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ABSTRACT

-ii

This study forms part of Project No. 343 - Plastic Design "in A572

(Grade 65) Steel, sponsored by the American Institute of Steel Construction.

This portiqn of the project was aided also by a National Science Foundation

Undergraduate Research Participation grant. The object of the overall

study is to determi~e whether the plastic design criteria for structural

carbon steel can be extended to the high strength steel, A572 in particular.

Thi's report is concerned with a stub column test, a set of residual stress

measurements, and theoretical predictions based upon them.

The maximum compressive residual stress measured in a l6WF7l section

was found to be 16.8 ksi, which is higher than that found in A7 or A36

steels~ However, the column strength shows less sensitivity to this

higher value than do the lower strength steels.

Although the local buckling was premature according to the theory,

there was unusually large post-buckling deformation capacity.
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1. INTRODUCTION

A number of studies have been made of the determination of residual

stresses and their influence on column strength. These studies have also

given the mechanical properties in ASTM A7 and A36 steels. It is the

purpose of this report to present the residual stress pattern due to both

cooling and rotarizing, and to give the compressive properties of a

16WF7l shape of ASTM A572 (Grade 65) steel. These results will be

compared with previously obtained data on other steels.

The test program was divided into two parts: (a) a stub column test,

and (b) the measurement of the residual stresses by the method of

sectioning. Theoretical studies included an a~alysis of column strength

based on the measured residual stresses and assumed residual stress

patterns. The influence of local buckling was ,also observed and compared

to other tests.

The study reported in this paper is related to a larger program,

Project No. 343, whos~ objective is to determine whether or not the pl~stic

design criteria developed for lower grade steels can be applied also to

the higher strength material.
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2. SHAPE CHARACTERISTICS

A l6WF7l section was used in both the stub column test and the

residual stress measurements. The measured geometrical dimensions and

mechanical'properties of ~he section are given in Tables 1 and 2 below.

Both the flange thickness and the web thickness are average values

determined from several sets of micrometer measurements. The cross

sectional area was determined by weighing a known length.

Table 1: Dimensions of 16WF71 Rolled Shape

Maximum value
Handbook Measured for Est =500ksi

Flange width, b 8.54 in. 8.58 in.
Flange thickness, t • 795 in. .80 in •
bit 10.75 10.72 10.8
Web thickness, w .486 in. .50 in.
d/w 33.25 32.50 30.6
Cross sectional area, A 20.8.6 sq,. in. 21.35 sq.in.

It is seen that the measured dimensions of the shape ,agree with hand-

book values within about 2%. The measured values were used in the subsequent

ca leu"la tions •

The mechanical properties were determined by standard tension tests

using flat specimens. The mechanical properties, summarized in Table 2,

are the subject of a separate report. (1) Using the-information obtained

from the flange, the strain-hardening strain e averages at 12.0 x 10-
3
in/in,

st

or about six times the elastic limit value. A typical stress-strain curve

b · d · h h· d· h · F· I (1)o ta1ne W1t autograp 1C recor S 18 sown 1n 19. .
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The average strain-hardening modulus Est for the two f+ange specimens

is 679. A value that is slightly lower than observed in earlier tests

of A36 and A441 steels.

Table 2: Mechanical Properties of 16WF71
Rolled Shape (65 Grade)

Mill Strain-
Test Static hardening Strain-
Yield Yield Strain, Est' hardening

Test Point, a ,in in
x 10"':3

Modulus,
Specimen Location in ksi k~i in/in Est, in ksi

4.13.1W Web 72.9 62.6 18.0 590

4.l3.2W Web 72.9 61.0
4.l3.3F Flange 62.2 12.0 688
4.l3.4F Flange 63.7 11.9 670
Stub column 63.5 245
Weighted average 62.7
of flange and web
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3. STUB COLUMN BEHAVIOR

A stub column 34 inches long was tested following the standard stub

column test procedure. (2) However, the determination of a 34 inch length

was not obtained without some defficulties. The standard stub column test

procedure requires a minimum length of 42.25 inches (2d+lO) and a maximum

of 38.6 inches (20r ). (2) The first requirement is established in order
y

not to disturb the residual stresses, and the second to prevent the member

from buckling as ~ column. However, this resulted in a contradiction

with a minimum le~gth greater than the maximum. Therefore, the criterion

was re-examined for the particular test specimen.

Using the Modified Euler formula for the strain-hardening range,

(1)

500 ksi -and cr 65.0 ksi, L/r equal to
y y

1.93 in. and the fixed end condition

2
nEst

{L/r )2
y

and with trial value of Est

8.73 was obtained. With r
y

(which doubles the effective length) a stub column of 34 inches would be

satisfactory.

The instrumentation used is shown in Fig. 2. Four 1/1000 inch

dial gages, placed at the corners of the specimen, were used for alignment.

Four SR-4 strain gages mounted on the outside flange tips at midheight, and

two 1/10,000 inch dial gages mounted on two box frames with a gage length

of ten inches were used for measuring the deformation. This, too, was in

. (2)
accordance w1th the standard stub column test procedure.
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Results of the test are as follows: (Details of the procedures

followed for the calculations can be· found in Ref. 2).

E, Young's modulus
IT, Proportional limit
aP , Static yield

ys

29.6 x 10
3

ksi
53.0 ksi
63.5 ksi

Figures 3 and 4 show the relationship between stress and st~ain of

the stub column. (In these figures only selected points are plottedJ The

proportional limit of 53.0 ksi and a static yield of 63.5 ksi results.in an

apparent compressive residual stress of 10.5 ksi, which does not correspond

very well with the 16.8 ksi from the measured residual stress. The

proportion~l.limit of 53.0 ksi, determined from the stress-strain curve,

agrees very well with the value observed whe~ yield lines on the flanges

were first noticed (52.5 ksi). Since the stub column was only 34 inches

long and not the required 42.25 inches which is required not to disturb

the residual stresses, the reduced value of 10.5 ksi is possible. However,

this does not seem to explain such a large difference.

In the plastic·range a t~st point was recorded after a ten-minute

waiting period, or until there washno further mov~ment of the cross-heads.

The static yield level of the stub column was then determined as the

average value in that portion of the plastic range between load no. 42 and

when buckling was first observed (Load No. 48). A somewhat lower value

would be obtained if the full yield range had been used in the average.

The static yield of 63.5 ksi of the whole cross-sectional area agrees

fairly well with the tension test results which gave an average web value
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of 61.8 ksi, a flange value of 63.0 ksi and a weighted value of 62.7 ksi.

This is within about 1% of the stub column value, as would be expected,

considering that the tension specimens were taken from the same heat,

ingot, and, piece as the stub column.

In Fig. 5 and 6 (both taken at Load No. 38) the flanges have completely

yielded, and the web has begun to yield. Load numbers are shown on

F~gs. 3 and 4 for comparison. In Fig. 7 (Load No. 45) the web also has

completely yielded', and the section has moved from an elastic-plastic state

to a totally plastic state. As the strain was increased the flanges began

to wrinkle slightly as sQown in Figs. 8 and 9 (Load No. 56), and continued

to do so until the test was stopped at Load No. 65 (Figs. 10 and, 11). Load

65 corresponds to an average strain of 55 x 10- 3 in/in.

Fig. 4 shows that the stub column apparently began to strain harden

at a strain of 13.7 x 10-
3

in/in, even though significant flange buckling

had cocurred prior to this. The corresponding value of est in the flange

coupons was 12.0 xlO- 3 in/in (see Table 2), which represents fairly good

agreement. The value of E computed from the stub column curve was
st

245 ksi, a value considerably less than the value obtained from the tension

specimens. Undoubtedly this was affected by the prior local buckling.
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4. RESIDUAL STRESS

-7

Residual stresses are stresses that are formed in the steel due to

1 · d f·' (3)p ast1c e ormat1~n. These plastic deformations in rolled shapes are

caused by differential cooling or they occur as a result of fabrication

operations (for example, by gagging, rotarizing, riveting, shearing, or

welding).

Since some parts of a rolled section cool more rapidly than others,

the slower cooling parts usually are left in a state of residual tension

and the faster cooling parts (for instance, the flange tips) in compression.

A measurement of the residual stresses by the method of sectioning

was made on the l6WF7l shape. A complete sectioning was performed with. the

cuts being made every ~ inch on the web and flange. The initial and final

readings, made with a Whittemore strain gage, were· made on both sides of

the web and flanges, following the procedure set forth in Ref. 3. The

results of these measurements are shown in Fig. 12. This residual stress

pattern is a combination of the.effects of cooling and of rotary

straightening. By examination of the yield lines. of the shape, Fig. 12,

and of the measured residual stress pattern, it appears that the shape

had been rotarized.

The maximum compressive_residual stress for this shape was 18.8 ksi

on the outside of the lower flange (using the orientation of Fig. 12).

The inside stress at the same location was 14.8 ksi, a maximum for the

inside of the flanges. This results in an average of 16.8 ksi at this

location. From here to the flange tip, t4e compressive residual stress

decreases and finally enters the positive region, as would be expected from

the straightening process.
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The top flange had a maximum compressive stress of 12.0 ksi. The

upper and lower flange patterns are quite different and are very

unsymmetrical. Comparing the two, it seems as though the bottom one was

bent more than the top, and especially the right side of the bottom flange.

The similarities between the stress pattern of this rotarized shape

and the cold-bent A7 steel in Fig. 13 can be seen, with the cold bent

flange tip going into tension. (4)

Comparison between the maximum and minimum stresses of the 16WF71 can

be made with the maximum and minimum values of cooling alone for A36 shapes

in Fig. 14. (4) Even though the shape had been rotarized, the maximum and

minimum stresses should be of the same order of magnitude as the cooling

residual stresses. (4) The increase in yield strength from 36 _ksi to 65

ksi seems to have increased the residual stresses. However, this cannot

be certain with such limited tests with rotarized sections. The residual

stresses measured in a l2B19 shape of A572 (grade 65) steel showed a

similar pattern to those found in structural carbon steel but with a lower

· ·d 1 (5)maX1mum reS1 UB stress.
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5 . COLUMN STRENGTH

From the actual measured residual stress pattern (Fig .. 12), an

assumed symmetrical pattern was developed as shown in Fig. 15. Using this

assumed pattern; a tangent modulus column curve was calculated according

to the procedure given in Ref. 4, the resulting curve is shown in Fig. 16.

The nearly uniform compressive stress on the flanges makes the column

cur.ve very "flat" with a nearly "vertical" jump, similar to a modified

Euler curve, after the flanges have completely yielded.

Because of the fairly uniform compressive stress in the web, a

straight line approximation also was made (Fig. 17) and its column curve,

calculated by computer; is shown in Fig. 18. This straight line

a,pproximation and the curved symmetrical pattern show very good correlation.

Except for a small region at L/r about 30, Fig. 18 shows that the

higher strength material has relatively less sensitivity to residual stress

effects than is the case for A36 steel.

Neither calculation take~·into account the lack of symmetry in the

residual stress distribution shown in Fig. 12. Such a calculation would

have to be carried out on an "ultimate streng.th'-' basis, and this is

beyond the scope of the present report.

The results of analysis- of column strength based on direct application

of tangent-modulus theory to the average str~ss-strain curve measured in

the stub column test is shown in Fig. 19.(4) Throughout the entire

transition range it reflects a higher column strength than that based on

measured residual stress, ~he latter representing a more· precise solution

to the problem.
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6 . LOCAL BUCKLING

Local flange buckling was measured with a 1/10,000 inch dial gage

between the flange tips on one side of the stub column (see inset, Fig. 2).

These measurements were made every 3 inches the entire length of the specimen

except for the top 7 inches and the bottom 6 inches., The local deformations

were measured only on one side, since the buckling is likely to be

symmetrical.

The graph of the local buckling deformations is shown in Fig. 20.

It is a plot of the maximum flange deflection observed at any point along

the entire length of the stub c~lumn VB. the average strain, a procedure

followed in Ref. 6. The critical strain, indicated by the arrow, is defined

as the average strain at which deflection of the flange starts to increase

more rapidly than initially. This critical strain is found by the inter

section of the tangents drawn along the straight section of the curve. (6)

The graph of Fig. 20 shows the critical strain of the flanges to be

7 x 10-
3

in/in strain, which is just before the strain when flange buckling

was noted visually at Load No. 49. From observation the web began to

buckle first at a strain of 7.3 x 10.3
in/in, with the flanges following

at 7.9 x 10-
3

in/in, as shown in Fig. 3. This sequence of buckling is

consistent with the degree to which the geometry of the shape met the

flange and web requirements ·(Table 2).

The critical bit ratio at which it is possible for a fully yielded

section to start to buckle is given by (7)
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bIt 1 fG t + 0.381 E (w)2
cry 1 S st t

E

(2)

-11

1+\>+· E
~

st

where \> .3

E Young's Modulus

Est Strain hardening Modulus

w '= Web thickness

t = Flange thickness

C!y = Static yield

A
F

= Area of flange

~
Area of web

(3)

(8) -

Using the values obtained for the A572 (Grade 65) material and shape,

the required values are bit ~ 10.8 and d/w ~ 30.6. The proportions for

the 16WF7l were very close to these requirements (see Table 2).

According to the theory if the actual bit value is less than this

critical value, local buckling will not begi~ until after the strain-hardening

strain is reached. (7) Since the actual bit ratio is less than the critical

value in the l6WF7l shape, local buckling "should follow the theory.(i.e.

buckling should not occur prior to est). From past experiments it also

has been observed that local buc~ling will not start until the average

strain across the flanges is equal to the strain-hardening strain e
st

Referring to Table 2 in Section 2, SHAPE CHARACTERISTICS, est is seen to

range from 11.9 x 10-
3

in/in to 18.0 x 10-
3

in/in. However, Figs. 3 and 4
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show that the local buckling did not begin at the strain-hardening strain,

but began at approximately 7.5 x 10-
3

in/in, which is far below the predicted

value. The flange and web buckled nearly simultaneously. At present there

is no way to account for this premature local buckling.

It is very interesting, however,. that after the section did buckle,

it exhibited unusually high post-buckling strength. Fiom a yield load of

approximately 1350 kips, the load had dropped only to 1100 kips (a loss of

-3
19%), at 55.0 x 10. in/in strain, a value equal to 20 times the yield strain

e and 7 times the strain when local buckling was first observed. This is
y

a greater p.ostbuckling strength than observed in any prior tests.

Although the postbuckling deformation was considerable, the strain-

hardening modulus of the stub column was very low, E = 190. At the onset
st

of strain-hardening the load had dropped to 61.6 ksi, due to local buckling,

but at a strain of 21.6 x 10-
3

in/in the load had risen only to 63.1 ksi.

After this the load began to drop at a slow rate, giving considerable

additional postbuckling deformation (Fig. 4).
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7. SUMMARY

The following summarizes the results of this study of stub column

strength, residual stress distribution, and local buckling behavior of an

ASTM A572, grade 65, l6WF7l steel member.

1. The measured geometrical properties and handbook values were in good

agreement (within 1%).

2. The static yield level determined by tension tests of web material

(61.8 ksi) was 16% lower than that obtained in the mill report

(72.9 ksi) which is fairly consistent with prior observations.

3~ The compressive static yield level of the s·tub column was 63.5 ksi,

compared to the weighted average of 62.7 ksi from the tension tests

(slightly over 1% difference).

4. The measured residual stresses and the observation of mill scale

showed that the shape had been rotarized. The maximum co~pressive

residual stress of 16.8 ~s~ls high compared to that found in A36

steel.

5. Column strength analysis shows that this higher strength material

has relatively less sensitivity to residual stress effects than is

the case for A36 steel. This is consistent with other observations.

6. The maximum compressive residual stress of 16~8 ksi from measurement

does not agree very well with the value 10.5 ksi deduced from the

stub column test.
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7. According to theory the flange width-thickness ratio required to

prevent buckling prior to strain hardening is 10.8. for E = 500 ksi.
st

(This is a conservative value of E compared to those found in the
st

tension tests, Table 2) The ratio for the test member was 10.7.

However, local buckling occurred at a strain of about half the

expected value.

8. Although local buckling occurred at a strain considerably less than

would be predicted by the theory (7.5 x 10-3 in/in compared to

12.0 x 10-
3

in/in), there was unusually large post-buckling deforma

tion capacity. At a strain of 55.0 x 10-
3

in/in, the load had

dropped only to 1,100 kips from approximately 1,350 kips, a loss

of but 19%. This is greater post-buckling defonmation than observed

in any previous tests of A7, A36, or A441 stub columns. It is the

major difference observed thus far in the study of A572, grade 65

steel.

9. Altho~gh the tension tests using flat specimens resulted in values of

the strain-hardening modulus E of 590 ksi for the web and 688 and
st

670 ksi for the flange of the l6WF71 shape, the stub column showed

a lower value (245 ksi). This may well have been affected by- the

prior local buckling.

10. The results obtained in this test suggest that even though buckling

occurred prior to strain-hardening, the width-thickness proportions

predicted by the theory will be satisfied for stub columns through

reliance on post-buckling strength.
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The same thing may not be true when the shape is used as a beam.

Local buckling, in that case, could trigger lateral failure. Other

tests are being p~rformed to give infor~tion on this aspect of the problem
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FIG. 2 STUB COLUMN INSTRID1ENTATION
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FIG. 5 YIELDED FLANGE
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FIG. 6 INITIAL WEB YIELDING

FIG. 7 YIELDED WEB
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FIG. 8 FLANGE WRINKLING
(WEST SIDE)

FIG. 10 STUB COLUM:N AFTER TEST
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FIG. 9 FIANGE WRINKLING
(EAST SIDE)

FIG. 11 STUB COLUMN AFTER TEST
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FIG. 19 TANGENT MODULUS CURVE FROM STRESS-STRAIN CURVE
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