the beam stiffness matrix before assembly into the struc-

tural system (Ref. 64).

The displacements of the plate and beam elements at common
nodes are expressed by Eq. 3.32 and Eq. 3.35 in terms of the global
degrees of freedom. The elements have equal number of degrees of free-—
dom at the nodes and therefore can be assembled directly to the system

stif fness matrix following the procedure specified in Section. 1.3.4.

3.3.3 Application of Boundary Conditions

One of the advantages of the finite element method of analy-
sis is its adaptability to solutions of problems with various boundary
conditions. If a degree of freedom at the boundary is fixed, the cor-
responding row and column of the stiffness matrix is easily eliminated
from the solution procedure. If the support at the boundary is flex-
ible, the stiffness of the support is simply added to the stiffness of

the element at that boundary (Ref. 65).

In certain cases, the nodes are constrained to displace in a
specified direction, and to rotate at a specified angle. For example,
the u displacement of a node may be specified to displace in the direc—
tion of a line at an angle w from the x-axis and the Gx rotation may be

specified to rotate about a line at an angle B from the x-axis. For



these cases, the stiffness matrix must be transformed accordingly. It

is shown in Ref. 64 that the required transformation is of the form

T
[x'] = [T]" [k] [T] (3.38)
where [k'] = the transformed stiffness matrix
[k] = the original stiffness matrix
[T] = the transformation matrix

It should be noted that the transformation can be carried out in the
element stiffness level [k] or at the assembled system stiffness matrix
[K]. It should be noted further that the applied nodal forces and the

resulting deformations are in the direction specified by the constraint.

For the five degree of freedom system in this study, the

transformation matrix for a given node is

cos W sin w 0 0 0 N
-sin W cos W 0 0 0
[1]= 0 0 1 0 0 (3.39)
0 0 0 -cos B sin B
0 0 0 -sin B cos B

where W = the angle from the global x~axis along which u displaces,
measured clockwise; and
B = the angle from the global x-axis about which Gx rotates,

measured clockwise.



3.3.4 Application of Loads

The components of the force vector as defined by Eq. 3.33 are
applied at the nodes in the direction of the associated displacements.
For uniformly distributed loads, the force vector can be computed from
(Ref. 17).

'{Fe} = - /[@]T p (x,y) av (3.40)

The uniform load is conveniently equated to a set of concentrated
forces and moments applied at the nodes. TFor concentrated loads, the
discretization can be made such that the load will be directly on a
node; and hence the loads can be applied directly to the global force
vector. However, the procedure of changing the discretization to ac-
commodate concentrated loads is obviously inefficient especially for
the analysis of one structure under different types of loading. For
this reason, the concept of a statically equivalent force vector for a
concentrated load is introduced. 1In this concept, the element with a
concentrated load is analyzed as a substructure, and the reaction
forces at the nodes are computed. The negative of these reaction
forces at the nodes become the applied nodal forces for the assembled

structure. In this study only the concentrated load normal to the

plate element is considered.

The stiffness equation for the Q-19 element gives the force
displacement relationships of a quadrilateral element with the fifth
node at the center of the element. If the fifth node is located at the

point where the concentrated load is applied, the resulting structure
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is a quadrilateral plate of four triangles with a concentrated load at
the interior node (Fig. 34). The stiffness of the four triangles can
be recomputed and reassembled in the form:

FE kEE kEI 0

= (3.41)

Fy kg Kpp 1

where O refers to the supported nodes and, where the subscripts E and I
refer to the external nodes and the internal node respectively. The
external nodes in this case are completely fixed in displacements and

rotations. ‘{FE} can therefore be easily found to be
{Fg} = Ikppl [k ) {FD (3.42)

Since Eq. 3.41 is an equilibrium equation,'{FE} is a stati-
cally equivalent force vector. In cases however when the concentrated
load is very near to a corner node of the quadrilateral, the stiffness
formulation may get into numerical difficulty because of the resulting
shape of one or more of the triangular elements. In such cases, the
concentrated load is applied directly to the nearest node. When the
concentrated load is on the boundary of the element but not on the
node, the load is proportioned to the two nodes of that boundary. The
components of the equivalent force vector due to a concentrated load

normal to a quadrilateral element is illustrated in Fig. 34,
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3.4 Numerical Examples and Comparisons

The purpose of this section is to show numerical examples
with the use of the combined plate and beam elements. Comparisons with
available solutions and field test data are made to assess the accuracy
of the results. The behavior of these types of structures are investi-
gated in order to provide a better insight into the subsequent load
distribution studies. The analysis procedure in this section is the
analytical basis.for the lateral load distribution analysis of pre-

stressed concrete I-beam bridges in Chapter 4.

3.4.1 Beam Moments in Skewed Non-Composite Bridges

One of the beam-slab bridge configurations analyzed in Ref. 9
is investigated here by the finite element method of analysis for pur-
poses of comparison. The bridge, in view of the assumptions for the
reported solution (Section 1.2), is non-composite. The structure is a
five-beam bridge with spacing to span ratio of 0.1. The plate to beam
stiffness ratio H, defined as the ratio of beam rigidity to the plate
rigidity, is equal to 5. Poisson's ratio and the beam eccentricity are

taken as zero.

The beam slab structure, as a right bridge or 90° skew, and
as a skew bridge with 30° skew, is shown in Fig. 35. The same bridge
with 60° and 45° skew is shown in Fig. 36. The right bridge and the
30° skew bridge are shown in the same figure to show the change in
geometry due to the skew. The loading is a single concentrated load P

at midspan on Beam C. The discretization, as shown in Figs. 35 and 36,
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is with two elements between the beams and eight elements along the
span. The figures also show the location of maximum moment determined

from the finite element analysis.

The moment coefficients for each beam as determined by the
analysis, the reported results from Ref. 9, and another finite element

solution from Ref. 23 “are shown in Fig. 37.

The finite difference analysis underestimates the two finite
element results. The following observation can be made from the finite

element results.

1. There is a decrease in the moment coefficients of the interior
beams as the skew angle changes from 90° to 30°. A slight

increase in the exterior beam moment can be noted.

2. The rate of decrease is gradual from 90° to 45° skew but -
abrupt beyond 45°. The rate of change is relatively constant

for the exterior beam.

3. The location of maximum moment response is towards the obtuse
angle corner of the structure. The section of maximum re-
sponse is not the skew centerline but varies for different

angles of skew.

The decrease in the total beam moments in a bridge super-
structure as the skew angle is changed is reflected in the above re-
sults. . For the same width and.spam,:- the skew.bridge transfers the load ‘
more efficiently to the supports. The interior beam moment is further

reduced by the increase in the participation of the exterior beams.



3.4.2 Beam Moments in Composite Skew Bridges

The beams in composite bridge structures are eccentrically
attached to the slab. It is necessary to include the eccentricity in
order to arrive at a more reélistic analysis. In the following example,
the effect of considering the eccentricity is demonstrated by comparing

the analysis with the previous example.

The five-beam structure in the previous comparison is ana-
lyzed as a composite bridge. An eccentricity of 28 inches correspond-
ing to a beam moment of inertia of 126584.0 in? and area of 576.0 in%
is introduced. A torsional ratio GKT/EI = 0.035 is also included for a
more representative bridge analysis. The principal ratios and the
beam slab dimensions are comparable to those for the Bartonsville

Bridge in Ref. 7.

The difference between composite and non-composite analysis
is shown in Fig. 38. The following observations can be deduced from

the figure:

1. The beam directly under the load carries a major portion of
the total load as a composite structure. The increase in mo-
ment coefficients of beams B and C is balanced by the decrease
in the moment coefficient of beam A. The remaining difference

is carried by the slab.

2, The reduction and the rate of reduction in moment coefficients
for the interior beam seems to be almost the same for both

composite and non-composite analyses.



The above example shows the necessity of including the eccen-
tricity of the beam when the beams are integrally and eccentrically

connected to the slab.

The effect of constraining the supports to rotatelabout the
line of support can be seen in Table 11 for the 45° case. For this

problem, it can be seen that the effect is quite negligible.

3.4.3 Load Distribution in a Reinforced Concrete Skew Bridge

An actual reinforced concrete skew bridge has been tested
under static loads (Ref. 6).l The bridge has a 60° skew, simple span,
and with four reinforced concrete beams which are monolithic with the
‘deck slab. The field tests were done by the team of Burdette and
Goodpasture of‘the University of Tennessee (Ref. 6). The bridge is
located on U.S. 41A over Elk River, with a span of 50 ft. and beam

spacing of 6 ft. 10 in. center-to-center.

The loads are applied as shown in Fig. 39. The distribution
of load is shown in Table 12. Good agreement between field test and

analytic results can be observed.

3.5 Applications to Highway Bridge Constructions

The method of analysis has several applications to highway
bridges. In this section a study is made of the effect of the variables
that affect the behavior of beamslab bridges in general. Field test

results where available are also shown. Four cases are investigated:
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(1) composite versus non-composite behavior, (2) effect of curbs, para-
pets and diaphragms, (3) effect of multiple diaphragms, and (4) effect

of continuity.

3.5.1 Composite Versus Non-Composite Behavior

For this part of the study, the bridges tested by AASHO in
the AASHO road test series (Ref. 24) are used for comparison. The com—
posite bridges, designated 2B and 3B in the report, are shown in
Fig. 40. The bridges have three beams, 15 ft. width, and 50 ft. span
length. The difference between Bridge 2B with 3B is in the beam sec-
tion properties as indicated in Fig. 40. The steel I-beams are con-
nected to the slab by shear connectors designed for full composite
action. The structure is loaded by a test vehicle with front axle load
of 6.8 kips and rear axle load of 14.3 kips. First, the vehicle is
positioned with the drive wheel at midspan in the longitudinal direc-
tion and at the center of the width in the transverse dirvection. The
structure is then analyzed as a composite bridge and as a non-composite
bridge. The percent of the total moment carried by the beams from the
field test values and the finite element analyses are listed in the

second column of Table 13. The following observation can be made.

1. The finite element results predicted higher percentage of load
carried by the beams as a composite structure. The values are

comparable with field test results.

2. As expected a higher percentage of the total moment is carried
by the beams when acting compositely with the slab.
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3. The load carried by the beams is higher for the stiffer beam
sections.
4. TFor this type of loading, there is very little difference in

the percent of load carried by each beam as shown in Table 13.

As a second comparison, the design moments are computed for
each beam and compared to the 1953 provisions of the AASHO. The drive
wheels are placed at midspan and the truck is positioned across the
width that would produce the critical loading condition. The structure
is then analyzed as a composite and non-~composite bridge. The com=
parison of distribution factors computed for each case and also from
the field test can be seen in Fig. 41. The comparison shows that the
distribution factor for the center beams is overestimated by the'AASHO
specification provision. However, the distribution factor for the

exterior beams is substantially underestimated.

3.5.2 Effect of Curbs, Parapets and Diaphragms

Two field tested bridges, the Lehighton Bridge (Ref. 8) and
the Bartonsville Bridge (Ref. 7) are selected for this study. The
Lehighton Bridge is a six-beam bridge superstructure and 36 ft. wide.
This bridge has a curb and parapet only on one side of the structure.
The bridge was tested first with the midspan diaphragms in place. Sub~
sequent tests were conducted with the midspan diaphragms removed. The
Bartonsville Bridge is a five~beam bridge superstructure and 32 ft.

wide. This bridge has curbs and parapets on both sides of the structure
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and midspan diaphragms. The two bridges were tested by using the :est'

vehicle shown in Fig. 3. The vehicle transversed the bridge over

~several lanes. These lanes are located directly over the beams and in

between the beams (Figs. 42 and 43).

In the actual structure, the diaphragms are monolithic with
the slab but are not fully continuous over the beams. The curbs, by
construction practice, are not made fully integral with the deck slab;
and the parapets are with a number of gaps along the span. Therefore,
only a portion of the diaphragm section and the curb and parapet sec-—

tions can be considered effective.

An analytical study was made on the effect of a partially and
fully effective curb and parapets. In the study, the thickness of the
slab elements under the curbs and parapets is increased to a thickness
that would correspond to the predetermined area of the curb and parapet
section. It is found that a partially effective curb and parapet whose
cross—sectional area is 507 of the actual area closely approximates the
bridge behavior. The good agreement between the field test results and
the analytical results using partially effective curb and parapet sec-

tion can be seen from the uppermost curves of Fig. 42.

In determining the effective section of the diaphragms, the
bridge superstructure is first analyzed with truck loads on different
lanes of the bridge using the full diaphragm cross-section. The result-
ing maximum moment is then used in cqmputing the effective moment of
inertia as defined by Section 9.5.2.2 of the ACI Code (Ref. 4). For the

Lehighton bridge, the effective moment of inertia is computed to be 40%
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of the gross moment of inertia. The agreement between field tests and
analytical values using 407 effective moment of inertia for the dia-
phragms can be seen from the lower curves in Fig. 42. However, for the
Bartonsville Bridge, a better agreement is obtained using only 20%
effective moment of inertia for the diaphragms (Fig. 43). The
Bartonsville Bridge and the Lehighton Bridge have diaphragm dimensions
of 9" x 34" and 10" x 28" respectively. From the given diaphragm
dimensions, approximately 20 ins. of the diaphragm depth are effective

for the two cases.

The distribution factors for the Lehighton Bridge are given
in Tables 14 for the cases without diaphragms, with diaphragms, parti-
ally effective, diaphragms effective only in shear, and diaphragms
fully effective. The distribution factors are given for a design lane
of 12 ft. with the leftmost lane 2 ft. from the edge of the bridge.
Table 15 gives the distribution factors with the leftmost lane starting
at the edge of the bridge. It can be seen that the distribution
factors depend considerably on the lane locations. Further, it can be
seen that the diaphragms with only shear stiffness are practically
equivalent to having no diaphragms at all. The distribution factors

for the Bartonsville Bridge is given in Table 16.

The effect of curbs, parapets and diaphragms on bridges with
three specific widths can be seen in Figs. 44 through 49. The bridges
have beam spacing of 8 ft. 0 in. and span of approximately 64 ft. The
number of‘beams are 4, 5 and 7 corresponding to bridge widths of 24,

32, and 48 ft. Influence lines for moment are shown for the exterior
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and the interior beams for the following cases: (1) without curb and
parapets, (2) with curbs and parapets only, (3) with diaphragms only,
and (4) with curbs, parapets and diaphragms. The computed distribution
factors are shown in Figs. 50 and 51. The following observations can

be made:

1. The curb and parapets and diaphragms provide a more uniform
distribution of the load. Consequently, the participation of

the exterior beams is increased.

2. The effect of the curb and parapet is negligible for very wide

bridges, for example 72 ft. wide.

3. The diaphragms distribute the load efficiently to all the
beams of the bridge. However, when the structure is fully
loaded, the effect of the diaphragm becomes negligible regard—

less of the bridge width.

The above observations are for a specific spacing of 8 ft.
and a span of 64 ft. For closer spacing which provides a greater
lateral distribution effectiveness of the slab, the effect of the dia-
phragms in distributing the load may be expected to decrease. The
effect of the curb and parapet in increasing the participation of the

exterior beams may be expected to be more significant.

3.5.3 Effect of Multiple Diaphragms

Very little is known about the effect of several lines of

diaphragms across the span of a prestressed concrete I-beam bridge. To
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investigate this, a 71 ft. long, 36 ft. wide bridge is analyzed under
standard HS20 vehicular load with one, two, three and four lines of
diaphragms. The diaphragms are placed equidistant from each other at
distances of 1/2, 1/3, 1/4 and 1/5 of the span respectively as shown in
Fig. 52. For comparison, the same bridge is also analyzed without
diaphragms,

The influence lines for moment for the five different cases
are shown in Fig. 53. The computed distribution factors are shown in

Fig. 54 and Table 17. The following observations can be made:

1. For the interior beam, the midspan diaphragm is the most
effective in distributing the load. The least effective is

with diaphragm at L/4.

2. For the exterior beam, a larger participation is induced by

the diaphragms at L/4.

3. When the structure is fully loaded, the difference between the

multiple diaphragm cases is not very significant.

3.5.4 Effect of Continuity

.The purpose of this section is to show the effect of continu-
ity on the lateral distribution of load. First, a comparison of the
moment coefficients for a four-span continuous bridge is made between
field test results and analysis. Second, a three-span prestressed. con-
crete continuous bridge is analyzed under standard HS20 vehicular load-
ing. In the latter the load distribution behavior at midspan and at

the support are shown and discussed.




The four-span continuous bridge which had been field tested
is reported in Ref. 6. The bridge is a 70'-90'-90'-70' composite struc-
ture with 36 in. steel I-beams, continuous over the two interior sup-
ports and simply supported at the ends. The structure is illustrated in
Fig. 55. Computations are made for the beams of the second span. In the
first loading condition, the structure is subjected to a University of
Tennessee test vehicle traveling over the bridge at crawl speed. The
truck has a front wheel load of 7.2 kips, drive wheels of 54.3 kips and
rear wheels of 71.0 kips (Fig. 56). Computations for moments are made
when the truck is over the second span. In the second loading condi-

tion, static loads are placed in the structure as shown in Fig. 55b.

The comparison of moment percentages obtaimned by field test
and analysis 1s shown in Table 18. Close agreement between test and
analysis confirms the applicability of the method of analysis to con-
tinuous structure. It should be noted that since the loads are sym~-

metric, the moment coefficients must also be symmetric.

The second span is studied with completely fixed supports and
with simple supports. ‘The object of this procedure is to see the
effect on the lateral distribution of the load due to different bound-
ary conditions. The results are tabulated in Table 19 for the two load
cases. It can be observed that the greatest distribution of load
occufs with the simple span, then the continuous span construction and

finally the single span with completely fixed supports.

The structure idealization for the three-span continuous pre-
stressed concrete I-beam bridge is shown in Fig. 57. The structure is
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a three-lane, six-beam bridge, 36 ft. wide and loaded by standard HS20
vehicles. In determining the moment coefficients at midspan the cen-
troid of the truck is placed at midpoint of the center span. In deter-
mining the moment coefficients at the support, a truck is placed on
each of the first two spans. The truck is placed on the individual
span such that the centroid of the truck load falls at the center of
the span. The analyses are then carried out with the truck at differ-

ent locations across the width of the bridge.

The influence lines for moment at midspan and support for the
exterior and interior beams are illustrated in Figs. 58, 59 and 60.
For the interior beams, the moment coefficients at the supports are
slightly higher than at midspan. However for ‘the exterior beams, the
moment coefficients are hiéher at midspan. In terms of distribution
factors as shown in Fig. 61 and Table 20 the difference is very small

especially when all the lanes of the structure are loaded.

It is of interest to note that the influence line for moment
at midspan is nearly identical to the influence line for moment of a
71 ft. bridge of equal beam spacing. The above can be seen by compar-

ing Fig. 53 and Fig. 60.

3.6 Summary

The analysis of stiffened plates has been presented in this
chapter. The method of analysis has been applied to highway beam slab
bridges and compared favorably with field test results. The effects of
curbs, pérapets, diaphragms and continuity have been investigated and

evaluated.
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4. LATERAL LOAD DISTRIBUTION IN SKEWED I-BEAM BRIDGES

4,1 Introduction

In the design of beam-slab highway bridges, the live load
bending moments are determined with the use of load distribution fac-
tors. The distribution factor determines the fraction of the wheel
loads that is applied to a longitudinal beam. The applicable distribu-
tion factor is given by AASHTO in the Standard Specifications for high-
way bridges for right bridges (Section 1.5 and Ref..3). However, as
indicated in the scope of the work in Section 1.1, load distribution

factors are not given for skew bridges.

This chapter presents the lateral load distribution analysis
of skewed beam—slab bridges with prestressed concrete I-beams. Skew
bridges of various widths, spacing, span length and number of beams are
analyzed using ;he finite element method of analysis presented in
Chapter 3. Live load distribution factors are computed for the inter-
ior and exterior beams of the bridges for design vehicle loading. Dis-
tribution factors resulting from the critical combination of vehicular
loadings are selected and correlated with bridge parameters to arrive

at a simplified equation for the distribution factor.

4.2 Beam Moments in Skewed I-Beam Bridges

The HS 20-44 design vehicle as defined in Section 1.1 is used
in the following lateral load distribution study (Ref. 2). The moment

in a beam produced by one design vehicle placed anywhere on the bridge
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is expressed in terms of the moment coefficient. This coefficient is
the ratio of the composite beam moment to the total right bridge moment
which is numerically equal to the moment produced by the given load on
a simple beam of equal span. For convenience, the coefficient is
expressed in percent. The plot of the moment coefficients against the
lateral position of the load results in the influence line for moment

of the beam under consideration.

4.2.1 Computation 6f Load Distribution Factors

The load distribution factor is applied to the wheel loads in
the design of the beams in beam-slab bridges (Ref. 3). This factor can
be determined from the plot of the moment coefficients, i.e., influence
lines, following the requirements of the AASHTO Specifications (Ref. 3).
According to the specification provisions on live load distribution,
the design traffic lane must be 12 ft. wide (Fig. 62). The design
truck, which occupies 6 ft. of the lane, should be positioned in the
lane, and the lane should be positioned on the bridge, such that the
loading will produce the maximum moment response for the beam being
considered. The same definition of loading applies to bridges with two
or more lanes, except that the lames should not overlap (Ref. 3 and
Fig. 62). VA minimum distance of 2 ft. is specified between the edges
of the lane and the wheel of the design vehicle. The sum of thé moment
coefficlents for the beam at the specified portions of the trucks gives

the distribution factor for the particular beam. Thus,
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% moment coefficients (%) (4.1)

Dl F. = 1007°

for axle loading, and

2 Y moment coefficients (%)
1007 (4.2)

D.F. =

for wheel loading.

The positioning of the truck loads in order to arrive at the
maximum distribution factor for a particular beam proceeds as follows.
First, a 12 ft. lane is placed on the structure at x = 0, where x is
the distance of the leftmost boundary of the lane from the leftmost
curb (Fig. 62a). Second, a truck load is positioned within the lane
such that the highest moment coefficient from the influence line for
moment of the beam is obtained. The position of the truck in the lane
is determined by the distance xl which is greater than or equal to 2 ft.
but is less than 6r equal to 4 ft. to maintain the 2 ft. clearance
between the line of wheels and the boundaries of the lane. Third, the
lane is moved to a new value of x, e.g. x = 1, and the truck is reposi-
tioned again within the lane such that the highest momént coefficient
value is obtained for this new lane position. The procedure is re-—
peated until the lane has covered the entire width of the birdge. The
maximum moment coefficient value obtained in the above process is used
in the distribution factor calculation in Eq. 4.2. For two or more
design lanes, the corresponding number of lanes is placed on the bridge
(Fig. 62b). The second step is repeated for all lanes until all trucks
are positioned in each lane that the sum of the moment coefficients is

maximum. The lanes are then moved to a new position on the bridge and
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the procedure of positioning the trucks in each lane is repeated. The
largest sum of the moment coefficients obtained in the above process is

used in the distribution factor calculation in Eq. 4.2.

4.2.2 Maximum Beam Moments

The maximum moment caused by the HS 20-44 truck on a simple
span right bridge occﬁrs under the drive wheels, when the center of
gravity of the wheel loads and the drive wheels are equidistant from
the center of the span (Ref. 19). Consequently, in the lateral load
distribution analysis of right bridges, the design truck load is placed
on the bridge so that the drive wheels are at d/2 distance from midspan
ﬁhere d is the distaﬁce from the centroid of the wheel loads to the
drive wheels (Ref. 62). The beam moments in the distribution factor

calculations are also computed at the section under the drive wheels.

For skew bridges, however, the position of the load that pro-
duces the maximum response in a beam, and the location of the beam sec-
tion where the maximum moment occurs are not known. Moreover, fo: the
same beam, the location of the maximum moment section differs for dif-
ferent lane positions of the truck. The position of the load tovpro—
duce the maximum moment response, and the location of the maximum
moment section in a beam of a skew bridge, are different from those of
a right bridge. This feature can be illustrated in the following
example.

The structure is a five-beam bridge, 24 ft. wide and 60 ft.

long, wiﬁh a relative beam-to-slab stiffness ratio of 5. The beams are

«8lim



equally spaced at 6 ft., and the slab is 7-1/2 ins. throughout. The

HS 20-44 truck loads are placed one at a time at five positions across
the width of the bridge, so that the distance of the centroid of each
truck from its consecutive position is 4.5 ft. In each of the lane
positions, the longitudinal position of the truck is varied until the
maximum moment is obtained for each beam. The distance of the centroid
of the truck between longitudinal positions is d/2 = 2.33 ft. This
distance is selected primarily for convenience, and because the change
in the computed moments near the midspan between two consecutive longi-
tudinal positions is less than 1%. The above loading procedure is
carried out for each beam of the bridge at skew angle of 90° (right
bridge), 45°, and 30° .(Figs. 63 through 67). The direction of the
truck is always with the front wheels towards the right (Fig. 3). The

computed moments are based on the averaged nodal moments.

The positions of the truck centroid and the location of maxi-
mum moment in beam A are shown in Fig. 63 for the bridge with skews of
90°, 45° and 30°. While the maximum moment section occurs at d/2 from
midspan for all angles of skew, the positions of the truck differ for
each case. Similar observations can be made for beams B and C
(Figs. 64 and 65). For beams D and E, the positions of the truck cen-
troid and the location of the maximum beam moment section are shown in
Figs. 66 and 67. In these cases the maximum moment section and the
positions of the load are different for different angles of skew.

Based on these results, one would expect the critical load position and

the location of the maximum beam moment section, to be different for
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another skew bridge with a different number of beams, spacing or span
length.

Obviously, there is great difficulty in carrying out the
above procedure for all the beams of the bridges that must be investi-~
gated in a lateral load distribution énalysis. This, however, can be
greatly simplified if the maximum moment can be approximated by the

moment produced in the beam with the load centroids at midspan.

4.2.3 Beam Moments with Load Centroid at Midspan

In this section, the beam moments in the skew bridge of
Section 4.2.2 caused by the HS 20-44 truck loads, but with the load
centroids at midspan, are determined. These moments are computed at
the beam section d/2'from midspan and in the direction of the obtuse
angle corner at the supports.  The object of this procedure is to deter-
mine if there is a significant difference between these moments and the

maximum moments as determined in the previous section.

The moments for beam C with the load centroid at midspan, and
the moments from the procedure in Section 4.2.2, are shown in Fig. 68.
Moments are shown for the five lane positions across the width at skew
angles of 45° and 30°. The figure shows that there is a small differ-
ence in the moments between the two load positions. The larger differ-
ence occurs at larger skews and at lane loads away from beam C. It is
also of interest to compare the moments in beam C with the loads at
lane 1 and 5. It can be seen that the larger moment is produced with
the truck going in the direction of the acute angle corner of the sup-

port, i.e., lane 5 (Figs. 65 and 68),
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The above investigation indicates that the load centroid at
midspan can approximate the true load position in producing the maximum
moment response in a beam without great loss in accuracy. Also, the
beam section at d/2 from midspan and towards the obtuse angle corner at
the supports indicates the ideal section to compute the desired moment

for the lateral load distribution study.

It should be noted here, however, that in general the dis-
tance from the midspan of the beam to the section of maximum moment
will not be d/2 for the other bridges. A study of the beam moments in
the skew bridges analyzed in Section 4.4, shows that the moment at d/2,
if different from the maximum moment, can be in error by 2% for the
shorter bridges and less than 17 for the longer ones. However, for
practical purposes, the estimated error is within practical design

limits.

4.3 Effect of Skew .on Load Distribution

In order to gain an initial insight into the behavior of skew
bridges and to determine the important parameters that must be con-
sidered in load distribution studies, an analytical investigation was
carried out for two basic bridge widths. This section presents the
findings based on the analyses of thirty bridges with curb-to-curb

widths of 24 ft. and 42 ft.
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4.3.1 Effect of Skew on Beam Moments

The effect of skew on the individual beam moments is shown in
Fig. 69. The bridge analyzed was a five-beam bridge, 60 ft. long and
24 ft. wide with beam spacing of 6 ft. The truck was placed on the skew
bridge as it would be placed on a right bridge to produce the maximum
moment. The skew angle was then varied and ﬁhe moment percentages were

computed for each case.

The two load positions indicated in Fig. 69 show the shift in
distribution of the load for the skew angle changes. The results showed
a more uniform distribution of load with decreasing angle of skew. The
angle of skew did not have a significant effect on the exteribr bean
directly under the load. The load distribution in a 60° skew bridge

was also not significantly different from the right bridge.

4.3.2 ¥Effect of Skew and Number of Beams

- -A 24 ft. wide bridge with a span of 60 ft. was analyzed with
two design lanes. The truck loads were placed near the center of the
bridge section as close as possible to each other as allowed by the
1973 AASHTO Specification (Ref. 3). Beginning with four beams, the
number of beams was increased to five and then to six to make up two
new sets of bridges keeping the span length constant. Consequently the
beam spacing changed from 8 ft. to 6 ft. and 4.75 ft. respectively.

For each set, the skew angles investigated were 90° (right bridge),

60°, 45° and 30°. Thus, a total of twelve bridges were analyzed.
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Figure 70 shows the distribution factors resulting from the
analysis. Also shown for comparison is the current AASHTO specifica-
tion of S§/5.5 (Ref. 3). The distribution factor decreased as the angle
of skew decreased. The decrease in the distribution factor was gradual
from 90° to 45°. The number of beams and spacing did not seem to

affect the rate of reduction.

4.3.3 Effect of Skew with Span Length

The five~beam bridge, 24 ft. wide with 6 ft. beam spacing,
was further investigated with different span lengths. In addition to
the 60 ft. bridge in Section 4.3.2, the five-beam bridge was analyzed
with a span of 30 ft. and 120 ft. The appropriate beam sizes in
accordance with the standards for Bridge Design BD-201 (Ref. 43) were
used. For each length, the skew angles considered were 90°, 45° and
30°, Distribution factors for the beams were computed based on the
critical location of one or two HS 20-44 design vehicle(s) positioned
across the width of the bridge. For this initial study, the vehicle
was positioned in the longitudinal direction, as it would be placed on

the right bridge to produce the maximum moment.

The distribution factors for the beams are seen in Fig. 71.
Beams B and C of the 30 ft. series with skews are not shown. For these
configurations, one rear wheel and one front wheel were off the bridge
so that load distribution comparison with longer bridges was not

practical.



In beam C, the amount of reduction in the distribution factor
is marginal from 90° to 45° skew for the lengths considered. However,
a considerable change in the rate of reduction was observed for skew
angles less than 45°. Also, for the long span bridges, the rate or re-

duction decreases as the skew angle decreases.

Exterior beam A had practically no reduction in the distribu-
tion factor as the angle of skew decreased, except for the 30 ft. case.
It éhould be noted that for the 30 ft. span and small skew angles some

of the wheels of the vehicle were off the bridge.

4.3.4 Effect of Skew on Distribution Factor versus S/L

The plots of the distribution factors versus S/L for the
24 ft. wide bridges with five beams and at skew angles of 90°, 45°, and
30° are shown in Fig. 72. Simiiar plots for the 42 ft. wide bridges
with six beams are shown in Fig. 73. The span lengths investigated
were 30 ft., 60 ft., and 120 ft. for the 24 ft. wide bridges; and
42 ft., 59 ft., and 101 ft. for the 42 ft. wide bridges. These dimen—
sions correspond to WC/Lﬁratio of 0.80, 0.40, and 0.20 for the 24 ft.

wide bridges and 1.0, 0.70 and 0.42 for the 42 ft. wide bridges.

The two figures indicate that at a high S/L ratio there is a
larger decrease in the distribution factor as the skew angle decreases.
Furthermore, the decrease in the distribution factor is larger at
smaller skew angles for the wider bridge. The above results imply that
the aspect ratio of the bridge is an‘important parameter which gqvernS'
the amount bf reduction with the skew.
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4.4 Load Distribution in Skewed Beam-Slab Bridges

with Prestressed Concrete I-Beams

In the development of the distribution factor formula for
right bridges, about 300 bridges were investigated (Ref. 62). These
bridges varied in width, number of beams, and span length to cover the
bridge configurations encountered in practice. In this section, thirty
of these representative right bridges were selected and each one was
analyzed for skew angles of 90° (right bridge), 60°, 45°, and 30°.

Thus, in effect a total of 120 bridges were analyzed.

4.4.1 Design of the Experiment

The bridges analyzed with different skew angles are listed in
Table 21. The basic widths considered were 24, 48 and 72 ft., curb-to-
curb. The number of beams were varied from 4 to 16, and consequently,
the beam spacings varied from 4'-10" to 9'-6". Different lengths rang-
ing from 36'~0" to 120' inclusive were used. The details in the design
of a particular bridge are discussed in Ref. 62. Reference 43 was used

in the determination of beam properties.

4.4,2 Distribution Factors in Skew Bridges

With the use of the procedure outlined in Section 4.2.1, dis-
tribution factors were computed for all the interior and exterior
beams., Distribution factors were computed based on one up to the maxi-
mum number of design lanes that can be placed on a given bridge width.
The maximum interior and exterior beam distribution factors for each
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bridge were selected and are listed in Tables 22 and 23 respectively.
The full list of distribution factors for different design lanes can be

found in Ref. 12.

The interior beam distribution factors for the 24 ft. wide
bridges with four, five and six beams are plotted against S/L in
Fig. 74. Similar plots are presented for the 48 ft. wide bridges with
six, nine and eleven beams in Fig. 75, and for the 72 ft., wide bridges
with nine, twelve, and sixteen beams in Fig. 76. In addition to the
observations made in Section 4.3, the following can be seen from the

figures:

1., The rate of reduction is usually larger for larger spacing,

for wider bridges and at smaller angles of skew.

2. There is, however, a limit to the increase in the rate of

reduction.

The second observation may‘be interpreted as follows. At
large spacing and short spans the lateral distribution of the load is
small and hence the distribution factor is small. At narrow beam spac—
ing, the distribution factor is also small. Consequently, the amount
of reduction because of the skew is found to be relatively smaller for
these cases. The influence line plots for moments in the individual

beams in this study are given in Ref. 12.

" The plots of the maximum distribution factors for the exter-
ior beams against the S/L ratio are shown in Figs. 77, 78, and 79 for

the three bridge widths. Compared to:the interior beams, a similar but
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but smaller reduction in the distribution factor was observed for the
shorter.bridges. However, an increase in the distribution factor was
observed at longer bridge spans. The increase in the distribution

factor may be attributed to the greater participation of the exterior

beams when the bridge has a skew.

4.4,3 Development of the Distribution Factor Equation

The distribution factors for prestressed concrete I-beam
bridges with no skew is the subject of a comprehemsive study in Ref. 62,
It is therefore the aim of this section to provide only the reduction

factor for these bridges given the angle of skew.

The reduction factor in the interior beams in a given bridge
is computed from the amount of reduction in the beam distribution
factor using the right bridge (90° skew) with the same width, number of
beams and span length as the base. These reduction factors are ex-
pressed as percent reductions, and are always zero for right bridges.
With the use of the Lehigh Univeréity Amalgamated Package for
Statistics, LEAPS (Ref. 30), the correlation of the percent reduction
with variables such as skew angle, span length, number of beams, number
of loaded lanes, bridge width and their combinations was investigated.
The variables found to have good correlation with the percent reduction
were the spacing-to-length ratio S/L and the bridge width-to-span ratio
Wc/L in combination with the square of the cotangent of the skew angle.
A regression analysis of the percent reduction against these variables

resulted in the following equation:
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PCTR = ( 45 %+ 2 fc— ) cot? ¢ (4.3)
where PCTR = Applicable reduction factor in percent to the distri-
bution factor of the interior beam of a right bridge
with the given S, Wc, and L
S = Beam spacing
L = Span length
¢ = Skew angle

For the exterior beams, a simplified equation was determined
by trial and error and proposed as follows:

PCTR .,

(axry = 50 ( 5. 0.12 ) cot ¢ (4. 4)

L

where PCTR = Applicable reduction (positive) or amplification

(EXT)
(negative) to the distribution factor of the
exterior beams of a right bridge with the given

S, W and L.
Cc

The above equations are limited to the following bridge

dimensions:
4;—6" <8 <9 o
48'-0" < L < 120'-0"
30° < ¢ £ 90°
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The computed distribution factors and the percent reductions
based on the above equations and the analytical results fof the bridges
investigated are listed in Ref. 12. The equation is found to be con-
servative in most cases except the case of the large spacing, 30° skew
and very short span. The plots of the proposed equation for the inter-

ior beams are shown in Figs. 80, 81l and 82 for the bridges investigated.

4.5 Design Recommendations

From the rvesulis of this study, the following simplified pro-
cedures are recommended for the determination of the live load distri-

bution factors in prestressed concrete I-beam bridges with skew:

1. The load distribution factors in the interior beams may be
determined by applying to the distribution factor in the inter-
ior beams of the bridge without the skew a reduction specified

by the following formula:

100

_ _ BCIR
DFy = DF__ ( 1.0 ) (4.5)

where DF¢ = Distribution factor for the interior beam of the

bridge with skew angle ¢

DFgo = Distribution factor for the interior beam of the
bridge without skew, and
PCTR = Reduction in percent as specified by Eq. 4.3.

2. The load distribution factors in the exterior beams shall be

determined by applying to the distribution factor in the
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exterior beams of the bridge without the skew a factor speci-
fied by the following formula:

PCTR
= (EXT)

where DF¢(EXT) = Distributiqn factor in the exterio? beam of

the bridge with skew angle ¢

DF = Distribution factor in the exterior beam of

9 0 (EXT)
the bridge without skew, and

PCTR

L]

Amplification or reduction factor as speci-

fied by Eq. 4.4

A plot of the smallest and the largest percent reduction in
the distribution factors for interior beams using the proposed equation
and the bridge dimensions investigated in this study is shown in

Fig. 83. A similar plot for the exterior beams is shown in Fig. 84.

4.6 Summary

The load distribution behavior of skewed I—beam.br;dges under
design vehicular loads have been presented. Load distribution.factors
were computed for the interior and exterior beams of bridges with pre-
stressed concrete I-beams. The skew angles investigated were 90°, 60°,

45° and 30°. In the analyzed bridges, the following were observed:

1. The load distribution factor decreases with decreasing angle

of skew.
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2. The rate of reduction in the distribution factor is gruadual

from 90° to 45° but is abrupt from 45° to 30°.

3. The rate of reduction in the distribution factor decreases

with increasing span length.

4, The bridge width-to-span ratio, and beam spacing-to-span ratio

largely affects the amout of reduction.

Based on the statistical correlation of the bridge parameters
with the numberical results, simplified distribution factor formulae

were obtained for the interior and exterior beams.




5. IATERAL LOAD DISTRIBUTION IN SKEWED SPREAD BOX-BEAM BRIDGES

5.1 Introduction

The spread box-beam bridge (Fig. 1b) is one of the more
recent developments in bridge design practice. The load distribution
characteristics for this type of bridge have been the subject of
several investigations (Section 1.1.2 of Ref. 63). Extensive field
investigations of spread box~beam bridges have been carried out by
Lehigh University (Refs. 16, 21, 22, 31, 51, 57). Except for Ref.

51, all of the above investigations have been for right bridges.

The investigations confirmed the need for a realistic live
load distribution procedure for spread box-beam bridges with and
without skew. The theoretical analysis developed by Motarjemi and
VanHorn (Ref. 38) provided a new specification provision for lateral
load distribution for right bridges with prestressed concrete spread
box~beams (Ref. 2). This chapter presents an analysis procedure for
right and skew box-beam bridges. Through the application of the
method, formulae have been determined for the lateral load distri-

bution for skewed spread box-beam bridges.

The deveioped analysis scheme employs finite element
concept and method of solution discussed in Chapter 1. The bridge
superstructure is treated as an assemblage of plate and web finite
elements (Fig. 5). Plate finite elements in Chapter 2 model the

deck slab and the bottom plate of the box~beam. Web finite elements '
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which are introduced in this chapter, model the sides of the box-
beams. Following the procedures outlined in Chapter 3 for the as~-
sembly of the elements and the solution of the resulting equations,
the validity of the modeling is checked through comparisons of anal=-
ytical results with field test values. The method is then applied
to the analysis of 72 spread box~beam bridges with skew angles of

90°, 60°, 45° or 30°.

Using the results, the load distribution behavior of
spread box-beam bridges is presented and a load distribution pro=-
cedure is developed. Because of the limited number of bridges in
the analysis scheme, and the limited scope of the loading investi-
gated, the presented load distribution formulae can be considered as

tentative.

5.2 Theoretical Development

The analytical procedure in the analysis of box=beam
bridges is similér to the analysis of stiffened plates described in
Chapter 3. Instead of eccentric beam elements, web plate elements which
can model the sides of the box-beams are used (Fig. 5). The element
has top and bottom nodes to interconnect with the deck slab and the
bottom plate of a box-~beam. The in-plane and out-of=plane behavior

of the webs are considered.

In this analysis, the top plate of the box~beam segment is
incorporated into the deck slab by adding its thickness to the

corresponding deck element (for example see Fig. 94). The bottom



plate is represented by the élate element which is also used for the
deck slab. The formulation, description, and accuracy of the deck
and bottom plate elements are described in Chapter 2 and are not
repeated here. The in-plane and out~of-plane behavior of the web
element are formulated separately and are combined in a procedure

analogous to the deck elements as described in Section 3.3.2.

The analysis of spread box-beam bridges presents a problem
in the computer storage requirements. Because of the large differ-
ence in the node numbers of the assembled elements, the size of the
bandwidth, which determines the amount of computer storage needed,
becomes excessively large. The number of elements and the resulting
system of equations are also larger than a corresponding I-beam
bridge with equal number of beams. Consequently, the computational
effort for any given analysis is substantial. 1In an analysis pro=
cedure investigated, the solution of a very large system of equations
requires very extensive computational effort. The necessity, there-
fore, of ﬁsing the minimum number of elements and at the same time
obtainiﬁg a reasonable amount of accuracy is apparent. In thiévpart
of the investigation, emphasis was given to the selection of the web
element that can represent the webs of the box~beams with one eiement
through the depth. As in any structural analysis problem, care was
taken in the numbering scheme to minimize the bandwidth.

5.2.1 In~Plane Stiffness Formulation

The in-plane behavior of thé web element is approximated by

a quadrilateral with four nodes and twelve degrees of freedom (Fig.
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85)., The degrees of freedom are represented by the components of

the vector {rw} where

{r 3T - fu w o uw®oe uwe uw 0 ] (5.1)
w 1 2 Y2 2 =2 Y2 38 8 Y3 & 4 Y& o

The element displacement field, proposed by William in Ref.
59 for the web of cellular structures, is used. The element de=-
scribes a u displacement which is linear in the { direction, and a
w displacement which is cubic in the ( direction and linear in the
N direction. The displacement field associated with the local deriv-
atives at the nodes is defined also by a cubic function (Ref. 60).
The element is known as the Q8SPl2 element. The derivation of the
element stiffness matrix is given by William in Ref. 59 and is
outlined in Appendix C.

5.2,2 Bending Stiffness Formulation

The out-of-plane behavior of the web is represented by a
rectangular element with out-of-plane bending about the x-axis only.
Bending about the z~axis is ignored. The assumption for the element
is that one-way bending is the dominant action in the out-of=plane
behavior of the web in a box~beam structure. The geometric descrip-

tion and nodal configuration are shown in Fig. 85b.

Assuming no interaction between the pairs of nodes 1 and 4
and 2 and 3, elementary out-of=-plane beam theory can be used to

form the stiffness matrix of the element (Refs. 59, 60).
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It should be noted that the one-way bending assumption for

the out-of-plane behavior violates continuity with the deck and

bottom plate elements.

5.3 Numerical Examples and Comparisons

In this section, a cantilevered beam, a simple beam, and a

simple box-beam are analyzed with the use of the web element des-

cribed in Section 5.2.

Comparisons of analytical results are made

with the solution using conventional beam theory for the cantilevered
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beam and the simple beam problems, and the thin-walled elastic beam

theory for the simple box~beam problem.

The purpose of this section is to show the accuracy of the
finite element results with the use of the web element even at very
coarse discretization,

5.3.1 Cantilevered Beam Analysis

The cantilevered beam problem is shown in Fig. 86. The
structure is discretized into two different mesh schemes, each con-
sidering two types of boundary conditions at the support: fixed in
u, w with free Qy; and fixed in u, w, and Qy. The beam is loaded
at the tip with a concentrated load of 40 kips. The loading and

. boundary condition idealizations are shown in Figs. 86a and 86b.

The finite element results for deflection and stresses are
given in Table 24. The analysis gives a good agreement with theory.
It can also be noted from the results that fixing the rotation at
the support does not affect the results to any great extent. More
important, however, is the fact that the use of a one-web element
through the depth of the beam gives just about the same accuracy
as with two elements through the depth.

5.3.2. Simply-Supported Beam Analysis

A similar comparison is made for a simply-supported beam
with a concentrated load at the center. The span length of the
beam is varied from 4d to 32d, where d is the depth of the beam.
Due to symmetry, only one-half of the structure is analyzed. Only

4 elements are used along the length to model the half span. The
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purpose of this comparison is to show the behavior of the element
at various aspect ratios. Deflections are computed at midspan and
stresses are computed at 3/8 of the span for aspect ratios of &4, 8,
16 and 32. The results are listed in Table 25. The theoretical
values using classical beam theory with shear connections are shown

for comparison.

The close agreement of the analytical results, even at
very large aspect ratios, can be seen. Furthermore, good agreement
is again obtained with the use of a few number of elements.

5.3.3 Single Box~Beam Analysis

A steel box-beam composite with a reinforced concrete deck
is simply supported at two ends. The plan and elevation of the
structure is shown in Fig. 87. The experimental and theoretical
results for this problem under a symmetric and unsymmetric concen=
trated load at midspan are reported in Ref. 6l. The theoretical
results were obtained by using thin-walled elastic beam theory.
Experimental results were obtained from the tests conducted at Fritz
Engineering Laboratory (Ref. 61). A comparison of normal stresses
at a midspan section among theoretical, finite elements, and test

values is made to check the accuracy of the combined elements.

The finite element model and the discretization employed
for the box-beam structure are shown in Figs. 88 and 89. Only one
element over the depth is chosen to idealize the webs. Furthermore,
one plate element is used to model‘the bottom plate, and three plate

elements are used to model the top deck in the transverse direction.
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It should be noted that this discretization is the coarsest possible
in the transverse direction. 1In the longitudinal direction 6
elements are employed with finer mesh sizes used near the midspan

(Fig. 89). The diaphragms are also idealized by web elements.

The structure is investigated for two loading conditions:
(a) a concentrated load of 18 kips at midspan and symmetric between
the two webs (Fig. 90) and (b) a concentrated load of 18 kips at
midspan and directly over the web (Fig. 91). The computed normal
stresses at the indicated cross section are also shown in the
figures. Superimposed on the stresses are the values reported in
Ref. 6l. Good agreement is observed between theory, finite element
analysis and test results. A check of the total cross~sectional
moment computed by integrating the stresses at the section result in

a moment which is within 95% of the moment obtained by equilibrium.

5.4 Application of the Method of Analysis to Highway Spread Box-

Beam Bridges

With the method of analysis presented in Section 5.2, there
is no conceptual difference between the analysis of a single box=
beam structure and a multi~beam bridge superstructure. As such, the
method can be used directly in the analysis of spread box-~beam
bridges. Since the generated elements are general quadrilaterals,
the method is also applicable to skew spread box~beam bridges.

The accuracy of the method of analysis is demonstrated by the fol-

lowing comparisons with field test values.
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Two comparisons are made with actual spread box-beam bridges
which haye been field tested. The first comparison is with the
Berwick Bridge which is a 90° skew, i. e. right bridge. The second
comparison is with the Brookville Bridge which has similar dimensions
to the Berwick except for a skew of 45°. Bridge dimensions are shown
in Fig. 92. 1In both cases, only one web element is used over the
depth and only one plate element is used across each beam width and
spacing in the finite element discretization.

5.4.1 Comparison with a Right Spread Box-Beam Bridge

The field testing of the Berwick Bridge is reported in Ref.
22, The cross~sectional dimensions of the Berwick Bridge are indi=~
cated in Fig. 92. The bridge span, center-to-center of bearing, is
66 ft., the roadway width is 28 ft. and the 48 in. prestressed con-
crete box-beams are equally spaced at 8'=9-3/8", The finite element
discretization in the plan is shown in Fig. 93. The idealization
of the cross section is shown in Fig. 94. 1In the analysis, the top
part of the box-beam ié included by adding its thickness to the cor=-
responding plate element. The curbs and parapets are modeled by
increasiﬁg the thickness of the overhang as shown in Fig. 94. Two
methods of modeling the curbs and parapets are investigated. First,
the thickness of the overhang is increased so that the resulting
cross~sectional area is equal to the cross-sectional area of the
curb and parapet with the slab. Second, the thickness of the over-
hang is‘increased so that the resulting area is equal to 1/2 the
area of the curb and parapets and the full area of the slab. ‘The

second model is investigated because, by current construction
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practice, the curbs are not fully integrated with the deck slab and
the parapets have construction gaps along the length. It is assumed
that because of this practice, the curb and parapets are only 50%

effective.

The structure is loaded by the test vehicle shown in Fig. 3.
The vehicle is placed at 5 positions in the transverse direction,
as indicated by the lane number in Fig. 92. 1In the longitudinal
direction, the truck is positioned so that the drive wheels are
42,6 inches to the right of midspan. This loading corresponds to
the loading position that will produce the maximum moment in a simple
beam of equal span under the given load configuration. This loading
position also produces the maximum moment directly under the drive

wheels.

Table 26 lists the distribution coefficients at section M,
which is the section directly under the drive wheels for the two
cases studied. Shown also for comparison are the results from the
tests on the Plexiglass model reported in Ref. 32, The analytical
results, based on a 50% effective curb and parapets, agree closely
with the field test values. The agreement for all the beams at all

load cases can be seen in Fig. 95.

The following conclusions can be made based on the above
comparison:
a) The curbs and parapets are only partially effective.
A 507% effectiveness of the curb and parapet is a reason-

able assumption.
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b) The discretization of the structure with 6 elements along
the length, and one element for each box-beam width and

for each spacing gives acceptable results.

It should be noted however that the results compared are
for the overall behavior of the bridge. Finer discretization should
still be used in_order to obtain critical stresses of the bridge
components.

5.4.2 Comparison with a 45° Skew Box-~Beam Bridge

The section of the Brookville Bridge is superimposed on
Fig. 92 on the Berwick Bridge section. From the indicated dimensions
for each bridge at the bottom of the figure, the cross sections of

the two bridges are practically the same.,

The differences between the two bridges are in the skew and
the beam size. The Brookville Bridge has a 45° (Fig. 96) and the
beams are 36 in. deep prestressed concrete box-sections. There are
also minor differences in the curb and parapet sections. Details

of the bridge can be found in Ref. 51.

The idealization of the skew box-beam structure into plate
and web elements can be seen in Fig., 97 in plan and in Fig. 98 in
section. The modeling scheme used for the Berwick Bridge is also
adopted in this study. The two methods of modeling-the curb and
parapets are again used for this bridge. In both analyses, moments
arelcomputed at Section I for interior beam C and Section E1 for

exterior beam D,
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The test vehicle (Fig. 3) is used to load the bridge at the
different lane locations indicated in Fig. 99. 1In the longitudinal
directions, the positions are as reported in Ref. 51. The longitudi-
nal positions of the test vehicle are different for sections I and El’
and are dependent on the direction of the vehicle. For this study,
the direction of the test vehicle is from left to right of plan
shown in Fig. 96. The reported longitudinal positions that produced
the maximum moment response in this direction at the skew midspan are

used.

Figure 99 shows the plot of the moment coefficients for
beam C at beam section I against the vehicle lane locations. The
moment coefficients are computed by dividing the actual beam moment
with the elastic modulus (Ref. 51). The plot shows the results of
the finite element analysis using fully and partially effective curbs
and parapets and the reported values. A similar plot is drawn for

section E, of the exterior beam in Fig. 100, Both figures indicate

1
a better correlation with test values when the curbs and parapets

are only partially effective.

The positioning of the vehicle in the longitudinal direction
for each lane, however, is inconvenient because this position is not
known initially,‘and may be expected to differ for different bridge
configurations. A study, therefore, was conducted to determine the
difference between the moment coefficients when the load is at the
position whicﬁ produces the‘maximum response and when the drive

axle is at the skew midspan. The latter choice is simply a
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convenience so that a consistent loading scheme for all the lanes can
be adopted. The difference in the moment coefficienfs between the
two load positions can be seen in Table 27. The smallest difference
occurs when the load is directly over the beam considered for the
analytical values. Compared, however, with the reported moment coef=
ficients from field tests, the difference with the drive axle at

midspan is not significant,

The conclusions made for the right spread box-beam bridge
are also the conclusions for the skewed spread box~beam bridge. In
addition, the load position with the drive axle at midspan may be

used instead of the more exact position.

5.5 Lateral load Distribution in Skewed Box-Beam Bridges

Load distribution factors in box-beam bridges are computed
in the samé manner as in I-beam bridges. In the following study
the procedure of computing the maximum distribution factors for both
the interior and exterior beams by loading one lane at a time and
positioning the lanes across the width of the bridge and then
finding the combination of lane loads that would produce the maximum
distribution factor is not used. For the box~beam bridges the
structure is loaded only once with the maximum number of lane loads
that can be placed on a given bridge width. The vehicles are placed
within the lane so that.they are as close as possible towards the
interior lane. The distribution factors for the interior and ex-

terior beams are computed using this loading configuration.
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The simplified procedure mentioned above is adopted for two
reasons. First, the analysis of multi-beam box girder bridges in~
volves the solution of a very large system of equations for each load
configuration. With the number of bridges and skew angles that
have to be considered in order to cover reasonably the range of box
girder geometries, the analysis of each bridge under many individual
lane loads becomes impractical, Secondly, the influence lines for
moments in box girder bridges are more or less flat (Refs. 22, 51
and Figs. 95, 99). The flatness of the influenqe line suggests that
the case with all the lanes loaded produces the maximum moment in a

box=beam bridge and hence the maximum distribution factor.

In the following analyses of box girder bridges, HS20~44
standard trucks are placed on all lanes that can be placed in a
given bridge width, The longitudinal positions of the trucks are
such that all the drive axles fall on the skew centerline. The rear
axles of the trucks are towards the obtuse angle ét the supports.

5.5.1 Design of the Experiment

The selection of the analytical bridges including the deter=
mination of the variables for each bridge, is called the design of
the experiment, The importance of this part in the investigation
ig the determination of the different widths, number of beams, span
length and skew angles that will represent the general behavior of

spread box~beam bridges.

The box=-beams selected in this study are listed in Table

28, The 18 bridges on the list are each investigated at skew angles
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of 90°, 60°, 45° and 30°. Because of the new lane width definition
‘in the current specifications (Ref. 3) the bridge widths considered
are different from those used in Ref. 34 for the right bridges. The
widths considered are 24 ft., 48 ft., and 72 ft. corresponding to

12 foot lane widths for 2, 4 and 6 design lanes respectively (Ref. 3).
These bridge widths are from curb to curb and do not include the over=-
hang of 2 ft. on each side of the bridge. A uniform thickness of
7-1/2 inches is used for the deck slab. Curbs, parapets and dia-
phragms are not considered. One size of beam a 48/48 (Ref. 43) pre-
stressed concrete box-beam, 48" wide and 48" high, is used for all

the beams in all the bridges.

5.5.2 load Distribution Factors in Skewed Box-Beam Bridges

The computed distribution factors for the interior box-l
beams of bridges with skews of 90°, 60°, 45° and 30° are listed in
Table 28, The distribution factors for the exterior beams are
listed in Table 29. The distribution factors are computed based on
the full loading scheme, described in Section 5.5. These distri-
bution factors are plotted against the bridge S/L ratio in Figs.
101, 102 and 103 for interior beams and Figs. 104, 105 and 106 for

the exterior beams.

The following observations can be made for the loading
considered (Figs. 101 to 106):
| 1) The effect of skew is to significantly reduce the
distribution factor for the interior and exterior

beams.
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2) 'There is a monotonic decrease in the distribution factors
with decreasing skew angle.

3) The reduction factor is largest at shorter span lengths
for interior beams and at longer épan lengths for ex-
terior beams (for example see Figs. 101 and 104). The
reason for this behavior is primarily the increased

participation of the exterior beams at longer spans.

The significant reduction in the distribution factors be-
cause of the skew can be attributed to the principal bending of the
bridge being in the direction of the skew and not in the direction
of the span. The cross-sectional geometry of the bridgevis also
such that there is a better lateral distribution of the loads and

consequently a better participation of all the beams.

The larger reduction in the distribution factors at shorter
span lengths for the interior beams can be attributed to the fact
that at large skews some of the wheels of the vehicular load are off
the bridge or very near the supports. This reduction, however, is
considerably larger than is typical of a corresponding prestressed

concrete I-beam bridge.

It is not possible though to make a general conclusion for
the load distribution behavior of the exterior beams. The loading
scheme as described in Section 5.5 produces the maximum moment
response for the most interior beam and therefore can not be ex-

pected to produce the maximum moment response for the exterior beams.
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5.6 Proposed lateral Distribution Provisions

A simplified method for the determination of live=load distri-
bution factors for the interior beams of spread box=beam bridges is
presented in this section. The process in the development of this de~
sign procedure is similar to the prestressed concrete I=beam analysis.
Because of the limited number of bridges and the limited scope of the
loading, only a tentative design recommendation is made. The simpli~
fied equation, within the specified limits, conservatively predicts

the distribution factors for the skew bridges investigated.

The live load bending moment in the interior beams of skewed
spread box-=beam bridges may be determined by applying to the beams the

fraction of the wheel load specified by the following formula:

DE, = DEg, (1 - E%M) (5.1)
where ‘
PCTR(Box) = Sogo+czz :
and
DF90 = distribution factor for the interior beam
of a right bridge with the same spacing
and span length.
DF¢ = the distribution factor for the interior
beam of the bridge with skew angle @.
The above equation is limited to the following bridge di-
mensions:

' v
24" < WC <72

42' < I, < 128"
«]l14A=



The plot of DF¢/DF using the equation for the 34 and 128

90
ft. span is shown in Fig. 107. A comparison of the equation with the

measured values is given in Ref. 12.
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6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 Summary

The lateral load distribution behavior of skew I-beam and
box=beam highway bridges has been presented. The technique employed
was the finite element method., Live load distribution factors were
computed for 120 skew bridges with prestressed concrete i-beams and
for 72 skew bridges with prestressed concrete box=beams, The bridges
were subjected to design HS20-44 vehicular loadings. TFrom the re~
sults, simplified design procedures for the determination of live=-
load moments in the interior and exterior beams of skew bridges

were developed.

In the method of analysis, plate and beam finite elements
were used to model the bridge structure., Quadrilateral plate elements
with in-plane and out-of=-plane behavior represented the deck slab of
the bridge and the top and bottom plate of the box~beams. Eccentric
beam elements represented the I-beams, and web finite elements
modeled the webs of the box-beams. The general concepts and the
structural idealizations with the use of the finite element method

were described in Chapter 1.

The in-plane and out~of=plane behavior of the quadrilateral
plates as skew plates representing the deck slab were presented in

Chapter 2., The accuracy of the finite elements used for the deck
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slab was verified through comparisons with available solutions and

test data.

In Chapter 3, the eécentric beam finite elements were intro=-
duced. The plate elements of Chapter 2 were then combined with the
beam elements to model plates with eccentric stiffeners.  The method
was then applied to highway bridges with I~beams. The effects of
curbs, parapets and diaphragms on lateral load distribution were also
investigated. The applicability of the method of analysis to multi~-
span continuous bridges was demonstrated. The validity of the
modeling and the overall analysis were verified by the results of

the comparisons with four field tested I-beam bridges.

In Chapter 4, the load distribution analyses of the skew
bridges with prestressed concrete I-beams were presented. Load dis-
tribution factors were determined for interior and exterior beams of
the bridges under the critical loading pattern of HS20-44 vehicular
loads. The behavior of the load distribution factors with skew and
the major bridge parameters were illustrated. Based upon the
results, a_simplified design procedure for the determination of

load distribution factors for I-beam bridges with skew was developed.

Tﬁe skew bridges with prestressed concrete box-beams were
analyzed in Chapter 5. Load distribution factors were determined for
the interior and exterior box-beams based on a full load of HSZOI
trucks. The behavior of the beam distribution factors with the
skew and the bridge parameters was demonstrated. The validity of

the model and the method of analysis was shown through comparisons.
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with two field-tested spread box~beam bridges. A simplified design
procedure for the determination of load distribution factors for box-

beam bridges with skew was developed.

6.2 Conclusions
-
The finite element method has proven to be efficient and
accurate in the analysis of skewed beam-slab structures. The appli-

cability of the method for a load distribution analysis has been

demonstrated for bridges with I-beams or with box~beams.

The following conclusions are made for the load distri-
bution study:
For the prestressed concrete I-beam bridges,

1. The effect of skew is generally to reduce the
distribution factors for the interior beams when
compared to a right bridge of equal span and
beam spacing. The distribution factors for the
exterior beams are inhcreased by a small amount
for the bridges with beam spacing to span ratio
less than 1/8.

2. The reduction in the distribution factor is
minimal from 90° skew to 60° skew but becomes
significant at skews beyond 45°. The reduction
is influenced to a large degree by (a) beam spacing
fo.span length ratio, and (b) bridge curb~to=-curb

width to span length ratio.
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6.

The amount of reduction can be predicted by the
trigonometric function in the form presented

in Section 4.5.

The effect of the curbs and parapets is to reduce
the load carried by the interior beams and to
increase the load carried by the exterior beams.
However, for wider bridges, this effect is con-
siderably diminished. Also the curbs and parapets
may be considered only 50% effective based on the
construction practice of not fully integrating
the curbs and parapets with the deck slab.

The effect of the diaphfagms is to distribute the
load more uniformly to the beams of the bridge.
However, for bridges which are fully loaded, this
effect is not significant. For all practical
purposes, one line of diaphragms at midspan is
quite effective in distributing a given load
compared to several lines of diaphragms along

the span.

The effect of continuity is to distribute the
load more efficiently to the different beams

in a multi-span bridge. Based on the findings,
strong consideration should be given to the
design of multi-span bridges with distribution

factors for continuous beam=-slab structures.
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For the prestressed concrete box~-beam bridges,

1.

The effect of the skew is to significantly reduce
the distribution factors for the interiorvand
exterior beams when compared to a right bridge of
equal span and spacing. It should be noted, how=
ever, that this behavior is based only on a fully
loaded bridge with the loads placed as close as
possible towards the middle of the bridge width.
The amount of reduction can be predicted by the
trigonometric function in the form presented in

Section 5.6.

6.3 Recommendations for Future Studies

The analysis procedure developed in this research is appli-

cable to beam-~slab bridges, with or without skew. The following

areas are recommended for future research:

1.

Load distribution in skewed beam~slab bridges
with curbs and parapets.

Load distribution in skewed beam=-slab bridges with
diaphragms perpendicular to the beam or in the
direction of the skew.

Load distribution in beam~slab bridges with
non-parallel skews.

Load distribution in composite steel I-beam

bridges.
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5. Load distribution in multi-span continuous

beam slab bridges.

The above areas can be investigated with the analytical

procedures developed and presented herein.
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A SQUARE PLATE UNDER UNIFORM EDGE LOADING (Fig. 10a)

TABLE 1

IN-PLANE DISPLACEMENTS AND STRESSES IN

?

Node Quantity1 Q8Dp11 CST Exact
(Ref. 52)

u 1.66667 | 1.66667 1.66667
v 0. 0. 0.,

5 Oy 1.0 0.99995 1.0
9 0. 0.00149 0.
Xy 0. 0.00161 0.
u 3.33333 | 3.33333 3.33333
v 0.25 0.25 0.25

9 o, 1.0 0.99368 1.0
9y 0. 0.00065 0.
Txy 0. 0.00015 0.

1 , N . .
u, v displacements in inches, ox, Gy’ Txy stresses in ksi.

2.1% solution accuracy specified.
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TABLE 2

IN-PLANE DISPIACEMENTS AND STRESSES IN

A SQUARE PIATE UNDER IN-PIANE SHEAR (Fig.lOb)

Quantity1 Q8D11 CST2 Exact
(Ref. 52)
Oy 0. 0.00083 0.
o 0. 0.00093 0.
y
Txy 0.13333 0.13284 0.13333
0112 O990 19 0.13333 0.13196 0.13333
=3 -3 =3
ny 0.1022 % 10 0.1138 x 10 0.1023 x 10

1 . .
stresses in ksi.

2.1% solution accuracy specified.
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TABLE 3

DISPLACEMENTS AND STRESSES IN A SKEW PIATE
UNDER UNIFORM EDGE LOADING (Fig. 11)

u - Displacements(in.) v - Displacements(in.)
Node Q8D1l CST Node Q8D11 CST
1 0. 0. 1 =0.000306 =0.000308
2 0. 0. 2 0. 0.
3 0. 0. 3 0.000306 0.000301
4 0.001667 0.001657 4 0.000657 0.000647
5 0.0001667 | 0.001658 5 0.000962 0.000960
6 0.001667 0.001694 6 0.001268 0.001241
7 0.003333 0.003314 7 0.001619 0.001605
8 0.003333 0.003339 8 0.001924 0.001889
9 0.003333 0.003371 9 0.002230 0.002163
O Stresses(ksi) Gy Stresses(ksi)
Node Q8nl1l CST Node Q8D11 CST
1 1.0 0.995 1 0. 0.
2 1.0 0.995 2 0. 0.
3 1.0 1.005 3 0.
4 1.0 0.995 4 0. 0.
5 1.0 1.002 5 0, 0.
6 1.0 1.011 6 0. 0.
7 1.0 1.002 7 0. 0.
8 1.0 1.008 8 0. 0.
9 1.0 1.007 9 0. 0.
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TABLE &4

MIDSPAN DISPLACEMENT OF A SKEW PLATE
UNDER IN-PIANE CONCENTRATED LOAD (Fig. 12)

Finite Element Analysis Displacement x 10-4ft!
Q8D8™ ©11.40
CST2 19.58
Q8D11(3) 30.44
Q8D11(2) 51.49
LSE ! 54,51

1Refs. 59, 60

2Ref. 52

TABLE 5

NORMAL STRESS AND DEFLECTION IN A
SIMPLY-SUPPORTED BEAM WITH INCLINED FACES (Fig. 13)

Vertical Displacement Normal Stress

at A x P/Et . at B x P/dt
Mesh | q8p8’ | 08p11 | Ref. 53 Q8D8 | Q8D11 | Ref. 53
5x2 9.44 | 14.34 15,21 - 1.55 1.73 2.54
5x 4 | 10.09 | 13.58 17.27 1.67 2,52 2,96

1From Ref. 53
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TABLE 6

'CENTER DEFLECTION OF A SQUARE PIATE WITH FIXED SUPPORTS

Multiplier pL?/p

Source 2 x 2 4 x 4 8 x 8 10 x 10 16 x 16
ACM .00592 .00613 | .00580 - .00568
Q19 .00521 .00515 | .00546 .00551 -
EXACT (Ref. 55). . .00560
TABLE 7

CENTER DEFLECTION OF A SQUARE PIATE WITH SIMPLE SUPPORTS

Multiplier PLZ/D

Source | 2 x 2 L x 4 8x8 |10x10 | 16 x 16
ACM 0.01378 0.01233 | 0.01133 - 0.01167
Q19 0.00975 0.01106 | 0.01145 |0.01150 | 0.01159
EXACT 0,01160

(Ref. 55) -
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TABLE 8

RHOMBIC PIATE UNDER CONCENTRATED LOAD
TWO SIDES SIMPLY SUPPORTED, ¢ = 45° (Fig.28)

w M M .
Method max, min.

x PaZ/D xP - X P

Finite Difference'™ &4 x 8 | 0.0117 | 0.331 | 0.199

Finite Difference' 6 x 8 | 0.0117 | 0.370 | 0.257

Experiment<1) 0.0099 0.354 0.254
Finite Element 8 x 8 0.0107 0.363 0.253
1Ref. 37
o Et3
D= >
12(1~v7)
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TABLE 9

MOMENTS IN A SKEW PIATE UNDER UNIFORM LOAD

Multiplier x 105

Pt Moment Discretization
(in-1b)
in Ref. 48 @) (2) (3)
Mul 0.906 0.897 0.896
L 0.270 0.285 0.286
A uv
M 0.980 0.975 0.981
M, 0.068 0.058 0.056
M 0.976 0,964 0.965 0.968
M 0.019 0.010 0.010 0.012
B y
M 0.188 0.205 0.207 0.206
Xy
M 1.01 1.01 1.01 1.01
Moo 0.027 0.032 0.032 0.030
! %
M 0.210 0.487 0.368 0.309
! *
M =0.213 | ~0.160 ~0.245 -0.202
E ‘
' *
M 0.131 0.336 0.195 0.248
*
M 0.238 0.631 0.425 0.410
Mg -0.238 | -0.303" | -0.302 -0.302

%*
At center of plate

1

M, M
u uv

are in the

element.

direction

of the skew.
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TABLE 10

MOMENTS IN A SKEW PIATE UNDER CONCENTRATED LOAD

Multiplier x 105
Pt Moment Discretization
Si%ilhl Ref. 48 (1) (2) (3)
M.u1 0.453 0.461 0.457
A Muv1 0.134 0.125 0.125
’ M% : 0.684 '0.667 0.658 0.643
B M.y 0.262 0.240 0.231 0.221
M%y 0.122 0.106 0.108 0.104
M 0.068 0.143 0.122 0.104
E My 0.100 0.082 0.117 0.094
Mﬁy 0.068 0.115 0.113 0.130

1

Mu, th are in the direction of the skew.
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TABLE 11

MOMENT COEFFICIENTS AND REACTIONS IN A 45°
SKEW BRIDGE WITH CHANGE IN BOUNDARY CONDITIONS

Beam Moment Coefficients Reactions at Left Support
xLxP x P
S.S.l Skew S.S.2 S.S. Skew S.S.2
A 0.00232 0.0233 0.0614 0.0600
B 0.0437 0.0439 0.0371 0.0412
C 0.0922 0.0918 0.1085 0. .028
D 0.0437 0.0439 0.2545 0.2254
E 0.00232 0.0233 0.0385 0.0706

1Simply supported.

2Simply supported and constrained to rotate about
skew line of support, B = 459,

LOAD DISTRIBUTION COEFFICIENTS - BRIDGE 3

TABLE 12

1

Ratio of Bending Moments (%)

Interior Girders

Exterior Girders

Field Test

Analytical Results

60

59

40
41

Ref. 6
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TABLE 13

MOMENT PERCENTAGES

¥ Beam Moment

Beam Moment/¥ Beam Moment

Bridge
e Truck Moment [Interior | Center [Exterior
Field Test 89.30 34.0 32.0 34.0
(Ref. 24) :
2B Finite Element 93.57 32.6 34.0 33.2
(composite)
Finite Element 92.13 33.2 33.8 33.0
(non=composite)
Field Test 92.10 33.8 33.4 29,2
(Ref. 24)
3B Finite Element 94.50 32.7 34,3 33.0
(composite)
Finite Element 83.95 33.2 33.8 33.0

(non=composite)
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TABLIE 14

1

LOAD DISTRIBUTION FACTORS IN LEHIGHTON BRIDGE WITH AND WITHOUT DIAPHRAGMS = CASE A

L= 71'-6"

S = 6"-9"

Without Diaphragms

With Diaphragms

Diaphragms

Diaphragms

~T€T~

Loaded Beam Partially Effective in Shear Only Fully Effective
Lanes
Analytic Field Analytic Field Analytic Analytic
Test Test
A 0.79 0.71 0.81 0.75 0.79 0.80
B 0.69 0.69 0.61 0.64 0.69 0.58
1 c 0.64 0.58 0.51 0.53 0.64 0.45
D 0.62 0.62 0.50 0.59 0.62 0.45
E 0.68 0.64 0.61 0.54 0.68 0.58
F 0.83 0.85 0.83 0.87 0.83 0.82
A 0.85 0.81 0.94 0.88 0.85 0.99
B 1.01 0.99 0.96 0.98 1,01 0.9
5 c 1.07 0.98 0.92 0.94 1.07 0.84
D 1.04 1.06 0.92 1.02 1.04 0.84
E 1.09 1,02 1.02 0.87 1,09 0.98
F 1.03 1.08 1.10 1.14 1.03 1.15
A 0.85 0.81 0.94 . 0.88 0.85 0.99
B 1.03 1,01 1.01 1.05 1.03 1.00
3 C 1.20 1.10 1,11 1.06 1.20 1.06
D 1.18 1.20 1.13 1.18 1.18 1.11
E 1.13 1.08 1.11 0.96 1.13 1.09
F 1,02 1.07 1.08 1,15 1.02 1.13

Design Lane

= 12'=0", leftmost lane starts at beam A.




TABLE 15

A

LOAD DISTRIBUTION FACTORS IN LEHIGHTON BRIDGE WITH AND WITHOUT DIAPHRAGMS - CASE B1
L= 71'-6" S = 6"-9"
. Without Diaphragms With Diaphragms Diaphragms Diaphragms
Loaded | Beam Partially Effective in Shear Only Fully Effective
Lanes Analytic Field Analytic Field Analytic Analytic
Test Test

A 0.95 0.84 0.93 0.86 0.95 0.90

B 0.69 0.69 0.63 0.65 0.69 0.61

1 c . 0.64 0.58 0.51 0.53 0.64 0.45
D 0.62 0.63 0.51 0.59 0.63 0.45

E 0.68 0.64 0.60 0.53 0.68 0.56

F 0.73 0.77 0.75 0.79 0.73 0.76

A 1.09 0.99 1.16 1.05 1.09 1.19

B 1.11 1.08 1.04 1.06 1.11 1.01

2 C 1.09 1.00 0.93 0.95 1.09 0.84
D : 1.07 1.08 0.92 1.05 1.07 0,84

E - 0.97 0.92 0.94 0.79 0.97 0.92

F . 0.85 0.93 0.92 0.98 0.85 0.98

A . 1.06 1.00 1.12 1.05 1.06 1.16

B : 1.18 1.17 1.15 1.16 1.18 1.14

3 c 1.25 1.17 1.18 1.13 1.25 1.13
D 1.21 1.23 1.12 1.23 1.21 1.06

E . 0.99 0.96 0.99 0.86 0.00 0.99

F 0.84 0.91 0.89 0.97 0.84 0.92

1Design Lane

= 12'-0", leftmost lane starts at overhang.




TABLE 16

LOAD DISTRIBUTION FACTORS IN BARTONSVILLE BRIDGE WITH AND WITHOUT
CURBS, PARAPETS AND DIAPHRAGMS

L= 68"'-6" s = 8'-0"
No. of Live Load Distribution Factors
Loaded Beam - b o P o £
Lanes (1) (2) (3) (4) (5) (6)

A 0.92 | 0.92 [ 0.94 | 0.94 10.80 | 0.94
1 B 0.85 | 0.84 }0.71 | 0.70 | 0.72 | 0.75

C 0.84 | 0.82 | 0.68 | 0.66 | 0.76 | 0.72

A 0.97 | 1.00 |} 1.08 | 1.10 | 0.85 | 1.06
2 B 1.30 | 1.28 | 1.18 | 1.17 | 1.04 | 1.21

c 1.38 | 1.35 | 1.20 | 1.18 | 1.27 | 1.24

2beams and slab only.

bbeams and slab with curbs and parapet

®beams and slab with diaphragms
dbeams and slab with curbs, parapets and diaphragms
®field test results with curbs, parapets and diaphragms

fbeams and slab with with only 20% effective diaphragms
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TABLE 17

LOAD DISTRIBUTION FACTORS IN A 36 FT. WIDE BRIDGE WITH DIAPHRAGMS

L=71'-6" S = 7'-2"
One Loaded Lane
Beam
Diaphragm Locations
w/o
Diaphragms at L/2 at L/3 at L/4 at L/5
A 0.84 0.84 0.84 0.86 0.83
B 0.76 0.64 0.71 0.69 0.66
L—_—_-_——-——————-""———-—' : ——
Two Loaded Lanes
Beam
Diaphragm Locations
w/o
Diaphragms at L/2 at L/3 at L/4 at L/5-
A 0.92 0.94 0.96 1.00 0.97
B- 1.13 1.04 1.08 1.08 1.04
C 1.19 1.06 1.11 1.08 1.04
Three Loaded Lanes
Beam
Diaphragm Locations
w/o _
Diaphragms at L/2 at L/3 at L/4 at L/5
A 0.90 0.90 0.92 0.96 0.92
B 1.16 1.08 1.13 1.14 1.09
C 1.34 1.25 - 1.29 1.28 1.23
L—————————-—_*L——————_———-—
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TABLE 18

MDMENT-COEFFICIENTS1 IN A FOUR-SPAN CONTINUOUS BRIDGE

 Static Load Test Vehicular Load Test

Beam Analytic Test? Analytic Tést2
A 19,53 20.0 17.44 16.0
B 30.47 29.0 32.56 33.0
C 30.47 29.0 32,56 - 31.0
D 19,53 22,0 17.44 19.0

1A11 values in percent of theoretical single beam moment.

2From Ref. 24

TABLE 19
1

MOMENT COEFFICIENTS™ IN A FOUR=-SPAN CONTINUOUS BRIDGE
WITH CHANGES IN BOUNDARY CONDITIONS

Sté%ic Load ‘ Vehicular Load

Beam 'Simpiy . , Simply . .
Supported Continuous | Fixed Supported Continuous | Fixed
A 20.49 19.53 17.11 21.55 17.44 13,19
B 29.51 30.47 32.89 28.45 32.56 36,81
C 29.51 30.47 32.89 28.45 32.56 36,81
D 20.49 19.53 17.11 21.45 17.44 13,19

lA11 values in percent of theoretical single béam moment.
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TABLE 20
LOAD DISTRIBUTION FACTORS IN A SIX-BEAM CONTINUOUS BRIDGE

L= 75'-100'-75"
S = 7!_2"
Number of Distribution Factors
Loaded
Lanes Beam At Midspan At Supports
A 0.780 0.785
1 B 0.706 0.720
0.664 0.700
0.882 0.833
2 B 1.061 1.011
1.107 1.165
0.884 0.855
3 B 1.121 1.146
1.268 1.308
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TABLE 21

LIST OF BRIDGES ANALYZED

Bridge Number
No. Width of Beams Spacing Length Beam Size S/L
| (ft.) (in.) (ft.)
1 24.00 6 57.60  120.00 AASHO-VI 0400
2 24.00 6 57.60 72.00 24/42 .0667
3 24.00 6 57.60 38.40 20/30 .1250
4 24,00 5 72.00  120.00 AASHO-VI  ,0500
5 24,00 5 72.00 60.00 20/39 .1000
6 24,00 5 .72.00 42,00 20/30 .1429
7 24.00 4 96.00  120.00 AASHO-VI  ,0667
8 24.00 4 96.00 64.00 24/45 .1250
9 24,00 4 96.00 40.00 20/30  .2000
10 48.00 11 57.60  120.00 AASHO-VI  .0400
11 48.00 11 57.60 84,00 24/48 .0571
12 48.00 11 57.60 48.00 20/30 .1000
13 48.00 9 72.00  105.00 28/63 .0571
14 48.00 9 72.00 60.00 20/39 .1000
15 48.00 9 72.00 42.00 20/30 L1429
16 48.00 6 115.20  96.00 AASHO-VI  ,1000
17 48.00 6 115.20 57.60 24/45 .1667
18 48,00 6 115.20 48.00 20/33 .2000
19 72.00 - 16 57.60 120,00 ASSHO-VI  .0400
20 72.00 16 57.60 57.60 20/36 .0833
21 72.00 16 57.60 38.40 AASHO-I  ,1250
22 72.00 14 66.50  110.80 AASHO-VI  .0500
23 72.00 14 66.50 66.50 24/42 .0833
24 72.00 14 66.50 38.80 AASHO-I  ,1429
25 72.00 12 78.50  114.50 AASHO-VI  .0571
26 72.00 12 78.50 65.50 24/42 .1000
27 72.00 12 78.50 39.30 20/30 1667
28 72.00 9 108.00  108.00 AASHO-VI  .0833
29 72.00 9 108.00 54.00 24/42 .1667
30 72.00 9 108.00 45,00 24/36 .2000
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TABLE 22
MAXIMUM DISTRIBUTION EACTORS - INTERIOR BEAMS

Bridge NUMBER OF IOADED LANES AND SKEW ANGLE

No. ANL iy _90° MNLL  _60° ML 450 ML 300
1 2 2 .81 2 .79 2 772 .71
2 2 2 .84 2 .81 2 772 .66
3 2 2 .96 2 94 2 .93 2 .86
4 2 2 .96 2 92 2 .88 2 .82
5 2 2 1.05 2 .99 2 .92 2 .78
6 2 2 1.17 2 1.07 2 .95 2 .76
7 2 2 1.23 2 1.20 2 1.18 2  1.08
8 2 2 1.30 2 1.24 2 1.17 2 .99
9 2 2 1.32 2 1.23 2 1.4 2 .88
10 4 4 94 4 91 4 .87 4 .79
11 4 4 94 4 90 4 .87 4 .75
12 4 2 1.03 3 .98 3 94 3 .87
13 4 4 1.17 4 1,13 4  1.09 4 .97
14 4 4 1.20 4 1.14 4  1.08 4 .89
15 4 4 1.24 3 1,13 3 1.07 3 .83
16 4 4 1.84 4 1.79 4 1.74 4 1,59
17 4 4 1.83 4 1.77 4 1.70 4  1.45
18 4 4 1.86 4 1,72 4 1.5 3 1.24
19 6 5 .94 5 .92 5 .90 5 .84
20 6 4 .95 & 91 4 .87 5 .75
21 6 4 97 4 91 4 96 5 .72
22 6 5 1.07 5 1.05 5 1.04 5 .98
23 6 4 1.07 4 1.04 4 1.01 5 .89
24 6 4 1.09 4 1.02 5 .96 5 .77
25 6 5 1.23 5 1.2l 5 1.19 5 1,11
26 6 4 1.24 5 1.20 5 1.16 5 1.03
27 6 4 1.30 4 1,21 5 1,12 5 .89
28 6 5 1,72 5 1,68 5 1.65 6  1.51
29 6 4 1.7 5 1.8 5 1,61 5  1.33
30 6 4 1.77 5 1.68 5 1,60 5 1.23

*
Number of Lanes
**Number of Loaded Lanes
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TABLE 23
MAXIMUM DISTRIBUTION FACTORS - EXTERIOR BEAMS

Bridge NUMBER OF LOADED LANES AND SKEW ANGLE
No.  #NL #NLL  90° NLL  60° NLL  45° NLL 30
1 2 2 69 2 70 2 70 2 .72
2 3 ) 67 2 67 2 67 2 6l
3 2 2 56 1 57 1 .57 2 .58
4 2 2 .80 2 81 2 82 2 .83
5 2 2 75 2 77 2 78 2 .73
6 2 2 73 2 73 2 72 2 .62
7 2 2 1.00 2 1.02 2 1.02 2 1.01
8 2 2 95 2 95 2 94 2 .88
9 2 2 .87 2 .87 2 .86 2 A
10 4 2 71 2 72 2 73 3 .73
11 4 4 68 2 68 2 68 4 .65
12 4 1 62 1 61 1 61 2 .59
13 4 2 .83 2 .83 2 84 4 .83
14 4 2 78 2 76 2 76 4 .70
15 4 2 72 2 b 4 Tl 4 . 62
16 4 2 1.10 2 1.10 2 1.11 4  1.09
17 4 2 1.02 2 1.01 2 1.00 4 .92
18 4 2 1.08 2 1,03 & .9 4 .85
19 6 2 70 2 71 2 723 .72
20 6 6 65 2 64 2 .63 2 .58
21 6 1 61 1 .60 2 60 2 .53
22 6 2 78 2 78 2 79 2 .78
23 6 2 b2 72 2 73 2 .67
2 6 1 68 2 .66 2 67 6 .58
25 6 2 .88 2 .89 2 91 3 .91
26 6 2 .83 2 .85 2 .86 6 .80
27 6 1 T4 2 75 2 75 2 .63
28 6 2 1.09 2 1.10 2 1.11 3  1.09
29 6 2 97 2 96 2 .95 6 .86
30 6 2 95 2 93 2 91 6 .80

*Number of Lanes

sk
Number of Loaded Lanes ~139-



TABLE 24

CANTILEVER BEAM WITH CONCENTRATED LOAD

40k E = 30,000 ksi
Ny B
—%k|2" = 0.25
s - A : [] Id b= 1.0"
b L 5l ~ kb d = 12.0"
L = 48.0"
Mesh | Boundary Deflection Normal Stress
(Fig. 86) Condition at A (in In.) at B (in ksi)
‘ : Simple Supports 0.3279 60.0
1 x4 ' ’
’ Fixed Supports 0.3283 60.0
Simple Supports 0.3416 60.97
2x4 '
Fixed Supports 0.3428 61.48
Ref. 59 Q.3558 60.0
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TABLE 25

SIMPLY SUPPORTED BEAM WITH CONCENTRATED LOAD

K

4

d

ek’

V=0,

Span 'Averaged Vertical Displacement Stress at 3/8 Span -
L(1) at Midspan x P/Ed (bottom face) x P/bd
Beam Finite % of |Beam Finite | % of
Theory Element Theory {Theory | Element | Theory
4d 18.19 18.36 99.00 4.5 4.5 100
8d 132.59 130.61 99.00 9.0 9.0 100
16d 1033.39 | 1016.57 | 98.34 | 18.0 18.0 100
32d 8210.99 8080.42 98.41 36.0 36.0 100
1

All discretizations into 1 x 4 mesh
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TABLE 26

DISTRIBUTION COEFFICIENTS BOX~BEAM BRIDGE = SECTION M
(BERWICK BRIDGE)

Digtribution Coefficients (%)
Lane| Beam | Field Test(l) Finite Element | Plexiglass Model(z)
A 43,82 42.79 -
1 B 30.95 29,75 ——
& 15.02 17.53 -
D 10.21 9.93 ——-
A 33.00 32.41 ——-
2 B 31.06 30.27 ——-
c 20.85 21.51 ——
D 15,09 15.82 -
A 21.12 23.27 25,5
3 B 29.00 26,73 24.5
- C 28.88 26.73 24,5
D 21.12 23.27 25.5
1
( )Ref. 22
(Z)Refo 32
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TABLE 27

o MAXIMUM MOMENT COEFFICIENTS
45° SKEW BOX~BEAM BRIDGE = SECTION I
(BROOKVILLE BRIDGE)

Moment Coefficients (ft.—in.z)
Lane (1) (2) (3) - (4)
1 0.028 0.029 0.031 0.027

2 0.034 | 0.031 0.03. 0.032
3 0.030 | 0.029 | 0.030 | 0.026
4 0.019 | 0.024 | 0.023 | 0.016

5 0.012 0.018 0.016 0.013

(1)Fie1d tests (Ref. 51)

(Z)Curb and Parapet fully effective

(3)

Curb and Parapet partially effective

(4)

Case (3) with drive axle at midspan
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TABLE 28

LIST OF SPREAD BOX~-BEAM BRIDGES

Bridge Number
No. Width of Beams Spacing Length  Beam Size S/L
(ft.) (in,) (ft.) '

1 24.00 3 122.50 40.83 3-48/48 .2500
2 24,00 3 122.50 71.46 3-48/48 1430
3 24.00 3 122.50 122.50 3-48/48 .0830
4 24.00 4 81.67  34.03 4=48/48 .2000
5 24.00 4 81.67  47.64  4-48/48 .1430
6 24,00 4 81.67 102.08 4-48/48 .0670
7 48.00 5 133.25 44,42 5-48/48 2500
8 48.00 5 133.25 88.83 5~48/48 - .1250
9 48.00 5 133.25 11.04 5-48/48 .1000
10 48.00 7 88.83 37.01 7-48/48 .2000
11 48.00 7 88.83  59.22  7-48/48 .1250
12 48.00 7 88.83 111.03 7-48/48 .0670
13 72.00 8 117.29 39.10 8-48/48 .2500
14 72,00 8 117.29 78.19 8-48/48 .1250
15 72.00 8 117.29 97.74 8-48/48 1000
16 72.00 9 102.62 42,75 9-48/48 .2000
17 72.00 9 102,62 68.42 9-48/48 .1250
18 72.00 9 102.62 128,25 9-48/48 .0670
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TABLE 29
MAXIMUM DISTRIBUTION FACTORS - INTERIOR BOX-BFAMS

NUMBER OF LOADED LANES AND SKEW ANGLE

Bridge —

No. *NL  dNLL o 90°  mun  _60° ML _45° ML _30°

1 2 2 1.73 2 1.45 2 1,09 2 .53

2 2 2 1.61 2 1.38 2 1.06 2 47

3 2 2 1.56 2 1,27 2 1.0l 2 .66

4 2 2 1.15 2 95 2 70 2 .38

5 2 2 1.06 2 91 2 .65 2 .30

6 2 2 1.01 2 .87 2 .68 2 .40

7 4 4 2.16 4 1.77 4 1,20 4 47

8 4 4 1.93 4 1.56 4 1.03 4 .32

9 4 4 1.8 4 1.49 4  1.00 & .41

10 4 4 1.47 4  1.09 & b 4 .30
11 4 A 1.33 4  1.01 4 62 4 .26

12 4 4 1.22 4 .86 4 54 & .24

13 6 6 1.87 6 1.55 6 1.03 6 46

14 6 6 1.80 6 1.37 6 .82 6 .32

15 6 6 1.76 6  1.27 6 75 6 .27

16 6 6 1.63 6 1.25 6 776 .33

17 6 6 1.55 6 1.13 6 .66 6 .26

18 6 6 1.49 6 85 6 .50 6 .24

= ,
Number of Lanes

dode
Number of Loaded Lanes
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TABLE 30

MAXIMUM DISTRIBUTION FACTORS - EXTERIOR BOX-BEAMS

Bridge NUMBER OF ILOADED IANES AND SKEW ANGLE

No. *NL ~ **NLL 90° nNuL _60° MuL 45° i 30°
1 2 2 1.17 2 1.01 2 .69 2 .24

2 2 2 1.29 2 1.12 2 .73 2 .23

3 2 2 1.27 2 1.03 2 .65 2 .20

4 2 2 .90 2 .68 2 L2 2 .12

5 2 2 .96 2 772 47 2 13

6 2 2 99 2 79 2 46 2 .08

7 4 4 1.17 4 1.00 & 67 4,26

8 4 4 1.40 4 1.09 4 59 40 .17

9 4 4 1.43 &  1.06 &4 53 40 .11
10 4 4 89 4 .70 4 46 4,16
11 4 4 99 4 5 4 LG 419
12 4 4 1.10 4 75 4 A4 4,20
13 6 6 1.01 6 .88 6 58 6 .24
14 6 6 1.20 6 .92 6 .58 6 .29
15 6 6 1.26 6 .90 6 .55 6 .28
16 6 6 .93 6 .76 6 49 6 .21
17 6 6 1.04 6 .75 6 46 6 24
18 6 6 1.14 6 .56 6 .32 6 .18

»
Number of Lanes

ek
Number of Loaded Lanes
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(a) Prestressed Concrete I-beam Bridge

i

Is
|

D

C

B

(b) Prestressed Concrete Spread Box-Beam Bridge

Fig. 1 Beam=Slab Bridge Cross Section
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Fig. 3 Vehicular Loadings
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(a) Quadrilateral Plate Element

—-

g X

(b)' Skew Plate Element

Fig. 6 Plate Finite Elements
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Stresses

~ Fig. 7 In-Plang Stresses and Forces
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- Fig. 10 Rectangular Plate Under Uniform In-Plane Edge Loadings
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a. Plate Dimension and Properties
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b. Idealization and Modeling

Fig. 11 Skew Plate under Uniform In-Plane Edge Loading
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R=100¥ 1 R= 100X

A
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E=432,000 KSF
v=.15
Y t =10

Discretization To Triangular Elements
(CST)

S
|

Discretization To Parallelogram Elements
(Q8sDIl)

Fig. 12 Skew Plate Under In-Plane Concentrated Loads
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b. 2 x 5 Di etization

‘  7 7 7 7 7
w /f / / / —7 7
| | / [/
[~ / /A 77

¢. 4 x 5 Discretization

Fig. 13 Simply Supported Beam with Inclined Faces
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L By A ‘Mid-Plane |
/ z Reference Surface

a. Displacements

b. Stress Resultants

Fig. 14 Plate Bending Stresses and Displacements
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Fig. 15 Projected Dimensions

Fig. 16 Intrinsic Dimensions
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(1,0,0)

Fig. 17 Natural Coordinate System

Fig. 18 Nodal Degrees of Ffeedom
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Fige 19

Fige

20 Assembled Triangular Elements
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i o Case |
Concentrated load at center
Fixed supports

a
a Case 2

' Concentrated load at ceter
Simply supported

Support On All Sides Case 3
Uniform load, simply supported

—————
' ' ¢ " Uniform load
3 b) Skew angle ¢ varied

Support On 4 Sides

Case |

‘ é Uniform load
Skew angle ¢ varied
, a ¢) Case 2
\ Concentrated load at center
¢ = 45°

Simple Supports On 2 Sides

o L¢ . Case |
i = Uniform load
¢ ¢ =30°,b/L4=0.40
b d) Case 2
: Concentrated load
¢ =30°,b/L$p =040
' Simple Supports 2 Sides Case 3
Uniform load

b/L¢ =0.5,¢ varied

Fig. 21 Numerical Examples and Comparisons for Plate
Loading
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a. Square Plate ' b. 2x2

¢. 4x4 d. 8x8

e. 10x10 ” f 16x16

Fig. 22 Fully Supported Square Plate and Discretizations
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% ERROR IN CENTRAL DEFLECTION
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B / NUMBER OF DEGREES OF FREEDOM

23 Percent Error in Central Deflection Versus Number of Degrees of Freedom -
Fixed Supports with Concentrated Load at Center
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Fig. 24 Percent Error in Central Deflection Versus Number of Degrees of Freedom -
Simple Supports with Concentrated Load at Center.
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Fig. 25 Bending Moments Mx and My in a Simply Supported
Square Plate - Uniform Load
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o Finite Difference (Ref 37)

a ,

0, 4 Finite Element
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o
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Fig. 26 Deflection at the Center of a Simply Suppofted
Rhombic Plate - Uniform Load
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'MOMENT M, AT CENTER OF THE PLATE x qa? x 1072

5 $
Support
4 a
] -
2.._
| — | : v
o Finite Difference (Ref. 37)
i A Finite Element o
v=0.3 ‘
1 l | | L
90 75 60 45 30 15

SKEW ANGLE ¢

Fig. 27 Principal Moment M, at Center of a Simply

" Supported -Rhombic Plate ~ Uniform Load
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e

1 -

Fig. 28 -Skew Steel Plate, Two Sides Simply Supported =~
Concentrated Load at Center ‘
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 E=1.0665 x 108 Ib/in2 £4 =100in
v=0215 | ¢ = 60°
t=347 | .  £4=8666in
b=40.0in ‘

Fig. 29 Skew Slab Model (Ref. hé) and Discretization Scheme 1
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Fig. 30 Skew Slab Model Discretization Schemes 2 and 3



O Finite Difference (Ref.55)
A Finite Element

B ~ b/Ls=05
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O
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Fig. 31 Deflection of a Skew Plate, Two sides Simply
Supported - Uniform Loads
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O Finite Difference (Ref. 55)
A Finite Element
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Fig. 32 Maximum Moment in a Skew Plate, Two Sides Simply
Supported - Uniform Load
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(x,y) = Plane of Reference

Fig. 33 &4 :Stiffener Finite Element with Associated
Degrees of Freedom and Nodal Forces
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Fig. 35 Location of the Maximum Beam Moment Response in a 900 Skew Bridge (Right Bridge)
and a 30 Skew Bridge - Concentrated Load at Midspan of Beam C
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Fig. 36 Location of the Maximum Beam Moment Response in a 60° Skew Bridge and a 45°
Skew Bridge - Concentrated Load at Midspan of Beam C
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Fig. 37 Moment Coefficients in a 5-Beam Bridge Neglecting
the Eccentricity of the Beams to the Slab
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Fig. 38 Moment Coefficients in a 5-Beam Bridge Including
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Fig. 39 Static Load Test of Bridge 3 (Ref. 6)
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Fig. 40 AASHO Test Bridge (Ref. 24)
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CENTER EXTERIOR

INTERIOR

41 Distribution Factors for Interior, Center and Exterior Bridge Beams -

Fig.

AASHO Test Bridge



MOMENT COEFFICIENTS (0/0)
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_5.0L 1 l 1 |
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Beam Size -Penndot 24/45 Beam Spacing  6-9"

Fig. 42 1Influence Lines for Moments - Lehighton Bridge
With and Without Diaphragms, Beam B
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Beam Size AASHO-I Beam Spacing  8-0"

Fig. 43 1Influence Lines for Moment - Bartonsville Bridge
with Partially Effective Diaphragms, Beam B
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MOMENT COEFFICIENTS (0/0)
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APPENDIX A

Q8S11 ELEMENT STIFFNESS MATRIX

The Q8D1l element approximates the in-plane behavior of
the deck slab in this study. This element has 10 fundamental degrees
of freedom and one generalized coordinate o describing the constant
shear strain throughout the element. The derivation follows the

derivation of the element Q8D9 in Ref. 59.

The relationship between the natural system of coordinate

and the global right cartesian coordinate system is expressed by:

= (a.1)

The assumed displacement function is a linear shape function

for the corner points and a quadratic function for the internal

node:
(u, )
— i
u ) 0 ) 0 vi
= b 2 < T (A.2)
VJ 0 él 0 ég U,
. 0 J
1
where Ql =3 1+ ggi)(l + ﬂni)

2 2
¢ = (Q=-¢)H-=-7)
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The displacement gradient field can be derived from Eq.
A.2 by appropriate differentiation.

) .

0% o8 N
——L 0 ——:-2—: 0 FU.
x X i
38 3%, Vi |
= 0 —1 0 —= .
{w} 5 ° m [\ Y @)
38, 2% 28 Y v
1 1 2 2 &
| dy dx Ay x |~

Equation A.3 can be rewritten in the form

( u, )
1
Vi

(W) = vl <, (4.32)

(]
v
o]

\ J

The strain field, by assuming constant strain throughout

the element, can be written as:

— 1 A
% o %% o o ||,
ox . ox
£x Vi
Y 3% >
0 = 0 = 0 ﬁ u
ey > > o
v
Yxy 0 0 0 0 1 °
L. il o J

(A.4)
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Equation A.4 can be rewritten into the form

g uiT
€x Vi
I O P I
Yy Yo

L2

With the use of the Hu=Washizu variational principle,
William has shown in Ref. 59 that the stiffness relationship is

of the form

1

B, 0 K v
ve -
0 k -k e
- ev ee =
where for this element:
{P }T = {F F F F_} (A.5a)
v ui “vi “uo “vo '
{V}T = {u v u v} (A.5b)
- i i o o *
e = Yy strain degree of freedom (A.5c)
and the individual submatrices are defined as:
- T _
[k = [k, 1" = / [8_1[p][ve] av (A.5d)
[k o1 = f (2 J[p1[s_ ] dv (A.5e)



The submatrices are evaluated by numerical integration
described in Section 2.3.3. The strain degree of freedom is elimin-
ated by static condensation procedure as described in Section 1,3.3

resulting in the following final form of the element stiffness.

[6) = D17 O, 17 I 4.6)

ev?
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APPENDIX B

COMPATIBLE DISPIACEMENT FUNCTIONS FOR PLATE BENDING ELEMENT Q-19

This appendix contains the displacement functions for the
quadrilateral element Q-19 given by Eq. 2.29. The following is

taken from Ref, 17 and reproduced here for completeness.

The displacement function for sub-element 3 in Eq. 2.29

is expressed by
v =16 (1) (8.1)

where

{é(a }=§é:)@ (3)§e(3)§(a) ()5 (3)5(a)s (3); () (S)Q(a)g(a)

0ys Zwe Zoxs 20ya Z6s  Yes Y96

Bx1 Vi w2 0%z
(B.2)
and the individual functions are given by the following equations in

terms of the dimensions of the complete element:

8 @ G -acyreucc
w1 1 1 My 17278
3
¢ 0830 mu )¢ 2 -2 )¢ ~3u ]
) . z(b b + (b =b + 1 2[3 b
Qexl - g1 zga' ng) ( 1- sua)glgzga 6g3 ( 2K2

+ b p =2b +3(b p =b +(3b =b A =2b
als 1)€1 ( a"s 1)Q2 ¢ 1 22 3H3)€3]

@ Pk 6 + 3G -
ng Qa( - Ca) + ksglgzga Cz (Hl Ka)gz

+(2 = )¢ -3 € ]
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) o g b b A =b 1.2
N Qz( acl- 1g2) + ( axa- g)glgzga + g g3[3(2b2

- b A =b +3(b =b A +(=3b -b yu +2b
3 3 1“1)€z ( 2 3 a)gl ( 2 1u1 3K3)€3]

QIS -y -
éwa (;3[3(1 + p2)€l+3(1+}\1)g2+(1 b xl)gaj
(3) 1 2
¢ ovs =6 g3[3(3bl+b2+blxl)§2+(b2u2-blxl)g3-3(bl+3b2+b2p2)glj
©_ 4

2
§94 = §i; [6€1€2€3 + C‘:3 (Sga - 3]

(3) LA 2
¢ =30 Lo, (3¢¢)]

1

YN -
éeé - 3L [ga (3€l Cs)]

2

For &, ., all the b's in &, . are changed to a's.

Byi pxi

For sub=elements 1 and 2, all superscripts and subscripts
permit cyclically from 1-2-3 to 2-3~1 to 3~1-2 and from 4-5-6 to

5=6=4 to 6=4-5.
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APPENDIX C

WEB ELEMENT IN-PLANE STIFFNESS MATRIX

This appendix presents the derivation of the stiffness
matrix for the quadrilateral element Q8SP1l2. This element has been
developed by William in Ref. 59, and is shown here for completeness
of this study. The element is used in Chapter 5 to model the in=-

plane behavior of the webs of box-beam structures.

The geometry of the quadrilateral is described by linear

interpolation functions:

X & 0 u, :
=1 % * (c.1)
z J 0 QZ Lwl
where 1
éx = @z = Z(l + ggi)(l + nﬂi)

and ni and gi are the local coordinates corresponding to node i.

The displacement field describes the w displacement com=-
ponent by shape functions with cubic variation in the (~-direction
and a linear variation in the T~direction. The displacement field
associated with the local derivatives at the nodes is described by

cubic shape functions:

u,
u 3. 0 0 .
11l
= Wi (C.Z)
z 0 §Ti QRi | ng

=265=



where

and

in terms

1
¢ =1+ )M

_ 1 o
&gy = g1+ M2+ 3¢C; - CCy)

1 2 3
oy =gl MG = CHC g+ C)

w,, = (§ﬁ5 or the local derivative at node 1i.

¢ 7R,

Using the chain rule, the local derivatives can be expressed

of the global derivatives at the node under consideration:

@ﬂ—ﬂ'g*_ﬂ-—a‘z
3¢ ox 3¢ 3y ¢

(C.3)

However, since there are no strain components in the nodal

vector, ow must be expressed from the given displacement field in

oy

terms of the given nodal degrees of freedom:

(%% ca

i

oy BQ By an BY

od an o felc)
=_Q.__ R __T _R
C v, + ¢ Wg .) + n v, + M WQ ) (C.4)

Substitution of C.4 into C.3 and evaluating at each node,

n now be expressed in terms of (%g) and W,
i
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u ) 0 0
11
- - - Wi (C.S)
v 0 or; %y
o_.
X1
= (oW '
where exi = (ax
i
Op; = @Ti + 0y [Fle @Rj + FT1, @Rk] - (C.6)
e QRi = FT2 QRi ' (C.7)
FIl = J12 J21/2 FCT
FT2 = Jll(l - le JZl/FCT) (C.8)

FCT = det J  + Jyy Iy

with j=1, 2,2, 1 and k=4, 3, 3, 4 for i =1, 2, 3, 4 respec~
tively. Jll’ J1g> J21 are the components of the associated Jacobian

matrix J.

The strain field can now be defined by differentiation of

the displacement field;

( ) 5% 7 )
1
“x = 0 0 !
=Y 3% J
= T R
< e > 0 w5 v, (c.9)
, B L
L Xy Lay ox 2 ox _| ey



or

€ (u, )
X i

e = T {w, {
y i

( nyJ \exiJ

(C.9a)

From the definition of the stiffness matrix in Section

1.3.2,

k1= J, [r]" [P] [1] aa

The stiffness coefficients are then evaluated by the

Gaussian quadrature rule.
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11. NOMENCLATURE

The following symbols were used in the text and appendices:

A. Capital Latin Letters (matrices and scalars)

[A] = Matrix of displacement functions

evaluated at the nodes

A = Area of a triangular element

Ai = Area of sub element i in a triangular
element

As = Cross section area of stiffener element

[B] = Matrix of differentiated displacement
functions

C ' = Curvature in a stiffener element

¢ ,c ,c ,C = Material constants

11 12 =21 a3
[p] = Elasticity matrix relating generalized

stresses to generalized displacements

[p1, = Elasticity matrix for the stiffener
element

D.F. . = Distribution factor

DFQ = Distribution factor in a skew bridge

DF90 o = Distribution factor in a right bridge

E, E , E _ c .

1 2 = General and principal modulus of

elasticity

ES = Stiffener element modulus of
elasticity

{Fe} = Statically equivalent force vector due

to distributed loads
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(7}

(7}
(¥}
{F }
in’Fyi’in’MXi’Myi

G, G

Vector of element nodal forces

Applied force vector associated with

external nodes

Applied force vector associated with

internal nodes

Statically equivalent force vector

due to concentrated load

Components of element nodal forces
(¥}
General and second principal shear

moduli
Stiffener element shear modulus
Stiffener to slab stiffness ratio,

(ET) /D o

stiffener
Integrand expression

Moment of inertia of stiffener element

about reference plane

Components of Jacobian matrix

Global stiffness matrix

Bridge span length, stiffener element

dimension
Matrix of displacement functions
Generalized forces in stiffener element

Cartesian and principal plate moments

Cartesian and principal in=-plane

Moment resultants in the direction of

skew
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PCTIR

PCTR(EXT)

PCTR(BQX)

(r]

(1]

U, v

Uiy V(2

W ,Wj

Percent reduction in the distribution

factor for interior I=-beams

Percent reduction in the distribution

factor for exterior I-beams

Percent reduction in the distribution

factor for interior box=beams
Global force vector
Beam spacing

First moment of the stiffener area

with respect to the reference plane
Transformation matrix
In=plane strain function

In=plane displacement at distance z

from the reference plane
Bridge curb to curb width

Weight coefficients

B. Small Latin Letters (matrices and scalars)

a, b

a,,b,
1 1

d

Web element dimensions
Projected dimensions on x and y axes

Stiffener element depth; distance from
the centroid of a truck wheel load to
the drive wheels

28/ 8,

Eccentricity of the centroid of the
stiffener element cross section to the
plane of reference

In-plane displacement function
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h,
1
i35k, 4
(k]
k

k__,k

EE,kEI’ IE’ 11

k L,k Lk
ev’ ve’' ee

k],
(1]

[x']

P(XsY) ) l q

{p,}

{r}

Stiffener element displacement function
normal distance of node i to side Zi
Node or sub element number

Element stiffness matrix

Partitioned matrices of the element
stiffness matrix associated with

external and internal nodes

Submatrices of the element stiffness
matrix associated with displacement

and strain formulations

Submatrices associated with in-plane

and out-of=plane behavior
Stiffener element stiffness matrix

Stiffener element stiffness matrix

for torsional behavior
Transformed element stiffness matrix
Length of side i in a triangular element

Ratio of shear modulus G to elastic
2
modulus E
2

Order of interpolation function;
principal modulus of elasticity ratio,
E /E

1 2
Normal distance of a point i to side
Li in a triangular element
Distributed load intensity

Consistent force vector associated with

the displacement formulation
Global displacement vector
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X3¥52

X, V.
1274

n

Element nodal displacements

Sub element nodal displacements

Stiffener element nodal displacements

External node displacements for plate

element

Internal node displacements for plate

element
Displacement components

Components of the element nodal

displacements

Nodal displacements at exterior nodes

Nodal displacements at interior nodes
Cartesian coordipates

Cartesian coordinates of node 1

C. Capital Greek‘Letters (matrices and scalars)

r
[2]

(2]

[Q(i)]
[3,]

Shear deformation parameters

Matrix of interpolation or shape

functions

Interpolation functions for a triangular
element in terms of the external degrees

of freedom
Sub element i interpolation function

Strain interpolation functions evaluated

at the nodes
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K

(1)
(e, ]

Ch)

(e, 1, 0e,]

Strain interpolation function for the
stiffener element evaluated at the

nodes

Twist interpolation function for the
stiffener element evaluated at the

nodes

Interpolation functions associated

with the external nodes

Interpolation functions associated

with the internal nodes

Curvature interpolation functions

[é(l)] evaluated at the nodes

Shape functions associated with the

global nodal derivatives

Shape functions associated with the

local nodal derivatives

Strain shape functions describing the

variation of strains

Triangular sub element strain inter=
polation functions describing the

variation of curvature

Stiffener strain interpolation function

describing the variation of twist
Geometric shape functions

Linear shépe function

Quadratic shape function

Linear shape functions associated

with nodes i
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[ (i)]

= Matrix relating curvature components

to nodal degrees of freedom

D. Small Greek Letters (matrices and scalars)

{a} . = Generalized coordinates

B = Angle measured from the global x=-axis

in the direction of which u displaces

Y = Shear strain

Xy

{e} = Strain field

{ec} = Vector of nodal strains

,€ = Normal strains

xx’7yy

¢,M = Local coordinates

€My = Non~-dimensional nodal coordinates
ex,ey = Rotations about the global x and y

axes

exi,eyi,ei = Nodal rotations

Xl = di/zi

By =1= Ki
VeV = Poisson's ratio
; 2 )

{c} = Stress field
O_ 10 = Normal stresses

xx’"yy

Txy = Shear stresses

¢ = Skew angle, angle of twist

A ~ N N . . .
¢wi’¢6xi’¢eii’¢61 = Interpolation functions in terms of

the nodal out=of-plane displacements
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E. Element Designation

ACM
CST
LCCT=~12
LCCT=-11

LSE

Q-19

Q8D1l

Q8SP12

Angle from the global x-axis about which

6, rotates

Local derivative at node i

Adini, Clough and Melosh plate bending

element

Constant strain triangle in-plane

element

Linear curvature compatible triangle

with 1?2 degrees of freedom

Linear curvature compatible triangle

with 11 degrees of freedom
Linear strain equilateral
Melosh plate bending element
Pappenfuss plate bending element

Quadrilateral plate bending element

with 19 degrees of freedom

Bagsic 8 degree of freedom in-plane
element with 3 additional internal

degrees of freedom

Basic 8 degree of freedom in=-plane
element with 4 additional nodal

rotations

Wegmuller and Kostem plate bending

element
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