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SUMMARY

Although shingle joints have been extensively used for
a long time, particularly in bridges, it is only recently that sys-
tematic effort has been directed towards their study. Mathematical
models have been suggested for predicting load partition for the
linear elastic range and their validity demonstrated through tests
on large full scale shingle joints. However, no analytical solu-

tion is so far available for the inelastic range.

In the present study, a mathematical model'for the shingle
joint in bearing is developed and used to predict the complete
force-displacement relationship up to the ultimate load. Earlier
tests indicated that it is reasonable to assume that the various
plies of the main and the lap plates act as a unit and that the
transfer of load takes place by shear on two planes only. Using
this assumption and the force-displacement relationship for the
plate with holes and for the fasteners, equilibrium and compati-
bility equations are written down in essentially the same form as
for the butt joints. This set of non-linear simultaneous equations

are solved by iteration on the computer.

A comparison with the results of two tests indicates good
agreement. The maximum error between the ultimate load computed
from the program and the results of the modified joints is 8.5%.
The error is attributed to (i) Ignoring the influence of the
transverse stresses in the wide test joints, (ii) Uncertainty of

the value of the ultimate deformation of the fastener Au £ which

1
has a considerable influence on the value of ultimate load when

this load is reached through fastener failure. A series of tests
is now under way to examine the validity of the suggested analysis

for a wide range of parameters.




ANALYSIS OF SHINGLE JOINTS

by
Suresh Desai

J. W. Fisher

State Project No. 736-01-21

This research was conducted by
Fritz Engineering Laboratory
Lehigh University
for
LOUISIANA DEPARTMENT OF HIGHWAYS
Research and Development Section

'In Cooperation with
U. S. Department of Transportation
FEDERAL HIGHWAY ADMINISTRATION

The opinions, findings, and conclusions

expressed in this publication are those

of the authors and not necessarily those
of the Federal Highway Administration.

Fritz Engineering Laboratory
Department of Civil Engineering
Lehigh University

Bethlehem, Pennsylvania

June 1970

Fritz Engineering Laboratory Report No. 340.5



ABSTRACT

This report presents the development of a mathematical
model for the solution of shingle joints loaded into the inelastic
range. After making simplifying assumptions in accordance with
thé available test data on shingle joints, the analytical model
developed earlier for the butt joint is generalized and extended
to obtain load-partition in shingle joints loaded beyond major
slip. A computer program has been written which provides com-
plete force-displacement relationships for both the plates and
the fasteners for the entire range of loading of a bearing type
joint. For most shingle joints encountered in practice, this
program can be used to predict load-partition beyond major slip
when fasteners are in beafing and shear so that the transfer of
load by friction may be ignored. A comparison with the available
test data indicates agreement within 8.5% of the analytical solu-

tion.



ii

SUMMARY

Although shingle joints have been extensively used for
a long time, particularly in bridges, it is only recently that sys-
tematic effort has been directed towards their study. Mathematical
models have been suggested for predicting load partition for the
linear elastic range and their validity demonstrated through tests
on large full scale shingle joints. However, no analytical solu-

tion is so far available for the inelastic range.

In the present study, a mathematical model for the shingle
joint in bearing is developed and used to predict the complete
force-displacement relationship up to the ultimate load. Earlier
tests indicated that it is reasonable to assume that the various
plies of the main and the lap plates act as a unit and that the
transfer of load takes place by shear on two planes only. Using
this assumption and the force-displacement relationship for the
plate with holes and for the fasteners, equilibrium and compati-
bility equations are written down in essentially the same form as
for the butt joints. This set of non-linear simultaneous equations

are solved by iteration on the computer.

A comparison with the results of two tests indicates good
agreement. A series of tests is now under way to examine the va-

lidity of the suggested analysis for a wide range of parameters.
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IMPLEMENTATION STATEMENT

Recent tests on shingle joints have already revealed the
inadequacy of the existing procedures for the analysis and design
of shingle joints. A clear need is, therefore, indicated for better

procedures to solve this problem.

Once the validity of the model suggested in this report
has been demonstrated thru a series of tests now under way, design
criteria will be developed based on the analysis of a large number
of shingle joints with different parameters. These criteria will
provide a more rational basis for the analysis and design of shingle
joints and will ensure a better utilization of material in a joint

resulting in economy.
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1. INTRODUCTION

Aithough shingle‘joints have been extensively_used for
a long time, particularly in bridges, it is only recently that sys-
tematic effort has been directed towards their study. Mathematical
models have been suggested for predicting load partition for the
linear elastic range and their validity demonstrated through tests

2

on large full scale shingle joints.!? However, no analytical solu-

tion is so far available for the inelastic range.

In the present study, a mathematical model for the shingle
joint in bearing is developed and used to predict the complete
force-displacement relationship up to the ultimate load. This math-
ematical model is a generalization of the model developed earlier
for the butt joints.®’* This generalization is achieved through
certain simplifying assumptions regarding the joint behavior so that
butt joints constitute only a special class of shingle joints. Us-
ing the force-displacement relationship for the plate with holes‘and
for the fasteners, equilibrium and compatibility equations are writ-
ten down in essentially the same form as for the butt joints. This
set of non-linear simultaneous equations are solved by iteration on

the computer.



2. ANALYTICAL SOLUTION

Analytical expressions describing the force-displacement
relationship for perforated plates of ﬁniform width and for various
types of fasteners have been developed from an extensive series of
tests.®?* Using these relationships, a mathematical model was de-
veloped and used successfully to predict load-partition in butt
joints.® This model is extended here for the more general case of
shingle joints. Thus, the butt joint model constitutes only a spec-

ial case of the generalized mathematical model for shingle joints.

The analytical solution is based on the following major
assumptions. Some of these assumptions formed a basis of the butt
joint model and have already been discussed at length.® Other
assumptions characteristic only of the generalized model were partly

the result of observations made on the large test joints.!’?

1. The analysis is essentially developed for joints con-
taining only one longitudinal line of fasteners with all the holes
of the same diameter and lying on one straight line as illustrated
in Fig. 1. However, wider joints with more than one longitudinal
line of fasteners may be assumed to be cut into longitudinal slices
each of which may be analyzed independently provided of course, that
the fasteners are uniformly distributed and that none of these strips

violate any of the assumptions listed here.



2. Each individual ply of the joint is of homogeneous
material and of uniform width. Thus plies of different width or

with different mechanical properties are admissible.

3. The transfer of load between the lap plate and the
main plate takes place only on the two planes common to the lap and
the main plate as illustrated in Fig. 2. Thus no relative movement
between the various plies of the lap plate or between the various
plies of the main plate is considered. Each segment of the lap
plate or the main plate between consecutive fasteners is assumed to
function as a unit with properties which are aggregate of the con-

stituent plies.

4; The fasteners transmit most of the applied load by
shear and bearing. The frictional forces if present, are treated
as shear and bearing. BAs already pointed out, this assumption is
valid for real joints with some clearance in the holes, at the high
loads subsequent to the major slip, which is really the area of
interest in this study.® At the critical sections very little fric-
tional force exists because of the inelastic fastener deformations

and separation of the plies.

5. The top and bottom lap plates are combined into a
single plate of variable thickness similar in appearance to the main
plate. The average fastener characteristics for this combined con-
dition are also used. This idealization results in regions of vari-

able length which has uniform plate properties within each region.



The force-displacement relationship for plies of uniform width as

well as for the fasteners are those empirically developed in Ref. 4.

Once the force-displacement characteristics of the plate
segments and the fasteners are available, the solution of the problem
can be obtained by any of the numerous approaches of structural anal-
ysis. However, the algorithm developed below is particularly con-
venient for shingle joints and has been also adopted in the com-

puter program.

Fig. 3 illustrates the idealized transfer of load between
the main and the lap plates through the fasteners in accordance with
the assumptions outlined earlier. Fasteners 1 to n are numbered
from left and the plate segments 1 to n+l are numbered such that
the ith segment lies to the left of the ith fastener. P, and Qi
are respectively forces in the ith main plate segment and ith lap
plate segment and Ri is the shear force in the ith fastener. The
corresponding displacements are denoted by Pi» 94 and Ai respect-

ively.

The equilibrium equations can now be written down as

Pi+l = Pi - Ri for i = 1, n-1 (L)
Qi+l = Qi + Ri for i - 1, n-1 (2)

n
and PG = igl Ri (3)

The compatibility condition can be written for each pair

of adjacent segments as
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or f(R;) + ¥(Q;) f(Ryp) + ¢(Qi+l)

I}
-

for i , n-1 (4

The number of variables in the above equations is 3n;1
which consists of 2n-2 plate forces, n fastener forces and the
applied load PG.(Sn-Z) equations are provided by the set (1) to
(4)., One more equation is provided by the nature of the prleem.
If the solution'at a load less than the ultimate load is desired,
P, is given. If the ultimate load is to be determined, depending

G

on the mode of failure either PG is known as the ultimate load of

the plate section or Rl is known as the ultimate load of the fastener.

Solution to this set of non-linear equations was obtained
on the computer. The details of the computer program are described

in an appendix which appears at the end of this report.




5. COMPARISON WITH TEST RESULTS

The computer program was run with the geometry and the
experimentally determined properties of the plate material and the

fasteners of the modified joints.?’®

Strips of plates containing
only a single row of fasteners were analyzed and the following re-

sults were obtained. In all cases, the end fasteners failed.

Modified Joint Test Load Computed Load, Error

Kips Kips
Bolted 3,545 3,683 + 3.9
Riveted 2,800 3,102 + 8.5

A comparison of the analytical predictions and the test
results of load partition in the main and lap plates of the modi-
fied bolted joint is shown in Fig. 4A and 4B. Results for the
modified riveted joint are shown in Fig. SA and 5B. The analytical
results indicate a good agreement with the test results throughout
the entire length of the joint despite all the simplifying assump-

tions of the mathematical model.

The discrepancy between the analytical prediction and test
results could be attributed to sevefal factors.

1. Some uncertainty was introduced by the stagger in the
fastener pattern on the joints which necessitated additional assump-
tions about the cross sectional properties of the strips.

2. The transverse stresses which are present in wider



|
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joints are not taken into account in the mathematical model. 1In
the joints tested, the contribution of transverse stresses was
probably more significant due to the stagger of the fasteners.

3. The assumption that both the shear planes are critical
is not quite accurate and this results in fastener failure before
the full resistance is developed.

4. There is some uncertainty about the value of the ul-

timate deformation Au of the fastener. The ultimate load for

1t
fastener failure is quite sensitive to this value and the value
used in analysis may be different from that attained in the tests.
The greater discrepancy in the case of riveted joint may thus be
attributed to the greater variation of Ault for the rivets.
5. BAn examination of Figs. 4A, 4B, 4C and 4D reveals

that the greatest discrepancy in the fastener forces appears to
occur between two consecutive fasteners between which a plate is

discontinuous. Obviously treating a group of plates as one unit

leads to a large error at such discontinuities.

It must be pointed out that the tests referred to above
were of an exploratory character. A series of tests is planned to
verify the validity of the proposed mathematical model for a wide

range of parameters.



4. SUMMARY AND CONCLUSIONS

The mathematical model for shingle joints in bearing is
essentially a generalization of the butt joint model developed by
Fisher and Rumpf in Ref. 3. The force—diéplacement relationships
for fasteners and for perforated plates of uniform width developed
there are utilized in the generalized model. The only important
“additional assumption required was that the transfer of load occurs
only on two planes as shown in Fig. 2 so that each segment of the
main plate or the lap plate between consecutive fasteners function
as a unit with properties which are aggregate of the constituent

plies.

The maximum error between the ultimate load computed from
the program and the results of the modified joints is 8.5%. The
error is attributed to (i) Ignoring the influenée of the trans-
verse stresses in the wide test joints, (ii) Uncertainty of the

value of the ultimate deformation of the fastener A , which has

ult

a considerable influence on the value of ultimate load when this

load is reached through fastener failure.
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6. APPENDIX

The computer program solves by iteration the set of equa-
tions described in Chapter 2. The program can predict the ultimate
load and the load-partition at the ultimate load or for any load

smaller than the ultimate load.

In order to simplify programming, the following restric-

tions have been imposed.

(1) All the plies of the main plate are of uniform width
and have identical material properties. Similar restrictions apply

to the lap plate.

(2) All the fasteners have identical load-displacement
relationships. However, with only small modifications it would be
possible to take into account (i) fasteners with different pro-
perties (ii) fasteners in single shear and (iii) fasteners in

multiple shear as in knife joints.

(3) Only the more generally encountered parameters will
be considered. For example, the plate areas should change gradu-
ally. Referring to Fig. 2, main plate area should either decrease
or stay constant and the lap plate area should either increase or
stay constant while proceeding from left to right. Further, the
ultimate strength of the first segment of the main plate should be
less than or equal to the ultimate strength of the (n+l)th segment
of the lap plate.



ll'

The program can be broken up into five principal segments:
(1) Read and compute the problem parameters.

(2) Determine whether the end fastener deformation or the
applied load is to be held constant. For constant end fastener de-

formation, go to (3) and for constant applied load, go to (4)

(3) Iterate, holding end fastener deformation at its
maximum value and change the applied load starting from its highest
value which is the plate failure load. The failure here is in the

end fastener. The corresponding load is the ultimate load.

(4) Iterate, holding the applied load constant and vary
the deformation of the firsf fastener starting from its first value.
This segment of the program also provides the solution when the
failure is in the first segment of the main plate. This condition
is determined from (2) and then the applied load is held constant
at the value OuAn where oy is the ultimate stress and An is the net

area in the first segment of the main plate.
(5) Output the results.

The operations are described in a logical flow chart.

See Fig. 6. The following additional symbols are used.

Pult = Ultimate load of the joint
Pi = Ultimate load of the main plate in the ith segment
P = Modified value for the applied load
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Q{ = Ultimate load of lap plate in the ith segment

Ault = Ultimate deformation of one fastener

AL = Modified Qalue for the deformation of the first
fastener

€ = A small number to check convergénce of the solution.

The functional relationships between the. forces Poy Qy and

R, and the displacements Pi» Ay and Ai are given by

p; = B(P.) , Pi= #'(py)
Ay = £(RY) , Ry =£7())

A complete listing of the program in Fortran is repro-

duced here.
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PROGRAM INELSH(INPUT,TAPE1=INPUT,0UTPUT,TAPE2=0UTPUT)

c THIS PROGRAM ANALYZES 8SUTT JOINTS FOR THE ENTIRE RANGE OF ELASTIC
‘CTTTTANDTINELASTIC PHASEST ANY TYPE OF JOINT GEOMETRY CAN BE ANALYZED
c INCLUDING VARTIABLE PLATE AREAS SO THAT SHINGLE JOINTS CONSTITUTE
‘G TOMLY ATSPECTIAL CASE,

77 TLIST OF  ARRAYSTUSED IN THE PROGRAM

C ‘AGLT ¥ GROSS AREATOF THE LAP PLATE

c AGM t GROSS AREA 0OF THE MAIN PLATE

CTTT T AGRUSTGROSS "AREATOF THE LAP PUATE IN ATREGION

c AGRM? GROSS AREA 0OF THE MAIN PLATE IN A REGION

C ™ TANULTt NET AREA OF THE LAP PUATE

c ANM t NET AREA OF THE MAIN PLATE

T ANRUSTNETTAREA OF " THE LAP PUATE "IN A REGION

c ANRM3 NET AREA OF THE MAIN PLATE IN A REGION

CTTTAPLTTS APPLIRD FORCE™ FOR WHICH THE JOINT IS BEING ANALYZED
c DF ¢ DEFORMATION OF FASTENER

‘CTT T NFRTYTNUMBER OF FASTENERS 'IN A" REGION

C P t PITCH

CTTTTTPRTTITPITCOH INTATREGTION

C PFL t FORCES IN THE LAP PLATE

CT 7 PFMTY FORCES. IN THE MAIN PLATE T
c RF 3 RESISTANCE OF FASTENER

T SUTTY STRAIN TINTTHE LAP "PLATE

C SM ¢ STRAIN IN THE MAIN PLATE

T UL ULTIMATE LOAD OF THE "UAPPLATE

C ULM ¢ ULTIMATE LOAD OF THE MAIN PLATE

CT 7 YDU ¢t "YIELD DEFORMATIONTOF THE LAP PLATE

] YOM ¢ YTELD DEFORMATION OF THE MAIN PLATE

CTT YLLT YV YTELD LOAD OF THRETLAP PLATE

c YLM ¢t YIELD LOAD OF THE MAIN PLATE

c OTHER SYMROLS USEO IN THE PROGRAM

c ANAS ¢ THE RATIO AN/AS v
C™ CHD ¢ CHANGE IN DEFORMATION AT THE END OF PREVIOUS ITERATION
c CHL ¢ CHANGE IN LOAD AT THE END OF PREVIOUS ITERATION
T DFF T T DEFORMATION OF THE FIRST FASTENER

C DULT 3 ULTIMATE DEFORMATION OF THE FASTENER

CTTT T EPS T Y CONVERGENCE CRITERION

c FA $ AREA OF THE FASTENER

CT 7 FDT ¥ DIAMETER OF THE FASTENER

c FPL 1t FASTENER PARAMETER LAMABDA

C FPM T ¥ FASTENER PARAMETER MU

c G t GAGE

T T HD T ¥ DIAMETER TOFTTHE HOLE

c NF t TOTAL NUMBER OF FASTENERS

CT T NITERS MAXIMUM NUMBER OF "ITERATIONS

G NPZ ¢t TOTAL NUMBER OF PLATE ZONES=NF+1

T TNREGTYTNUMRBRER TOF T REGIONS

c PULT 8t ULTIMATE RESISTANCE OF THE FASTENER

cT SRF 7 SUMTOF THE RESISTANCE OF THE FASTENERS

c SUL ¢ ULTIMATE STRESS OF THE LAP PLATE

Y SUMT ULTIMATE STRESSTOF THE MAIN PUATE

c TSA ¢t TOTAL SHEAR AREA

CTT T TUNI®TTUNIFORM PITCH

c YM 3 YOUNGS MODULUS

COMMON/AL/ANM{50) 4 AGM(50) ,ANL(50) ,AGL(50),YLM(50),YLL{50),APL{50)
T TTCOMMON/ZAZZULMTBDY S, ULL (50, YOM(S0) 5, YDL(S50)Y5RFIS0)Y 3 DF (50)
NOMMONZARZSMISNY .St (SN CRFMIBNY LPFL (GNY.DISNY PN (50) .PNMISN)Y
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COMMON/AL/NFR(10) y ANRM(L10) ,AGRM(10) , ANRL{10),AGRL (10)
COMMON/AS/ELAS,PLASyNITER,COEF,EPSyYM,IN,TO,NLOAD
T COMMONZAB/NFYNREG, SYMy SUM,SYL,SUL, G, FDOyRULT , DULT,FPL,FPM, UNIP
DATA ELAS,PLAS,FLAG,NITER,COEF,EPS,YM,IN,I0/2HE ,2HPL,1H*,50,
0.65667,1.0,30000.0,1, 27
100 READ(IN,11)NF,NREG,SYM,SUM,SYL,SUL,G4FD,RULT,DULT4FPL,FPM,UNIP
TTIF(NFY 200,200,110
110 READ(IN,12) ((NFR(I)),I=1,NREG) ,NLOAD
READI{IN, 13) ( (ANRM(T) y AGRM(I) ,ANRL(TY,AGRL(I)),1=1,NREG)
IF (UNTP) 120,120,130
120 READ(ING LY (P(IY,I=2,NF) § GO TO 150
130 DO 140 I=2,NF
147 P(IY=UNIP
150 IF(NLOAD-1)170,170,160 ‘
160 READCIN, I3Y ((APL(I)) ,I=2,NLORDY ¢ GO TO 180
170 NLOAD=1
TR0 CONTINUE
CALL SHING
TTTBOTTO {00
200 CONTINUE
i1 FORMAT(2I5,14F5.0)
12 FORMAT(1615)
13 FORMAT(10F8.0)
CALL EXIT
END
SUBROUTINE SHING
T COMMONZAL/ANM(50) ,AGM{50) ,ANL(50),AGL(50),YLM(50),YLL{50),APL(50)
COMMON/A2/ULM(50) 4ULL (50),YDM(50),YDL(50),RF(50),DF (50)
"COMYON/A3/SM{50) ,SL(50) 4PFM(50) ,PFL(50),2(50),PDL(50) ,PDM(50)
COMMON/AL/NFR(10) , ANRM{10),AGRM{10) ,ANRL (10), AGRL(18)
T COMMONZAS/ELAS,PLAS,NITER,COFF,EPS, YM, IN, I0,NLOAD
COMMON/AB/NT 4 NREG,SYM,SUM,SYL,SUL,G,FD,RULT,DULT,FPL,FPM,UNIP
TTTFRIXN) SRULTHF (L, 0=EXP (=FPM*¥X)) ¥¥FPL
PSMIX)==X*HM*ALOG (1. 0=-(STR=-SYM) /SDM)
- PSL XY ==X¥HL¥ALOG (1.0~ (STR=-SYLY/SDOL)
RNF=NF ¢ FA=3.14159265*FD¥FD/4, ¢ TSA=RNF¥*FA¥2, § NPZ=NF#1
HD=FD+0, 0625 § SOM=SUM=-SYM ¢ SDL=SUL-SYL § TEM={G-HD)/G
HM=TEM/SDM $ HL=TEM/SDL ¢ K=0 §$ NFMi=NF-1
Do 1i0 T=1,NREG
NFI=NFR(I) ¢ ANMI=ANRM(I) ¢ AGMI=AGRM(I) $ ANLI=ANRL{I)
TTTAGLTI=AGRU(IY ¢ ULMI=SUM¥ANMI & ULLI=SUL¥ANLT
YLMI=SYM¥ANMI $ YLLI=SYL*ANLI
g0 100 JU=L,NFT % J=K¥JJ ¢ JP=J+1
ULMIJY =ULMT  § ULL(JPI=ULLTI ¢ YLM(JI=YLMI ¢ YLL(JP)=YLLI
T ANMOIY=ANMT 3 AGM(JY=AGMI & ANL{JPY=ANLY & AGL(JPY=AGLT
100 CONTINUE '
110 K=KFNFY  §  TEWSSYMZYMN & TECESYLZYM
DO 115 TI=2,NF ¢ VYDM(I)=P(I)*TEM ¢ YDL(I)=P(I)*TEL
115 CONTINUE
ANMINPZY=AGMINPZ)=ANL (1) =AGL (1) =ULM(NPZ) =ULL (1) =YLL {1)=YDM(1)=0,0
T YOMINPZY EY DL T EYOU NP ZY P (M =P (NPZY S0, 0 ¢ YLMINOZYEYUMINFY
IF(ULM(1)=-ULL (NPZ))120,120,116
1 NPZ2ENPZTE
DO 118 I=1,NMPZ2 ¢ J=NPZ-1
TTOTEMEPU(IY § 0 PUIVE PCIY $ PUIYETEM
TEM=ANM(I) $ ANM(I)=ANM(J)Y $ ANM(J)=TEM
TTOTEMTANCTDYT ¢ ANCUIYEANC (N ¢ ANL(JIYETENW
TEM=AGM(I) $ AGM(I)=AGM(J) ¢ AGM(J)=TEM
TTTTYEMEAGLIY T ¢ AGL(IVEAGLIIY T AGLUNETENM
TEM=ULL(I) ¢ ULL(II=ULL(J) $ ULL(J=TEM
TTTTTEMEUUMUTTY S OLMCIYEULMIYY 3 UCMIY=STEM
TEM=YLM(I) ¢ VYLMII)=YLM(J) ¢ VYLM(J)=TEM
TEMSYOMUIY 8§ _YDMCIYEYDM(I)Y ¢ YOMU{JIYETEM
TEM=YLL(I) § YLL(I)=YLL(J)Y ¢ VYLL(J)=TEM
TEM=YOLT{IY ¢ YOL(DY=YDL(JY ¢ VYDLUJIY=TEN

TR AOAMTTNNIE
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120 WRITE(IO,10) $ WRITE(IO,14)
ANAS=ANM(L) /TSA ¢ ALOAD=AMAX=ULM(1) ¢ AMIN=0,

T HWRITE(IO,15)NFyNREG,FD,FA,RULTyDULT,FPL,FPH
WRITE(ID,21) § WRITE(IO0,16)

_"_"""NRITE(IO?i?YSUH;SYH,SUE?SYETG;]NKS
HRITE(IO421) ¢ WRITE(IO,19)

WQITE(IO,ZD)(KI,AGQM(IY’ANRM(I),AGRC(IT‘INRL(I)) I= 1,NREG)
HRITE(IO,21)

HWRITE(IO,IDIP DY ZUUM (Y, ULL(YY,
o ((TyPIT+1YyULM(I+1),ULL(TI+1)) ’I=1,NF)

c CALCULATING PLATE AND FASTENER FORCES

130 DO 900 TILOAD=1,NLOAD

“DMAX=DFF=0ULT ¢ DMINZ0T % ITERED
IF(ILOAD~1)204,204,134

134T AUOAD=APL(ILOAD)
IF (ALOAD-ULTLI 402,136,136

TT1367WRITE(UINSG26YAL0OAD 3 GO TO 900
204 EPS=0.001%¥ALOAD ¢ DO 206 I=1,NPZ

72067 SM(I) =SLUITY=ELAS
PFM(1)=ALOAD ¢ DF(1)=DFF

TTTTTTTDO 2427 IS, NFMYTT ST JETHY :
RE(D)=FR(DF(IN) § PFM(UNI=PFM(I)-RF(I) $ PFL(JI=PFL(II+RF(I)

208 TIFHPENTINYUB27y 462,210
210 IF(PFM(J)-YLM(J) 212,212,214

TT2127PDMUINEYDMID) FPFMID /YLMIIY T $ GO TO 218
214 IF(PFM(J)=ULM(J)) 215,368,368 '

TTT216  STREPFMUD ZANMCIY T8 TPDMUDYEYDM(IY ¥PSHN(PLUY)
218 IF(PFL(J)~-ULL(J))220,462,462

TTT220TTIFU(PFLONEYLLINI222,222,22
222 PDL(J)=YDL{J) ¥PFL(J) /YLL(J) & GO TO 226

224 STR=PFL(JY/ANL(IY 8 "PDLINEYDL IO HPSLIP(NY
226 DF (N =DF(I)=PDM(J)+PDL(J) ¢ IF(DF(J))368,3568,228
TT228TIF(DF (U -0ULTI 24052505462 .
240 CONTINUE

T T2L2TCONTINUE _
RF (NF) =FR(DF (NF) ) $PFM{NPZ)=PFM(NF) =RF (NF) $PFL INPZ) =PFL (NF) +RFINF)

TITERSITER¥YI $“‘TF(PFM(NPZ)TﬁSZ,SUk;BBB
302 IF(ITER-NITER) 304,304,502

T304 D0 73067 I=1,NPZ
306 RF(I)=DF(1)=POM(I)=POL(I)=PFM(I) PFL(I) 0.0

T ITER=ITER¥1
PFM(1)=ALOAD ¢ DOF(1)=DFF

DOTIL2TI=L,NFMYT T 3 USTHY .
RF(I)=FR(DF(I)) $§ PFM(IN=PFN(I)=-RF(I) ¢ PFLIJN=PFLIT)+RF(])

TT3087IF (PFM(JY) 36253625310
310 IF(PFM(J)=-YLM(J))I312,312,314
T2 POMIO Y DMUIIY *PFMITIYZYLMTIY ¢ GO TU 313
314 IF (PFM(J)=~ULM(J))316,368,368
TT3167 STR=PFM(IV/ZANMIIY S POMIIEYDM (I +PSHIPTI))
318 IF(PFL{J)=ULL(J))3204362,362
T30 IFA(PFLUIYSYLU(UYY322,322532%
322 PDLUJI=YDL{JY*PFL(JY/YLL(J) ¢ GO TO 326
TTTBRETSTR=PFLUCIY/ZANUTIY §7 POLUTIYV=YOU (N FPSLIPTIN)
326 DF(J)=DF(I)-POM(JI4+PDL(J) & TIF(DF(J))368,368,323
TT328 IF(DF(I)Y=DULTY3H0,340,362
340 CONTINUE
342 CONTINUE
RF (NF) =FR(DF (NF) ) $PFM(NPZ)=PFM(NF)=RF{NF) $PFL(NPZ)= PFL(NF)+RF(NF)
T TTRES=EPEFMINPZY T §T ARES=ABS(RES)
TF (ARES-EPSYIG0L4,504,360
TT3R0TIF(RES)3627504,368
362 AMIN=ALOAD $ GO TO 37¢
TT3R8TAMAX=ALOAD
370 ALOAD={AMAX+AMTNY/2. & _GO_T0O 302




16.

4UZ 1Fr(LT=R=NLTER) 4G,y 44,4902
404 DO 406 I=1,NPZ
TRO6 TRFIIY EDF (IYEPOM(DY =P DL (T =PFMTIY =PFL(IY =0, 0
ITER=TTER+1
PFM(1Y=AL0AD ¢ DOF (1)=DFF
DO 442 I=1,NFM1 ¢ J=I+1
TTRFIT): FR(Dr(I)T“i’“PfM(J)=P?M(I)-RF(I) T PFL(JY =PFL(TY +RF (D)
LO8 IF (PFM(J))ILB2,462,410 : ‘
TR0 IF(PFH (N SYUN (D Y12, 412,010
412 POM(J)=YDM(J) *PFM(J) /YLMI(D) ¢ GO TO 4138
TR TIF(PEM Y -ULM (I 416,468,468
416 STR=PFM(J)ZANM(J) $ PDM(J)=YDM(J) +PSM(P (J))
T8 IF(PFUIYS0LL (O Y420, 062,462
420 IF(PFL{JI=YLL(J)) 422,422,424
T2 POLCIVSYOLTIY ¥PFLCIY/YCL(JY % GO TO 426
424 STR=PFL(JI/ANL(J) & PDL(J)=YDL(J) +PSL(P(JI))
TTL26 DFOIYEDFA(IYSPOMNTIY#POL(IY & TIF(DF(NVL68,463,428
428 IF(DF(J)=-DULT) 440,440,462
TT440 CONTTINUE
442 CONTINUE ‘
TRFINFY=FRIDFINFYY SPFMINPZY =PFM(NFY=-RF (NFY §PFLINP7) =PFL (NFY +RF (NF)
RES=PFM(NPZ) § ARZS=ARS(RES) :
TTIF(ARES-EPS)SNR,508,4560
460 IF(RES)IL62,508,468
TTLRe?2 OMAXEDFF ¢ G0 T0 470
468 DMIN=DFF
T L70 DFF=(DMAX+DMINY/2. § GO YO 402

[4 oUTPUT OF RESULTS
T 502 WRITE(ID,10) ¢ WRITE(I0,25) ¢ GO TO 508
504 ULTL=ALOAD
7508 WRITE(TIO0,10)
DO 514 TI=1,NF
TIF(PFMITY =-YLMIT) ) 514,514,512
512 SM(I)=PLAS
514 CONTINUE
DO 520 I=2,NPZ?
IF(PFLA(IY-YLL (1IN )Y520,520,518
518 SL{I)=PLAS
T 520 CONTINUE
WRITE(I0,22)
DO 530 T=1{,NF
ASS=RF(I)/2./FA
WRITE(IO, 26 PFM TV, PFLUIY,, POMCTY, SMTTY,POL(TY,SLTD
530 WRITE(I0,23)I,RF{I),0F(TI),ASS’
NRITV(IO,ZQ)DFM(N°Z),PFL(NPZ)’PDMTNPZ'7SN(NP2Y~PDL(NPZ),SL(NPZT__
K=1
‘ WRITE(TO,27)
DO 550 I=1,NREG
T UNFIENFR(TIEK=-T ¢ TSR=0L.0 § TEM=NFRU(I)
DO 540 J=K,NFI
TSR0 TSR=ETSRERF (I
AFF=TSR/TEM $§ AFS=AFF/2.,0 % ASS=AFS/FA
TRRITEA(TI0,29) Ty NFR(TI) ; AFF, AFS,ASS
550 K=NFI
TTTTTTTTARFE (AL OAD-RESY /RNFT ST AFSEAFF/ 2.0 $ ASSEAFS/FA
WRITE(TIO,30)INF,AFF,AFS,ASS
T T TUHRITE(I0,28) ITER
908 CONTINUE
TTTLOTFORMATUIRIY
14 FORMAT (10X, *FASTENER DATA¥,//,10X,*NUMBER REGIONS DIAMETER®,
TTTTIBX*AREAT T ULTIMATE T TULTIMATE UAMBDA MU*, 75290, *INGF,
25X 5 ¥SQ. INs STRENGTH DEFORMATION®,/,48X,¥KIOPS¥*,8X,*IN,*¥)
L FORWﬂT(IikytﬂyFiz o33 F 9.3, F9, 1, FL2,3,F10.2,F8,2)
16 FORMAT(IOX#*PLATF DATA*./7.1NXa




17.
1*MAIN PLATE MAIN PLATE LAP OLATE *,
2¥LAP PLATE GAGE RATIO*,/,11X,*ULTIMATE YIELD ULTIYATE®,

T3SX,FYIELD T U INGTTT QN/AS*,/,iIX;8HSTRENGTH;QX§3(8HSTRENGTH;3XTT——":
b /413Xy ¥KST*,3Xy*KSI*,9X, *KSI*,8X, *KSI*)

17 FORMAT(F17.1,2F121,FIL15F8LL,F7.3)
19 FORWAT(lOX,*RFGION ,2(10HMATN PLATS,2X) ,2 (9HLAP PLATE,3X)/

T 18X 2 (124 HGROSS T AREATT T NET AREAT Y /LOX, 4 (THSN Y TNV, 5X))
20 FORMAT(IiQ,Fll 253F12.2)

21 FORMAT(//7)
22 FORMAT(10X,*FORCES AND DEFORMATIONS IN PLATES AND FASTENERS*,//,

V10X, 2(10HFASTENER T ) S¥MATINT PLATE™ LAP PLATE — FASTENER *y

+ ¥*MAIN PLATE LAP PLQTE FASTENER*/iiX,BHVUMSEQ,QX,Z(SHFORCEyﬁx
.Y“ HTFORCE™ 33 (13H DEFORMATIONY, 4X; 6HSTRESS/ 22X, 3(4RKIPS, 7X) ,y
+2X93(3HIN,,10X) y3HKSI/N)

23 FORMAT(ILIS,F12.,2,523X5F12,h520X,F842)
24 FORMAT(27X,F11.2,F1242914Xy2(F10.6,2XyA2))
?S”FORMAT(1DX;*NO“CONVEQGENGET"R?SUETSWOF"EKST*ITERATION::¥77Y*_—
26 FORMAT(10X,*APPLIED LOAD OF¥,F9,2,* KIPS EXCEEDS ULTIMATE LOAD¥)
27 FORMAT(77510Xy*REGION "NUMBER™ OF_"?ZIIBHAVERRGF"‘ASTENFR 2XY,
«13HAVERAGE SHpAR,/,18X,¥FASTENERS FORCE KIPS *y

TTTe*SHITAR KIPSTTT T STRESS TKSI®)Y
28 FORMAT(//10X,*E-=-ELASTIC PL--PLASTIC NO.OF ITERATIONS=%*,14)

29 FORMATI(TI4,19,2F17,2,F16,2)
30 FORMATU(/,10X ,*COMPLETE® /411Xy ¥JOINT*,17,2F17.2,F16,2)

BLTFORMAT(LOXy1AHFASTENER ™ PITCH,2(16H ULTIMATE LOADY/7TIX,

«45HNUMBER IN. MAIN PLATE LAP PLATE/33X,2(4HKIPS,12X)
T e /F28633F13.,2,F16.27(I15/F26.3,F13.2,F16.2))
RETURN

TTTEND
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