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ABSTRACT

This report deals with the analysis of plates and stiff­

ened plates in the elastic range using the finite element stiff­

ness approach. The analysis is based on the classical theory of

thin plates exhibiting small deformations.

A short description of the finite element techniques in

use to date, and a review of some existing plate bending elements

are presented. A refined rectangular plate bending element based

on a higher order polynomial expression is then derived and a

systematic procedure for the derivation of its stiffness matrix is

outlined. The accuracy and convergence of solutions obtained with

this new element are demonstrated on a few example structures

showing that the new element compares favorably with presently

known plate elements.

An analysis scheme for the stiffened 'plate structures

in the linear elastic range is developed. The derivation of the

component stiffness matrices is carried out first and the assem­

blage of the system stiffness matrix is described. The outlined

general approach is then. applied extensively to highway girder

bridges and the versatility and accuracy of the method are

demonstrated.



1. INTRODUCTION

1.1 Objective and Scope

Plates of various shapes are commonly used as structural

systems or structural components. Most frequently, plates form

part of floor systems in buildings or bridges~and are often used

in connection with beams and columns. Generally, there is ample

room for a variation in geometry, thickness and loading, as illus­

trated in Fig. 1 and hence, the analysis of such complex structures

often presents considerable difficulties.

Stiffened plates of arbitrary shape are complex and

highly redundant structures, the analysis of which is beyond the

scope of currently used methods of analysis. Plates are often

used in combination with beams and columns in floor systems of

buildings and bridges,and in these cases, are predominantly loaded

by forces acting perpendicular to the plate surface. In buildings,

many different floor layouts are possible; consequently, there is

virtually no restriction placed as far as geometry of the stiffened

plate structure is concerned. The in-plane loading (if any)

applied to such structures can often be neglected, thus simplifying

the analysis considerably. This investigation is limited to the

problem of analyzing transversely loaded stiffened plates; i.e.

no in-plane loading is considered 0 However, due to the fact that

the beams are eccentrically attached to the plate, in-plane deforma­

tion must be considered. To date, the analysis of beam-slab type
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structures still constitutes a challenge to the structural engi­

neer because no fully satisfactory method of analysis is available

as yet.

It is widely accepted that a structure should be pro­

perly analyzed for working loads as well as at its failure stage.

By means of an elastic analysis, one is able to determine the

stresses and deformations, occurring under working loads, at se­

lected points of a structure. If the determined stresses are kept

below allowable stresses, then experience shows that a structure

is not likely to fail. An accurate elastic analysis is also

needed for considerations of fatigue and control of cracking in

reinforced and prestressed concrete structures; i.e. stresses must

be kept below certain levels in order to avoid fatigue or exces­

sive cracking. Although the fatigue strength o~ reinforced or

prestressed concrete structures is difficult to establish and re­

liable criteria for crack control are not final, an accurate elas­

tic analysis is the prerequisite for establishing such guidelines.

1.2 Previous Work

For each of the problems considered in this report, a

review of the previous work done in the area considered is given

in the chapter devoted to each problem. Due to the practical im­

portance of plate structures, engineers were early faced with the

task of analyzing plates of various geometry and loading. Unfor­

tunately, the governing differential equations are not solvable,
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but for simple geometry and boundary conditions, and as a conse­

quence many types of approximate analyses have been proposed to

date. Extensive surveys of the state of the art of current plate

analysis are given by Timoshenko (Ref. 46) and Girkman (Ref. 24).

Probably the most commonly used approximate method of

analysis for solving plate problems of complex geometry is the

method of finite differences. In this method, the governing dif­

ferential equation of equilibrium is satisfied only at selected

points of the plate structure. The satisfaction of boundary con­

ditions at boundary points of the plate leads to additional equa­

tions which, together with the original set of equations, must be

solved simultaneously. These additional equations, however, de­

pend on the type of boundary and make it difficult to develop

general purpose programs.

During the last two decades much progress has been made

in the development of structural methods of analysis based on ma­

trix algebra and a discretization of the structure into an assembly

of discrete structural elements. In these methods, a displacement

or a stress distribution is assumed within the element, and a com­

plete solution is then obtained by combining these approximate

displacement or stress distributions in a manner which satisfies

the force-equilibrium and displacement-compatibility requirements

at all the interfaces of the elements. Methods based on such ap­

proaches have been proven to be suitable for the analysis of com­

plex structures. This led to the development of the finite element
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methods (Ref. 56), which are essentially generalizations of stand­

ard structural procedures as described in Ref. 43, for example.

To date, these methods have been successfully applied to many com­

plex plate problems. Within the framework of the reported study a

refined finite element for plate bending is developed. This new

plate bending element is presented in Chapter 2 of this report.

To date, the elastic analysis of stiffened plate struc­

tures, as shown in Fig. 16, is p~rformed in a more or less approxi­

mate manner. Though various types of methods are available, their

application to complex shaped beam-plate type structures is doubt­

ful for other than simple geometry of the structure to be analyzed.

Particular attention has been'given in the past to the analysis of

floor systems of highway girder bridges due to their frequent oc­

currence. Consequently, most methods were originally developed

for bridge structures.

In summary, it can be stated that as yet no fully ade­

quate analysis exists capable of determining stresses and deforma­

tions in complex shaped beam-slab type structures. Current design

methods are not completely rational because they are not based on

a rigorous analysis, elastic or plastic (Refs. 3,4). Despite the

fact that designs performed to date lead to successfully perform­

ing structures, it cannot be said with assurance that the designs

resulting from such procedures are the best possible or that dif­

ferent parts of the same structure have consistent factors of

safety again~t the failure load until better analytical methods

-4-



are available. A survey of available methods of analysis, some of

which are described shortly, led to the conclusion that due to its

great versatility, the finite element method is best suited for

the analysis of arbitrarily shaped stiffened plates, as shown in

Fig. 16. This analysis is presented in Chapter 3.

-5-



2. ANALYSIS OF PLATES

2.1 Introduction

The structural engineer is often faced with the analysis

of complex shaped and loaded plates, as shown in Fig. 1. During

the last decade,the versatility of the finite element approach has

been well demonstrated and a number of plate bending elements have

been developed. While most of these elements lead to accurate

predictions for the displacement field, the internal moments com­

puted are, in general, far less accurate (Ref. 53).

In this chapter, the development of ~ rectangular re­

fined plate bending el~ment is discussed. For the purpose of

establishing the notation used in this text and the connection

wlth conventional plate analyses, a review of the basic equations

governing the behavior of plates is first presented. A short de­

scription of the finite element techniques in use to date is then

given, followed by a review of some existing plate bending ele­

ments. The refined element, which is based on a higher order poly­

nomial displacement field, is then described, and the derivation of

the element stiffness matrices is outlined. Kinematically con­

sistent load vectors are derived,and the enforcement of boundary

conditions is described. A highly efficient technique for the

solution of the often large system of stiffness equations is next

described. Finally, the accuracy obtained with the new element is

demonstrated on a few example solutions,and a comparison is made
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with some presently known plate elements.

2.2 Small Deflection Theory of Thin Plates

2.2.1 Assumptions and Basic Equations

A transversely loaded plate structure should be treated

as a three-dimensional problem of elasticity. Strain and stress

components acting on an infinitesimal plate element of thickness h

is shown in Fig. 2. The sign convention used in this study is

shown in Fig. 3. By definition, stresses and forces are considered

positive when acting in the directions shown. Introducing the

assumptions of the classical theory of th~n plates, a plate pro­

blem can be simplified into a two-dimensional elasticity problem.

These assumptions can be stated as follows:

1. Plane sections normal to the middle surface before

deformation remain plane and normal during deformation;

also known as Kirchoff's assumption (Ref. ~6).

2. The transverse displacement (w) is small in comparison to

the thickness of the plate; i.e. w«h.

3. Stresses normal to the plane of the plate are negligible.

The first two assumptions imply that (1) shearing stresses in the

transverse direction are neglected, and (2) the deflection (w) at

any point of the plate is approximately equal to the deflection of

the corresponding point located on the middle plane of the plate.

The state of deformation can therefore be described in terms of

-7-



the transverse displacement (w) alone. Since the middle plane of

the plate is assumed to be free of in-plane deformation, in-plane

behavior is not considered in this chapter. Making use of the

simplifying assumptions introduced above, the following relation-

ships between in-plane displacements and the transverse displace-

ment w exist:

owu = u - z ox

ow
V = v - z oy

(2.1 a)

(2.1 b)

where: u,v = Displacement in x-direction, or y-direction respec-

tively, of a point lying in the middle plane of the

plate.

U,V = Displacement in x-direction, or y-direction respec-

tively, of a point lying at a distance z from the

reference plane.

Both displacements u and v are assumed to be negligible in the

classical theory of thin plates. The strain-displacement relations

can be found by differentiating Egs. 2.1:

2oV avow
e y = oy = oy - Z --2

oy

2
au oV = au + ov d W

Yxy = oy + ox oy ox - 2 z oxoy

(2.2 a)

(2 .2 b)

(2.2 c)



The stresses must satisfy the following two equations of equilibrium:

ocr 01"
X --Y.2i-ax + dY - 0 (2 .3 a)

(2.3 b)

Using the strain-displacement relations (Eqs. 2.2), and

assuming isotropic material, Hooke's Law can be written in terms of

derivatives of displacement w:

2 a
E z [0 ~ + v o wJ(J - -

X 2 2
I-v oX ay

a :1- :a
E z [0 W VO ~J(J - - 2 --2 +

Y I-v oy ox

2

T - 2Gz a w= dXOYxy

where: E = Modulus of Elasticity

G = Shear Modulus

\J = Poisson's Ratio

and G is related to E by

(2.4 a)

(2.4 b)

(2 .4 c)

(2.5)E
G = 2 (1 + v)

Stress resultants acting per unit width of the plate, as

shown in Fig. 3, can be found by integrating appropriate stress

components over the plate thickness:
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h/2
M = J (J z dzx

-h/2
x

h/2
M = J cr z dz

y
-h/2 Y

h/2
M = -J T z dzxy

-h/2
xy

h/2
Q

x
= J T dz

'.
-h/2

xz

h/2
Qy = J 'T dz

-h/2
yz

(2 . 6 a)

(2.6 b)

(2.6 c)

(2 .6 d)

(2 .6 e)

These equations can be easily integrated and lead to the well-known

moment curvature relations:

M Dl1 D12
0 f21xx

M = D
21

D
22

0 Qf (2.7)
Y Yi

M lO 0 D
33

,0 I

I xy I xy
...... t, J

= Eh
3
/12

2
where: Dil = D22

(I-\)' )

D12 = D21 = \) Dil

D
33

= (1 - \J) D
11

/2
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Defining the two vectors:

M M >
Y xy

:a
[g} T = < _ 0 W

:aax

2 a
a w 2~>

- -2- oxayoy
(2.8 b)

Eq. 2.7 can be written in compact form as

[M} = [D] [0'}

2.2.2 The Differential Equation of Equilibrium

(2.9)

The fundamental equation of equilibrium is best derived

by considering equilibrium of forces acting on an infinitesimal

element of the continuum (Fig. 3). Summing up forces in z-direction

yields:

oQ oQ
~+~+qoX oy o (2 .10)

Similarly, summation of forces about x-axis and y-axis, leads to

oM oM
- --.:i. + --E- + Qy = aoy ax

oM aM
~+ ~ = 0ox oy - Qx

(2 .11)

(2 .12)

Differentiating Eq. 2.11 and Eq. 2.12 and substituting the terms

into Eq. 2.10 leads to the fundamental plate equilibrium equation

in terms of moments:
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Finally, substitution of Eq. 2.9 into Eq. 2.13 yields

(2 .13)

or

4o W
--4 + 2
oX

4 4
() Wow
a 2+--4

ox oy oy
~ = 0
D

(2.14a)

(2.14b)

2.3 Analysis of Plates Using the Finite Element Method

2.3.1 The Displacement Approach

The finite element technique is a relatively new, but

very powerful, approach for the solution of engineering problems.

The dominant reason for the extensive use of the finite element

technique in solving structural problems is its great versatility

and complete generality. In fact, the same basic procedure can be

applied to structures of arbitrary shape, loading and boundary con-

ditions. As a result, a single computer program can be used to

solve a variety of problems.

The finite element concept, of which a comprehensive

presentation is given in Ref. 56, was developed by extending known

matrix structural theories to two and three-dimensional solids.

Argyris (Ref. 5) introduced the two fundamental methods of matrix

structural analysis, the force and the displacement method of
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analyses, in which a systematic approach to automatic computation

of displacements and forces was first attempted. The work by

Turner et ale (Ref. 48), which may be interpreted as the first

major step in the development of the finite element method,

describes the direct stiffness approach. In this approach, in­

sight into the behavior of elements in representation of struc­

tures is achieved,and consideration is given directly to the con­

dition of equilibrium and compatibility. However, in the treat­

ment of refined elements the physical behavior is obscured due

to the more complex behavior of such elements.

The first st~p in the displacement approach is to dis­

cretize a structure into a suitable number of finite elements.

The behavior of the actual structure is assumed to be approximated

by the behavior of the discretized structure; i.e. by an assemblage

of finite elements having simple elastic properties and being con­

nected so as to represent the actual continuum. For practical

reasons, the geometry of the elements must be simple, but generally

could be of any shape. The elements are assumed to be inter­

connected at their nodal points, and the displacements of these

nodal points constitute the basic unknown parameters of a problem.

Displacement functions, often called shape functions, are

then chosen for each element to uniquely define the state of de­

formation in .terms of nodal values, which are referred to a

global coordinate system. Elemental displacement fields should be

continuous (single-valued), and should satisfy deformation

-13-



continuity within the element and along element interfaces. Conse­

quently, the entire displacement field of the discretized struc­

ture is continuIDus, piecewise differentiable, and in addition, is

restrained to satisfy displacement boundary constraints. The dis­

placement field assumed for an element is called compatible if

full continuity of deformation is achieved within the" element, as

well as along its boundaries. In this case, the chosen displace-

ment function uniquelydefines the state of strain within an element

in terms of its nodal displacements. Hence, together with pos­

sible initial strains, these strains will define the state of stress

throughout the element,and on its boundaries.

The loading acting upon the system is approximated by a

set of equivalent concentrated nodal forces, again referred to

a global coordinate system. These external forces should equili­

brate the internal boundary stresses, distributed loads and forces

due to initial strains. This requirement leads to the relation­

ship between generalized displacements and associated generalized

forces ,'~ The matrix relating these rna vectors is called the element

stiffness matrix. Its elements are a function of the geometric

and elastic properties of the element.

At this stage, a finite element solution follows standard

structural procedures as described in detail in a number of re­

ferences (e.g. Ref. 6). By appropriate superposition of the indi­

vidual element stiffness relations, the corresponding relationship

for the entire structure can be established. In this process, the
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requirements of compatibility and equilibrium must be satisfied.

Any system of displacements listed for the entire structure auto­

matically satisfies all compatibility requirements. Establishing

equilibrium conditions at all nodes leads to the force-displacement

relationship of the entire structure. For this purpose, the ele­

ment stiffness matrices, connecting nodal displacements to nodal

forces must be transformed to a common coordinate system or refer­

ence frame. The formulation of the overall structural stiffness

matrix proceeds then by adding appropriate element stiffness con­

tributions framing into a common node. This procedure leads to a

system of linear algebraic equations.

Finally, all kinematic restraints have to be imposed,and

the resulting system of equations must be solved simultaneously

for the unknown nodal displacements. Clearly, the satisfaction of

a minimum number of prescribed displacements to prevent rigid body

displacements is mandatory; otherwise the displacements could not

be determined uniquely. The structure stiffness matrix is usually

well-conditioned, sparsely populated, and narrowly banded if

adequate nodal numbering of nodal points is provided. These pro­

perties permit an efficient, automatic assembly and solution of

large systems of simultaneous equations. Once the solution of the

unknown displacements has been obtained, the determination of in­

ternal stresses,or stress r~sultants,is straightforward. The

selection of displacement functions and the evaluation of the

element stiffness matrix are the most important steps in the finite

-15-



element displacement approach and will be discussed in subsequent

sections.

Early derivations of finite element force-displacement

relationships made no reference to variational considerations.

Only recent developments have shown that these methods also have a

solid theoretical foundation. The basic principles of linear

structural mechanics are the principle of minimum total potential

energy and the principle of minimum complementary energy_ These

variational methods form the basis for the derivation of element

stiffness equations. The principle of minimum total potential

energy is stated as (Ref. 51):

Of all compatible d~splacement fields satisfying given

boundary conditions, those which satisfy also the equili­

brium conditions make the total potential energy IT assume

a stationary value.

8 TT = 0 CD + V) = a

where: U = Strain energy of deformation.

V = Potential of external forces.

(2 .15)

The stationary value of IT is always a minimum,and therefore, a

structure under a system of external loads represents a stable

system. It can be shown (Ref. 8) that if the system of displace­

ments is defined throughout the structure by the element displace­

ment functions, with nodal parameters acting as undetermined para­

meters" then the procedure of minimizing the potential energy of

-16-



the system will result in precisely the same formulation as des­

cribed above. This alternate approach of establishing stiffness

equations shows that the finite element procedure is, in fact,

identical with the Rayleigh-Ritz Approach.

In the finite element method the assumed displacement

functions are associated with individual elements only. The dis­

placements in the elements are uniquely defined in terms of the

nodal point values, and the entire displacement field is assumed

to consist of a number of piecewise continuous displacement fields

each extending over the region of an element. Clearly, the finite

element method, as well as the Ritz method, are approximate methods

of analysis. However, ~f conforming elements are used, it can be

shown that if the mesh size is gradually decreased, the solution

tends toward the true solution; i.e. convergence is assured for a

valid minimum potential energy approach. One can also show for

this case that the strain energy is a lower bound, and the dis­

cretized structure is stiffer than the actual one if external

loads are applied only.

2.3.2 Displacement Functions and Convergence Criteria

One of the most important steps in the finite element dis­

placement approach is the selection of displacement functions which

discretize the displacement field within an element. These assumed

shape functions limit the infinite degrees of freedom of the system

by expressing the deformation within a plate element in terms of

displacement parameters at the nodal points. The accuracy obtained
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depends on the extent to which the assumed deformation pattern can
i

approximate the true displacement pattern. Generally, finer meshes

lead to a closer approximation, although convergence is not neces-

sarily assured if the displacemen't functions are not properly chosen.

So far, only limited attention has been given to the es-

tablishment of general rules for the selection of functional repre-

sentations of element behavior. Recent research (Ref. 38) led to

requirements for the assumed displacement functions in order to

arrive at a convergent finite element solution.

As mentioned earlier, an approach based on a valid mini-

mum potential energy solution assures monotonic convergence with

decreasing mesh size. Melosh (Ref. 34) and Fraeijs de Veubeke

(Ref. 20) set out specific conditions under which a valid minimum

potential energy approach is preserved in a finite element formu-

lation. One of the basic requirements for generating deformation

consistent stiffness matrices is complete compatibility of dis-

placement within the element and along its boundaries. Elements

derived from such displacement fields are called compatible.

Melosh (Ref. 34) has shown that the selection of appro-

priate displacement fields can be accomplished by use of Langrangian

or Hermitian interpolation techniques. The functions are chosen

such that they become dependent only on the displacements of the

end points, and additional po~nts along a side of the element in

consideration. Bogner et ale (Ref. 11) used this approach to de-

rive the stiffness matrix for a compatible rectangular plate

element.
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Another general method for the selection of functions

directly in terms of degrees of freedom is the spline interpola­

tion concept. This approach was developed by Birkhoff (Ref. 10)

as a general mathematical procedure and employed by Pian (Ref. 17).

A third approach used successfully in the functional re­

presentation of a displacement field is the concept of isopara­

metric element formulation. The shape functions chosen to des­

cribe the element boundaries are identical to those used to pre­

scribe the variation of the displacement function. Ergatoudis

(Ref. 18) has pioneered this approach,and Zienkiewicz (Ref. 28)

has applied it to generate stiffness matrices for different two­

and three-dimensional elements.

Often these interpolation concepts are difficult to

apply; then a function is chosen, as outlined ~n Section 2.3.1,

in terms of unknown nodal displacement parameters. These are

normally chosen equal in number to the number of degrees of free­

dom for the element in consideration,and can be evaluated from

the enforcement of compatibility conditions at the element nodes.

The choice of this function proved to be a major source of diffi­

culty since an arbitrary choice may result in an unsatisfactory

element displacement behavior, and as a consequence,may not lead

to convergence. Thus, the question arises as to which require­

ments the assumed displacement function should satisfy in order

that the associated finite element solution will converge toward

the true solution as the mesh size is reduced. At present, the
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view is held that the sufficient conditions for the derivation of

deformation consistent stiffness matrices are as follows:

1. Internal and interface compatibility must be satisfied.

2. Displacement function must depend linearly on nodal

parameters.

3. Proper representation of all rigid body displacement

states is required.

4. All uniform states of strain must be included.
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Requirement (3) is needed to include the conditions of

global equilibrium. Self-straining would occur when the nodal

displacements were caused by rigid body displacements. Hence,

the presence of all rigid body motion terms in the selected dis­

placement function is essential.

Requirement (4) is necessary for the convergence to the

actual strain field. In fact, the exclusion of constant strain

states could result in convergence toward an incorrect result.

As the mesh size is decreased, nearly constant strain conditions

will prevail in the element. If the condition is not met, such

strain states could not be attained as the mesh size is reduced.

Hence, it must be possible to represent constant curvatures in the

case of pure plate bending. Conditions (3) and (4) are often re~

ferred to as completeness criterion. Furthermore, rigid body dis­

placements are actually a particular case of the constant strain

conditions, having zero values for strain.

Requirement (5) insures that the resulting generalized

force-displacement relations are independent of the position of

the global coordinate system. Hence, the chosen displacement

functions must be independent of the particular shape of the ele­

ment and the orientation of the element with respect to the coordi­

nate system to which the functions are referred. Thus, attention

should be given to requirement (5) when truncated polynomials are

used as displacement functions.

Polynomial expressions have been used nearly exclusively
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for the generation of different element stiffness matrices. First,

this choice simplifies algebraic as well as automatic manipula­

tions. Furthermore, polynomials satisfy the constant strain cri­

teria and simplify the investigation of compatibility requirements.

Complete polynomials also satisfy the invariance criterion.

A lower bound to the strain energy and monotonic conver­

gence to the correct solution is obtained if conforming shape

functions are used and the completeness criterion is satisfied.

Oliveira (Ref. 38) proved that completeness and conformity are

necessary but not sufficient criteria for convergence. According

to Oliveira, completeness is the only requirement which the dis­

nlacement function must meet to arrive at a convergent finite

I~lement solution. ~owever, completeness does not necessarily lead

to monotonic convergence.

Considerable difficulty is experienced, in some cases,

to find fully compatible displacement functions. Non-conforming

displacement functions will cause, in general, infinite strains at

the element interfaces. Hence, only an approximation to the true

strain energy is found since,in calculating the energy as

in the usual finite element approach, no consideration is

given to the contributions to energy at the lines of discontinuity.

However, if for finer mesh sizes the extent of the discontinuity

tends to van~sh, then an incompatible formulation will lead

to the correct result. Indeed, some finite element stiffness

matrices derived from discontinuous displacement functions yield

excellent results.
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2.3.3 Alternate Approaches

Most of the finite element approaches developed to date

are based on the principle of minimum total potential energy, as

described in Section 2.3.1. However, an alternate procedure is

possible if the functional to be minimized is the complementary

energy of a system. The basis for such an approach is the

principle of minimum complementary energy, which can be stated as

follows (Ref. 51):

Of all statically admissible stress states, i.e~ satisfy-

ing equations of equilibrium and all boundary conditions

on stresses, those which also satisfy the compatibility

*equations make the total complementary energy IT assume

a stationary value. It can be shown again that this

value is a minimum.

6 IT* = 6 (U* + V) = 0

where: U* = Complementary strain energy.

v = Potential of applied loads.

(2 .16)

Therefore, it is possible to arrive at an alternate finite element

formulation if, in place of a compatible displacement field, an

admissible stress field is taken to define strains, and hence the

complementary energy_ In this context, a stress field is called

conforming if it is in equilibrium within the element and balances

all prescribed surface stresses. The stresses within the element

are assumed in terms of stress functions which in turn are
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expressed in terms of nodal parameters. The principle of minimum

complementary energy is then applfed to derive flexibility equa-
I

tians. Hence, the emphasis in this approach lies in the search

for conforming stress fields.

Pioneered by DeVeubeke (Ref. 19), this approach is in

general much more difficult since the search for equilibrium stress

fields is more demanding than that ~f compatible displacement

fields. It can be shown that this approach will give an upper

bound of the strain energy and thus overestimates the displacements.

If both the compatible displa~ement approach and the approach

based on the principle of minimum complementary energy are taken,
J ;:;0

valuable bounds to the true displacements are obtained. The prin-

ciple of minimum complementary energy has so far been applied to

derive element stiffness matrices for simple elements in the elas-
, .

tic range. An extension Gof this formulation to arrive at flexi-

bility equations for more ~omplex~ elements is difficult since con­

forming stress fields are difficult to establish. An extension

of this approach to elastic-plastic problems is not feasible since

for a non-linear material behavior, the complementary energy does

not provide for a reliable ba&is for the derivation of fleXibility

equations.

Besides these two ba~ic formulations, a number of alter-

nate avenues can be taken to establish stiffness or flexibility

equations. A comprehensive study pf such approaches is given in

the survey by Pian and Tong (Ref. 41)~ For e~ample, other functionals
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could be selected, permitting the simultaneous variation of

stresses and displacements together with assumptions made on both

these quantities. Such approaches are called mixed formulations.

In these methods, generally neither equilibrium nor compatibility

is fully satisfied, and for this reason,convergence must be proven

for each particular case.

2.3.4 Existing Rectangular Plate Bending Elements

During the last decade,much research effort has been'

devoted to determine reLiable element stiffness matrices for vari­

ous shapes of plate bending finite elements. Attention has been

given to triangular, rectangular, and quadrilateral elements.

Recent surveys of presently available triangular elements are

given by Bell (Ref. 9) and Gallagher (Ref. 23). These surveys

show that a variety of fine performing triangular elements are

available.

Comparative studies have shown that rectangular ele­

ments show greater accuracy than triangular elements for the same

number of degrees of freedom. In view of the refined rectangular

plate element developed in this report, a short review of some

published rectangular and quadrilateral plate elements is given in

this section. It should be stated that in the case of plate bend­

ing, continuity of displacement throughout the plate element im­

plies continuity of deflection and slopes, i.e. first derivatives

of the lateral displacement w. Thus, both the deflection and the
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slopes must be continuous within the element and across its bound­

aries in order to fully satisfy the conditions of displacement

compatibility.

A survey of rectangular finite elements for plate bend­

ing is given by Clough and Tocher (Ref. IS). Various displacement

functions have been used to develop the stiffness matrix for a

rectangular plate element. Within the framework of Kirchhoff's

plate bending theory, the deformations in a plate element are com­

pletely defined by the lateral deflection w. With this deflection

and two rotations unknown at each nodal point, a rectangular ele­

ment, as shown in Fig. 4, possesses twelve degrees of freedom.

One of the earliest functional representations for the

deflection was suggested by Pappenfuss (Ref. 39):

It can be verified that this function satisfies interelement conti-

nuity of w, and the rigid body displacement modes are included.

However, due to the absence of the term representing constant twist,

the constant strain condition is not satisfied, and hence, conver­

gence does not occur towards the correct solution.

In another early paper, Melosh (Ref. 33) derived a dif­

ferent plate bending stiffness matrix, on the basis of physical

reasoning.

The simplest expression which has been used in deriving
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the element stiffness matrix for a rectangular plate element,

known as ACM element (Ref. 34), is the twelve term polynomial

(2 .18)

It is noted first that the chosen function does not represent a

complete polynomial. Geometric isotropy is maintained, due to the

choice of the two fourth order terms. It is observed that the

rigid body mode is included and constant strain states are allowed

for in this expression. A test reveals that transverse displace-

ments are interelement compatible, but the element lacks compati-

bility of normal slope. However, lack of satisfaction of inter-

element compatibility does not necessarily result in lack of con-

vergence, due to this reason this functional representation yields

relatively good accuracy in displacement but at the same time less

accuracy in internal moments is obtained 0

As an example of achieving interelement compatibility by

means of the Hermitian interpolation concept, Bogner et al. (Ref.

11) developed a compatible rectangular plate element having four

degrees of freedom at each nodal point. In addition to the usual
2

displacement components w, ow/ax and ow/oy, the twist d w/oxdy was

introduced as an unknown displacement component. Numerical re-

suIts indicate that in addition to exhibiting monotonic conver-

gence, a good approximation of the displacement behavior was

achieved; however, no results for internal moments are reported.
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DeVeubeke (Ref. 21) derived a compatible finite element

by subdividing an arbitrary quadrilateral into four triangles and

assuming a complete cubic polynomial displacement field within

each triangle. Besides the four corner nodes, four midside nodes,

with one degree of freedom at each10f those nodes, were defined.

Clough and Felippa (Ref. 16) derived a compatible quadri­

lateral element having four corner nodes, only with three degrees

of freedom each. It was built up from four triangles, and each of

these triangles in turn consists of three subtriangles represented

by a complete third order polynomial in w, the transverse

displacement.

Of all the elements discussed so far, the last three

approaches show the best results 0 In most of the available litera­

ture, the convergence of an element is judged by plotting the

accuracy of the solution against the number of subdivisions for a

problem in consideration. A more appropriate comparison would be

to plot the accuracy versus the total number of degrees of free­

dom involved.

Little work has been done to date in the derivation of

stiffness matrices based on the alternate approach of minimizing

the total complementary energy. Efforts to accomplish formulations

based on this functional or on ReissnerTs energy principle have

been mainly concerned with the triangle. A number of mixed ap­

proaches however, have been advanced during recent times. In a

paper by Pian "(Ref. 40), a hybrid approach was developed in
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which stresses were selected within the element, and a displacement

function was prescribedon the boundaries. A similar approach was

undertaken by Severn and Taylor (Ref. 44) and generalized to the

arbitrary quadrilateral by Allwood and Cornes (Ref. 2).

In summary, a number of rectangular or quadrilateral

finite elements for plate bending analysis are presently in use.

Most elements show good convergence for displacements towards the

true solution. However, the rate of convergence does differ sub­

stantially for different elements. Moreover, despite accep-

table accuracy for displacements, some elements show poor accuracy

for internal moments.

2.4 A Refined Rectangular Plate Bending Element

2.4.1 Choice of Displacement Field

Investigations on triangular elements,using higher order

polynomial approximations for the assumed shape functions,showed

that the use of such expressions leads to improved accuracy on dis­

placement and stresses. Similar investigations have not yet been

made ,for rectangular elements e Hence, in this ch"apter the stiff­

ness mat~ix for a refined rectangular plate bending element is'·

derived and 'compa~isons are made with some presently available

rectangular and quadri,lateral elements ..

Refinements in a finite element approach can be achieved,

for e'xamp~e",.by a better approximation of the disp,lacement fi'eld~.

In order to arrive at a valid variational formulation based on
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minimum potential energy, certain continuities of the unknown func-

tion must be maintained. This allows the determination of the

functional to be minimized, which will be unique. Thus, as was

noted earlier,the deflection wand two slopes must be continuous

for a plate bending problem. One can prove that,in this case,the

solution will converge monotonically towards the correct solution.

On the other hand, formulations based on deflection functions not

satisfying compatibility of normal slopes along interelement bound-

aries will not necessarily show monotonic convergence as the mesh

size is decreased. It is the basic thought of the present investi-

gation that a refinement in element behavior can be achieved through

the use of a higher order polynomial approximation of the displace-

ment field (Ref. 53).

Consider the rectangular finite element, shown in Fig .. 4,

along with the introduced local coordinate system with its origin

located at the centroid of the element~ The displacement compo-

nents are assumed positive as shown.. The basic unknowns in a plate

bending problem are the lateral deflection w, the two slopes e andx

e , and the internal moments per unit length, defined in Eq. 2.6.y

For the present approach, ~t each node~)of a finite element,the

following generalized displacement components are introduced.

e
x

e
y £Jy (2 .19)



where: w = w (x ,y) = lateral deflection in z-direction

e == slope about x-axisx

e = slope about y-axisy

Ox = curvature of- plate surface in x-direction

0y = curvature of plate surface in y ....direction

0xy == twist of plate surface

Under the assumptions of the theory of thin plates, the slopes and

curvatures can be expressed in terms of derivatives of the lateral

deflection W, as follows:

(2.20 e)

(2.20d)

(2.20 b)

(2.20 c)

e = ow/oyx

e = -ow/oxy

a a

Ox ::: -0 w/?Jx

,8 a
0 = -0 w/oy

y

2

0xy
= o w/oxoy

displacements:

Element displacements can now be given as the listing of nodal

T
tOe} = < 0 T ~ T /') T /') T >

i j k 1 (2 .21)

Similarly, the element force vector is defined as:

F T >
1 (2 .22)
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The six degrees of freedom introduced at each nodal point lead to

a 24-degree-of-freedom element, and permit the choice of a higher

order polynomial for the approximation of the displacement field.

Using this improved field, it should be possible to approximate the

actual displacement field more closely, resulting in an improvement

in the accuracy and convergence. The presence of curvature terms' in

the vector of unknown nodal parameters should also allow certain

types of boundary conditions to be satisfied more properly than can

be done in the usual displacement approach, having wand its slopes

as uriknowns. The continuiLy requirements imposed on the curvature

terms should especially irr~rove the moment field since moments at

all mesh points can be made continuous in this approach. Finally,

since the internal moments are obtained directly by summing the

appropriate curvature terms, they need not be computed separately.

The chosen polynomial can be conveniently represented by Pascal's

triangle, as shown in Fig. So Twenty-eight free constants are

associated with this polynomial, ioe. one constant for each term.

A completely conforming solution could be constructed by introduc­

ing additional nodes at each of the midsides of the rectangle and

requiring that the normal slope be continuous at these points.

Possessing the same number of known conditions as there are un­

knowns in this case, the interpolation problem could be solved

uniquely. However, this approach is not taken here, since it

would result in different degrees of freedom for different nodal

points, and hence, complicate the assembly of the system stiffness



matrix. In addition, it would increase the band width of the re­

sulting system of linear equations. It would however, result in a

valid potential energy approach.

For the present approach, only twenty-four terms of the

complete sixth-order polynomial are retained (the terms underlined

in Pascal's triangle are omitted), since the deflection function

for w can be defined in terms of these twenty-four parameters only.

With geometric symmetry of the element, no preferential direction

should exist. The terms with the highest even powers in x and y

must be omitted in order to satisfy compatibility of w. Despite

omitting these terms, geometric isotropy is retained. It will be

seen later that the retention of inappropriate terms would result

in a singular transformation matrix. Inspecting the chosen func­

tion, it is recognized that along any line of constant x or y co­

ordinate, the displacement w varies as a fifth-order function. The

element boundaries, for example, are composed of such lines. A

fifth-order polynomial is uniquely defined by six constants. The

two end values of deflection, slopes, and curvatures at the end

points will therefore uniquely define the displacement along these

boundaries. As such values are common to adjacent elements, con­

tinuity of w will result along all interfaces.

Furthermore, it can be seen that the gradient of w normal

to any boundary varies as a fourth-order function. With only one

slope and curvature term imposed at each of the two end points of a

boundary line, this function is not uniquely specified, and hence,
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discontinuity of the normal slope generally occurs. Clearly, the

chosen displacement function is of the non-conforming type. How-

ever, it is evident that the completeness criterion is Batisfied,

since all rigid body displacement modes, as well as all constant

curvatures, "are included in the chosen functional representation.

For the sake of a simpler derivation, it is best to

introduce at this point non-dimensionalized coordinates defined as:

xS =-a and 11 - Y­- b (2 e 23)

The displacement field can then be written as:

Listing all polynomial terms in the row-vector

Eq. 2.24 can be written as
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w = w (x,y) = < 1 S T)

or simply as

(
J a

1

(2 . 26 a)

W ::: W (x,y) == < p> [a} (2.26 b)

The constants a~, with i = 1,2, ..... 24 can be evaluated by
1

establishing compatibility of deformation in displacement w, its

slopes and curvatures at each of the four nodal points. The

determination of these twenty-four generalized coordinates solves

this interpolation problem in two dimensions. l~,

First define a modified nodal displacement vector as:

.... T
a

20 b 20[5.} =<w be as ab0' >
1 X Y X Y xy

or
2 2 2

- T b ow ow 2 0 w _b2 0 W a w[6.} =<w -a- -a 2 ab dXdY >1 dy oX 2ox dy

(2.27 a)

(2.27 b)

and similarly the corresponding modified element displacement

vector

[ 7 e }T - T - T - T ~ T >
u =< 8 oJ· 0 u

i k 1 (2 .28)

After the enforcement of compatibility of deformation, the twenty-

four equations in matrix form will be listed as:

-35-



(2 . 29)

where [C] is a square matrix of size 24 x 24, consisting of numbers

only. This non-symmetric and fully populated transformation matrix

can conveniently be inverted in a digital computer,and the unknown

vector of generalized coordinates can be found from

(2 .30)

The inverse of matrix [C] remains the same for all elements in-

valved in the analysis and must be evaluated only once. The value

of the determinant of this matrix is a measure of how well this

matrix is conditioned. No complications in the inversion process

occur if the absolute value of the determinant is large.. In

fact, this was found to be so, underlining the importance of the

choice of appropriate terms in a truncated polynomial expression.

A bad choice could, in fact, lead to a singular matrix [ C] and

would thus complicate the inversion.

The unknowns in the final solution are listed in the

originally defined nodal displacement vector; this vector being

related to the modif{ed nodal d~splacement vector by
'r.f.~'

where the transformation matrix [T1] is a diagonal matrix composed

of four diagonal submatrices of the form
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1 0 a 0 a a '

a b a a 0 a

0 a a 0 0 0
[TlJ = (2.32)2

0 0 0 -a 0 0

a 0 0 0 _b 2
0

0 0 0 0 0 ab

The vector of generalized coordinates can therefore be found by the

relationship

[Q' } - -1
= [ cJ (2 .33 a)

or (2 .33 b)

The transformation matrix [TlJ being sparsely populated, the matrix

product in Eg. 2.33 a can be evaluated in an efficient way. It is

now possible to write the function describing the displacement

within an element in terms of the nodal displacement components

w = w ex, y) = < p> [ } J-1Q' =<p> [c (2.34)

2.4.2 Derivation of Element Stiffness Matrices

In this section, the element stiffness matrix for the

proposed refined element is generated. The derivation is valid

for small strains and rotations; i.e. the linearized form of the

strain-displacement equations is assumed to be valid.

For the purpose of a plate analysis, it is simplest

to define the curvatures as generalized strains. In order to
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properly evaluate the internal work in the determination of the

strain energy, a factor of two must be added to the twisting curva-

ture. This in turn allows the retention of the twisting moment Mxy

only in the analysis, since M is numerically identical. The curva-yx .

tures are related to the lateral displacement by Eq. 2.20. As

introduced in Section 2.2.1, and defined in Eq. 2.8b, the vector

of generalized strains can be written as:

2a w
---2

oX

:ao W
---2

oy

and the corresponding vector of generalized stresses CEq. 2.8 a) as

[M} T = < M
x

M
Y

M >
xy

The vector of generalized strains must be related to the joint dis-

placements. This vector can be written in terms of generalized

coordinates by simply evaluating all needed derivatives:

(2 .35)

Using Eg. 2.34, it follows immediately that

(2 . 36)

One of the essential features in a finite element displacement

approach is the definition of the displacement field for the pur-

pose of establishing this fundamental relationship.
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Examining matrix [Q], it is of interest to note that the

chosen displacement function permits a state of constant curvatures

to exist, and hence, satisfies the criterion of constant strain,

stated in Section 2.3.2.

The constitutive law for a linearly elastic material,

already introduced in Section 2.2.1, is generally written in the

form

[M} = [D] [0'} (2.37)

where [D] is a symmetric elasticity matrix, relating generalized

stresses (in this case, internal moments) to generalized strains

(in this case, curvatures). For a general anisotropic material,

matrix [D] is fully populated, and of the form

D11
D12 D13

[D] = D
2l

D22 D
23

(2.38 a)

D31 D32 D33 :
)

Six constants at most are needed, since matrix [D] is always

symmetric, i.e.

D .• = D ••
1J J1

for i 'I- j

Isotropic materials are characterized by only two constants,

E and 'V,

where E = Modulus of elasticity of plate material

~ = PoissonTs ratio
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Thus, for an isotropic material, matrix [D] will reduce to

1 \J

1

o

o

o
I-v

2 )

(2.38b)

In this expression, h denotes the plate thickness. For an ortho-

tropic plate material, with principal axis of orthotropy coinciding

with the x and y axis of the local coordinate system, four con-

stants are needed to define the behavior of the plate, i.e.

D D . 0
:x 1

[D] = D
l

D 0 (2.38c)y
i

a 0 D I
I

XYJ

As shown in greater detail in Appendix I, the applica-

tion of the principle of minimum total potential energy leads to

the derivation of the element stiffness matrix:

In the above formula, the integration is to be carried out over area

[Ke ] = II [B]T [D] [B] dxdy
A

Substituting Eg. 2.36 into the above equation yields

dxdy

(2 .39)

(2 .40)

A of the finite element. The introduction of non-dimensionalized
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coordinates leads to a particularly simple integration. This in-

tegration could in fact be carried out automatically due to the

simplicity of the terms to be integrated. The integration was

performed algebraically,considering one term of the elasticity

matrix [D] at a tim~. The matrices within the integration can

easily be multiplied out and integrated without difficulty. This

operation leads to the final expression for the stiffness matrix

of the refined rectangular plate element. Assuming orthotropic

material it can be written as:

This derivation is described in more detail in Appendix I, where

the component matrices [KG]" i == l~ 2,3,4, are listed.
1

The final evaluation of the element stiffness matrix,

which is of size 24 x 24, is performed in the digital computer.

It should be noted that the component matrices [K.]ji = 1,2,3,4,
l

are sparsely populated, and if made use of in the actual computa-

tions, this property ·would reduce the time required for the genera-

tion of the element stiffness matrix. Furthermore, use can be

made of the fact that all component matrices are symmetric.

The resulting element stiffness matrix generated is a

symmetric, square and singular matrix. Its singularity stems from

the fact that rigid body displacements are included in the assumed

displacement function, as given by Eg. 2024. Enforcing known
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boundary conditions, these rigid body modes will be eliminated

after the formulation of the overall stiffness matrix.

The system stiffness matrix can be assembled as des-

cribed in Section 2.3.1. The element stiffness matrix, as derived

above, is referred to the local coordinate system. The first

step in the assembly procedure would be to transfer this relation

to a global or reference coordinate system Q However, in the pre-

sent investigation the local coordinate system is alwa'ys parallel

to the global coordinate system, therefore the stiffness relations

established need not be transformed. The formation of the com-

plete stiffness matrix for the discretized plate structure is

finally accomplished by the direct addition of appropriate ele-

ment stiffnesses at nodal pointsQ

2.4.3 Kinematically Consistent Force Vectors

Applied loads are usually distributed on structural ele-

ments. Equivalent concentrated forces, at the location and in the

direction of the global or reference coordinate system, are re-

quired for the analysis. In addition, concentrated forces may be

applied at points other than nodal points of an element,and

forces caused by initial strain conditions need to be considered.

The latter may be caused by temperature, shrinkage, or lack of fit.

Considering all of these contributions, the basic stiffness equation

for an element can be cast into the form

(2 .42)
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where: [R}e = Vector of external forces applied at the nodes

[F}e = Nodal forces required to balance distributed loads
p

(F}e = Nodal forces required to balance concentrated
c

forces acting within an element

[r}: = Nodal forces required to balance initial strains
1

caused by temperature, lack of fit, etco

The final system of simultaneous equations is obtained

by establishing equilibrium at all nodal points 0 Each external

force component must be equated to the sum of the component forces

contributed by the elements meeting at the node in consideration.

All forces can be collected and the final equilibrium equation can

be written in the form:

[r} = [K] [6} (2 .43)

where: [5} = Overall systems displacement vector

[ r} = Resultant systems force vector consistent with the

overall displacement vector

[K] = Overall structural stiffness matrix

For all common loading conditions, the equivalent concentrated

nodal forces can be determined from an energy approach which is

consistent with the evaluation of the element stiffness matrix.

For example, for distributed loads p (X,y) , defined as acting on
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a unit area of the element, this derivation leads to the following

equivalent nodal force vector

SS < p>T p (x,y) dxdy
A

(2 .44)

This vector is listed in Appendix II along with a more detailed

description of the derivationQ

2.4.4 Enforcement of Boundary Conditions

The system of linear simultaneous equations represented

by Eq. 2.43 can only be solved after sufficient boundary conditions

are prescribed. The equation includes the rigid body displacements

of the structure. Therefore, a minimum number of prescribed dis-

placements must be substituted in the equation. The number of

kinematic restraints prescribed is usually far greater than the

number required to prevent rigid body motions. These constraints

can be imposed by deleting appropriate rows and columns of the

system stiffness matrix. This constitutes a relatively cumber-

some and time consuming procedure for an automatic computation,

though it results in a reduction of the total number of equations.

This investigation uses a more convenient approach, pro-

ceeding with a direct solution of the original number of equations

to avoid rearranging of rows and columns 0 In this approach, the

diagonal element of the system stiffness matrix, at the point

concerned, is multiplied by a very large number~ At the same time

the term on the left-hand side of the equation, i.e. the element
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of the global force vector at the point concerned, is replaced by

the same large number multiplied by the prescribed displacement

value. The effect of these manipulations is to replace the origi­

nal equation by one which states that the displacement in question

is equal to the specified displacement. This procedure of enforc­

ing boundary conditions is easily implemented in a general computer

program, and all programs described in this report operate success­

fully, using this approach.

The deformed shape of a plate structure must be found in

such a way that all boundary conditions adhering to a problem under

consideration are satisfied. In a finite element displacement ap­

proach, such restraints can be at the selected nodal points only,

since only the deformation components at the nodes are entered as

field quantities. Boundary conditions in plate bending problems

usually include both the force (or static) and displacement (or

kinematic) typesn Only displacement type boundary conditions, i.e.

restraints which can be expressed in terms ofdisplacementcomponents~

can usually be satisfied in a pure finite element displacement ap­

proach. However due to the fact that in the present approach the

three curvature terms are included in the final displacement vector,

certain types of plate boundary conditions can be approximated more

closely if the plate is made of isotropic or orthotropic material.

Some common boundary conditions to be satisfied in a

plate problem, along with the associated constraint equations, are

listed in Fig. 60 The top half of the figure lists the boundary
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conditions as introduced in conventional plate theory. As derived

in Section 2.2.1, the internal moments are linear combinations of

the curvatures of w. The introduction of the curvatures as nodal

parameters also makes it possible to exactly satisfy some static

boundary conditions. If the boundary conditions of a simply sup-

ported plate are considered (Fig. 6) the classical theory of thin

plates requires the following boundary conditions to be satisfied,

at x == a

w == 0

e dW
0== oy =x

a a

M -- D (0 W \) 0 w) 0= --2 + =x oX ay2

(2.44 a)

(2.44b)

(2.440)

A conventionally formulated displacement approach will not satisfy

Eq. 2.44c,called the static boundary condition. However, from the

geometry of the deformed plate surface,it is known that

.a
a w

2oy
== 0 (2 . 45 a)

along the straight and simply supported edge at x = a. From a

consideration of the static boundary condition (Eq. 2.4~c) it can

be concluded that the following equation will also hold

= 0 (2.45b)

Therefore, the proposed approach allows all boundary conditions
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associated with a simply supported edge to be satisfied exactly.

This conclusion is only valid if no externally applied moments are

acting along the boundary under consideration.

Similarly, the boundary conditions associated with a

clamped edge can also be satisfied exactly, as this can be done in

the conventional displacement approach where only displacement-

type boundary conditions are to be met.

The boundary conditions for a free edge are due to

Kirchhoff (Ref. 46), and are listed in the classical theory as

follows:

and

or

aM
v == Q

x
~ == 0

x .- oy

3 3

o W
(2 -- \J)

a w
0-- + ;;;:;:

ox 3 2oy

M = 0
X

(jEW
.8

V
d W 0+ ==2 2ax ay

(2.46 a)

(2.46b)

(2.4-7 b)

The condition for zero vertical reaction at the free edge cannot be

satisfied since in the present approach it is not possible to ex-

press this quantity in terms of nodal parameters. This is due to

the fact that no third order derivatives are listed in the vector

of unknown nodal displacement componentso The requirement of zero

normal moment could be satisfied exactly if, instead of the curvature
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terms, their linear combinations, i.e~ internal moments, would be

introduced in the displacement vector. However, since the case of

a free edge is relatively rare, no effort was made in this inves­

tigation to arrive at a more refined approach for satisfying this

particular boundary condition.

2.4.5 Solution of the Stiffness Equations

The displacement approach as described in Section 2.3.1,

and in more detail in Ref. 14, leads very often to a large system

of linear simultaneous equations. In this set, the structure

stiffness matrix connects the known vector of generalized forces

to the unknown vector of generalized displacements. This matrix

is always positive definite and symmetric for a linear elastic

analysis. In addition, the stiffness matrix is usually well­

conditioned and sparsely populated, and with adequate arrangement

of the equations narrowly bandedo These properties permit a very

efficient, automatic assembly and solution of large systems.

The time required for the solution of the set of simul­

taneous equations is the single most important expense in solving

large scale problems. Hence, the availability of an efficient

solution technique is of upmost importance in solving elastic, and

especially elastic-plastic,problems.

There are two fundamental groups of methods for solving

linear algebraic equations, the methods of iteration or relaxation,

and methods based on elimination. The main advantages of iterative
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solution techniques are the relatively easy coding of such methods

and the small amount of computer storage required. Solutions can

be obtained with reasonable computer time if the governing system

of equations is well-conditioned. The latter requirement is not

always met and considerable difficulties may be experienced in

solving large ill-conditioned systems. Though these methods can

be efficiently applied in the solution of linear elastic problems,

their application in solving elastic-plastic problems is doubtful

due to the fact that the initially elastic and diagonally dominant

system can become ill-conditioned at latter stages following ex-

tensive plastic flow. At such a stage, the diagonal elements of

the stiffness matrix become small compared to the off-diagonal

elements. For this reason, iterative or relaxation methods can

become inefficient in solving elastic-plastic problems. In addi-

tion, elastic-plastic procedures require the solution of the stiff-

ness equations in incremental form if the complete load-deflection

behavior of a structure is sought. Each step,in turn,requires an

iterative solution technique itself,and hence, the entire analysis

would become too time-consuming. Furthermore, iterative methods

do not allow multiple load vectors to be processed simultaneously.

This is a serious drawback in the elastic analysis of structures

subjected to many different loading conditions.

On the other hand, elimination methods do not require a

well-conditioned system; only the number of equations to be solved

and the bandwidth of the system are important 0 These methods do,
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however, require larger amounts of computer storage. The Choleski

decomposition method is among the most efficient and accurate eli-

mination methods. This method was chosen as basis for the solution

of the resulting set of stiffness equations, for all the analyses

presented in this report. The key to this method is the fact that

. any symmetric square matrix can be expressed as the product of an

upper and a lo~er triangular square matrix. Hence, it is possible

to decompose the symmetric and banded structure stiffness matrix [K]

into the product of a triangular matrix [L] and its transpose [L]T,

as shown in Fig. 7. This can be written as:

(2 G 48)

in which the terms Lo. :::: a for i < j, and L..T = 0 for i > j . Hence,
1J 1J

the first step in this approach is to decompose matrix [K] into

these two component matrices. It is observed that both of these

matrices are also of banded nature with a bandwidth which is equal

to half the bandwidth of the system stiffness matrix. Considering

the special coordinate system introduced, the elements of [LJ can

be obtained by simple recursive relations. It is further noted

that in order to calculate column j of [LJ, only the elements in

the shaded triangular area, as shown in Fig. 7, and the elements of

column number j of the original matrix [K] are required. The

fundamental stiffness equation, Ego 2.43, can now be written in the

form:

[ LJ [ LJ T {o} = [F}
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Introducing an auxiliary vector, defined as:

The solution of the original stiffness equation is accomplished in

two steps: first vector [y} is found by a forward sweep, and the

unknown vector [a} is finally determined by backward substitution

of (y} into Eq. 2.50.

The fact that only a small part of the overall matrix is

used at any time during processing is of considerable importance in

the development of finite element programs capable of handling

structures involving many thousands of degrees of freedom. In

order to save on core storage, the stiffness matrix is generated

in blocks in the present approach,and the information is transferred

to magnetic disc storage. The efficient use of the OVERLAY feature

and of magnetic discs allows large scale problems to be treated

using relatively little computer storage. A subroutine, capable

of handling large banded systems of simultaneous equations was

developed,based on the above described decomposition technique.

The amount of information needed for processing at any time can be

adjusted, and is called from discs accordingly.

The analyzed examples show that the described direct

elimination technique is very efficient and accurate. The fact

the stiffness equation can be written as

[LJ (y) = [F}

(2 . 50)

(2 .51)
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that multiple load vectors can be processed at the same time,

allows complex structures to be analyzed for different loading

conditions in a very efficient way_ Provided the bandwidth is not

excessive, this method also proved to be very powerful for the

elastic-plastic analysis of plates, as described in a subsequent

section.

It should be noted in this context that for a large band­

width, the described method, which operates on all elements within

the band, may require considerable computer time. Improved solu­

tion routines, processing non-zero elements or submatrices only,

have been developed in recent years. Whetstone (Ref. 55) presented

recently a method which virtually eliminates both trivial arith­

metic and wasted data storage space. Melosh (Ref. 35) describes a

solution algorithm based on the wavefront concept and a modified

Gauss algorithm.

According to these authors, such approaches can treat

larger problems than bandwidth programs, involve negligible pen­

alities,and at the same time,yield more accurate solutions than

approaches using the Choleski algorithm. However, such approaches

clearly involve years of intensive research, and hence, were not

possible to accomplish within the framework of this investigation.

2.5 Examples of Solution

2.5.1 Selected Examples

The following examples have been selected to illustrate
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the application of the derived refined finite element, and to dis­

cuss its rate of convergence and accuracy. To simplify the com­

parison with analytic solutions, isotropic material is assumed and

only simple examples are chosen. It should be noted here that the

general computer program developed is capable of handling plates

of arbitrary geometry, as defined in Section 2.1, and orthotropic

material can be treated.

Four example problems, schematically represented in Fig.

8, have been selected in this investigation. For all problems,

four different meshes, as shown in Fig. 9, were processed with the

mentioned digital computer program, using the derived refined ele­

ment as the basic element. Making use of symmetry, only one quad­

rant of each problem was analyzed. All structures were subjected

either to a uniformly distributed load,or a single concentrated

load acting at the center of the plate. The equilibrium equations

were solved using the very efficient solution technique described

in Section 2.4.5. All runs were processed in the CDC 6400 com­

puter of the Lehigh University Computing Center.

In a first example (Problem PI), a square isotropic plate

with four fully fixed boundaries was discretized using the four

meshes shown in Fig. 9. The boundary conditions, as described in

Section 2.4.4, can be satisfied exactly for this example. PoissonTs

ratio was assumed to be v = 0.30.

Problem P2 represents the analysis of a simply supported

square isotropic plate. Again all boundary conditions can be

-53-



satisfied exactl~and the same value for v was assumed as in

Problem Pl.

In a third example (Problem P3), a panel of a plate sup­

ported by rows of equidistant columns (flat plate) was analyzed.

In order to be able to compare with available solutions, a value

of v = 0.20 was chosen for this example. All boundary conditions

can be deduced from the geometry of the deflected surface and can

be satisfied exactly. To sim.plify this .problem, it was

assumed that the cross-sectional dimensions of the columns were

small in comparison to the span of the plate panel, and could be

neglected in so far as deflection and moments at the center of the

plate are concerned. Timosheriko (Ref. 46) has discussed in length

the implication of this assumption. However, the dimensions of the

columns could be easily included in the analysis.

The fourth example (Problem P4) is a square isotropic

plate supported by columns at the corners only. As discussed in

Section 2.4.4, the boundary conditions for free edges cannot be

satisfied exactly by the presented finite element approach. This

example was chosen to study the effect of this deficiency. No

exact solution to this problem is available, though various experi­

mental and approximate solutions are known.

2.5.2 Accuracy and Convergence of Solutions

The plate geometry and the finite element idealization

of the selected examples are shown in Fig. 8 and Fig. 9,
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respectively. For the four problems, Tables 1, 2, and 3 list in

sequence, the computed center deflection for both loading cases,

along with some results found from existing plate elements and the

exact values, where available (Ref. 46). Excellent accuracy and

convergence is observed for both loading cases. The complete de-

flection profiles along a center-line of the plate together with

exact values, are given in Table 4 for uniformly distributed loading

and in Table 5 for the case of a single concentrated load. Exact

values were found by evaluating the series solutions derived in

Ref. 1 at all points of interest. Good agreement of displacements

is apparent, as the convergence is fast and monotonic.

Tables 6 through 9 list the computed internal moments M
x

and M along a center-line of the plate, together with exact values,
y

where available. It can be seen that even for relatively rough

meshes,the computed values for internal moments show good accuracy.

Finally, Table 10 shows the internal twisting moment along a dia-

gonal of the plate for the case of uniformly distributed load.

From the results found, it is evident that excellent accuracy for

displacements and internal moments is obtained with the refined

plate element.

In order to study the effect of the enforcement of bound-

ary conditions, as discussed in Section 2.4.4, a number of compari-

sons have been made. For the purpose of these comparisons the fol-

lowing types of boundary conditions can be defined:
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Type I:

Type II:

Only displacement type boundary conditions asso­

ciated with w, ow/ox and ow/ay are enforced.

In addition to the constraints of Type I, curvature

terms derived from a knowledge of the geometry of

the deflected surface are enforced.

Type III: In addition to the constraints of Type II, curvature

terms derived from static considerations are enforced.

Tables 11 and 12 list, in part, the results of this investigation.

In the conventional finite element displacement formulation, which

is based on three degrees of freedom per node, i.e. on deflection w

and its first derivatives, only boundary conditions of Type I can be

satisfied. The present formulation also allows the enforcement of

boundary conditions of the Types II and III. Comparing the computed

values for the center deflection of problems PI and P2 for the dif­

ferent types of boundary conditions enforced, it can be stated

that if boundary conditions of Types II and III are enforced, then

the structures tend to become stiffer. However, for finer meshes

no difference can be recognized, thus leading to the conclusion

that the imposition of additional curvature constraints does not

improve the computed center deflectioilo As can be seen from Tables

13 and 14, in which results from this investigation for internal

moments are compiled, the imposition of additional curvature terms

does, however, improve the moment field, especially in the vicinity

of the boundaries.
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2.5.3 Comparison with Existing Plate Elements

Results found in the literature for the different ele­

ments discussed in Section 2.3.4, are compiled in Tables 1, 2, and

3. Internal moments are mostly reported in the form of graphs,

thus lacking the numerical accuracy needed for an exact comparison.

Hence, in order to be able to compare the results obtained with

the refined plate element, missing internal moments were found for

the ACM (Ref. 1) element in particular, using an auxiliary finite

element plate program.

A direct comparison of the different finite elements

used in the examples,in terms of mesh size,is not appropriate,

since the computational effort is different for different elements

and meshes. Most results available in the literature are listed

separately for each mesh, and hence Tables 1, 2, and 3 were set up

for reference only 0

In a finite element approach involving fine meshes, the

major part of the computer time required is used for the solution

of the typically large system of simultaneous equations. Hence,

a more reasonable way of comparing the results is to plot the per­

centage error in deflection or internal moment against the number

of degrees of freedom; the solution time being directly propor­

tional to this number in the proposed decomposition technique.

The total number of degrees of freedom is defined here as the

number of nodal points involved in the analysis, times the number

of ~egrees of freedom per nodal pointo
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In Figs. 10, 11, 12, and 13 the percentage error in cen­

tral deflection is plotted against the number of degrees of free­

dom of a problem for different finite elements for plate bending.

Clearly, the new element shows improved results over most other

elements at a given number of degrees of freedom. Similarly, in

Figs. 14 and 15, the percentage error in internal moments is plot­

ted against the total number of degrees of freedom.

As already pointed out in Section 2.3.4, existing plate

elements are deficient because they are not capable of predicting

internal moments with sufficient accuracy, unless very fine mesh

idealizations are used. It may be added that the evaluation of

internal moments using some of these elements represents a signi­

ficant computational effort. As shown in the above-cited figures,

the refined element is capable of determining reliable internal

moment values even for relatively rough meshes, thus confirming

one of the basic ideas for the derivation of this element.

An even better index for comparison would be the time of

the computational effort needed for the entire solution 'of larger

sized problems. In fact, the computer time needed to generate the

element stiffness matrices, to assemble the system stiffness ma­

trix, to generate force vectors, to solve the resulting large sys­

tem of simultaneous equations, and finally, to find all internal

moments would be a better measure for the discussion of the rela­

tive merits of different proposed elements.
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2.6 Summary

A refined rectangular plate element for use in a finite

element analysis of arbitrarily shaped plates is presented. Along

with the three usual nodal displacements, three curvature terms

are entered as unknowns in the vector of generalized displacements.

Results found for four example solutions indicate that the refined

element gives very good accuracy for displacements as well as for

internal moments. The new approach, though of a non-conforming type,

leads to a better accuracy at any given number of degrees of free­

dom than obtained with most presently known rectangular or quadri­

lateral finite elements.
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3. ANALYSIS OF STIFFENED PLATES

3.1 Introduction

In this chapter, an analysis of complex shaped stiffened

plates, as shown in Fig. 16, using the finite element stiffness

approach is presented. Some of the currently used approximate

analysis techniques applicable to beam-slab type structures are

discussed. This survey of available methods of analysis shows

that there is as yet no fully adequate method of analysis capable

of determining stresses and deformations in complex shaped beam­

slab type structures.

It is shown that a stiffened plate structure can ade­

quately be discretized using plate and stiffener elements. Stiff­

ness matrices for bending and in-plane behavior are derived for

the beam and plate elements. A new approach for the evaluation of

the St. Venant torsional constant is presented, and the stiffness

relations associated with torsion in the stiffener elements are

derived. Also discussed are the assembly of the stiffness matrix

and the solution of the final set of equilibrium equations.

The outlined approach is applied to the analysis of a

beam-slab highway bridge which was field tested. An extensive

study of the effects of the variables governing the lateral load

distribution is made, demonstrating the applicability and versatil­

ity of the proposed approach. The inclusion of curb and parapet sec-

tions, as well as diaphragms, in the analysis is discussed. Finally,
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convergence and accuracy of the method are studied (Refs. 53 and 54) .

3.2 Methods of Analysis for Stiffened Plate Structures

A structural analysis is performed in order to determine

stresses and deformations at selected points of a structure which

is subjected to external forces,or constraint to deform, in a pre­

scribed pattern. In this section, a short survey of some available

methods of analysis of plate-beam type structures is given. A com­

plete survey of the state of the art of current grillage design was

made by Kerfoot and Ostapenko (Ref. 29).

For a beam-slab type structure, an elastic analysis can

be formulated by combining the classical beam and plate theories.

As is usually done in continuum mechanics, the equations of equil­

ibrium and compatibility, together with the stress-strain relations~

could be used to develop a set of partial differential equations

for deformations or stresses at every point of the structure. How­

ever, the exact solution of these equations is virtually impossible

for complex shaped structures, ~ecause of the task of determining

suitable solution functions which satisfy both the governing dif­

ferential equations and the specified boundary conditions. The

assoolptions introduced in the theory of plates and the conventional

beam theory allow for a reduction in the number of independent vari­

ables and make certain boundary conditions more tractable. These,

assumptions of the conventional plate theory which are applicable

to thin plates are listed in Section 2.2.
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In classical beam theory it is assumed that all deforma­

tions can be described in terms of the displacements of the longi­

tudinal axis and the rotation of the beam cross-.section. The lat­

ter assumption precludes a deformation of the cross-section, and

hence,strains normal to the longitudinal axis are neglected. For­

mulating equilibrium of a beam element leads to a set of three

differential equations.

Conceptually at least" plate and beam theories can be

directly applied to the analysis of stiffened plate type struc­

tures.' For this purpose, different physical models are used to

represent the beam-slab type structure. These models are highly

redundant. The compatibility and the load-deformation behavior

of the elements of the models must be taken into account to develop

the additional requirements beyond those obtained from static equi­

librium in order to determine the response of the assumed model.

A force or deformation method of analysis is usually applied to

solve for the unknown quantities. However, by inspecting the re­

sulting partial differential equations it can be recognized that

these equations are not readily solvable for other than simple

structures.

Often the effective width concept is utilized to reduce

the analysis of stiffened plates to the analysis of the stiffeners.

This approach assumes that the stiffeners behave as beams, the

flanges of which are made up of some portion of the slab. The

portion of the plate assumed to act effectively as a flange of the
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consisting of a concrete slab acting compositely with steel beams 1

Bares and Massonnet (Ref. 7) have published a book devoted to the

analysis and design of grillages under transverse loads by means

of the orthotropic plate theory. This approach cannot be used to

adequately predict the state of stress in the plate and the govern­

ing differential equations are again difficult to solve for other

than simply bounded structures.

Another group of approaches are the discrete element

methods. These methods replace the actual structure by a system

of discrete elements which leads to a set of simultaneous algebraic

equations. These equations are developed directly by replacing the

differential equation by the corresponding finite difference equa­

tions. Hrennikoff (Ref. 27) presente,d a number of gridwork models

for the solution of plate bending and elasticity problems, along

with guidelines for establishing the equivalence between the model

and the continuum. Newmark (Ref. 37) has proposed a model made up

of rigid bars and springs for plate bending. Recently, Lopez and

Ang (Ref. 32) developed a lumped parameter model by means of which

the effects of large deformation and inelastic behavior can be in­

cluded in the analysis of plates. In order to simplify the pro­

blem, the analysis herein has been restricted to sandwich plates.

Although the formulation would become more difficult, this method

could probably be used to analyze stiffened plates.

To analyze complex shaped stiffened plate structures, the

finite element method is found to be best suited. For reasons
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explained in Chapter 1, the finite element displacement approach

is preferable. Gustafson (Ref. 25) has employed the finite element

approach in the analysis of skewed grillage structures subjected

to transverse loads. The results of this analysis were found to

compare well with the results of tests performed on such struc­

tures. Little work has been done to take into account second order

effects and inelastic action of the material in the analysis of

plates and virtually no work has been done as far as stiffened

plate structures are concerned.

3.3 A Finite Element Analysis of Stiffened Plates

3~3.1 Application of the Method to

the Plate and Stiffener System

In this section, the application of the finite element

displacement approach in the analysis of beam-slab type structures

is described. The beam-slab type structure, shown in Fig. 16, can

be bounded by arbitrarily shaped boundaries as long as they fit

into a rectilinear mesh. The plate is stiffened by a set of beams

running in longitudinal direction, which is assumed to be parallel

to the global x-axis for all further discussions. In addition, a

set of transverse stiffeners (called diaphragms) can be present

although their inclusion in the analysis will be discussed in a

later section. Neither the plate nor the stiffeners need to be of

uniform thickness.

The first step is to discretize the structure into a
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suitable number of finite plate and stiffener elements. In order

to arrive at a simple formulation for this analysis, it is necessary

that the stiffeners are attached along the mesh lines of the plate

elements. However, they need not be continuously attached along

the entire plate. Two types of finite elements, plate and stiff­

ener elements, are needed to discretize the structure. In order

to be able to study the convergence behavior of the method with

respect to the criterion postulated by Melosh (Ref. 34) the broader

mesh must always be contained in the next finer mesh. As shown in

Fig. 16, a rectangular element involves the four nodal points I, J,

K and L, and the beam element, being a straight line element, in­

volves the two nodal points I and K. The mesh lines, or surfaces

of separation, are again to be considered imaginary. The structure

can be arbitrarily loaded by concentrated loads or uniformly dis­

tributed loads.

Due to the fact that the stiffeners are eccentrically

attached to the plate, coupling between bending and stretching

exists in the middle plane of the plate, and hence, in-plane defor­

mations must be considered. The approach is described assuming

small deformation theory and linearly elastic material. It should

be noted that elements of different shapes can easily be used in

combination in a finite element displacement approach,if they pos­

sess the same number of degrees of freedom at all common nodes. Here,

all nodal points are best defined in a common plane. This plane

will be called plane of reference for all further discussions, and
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is assumed to coincide with the middle plane of the plate. The

response of the beams must first be found with respect to this

plane,and one of the objectives of this report is to illustrate

how the eccentricity of the stiffeners can be taken into account.

Five displacement components are introduced as unknowns

at each nodal point in the present approach. These are the dis-

placement u in x-direction and the displacement v in y-direction.

In addition, the deflection wand the two slopes 6 and e arex y

considered. These five deformation components enable the descrip-

tion of the state of deformation in a plate and stiffener element.

An analysis based on small deformation theory is greatly simplified

since the in-plane and the out-of-plane stiffness matrices of the

involved finite elements can be derived separately. However, de-

formation compatibility between beam and plate elements must be

enforced and overall equilibrium must be established at each nodal

point.

3.3.2 Derivation of Bending and

In-Plane Plate Stiffness Matrices

The classical theory of plates assumes that the state of

deformation in the plate can be described entirely in terms of the

deformations of the middle plane of the plate. Basically, the

refined plate element, as described in Chapter 2, could be used

in representing the plate behavior of the stiffened plate struc-

ture. However, dueto the presence of the torsional resistance of
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the beam elements, discontinuities in some curvature terms occur

along the lines of intersection of the stiffeners with the plate.

Since these terms were entered as unknowns in the nodal displace-

ment vector and made continuous at the nodal points, the refined

element is best not used in the present approach. Basically,

any known finite element could be used to represent the out-of-

plane ,plate behavior.

For the present analysis, the ACM element, as originally

proposed by Adini, Clough and Melosh (Ref. 1) and described in

detail by Zienkiewicz (Ref. 56) , is taken to represent the out-of-

plane plate behavior. An incomplete third-order polynomial, as

indicated in Fig. 5, is assumed for the representation of the dis-

placement behavior within the element:

(3 .1)

Although this element is of the non-conforming type, it yields

reasonably accurate results. The vertical displacement wand the

two slopes e and e are entered as unknowns in the nodal displace-
x y

ment vector. Since this element will also be used for the elastic-

plastic analysis of plates and stiffened plates, which will be

presented in later chapters, the stiffness matrix is presented in

Appendix III.

In order to determine the stiffness characteristics of

the entire structure, which are required in the analysis, the

stiffness properties of the plate elements for in-plane behavior
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must also be established. As shown in Fig. 4, the displacement

components governing the in-plane behavior are denoted by u and

v, respectively. The selection of appropriate displacement func-

tions is again subject to the requirements listed in Section 2.3.2.

If the stiffness for a rectangle in plane stress is sought, eight

force-displacement equations are to be formulated. Clough (Ref.

14) suggested the following functions:

(3.2)

(3.3)

A prime is attached to the unknown generalized coordinates to

underline that they are not the same set as originally used. From

PascalTs triangle, as shown in Fig. 5, it is noted that all of the

constant and linear terms are chosen, along with one of the quadratic

terms. The chosen functions are not complete polynomials. But,

T 1
with the choice of the symmetric terms ~4xy and agxy, and because

of the geometric symmetry of the element itself, no preferential

direction exists. Inclusion of all pertinent constant strains is

assured,as well as proper representation of the rigid body motion

states. From the equations it can be concluded that all edges dis-

place as straight lines. Hence, the chosen displacement functions

automatically guarantee continuity of displacement with adjacent

elements. The assumed shape functions are of the conforming type
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and since all the criteria listed in Section 2.3.2 are met, con­

vergence to the true solution should occur. Enforcing compati­

bility of deformation at all nodal points, the unknown vector of

generalized coordinates can be determined. The evaluation of the

stiffness matrix governing the in-plane behavior of the plate ele­

ment follows standard procedures. This derivation is performed in

more detail in Appendix IV.

3.3.3 Derivation of Bending and

In-Plane Beam Stiffness Matrix

The final stiffness relations for the stiffened plate

structure express equilibrium at nodal points lying in the plane

of reference. The response of the beams with respect to this plane

of reference is needed. It is first assumed that a stiffener, as

shown in Fig. 17, is attached to the plate along a boundary of

the rectangular plate element. -Next, it is assumed that external

loads are applied only at plate elements or directly at the nodal

points. Furthermore, it is assumed that the stiffener is symmetric

with respect to its local z-axis, and weak in bending about this

axis. In addition, shearing deformations are neglected. It should

be· noted that some of these restrictions could be lifted in a more

refined analysis.

Owing to the above assumptions, only four of the five

displacement components introduced at each nodal point of the re­

ference surface are used to describe the behavior of the stiffener

-71-



element. The assumed displacement function for the in-plane be-

havior of the plate element predicts straight lines for the edges

of the deformed plate elements. Consequently, no bending moments

about the local z-axis are taken by the stiffener elements. Hence,

the displacement component v in the direction of the y-axis does not

need to be considered in describing the behavior of the beam ele-

ments. Since the stiffener element is assumed to be integrally

attached to the plate, compatibility of deformation must ,be en-

forced along the juncture line between beam and plate. The same

displacement functions chosen for the in-plane and the out-of-plane

behavior of the plate element must be taken for the stiffener e1e-

ment in order to be able to satisfy this requirement:

TT 11

U = 0'1 + 0'2X

TT TT 11 2 TT 3
w = Ql

3 + G'4x + Q'Sx + a'6x

(3.4 a)

(3.4 b)

Introducing the nodal displacement vector for node I of ,the beam

element associated with its bending and in-plane behavior:

e >
y

(3.5)

the element displacement vector needed for the generation of the

stiffness matrix governing bending and in-plane behavior can be

written as:

T
[os} = < u. w. e .

B 1 1 yl
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Enforcing compatibility at the two nodal points I and K leads to

six algebraic equations which can be written as:

where the vector of generalized coordinates is defined as:

(3.7)

[c/'} T = < a~
TT

0:'6 > (3.8)

These six generalized coordinates are uniquely defined by the nodal

displacements introduced at the ends of the stiffener element.

Inversion of Eq. 3.7 leads to

[aTT } = [CTTr-1 [5 S
}

s B

which can be written explicitely as:

11

Q!l 1 0 0 0 0 a

tt

-IlL IlL 00!2 a 0 0

TT

0:'3 0 1 0 0 0 0

=
11

0:'4- a 0 -1 0 0 0

tT .8 2

0'5 0 -3/L . 2/L 0 3/L IlL

tT 3 2 3 2

0'6 0 2/L -IlL 0 -2/L -IlL

(3.9 a)

u.
1

w.
1

(3.9 b)
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Using the displacement relations, which, for the case of

a uniaxially stressed stiffener, reduce to

U (z)
ow= u - z oX (3 .10)

in which u is the displacement in x-direction of a point lying in

the reference surface, and U is the displacement in x-direction of

a point lying outside this plane, the strain-displacement relation

can be written as:

€
X

aU= ax
au

= ox - z
2a w

2ax
(3.11)

Introducing Hooke's law, which for the present case reduces to its

simplest form, leads to the stress-displacement relation:

0­
S

(3 .12)

The joint forces shown in Fig. 17 associated with the joint dis-

placements must be defined at the location and in the direction of

these deformation components. Forces defined at the centroid of

the beam element could be found using an appropriate transforma-

tion matrix which would have to be derived from a consideration of

equilibrium of forces applied to the stiffener element. Integrat-

ing the stresses with respect to the plane of reference, and using

Eq. 3.12 leads to
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where:

rOll A
.a

N II a dA E
o w

S= =s s s s ox s a s
As ox

1- au s .a

Is]M II z dA E
o w= IT ==

S S S s Lox s a

As ox

E == Modulus of elasticity of stiffener
s

A = Cross-sectional area of stiffeners

(3 .13 a)

(3.13 b)

I

s ~ First moment of the stiffener area with respect tos

the plane of reference

I == Moment of inertia of the stiffener area with respects

to the plane of reference

Egs. 3 .13 a and 3.13 b , constituting the force-displacement rela-

tions for the eccentrically stiffened beam element, can be written

in the form:

rNJ 1- -, aui A S 1 ax
\

s s
1I = E I (3.14 a)

M I
s I 2

ls I
J

a w---s S 2SJ oX

or simply as:

[M } = [D ] [€ } (3.14b)s s s

This equation relates the internal stress resultants acting on a

stiffener element, and defined at nodal points lying in the plane

of reference,to the vector of generalized strains. The vector of
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generalized strains can be found in terms of the vector of genera-

lized coordinates making use of the assumed displacement fields:

o -2 -6x

au
ox

=
o

a

1

o

o

o

o o

Tf

0'1

1T

0'2

1T

0'3

"
(3.15 a)

0'4

1T

0'5

TT

0'6

which can be simply written as:

(3.1Sb)

in which the matrix [Q ] is found by differentiating Egs. 3.4.
s

Making use of Eq. 3.9 a, the above expression can be written as:

[} ] [ C TTJ -1 [S} [Je: = [Q 6 = Bs s s B s

Hence, Eq. 3 .14 b can be written as

[M } = [D ] [B ] [as}
s s s B

(3.15c)

(3 .16)

Having established all basic relationships, the stiffness matrix

relating beam bending moment, shear, and axial force to correspond-

ing displacement components can be derived using the virtual work
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principle. In this approach a set of virtual nodal displacements

is imposed on the beam element, and the external and internal works

done by the various forces are equated. Application of this

procedure leads to:

L

S
o

dx (3 .17)

Using Egs. 3.15 c and 3.16 gives:

CD ]
s

[B ]
s

Since this relationship must hold for any arbitrary set of virtual

displacements, one can conclude that the stiffness relation is

given by:

{FS}B ={oSL [Bs]T

L.

[D ]
s

[B ]
s (3 .18)

The stiffness matrix is found to be:

[D ]
s

[B ]
s

dx (3 .19)

where the integration is to be taken over the length of the pris-

matic stiffener element. Performing this integration leads to:
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rNi

J
-8 ILlA /L 0 S /L -A IL a u.s s . s

s 21
1

I

Iz. 3 2 3
121 IL -61 IL 0 -121 IL -61 /L w.

1 S S S S 1

4-1 IL -8 /L
.8

21 kM. 61 IL 6
yi1 s S s s

=

~ A IL 0 S /L
~s S

3 2

Zk Symmetric 121 IL 61 /L wks s

41 /L
s e 'k'y :

.-'"

(3 .20)

3.3.4 Inclusion of Torsional Stiffness of Beam Elements

The torsional resistance of the beams is often of impor-

tance in the behavior of stiffened plates. In beam theory (Ref.

47), it is shown that the total twisting moment applied to a beam

is resisted by two different kinds of torsion, St. Venant or pure

torsion, and warping torsion:

T :::: T + T
St.V. w (3 .21)

The St. Venant torsional moment is resisted by shearing stresses,

whereas the warping torsional moment is carried by axial stresses

introduced due to flange bending. For rectangular or stocky solid

beam cross sections, most of the applied twisting moment is carried

by St. Venant torsion, whereas thin-walled I-sections carry most

of the applied torsional moment by warping action.. Both twisting

moments are related to the angle of twist ~ as follows:
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G = Shear modulus

KT = St. Venant torsional constant

where: fJ f = 0ox

T =St.V.

nl Hi
T = - EI pw w

= Rate of change of angle of twist

(3 • 22)

(3 .23)

I = Warping constant
w

Warping is not considered in the presently proposed finite element

approach for the analysis of stiffened plates. To account for warp-

ing, the higher order derivatives of the angle of twist should be

included in the choice of the unknown displacement components in-

traduced at the nodal points. It can be seen that owing to the

assumed displacement pattern for the vertical displacement w, the
't

rate of twist 0 , i.e. the change of e along a line of constant
x

y-coordinate, varies as a cubic function. Since only two boundary

conditions are available at the ends of the stiffener elements~

the last two terms in the cubic function are disregarded. A lin-

ear variation of the angle of twist is assumed:

+ x (3 . 24)

Introducing the displacement vector associated with the torsional

modes of the beam element:
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one can write:

(3.25)

III
= [c ]s (3.26)

where the vector of generalized coordinates is defined as:

(3.27)

Enforcing compatibility of deformation for the angle of twist at

the ends of the stiffener element, the two generalized coordinates

are uniquely determined. Solution of Eq. 3.26 leads to

or written explicitly:

(3.28 a)

III

~l

III
0'2

=
1

-IlL

lo .

IlL

e .-1
Xl

e k I
X J

(3.28b)

Using the differential equation for St. Venant torsion, Eq. 3.22,

which is derived, for example, in Ref. 22, the force-displacement

relationship becomes:

where

,
[T } = [D ] [0}

s s
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T
The vector of generalized strains [~ } can be found in terms of

the vector of generalized coordinates by making use of the assumed

displacement function Eg. 3.24:

1 ]
III

= [Q ] [a}
s (3 .31)

Using Eg. 3.28 a, this relationship in turn can be written as:

[Q ]
s

III] -1[c
s (3 .32)

Again applying the principle of virtual work, the stiffness matrix

for a beam element subjected to torsion is found to be:

L

== J
o

[D ]
s

[B ]
s

dx (3.33)

The integration can be carried out in a straight forward manner

leading to:

r 'i
/'

1 -1 I eI T. I GK xi
I 1 I T (3 . 34)=

LlTk J -1 1 8 xk
L

This stiffness relation, together with the previously derived Eg.

3.20, describes the behavior of an eccentrically stiffened beam

element with respect to the plane of reference. These
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relationships, together with the previously derived stiffness re-

lations for the in-plane and out-of-plane behavior of the plate

elements, are' the basic components of the presented analysis of

stiffened plate structures.

3.3.5 Evaluation of the St. Venant Torsional Constant KT

The torsional stiffness matrix derived in the previous

section can be evaluated once the St. Venant torsional constant KT

of the stiffener section is known. The estimation of KT may pre­

sent difficulties depending on the cross section of the stiffener.

As shown in Ref. 45, for example, St. Venant torsion is governed

by the partial differential equation:

2

0
2

*2 U
.,

v ~ = + = - 2G Q1
oy 2

dZ
2

where: ~ = ~ (y,z) := Stress function

T

K1 = Rate of twist

(3 .35)

This is Poisson's equation, which is encountered frequently in

mathematical physics. Its solution can be obtained by different

techniques,and for simple shapes no problems arise. A solution to

the elastic torsion problem can also be obtained experimentally by

means of the membrane analogy suggested by Prandtl, which is des-

formulae have been proposed for irregular shapes. Using membrane

cribed in Ref. 42 As given in Ref. 30, a number of approximate
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analogy, the St. Venant torsional constant K
T

for a thin-walled

open section, which is composed of n rectangularly shaped elements,

can be evaluated as:

where:

n
~

i=l

b. = Length of element i
1

t. = Width of element i
1

b. t. 3
1 1

(3 .36)

However, this formula is accurate only if the elements are small.

Solid cross-sections with reentrant corners are best broken down

into parts, and the St. Venant torsional constant KT for such a

section can be approximately evaluated as follows:

where:

n
2:

i=l

A. = Area of element i
1

A~
1

401 .pl
(3 .37)

I . = Polar moment of inertia of element ipl

These formulae can be used to obtain an estimate on the torsional

constant KT; however, in some cases, significant errors might be

introduced when using these approximations, thus necessitating a

more accurate analysis. A means of solving the governing partial

differential equation is to use the finite-difference method since

its application is relatively simpleG

An alternate way of solving this differential equation

was found in the process of this investigatiollG The method is based
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on the fact that the differential equation of torsion and that of

the corresponding transversely loaded plate problem are formally

identical,and thus, a solution can be accomplished by solving the

corresponding plate problem using the finite element method. This

technique is described in detail in Appendix V. Due to the versa-

tility of the finite element approach, the St. Venant torsional

constant KT for complex shaped solid cross sections can be computed

easily using the general plate program described in Chapter 2.

3.3.6 Assembly of the System Stiffness Matrix

and Solution of the Field Eguations

The assembly of the component stiffness matrices, as

derived in the previous sections, to the system stiffness matrix

is described in this section. The stiffness matrices of the indi-

vidual elements can be assembled to form a single stiffness matrix,

called system stiffness matrix of the entire structure. This pro-

cedure is explained in detail in Section 2.3.1.

For the present analysis, the in-plane displacements u

in x-direction and v in y-direction, the deflection w,and the two

slopes of the deflected surface are entered as unknowns at each

nodal point. The vector of nodal displacements at node i is intro-

duced as follows:

In a first step, the torsional stiffness matrix of the stiffener

v w e e >x y
(3 .38)

element, as given by Eq. 3.34, is combined with the stiffness for
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bending, shear and axial force, given by Eq. 3.20, to form one

single stiffness relation for the stiffener element:

(3 . 39 a)

Explicite1y, Eq. 3.39 a can be written as:

2 a .a al
N. A L 0 0 0 8 L -A L 0 a 0 -8 L j u.

1 S S S S I 1I

!
v. a 0 a 0 a 0 a 0 0 v.

1 l

z. 121 a -61 L 0 0 -121 0 -61 L w.
1 S S S S 1

2 2
T. yL a a 0 0 -YL 0 8

xi1

2 2 2
M. E 41 L -8 L 0 61 L 0 21 L e

yi1 s S s s
=--.2.

3 2 2

Nk
L A L 0 a 0 S L

~s s

V
k

0 a 0 0 v
k

Zk 121 0 61 L w
ks s

2
T
k

Symmetric YL 0 Sxk

2 le yk,~ 41 L
s

(3 .39 b)

Where,in order to have a compatible listing of deformation compo-

nents for the entire structure, the nodal force and nodal displace-
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where y is defined as:

y = (3.42)

In a similar way, the stiffness relations governing the in-plane

and out-of-plane behavior of the plate elements, as derived in the

Appendices III and IV, can be cast into one single relationship:

(3.4-3)

where the element displacement vector is defined as:

(3 .4-4)

and {F }, the element force vector, is defined consistent with thep

element displacement vector. The stiffness matrix [K ] governing
p

the in-plane and out-of-plane behavior of a plate element is of

size 20 x 20, and is best assembled in a digital computer.

The stiffness coefficients for each adjoining element

can simply be added for the different elements framing into a com-

mon node. In fact, this operation establishes equilibrium of

forces at a node in the direction of each of the five introduced

nodal displacement components. Each row of the assembled stiff-

ness matrix represents an equilibrium equation found by enforcing

equilibrium of nodal forces and the generalized loads at a given

node, for one of the five degrees of freedom. Once this system

stiffness matrix is assembled, the final stiffness relations for
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the entire stiffened plate structure can again be cast into one

single matrix equation of the form:

where:

[ F} = -[ KJ [ 0 )

[ r} = Systems vector of generalized loads

[K] = Overall or systems stiffness matrix

(0) = Systems displacement vector

(3 .45)

From this point on, one can proceed as in the usual fi­

nite element displacement approach, described in Section 2.3.1.

It should be noted that only displacement type boundary conditions

can be satisfied exactly because only displacement components are

entered as unknowns in the nodal displacement vector. Upon enforce­

ment of the known displacements as described in Section 2.4.3, the

system of simultaneous equations, represented by Eq. 3.45, can be

solved. Large systems of simultaneous equations require special

solution techniques in order to minimize computer costs. The

Choleski decomposition technique, as described in Section 2.4.5,

was used, and proved to be very efficient.

Once the unknown systems displacement vector is deter­

mined, all ,unknown field quantities can be found by substituting

appropriate displacement components back into the relations derived

either in the appendices or the main text. In addition, at each

nodal point, the forces acting on beam elements and the stress re­

sultants associated with the in-plane and out-of-plane behavior of
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the plate elements are determined. The fact that the forces act­

ing on beam and plate elements can be separated in the proposed

method of analysis is of significant importance in the design of a

stiffened plate structure.

In order to implement the above described approach, a

general computer program was developed for the analysis of arbi­

trarily shaped stiffened plates. Any shape, as long as it fits

into a rectilinear mesh, can be treated and transverse stiffeners

can be included. Orthotropy of the plate can be considered and

multiple load vectors can be processed simultaneously.

3.4 Application of the Method to the Analysis of Highway Bridges

3.4.1 Description of the Test Structure

The need for a more rational analysis of beam-slap type

bridges is great, especially in regard to a more reliable analysis

of the stresses occurring in the bridge deck, the effect of dia­

phragms on lateral distribution of load and on slab stresses, and

the effect of the orthotropic behavior of the bridge deck.

It was decided to verify the proposed finite element ap­

proach with the aid of field test results of an I-beam girder

bridge field tested in 1969 by a research team at Fri tz Engi­

neering Laboratory, Lehigh University. Chen and VanHorn (Ref. 12)

describe in detail the field testing of this existing beam-slab

type highway bridge, which is constructed with five prestressed

concrete I-beams supporting a cast-in-place concrete slab. A
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description of the behavior of the slab of the same bridge struc­

ture is given in Ref. 52. The testing of this bridge was part of

an overall investigation, initiated in '1968, to develop informa­

tion on several aspects of the structural behavior of I-beam

bridges. Prior to this investigation, the problem of load distri­

bution in spread box beam bridges was studied extensively by the

field testing of several bridges of the box-beam type (Ref. 49)

and by means of a theoretical analysis (Ref. 36). From all of

these investigations it was concluded that the present AASHO Stand­

ard Specifications for Highway Bridges (Ref. 4) do not give an

accurate prediction for the lateral distribution of load in box­

beam and I-beam bridges. Furthermore, the specifications do not

account for many variables which have significant effects on load

distribution.

The structure analyzed in this investigation is a simply

supported,right I-beam bridge with a span length of 68 feet 6 inches

center-to-center of bearings. The cross section of the test bridge,

as shown in Fig. 18, consists of five identical prestressed I-beams,

of AASHO Type III cross section, covered with a cast-in-place re­

inforced concrete d~ck. The deck provides a roadway width of 32

feet and the specified minimum thickness of the slab is 7-1/2

inches. However, measurements indicated that the actual slab

thickness ranges from 6.1 to 7.3 inches at the section of maximum

moment, which is located 3.55 feet off midspan. Diaphragms between

the beams are located at the ends of the span above the end supports
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and at midspan. The dimensions of the midspan diaphragm, as well

as those of the beam cross section, are shown in Fig. 19. The

test vehicle used for testing was a tractor and semi-trailer unit,

approximating the AASHO HS 20-44 design loading (Ref. ~. A

photo of the test vehicle, along with the wheel spacings and the

actual axle loading, is shown in Fig. 20. Four loading lanes were

located on the roadway, as shown in Fig. 21, such that the center-

line of the truck would coincide with the center-line of the gird-

ers or with a line located midway between girders.

3.4.2 Study of Variables Governing Load Distribution

Although the actual cross section of the bridge could be

approximated more closely in the present analysis, it was, for the

sake of a simpler input, approximated as shown in Fig. 21. The slab

thickness was assumed to be 7.5 inches throughout the width of the

deck. First, the curb and parapet sections, as well as the midspan

diaphragm, were neglected. Their inclusion will be discussed in sub-

sequent sections. The entire bridge was considered to be made of an

isotropic material~ Poisson's ratio was taken as 0.15, and a modulus

of elasticity of E =5000 ksi was assumed. A ratio of torsional-to­

bending stiffness of the 'beam elements Y*=GKT/E I =0.035 was taken,s s

as found from an analysis as discussed in Section 3.3.5. The actual

truck loading was simulated byappropriate concentrated forces instead

of the distributed wheel loads. The structure was analyzed for a

truck centered, inturn, in each of the lanes as shown in Fig. 21.
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The general finite element program yields the entire displacement

field at all specified nodal points, as well as all internal stress

resultants acting on the beam and plate elements. The forces asso­

ciated with in-plane and out-of-plane behavior are printed sepa­

rately for all plate elements. Due to space limitations, only the

results associated with the lateral distribution of load will be

presented. All following results are for a discretization of the

structure shown in Fig. 22. A mesh with N subdivisions in the

transverse direction and M subdivisions in the longitudinal direc­

tion is referred to as Mesh N * M in the remainder. During the

actual testing of this structure, a section near midspan, shown as

Section M in Fig. 22, was gaged. This section corresponds to the

section of maximum moment for the structure idealized as a simple

beam,and subjected to the given group of loads.

The results obtained from tests, as reported in detail

in Ref. 12, were derived based upon an experimentally measured

strain distribution in the beams. This distribution of strain is

due to the combined action of all stress resultants acting on a

beam element. It is not possible to separate these forces in an

experimental investigation. For the sake of simplicity, it was

assumed that only beam bending occurs. The proposed finite ele­

ment analysis determines all stress resultants acting on the beam

and plate elements separately. In order to compare the results

obtained from the analysis with the test results, equivalent beam

bending moments causing the same distribution of strain as would
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result under the combined action of axial force and beam bending

moment must be obtained from the analysis. This procedure is based

on the concept of equating the first moments of area of the com­

pressive and tensile areas of each composite beam (Ref. 12). Fi­

nally, distribution coefficients (or moment percentages)were com­

puted. These are defined as the moment carried by a particular

beam divided by the sum of moments carried by all beams.

Fig. 23 shows distribution coefficients obtained from

the analysis and the field test results for a truck moving in lane

1. Similarly, Figs. 24 and 25 show distribution coefficients for a

truck moving in lanes 3 and 4, respectively. Influence lines for

beam bending moments could be constructed as shown in Figs. 26 and

27. Such plots could be used to advantage by the designer to

determine the maximum bending moment occurring at the section of

maximum moment under the action of multiple trucks crossing the

bridge simultaneously. It should be noted that theoretical values

are obtained for a bridge without diaphragms at midspan, whereas

the actual field test results include their effect. The inclusion

of the diaphragms brings theoretical results closer to field re­

sults. In addition, analytical results are obtained for a bridge

with a theoretical slab thickness of 7.5 inches, and subject to the

assumptions listed at the beginning of this section.

3.4.2.1 Effect of Span Length

Fig. 28 shows the effect of the span length on the lateral
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distribution of load for the I-beam bridge investigated. Figs. 29

and 30 show influence lines for the outermost and center beam

bending moment, respectively, pointing out the influence of the

span length on the beam bending moment. A study of these figures

reveals a significant influence of the span length on the lateral

distribution of load. Plotting the distribution coefficient for

the center beam bending moment against the span length, as done in

Fig. 31, reveals clearly this dependency. An almost linear rela­

tionship is obtained if the moment percentages of the center beam

are plotted against the reciprocal of the span length, as done in

Fig. 32. Hence, it can be concluded that the load distribution is

likely to be inversely proportional to the span length, a factor

not accounted for in the present AASHO Standard Specifications for

highway bridges. A similar conclusion was reached in the investi­

gation on bridges of the box-beam type (Ref. 36).

3.4.2.2 Effect of Deck Thickness

The effect of the thickness of the slab is shown in Fig.

33. It is seen from this graph that the thickness of the deck

significantly affects the lateral load distribution for an I-beam

bridge. This is in contrast to results found from the analysis of

a box-beam bridge (Ref. 36), where it was concluded that the load

distribution is not very sensitive to a variation in slab thick­

ness. The present investigation shows that a thicker slab distri­

butes the load more uniformly to the girders. Again, this effect

is not accounted for in the present specifications.
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3.4.2.3 Effect of Beam Spacing

Another important factor influencing the lateral distri-

bution of load is the spacing of the girders, as shown in Fig. 34.

As can be seen from this figure, a closer spacing distributes the

load more evenly. This effect is partly accounted for in the pre-

sent AASHO Standard Specifications for Highway Bridges (Ref. 4)

in which the load distribution factors are given in the form of

spacing divided by a constant number. Actually, the optimum spac-

ing should be determined for a given roadway width of the bridge.

Such an investigation could be easily made using the present finite

element program.

3.4.2.4 Effect of Beam Size

The effect of the size of the beam cross section on

lateral distribution of load is illustrated in Fig. 35. Four

standard precast beams of a size suggested by AASHO (Ref. 4) have.

been included in this investigation. This effect is significant

and smaller beams are seen to distribute the load more evenly to

the girders ..

3.4.2.5 Effect of Torsional Stiffness of Beams

The effect of the torsional resistance of the beams on

the lateral -distribution of load is shown in Fig. 36. The moment

percentages are plotted in this figure for torsionally weak beams

with GKT/E I = 0 as well as for a ratio of 0.120. As expected,
s s

it is recognized that this ratio has some effect on the
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lateral distribution of loads,and it underlines the need for an

accurate analysis of K
T

, as shown in Section 3.3.5 as well as for

a'consideration of the torsional resistance of the beams in future

m
specifications.

3.4.2.6 Effect of Eccentricity of Beams

This eccentricity is defined here as distance from the

centroid of the beam element to the plane of reference, as indi-

cated in Fig 37. For a theoretical slab thickness of 7.5 inches,

this distance becomes 27.98 inches using AASHO Type III beams.

The figure depicts the structural behavior of an I-beam bridge for

a variation of this distance of t 0.5 inches, caused, for example,

by a misfit during the construction of the bridge. It is seen

that the load distribution i~ not significantly affected by such a
,/

deviation.

3.4.2.7 Effect of Poisson's Ratio

Poisson's ratio varies widely, depending upon the age of

concrete, type of aggregate,and other factors. To observe the

effect of this ratio, a high and low limiting values of v = 0.25

and v = 0.05 were chosen for this comparison,and the effect of

these two values of v on the lateral distribution of load is shown

in Fig. 38. It can be concluded that the distribution of load is

nearly unaffected by this ratio. However, the slab bending moments

and the in-plane forces are considerably dependent on v.
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3.4.2.8 Effect of Moduli of Elasticity of Beams and Slab

An accurate determination of the moduli of elasticity of

the beam and slab material used in an actual bridge is not possible.

Hence, some degree of engineering judgment must be used in the as­

sumption of appropriate values for these material properties. For

the lateral distribution of load, only the ratio of the moduli of

elasticity of the beam and slab materials is of importance, and

hence, the effect of this ratio was studied in this investigationG

Usually, the modulus of elasticity of the precast prestressed con­

crete beams is higher than that of the cast-in-place reinforced

concrete slab. The response of the structure was analyzed for

different ratios of moduli of elasticity and the result of this

investigation is plotted in Figa 390 It is seen from this figure

that the effect of this paratmeter on the lateral distribution of

load is not very significant~ However, the shifting of load to

the center beam for larger values of the modulus of elasticity of

the beam should be noted.

3.4.2.9 Effect of Orthotropy of Bridge Deck

Orthotropy is caused by unequal amounts of reinforcing

steel for the transverse and longitudinal reinforcement of the

bridge slab, or by cracking of the slab, for example. The effect

that such cracking might have on the lateral distribution of load

is of interest. For the sake of simplicity, it was assumed in

this investigation that the entire slab width was cracked uni­

formly, parallel to the girders, along the total length of the

~96-



bridge. The associated decrease in stiffness is accounted for in

the ratio D /D , of transverse to longitudinal stiffness of the
y x

slab. Figure 40 illustrates that a cracked slab causing a loss in

transverse stiffness shifts slightly more load to the center girder,

and at the same time, decreases the load in both exterior girders.

Further results of this investigation are compiled in Table IS.

It should be noted that the crack pattern described above leads to

an orthotropic behavior of the slab as described by Timoshenko

(Ref. 46). The stress matrix for this particular case becomes:

( D
11

D
12

0

\
~

[D] =
1

D21
D

22
0

I, 0 0 D33 ,J

where the terms in the matrix should be evaluated according to

Huber (Ref. 46) as follows:

E I
c ex

2
I-v

E I
D

22
c cy

= 2
I-v

\I {bll
{

D12
;;;::; D21 = D

22
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in which: E = Modulus of elasticity of concrete deck
c

I = Transformed moment of inertia, taking reinforcementc

into account

~ = Poisson's ratio

A generally anisotropic material behavior would result if the

cracks were not to open parallel to the global x-axis. However,

such cracking could also be investigated by first finding the

stiffness of a cracked panel with respect to a local coordinate

syste~ with x-axis in the direction of the cracks, and then

transforming this stiffness to the global coordinate system.

3.4.2.10 Effect of Type of Loading

The effect of different types of loading encountered in

bridge design on the lateral distribution of load is shown in Fig.

41. Two loading cases must be considered according to the AASHO

specifications: (1) uniformly distributed lane load, and (2) the

truck load. The analysis of the structure yields almost identical

distribution percentages for these two loading cases a However, a

significantly different distribution of load is obtained for a

single concentrated load.

3.4.2.11 Two-Span Continuous Bridge

This example is chosen to demonstrate the versatility of

the proposed finite element approach and the effect of different

boundary conditions on the lateral distribution of loads. In
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Fig. 42, a comparison of load distribution for a single span and a

two-span continuous bridge is made. Two trucks are located in

such a way on the bridge as to obtain symmetry of loading with re­

spect to the center support. It is interesting to observe that

the load distribution at the center support and at Section M, the

section of maximum moment for the corresponding single span bridge,

is not very different. However, the pronounced difference in load

distribution between a single span and a two-span continuous bridge

should be observed in the design of such bridges.

3.4.3 Inclusion of Diaphragms

One of the features of the method is the inclusion of

stiffeners running in transverse direction, often called diaphragms.

The general computer program developed for this investigation is

capable of including any pattern of transverse stiffeners, as long

as they are attached along plate element interfaces. As mentioned

above, the test structure investigated so far has one midspan dia­

phragm only, the cross section of which is shown in Fig. 19. The

results of the analysis performed for a structure including this

diaphragm are shown in Figs. 23, 24 and 25. It is seen that for

I-beam bridges the effect of such a midspan diaphragm on the lat­

eral distribution of load is significant, and hence,due considera­

tion should be given in the design.

3.4.4 Inclusion of Curb and Parapet

The results presented so far are for an idealized bridge
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cross section, as shown in Fig. 21, neglecting curb and parapet.

Basically, curbs and parapets are not intended as load-carrying mem­

bers in a bridge. However, field tests (Ref. 49) showed a partial ef­

fectiveness of the curb and parapet section acting compositely with

the exterior beam. In a field test, the effect of the diaphragm can

not be separated from the behavior of the exterior beam. The results

of the analysis on the effectiveness of curb and parapet are shown

in Figs. 23, 24, and 25. For this analysis, curb and parapet were

approximately accounted for by considering the curb and parapet to­

gether wi th the exterior beam as one uni t and treating this uni t as a

modified exterior beam. A more refined analysis could be performed

by taking the curb and parapet as separate beam elements and proceed­

ing as discussed in Section 3.3.6. From Figs. 23 through 27 it can

be concluded that the effect of curbs and parapets on the lateral

distribution of load in the I-beam type superstructure may not be

very significant, thus the designer is on the conservative side, at

least for the interior beams, if he chooses to disregard their effects.

3.5 Convergence and Accuracy of Solutions

The above study of variables governing the lateral dis­

tribution of load in I-beam bridges makes it clear that the devel­

oped finite element analysis is well suited for the analysis of

beam-slab type bridge structures. For this analysis, a minimum of

simplifying assumptions in the idealization of the structure are

required. A comparison of the values for displacements and stress
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resultants predicted by the finite element method with those of

the field tests proves the validity of the developed approach.

Although only results associated with the lateral distribution of

load are shown in this report, it should be pointed out that the

method allows for the determination of the entire stress and dis­

placement field at all predefined nodal points. A study of the be­

havior of the slab of the Bartonsville Bridge (Ref. 52), revealed

that there is no satisfactory method of slab analysis presently

available. In fact, currently used methods of slab analysis do

not account for many variables involved in the structural behavior

of the slab, and none is thoroughly verified by test results. On

the other hand, since the present analysis allows for a separation

of forces acting on beam and plate elements, it would be ideally

suited for a more extensive study of the behavior of the slab.

The response of a slab panel acted upon by a distributed wheel

load could be determined accurately by reanalyzing this panel as a

plate, enforcing the boundary conditions as found form an analysis

of the entire structure

The accuracy to be expected from the developed finite

element approach depends on the discretization of the structure.

In a finite element displacement approach making use of fully

compatible elements, the displacement field converges toward the

true displacement field if the mesh size is reduced. However, no

bounds can be given for the associated stress field. For the pre­

sent formulation, a non-conforming displacement function was chosen
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for the representation of the out-of-plane behavior of the plate.

A compatible formulation was chosen for the representation of the

in-plane behavior of the plate and the behavior of the beam ele­

ments. The convergence of the combined model cannot be proven via

the principle of minimum total potential energy. A numerical

evaluation of the structural response of the I-beam bridge was in­

vestigated for different mesh sizes in order to study the conver­

gence behavior of the proposed approach. All dimensions and mate­

rial properties were chosen as listed in Section 3.4.1,and the

effects of diaphragm, curb and parapet were not considered. The

structure was again loaded by a truck load,and three different

mesh sizes were processed. Some results of these investigations

are shown in Tables 16 through 19 for the section of maximum mo­

ment and the truc'k occu.pying lanes 1 through 4. The tables

also contain the deflection values measured during the actual field

testing of this bridge. In comparing the theoretical results with

.the experimental values, it should be kept in mind that the theore­

tical and the actual bridge have different dimensions. A compari­

son of different mesh sizes indicates convergence for a decreas­

ing mesh size. Furthermore, the validity of the solutions is sup­

ported by the actual field test results listed in the same tables.

3.6 Surrunary

A method of analysis based on the finite element dis­

placement approach capable of analyzing complex shaped stiffened
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plates has been presented. Stiffeners in longitudinal as well as

in transverse direction can be taken into account,and the stiff­

ness of the slab can be arbitrarily varied to account for thick­

ness changes in the slab. The orthotropic nature of the plate can

be accounted for, as well as a varying cross section of the beams.

A minimum of simplifying assumptions associated with the discreti­

zation of a structure is required in the analysis.

On the basis of the application of this method to the

analysis of an I-beam bridge, described in detail, a few conclu­

sions can be drawn: (1) The model approximates the true physical

behavior of a structure more closely than methods which use either

the effective width concept to find an equivalent grid structure,

or orthotropic plate theory, which is not able to predict the slab

stresses accurately. (2) The presented approach allows a separa­

tion of forces acting on beam and plate elements, thus giving the

designer more detailed information about the behavior of a struc­

ture. (3) The study of variables governing the lateral distribu­

tion of load demonstrates the versatility of the proposed approach.
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4. SUMMARY AND CONCLUSIONS

4.1 Summary

This report presents two different types of finite ele-

ment analyses of transversely loaded plates and eccentrically

stiffened plates: (1) a finite element analysis of elastic plates

based on a new, refined plate bending element, and (2) a finite

element analysis of elastic, eccentrically stiffened plates sub-

jected to transverse 1oadingo The formulations of these methods,

which are all based on linear geometry, are described in detail in

Chapters 2 and 30 For each type of analysis, a general computer

program has been developed and was applied in the analysis of

several sample structureSe

In Chapter 2, a refined plate bending element for use in

a finite element displacement analysis of arbitrarily shaped elas-

tic plates is described 0 Along with the three basic nodal dis-

placement parameters: w, e and e , three curvature terms are en-x y

tered as unknowns in the vector of generalized displacements at

each nodal point. A higher~order polynomial expression is assumed

for the displacement field within an element and based on this ex-

pression, the stiffness matrix of the refined element is derived

in a systematic wayu The method adopted in solving the system of

simultaneous equations makes efficient use of the bandedness of

the overall stiffness matrixd The accuracy and convergence of
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solutions obtained with this new element is demonstrated on a few

example problems analyzed in this chapter.

In Chapter 3, a method of analysis based on the finite

element displacement approach, and capable of analyzing complex

shaped eccentrically stiffened plates is presented. The discreti­

zation of such a structure into an assemblage of plate and beam

elements is first discussed. The stiffness matrices associated

with the in-plane and out-of-plane behavior of a plate element and

with the behavior of a beam element are derived and the assembly

of the overall stiffness matrix is described. Longitudinal as

well as transverse stiffeners can be taken into account in this

analysis. A variation of the thickness of the slab and its ortho­

tropic nature can be accounted for as well as variable beam cross

section. The power of the proposed method lies in its versatility

and in the fact that forces occurring in beam and plate elements

can be separated. The approach is applied to the analysis of

I-beam bridges in this dissertation and is verified with the aid

of field test results. An extensive study of most of the parame­

ters governing the behavior of I-beam bridges is included in this

chapter. In addition, a new approach capable of determing the St.

Venant torsion constant K
T

of arbitrarily shaped solid cross sec­

tions is presented in this chapter. This method is based on the

fact that the differential equations governing the torsional be­

havior of a solid cross section and that of the corresponding

transversely loaded plate problem of the same shape are formally
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identical. A solution can therefore be accomplished by solving

the analogous plate problem using the finite element method.

4.2 Conclusions

The methods of analysis presented in this report are of

a general nature and can be applied to a variety of plate struc­

tures. Each of the methods discussed has been implemented with

the aid of a general finite element programo

a. The following conclusions can be drawn based on the fi­

nite element analysis of elastic plates using the refined

plate element:

I. The refined plate bending element yields better ac­

curacy for displacements and internal moments than

most of the presently known rectangular plate bend­

ing elements for any given number of degrees of free­

dom. The actual displacement field is approximated

more closely by the chosen higher-order polynomial~

2. Internal moments need not be computed separately

since the associate curvature terms are introduced

as unknown parameters in the displacement vector.

3; For the examples studied, it was found that the en­

forcement of known curvature terms at boundary

points does not, in general, improve the displace­

ment field; it does, however, improve internal
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b.

moments in the vicinity of the boundary points where

the curvature terms were enforced.

Based on the elastic analysis of eccentrically stiffened

plates, presented in Chapter 3 and applied in this inves­

tigation to I-beam bridges, the following conclusions can

be drawn:

1. The developed approach provides a powerful tool for

the analysis of complex shaped longitudinally and

transversely stiffene@ plate structures.

2. The introduced model consisting of beam and plate

elements approximates the actual behavior of the

structure more closely than the methods used today

for the ,analysis of I-beam bridges. It allows the

s·eparation of the forces acting in the beam and

plate elements and the computation of more reliable

plate stresses.

3. Due to the versatility of the method a number of im­

portant variables governing the lateral distribution

of load can be studied. Diaphragms and the ortho­

tropic nature of the bridge deck can be included in

the analysis.

4. The most significant variables governing the lateral

distribution of load in an I-beam bridge are seen to
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be the span length of the bridge, the deck thickness,

the spacing of the beams and the type of beam used.

The type of loading applied to the bridge is also

important as well as the support conditions of the

bridge.

S. The following variables found to have less effect on

the lateral distribution of load are: Curb and para­

pet of the cross section, torsional stiffness of

beams, Poisson's ratio and the modular ratio between

beam and slab material.
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APPENDIX I

5.1 Derivation of Stiffness M~trix of the Refined

Plate Bending Element

This appendix presents the stiffness matrix for the re-

fined plate bending element, discussed in Chapter 2, under the

assumption of homogeneous orthotropic material behavior. The as-

sumed displacement field represented by Eq. 2.24 was discussed in

Section 2.4.1. The unknown displacement components at node i are

listed in the nodal displacement vector as:

Qf >
xy (AI. 1)

Element displacements are given as the listing of nodal displace-

ments:

(AI.2)

The consistent element force vector is given by:

(AI.3)

The vector of generalized coordinates was derived as:

(AI.4)

The connection matrix [C] consists of numbers only and is listed
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in this appendix, whereas the matrix [T1J is given in Section

2.4.2. The stress matrix relates generalized stresses to genera-

lized strains:

in which:

[M} = [n] (ff} (AI.S)

o

D
Y

o

o

D
xy...-

(AI.6)

and

[M}T = < M M M >x y xy

2 a2 w 2
[ .0}T = < _ 0 ~ _ - 2~ >

q :a oxayox oy

(AI.7)

(AI.8)

Generalized strains can be expressed in terms of nodal displace-

ments as shown in Section 2.4.1

(AI.9)

The magnitude of nodal forces, given by Eq. Al.3, can be found by

applying the prin~iple of virtual work, which leads to:

(Al.lO)

where the integration is to be taken over the area A of the rec-

tangular plate element. When Eg. Al.S and Eq. Al.9 are substituted
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, into Eg. AI.ID, and account is taken of the fact that the last

equation must be valid for any arbitrary virtual displacement

vector; i.e. also for the actual displacement pattern, the follow-

ing equation results:

(AI.II)

This is the element force-deformation relationship, and hence, the

stiffness matrix is given by:

[KeJ = SI [BJ T [DJ [BJ dxdy
24x24- A

(Al.12)

The introduction of non-dimensionalized coordinates, as explained

in Section 2.4.2, leads to a particularly simple integration and

is best done by considering one term of the stress matrix [D] at a

time. The result can be given in the form:

[KeJ24x24:C [C-
1

J T [ D) K1J + D1[K2J + D) K3J + Dx) K4J J [C-
1

]

(Al.13)

Carrying out the necessary operations yields the component matrices

as listed below. The final stiffness matrix is assembled in the

digital computer.
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0 0 0 0 o -2 0 0 2 6 0 0 -2 -6 -12 0 0 2 6 12 20 0 -6 -20

I 0 0 0 0 1 0 o -2 -2 0 0 3 4 3 0 0 -4 -6 -6 -4 0 5 9 5J-J
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i
I -
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0 Matrix [K1J
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APPENDIX II

5.2 Consistent Force Vector for Uniformly Distributed Load

On a Refined Plate Element

In this section, the kinematically consistent force

vector for uniformly distributed loads p(x,y), defined as acting

on a unit area of the refined plate element, is derived. The

equivalent concentrated forces in the directions of the element

displacements, as defined in Section 2.4.3, are represented by the

vector (FJ;. These concentrated nodal forces must be made stati­

cally equivalent to the distributed loads p(x,y) acting on an

element.

The simplest procedure to achieve this equivalence is

to impose an arbitrary virtual nodal displacement and to equate

the external and internal work done by the distributed loads and

the equivalent concentrated nodal forces. Let such a displacement

be {6 e} at the nodes. Using Eq. 2.26 b, and denoting virtual by a

tilde, the displacement within an element is given by:

w= < p> ['C¥}

or making use of Eq. 2. 33 b, by:

Equating the internal work to the external one leads to
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-II p(x,y) w(x,y) dxdy
A

(A2.3)

or:

"'e T r 1 T T J= [o} L- [C- ] II <p > p(x,y) dxdy

From this equation it follows that:

_ [ C-IJ T Sf T= < p > P ex, y) dxdy
A

(A2.4)

It should be noted that any distribution of load p(x,y) can be

treated using this approach. The integration is performed expli-

citely for a uniformly distributed load

q = p(x,y) = constant (A2 .5)

The result is listed below. The final load vector is

generated in the digital computer. In a similar way, the force

vector for any other distribution of load or for a concentrated

load acting within the element could be derived. In the same way,

force vectors corresponding to distributed edge loads can be

derived.
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Force vector for uniformly distributed load:

1 45

~ 0

T] 0

~2 15

~1l 0

T]2 15

S3 0

~ 211 0

sT}2 0

11
3

0

g4 9

T +1+1 ~ 3T]
[ -lJT 4qab

0
(r} e = - [(-lJ q a b JJ

S211 2
dlldg = - C --

P 45 5-1-1

sTl 3
0

11
4

9

sS 0

S4Tj 0

S311 2 0

~ 211 3 0

s11 4
0

Tj5 0

S5Tj a

S3Tj3 0

sTj5 0
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APPENDIX III

5.3 Derivation of Stiffness Matrix of the

ACM Plate Bending Element

As discussed in Section 3.3.2, the polynomial expression

representing the displacement field within an element is given by

Eq. 3.1. The displacement components introduced at node i of the

finite plate element are:

[O.}T:<We e>
1 X Y (A3.1)

Element displacements are given as the listing of the following

nodal displacements:

(6 e }T =< o~ 6: oT aT >1 J k t

Similarly, element forces are given by:

T
F~ F~ £T FT[Fe} = < >

1 J k t

(A3.2)

(A3.3)

The derivation of the stiffness matrix proceeds exactly as des-

cribed for the refined plate element, shown in Appendix I. First,

the vector of generalized coordinates is expressed as:

[a} (A3.4)



in which [T
l

] is a (12 x 12) transformation matrix relating the

modified element displacement vector to the actual displacement

vector, defined by Eg. A3.2. Matrix [C] is a connection matrix

consisting of numbers only; both matrices are listed in this appen-

dix. The relationship between generalized stresses and generalized

strains is given by:

tM} = [D] CaJ

where Dil D12 D13

[D] = D21
D

22
D

23

I__D31
D

32
D

33

wi th D.. = D •• for i ~ j
1J J1

[M}T = < M M M >
x y xy

(A3.5)

(A3.6)

(A3.8)

and
2

o W
--2-

ox
(A3.9)

All terms of the stress matrix [D] must be considered in this deri-

vation, since for the elastic-plastic analysis, the stiffness

matrix will be used in its complete form. Generalized strains can

be expressed in terms of element displacements by:

(A3.10)
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Minimization of the total potential energy leads to the stiffness

relation governing the out-of-plane behavior of the plate element:

[Fe} = [ If [BJ
T

[DJ [BJ dXdy J toe}
A

Hence, the stiffness matrix is given by:

[KeJ =II [BJ T [DJ [BJ dxdy
l2xl2 A

(A3.11)

(A3.12)

where the integration is to be taken over the area of the plate

element. Carrying out the ne~essary operations, the result can

again be given in a form suitable for the elastic-plastic analysis:

[KeJ = [C-lJT[Dll[KlJ + D12[K2J + D13[K3J + D22[KijJ
12x12

+ D23[KSJ + D33[K6J J [C-1J (A3.13)

The component matrices are listed subsequently and the final assem-

bly of the stiffness matrix is again performed wi th the aid of

the digital computer.
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APPENDIX IV

5.4 Derivation of In-Plane Stiffness Matrix

The displacement field representing in-plane behavior of

the plate element was discussed in Section 3.3.2 and is given by

Eg. 3.2 and Ego 3.3. The nodal displacement vector is defined as:

[6.}T::=< u. v >
1 1 i

and the corresponding element displacement vector as:

T
[8 e} = < u.. v.. u V .. ~ v

k
lig v 9 >

1 1 j J K "lI 'V

(A4.1)

(A4.2)

The vector of generalized coordinates is found by enforcing compa-

tibility of displacements at the four nodal points:

(A4.3)

The connection matrix [C] can be inverted with ease in the present

case. The vectors of strains and stresses are defined as:

€ au/ox -\x

[e}
J

= e = ov/oy
\y

ov/Ox j
YxyJ = ou/oy +

and {a}T = < a IT 'T >
X Y xy
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The relationship between stresses and strains is given by

[a} = [D] (e}

where for an isotropic material:

(A4.6)

1 \J 0

[D] E
\J 1 0 (A4.7)=--2

I-V I-va a
2

and for an anisotropic material, the stress matrix is of the form:

,/

!
D11 D12 D13

i
i

[D] = lD
21

D
22 D

23
(A4.8)

D
31 D

32
D

33

wi th D. ~ = D •. for i ~ j
1J J1

Strains can be expressed in terms of element displacements as:

(A4.9)

The force-deformation relationship governing the in-plane behavior

of the plate element is derived from a minimization of the total

potential energy:

(A4.10)
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Hence, the stiffness matrix is given by:

=II [B]T [D] [B] dxdy
A

CAlf .11)

The integration can be performed with ease, and the final result,

given for the case of anisotropic material, and hence, suitable for

the elastic-plastic analysis, is listed below.
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APPENDIX V

5.5 Evaluation of St. Venant Torsion Constant K
T

for an

Arbitrarily Shaped Solid Cross Section

Closed form solutions for the St. Venant torsion problem

exist only for a few geometrically simple cross sections. An appro-

ximate solution based on the finite element concept is presented in

this appendix. As shown in Ref. 40', the fundamental partial differ-

ential equation governing the behavior of a transversely loaded

plate, given by Eg. 2.14, can be split into the two partial differ-

ential equations of the second order:

M + M a .8

M
x y [0 wow]= = - a + a1 + \J ax ay

2 2
:3 __ [ a M o ~ ]and q = -\I M = +aax oy

(AS .1)

(AS.2)

when the plate rigidity is taken as unity. On the other hand, the

stress function *Cx,y) introduced often to solve the problem of

St. Venant torsion of a solid cross section, must satisfy the fol-

lowing differential equation:

2 2

U 0*2 + --2

oX oy

--132-
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where: V(X,y) = Stress function introduced
l'a = Rate of twist

G = Shear modulus

The determination of the stress distribution over the cross section

of a twisted bar consists in finding the function W(x,y) which

satisfies Eg. AS.3 and the given boundary conditions. Shear

stresses are expressed as:

T
XZ

T
yz

=9-1ay (AS.4)

(AS.5)

and the twisting mo~'ent is given as:

2 If
t

T = tpdxdy == K
T

G.0'
StoVe

A
(AS.6)

where: KT = St. Venant torsion constant

The integration is to be taken over the area of the cross section.

Recognizing that Eg. AS.2 is formally identical with Eq. A5.3, it

can be concluded that the problems of solving the first equation

for M or the second equation for ~ are analogous. Hence, instead

of solving the torsion problem for a given cross section, one can

solve the corresponding plate bending problem. Accordingly, a

plate which is of the same shape as the cross section to be analyzed

for torsion, is analyzed for a uniformly distributed transverse load

-133-



of unit intensity. Any conventional finite element program capable

of analyzing plate bending problems can be used to find the moment

field. The moment sum M defined by Eg. AS.l can then be computed

at each mesh point.

Pursuing this analogy, the St. Venant torsion moment is

found to be:

TSt.V. = 2 If Mdxdy
A

(AS.7)

from which the St. Venant torsion constant is derived as:

KT = 4- II Mdxdy = 4-V

A

(AS.8)

where V is the volume under the surface created by plotting the

moment sum values M at each mesh point. Having found the moment

field, the integral in Eg. A5.8 can be evaluated using any conven-

tional numerical integration procedure.

The shearing stresses in the twisted cross section cor-

respond to the shear forces in the analogous plate bending problem.

T
XZ

aM
= oy

2 2

__ 0 [o:+o:J =Q
oy oX oy y

(AS.9)

and can be evaluated once the displacement field is known.

T
yz

oM
= - ax -Qx
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A solid square cross section of unit width was analyzed

to verify the proposed method for determining the St. Venant torsion

constant K
T

. According to this analogy, a square plate with four

simple supports is to be analyzed for a uniformly distributed trans­

verse load of unit intensity. The described refined plate element

discussed in Chapter 2 was used to find the displacement field and

the associated moment field. Simpson's rule was used for the numer­

ical integration. Two meshes were processed and the following re­

sults were obtained:

4
Mesh KT (in. ) Error in (%)

~

4 x 4 0.1382 -1.74%

8 x 8 0.1398 -0.57%

Exact Value 0.1406 Ref. 48

Due to the great versatility of the finite element method, this

procedure can be applied to any arbitrary shape. Cross sections

built-up of regions having varying material properties can be

treated. This approach was taken in the evaluation of KT for the

AASHO Type III beam used in the investigation on lateral distribu­

tion of load, discussed in Chapter 3.
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6 . NOMENCLATURE

a.) Scalars

A = Cross-sectional area of stiffener
s

a = Half length of plate element

a. = Coefficients of polynomial expansion
1

b = Half width of plate element

b. = Coefficients of polynomial expansion
1

c = Length of correction vector

D = Plate stiffness

D ,D ,D ,D
1

= Coefficients of stress matrix for orthotropicx y xy

material

D••
1J

E

G

h

I
s

I w

= Coefficients of stress matrix for anisotropic

material

= Modulus of elasticity of plate

= Modulus of elasticity of stiffener

= Shear modulus

= Plate thickness

= Moment of inertia of the stiffener area with

respect to plane of reference

= Warping constant
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L

M M Mx' y' xy

Ms

p

q

ss

T

TSt.V.

u

u*

u

v

= St. Venant torsional constant

= Length of stiffener element; or span length

= Plate bending moments per unit width

= Bending moment in stiffener with respect to plane

of reference

= Axial force in stiffene~

= Distributed load per unit area of finite element

= Plate shearing forces per unit width

= Distributed load per unit area of plate

= First moment of the stiffener area with respect to

plane of reference

= Total twisting moment in stiffener

= St. Venant torsional mGment

= Warping torsional mQrnent

= In-plane displacement in x-direction of a point

lying outside the middle plane of the plate

- Complementary strain energy

= In-plane displacement in x-direction of a point

lying in the middle plane of the plate

= In-plane d:i:s,p'lacement in y-direction of a point

lying ou~side the middle plane of the plate
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v

w

z

a.
1

e ,ex y

e . .
1J

8 ,6x y

TI

n*

a ,a
x y

a
s

T
xy

= In-plane displacement in y-direction of a point

lying in the middle plane of the plate

= Lateral deflection in z-direction

= Shear force in stiffener in z-direction

= Coefficients of polynomial expansion

= Shearing strain

= Variation of functional

= Strain in x-direction and y-direction, respectively

= Components of strain tensor

= Non-dimensionalized coordinate

= Slope about x-axis and y-axis, respectively

= Positive scalar

= Poissonfs Ratio

= Non-dimensionalized coordinate

= Total potential energy functional

= Total complementary energy functional

= Normal stresses in x-direction and y-direction,

respectively

= Axial stress in stiffener

= Shearing stress
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.efx,.efy,.efxy = Curvatures of plate surface

Xi' ::: Rate of change of angle of twist

* = Stress function

\72 = Laplace operator

bo) Vectors and Matrices

[B] = Matrix relating element displacements to

generalized strains

[cJ

[n]

[ F}

[F .}
1

[K]

[K.]
1

[L]

= Matrix relating element displacements to

generalized coordinates

= Matrix relating modified element displacements to

generalized coordinates

= Stress matrix relating generalized strains to

generalized stresses

= Overall force vector of system

= Vector of generalized element forces

= Vector of generalized nodal forces

= Overall structural stiffness matrix

::: Element stiffness matrix

= Component stiffness matrix

= Lower triangular matrix
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[M }
s

<p>

[y}

[oJ

[e }
s

= Vector of plate bending moments

= Vector of generalized forces acting on stiffener

element

= Row vector listing polynomial terms

= Matrix relating generalized coordinates to

generalized strains

= Vector of external forces

= Transformation matrix relating element displace-

ments to modified element displacements

= Auxiliary vector used in Choleski decomposition

= Vector of generalized coordinates

= Overall displacement vector of system

= Vector of generalized element displacements

= Vector of generalized nodal displacements

= Vector of generalized strains for beam element

= Vector of curvatures of plate surface
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TABLE 1: CLAMPED SQUARE PLATE - PROBLEM PI

a.) Center Deflection Under Uniformly Distributed Unit Load

I
f-J
+'
N
I

Source Mesh 2 x 2 Mesh 4- x 4- Mesh 8 x 8 Mesh 16 x 16 Multi-
plier

New Element 0.001594 0.001325 0.001284 0.001266 4

.9".k...
ACM (Ref. 6) 0.001480 0.001403 0.001304 0.001275 D

Exact Value 0.00126

b.) Center Deflection Under Single Concentrated Load

Source Mesh 2 x 2. Mesh 4- x 4- Mesh- 8 x 8 Mesh 16 x 16 Multi-
plier

New Element 0.005912 0.005634 0.005611 0.005607
.2

PL

ACM (Ref. 6) 0.005919 0.006134 0.005803 0.005672 D

Exact Value 0.00560



I
f--J
+=
W
I

TABLE 2: SIMPLY SUPPORTED SQUARE PLATE - PROBLEM P2

a.) Center Deflection Under Uniformly Distributed Unit Load

Source Mesh 2 x 2 Mesh 4- x 4- Mesh 8 x 8 Mesh 16 x 16 Multi-
plier

New Element 0.004187 0.004076 0.004064 0.004063
gL

4

ACM (Ref. 6) 0.003446 0.003939 0.004033 0.004056 D

Exact Value 0.004062

b.) Center Deflection Under Single Concentrated Load

Source Mesh 2 x 2 Mesh 4- x 4- Mesh 8 x 8 Mesh 16 x 16 Multi-
plier

New Element 0.011265 0.011497 0.011572 0.011593
2

PL

ACM (Ref. 6) 0.013784- 0.012327 0.011829 0.011671 D

Exact Value 0.01160



l
f--J
-+=
-1=
I

TABLE 3: CENTER DEFLECTION - PROBLEMS P3 AND P4

Problem P3: Center Deflection Under Uniformly Distributed Unit Load

Source Mesh 2 x 2 Mesh 4 x 4- Mesh 8 x 8 Mesh 16 x 16 Multi-
plier

New Element 0.005208 0.005671 0.005769 0.005793 4:

sr1-
ACM (Ref. 6) 0.005208 0.005779 0.00584-3 0.005821 D

Exact Value 0.00581

Problem P4: Center Deflection Under Uniformly Distributed Unit Load

Source Mesh 2 x 2 Mesh 4- x 4- Mesh 8 x 8 Mesh 16 x 16 Multi-
plier

New Element 0.025770 0.02554-4- 0.025512 0.025507
4

~

ACM (Ref. 6) 0.021790 0.024296 0.025178 ~O. 025422 D

Ref. 82 0.0265



TABLE 4: DEFLECTION PROFILES -

UNIFORMLY LOADED PLATE

A.

Multiplier~
D

3
IlD S II ... .. x

2

y

I
f--l
+'
(J1

D

Mesh Point 1 Point 2 Point 3 Point 4 Point 5
r-I 4 x 4 0.001325 0.000805 o.P-t

E 8 x 8 0.001284 0.001145 0.000769 0.000283 o.OJ
r-I
,..Q 16 x 16 0.001266 0.001131 0.000759 0.000279 o.
0
~

Exact Value 0.001260 o.P-t

N 4- x 4 0.004076 00002948 o.P-t

E 8 x 8 0.004064 0.003778 0,,002939 0.001624 o.
OJ

r-I
..0 16 x 16 00004063 0.003776 0.002938 0.001623 o.
0
~ Exact Value 0.004062 0.003776 O.OO~2938 0.001623 o.P-t

(Y") 4- x 4 0.005671 0.004967 0.004228P-t

E 8 x 8 00005769 0.005564 0.005058 0.004539 0.004319
QJ

r-f
16 x 16 0.005793 0.005587 0.005081 0.004562 0.004343...0

0
~ Exact Value 0.00581P-I

.::t' 4- x 4- 0.025544- 0.023053 0.017791P-t

E 8 x 8 0.025512 0 .. 024853 0.023018 0.020428 0.017754
OJ

...-1
16 x 16 0 .. 025507 0.024848 0.023013 0.020424- 0.017750,.0

0
~ Ref. 82 0.0265 0.0170~



TABLE 5: DEFLECTION PROFILES -

SINGLE CONCENTRATED LOAD

a
M 1 · 1· PLU tlP ler n-

:3 5

2 4

y

x

B
f-J
+en
I

Mesh Point 1 Point 2 Point 3 Point 4 Point 5
r--l 4- x 4- 0.005634 0.002573 o.
~

E 8 x 8 0.005611 0.0044-17 0.002484- 0.000781 o.
OJ

r-I
0.004404- 0.002470roO 16 x 16 0.005607 0.000771 o.

0
~ Exact Value 0.00560 o.~

N 4 x 4- 0.0114-97 0.007144- o.
~

E 8 x 8 0.011572 0.010066 0.007141 0.003670 o•
Q)

r-l
16 x 16 0.011593 0.010068 0.007139 0.003669 o.,..Q

0
~ Exact Value 0.01160 0.010066 0.007139 0.003668 o.P-I

(Y") 4 x 4- 0.011341 0.008044 0.005671
~

E 8 x 8 0.011538 0.010259 0.008153 0.006427 0.005769
OJ

r--l
16 x 16 0.011585 0.010286 0.008176 0.006451 0.005793...0

0
~ Exact Value~

=:t 4 x 4 0.039055 0.032957 0.022964
P-t

E 8 x 8 0.039117 0.037131 0.032934 0.027859 0.022920
OJ

r-I
16 x 16 0.039159 0.037128 0.032925 0.027850 0.022911,..Q

0
~ Exact VallieP-l



TABLE 6: PLATE MOMENTS M -x

UNIFORMLY LOADED PLATE

2
Multiplier qL

Mx t
y

3 5

27

I
1-'
+=
-......,J

I

Mesh Point 1 Point 2 Point 3 Point 4 Point 5
r-I 4 x 4 0 .. 0215 0.0109 -0.0574P-t

E 8 x 8 0.0230 0.0194 0 .. 0104- -0 .. 0102 -0.0515
OJ

r-I
0 .. 0108,.0 16 x 16 0.0229 0.0202 -0.0102 -0.0515

0
~ Exact Value 0 .. 0231 -0.0513P-t

N 4- x 4- 0 .. 0454- 0 .. 0383 o.P4

E 8 x 8 0.0475 0 .. 0454- 0.0385 0.0248 o.
CIJ

r-I
16 x 16 0.0478 0.0457 0 .. 0388 0 .. 0248 o•..0

0
~ Exact Value 0.0479 0.0458 0.0390 0.0250 o.~

cYI 4- x 4- 0.0254- 0.0053 -0.0236Cl.-t

E 8 x 8 0 .. 0317 0 .. 0250 0.0079 -0.0109 -0.0194
0;

r-i
16 x 16 0.0328 0.0261 0.0089 -0.0101 -0 .. 0185,.Q

a
H Exact Value 0.0331 -0.0185P-I

,:j- 4- x 4- 0 .. 1069 0.0760 o.
~

E 8 x 8 0 .. 1101 0.1025 0.0803 0.0440 O.
OJ

r-1 16 x 16 0.1112 0.1037 0.0814- 0.0458 o.,.0
0
~ Ref. 82 0.109 o.P-3



TABLE 7: PLATE MOMENTS M
x

SINGLE CONCENTRATED LOAD

Multiplier P

Mxf

y

3 5

2 4
x

•f--I
-1=
00
I

Mesh Point 1 Point 2 Point 3 Point 4 Point 5
r-l 4 x 4- -0.0092 -0.1376P-i

E 8 x 8 0.0548 -0.0025 -0.0522 -0.1299Q)

r-l
,.Q 16 x 16 0.0680 -0.0010 -0.0525 -0.1265
0
~

Exact Value -0.1257P--t

N 4 x if 0.0460 0.P--t

E 8 x 8 0.1093 0.0568 0.0242 o.cu
r-l
,.Q 16 x 16 0.1226 0.0586 0,,0242 o.
0
~

Exact Value 0.1231 0.0585 0.0251 o.~

en 4 x 1+ -0.0274 -0.0784~

E 8 x 8 0.0516 -0.0117 -0.0562 -0.0721ClJ
r-J
roO 16 x 16 0.0663 -0.0085 -0.0538 -0.0702
0
~

Exact Value~

.:t 4 x 4- 0.0926 o.P-i

E 8 x 8 0 .. 1822 0.1094- 0.0468 o.
OJ

r-I
16 x 16 0.1974 0.1126 0.0500 o...0

a
~ Exact Value o.P-l



TABLE 8: PLATE MOMENTS M -
Y

UNIFORMLY LOADED PLATE

2
Multiplier qL

My_________ 5
-+--CIII

2 :3 4

J
f--I
+:'
l.D
D

Mesh Point 1 Point 2 Point 3 Point 4 Point 5
.-{

4 x 4 0.0215 0.0098 -0.0214P-t

E 8 x 8 0.0230 0.0202 0.0121 -0.0015 -0.0176a;
r-I
roO 16 x 16 0.0229 0.0203 0.0125 -0.0001 -0.0158
0
~

Exact Value 0.0231 -0.0154P--i

N '+ x 4- 0.0454- 0.0350 o.
~

E 8 x 8 0.0475 0.0444 0.0348 -0.0205 o.
ClJ
~

roO 16 x 16 0.0478 0.0447 0.0355 0.0203 o.
0
~

Exact Value 0.0479 0.0448 0.0356 0 .. 0204 o.~

(Y') 4 x 4- 0.0254 0.0411 0.0548(:4

E 8 x 8 0.0317 0 .. 0341 0.0406 0.0488 0.0527a;
M
..0 16 x 16 0.0328 0.0349 0.0410 0.0483 0.0517
0
~

Exact Value 0.0331 0.0512iJ...l

~ 4 x 4 0.1069 0.1119 0.1706P-t

E 8 x 8 0.1101 0.1126 0.1208 0.1307 0.1617
OJ

r-l
,.0 16 x 16 0.1112 0.1137 0.1214- 0.134-1 0.1570
0
~ Ref. 82 0.109 0.140P--i



TABLE 9: PLATE MOMENTS M -
Y

SINGLE CONCENTRATED LOAD

Multiplier P

M
I --L 5, ., . .. ,.
234

y

x

i
j--I
lfl
o
I

Mesh Point 1 Point 2 Point 3 Point 4 Point 5
r-I 4 x 4- 0.0489 -0.0532P-l

E 8 x 8 0.1232 0.0488 -0.0021 -0.0429OJ
r-1
,.0 16 x 16 0.1253 0.0478 -0.0016 -0.0379
0
~ Exact Value -0.0377P-i

N 4 x 4 0.1040 o.P--I

E 8 x 8 0.1764- 0.0999 0.0489 o.OJ
r--I

16 x 16 0.1784- 0.0990 0.0456 o.~
0
~

Exact Value 0.1776 0.0982 0.0456 o.P-i

("('] 1+ x 4- 0.094-2 0.0784P-l

E 8 x 8 0.1433 0.0930 0.0755 0.0721
OJ

r-1
16 x 16 0.1447 0.0917 0.0740 0.0702...0

0
~ Exact ValueP--l

d'" 4 x 4 0.2033 0.2272P-I ,.

E 8 x 8 0.2645 0.2122 0.1941 0.2142
OJ

r-1 16 x 16 0.3316 0.2292 0.1992 0.1962,.Q
0
~ Exact Value{:l...t



TABLE 10: PLATE MOMENTS Mxy

UNIFORMLY LOADED PLATE

.a
Multiplier qL

Mxy

< < < < < e <.5
4

3
2

" . .. x

I
f-I
V1
f-l
I

Me.sh Point 1 Point 2 Point 3 Point 4 Point 5
r-i

4- ·x 4-" o. 0.0105 O.P-i

E 8 x 8 o. 0.0036 0.0·082 0.0097 o.OJ
r-I
...0 16 x 16 o. 0.0027 0.0075 0.0076 00
0
~

Exact Valu!e o. o.P-i

N 4 x 4- o. 0.0133 0.0319P-i

E 8 x 8 o. 0.0037 0.0134- 0.0252 0.0288
OJ

r-I
,.Q 16 x 16 o. 0.0038 0.0134- 0.0252 0.0324
0
~

Exact Value o. 0.0037 0.0134- 0.0252 0.0324P-i

C'I 4- x 4- o. 0.0196 o.!=4

E 8 x 8 o. 0.0056 0.0176 0.0300 O.
ClJ

r-I
,.0 16 x 16 O. 0.0055 0.0174 0.0280 O.
0
~ Exact Value D. o.~

.::r 4- x 4- O. 0.0291P-i

E 8 x 8 o. 0.0074 0.0290 0.0642
Cl.J

r-I
16 x 16 0.0075..0 o. 0.0289 0.064-2

0
~ Exact Value o.P-i



J
t--'
U1
I'\J
I

TABLE 11: EFFECT OF BOUNDARY CONDITIONS ON CENTER DEFLECTION - PROBLEM PI

a.) Center Deflection Under Uniformly Distributed Load

Bondary Mesh 2 x 2 Mesh 4- x 4 Mesh 8 x 8 Mesh 16 x 16 Multi-
Conditions plier

Type I 0.001594 0.001325 0.001284- 0 .. 001266 4

~

Type II 0.001571 0.001322 0 .. 001284- 0.001266 D

Exact Value 0.001260

b.) Center Deflection Under Concentrated Load

Boundary Mesh 2 x 2 Mesh 4 x 4 ' Mesh 8 x 8 Mesh 16 x 16 Mu1ti-
Conditions plier

Type I 0.005912 0.005634- 0.005611 0 .. 005607 2
PL

D
Type II 0.005895 0.005627 0.005611 0.005607

Exact Value 0.00560
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TABLE 12: EFFECT OF BOUNDARY CONDITIONS ON CENTER DEFLECTION - PROBLEM P2

a.) Center Deflection Under Uniformly Distributed Load

Boundary Mesh 2 x 2 Mesh 4- x 4 Mesh 8 x 8 Mesh 16 x 16 Multi-
Conditions plier

Type I 0.004187 0.004076 0.004064- 0.004063
4

Type II 0.004066 0.004063 0.004062 0.004062 SI1-
D

Type III 0.004065 0.004063 0.004062 0.004062

Exact Value 0.004062

b.) Center Deflection Under Concentrated Load

Boundary Mesh 2 x 2 Mesh 4- x 4 Mesh 8 x 8 Mesh 16 x 16 Multi-
Conditions plier

Type I 0.011265 0.011497 0.011572 0.011593
;3

Type II 0.011184- 0.011478 0.011570 0.011593 PL
D

Type III 0.011180 0.011478 0.011570 0.011593

Exact Value 0.01160



TABLE 13: EFFECT OF BOUNDARY CONDITIONS

ON PLATE MOr1ENTS M - PROBLEM PI
x

a.) Uniformly Distributed Load: Mesh 16 x 16

Mxt

y

3 5

2 ~

B
(-I
U1
-i=
I

Boundary Point 1 Point 2 Point 3 Point 4 Point 5 Mu1ti-
Conditions plier

Type I 0.0229 0.0201 0.0108 -0.0102 -0.0509
qL

2

Type II 0.0229 0.0201 o.0108 -0.0102 -0.0515

Exact Value 0.0231 -0.0513

b.) Single Concentrated Load: Mesh 16 x 16

Boundary
Point 1 Point 2 Point 3 Point 4 Point S Multi-

Conditions plier

Type I 0 .. 0684 -0.0008 -0.0525 -0.1247
P

Type II 0.0684 -0.0008 -0.0525 -0.1265

Exact Value -0.1257



TABLE 14: EFFECT OF BOUNDARY CONDITIONS

ON PLATE MOMENTS M - PROBLEM P2x

a.) Uniformly Distributed Load: Mesh 16 x 16

2

1
J--I
111
Ln
I

Boundary
Point 1 Point 2 Point 3 Point 4 Point 5 Multi-

Conditions plier

Type I 0.0478 0.0457 0.0388 0.0248 -0.0010

Type II 0.0478 0.0457 0.0387 0.0248 -0.0002 qL
2

Type III 0.0478 0.0457 0.0388 0.0248 o.

Exact Value 0.0479 0.0458 0.0390 0.0250 o.

b.) Single Concentrated Load: Mesh 16 x 16

Boundary
Point 1 Point 2 Point 3 Point 4 Point 5 Multi-

Conditions plier

Type I 0.1230 0.0588 0.0244 -0.0025

Type II 0.1230 0.0588 0.0245 -0.0004 P

Type III 0.1226 0.0586 0.0242 o.
Exact Value 0.1231 0.0585 0.0251 o.
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TABLE 15: EFFECT OF ORTHOTROPY OF BRIDGE DECK ON

DEFLECTION AND STRESS RESULTANTS IN BEAMS

Mesh 10 x 8 - Truck in Lane 4

Bartonsville Bridge - Cross-Section M

Bending Moment Axial-Force
D Deflection at Midspan

Section M Section M--Y...
Dx

Beam A Beam B Beam C Beam A Beam B Beam C Beam A Beam B Beam C

1.0 0.03056 0.09168 0.13260 332.039 2679.252 4466.444 2.041. 64.172 107.902

0.9 0.02933 0.09191 0.13491 292.709 2680.437 4537.636 1.067 64.156 109.758

0.8 0.02800 0.09210 0.1374-9 251.609 2678.925 4616.972 0.066 64.062 111.819

Units in. K. in. K.
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TABLE 16: EFFECT OF MESH SIZE ON DEFLECTION

AND STRESS RESULTANTS IN BEAMS

Truck in Lane 4-

Bartonsville Bridge - Cross-Section M

Bending Moment Axial-Force
Deflec~ion at Midspan

Section M Section M
Mesh

Beam A Beam B Beam C Beam A Beam B Beam C Beam A Beam B Beam C

10 x 4 0.02920 0.09053 0.13221 310.519 2728.905 4459.719 1.574- 65.179 107.968

lO-x 8 0.03056 0.09168 0.13260 332.039 2679.252 4466.44-4 2.041 64.172 107.902

10 x 16 0.03089 0.09193 0.13268 337.776 2668.198 44-72.175 2.187 63.923 107.94-4-

Test 0.035 0.086 0.129

Units in. K. in. K.
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TABLE 17: EFFECT OF MESH SIZE ON DEFLECTION

AND STRESS RESULTANTS IN BEAMS

Truck in Lane 3

Bartonsville Bridge - Cross-Section M

Bending Moment Axial-Force
Deflection at Midspan

Section_M Section M
Mesh

Beam A Beam B Beam C Beam A Beam B Beam C Beam A Beam B Beam C

10 x 4 0.05784- 0.12160 0.11975 1236.754- 3965.505 3955.342 23.877 94.797 95.166

10 x 8 0.06036 0.12253 0.12041 1235.371 3961.652 3950.800 23.880 94.362 94.798

10 x 16 0.06107 0.12278 0.12054- 1233.704- 3959.843 394-8.402 23.853 94.250 91+.704-

Test 0.066 0.112 0.116

Units in. K. in. K.
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TABLE 18: EFFECT OF MESH SIZE ON DEFLECTION

AND STRESS RESULTANTS IN BEAMS

Truck in Lane 2

Bartonsville Bridge - Cross-Section M

Bending Moment Axial-Force
Deflection at Midspan

Section M Section M
Mesh

Beam A Beam B Beam C Beam A Beam B Beam C Beam A Beam B Beam C

10 x4 0.10492 0.13670 0.08981 2902.377 4-492.236 2696.199 65.286 107.433 64.308

10 x 8 0.10832 0.13778 0.09097 2871.726 4506.656 2648.289 64.680 107.335 63.297

10 x 16 0.10934- 0.13814 0.09122 2864.479 4515.217 2637.752 64.471 107.373 63.054-

Test 0.110 0.123 0.089

Units in. K. in. K.



TABLE 19: EFFECT OF MESH SIZE ON DEFLECTION

AND STRESS RESULTANTS IN BEAMS

Truck in Lane 1

Bartonsville Bridge - Cross-Section M

I
t-'
m
a
I

-.Bending Moment Axial Force
Deflection of Midspan

:Section M Section M
Mesh

Beam A 'Beam B Beam C Beam A Beam B Beam C Beam A Beam B Beam C

10 x4 0.16964 0.12713 0.05654 5339.568 4000.892 1386.085 125.198 93.948 30.090

10 x 8 0.17356 0.12915 0.05796 5311.649 4-018.698 1362.395 124-.362 93.806 29.625

10 x 16 0.17481 0.12978 0.05828 5299.971 4023.451 1354.966 124.002 93.786 29.502

Test 0·.156 0.113 0.065

Units in. K. in. K.



I
f-I
01
f-I
I

TABLE 20: AVAILABLE SOLUTIONS FOR LIMIT LOAD -

SIMPLY SUPPORTED SQUARE PLATE

Ref.
Yield Criterion

Method Author
Johansen Tresca Von Mises

Wolfensberger 65 0.945
"0 Ranaweera and Leckie 79 0.920 0.995c:
:J
0 Shull and Hu 63 0.826
~

~ Koopman and Lance 64 0.964
OJ
S Hodge and Belytscho 78 1.0360
~

Prager 80 1.000
CQ

~
Ranaweera and Leckie 79 0.961 1.044

Pi
roo :8
t:: .::r::1. Shull and Hu 63 1.000
0

N

r:o ~

~
Koopman and Lance 64 1.000 OJ

OJ
.r-f

P4 Hodge 56 1.106 ~

P-t ~

~ Prager 80 1.000
.r-f
.I-J
r--I
:J
~

Q) I Q)
Lopez and Ang 44 1.031+J CJ

'..-I tH C
~ tt-I OJ

Bhaumik and Hanley 66 1.041 0.922 1.000',-I 'I'""'! ~
~QClJ

w-I-J Armen et al 67 1.137
..J--l c
'rooi QJ
~ E Present Analysis

'rooi QJ
J=..L..1M Mesh: 8 x 8 0.982

J:.Cl
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TABLE 21: AVAILABLE SOLUTIONS FOR LIMIT LOAD -

CLAMPED SQUARE PLATE

Yield Criterion
Method Author Ref.

Johansen Tresca Von Mises

Wo1fensberger 65 1.560

~"O Ranaweera and Leckie 79 1.553 1.710
OJ C
E: :J
o 0 Koopman and Lance 64 1.596
~~

Hodge and Belytscho 78 1.786
CQ

....:I

"Ranaweera and Leckie 79 1.682 1.844 P1
::E

~ "0' .::rOJ c
P-t::1 Koopman and Lance 64 1.712 N

~o
~~~

Hodge 56 2.052
OJ

'r-I
r-1
P4

-M
OJ I OJ -I-J

o{-J CJ Lopez and Ang 44 1.901 r--I
1M tH C :J
~ l:f..1 w ::E:

1M -r-i ~ Bhaumik and Hanley 66 1.746 1.560 1.740~~QJ

OJ~
Armen et al. 67 2.590

..J-l l=:
1M ClJ

Present Analysis~ E
-r-i OJ Mesh: 8 x 8 2.220~r-I
~ Mesh: 12 x 12 1.865
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In - Plane Forces

Nxy .. X

Nxy + d Nxy

z

.. X

Mxy+d Mxy

Out - of - Plane Forces

Fig. 3 Sign Convention for Stress Resultants
Acting on a Plate Element
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~. ... .l- Fig. 5 BoJ.:ynomial Expaps"ion Represented by Pascal's Triangle
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=0

oMxy
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Conventional Plate Theory

y
I
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dw/oy =0
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y

w =0

Ow lox :: 0
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Finite Element Approach

Fig. 6 Typical Plate Boundary Conditions
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Matrix

Multiplication

Load
Vector

Fig. 7 Banded Stiffness Matrix and its
Choleski Decomposition
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Problem PI:

L/2 Square Isotropic Plate

with Four Fixed Supports
1_-------+--

L~2

(f-- - ---

I
I
I
I
I
It---- ----+-----

--- -- ---+----

Problem P2:

Square Isotropi c Plate

with Four Simple Supports

Problem P3:

Plate Supported by Rows

of Equidistant Columns

(Flat Plate)

Problem P4:

L~
2 Square Isotropic Plate

Supported at Corners

Fig. 8 Selected Example Structures for Testing
the Refined Plate Element

-171-



3

4

7

2

I 2
I

5

3 4 I

8

I

I

I

I
I

1

2

Mesh 2 x 2

I Element

4 Nodal Points

4

3

Mesh 4x4

6 4 Elements

9 Nodal Points

9

Mesh 8 x8

16 Elements

25 Nodal Points

Mesh 16 x16

64 Elements

81 Nodal Points

Fig. 9 Discretization of a Plate Quadrant
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PROBLEM PI: Concentrated Load ---- Refined Element

400 500300

(Ref. I· )

(Ref. 33)

(Ref. 39)
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(Ref 21 )
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Percentage Error in Central Deflection versus Number of Degrees
of Freedom - Problem Pl, Concentrated Load
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PROBLEM P2: Concentrated Load Refined Element
20 --- ACM (Ref. I )z
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Fig. 12 Percentage Error in Central Deflection versus Number of Degrees
of Freedom - Problem P2, Concentrated Load
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Fig. 13 Percentage Error in Central Deflection versus Number of Degrees
of Freedom - Problem P2, Uniformly Distributed Load



PROBLEM PI: Uniformly Distributed Load
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PROBLEM P2: Uniformly Distributed Load
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DESIGN DIMENSIONS

Profile Grade Line
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