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FIELD STUDY OF SHEAR·TRANSFER IN STEEL SHEET PILE BULKHEAD

by

c. E. Brewer* and H. Y. Fang*

ABSTRACT

Economical design of sheet pile bulkheads requires

an understanding of the action of the individual pile sections

under field loading conditions. European arch web sheet pile

design practice considers the entire wall cross-section to act

as a single unit. American practice, on the other hand, con-

siders each pile to act individually. Consequently, designs

based on the European method are more economical than those

based on the American method.

Which of the design auumptions most closely approxirna-

tes actual field conditions depends primarily on the amount of

shear transfer mobilized across the interlocks of the sheet piles.

In order to investigate the degree of shear transfer actually

mobilized, a full scale field test of a 30 foot steel arch web

sheet pile wall (Type DP-2) was conducted. The piles, instrumented

prior to driving with strain gages adequately protected against

driving forces and ground-water intrusion, were driven 25 feet into

an essentially cohesio~Less soil. Stress distributions within the

*Research Assistant and Director, Geotechniqal Engineering Division,
respectively, Fritz Engineering Laboratory, Lehigh University.



wall and tie rod loads were monitored as the ground in front

of the wall was. periodically excavated in 5 ft. increments to

within 5 feet of the toe of the sheeting.

It was concluded that, within the range of applied

loads encountered in the investigation, shear transfer takes

place across the interlocks of steel arch web sheet piles.

Thus, it is suggested that the European practice of assuming

that the piles act as a unit more closely approximates fi~ld.
conditions than. the American practice of assuming individual

pile action.

composite action between the soil and the piling was

observed to occur under certain loading conditions. However,

further investigation of the soil-structure interaction is

necessary in order to more clearly understand this phenomenon.
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1. INTRODUCTION

3.

Sheet piling is the term used to describe thin

piles driven close together to form a wall. S~eet piling

is used to resist lateral pressure caused by ccmbinations

of earth, water, and externally applied horizontal and verti­

cal loads, and/or to prevent leakage of water and soil into

an excavation. Sheet piles are made of wood, concrete, and

steel and are used in waterfront structures, canal locks, dams,

cofferdams, riverbank protection works, and retaining walls.

The section modulus of a structural member is a

measure of its ability to resist bending. It is calculated by

dividing the area moment of inertia of the member about its

axis of bending (the neutral axis) by the distance from that

axis to the outermost fiber of the member cross-section. The

centroidal axis of an individual arch web sheet pile section is

located between the axis of the interlocks and the web (Fig. 1).

American engineers use this centroidal axis as the neutral axis

for evaluating moment resistance. The location of the centroidal

axis of a wall composed of several interlocked" sheet piling sec­

tions is along the line of the interlocks (Fig. 1). European

engineers use this axis, or an intermediate position, as the

neutral axis to evaluate the moment resistance. As is evident

fro~ Fig. 1, the resistance of an indi7idual section is about

one half the resistance of the composite group. Consequently,
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designs based on the European method are more economical

than those based on the American method.

4 •

The objective of this study was to evaluate the

behavior of interlocked steel sheet piling in an actual

field installation. More specifically, the strain distri­

bution across a sheet pile-was measured in order to experi­

mentally locate the neutral axis of bending of the wall.

This report presents a detailed description of the measuring

technique used to study shear transfer in a sheet pile wall,

includes a summary of the data obtained in the field test,

and discusses the degree of s~ear transfer mobilized in arch

web steel sheet piling interlocks.
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2. REVIEW OF PREVIOUS TESTS

5.

A review of literature concerning sheet pile

structures was made by Krugmann, Boschuk, and Fang (1968).

The reader is directed to this publication for more de­

tailed information on sheet piling as the following review

is limited to those papers most important to the present

study.

Duke (1953) used stressmeters and transits to

measure the stresses and deflections in a bulkhead that was

constructed in Long Beach, California. His results for bend­

ing moments and deflections were considered so unreliable

that they were discounted.

Hakman and Buser (1962) reported the results of a

full scale field test on a bulkhead at the Port of Toledo,

Ohio. They employed slope indicators, strain gages, and

transits to measure the behavior of the bulkhead. Unfortun­

ately, the strain gages failed to operate properly, thus elimina­

ting the possibility of verifying the other data.

Tschebotarioff (1949,1964) reported the results of

a long series of tests known as the Princeton Model Tests. He

used pressure cells and strain gages to evaluate the perform­

ance of a large model bulkhead. Much valuable information on

the lateral earth pressure distribution of different soils

against a bulkhead was obtained.
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Rowe (1952,1958) performed a series of laboratory

tests on model bulkheads from which much data emerged, and

from which design criteria were established.

6 •

None of the above investigations, however, touched

upon the important design consideration mentioned previously,

namely, the location of the neutral axis of bending for a

sheet pile wall.
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3. DESCRIPTION OF TEST SITE

One of the assumptions frequently made in the

present methods of analyzing steel sheet pile walls is

that the soil on both sides of the wall is cohesionless.

Consequently, a major consideration in the selection of a

test s~te was to locate a soil profile comparable to the

so-called "ideal" design material.

Several sites were examined. The site finally

chosen was located in Martins Creek, Pennsylvania (Fig. 2).

The soil profile was determined from the results

of wash borings and from information supplied by the Penn­

sylvania Power and Light Company. Boring logs recorded the

surface conditions, the strata changes and thicknesses, the

standard penetration values for the soils, and the elevation

of the groundwater table. Fig. 3 shows the results of this

soil profile investigation. It can be seen that, in general,

the test site consisted of a thin layer of sand and silt

underlain by a thicker layer of sand, gravel, and boulders.

Soil classification tests, grain size analyses,

density, water content determinations, and shear strength tests

were performed on samples of soil taken from the site. The·

results of these tests ar-3 gi ,,:rerl in Table 3.

The test site had excellent accessibility for equip­

ment and a low groundwater table, both desirable features. The
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soil was, however, slightly cohesive. This characteristic

was not desirable as it would in most cases cause the actual

loads on the bulkhead to be smaller than the calculated theor­

etical loads. However, it is believed that the reduced field

loads would not significantly influence any conclusions to be

drawn from the study.
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4. DEVELOPMENT OF MEASURING TECHNIQUES

4.1 Selection of Instruments

A thorough review of previous investigations,

and numerous communications with instrument manufacturers

yielded the following conclusions:

1. The "stressmeter" is an outdated method of
measurement.

2. The "slope-indicator" is an accurate instru­
ment for measuring the slope of the piling,
but if used alone, its readings are difficult
to convert to strains. The budget would not
allow a combination of instrumentation.

3. The strain gage is the simplest, and the most
adaptable piece of equipment for measuring
strain.

Consequently, the SR-4 ~train gage was chosen as

the primary means of measuring the strain conditions in the

piling. However, strain gages must be protected during pile

driving operations in order to remain operable. If subjected

to force or to contact with foreign objects, damage may result.

It is believed that commercially produced heavy

duty, weldable gages with protected lead wires would have been

suitable, but their cost was prohibitive. Because of their

low profile and reasonable cost, foil-type strain gages*

were selected.

*Manufactured by Dentronics t Inc., New Jersay
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4.2.1 Laboratory Evaluation

An evaluation o£ the strain gage system was under­

taken in the laboratory to study methods for attaching, water­

proofing, and protecting the gage. In addition, the behavior

of the gage was observed under simulated field conditions.

In the laboratory, a gage was mounted on the outer

portion of a 2" x 2" angle to simulate the actual mounting

of a gage on the sheet piling. A protective epoxy covering*

was placed over the gage, but no attempt was made to keep the

covering from touching or adhering to the gage.

A test soil was prepared into which the angle could

be driven. The soil was composed of equal amounts of coarse

sand, obtained directly from the test site, and 3/4"-1" crushed

stone. It was believed that the laboratory soil would be more

abrasive to the gage, and its covering, than the soil at the

field site. The soil mixture was placed in a 2' diameter

cylinder of 4' height. A drain spout was tapped into the bottom

and a manometer was attached so that the level of the water

table could be controlled and measured. The sand and stone mix­

ture was soaked, vibrated, and allowed to drain. This produced

a very compact mixture for the test.

The angle was driven by a single acting 30 lb. hammer

*Denseal #5, Dentronics, Inc~, New Jersey
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into the laboratory test soil (Fig. 4). As the driving

proceeded, frictional forces acting on the protective cover­

ing affected the strain readings. These readings stabilized

when the pile was allowed to stand at any level for a period

of time. It is believed that movement of the epoxy covering

under the frictional forces was responsible for the observed

fluctuations in readings. Apparently, the "creep" character­

istic of the epoxy enabled the gage to recover. The pile was

driven five times and the gage remained operable. The epoxy

coating protected the gage against soil abrasion, but it was

observed that the insulation on the lead wires could not with­

stand the frictional forces developed during driving. This

was evidenced by the fact that the insulation was removed at

several locations.

A second angle was gaged and the lead wires were

coated with epoxy throughout their entire anticipated embedded

length. The angle was driven five times into the test soil,

and the gage performed satisfactorily throughout the driving

operation. The lead wires that were coated with epoxy proved

very durable and showed no signs of abrasive wear.

On a third gaged angle, in addition to coating the

lead wires, a piece of teflon cloth was placed over the gage

to prevent the gage from bonding to the epoxy covering. After

completion of the fifth drive, the gage failed to zero. The

angle was removed from the soil and the gage was allowed to dry
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and stabilize. After 4 hours, the gage balanced. The

epoxy coating was cleaned by washing with water and the gage

shorted again. It was observed that the epoxy coating had

broken bond with the stee.l angle and water was penetrating

into the gage. When the.protective covering was removed, it

was found that only about one-quarter of an inch surrounding

the gage was providing a seal. Since some gages would be

below the water table in the field, it was important to insure

an adequate seal around the gage.

The laboratory testing of the foil-type strain

gage proved that the gage could be successfully protected

against abrasion under controlled laboratory conditions, and

no trouble would arise as long as the epoxy covering remained

unbroken and bonded to the steel. Therefore, extreme care

was taken to properly bond the epoxy to the steel in all subse­

quent gage installations.

4.2.2 Field Evaluation

After it was shown that the gages could be protected.

under controlled laboratory conditions, it was decided to test

them in the field at a nearby construction project.

Two gages were attached to a sheet pile in the

field and driven 20' into a loose, silty sand having a high

goundwater table. Both gages were protected by the epoxy cover­

ing. One gage was given additional protection by covering it

with a steel shoe that was welded to the sheet pile (Fig. 5).
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During and after driving, both gages performed satisfactorily,

thereby substantiating the results of the laboratory evalua­

tion.

The field testing of the foil-type strain gage

showed that the gage could successfully withstand pile driving

forces and a high groundwater table. It was decided to protect

all gages with the s~eel shoe in order to offer protection

against large boulders that might be enountered at the test site.
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5. TEST PROCEDURES

14.

5.1 Laboratory Test Procedure

The strain gages were installed on the sheet

piling at Fritz Engineering Laboratory prior to deliver-

ing the piling to the test site. The piles were cleaned

with high speed grinders to obtain a smooth surface for

the gages. The ribbon wire was laid flat and clamped be­

fore ~he gage epoxy* was applied. After the wires were in

place, the gages were attached and clamped while the epoxy

was setting. Each gage was checked after installation to

insure adhesion of the gage to the piling. This was accomp­

lished by a "light bulb test" (Dally and Riley, 1965).

Because of the delicate nature of foil gages, it

was necessary to use low temperature solder to install the

wires. Terminal tabs were used to allow some play in the

wires should they be accidentally pulled. After the wires

were installed, gage readings were taken and the protective

epoxy covering was applied (See Figs. 6 and 7).

The strain gages were connected to the arch piles

near the interlocks in order to evaluate the shear transfer

across the joints. This information would, in turn, lead to

the determination of the location of the neutral axis of bend­

ing for the sheet pile wall. The layout of the strain gages

on the instrumented piles (piles 10, 11, 12, and 13) is shown

in Fig. 8.

*Denseal #5, Dentronics, Inc., New Jersey
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After the gages were installed on the piling,

they were "zeroed" at Fritz Engineering Laboratory with

the piling hanging in a vertical position. The initial

readings recorded in the laboratory were checked at random

at the site before driving was started on each pile. The

comparison between the random checks and the lab readings

was good.

5.2 Field Test Procedure

15.

The length of the sheet pile wall was 30 feet

which was believed to be long enough, .to rninimi ze undesirable

end effects. The total length of the arch piles was 30 feet

and ,they were driven to a depth of 25 feet. Consequently,

once the arch piles were in place, approximately 5 feet of

pile protruded from the ground surface. A standard driving

rig wi th a low energy double action 9B3 steam hammer was, used

for the driving operations. A guide frame was used to insure

plumbness of the wall. A transit and a six-foot level were

used to aid in positioning the piles. The wall was anchored

at its third-points by tie rods which were held back by H-piles

driven 20 feet into the ground. The tie rods were attached to

the.wall by means of a wale welded to the wall at ground level.

The wale and tie rods were located at ground level to facili­

tate instrumentation and test procedures. The entire test set­

up is illustrated in Figs. 9, 10, and 11.

Throu~Jhout the wall, the measured out-of-plu:nl~bness

during the driving never exceeded 1 in. in 30 feet in the
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X-y plane (Fig. 10). The deviation from the vertical in

the Y-Z plane, however, did increase as the wall was driven

(Fig. 11). This is attributed to t~e tendency of these

piles to close on themselves if one side is pushed by an

underground obstacle. ~he maximum deviation, in the Y-Z plane

was S'in. in 30 feet. It should be noted that piles No. 10

and No. 13 met refusal and could not be driven to the required

depth. For this reason they protrude 15 in. .above the other

piles (Fig. 12).

Initial readings were' taken on all strain gages on

the day excavation commenced (one week after completion of

pile driving). In addition, wall deflections (measured by

transit) were recorded for several wall locations. An initial

load of 2000 Ibs. was applied to each of the tie rods.

The first phase of testing to study the behavior of

the sheet pile wall involved excavation in front of the wall

in four stages. Initially, a 5 ft. excavation was made and all

gages were read. Three hours after completion of the excavation,

a collar broke that connected two sections of one of the tie

rods together. The collar was quickly replaced and the test

was continued. Strain gage readings were taken both before

and after the tie rod failure. The excavation was left for

one week, at which time, all the gages were re~d again. There

was little difference between these readings and those taken

after the tie rod was replaced. The next 5 ft. stage of ex­

cavation was then made and gage readings were taken one week



342.2

after axcavation. This sequence of events was repeated

until the axcavation reached the 20 ft. level. The wall

was again left for one week before the final set of gage

readings were taken. Fig. 12 shows field readings being

taken following excavation. The sheet pile wall with ex­

cavation at the la' level is shown in Fig. 13.

17.

After completion of the excavation phase of the

test, an attempt was made to subject the wall to different

earth pressures. This was accomplished by increasing the

load on each tie rod to 12,000 lbs. After one month, all

gages were read and the tie rod loads released. Gage read­

ings were taken one week after release of the tie rod loads,

after which the piles were pulled.
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6 • SUMMARY OF TEST DATA

18.

The results of soil analyses conducted both in

the field and in the laboratory are presented in Table 1.

The in-place density, taken after excavation to the 5' level

was complete, was obtained by the sand cone method (ASTM 1556) .

The type DP-2 arch web sheet piling was obtained

from the Lackawanna Plant of the Bethlehem Steel Corporation.

Excerpts from the mill report that accompanied the piling are

presented in Table 2.

Table 3 summarizes the strain gage readings taken

during the laboratory phase of the gage evaluation test.

Included are strain gage readings taken after each test IIdrive

and pull" as well as notes regarding the physical condition

of the gages and their associated wiring. Similarly, Table 4

summarizes the strain gage readings taken during the field

phase of the gage evaluation test.

Tables 5 through 10 contain the strain gage readings

taken during excavation in front of the sheet pile wall, and

during loading and unloading of the tie rods. All strain

gages are numbered and their location may be determined by
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reference to Fig. 8.

Deflections of the top of the piles during

excavation and during loading and unloading of the tie

rods are recorded in Table 11.

19.

Table 12 is the calibration data relating load to

strain in the tie rods.

The variation of load in the tie rods with time

just prior to and following the break in the left tie rod

is contained in Table 13.

Table 14 lists the variation in tie rod load with

depth of excavation.

A discussion of the data concerning shear transfer

across the sheet pile interlocks is presented in the follow­

ing sections of this report. No attempt has been made at

this time to analyze, in detail, the data on tie rod loading.
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7. DISCUSSION OF RESULTS

20.

Figs. 13, 14, and 15 show the pertinent data

from this investigation in graphical form. The distribu­

tion of vertical strain across the sheet pile interlocks

is shown for all gage levels, and at all stages of excava­

tion.

Although there is considerable scatter in the

data and many of the gages failed completely, the graphs

suggest that shear stress transfer across the interlocks

between piles does occur. This is apparent because the ver­

tical strain distribution across the interlocks may be rea30n­

ably approximated by a single continuous straight line at all

stages of excavation at which there is sufficient data. If

there was any partial or no shear stress transfer across the

interlocks, the vertical strain distribution across the piles

would be shown by two discontinuous straigth lines.

Although interpretation of the vertical strain data

for joint J-l (Fig. 14) is not difficult, only gage level Gl

at joint J-2 (Fig. 15) yields any useful information concern­

ing shear transfer. Unfortunately, no more than two gages

remained operable at each of the other J-2 gage levels. The

apparent reversal of bending at gage levels G2 and G3 across

joint J-3 (Fig. 16) may be attributed to either bending stress­

es induced during driving, or perhaps to excessive zero shift
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of the strain gages during and after driving.

It is of interest to note that the location of

the neutral axis of bending for the sheet pile wall, given

by the intersection of the vertical strain curve with the

line of zero strain, does not always lie within the pile

cross-section. For discussion purposes, consider the be­

havior of piles Nos. 10 and 11 at gage level Gl (Fig. 14).

It can be seen that just prior to excavation, the neutral

axis lies completely outside the pile cross-section toward

the fill side of the wall. Thus, the piles are in tension

due to bending induced during driving, and the compressive

bending stresses are carried by the soil behind the piles.

Such behavior may be considered composite action, with the

wall and the soil acting as a unit.

21.

As was noted earlier, following completion of the

5' excavation, one of the tie rods snapped causing the sheet

pile wall to relax as it deflected in towards the excavation.

The change in bending stress in the sheet pile resulting from

this break (as reflected by the vertical strains) and the

corresponding relocation of the neutral axis to a point within

the pile cross-section, may be seen in Fig. 14. After the tie

rod was replaced and as excavation proceeded, the neutral axis

moved back towards its position just after driving.
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8 • CONCLUSIONS

22.

From the results of this investigation, the

following conclusions may be drawn:

1. Strain gage instrumentation installed on
sheet piling prior to driving may be
successfully protected against damage dur­
ing driving and against groundwater corro­
sion.

2. Within the range of applied loads encount­
ered in this investigation, the available
data suggests that shear transfer takes
place across the interlocks of arch web
steel sheet piles. Thus it is believed
that the European practice of assuming that
the piles act as a unit more closely approxi­
mates the field conditions than the American
practice of assuming individual pile action.

3. Composite action between the soil and the
piling may occur under certain conditions.
However, further investigation of the soil­
structure interaction is necessary in order
to more clearly understand this phenomenon.
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TABLE 1: SOIL PROPERTIES

Soil Classificatipn (Unified Classification System) •••••••••••••••••••••••••••• 8M

In Place Wet Density (5' below original ground surface) .0 •••••••••••••••••••••• 117 #/cu.ft.

In Place Water Content (5' below original ground surface) •••••••••••••••••••••• 10%

Unconfined Compression Strength (Laboratory Compacted Specimen- ••..•...•••••.•. 1335 psf
Wet Density = 117 #/cu.ft., Water Content = 10%)

Grain Size Distribution - % Passing by Weight

Borina..t!.

Sieve Size Depth 0-1.5 ' 5'-6.5' 10'-11.5' 15' -16.5' 20'-21.5' 25'-26.5' 28.5'-30'

4ft 4 98 97 100 97 40 60 96
4ft 60 10 55 68 15 15 25 19
4ft200 1 20 20 2 8 7 8

Boring 4}2

Sieve Size Depth 0-1.5' 5'-6.5' 10'-11.5' 15 '-16.5' 20'-21.5' 25'-26.5'

4ft 4 97 98 100 70 55 96
iff 60 55 75 30 40 30 56
4J:200 20 20 10 10 7 30

tv
~



TABLE 2: PROPERTIES OF DP2 SHEET PILING

STEEL TYPE - ASTM A328

PHYSICAL TEST RESULTS

HEAT NO. DESCRIPTION YIELD TENSILE ELONGATION BENDS
POINT STRENGTH % INCHES
STRESS (psi)
(psi)

518V0031 DP2 PILING 44460 77750 29.5 8 OK
518VOO35 DP2 PILING 44430 77460 21.5 8 OK

CHEMICAL ANALYSIS

HEAT NO.

S18V0031
S18V0035

CARBON

.30

.32

:MANGANESE

.80

.83

PHOSPHORUS

.018

.014

SULPHUR

.023

.020

Data supplied by Bethlehem Steel Corporation Metallurgical Department, Shipment No. 504-14136.
t'-..)
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TABLE 3: SUMMARY OF DA TA, IABORA TORY INSTRUMENTAIION EVALUA TION

TEST NO o

GAGE
PROTECTION
LEAD WIRE
PROTECTION

1

EPOXY

NONE

2

EPOXY

EPOXY

3
TEFLON AND

EPOXY

EPOXY NOTES

OPERATION SIMUIATED*
DEPTH (ft.)

GAGE READINGS MICRO-INCHES PER INCH x 10

1st Drive

1st Pull

2nd Drive

2nd Pull

3rd Drive

3

6

9

6030

6225

6220

6190

6190

6190

6190

6200

7653

5990

5980

5943

5955

5955

5950

5955

7650

5900

5900

5850

5865

5865

5860

5865

Initial, before gage protection
applied
Initial, after gage protection
applied

Following overnight soaking below
"GWT"
All tests: no visible signs of
cover failure

All tests: no visible signs of
cover failure

3rd Pull

4th Drive 12

4th Pull

5th Drive 15

5th Pull

1 hr. Later

6205

6201

6200

6240

6260

6240

5970

5970

5970

5995

6035

6075

5870

5880

5875

5600

2020

0700

All tests: no visible signs of
cover failure

All tests: no visible signs of
cover failure
Test 3: Difficult to balance gage
Test 1: Lead wire insulation a-

braded
Tests 1&2: no visible signs of
cover failure
Test 3: Cover cracked

?\'Depth simula ted by the number of driving and pulling opera tions.
t\.J
m



TABLE 4: SUMMARY OF DATA, FIElD INSTRUMENTATION EVALUATION

GAGE READINGS: MICRO-INCHES PER INCH x 10

PROTECTION EPOXY ONLY EPOXY AND META L SHOE

Lab. Zero 6230 7840

Field Zero 6245 7855
(Prior to Driving)

Immediately 5820 7390
Following Driving

One Week Following 5820 7390
Driving

27
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tABLE 5: STRAIN GAGE READINGS -PILE NO. 10, ROWS 1 AND 2



TABLE 6: STRAIN GAGE READINGS - PILE NO. 11, ROWS 1 AND 2

GAGE READINGS - MICRO-INCHES PER INCH x 10

GAGE LABORA TORY I:MMEDIATELY READINGS ONE WEEK AFTER ADDITIONAL READINGS AT 20 1 EXCAVATION LEVEL
NO. HUNG FOLLOWING EXCAVATION REACHED SPECIFIED LEVEL 1 DAY AFTER 1 MONTH AFTER 1 WEEK AFTER

ZERO DRIVING 5 ft. 10 ft. 15 ft. 20 ft. EXCAVATION 12k TIE ROD TIE ROD LOAD
LOAD APPLIED RELEASED

1 7120 6500 5430 6300 5,840 6260 5830 7810 5760
2 6665 7070 6240 9790 5260 5600 5215 6370 3760
3 7080 6120 5380 5380 5220 5670 5220 6130 3515

4 10050 11160 10020 10310 9900 10060 9815 10920 8420
5 10610 5970 9900 9950 9115 10240 10150 11475 9003
6 10380 11505 10520 10720 10310 10980 10510 11122 8530

7 6600
8 7690 9600 8640 8660 8460 8800 8495 9670 7245
9 7280 8430 7540 7545 7270 7750 7455 8880 6680

10 7680 9085 8100 8305 7900 8130 8049 8980 6650
11 7880 8545 7550 7790 7440 7670 7450 8680 7410
12 8020 9770 9000 9420 9420 8430 8220 9350 7660

13 4520 7595 4945 4360 4670 4865 4620 5830 3540
14 5210 7000 5990 5990 5750 5990 5790 7030 4655
15 4400 6100 5090 4901 4880 5015 4920 6480 3860

16
17 6290 7500 6445 6680 6250 7610 6260 8040 5045
18 5290 6840 5795 6075 5530 5950 5550 7150 4280

19 4380 5700 4660 4420 4440 4910 4455 6340 3605
20 4520 6085 5030 5310 4780 5185 4800 6630 3695
21 -4920 6585 5520 5775 5255 6290 5065 6240 3960

22 8420 9852 8745 8300 8330 9010 8390 10230 7950
23 9055 10445 9325 9245 9070 9360 9060 9990 7715
24 5230 5630 4540 4710 4350 4690 4410 5670 3240

"k
---- Denotes gage that WQuld not ba1an~e

tv
'-0



TABLE 7: STRAIN GAGE READINGS - PILE NO. 11, ROWS 3 AND 4

GAGE RE..t\DINGS - MICRO-INCHES PER INCH x 10

GAGE IABORATORY IMMEDIATELY READINGS ONE WEEK AFTER ADDITIONAL READINGS AT 20' EXCAVATION LEVEL
NO. HUNG FOLLOWING EXCAVATION REACHED SPECIFIED LEVEL 1 DAY AFTER 1 MONTH AFTER 1 WEEK AFTER

ZERO DRIVING 5 ft. 10 ft. 15 ft. 20 ft. EXCAVATION 12k TIE ROD TIE ROD LOAD
LOAD APPLIED RELEASED

25 6930 ..:I... ...... -_ .... .... ........ - 01li'iio .... __ -_ ...........
---~ -~-- ~---

26 5890 6080 6580 6530 6210 6390 6225 8820 6400
27

28 6495 7650 6620 6940 6635 6690 5550 7710 4330
29 8030 6150 6160- 6370 5955 5900 6865 6820 4440
30 7620 9360 8120 8460 8030 8240 8035 9180 6540

31 5410 6690 5550 5925 5465 5650 5460 6540 4190
32 6050 7590 6475 6880 6380 6600 6370 7900 5235
33 6860 7710 6665 7030 6690 7200 6980 9430 8480

34 7230 8975 6090 6290 6010 6330 7580 7530 5090
35 7340 7620 6575 7020 6475 6750 6480 7730 5020
36 7500 8935 7730 8060 7620 7810 6090 8710 6240

37 5300 6835 5140 5510 5110 5310 5070 6580 3850
38 5820 7555 6520 7010 6120 6420 6140 7470 4910
39 6350 7656 6100 6720 6030 6560 6130 8280 5100

40 5380 6885 5931 6680 5430 5730 5530 7440 4180
41 8680 _.......... - ...... IIIIIIa_ ... - ......... 2800 4000 2915
42 5320 7525 7080 6730 5880 6000 5820 5630 7145

43 4380 5960 4465 4830 4265 4840 4310 5700 3100
44 4360 5950 4750 5116 4690 4850 4650 6130 3290
45 5U80 6450 5230 5650 5150 5360 5175 6450 3870

'-~~O [tOlO 5530 4970 5260 4200 6920 4215 ... --~ 3280
369U 5000 3880 4290 3730 4030 3730 4960 2560

I~~' 4030 5415 4300 4730 4180 4410 6815 5530 3215
~:i"~· ".-= ......,.___~........-r:.~~__•..;a.~ ........~,~

__ A~ Den0tc~ gage that would not balance
w
0



TABLE 8: STRAIN GAGE READINGS - PILE NO. 12, ROWS 1 AND 2

GAGE READINGS - MICRO-INCHES PER INCH x 10

1 1030
2 7050
3 7020

GAGE
NO.

IABORATORY
HUNG
ZERO

IMMEDIATELY
FOLLOWING

DRIVING

READINGS ONE WEEK AFTER ADDITIONAL READINGS AT 20' EXCAVATION LEVEL
EXCAVATION REACHED SPECIFIED LEVEL 1 DAY AFTER 1 MONTH AFTER 1 WEEK AFTER

5 ft. 10 ft. 15 fto 20 ft. EXCAVATION 12k TIE ROD TIE ROD LOAD
LOAD APPLIED RELEASED

4
5
6

7310
7030
6780

*

7 76~0

8 7430
9 7600

10 7080
11 8120
12 8460

13
14
15

5410 6850 5600 6060 5340 5500 5460 6520 4670

4660 5950 4980 5490 4770 4920 4775 5770 3865
3320 5000 3900 4530 3830 5100 3880 4620 2750
5255 6800 5810 6440 5820 6190 5935 6570 3650

5255 6860 5860 6315 5475 5700 5475 4420 2385
5180 6900 5950 6470 5840 6015 5870 4880 3785
5360 6875 6000 6865 6210 6830 6335 5450 4365

16
17
18

22
23
24

19
20
21

*Denotes gage that would not balance w
f-l



TABLE 9: STRAIN GAGE READINGS - PILE NO. 12, ROWS 3 AND 4

GAGE READINGS - MICRO-INCHES PER INCH x 10

GAGE lABORA TORY IMMED IA TELY READINGS ONE WEEK AFTER ADDITIONAL READINGS AT 20' EXCAVATION LEVEL
NO. HUNG FOLLOWING EXCAVATION REACHED SPECIFIED LEVEL 1 DAY AFTER 1 MONTH AFTER 1 WEEK AFTER

ZERO DRIVING 5 ft. 10 ft. 15 ft. 20 ft. EXCAVATION 12k TIE ROD TIE ROD LOAD
LOAD APPLIED RELEASED

25
26 7020 * 'Ie

27 6545

28 7345
29 7550
30 6685

31 8680 10540 9590 10010 9290 9370- 9335 10930 7850
32 8020 10122 8830 9400 8665 8450 8710 10880 8000
33 4200 5795 4760 5220 4530 4800 4565 5365 3340

34 9210 10915 9955 10580 9775 10050 9385 14540 10175
35 8010 9:315 8495 9070 8390 8620 8420 9540 7580
36 7860 10240 10200 10155 9420 9060 9835 10111 8150

37 5210 9110 8350 9110 8110 10390 9920 16410 13300
38 6370 ..f... ... ~_ ....... ---- ....1iIIIIt ....... 8690 8000 9820 7755
39 7260

40 6700 7575 6765 7330 6880 7220 6910 6810 4870
41 4680 6150 5205 5820 5140 5570 5130 6040 3270
42 5460 6350 5695 6245 5830 6450 6260 6280 4665

43 3620
44 3825 5190 4200 4755 4030 4300 4000 5090 2920
45 3470 4950 3921 4475 3740 4040 3700 4790 2700

46 6370 7810 6785 7390 5650 7020 7650 8890 6705
47 5330 7070 6060 6655 5950 6240 5910 7100 4965
48 6905 8685 7710 8330 7670 7950 6610 8835 6760

..'....ro

Denotes gage that would not balance
l.o.J
t\J



TABLE 10: STRAIN GAGE READINGS - PILE NO. 13, ROWS 1 AND 2

GAGE READINGS - MICRO-INCHES PER INCH x 10

GAGE IABORATORY IMMEDIA TELY READINGS ONE WEEK AFTER ADDITIONAL READINGS AT 20' EXCAVATION LEVEL
NO. HUNG FOLLOWING EXCAVATION REACHED SPECIFIED LEVEL 1 DAY AFTER 1 MONTH AFTER 1 WEEK AFTER

ZERO DRIVING 5 ft. 10 ft. 15 ft. 20 ft. EXCAVATION 12k TIE ROD TIE ROD LOAD
LOAD APPLIED RELEASED

1 8300 9115 7930 7885 7680 7225 7580 7600 6710
2 7500 8600 7405 6360 7125 6750 7050 7550 6590
3 8330 9500 8575 8560 8340 8015 8320 8490 7390

4 8020 8820 7815 7790 7605 7285 7590 7660 6540
5 7680 -----{(

6 8050 7960 6960 6760 6500 5615 5450 7260 6001

7 8400 7110 7660 6565 7410 7140 7430 7900 6630
8 8250 8805 8620 7490 8340 8060 8360 8600 7440
9 9070 8112 7425 7665 7450 7340 7460 7950 6810

10 8420 6650 8401
11 5790 9750 8740 8800 8530 8360 8550 8745 7580
12 6610 7950 7710 7700 7450 7330 7485 7930 6670

13 6530 6700 5720 5805 5475 5340 5485 5790 4500
14 6285 7600 6620 6725 6350 6270 6360 6680 5360
15 8285 7240 6280 6390 6060 5960 6070 6450 5180

16 7910 7020 6060 6170 5900 5810 5900 6520 5320
17 4190 6590 5650 5780 5460 5355 5455 5730 4450
18 5580 7480 6480 6600 6270 6150 6250 6540 5220

19 5400 5010 4055 4200 3820 3745 3830 4225 3065
20 5350 6695 5715 5640 5280 5275 5245 5750 4490
21 4410 6470 5489 5750 5250 5250 5260 5750 4350

22 8005 6170 5165 5330 4935 4960 4930 5240 4070
23 5785 5350 4370 4520 4150 4150 4150 4600 3210
24 6700 8870 7845 8030 7660 7660 7670 7111 6815

~.~

Denotes gage that would not balance
w
LV



TABLE 11: WALL DEFLECTIONS

WALL DEFLECTION FROM TRANSIT LINE - INCHES

PIlE IMMEDIATELY READINGS ONE WEEK AFTER ADDITIONAL READINGS AT 20 I EXCAVATION LEVEL
NO. FOLLOWING EXCAVATION REACHED SPECIFIED LEVEL 1 DAY AFTER 1 MONTH AFTER 1 WEEK AFTER

DRIVING 5 ft. 10 ft. 15 ft. 20 ft. EXCAVATION 12k TIE ROD TIE ROD LOAD
LOAD APPLIED RELEASED

4 9.5 9.3 9.6 9.8 10.1 10.0 10.1 10.4

6 9.9 10.0· 10.2 10.1 10.5 10.3 10.0 10.1

8 10.1 10.3 10.3 10.4 10.4 10.5 10.6 10.8

10 9.1 9.2 9.3 9.3 9.6 9.4· 9.9 10.3

12 9.6 9.6 9.6 9.7 10~O 9.9 10.1 10.1

14 9.2 9.9 9.5 9.6 9.7 9.6 9.8 10.0

16 9.5 10.0 9.9 9.9 10.0 9.,9 10.0 10.1

w
~
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TABLE 12: CALIBRATION OF TIE RODS'~

LOAD STRAIN (MICRO-INCHES PER INCH x 10)
(kips) LEFT TIE ROD RIGHT TIE ROD

0 11,900 12,735

1 12,025 12,845

2 12,145 12,955

3 12,240 13,060

4 12,357 13, 170

5 12,470 13,280

6 12,580 13,390

7 12,690 13,500

8 12,800 13,610

9 12,910 13,720

10 13,020 13,830

11 13, 130 13,950

12 13,242 14,060

13 13,356 14,180

14 13,470 14,290

15 13,580 14,400

16 13,690 14,510

-,'c
Calibrated in Fritz Engineering Laboratory
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TABLE 13:

- -- -- _. ~ - ---- "--'---."' .. ~-_._-,,_._-_ .. , _ -----_.-.".. "._-- , "._---_.. _--" -- - _ -, .. _,-- ..------._----- .

VARIATION OF TIE ROD LOAD WITH TI:ME AFTER

COMPLETION OF 5 FOOT EXCAVATION

TIME AFTER LEFT ROD RIGHT ROD
EXCAVATION STRAIN STRAIN

(HOURS) (MICRO- INCHE S LOAD (MICRO-INCHES LOAD
PER INCH x 10) (kips) PER INCH x 10) (kips)

1/2 12,390 4.2 13,280 5.1

1 12,420 4.5 13,290 5.1

1 1/2 12,480 5.0 13,330 5.2

2 12,510 5.2 13,500 7.0

LEFT TIE ROD BROKE AND WA S REPIACED

2 1/2

3

3 1/2

4

.12,500

12,480

12,480

12,490

5.1

5.0

5.0

5.0

13,290

13,200

13,190

13,190

5.1

4.1

3.9

3.9

w
0'\



TABLE 14: VARIATION OF TIE ROD LOAD WITH DEPTH OF

EXCAVATION

DEPTH OF EXCAVATION TIE ROD LOAD (KIPS)
(FEET) LEFT ROD RIGHT ROD

0 2.0 2.0

5 4.7 4.7

10 7.2 309

15 8.. 5 3.3

20 900 3.6
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Fig. 5 Steel Protective Shoe



Fig. 6 A Steel Sheet Pile being Equipped
with Strain Rosettes
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Fig. 7 Laboratory Instrumentation
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Fig. 12 Photograph Showing Field Test in Progress
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Fig. 13 Photograph of Excavation at the 10' Level
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