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ABSTRACT

A literature survey was made to accomplish the first phase

of the research project for development of improved drainage inlets.

Hydrologic, hydraulic, and numerical studies were searched, and the

important' principles are d~scussed. A more detailed evaluation of

the studies of primary significance is also made. References are

presented in a classified form. Altogether, 76 references are cited.
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1 . INTRODUCTION

Runoff from rainfall must be removed from highways. This is

done by placing drainage inlets at intervals at the roadside. The most

efficient positioning of the inlets is determined particularly by the

drainage:capacity of the inlet and by approach conditions. An ef­

ficient design should avoid water overflowing the inlet, because suf­

ficient repetitions of overflowage could lead to a possible flooding

of the highway. Hydraulic conditions of the flow into inlets cannot

be detenmined analytically. An experimental study must be made using

either prototype or model inlets to determine the flow conditions for

each particular type of inlet.

The principal objectives of the research would be laid out

in the following manner:

Phase 1 - Literature SUrvey

A search of literature would be made for information per­

taining to highway drainage inlets in order to evaluate the results

available for applicability to this study,particularly to subsequent

phases of the research.

Phase 2 - Determination of Capacity of Inlets

In Phase 2 laboratory tests would·be conducted on prototype

or model inlets currently in use along highways in Pennsyl~ania to

detennine the max~al volumetric rate that each inlet will take be-·

fore ove~flo~age occurs.
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Phase 3 - Determination of Design Criteria for Inlets

Herein the program is to be extended toward the development

of design curves or nomographs based on the information obtained in

the preceding phase so as to enable design engineers to select the

combination of the inlet type and spacing that is to be used for the

particular class of highway under consideration.

Phase 4 - Development of Improved Inlets

Phase 4 is to consist in evaluating all the infonnation ob­

tained in the preceding phases, looking toward the possibility of

impr(lving inlet efficiency by changing the geometry of the inlet and

any other factors that are present near the inlet.

This report is the outcome of Phase 1, Literature Survey.

Hydrologic, Hydraulic, and Numerical Studies are the main parts. Several

investigations that cannot directly be included in this classification

were also presented under Miscellaneous Studies.

Hydrologic studies deal with several methods applied to deter-

mine the amount of the runoff that is to be removed by the inlets as

a result of the rainfall in the vicinity of the highway. Hydraulic

studies consist of the theoretical and experimental .investigations

conducted to detenmine the hydraulic behavior and the efficiency of

the inlets. Outstanding investigations to date were conducted for

several speci~ic types of inlets currently used in different parts

of the United ftates. An all-encompassing representation of the

hydraulic behavior of inlets is still lacking. The numerical studies

deal with the methods applied to establish mathematically the flow

pattern over the highway surface toward inlets. It can be considered
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as a special application of flood routing techniques. in open-channel

hydraulics.

A more detailed study was made of the four reports of

highest significance in regards to the present research, and is pre­

sented as an evaluation.

References cited are given in four groups in accordance with

the classification made previously.

Based on the information obtained heretofore, several con­

clusions can be drawn. However, it is clear that essential information

required for the design of a particular inlet can only be obtained by

conducting tests on the inlet.
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2. DISCUSSION

2.1 Hydrologic Studies

2.1.1 General Remarks

Hydr~logy is the science dealing with the properties, distri­

bution, and circulation of water on the surface of the land, in the

soil, and in the atmosphere. As such, it involves the study of preci-

pitation, evaporation and evapotranspiration, runoff, and ground water.

The two phases of the hydrologic cycle ,that are pertinent to the pre-

sent study are precipitation and runoff.

Precipitation falling upon the entire right of way of a high­

way produces runoff from the back slopes or embankments and from the

paved surface; thus overland flow is developed in relatively thin

sheets over the paved surface. Usually, this runoff is collected in

a side-channel gutter at the edge of the pavement, and it is defined

away from the roadway by means of inlets as shown in Figure 1. The

purpose of an inlet is to divert the storm water away from the highway

without damage to the highway. Obviously, the hydrologic study is of

extreme importance in the design of drainage inlets. However, the

numerous variables involved in such a study make ~t clear that the

hydrology involved is very complex. Be that as it may, most of those

variables must be considered in the development of a fonmulation that

is to have practical value.

The most significant variables to be considered in a hydro-

logic study fo.r a highway drainage inlet are the following:

(1) Rainfall frequency,

(2) Local rainfall intensity,
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(3) Size of the drainage ares,

(4) Longitudinal and cross slope of
the pavement and of the embankments,

(5) ·Roughness of the road surface and of the
embankments,

(6) Nature of the overland flow, whether
laminar or turbulent, steady or unsteady,
uniform or n~nunifovm, and

(7) Hydrologic properties of the soil in the
embankments, such as infiltration, capacity,
.erodibility, and granulometry.

Apparently then, a simplified relationship containing a few

of the foregoing variables and including all the effects involved is

very difficult, if not impossible, to obtain or to develop. Primarily,

what is required is to determine the action of the variables over a

wide range of conditions.

For the present investigation some of the approximate meth-

ods that are most commonly used for the computation of runoff will be

considered.

2.1.2 Dete~ination of Runoff from Rainfall

2.1.2.1 Rational Formula

The most widely used statement to detenmine the runoff from

a rainfall is the rational formula, the equation whereof is given as:

Q = C I A (1)

where Q is the peak runoff rate, cfs,

C is the rumoff coefficient,

I is the uni£orm rainfall intensity, in. pe~ hr. , and

A is the drainage area, acres.
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The runoff coefficient is dimensionless because the unit, cfs,

of the runoff rate, Q, is numerically equal to the unit of the product

of I and A, acre-inches per hour, within an error of 0.8%. Hence, the

formula is dimensionally consistent, and it is from this fact that the

equation is given its name of rational formula.

Although the formula is based on several questionable assump­

tions, it is quite popular owing to its simplicity. One of the main

assumptions, which cannot readily be justified, is that the peak run­

off rate is maintained for a tUne period equal in length to the time

of concentration of flow at the inlet. The time of concentration is

defined as the time that elapses for a raindrop falling at the most

remote distance from the inlet to reach the .inlet; it depends on the

characteristics of the surface. The reliability of the formula is

directly related to the accuracy with which the time of concentration

is known(1,13).

The unifonm rainfall intensity, I, is a crude approximation,

especially for a precipitation that has a short duration. The ap-

proximation increases in accuracy as the duration increases. It is

detenmined by a consideration of both the design frequency and the

duration of the rainfall, and the determination is a problem of con­

siderable difficulty. GUillou's(3) charts can be considered to be

significant contributions in this respect as aids in determining the

design rainfall intensity in terms of local rainfall frequency and

the duration time, see Figure 2.
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The most important element of the rational formula is the

runoff coefficient, C, which is a measure of the imperviousness of

the drainage area. Inaccuracies owing to several assumptions and

lack of consideration for other characteristics of the drainage area

are assigned to this coefficient. However, it is quite obvious that

the proper coefficient to use is entirely dependent upon the judge-

ment of th"e design engineer. Table 1 lists a range of runoff coef-

ficients that are in common use. The rational formula is restricted

to small drainage areas.

Table 1 Runoff Coefficients for Different
Surfaces and Different Slopes

Type of Drainage Area Runoff Coefficient, C

Sandy Soil: flat, 2%
Sandy Soil: average, 2-7%
Sandy Soil: steep, 7%
Heavy Soil: flat, 2%
Heavy Soil: average, 2-7%
Heavy Soil: steep, 7%
Slightly Pervious Soil: flat, 2%
Pervious Soil with Turf: flat, 2%
Impervious Soil or Clay: flat, 2%
Gravel or Macadam Pavement
Concrete Pavement
Asphalt Pavement

0.05-0.10
0.10-0.15
0.15-0.20
0.13-0.17
0.18-0.22
0.25-0.35
0.15-0.40
0.30-0.55
0.40-0.65
0.35-0.70
0.70-0.90
0.80-0.95

Izzard(6) has developed an empirical method for determining

the volumetric rate of flow, which is similar to that present in the

rational fonmu1a. However, the Izzard procedure differs from the

rational formula in that it deals with the temporal variation in the

runoff hydrograph which variation is not considered in this study ~e-

cause the maximal flow rate is of greatest importance.
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2.1.2.2 Hort~n's Formula

Horton(l) developed a formula for determining runoff in the

case of turbulent flow using an entirely different approach. The

rainfall intensity is assumed to be uniform, I, as in the rational

formula. The resulting runoff is given by:

(2)

where q is the runoff rate, cfs/acre or in. per hr.,

I is the uniform rainfall intensity, in. per hr.,

t is the elapsed tUne since the beginning of the

rainfall, min.,

L is the effective length of flow, ft.,

S is the average surface slope, percent, and

n is the retardance coefficient which depends on the

surface roughness.

Determining the retardance coefficient is very important, being some-

what similar to the runoff coefficient of the rational fonnula.

Table 2 is a list of different surfaces and their concomitant retar-

dance coefficients. The Horton formula has been widely used by the

U S Corps of Engineers particularly for the design of drainage in-

lets along airport runways.

Chow(l) comments that the Izzard method, which is applicable

only to laminar-flow conditions, seems to be much more reliable than

either the rational formula or the Horton fonnula. The latter fonnula

is widely used by the ~orps of Engineers. The exponent of· each quan-

tity in Equation (2) depends on the nature of the flow; the exponents
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'i

that are given are considered reliable for the conditions wherein 75%

of the flow is turbulent. Different exponents, however, give the

runoff hydrograph for laminar, for transitional transition, or for

fully-developed turbulent flow (1) .

Table 2 Retardance Coefficients for Different Surfaces(l)

Surface Characteristics

Smooth Pavement
Bare, Compacted Soil Free of Stone
Sparse, Gras,s Cover, Moderate Surface
Average Grass Cover
Dense Grass Cover

2.1.3 Suttmary

Retardance Coefficient, n

0.02
0.10
0.30
0.40
0.80

Among many fonmulas the rational fonnula is the one that

is most widely used. The success of its application is directly

. dependent upon the choice of the runoff coefficient, C, which depends

upon the characteristics of the drainage area. Another limitation of

the rational formula is that it is applicable to small drainage basins

only. However, it is quite suitable for use in highway design because

highways usually have small drainage areas associated with them. The

rational formula is applicable only for steady flow or equilibrium

conditions, which implies that the peak discharge has been reached.

For the unsteady phases of the runcff'hydrograph the method can be

applied successfully; however, this is beyond the province of the cur-

rent study.

The Horton formula is restricted in application to at least

75% turbulent flow, although it has been widely used for airports by

the U S Corps of Engineers.
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2.2 Hydraulic Studies

Investigations conducted to date about the hydraulic behavior

of inlets can be placed into two groups. The first group consists of

basic research on several types of inlets, whereas the second group

deals with properties of inlets, such as rating curves and efficiency.

In other words, investigations have been made for the purposes of basic

research and of design.

The study made at Johns Hopkins university(lO) appears to be

the most comprehensive one; in that study a number of different inlets

were investigated theoretically and experimentally. Attempts were

made to interpret the conditions in terms of the discharge ,fonnulas

,for devices such as orifices and weirs. Experiments were used in

developing semi-empirical relationships. Li(16) gives a good summary

of the hydraulic theory involved, whereas the detailed information for

both the entire series of tests and the theoretical considerations ap­

pears in the final report(lO).

Elaborate model investigations were made by the U S Army

Corps of Engineers(2l) to determine the hydraulic characteristics of

airfield drainage inlets. Extensive data were obtained pertaining

to flow characteristics, efficiency, and rating curves. The data are

considered to be applicable to highway drainage as well, due to the

essential similarity of the hydraulic conditions.

The I1boratory study conducted at the University of

Illinois(7) consisted primarily of an experimental detennination of

interception characteristics of four standard inlets used by the

Illinois Division 'of Highways. Theoretical analyses related to
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the efficiency of the inlets were also made in addition to the full scale

model tests. The laboratory investigations made by Larson et al. (11) and

by Cassidy(4) are of the same nature, consisting of model tests conducted

to determine the efficiency of certain inlets.

2.2.1 Theories of Inlets

2.2.1.'1 General Remarks

After the design discharge for a drainage inlet has been deter-

mined, as through an hydrology study, the hydraulic design of the inlet

can be made; the first step whereof is investigating the hydraulic

characteristics of the inlet.

Some inlets have grates, whereas others do not. The main

function of the grates is 'to prevent debris that is being carried by the

'stonm water from entering the inlet and clogging the drainage system.

An inlet can be. classified according to position as a side, a

drop, or a combined inlet. Side inlets are placed vertically along the

curbs and usually have grates. Drop inlets, on the other hand, are

placed in side channels of highways at- relatively flat angles. Combined

inlets are commonly used, the side and drop inlets being placed together.

2.2.1.2 Inlets without Grates

2.2.1.2.1 Drop Inlets

Assuming a uniform velocity distribution for the flow in a

side channel, considering a free!y falling body, would yield the fol­

lowing relationships (Figure 3)(16):
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rtL = v --.-£ (3)
0 o g

and

2

D (.1:.) (4)-=
D L

0 0

where L ~ the actual length of the inlet, ft.

L is the theoretical length of the inlet required to catch the
o

entire flow, ft.

V is the average velocity of flow in the side channel, ft. per
a

sec.

D is the actual depth of water flowing into the inlet, ft.

D is the depth of flow in the side channel, ft.
o

g is the gravitational acceleration, ft. per sec. 2

Hence, if both the velocity and the depth of flow in the side

channel are known, the ideal length of the inlet, L , can be computed.
o

If the inlet has a length, L, smaller than the ideal length, L , the
o

total amount of water flowing in the side channel cannot be caught by

the inlet. The depth of water caught can be computed from Equation (4).

The discharge into the inlet for a side channel flow of width, W, is

given by:

(5)

2.2.1.2.2 Side Inlets

The hydraulics o~ the flow into a side inlet is essentially

sLnilar to the flow into a drop inlet (Figure 4)(16). However, water
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motion is maintained by the component of the gravitational acceleration

in the direction of flow, or:

a = g cos e
o

where e is the angle betwe~n the bottom of the side channel and the
o

. vertical, as given in Figure 4.

The width of the flow in the side channel is $iven by:

(6)

where y is the depth in ft. of flow at the edge of the side c~annel,
a

given in Figure 4.

Thus the following relationship, analogous to Equation (3),

would hold:

L = V
o 0

2y tan e
o 0

g cos e
o

(7)

where L and V are defined the same as in the case of the drop inlet.
o 0

Because the discharge in the side channel is given by:

Q = V (1:) tan eo 0 2 Yo · Yo 0

= 1. V Y 2 tan e
200 0

(8)
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substituting V from Equation (7) into Equation (8) leads to:
o

Q ~inao 0

-L-o-y-o-v--g-y-o' = 8
(9)

For side channels used in common practice transverse grades are small,

thus e ~ 90° or sin e ~ 1. Hence, the following can be written:
o

Qo 1
-----=- =
Lo Yo vgyo'

0.35 = (10)

In the development of Equation (10) the effect of the friction has been

neglected. Therefore, K
T

= 0.35 is only a theoretical constant, and an

empirical coefficient should be applied to the equation. Experiments

conducted by Li(16) have shown that this coefficient is roughly a con-

stant, or:

=~ (11)

~ = 0.20, for tan 8
0

= 24 and 48, corresponding to a transverse slope

of the side channel of 1/2 and 1/4 inch per foot, respectively; and

= 0.23, for tan e = 12, corresponding to a transverse slope of 1
o

inch per foot.

If the actual length of the inlet L is less than the ideal

length, L , the following relationship holds, which is similar to
o

Equation (4):

b
Y tan eoo

2

= (~)
Lo

(12)
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where b is the width of flow captured by the inlet of length, L, with

a cross-sectional area, A, as shown in Equation (13):.

b2

A = Yo b - 2 tan e
o

Hence, the discharge, Q, captured by the inlet is:

(13)

b
2

)-Z-t-a-n-e-
o

V0 (14)

The ratio, of actual discharge to ideal discharge is then:

b2
Y b-

.!L=
o - 2 tan e

0

Qo y 2 tan e
0 0

2

(.!:..)
2 L 4

= 2 (L) . (15)
L

0 0

by using Equation (12). If the actual length of the inlet is more than

60% of the ideal length, that is, i ~ 0.6, then Equation (15) can be
o .

approximated by the following relationship:

L
L

o
(16)

*me errors introduced by this approximation are minimal. This implies

that as long as the carry-over discharge is within 40% of the total

*For example: for L/L = 0.6, QQ = 2· (0.6)2 - (0.6)4 = 0.59; so the
o 0

error is 1.7%. For L/L > 0.6, the error becomes smaller.o
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discharge, the capacity and the length of the inlet are proportional to

the ideal capacity and length. This result can be used in Equation (11)

to give:

Q

where ~ was determined by Li(16) and was previously discussed.

2.2.1.3 Inlets with Grates

2.2.1.3.1 Drop Inlets without Local Depression

(17)

Drop inlets usually have grates for the purposes of safety and

of retaining debris carried by the runoff. Longitudinal placement of

the bars is quite a common practice. However, the bars might also be

placed at an angle to the main axis of the highway. Li(16) investi-

gated two types of grate inlets with longitudinal bars namely, without

and with local depression.

The most general case of the grate inlets without local depres-

sion is the one for which both pavement and side channel carry water.

Such an inlet is placed on a slope that is steeper than that of the

highway. This type is commonly called an undepressed grate inlet or

straight gutter inlet.

A grate inlet might have a given length, L, (Figure 5) which

can be determined according to Equations (3) and (4). However, under

such condictions carry-over flow occurs. In fact, carry-over ,flow can

take place in three fODns: (1) ql' the flow past the inlet between tr

curb and the first slot which is practically negligible; (2) Q2' the
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flow outside the last slot; and (3) q , the flow past acr6ss the bars
3

of the grate itself. Therefore, the ideal length of the inlet should

be such that the entire carry-over flow consisting of ql' qa' and qa

are eliminated, as is now discussed.

q: It was point~d out previously that ql is negligible.
. 1

q2: Referring to Figure 5, one might carry out the follow-

· · f · d h 1 h L ' 1 · · ( 16 )1ng computat10ns to 10 t e necessary engt, to e ~m~nate q .
0' , 2

The flow outside the last slot is similar to the flow into a side inlet,

as can be observed by a comparison of Figure 4 and Figure 5. Therefore,

recalling Equation (11),

. (11)

and realizing that. the discharge, Qo' in the side channel is given by:

1.Q = - V Y 2 tan e
o 200 0

then Equation (11) reduces to:

(8)

(18)

Defining L', y', e', and V' for the flow outsi4e the last slot (Figure 5),
o

equivalently as L , Y , e , and V for the side inlet (Figure 4), from a
. 0 0 0 a

similarity consideration to Equation (18), the following can be written:



L~ Ci. =

Va VY'
tan e'
2 KE
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(19)

Realizing the convenience of working with V rather than V', Equation (19)
o

v'
can be multiplied by V-' to give:

o

L~ G'- = __V_'__ tan e'
VoV"Y' 2~Vo

(20)

Li (16) has carried out numerous experiments for a variety of conditions

with q having a width that ranged from 25% to 100% of the grate width.
2

V'

L'fj;V
o Jt = 1.2 tan a'
o y

(21)

Hence, Equation (21) can be used to determine the length L' which will
o

reduce qa to zero, if the depth, y', and the average velocity, Va'

are known (Figure 5).

The carry-over discharge, qa' for an inlet of length, L,

less than L' can be computed using Equations (11) and (16). Thus the
o

following can be written by analogy:

Q L
qr=LJ

o
(22)



-19

where L' is the length which drains all of the discharge, Q', flowing
o

outside of the last slot. Recalling Equation (11), the following re-

lationships can be developed:

Q' ,r::::;'
LT = I<E y' vgy '

o

From Equation (22) we have:

Q = Q' Ll'
o

so that the carry-over is given by:

qa = QI - Q

= Q' (1 - t.)
o

or,

Q'
qa =LT (L~ - L)

o

Thus,

(23)

(24)

The coefficient, ~, has been found to be 0.25 for the carry-over con­

ditions rather than 0.20 to 0.23 obtained previously for inlets without

grates. Hence, we have:



r--:i
q2 = 0.25 (L~ - L) y' yi gy'
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(25)

Therefore, once the length, L', for full inlet capacity and the depth,
o

y', of carry-over flow are known, q2 can be determined.

q3: For the part of flow carried over the bars of the grate

itself, the position of the grate bars becomes extremely significant.

Recalling Equation (3), it can be written:

(26)

However, the reduction-in the flow area due to the bars is not usually

negligible. Thus above Equation (26) should be written in a more

general way as:

(27)

where, Ltt is the required length of the inlet to eliminate q . m is
0' 3

always greater than /2 and depends on the ratio of the openings to the

width of the bars. Li(16) has found that m';;;4 for equal opening and

bar widths, m ~ 2 for small bar widths, and m = 8 for grates with three

cross bars put for the reinforcement purposes. Other quantities can

be found for ffi, if experiments are carried out with different caracter-

istics, Thus, if m is chosen, L" can be obtained from Equation (27).
0'

The carry-over flow, Q3' for the inlets of length, L, smaller

than the full capacity length, L~, can be estimated, as given by Li(l6),

as follows:
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The depth of flow in the side channel at a distance, x, from the

curb (Figure 5) is:

x
y = y -

0 tan 8
0

(1 - x
0

0
)

(28). - Yo Yo tan

The required length, L
1

, of the inlet to catch completely the flow of

this depth should then be, by Equation (27):

~ = m V ri' or°Vg

= ~Vo VYo( 1

,
L

1

x ojtan or
Yo

L = om Vofi Jl - x
1 Yo tan e

0

If m V JYO'iS replaced by L" we obtain'o g 0' f

L = Lit Jl _ x
loy tan e

o 0

(29)

If the length, L, of the inlet is less than, L
1

, as given by Equation (29),

part of the flow will not be caught by the inlet. Recalling from

Equation (4) that the depth of flow is proportional to the square of the

length of the inlet, the depth, Y
1

, of the flow caught by the inlet of

length, L, is:

L2

Y
1

=y-
L 2

1

(29a)
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Hence, the depth of flow not caught by the inlet is:

=Y(l_lL)
L 2

1

(30)

Inserting y and ~ from Equations (28) and (29) into Equation (30);

we get:

X )(1 L
2
_),

Yo tan eo L"a 1 _ x
Y tan e

o 0

which reduces to:

(31)

Referring to Figure 5, the width, x , over which carry-over flow, q ,
o 3

takes place can be computed by realizing that the depth of flow not

caught by the intake should be zero at a distance, x
0'

from the curb.

Thus:

L2 x
(1 - 0

Yo L,,2 )- = 0tan e
0

0

or,

(1 - L2 X

L,,2 ) =
0

Yo tan e
a

0

or,

y tan e (1- L
2

) (32)x =
L,,20 o 0

0
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It is obvious that x should be as small as possible. to maintain an ef­
o

ficient inlet. In any case the carry-over, q , can be computed by in­
3

tegrating Equation (31) over the width of flow associated with the

assumed average velocity, V , to give:
o

x
0

[Yot 1 . L
2

)

6
0

]J x
V dx (33)q3 =

- L~2 - tan 0
0

x x

( L
2

)

0 x2 0

q3 = V y 1 -- x V
0 o L,,2 0 2 tan e

0 o 0
0

( L
2

)

X 2

=V - V 0
q3 Yo 1 -- x

2 e0
L~2

0 0 tan
0

Replacing x from Equation (22) , .:we obtain:
0

q3 = v Yo ( 1 .. L
2

) Y
o \ L~2 0

tan e (1 - ~) -
o \ L" 2

o
'2 tan e

o

q = V .y 2
300

thus:

tan. e (1 _K)2
o L,,2

o

1_ - V Y 2
200

tan e (1 _..!L)2
. 0 L,,2

o

1
q =-v y2

3 200
tan e (1 - L)

. ·0 L"a
o

1Inasmuch as Q = - V y 2 .tan e we obtain:
o 200

(34)
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Therefore, the carry-over across the bars can be computed from

Equation (34) for any inlet of length, L.

2.2.1.3.2 Drop Inlets with Local Depression

In some places drop inlets are mounted slightly lower than the

adjacent surface so as to serve more or less as a sink for the runoff.

Recently, this has ceased to be practiced in order to have improved

safety at the inlets.

An approximate theory has been developed by Li(16). He claims

that, although this method is based on rather crude approximations and

significant assumptions, it gives good results for carry-over flows up

to 10% of the total discharge in the side channel.

2.2.1.3.3 Side Inlets with Grates

Li l s theory for drop inlets with grates is essentially appli-

cable to side inlets with grates, also. Obviously, the gravitational ac-

celeration acts only with one of its components, that is, a = g cos e .
. 0

The fonnulas are essentially similar to the ones developed for the drop

inlets with grates. Transfonmation of the relationships from the drop

inlet to the side inlet performed in Section 2.2.1.2.2 is applicable in

exactly the same manner. However, the computations for carry-ever

flows especially would have to be made with extreme care. This detail

is considered beyond the present scope.

2.2.1.4 Combined Drop and Side Inlets

It is a common practice to place drop and side inlets at the

same location. Such a system usually provides a greater overall ef-

ficiency. Combined inlets are considered preferable especially to
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reduce the carry-over flow and to increase the flushing and self-cleaning

action.

Li ' s(16) experiments have agreed with the previous argument in

that the m to be used in Equation (27) is reduced from 4 to 3.3. This

results in a smaller length -of the inlet being required to drain a cer-

tain discharge.

2.2.1.5 Other Types of Inlets

Other types of inlets are also in use. Their discussion is

considered to be beyond the present scope. However, the design criteria,

developed by Black et al. (3) for circular grate inlets, have been re-

ported to be quite useful. The criteria were developed for use in

agricultural drainage. By proper choice of the discharge coefficient

involved the fonmulas might very well be applied to circular inlets for

the surface drainage of highways.

2.2.2 Design and Efficiency of Inlets

The efficiency of an inlet is defined as the ratio of the in-

tercepted discharge, Q., to the total discharge, Q , from the entire
1 0

drainage area·. The efficiency of the inlet depends on many variables;

same are related to the inlet itself, whereas others are related to the

entire drainage system. The variables of the inlet which influence the

efficiency are the geometric characteristics, the inlet openings, and

the self-cleaning ability. In the.drainage system the variables are

the spacing of inlets, the nature of ~utter and overland flows, whether

laminar or turbulent, steady or unsteady, and the capacity 'of the drain-

age system. The effects of some important variables are summarized in

the following statements.
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2.2.2.1 Geometric Characteristics of Inlets

(a) Inlet Width: The inlet width is measured normal to the

direction of flow in the gutter and has very significant effects on the

efficiency of the inlet. As mentioned in Section 2.2.1.3.1, carry-over

flow can occur in three ways, of which one is water flowing on the pave-

ment side of the grate, which condition results from an inlet of inade-

quate width. No inlet can intercept most of the discharge without ex-

tending well into the path of the flow. The importance of inlet width

is best illustrated by an experiment conducted by Larson et al. (11),

wherein they used two inlets which differed primarily in overall

dimensions. Regardless of the velocity of flow, the inlet with the

larger width always had the higher rating curve or the higher capa-

city.

(b) Inlet Length: Equation (16), Q1/Q = L/L , shows that
0, 0

an essential factor for the efficient operation of an inlet is the

length of the inlet opening. As the velocity of approach increases,

the required length of the inlet increases accordingly. A short

inlet will cause a large amount of carry-over flow, and the efficiency

will decrease very rapidly.

(c) Inlet Openings: Another essential factor for efficient

inlet operation is the net clear area of the inlet. This is usually

expressed as the ratio of the total width of the grates to the total

width of the openings. Inlets with small ratios will have high ef-,

ficiencies, particularly at high velocities of flow, because of the

large openings. If the approach velocity is low, the ratio is less

important; instead, the governing factor will be the net clear area
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of the inlet. Obviously, the most efficient operation obtains if no

grating is present at the inlet.

2.2.2.2 Self-Cleaning Ability

The main purpose of a grating at an inlet is to screen the

objectionable material from .the stOLfi water which then enters the

drainage system. The ability of inlet to separate the debris and

floating trash from the water markedly affects the efficient operation

of the inlet. Only a few tests have been made, none with significant

results. This is due to the fact that storm runoff contains a variety

of debris and each kind of debris has its own characteristics. A test

by Larson et al. (11), wherein the debris was made from paper, showed

that an inlet with longitudinal openings had the best ability to re­

move debris from the water. Such inlets screened out 95% of the debris

'being carried to them. He also cla~ed that longitudinal openings

perfonmed equally well on water carrying leaves. This is because the

large particles were first screened out by the longitudinal openings

and bridged the openings between the bars. With an increase in flow

rate the depth and velocity of the flow in the gutter increased also.

Equation (3) shows that both the increasing depth and velocity require

longer inlet to accommodate the flow. As the inlet is lengthened, in

like measure the accumulation of trash-will be carried farther down-

stream from the upper end of the inlet. In this way the longitudinal

grate has the best self-cleaning ability. Guillou notes that the

cleaning ability of smooth parallel bars is better than that of rough

parallel bars(7). As the smoothness of the bars increases the self-

cleaning ability increases also.



2.2.2.3 Inlet Discharge System

The system which drains away the water coming from an inlet

is also a prominent factor in regard to the efficiency of the inlet.

Almost all inlet designs are based on the assumption that the water

which falls through the inlet grate is removed rapidly. Usually

there is a catchment structure under the inlet wherein water accumu-

lates until the head is sufficient to cause the outflow to the dis-

charge system to equal the inflow from the inlet. This accumulating

of the water in the catchment dissipates most of the kinetic energy

of the freely falling water. One important problem of optimal inlet

design is trying to use this energy in order to eliminate the ponded

water. Considerable research has been carried out in order to study

that problem, the most important work being that of Guillou(7).

2.2.2.4 Spacing Interval

For a given drainage area and a given design rainfall in-

tensity the runoff coefficient, C, can be detenmined. Then in the

rational formula the design runoff will be directly related to the

drainage area, A. In highway surface drainage the width of the

drainage area is fixed by the highway system; consequently, the pre-

dominant factor that controls the total rate of flow to an inlet is

the spacing interval. From the hydraulic theory of inlets, if the

total rate of flow is fixed, both the theoretical length and width to

catch all the water are fixed as well. Obviously, if the actual in-

let is different from the theoretical one, the efficiency will not

be 100%. Consequently, for a given inlet different spacing inter-

vals will lead to different inlet efficiencies. According to Larson

et a1. (11), the inlet spacing is shown by Equation (42):



L = 43,200 Q
ern

where Q is the normal or design capacity of the inlet, cfs.,

L is the spacing interval, ft.,

W is the width of the drainage area, ft., and

I is the design rainfall intensity, in. per hr.
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(42)

This equation is based upon his conclusion that in a series of

uniformly spaced inlets all will operate at an equal capacity except

the first three or four inlets.

2.2.2.5 Inlet Efficiency

Cassidy(4) investigated the discharge efficiency of six dif-

ferent types of inlets conside~ing the influence of the following

d~ensionless parameters:

where Q./Q is the discharge efficiency,
1 0

(43)

vo
~gD"

L

w

D

is the Froude number of the flow·in the gutter,

is the length of the inlet, ft.,

is the width of the inle,t, ft., .

is the depth of flow upstream from the inlet, ft.,

is a d~ensionless characteristic which is assumed to

describe completely the geometric configuration of the

grate-,

S is the cross slope of the gutter, and

S is the longitudinal slope of the gutter.
o
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A set of charts was presented in terms of all the previous

variables except longitudinal slope. He concluded that it is possible

to eliminate the longitudinal slope because it is important only in

determining the velocity of flow in the gutter. Generally, the veloc­

ity in the gutter can be included in the Froude number, except if

the gutter slope is extremely steep, for which condition the longi­

tudinal slope becomes a controlling factor of inlet efficiency. He

claims that his nondDnensional charts are suitable for any size of

inlets. Additionally, he gives a sequence of the most efficient in­

lets.

Guillou(7) reports an extensive research that has been made

at the University of Illinois for the capacity of eleven most commonly

used types of inlet grates. Through capacity curves that were developed

it is possible to obtain the amount of intercepted flow directly from

the total discharge. A series of curves and data involved terms such

as the flow depth at any distance from the inlet, the total discharge,

and grate characteristics. Thus knowing the hydraulic conditions of

approach the type of inlet can be selected by noting its efficiency

together with the amount of flou intercepted and drained by the inlet.

Re~lts of CassidY's(4) and Guillou's(7) i~estigationa are

not directly applicable for the inlets commonly in use in Pennsylvania

because of their different characteristics.

2.2.3 Summdry

Investigations made to date have yielded information for

design purposes. Mean~ngful points are the following items:
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1. Maximal efficiency and significant economy can be attained,

if 5% to 10% of the flow is allowed to pass over the inlet.

2. The capacity of the inlet is proprotional to the overall

dimensions thereof.

3. Inlets with the bar~ parallel to the direction of flow in

the gutter have higher efficiency and self-cleaning ability than inlets,

wherein the bars are not parallel to the direction of the flow.

4. Curb or side inlets are inefficient in comparison to drop

or grate inlets, except if clogging of an inlet with debris is a serious

problem. Combination inlets give the highest efficiencies if appreciable

clogging occurs.

5. The efficiency of an inlet decreases as its slope increases.

The foregoing are general points only. However, this infor­

mation is not enough, and for each kind of inlet specific model tests

must be made to attain the optimal design under prescribed conditions.

2.3 Numerical Studies

2.3.1 General Remarks

The surface runoff resulting from the rainfall flowing towards

a highway surface drainage system c.an be described by means of a mathe­

matical model. The runoff from rainfall usually takes place at shallow

depths. Over"land flow is the name given to this flow. Its main fea­

tures are that the flow does not necessarily take place in well-defined

stream channels, and that the rate of change of runoff in the direction
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of flow, known as lateral inflow, has to be considered. In hydraulics

it is classified as an unsteady, spatially-varied, open-channel flow.

If the runoff takes place over relatively impervious surfaces, that is,

if the infiltration is negligible, the flow is described by means of

the shallow-water equations. Consequently, the runoff from rainfall on

highway surfaces can be described by means of a mathematical model con­

sisting of the solutions of the shallow-water equations with appropriate

initial and boundary conditions.

Flood routing is the name given to the procedure of computing

the unsteady, spatially-varied flow in an open-channel. The shallow­

water equations constitute a class of the general equations of flood

routing. They are, in general, quasi-linear partial differential

equations. Inasmuch as closed form analytical solutions are not avail­

able, numerical finite-difference techniques must be applied to obtain

approximate solutions of the equations. The convergence of the numerical

approximation to the exact solution of the equation must be assumed. The

method of computation might be quite different for each particular

situation in order to attain this convergence.

In the following the basic principles of flood routing are

discussed; the governing equations are derived; the method of solution

is compared; and the most appropriate method of solution for the

shallow-water equations, which are of the present concern, is explained.

Finally, the applicability of the numerical techniques are discussed as

to the extent that they are appropriate for the determination of both

the runoff over the highway surfaces due to the rainfall and the dis­

char~e received by each individual drainage inlet.
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2.3.2 Flood Routing Methods

2.3.2.1 Basic Principles

The equations of flood-routing are based on the laws of con-

servation of mass, energy, and momentum. Owing to the fact that viscous

effects are negligible in open-channel flow, the laws of conservation of

momentum and of energy become almost identical. The mathematical model,

therefore, consists of the mass or continuity and momentum equations,

which form hyperbolic partial differential equations together with the

initial and boundary conditions based on the flow characteristics.

Numerous methods have been used for the numerical solution of these

equations by means of finite-difference techniques with the aid of high­

speed digital computers. Amein discusses them briefly(1,2,3,4) and

classifies them into either the fixed-mesh finite-difference methods

'or the method of characteristics. In the former the solutions are

obtained at fixed, predetermined points in a rectangular grid of time

and distance. In the method of characteristics the solutions are ob-

tained along curvilinear characteristic curves in the time-distance

plane. Points in the plane at which the solutions are obtained are

not known before the computations are made .. Amein points out that

the method of characteristics has distinct theoretical and practical

advantages over the fixed-mesh finite-difference method, in regard to

the stability and reliability of the solutions. He applies the method

of characteristics with suitoble initial conditions.

Baltzer et al.(5), Brakensiek(6), cunge(lO), Isaacson(16),

. (18) (22) (26)
Lawler et a1. ,Lin _' and Swain offer numerical and computer

techniques about this topic. Ragan(25) made a comparison of the
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experimental and numerical runoff hydrographs and water profiles for

several lateral flow distributions, and pointed out the significance

of properly choosing the Manning roughness coefficient, n, to duplicate

actual conditions. Crandall (9), Fletcher et a1. (12), and Hi1debrand(15)

present the most general numerical techniques; Chow(8) and Gi1crest(13)

apply those methods to solve the flood routing equations. Morgali(24)

applies the theory of characteristics of differential equations to over-

land flow; however, he obtaIns the solutions along the points in a fixed

rectangular mesh and not along the curvilinear characteristic coordinates.

2.3.2.2 Continuity Equation

The governing equations have been derived by several writers.

The equation of continuity is derived using the notation in Figure 6.

For an increment of time, dt, one must have the relationships:

Inflow - Outflow = Change in storage

or,

oV . oV oA
(AV + qdx) dt - (A + Ox dx) (V + OX dx) dt = &Mot dt dx, (44)

which reduces to,

o (AV) + W .£l =
Ox .at q,

with the assumed average velocity, V, over the section area.

are defined in Figure 6.

(45)

The symbols
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2.3.2.3 Momentum Equation

The momentum equation, on the other hand, can be derived with

reference to Figure 7; that equation states that the resultant of forces

on the control section should be equal to the change of momentum within

the section with respect to time. Hence, it can be written that:

yA dx (So - Sf) - ~ (yyA) dx = pA dx t~~ + V ~) - pq dxV (46)

Equation (46) reduces to:

qV + g (So _ Sf) = ~ 0 (yA) + oV + V oV
A A OX at OX (47)

The principle assumptions made in deriving Equations (46) and

(47) are that there is a hydrostatic pressure distribution on the verti-

cal surfaces of a flow element, that V is the average velocity over the

entire cross section, that the channel slope is small, and that the

momentum and energy correction factors are unity.

For a channel of unit width Equations (45) and (47) reduce to:

q

qV
g (8 - S ) - --

o f y

(48)

(49)

We also have available the total derivatives:

dV = oV dx + aV dt
OX at (50)



dy = oy dx + .2l dt
OX at

2.3.2.4 Methods of Solution
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(51)

Equations (48), (49), (50), and (51) form a set of simul-

taneous, first order, partial differential equations of the hyperbolic

type. Manipulating this set of equations eventually results in the

following four conditions:

dx
dt =

dx =dt

v + c

v - c

(52a)

(52b)

dV + 2dc - g (8 - S - QV) dt - g dx
o f Y

a (53a)

dV - 2dc - g (8 - S - QV) dt - q dx = 0
o f y

(53b)

where c = fiY. The momentum term qV of the inflow is commonly neglected
y

because it is small in comparison to the momentum of the total flow in

the principal direction. From the nature of this set of partial dif-

ferential equations the solutions are such that they propagate over

the time-distance plane, starting from the initial and the boundary con-

ditions, along the characteristic directions given by Equations (52a) and

(52b). Equation (52a) gives a family of a-characteristics or forward-

characteristics, and Equation (52b) gives a family of ~-characteristics

or backward-cha:~acteristics. Referring to Figure 8, if Y and "'if are

known along the x-axis, along an interval, as indicated by initial con-

ditions, that is, at time t the unique solution falls into the shaded area
o

determined by the two characteristics. M and P refer to the same point
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over the domain. Thus the initial conditions along x, that is, the

conditions a1.1 over the region at t = t , are propagated along the
o

time t > t , always remaining bounded by the characteristic lines.
o

2.3.2.5 Dimensionless Shallow-Water Equations

Equations (48) an~ (49) for a channel of unit width ~an be

normalized to bring into dimensionle~s form(2l):

The dimensionless parameters are defined as:

(54)

(55)

and

\!
=-

V
o

Y =L x =..!.. t
'* '* L ' *Yo 0

v
o

= t L
o

(56)

v
o

F =-- , k
o ygyo'

S L
o 0-

F 2 Y
o 0

(57)

The Chezy equation is used for friction slo~e:

V and y refer to the end of the reach where xL.
000
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The dimensionless equations have the advantage of containing

only two parameters V~ and y~ instead of five, including g, in the
"t'.. , ..

original equations. In general, the numerical calculation can be made

based on either the original Equations (48) and (49) or on the dimen-

sianless Equations (54) and (55). The choice between the two usually

depends on the nature of the boundary conditions.

2~3.3 Numerical Techniques

2.3.3.1 General Remarks

Numerical solutions of differential equations are based on

the principle that derivatives are replaced by finite differences to

form algebraic equations. This procedure is extremely difficult for

nonlinear partial differential equations. The equations are handled

in either exact or approximate forms. In the case of exact equations

many complexities related to the convergence, stability, accuracy,

and efficiency of the numerical procedures enter into the picture.

Although the procedure can be reduced to a set of simple mathematical

operations the number of operations is extremely large and obje~tion-

able, despite the speed of the digital computers. Therefore, the

approximate methods are much more useful and popular than the exact

methods. Nearly all approximate numerical methods for the solution

of the flood-routing equations are based on the continuity equation.

The momentum equation is either neglected or significantly simplified.

Quite commonly empirical relationships are substituted for the

momentum equation.

The numeric0 1 methods for the solution of the exact equations

of unsteady flow are classified into direct methods and characteristic
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methods, each of which is further subdivided into explicit and implicit

methods (4) . Direct methods of the finite-difference representation are

based upon the exact equations, Equations (48) and (49) in the present

context, whereas the characteristic methods are based upon the char-

acteristic forms of the equation~, Equations (53a) and (53b). The

explicit methods, on the other hand, usually consist of linear algebraic

expressions for the finite-difference equations from which the unknowns

are evaluated explicitly a few at a time. But, in the case of the

implicit methods the finite-difference equations are in the form of

nonlinear algebraic equations. Consequently, the unknowns are implicit

at each step and cannot be determined explicitly before the end of the

computation. Each method can also be carried on with either a fixed,

predetermined, rectangular mesh of points for the propagation of the

solution or with a characteristic network, that is, the solutions are

obtained at the intersections of the characteristic curves. Thus the

equations can be solved by any combination of the methods and techniques

discussed in the context of the above classification. In most of the

literature the name, the method of characteristics, is given to the

method of implicit characteristics using a characteristic network;

the explicit method refers to the direct explicit method using a fixed­

mesh network; and the implicit method applies to the direct implicit

method using a fixed-mesh network. These th~ee methods are the ones

most commonly used.

Based on an essentially similar classification, Liggett(2l)

presents a detailed discussion of a variety of methods. He examines

all of them, theoretically and experimentally, with respect to the

convergence of the finite-difference solution to the true solution.
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The conclusions are that both the characteristic and the implicit

methods provide stable solutions, the former being much faster than

the latter. The explicit method is theoretically stable, but practi-

cally it is inflexible with respect to stability and, therefore, not

very feasible. Amein(3) claims that the implicit method is the most

con11enient one of all especially for river flood-routing problems.

Liggett(2l) on the other hand shows that the method of characteristics

is the most convenient one, being the fastest, most stable, and most

accurate method for solving the shallow-water equations.

2.3.3.2 Solution by the Method of Characteristics

The ,method of characteristics was found to be the most

suitable general method in that it gave good results over a wide range

of the parameters(2l). By making analogy to the wave celerity, if c*

is defi.ned as IJ/F where y and F are given by Equations (56) and (57);
o 0

then the directional derivatives lie along the a-forward-characteristics

and e-backward-characteristics as indicated by:

(dx) = V -1-
dt O! "k c~(

and

(58)

(59)

Equat~ons (54) and (55) can then be integrated along the

characteristics by dropping the asterisks: writing them in the fonn



a a(V + c) ox (V + 2c) + dt (V + 2c)

a a
(V - c) ox (V - 2c) + at (V - 2c)

K ( 1 - ~) - ~ (c - V)

(
V2 '. 1

K 1 - Y ) - y (c + V)
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(60)

(61)

Referring to Figure 9, the solutions at points Land R being known with

the application of the trapezoidal rule the solution at point M is given

by:

(62)

and

(63)

'where ~L and ~R are abbreviations for certain expressions in tenns of

known quantities at Land R.

The residual functions can also be determined so as to define

the error surfaces; by setting them equal to zero we get the intersection

of the solutions along the two characteristics, and hence obtain the

solutions ~ and eM through iteration. At the initial line and at the

upstream and downstream boundaries the same procedure is applied with

simplification. At the corners of" boundary and initial lines the situ-

ation is different and complicated, but still an averaging assumption

seems to be justified for most purposes(9).

The" numerical calculation is usually mad~ in such a way so as

to accomplish a second-order accuracy in time or distance increment.
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The spacing of the initial characteristics depends on the number of data

points specified on the initial line. Six is th'e least number of initial

points used in a meaningful calculation. The data are linearly inter­

polated for the points where the characteristics intersect the boundaries.

2.3.4 Application to Highway SUrface Drainage

If a portion of a highway having drainage inlets is subjected

to rainfall, the water accumulates and flows over the pavement in the

direction of the steepest slope (Figure 10). The catchment area of

anyone inlet is that area from which precipitation after falling to

the ground flows to that inlet. Two slopes are present on a highway,

longitudinal and transverse. Depending on the steepness of each slope,

the movement over the surface of each raindrop has a particular path.

If the top view of a highway segment is considered, as in Figure II-c,

a raindrop falling at Point 1 starts to flow in a direction between the

directions of 8
L

, the longitudinal slope, and 8
T

, the transverse slope.

While flowing downslope more rainfall joins with it, and the increasing

mass of water flows with greater inertia.

At this point the highway surface drained by each inlet must

be considered. The simplest configuration is to assume rectangular

segments, as shown in Figure l1-a; however, this seems to be true if

only the transverse slope is present. Another configuration is the

parallelogrron, the skewness of which depends on the steepness of each

slope, as shown·in Figure II-b. The argument that the surface water

should follow straight paths does not seem very probable, particularly,

if the increasing inertia, the internal friction of the flow, the

lateral mixing, and the overall turbulence of the flow are taken into
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consideration. The drainage area for each individual inlet might very

well have an~rregular shape) as illustrated in Figure Il-c. Woo(2?)

also points out the significance of the effects caused by the impact of

the raindrops. However, these arguments might be reserved for con­

siderations of the second-order accuracy. Consequently, for the present

purpose a parallelogram se~ms to be an acceptable configuration for the

drainage area of each individual inlet.

Once the rainfall intensity is known the flow over a particular

drainage area corresponding to each inlet can then be detenmined mathe­

matically by solving the shallow-water equations. The routing procedure

could be perfonmed either in the form of consecutive one-dimensional

strips or by means of a two-dimensional routing technique. The initial

and the boundary conditions are of vital importance in any case.

2.3.5 Summary

Unsteady, spatially-varied open-channel flow equations find

an important field of application in highway surface drainage problems.

Numerical techniques have to be applied to obtain the solutions of

these quasi-linear partial differential eqqations~ Among many the

method of characteristics appears to be the ,most suitable one.

2.4 Miscellaneous Studies

Other research is indire~tly related to highway drainage

systems, such as that dealing with economics and 'with overland flow

with infiltration. If runoff from the backslope is considered in

deteTImining the capacity of inlets, studies of surfaee flow over
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permeable material, such as soil, are significant. Such investigations,

however, are of secondary importance for the present study.
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3. EVALUATION

3.1 General Remarks

The topics to be discussed herein are: (1) the results

presented by the investigators, (2) the models, (3) the channels,

(4) the slopes used in the. studies, and (5) the kinds of measure­

ments made.

This portion of the report deals primarily with four

publications, those of Larson and Straub (Ref. 11, Hydraulic Studies),

USeE (Ref. 21, Hydraulic Studies), Guillou (Ref. 7, Hydraulic Studies),

and Johns Hopkins University (Ref. 10, Hydraulic Studies). No attempt

is made to substantiate a statement as coming from anyone paper;

rather the remarks are based on one or more papers. As a result,

'individual credit is not given' in this discussion.

3.2 Results

Usually graphs represent the results of the tests per­

fanned by the investigators. The curves have one parameter as the

total flow and the other as (1) the grade of the channel that ap­

proaches the inlet, (2) the depth of water in the channel, (3) the

intercepted flow or the throughflow, or (4) ~he efficiency. The

effect of the cross or transverse slope is considered by having'

individual curves of some parameters aforementioned for different

slopes; no attempt was made to use the transverse slope itself as

a parameter of a curve. The cross slope was one Df the qualifying

items associated with a curve; other such items were the Manning
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roughness coefficient, type of grate, size of grate, depth of inlet

depression, and size of inlet depression. However, each of the fore­

going i.tems was not necessarily present on every curve.

At depressed inlets the intercepted flow is significantly

g~eater than at undepressed inlets. The depression commonly used

Cll. street's with curbs was 2~ to 3 inches below the grade of the

~Jtter. Additional points of importance are that a combined curb­

and-gutter inlet has greater capacity than a gutter inlet alone,

but only if the latter is clogged; if the grating holds no debris,

t\1e capacity of a gutter inlet is almost the same as that of a com­

bined inlet. Cross bars in a grate will cause a reduction of

intercepted flow from what it would be without such bars; in

otner words, cross bars lead to carry-over flow. If an inlet be­

comes ponded or if a downstream obstruction backs up the water so

tl~qt its free surface is above the grate, the inlet intercepts water

in accordance with the formula for a weir. No study used a flow

o[ water in the gutter above 6.0 cfs, owing to the thought that

very few gutters in streets could possibly take a discharge greater

t2an 6.0 cfs. The capacity of an inlet can be increased by permit­

ting some water to bypass the grate, that is, by pel1mitting carry­

over to occur, in other words~ the maximal quantity of water that

anyone inlet can intercept with no carry-over is less than that

intercepted if carry-over flow is also present. Grates with round­

top bars have ~irtual1y the same efficiency as grates with flat~top

bars.
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The use of the Manning equation in some calculations required

data pertaining to the cross section of flow; these data, a number of

depths across the stream channel, were more reliably obtained by means

of a point gage rather than by means of piezometers. "The Manning

equation is based on uniform flow, that is, the velocity becomes con­

stant as the water progresses downslope toward the inlet. Nonuniform

flow indicates a less quantity of water flowing than that of unifonn

flow. However, the nonunifoTImity has such a slight effect upon the

flow, particularly with flat cross slopes, that uniform flow was

assumed to be present. No forthright, distinct statement was made

by an investigator pertaining to the measurement or detennination

of uniform flow, although inferences can be made from some discussions

that the length of flow was adequate to produce uniform flow. In one

study where cross flow was present, a small jump or swell occurred

where that flow entered the longitudinal flow.

3.3 Model

The ratios of model scales ranged from 1 to ~, that is,

the model:prototype relationship of length ranged from 1:1 to

1:4. The latter ratio was used in one study owing to the fact

that a sufficiently high rate of fluw was not available in the

laboratory for a 1:1 relationship. The Froude Law of similarity

is the governing criterion for an open-channel model smaller than

the prototype; for a 1:1 ratio that fact can be conveniently over­

looked. However, the disadvantage of such a ratio is that any inlet
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used is quite heavy, some weighing almost 500 lb. Fortunately, this

feature can be overcome by the use of wooden models, which are quite

sati3factory.

3.4 Channel

Model channels used by different experimenters were not un­

usually long; the customary range in length was from 20 to 35 feet,

and the width about 3 feet, although for one study the model had a

size of 67 by 21 feet. The inlet was placed two-thirds of the dis­

tance downstream from the entrance to the channel, the assumption

being that uniform flow develops within that length. The depth of

flow was not measured at the entrance into the inlet, rather it was

measured upstream therefrom in order to be certain that the drawdown

of the inlet did not affect the measurement. Particularly with large

flows, a downward curve of the water surface is present as the water

approaches the inlet; consequently, the water surface at that place

is not parallel to the surface of the invert which requirement must

be met for uniform flow to be present.

Channels have commonly been made of wood; concrete and

ffiasnnite have also been used. In order to develop a suitable Manning

roughness coefficient, coatings have been applied to the channel.

One coating was cement mortar. A Manning roughness coefficient

appropos the current study can probably be selected from any of

several lists avail~ble.
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The shape of the channel used more than others is that

present at the sides of city streets, one side having a gentle

slope toward the center of the street and the other being a curb

that is almost vertical. Relatively flat slopes on both sides of

the inlet center line were 'not used.

3.5 Slopes

The drainage area over which the water runs off to an

inlet has both a longitudinal slope and a transverse or cross

slope. In the studies here'discussed, the minimal longitudinal

slope ranged from 1/8% to 1%, arid the maximal longitudinal slope

from 2% to 10%. The minimal cross slope was 1.5%, and the maximal

was 8.3% or 1:12. In two investigations the same slope was main­

tained throughout the studies. In another, merely the capacity of

different inlets was determined with no attempt being made to con­

sider the cross slope; actually no cross slope was mentioned in

the report. The ranges of slopes used by the investigators ensued

from the particular roadway-drainage system under investigation.

3.6 Measurements

In a study such as is here considered three volumetric

rates of water flow must be known; they are, (1) the water coming

to the grate inlet, (2) the intercepted-water or-the water flowing

through the inlet, and (3) the carry-over or the water flowing

past the inlet The inflow in each case was determined by a meter
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in a pipe line; such a device was either an elbow, a venturi, a

propeller, or an orifice meter. The propeller unit was used at

flows above 3.0 cfs. Of the three quantities of water desired, the

usual procedure is to measure any two, and to obtain the third by

arithmetic. In one study a fourth quantity was determined; that was

the flow down the cross slope. The intercepted flow as well as the

carry-over were individually measured by means of either a weir or

a volumetric tank. The maximal inflow used was 6.0 cfs.

The profile of the water surface was determined by either

piezometers or point gages, and the latter gave the more reliable

results as indicated by means of the Manning equation.

The mean velocity in a channel was measured in one case by

means of a pitot te~~'.be which was placed at the standard depths as fol­

lowed by the USGS, the reading obtained from the instrument being

either at the 0.6 depth or at the 0.2 depth and the 0.8 depth, the

average of the latter two giving the mean velocity. In another

study the pattern of the velocity of the water entering the inlet

was obtained by using a midget current meter.

3.7 Comments

The foregoing sections of EVALUATION summarize significant

studies that have been made of flow in channels into inlets that are

in the bottom a t1.d/or at the side of the channel. Some of the in­

formation, such as. tha-t dealing with procedures and techniques, is

pertinent to the study of Pennsylvania highway drainage inlets.
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Other material is of use as background information only because most

of the work has been done primarily on flow into inlets that are in­

stalled along curbs, such as are customarily used on city streets,

whereas little has been done in regard either to inlets installed

along the edge of a highway where both banks of the channel are

relatively flat slopes or to inlets along the center of a median

separating traffic lanes. Consequently, in order to understand

fully the "capability of anyone inlet, it really should be tested

under different conditions of flow.
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SUMMARY

Phase 1 of the project was a Literature Survey. Research con­

ducted to date was classified as Hydrologic, Hydraulic, Numerical, or

Miscellaneous Studies. Main conclusions are herewith listed:

1. The rational. formula is the one that is most widely used

to determine the volumetric rate of runoff from rainfall. The success

of its application is directly dependent upon the choice of runoff

coefficient, C, which depends upon the characteristics of the drainage

area. The rational fODmula is applicable only for steady flow conditions.

2. The Horton fonmula is restricted in application to at least

75% turbulent flow. It is widely applied to airports by the U S Corps

of "Engineers.

3. Maximal efficiency of an inlet is attained if a carry-over

flow of 5% to 10% is allowed. Efficiency decreases as the slope of the

inlet increases. Capa~ity of an inlet is dependent upon its geometri­

cal characteristics.

4. Maximal efficiency and self-cleal1:ing ability is attained

if the bars of th~ inlet are parallel to the direction of the flow.

Unless appreciable clogging occurs side inlets and combination inlets

are inefficient.

5. The flow pattern over the highway ,surface is described

by unsteady,. spatially-varied open-channel flow' equations. Numerical

techniques have to be applied to obtain solutions to these quasi­

linear partial ~ifferential equations. Among the numerous techniques
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available the method of characteristics appears to be the most suitable.

The initial and boundary conditions are of vital importance in any case.
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t

v

w

x

y

~

y

p

e

Subscripts

o

1

E

f

R,L,M

T
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elapsed time since the beginning of

rainfall, sec.

time, sec.

average velocity of flow, fps.

width of flow, ft.

distance, ft.

depth of flow, ft.

characteristic (forward) direction

characte,ristic (backward) direction

specific weight of water, pcf.

mass density of water, Ib-sec2 /ft4

angle between channel bottom and

vertical, degrees

conditions at the end section of the

channel

unifonm conditions

average conditions

ideal conditions

instantaneous conditions over the inlet

flow between the curb and the first

slot

dimensionless quantity

experimental quantity

frictional aspect'of the energy line

points on the characteristic network

theoretical quantity



Sup.erscripts

"
flow outside the inlet

flow across the inlet

average quantity

7 '"'"- ..)
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