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ABSTRACT 

This report presents a theoretical and experimental analysis 

of the behavior and the strength of a heavy shape column built up from 

flame-cut plates. The theoretical part of the analysis includes the 

two-dimensional in-plane column analyses by the tangent modulus concept 

and by the load-deflection approach, and by a three-dimensional biaxial 

bending column analysis. The effects of residual stress, yield strength 

variations over the cross section, and initial out-of-straightness in 

the two-principal axes, are considered in the theoretical analysis. 

To obtain experimental data on the behavior and the strength 

of heavy built-up columns, a complete experimental investigation was 

conducted on one particular shape--H23x68l, ASTM 36 steel. The experi­

mental part includes the measurement of the yield strength levels 

and residual stresses over the cross section, a stub column test, and 

a full-size column test. The column tests were conducted at the National 

Bureau of Standards, Gaithersburg, Maryland in their l2-million pound 

testing machine. 

Failure of the column was observed in biaxial bending with 

excessive bending about the major axis. The results of the column 

test and the theoretical prediction based on a three-dimensional biaxial 

bending column analysis are compared and good agreement is observed. 

The need for the biaxial bending analysis for centrally loaded heavy 

columns built up from flame cut plates is attributed to the particular 

pattern of residual stresses distribution as well as to the initial 

out-of-straightness about the two principal axes which are inherent in 

such columns. 



1. INTRODUCTION 

At present, the design of heavy shape columns does not 

differ from that of small and medium-size shapes. Very little informa­

tion is available on the strength and behavior of heavy columns, 

yet they are used extensively, for instance, in high-rise buildings, 

in major bridges, and in off-shore structures. The majoc problems 

associated with the design of heavy columns are the lack of data on 

residual stresses, yield strength variation over the cross section, 

and initial geometric imperfections of the columns. 

The current AISC Specifications for column design(l) which 

is based on the CRC basic strength formula~2) is developed from studies 

of small and medium-size shapes. Data from heavy column shapes have 

not been included in these formulas. Consequently, there exists a 

need for design rules that are applicable to heavy shape columns. 

An extensive research program is currently underway at Lehigh 

University on residual stresses in heavy welded plates and shapes. 

A significant portion of the experimental phase--on the measurement 

of residual stresses in heavy shapes--has been reported in Refs. 3 and 

4. Using these results, the theoretical strength of heavy columns 

built up from flame-cut plates can be predicted, and have shown an 

increase in strength when compared with lighter welded members and 

their rolled counterparts~3) However, there are no full-size heavy 

column test results presently available to give experimental verifica-

tions. 
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This report presents a comprehensive experimental investigation 

performed on one particular shape--H23x68l, ASTM A36 steel--whose slender-

ness ratio is within the range normally used in practice for such mem­

bers. Failure of the column was observed in biaxial bending with ex­

cessive bending about the major axis. The results of the column test 

and the theoretical prediction based on the analysis of biaxially 

loaded columns are compared and good agreement is observed. The need 

for the biaxial bending aralysis for centrally loaded heavy columns 

built up from flame-cut plates is attributed to the particular pattern 

of residual stress distribution as well as the initial out-of-straight­

ness about both axes. 

2. SCOPE OF TEST PROGRAM 

Specimen 

Heavy shapes are available in different steel grades and cross 

sectional forms. Rolled shapes are presently available to W14x730, the 

so-called "jumbo" shape. When the strength of the available rolled 

shape is insufficient for a particular application, the column may be 

strengthened by welding additional plates to it. Alternatively, and 

perhaps more conveniently, a heavy shape can be fabricated by welding 

together component plates; for instance, three plates can form an H­

shape and four plates a box-shape. Heavy tubular columns, used exten­

sively in offshore structures, are usually prepared from single plates. 

The residual stresses in such shapes are built up as a consequence of 

a superposition of residual stresses developed in the various phases 

of manufacturing and fabrication. 
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Herein, a comprehensive experimental investigation for one 

particular heavy welded shape, H23x68l, is presented. It is the 

heaviest shape ever tested in column tests. The tests were performed 

in the newly installed l2-million pound capacity testing machine at 

the National Bureau of Standards, Gaithersburg, Maryland. 

Fabrication 

-3 

The test specimen was fabricated according to AWS specifica­

tions(5) by steel fabricators following the normal practices and proce­

dures using automatic oxygen-cutting and submerged arc-welding equipment. 

The component plates were first obtained by oxygen-cutting from larger 

base metal plates of ASTM A36 steel. The H23x68l shape was welded 

using two tandem electrodes. Thus, it was possible to deposit the 

fillet welds s iinultaneously in one pass. After the first flange and 

web were joined together, the,T-shape was turned over and the other 

flange was welded to form the final H-shape. A summary of the pertinent 

welding data is given in Table 1. A more detailed account of the fabri­

cation of the H23x68l shape is given in Ref. 3. 

Preparation of Test Specimens 

Figure 1 shows the layout for the preparation of the test 

specimens to carry out the suppleme'utary tests and a full-size column 

test. The test program consists of: 1) Tension coupon tests; 2) Re­

sidual stress measurement; 3) Stub column test; 4) Full-size column 

test. 

The column specimen was originally prepared to be tested under 

a pinned-end condition. At a later stage, it was decided to test the 
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column under the flat-end condition to simulate fixed-end conditions. 

This change was made due to the lUnitations of the capacity of the 

available end-fixtures, and the considerable expense involved in pre­

paring high-capacity end-fixtures. To maintain the same order of magni­

tude of slenderness ratio originally intended, the column was made 

longer by welding to it specimens at the two ends. The details of this 

modification are shown in Fig. 1. 

3. SUPPLEMENTARY TES TS 

Supplementary tests were conducted to determine the basic 

properties of specimens which are required to evaluate the theoretical 

column strengths. The following supplementary tests were performed: 

Tension Coupon Tests 

A total of twenty-four 2-inch gage length (ASTM A570) specimens 

were tested: fourteen from the flange and ten from the web. The 

specimens were cut at four different locations on the shape and five 

or seven specUnens (from the web and flange, respectively) were taken 

across the thickness of each location (Fig. 2a). Results of the static 

yield strength defined by the stress at 0.005 strain are summarized 

in Fig. 2c. The recorded yield strength varies between 29.5 ksi (203.4 

N/mrn2 ) and 33.7 ksi (232.4 N/mrn2 ) for the flange, and between 30.7 ksi 

(211.7 N/mrn2 ) and 34.8 ksi (239.9 N/mrn2 ) for the web. The average 

yield strengths are 31.0 ksi (223.7 N/mrn2 ) and 32.5 ksi (224.1 N/mrn 2 ) 

for the flange and web, respectively. It was observed that the interior 

specimens had a lower yield strength and a gradual transition from the 



337.33 

elastic to the strain hardening range, while the surface specimens 

exhibited a higher yield strength and a "flat" yield plateau and a 

marked onset of strain hardening usually observed in ASTM A36 tensile 

coupons (Fig. 2b)~6) 

Residual Stress Measurement 

The procedure used for the residual stress measuremnet was 
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the sectioning method, involving longitudinal saw cuts across the width 

and through the thickness'of the component plates. A detailed descrip-

tion of the sectioning method is given in Ref. 7. 

The variation of residual stresses through the thickness was 

measured by employing the rtslicingrt technique. After the first set 

of saw cuts are performed (complete sectioning), additional gage points 

were laid along the sides of the elements. New readings were then taken, 

followed by sawing the ~lements into strips across the thickness (slic-

ing). Such measurements are extremely tedious and expensive. The 

results for the H23x681 shape are shown in Fig. 3 where the residual 

stress distribution in ksi is represented in the form of an isostress 

(3) 
diagram, that is, contour lines for constant stress. 

Stub Column Test 

The purpose of a stub column test is to determine the average 

stress-strain curve for the entire cross section, including the effects 

of residual stress and yield strength variation over the cross section. 

The most important data furnished by this curve is ,the tangent modulus. 

Hence, a smooth curve must be established above the proportional limit 

by taking test points at closer intervals. 



337.33 -6 

The length of the stub column was selected such that it is 

sufficiently long to retain the original residual stress in the column 

but short enough to prevent any premature failure occurring before the 

yield load of the section is obtained. For the H23x68l shape considered, 

a length of 5 ft 10 in (1.78 m) was selected. The procedure used in 

, testing the stub column is described in detail in Ref. 8. 

Figure 4 shows the stub column set-up and the instrumentation. 

After the specimen was aligned such that the deviation in strain did 

not exceed 5 percent of the average value, the specimen was loaded 

continuously with only one stop made at the yield plateau to determine 

the static yield strength level. A strain rate corresponding to a 

stress rate of 1.0 ksi/min (6.9 N/mm /min) was used throughout the test 

after it was established in the elastic range. The average stress-

strain curve obtained from this test is shown in Fig. 5. The propor-

tional limit, the elastic modulus, and the tangent modulus are the 

important data furnished by this curve. 

Using the yield strength level criteria defined by the stress 

at 0.005 in/in strain~8) the static yield stress was found to be 31.3 

ksi (216 N/mm2) , which indicates a close correlation to the weighted 

average yield stress determined by tensile coupons,. 31.·2 ksi (215 N/mm2). 

The measured yield strength of the specimen was below the specified 

value of 36.0 ksi (248.2 N/mm2 ). 
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4. COLUMN TEST 

Pinned end conditions are frequently used in column tests, 

and, it is necessary to provide end fixtures for such a condition. 

For heavy columns, this condition introduces practical difficulties 
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and considerable expense. Flat end conditions are, in comparison, easy 

to perform. 

Theoretically, ~he effective length of a column tested in 

the fixed-end condition is one-half that of a pinned-end column. How­

ever, in testing columns under fixed-end conditions, there is a problem 

in determining the degree of end fixity since complete fixity cannot 

be attained in reality, since in effect, the column is usually tested 

in the flat-end condition. The amount of end fixity and, thus, the 

effective length of the column is not a constant but a function of the 

applied load. This effective length can be determined accurately by 

locating the positions of inflection points in the column test. 

Column Testing 

Prior to testing the column, initial measurements were taken 

of the geometric characteristics of the column specimen; these include 

the cross-sectional area and the initial out-of-straightness. Cross­

sectional measurements were taken at five locations, at the end, and 

at the quarter points of the column length. The initial out-'of-straight­

ness of the column was measured at nine-levels, each spaced at one-eighth 

of the column length. Measurements were taken 'in the two principal 

axes and are shown schematically in Fig. 6. The maximum out-of-straight­

ness was 0.58 inch (14.9 mm) at the column midheight about the major 



337.33 -8 

axis. The initial out-of-straightness of the column was symmetric for 

the major axis and unsymmetric for the minor axis (Fig. 6). 

The column testing procedure described in Ref. 9 is then 

followed. The alignment of the column was performed geometrically 

by matching the end plates centers to the centers of the flanges at 

each support--the reference point was located at the midpoint of the 

line connecting the two centers of the flanges. The end plates were 

centered with reference to the centerline of the machine. 

The instrumentation for the column test consists of poten-

tiometers attached at quarter points to measure lateral deflections, 

electric resistance strain gages at characteristic points to measure 

strain and curvature variations along the column length, electrical 

rotation gages at the cross-head to measure end rotations about the 

two axes, and a dial gage to measure the overall shortening. The 

test set-up is shown in Fig. 7a under the 12-million hydraulic testing 

machine. 

The load was applied continuously at a rate of I ksi/min 

(6.9 N/mm /min) and all measurements were instantly recorded auto-

matically at one minute intervals. The maximum "static" load was 

recorded as 6140 kips (27,300 MN) or 0.98 P by maintaining the 
y 

cross-head movement until the load was stabilized. The loading was 

terminated when the midheight deflection was approximately seven inches, 

(180 mm). The specimen at the end of test is shown in Fig. 7b. 
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Test Results 

The measured load versus midheight deflection curves are 

shown by the small circles in Fig. 8a for the case of minor axis bend-

ing and in Fig. 8b for the case of major axis bending. The values 

shown at zero-load level correspond to the midheight initial out-of-

straightness of the column. Also shown in these figures are the 

theoretical curves derived from the two dimensional in-plane column 

analysis as well as the t~ree dimensional biaxial bending column analysis. 
I 

A detailed discussion on these theoretical predictions is given later. 

A substantial deviation of the measured curve from the linear 

behavior is seen to initiate approximately at the load P = 5400 kips 

(24,000 MN) or 0.865 P. Beyond this load, the curve starts to bend 
y 

very rapidly and this rate of bending falls steadily as the axial load 

increases (Fig. 8). When the lateral deflection for the minor axis 

reaches the value approximately 0.8 inch (20 mm), the value of minor 

deflection becomes practically a constant until the end of the test 

(Fig. 8b). The column finally failed with excessive bending about the 

major axis. Unloading of the column did not occur in the loading range 

of the test. 

Rotation of the cross-head was measured using two electrical 

rotation gages oriented along the minor and major axes of the column 

cross section. Figure 9 shows the rotation measured at different load 

levels. A sharp deviation of the major axis rotation is observed at 

the initial stages of loading after which a fixed-end condition was 

maintained until the load reached 5500 kips (24,500 MN) or 0.880 P . 
Y 



337.33 -10 

The cause for the initial deviation is believed to be due to the 

adjustments of the cross-head. It is of interest to note that the 

shape of the load-rotation curves are very similar to that of the load­

mid-height deflection curves shown in Fig. 8. The two sets of curves 

are seen to start to bend very rapidly almost at the same load level. 

The overall shortening of the column was obtained by measuring 

the cross-head movement using a dial gage. The load versus overall 

shortening curve is shown in Fig. 10. Similar to that of the load­

end-rotations curves shown in Fig. 9, a deviation is also observed 

at the initial stages of the loading. The additional factor causing 

this deviation may be attributed to the deformation of the copper plates 

inserted between the end plates and the specimen. The stiffness of 

the column beyond the value of axial load P = 2000 kips (8900 MN) 

agrees very closely to the theoretical stiffness which is predicted by 

the formula AE/L where the value of AE is obtained from the stub 

column test. 

Strain readings were recorded at selected points along the 

column lengths using electric resistant strain gages. Figure 11 shows 

the strain measurements at the column midheight for different load 

levels. Bernoulli's hypothesis on the linear strain distribution 

over the cross section is seen to be rather good up to the initiation 

and subsequent yield plastification of the cross section. However, 

when the cross section has been substantially plastified, a linear strain 

distribution assumption for the heavy shape column section may not 

be justified. 
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5. THEORETICAL ANALYSIS 

The strength of an axially loaded column may be determined 

either by its bifurcation load or by its maximjm load. For a perfectly, 

straight column with concentric load application, the column remains 

straight under increasing load until the tangent modulus load is reached. 

Real columns, however, show an initial out-of-straightness, unsymmetric 

distributions in material properties, and residual stresses. This 

geometrical and material imperfection, along with the fact that the 

load can not be applied axially along the center line of the column, 

will cause the column to deflect immediately upon loading. Thus, all 

columns must be treated as beam-columns (deflection problem), not as 

straight columns (eigenvalue problem, tangent-modulus method). 

Several methods of solution exist to determine the behavior 

of such columns. However, in determining the behavior of heavy shape 

columns, the major problems are: (1) the variation in yield strength 

and residual stresses through the thickness of the component plates, 

and (2) the initial out-of-straightness in the two principal axes 

directions. The theoretical analysis presented herein considers both 

the two-dimensional in-plane column analysis and three-dimensional 

biaxial bending column analysis. 

In-plane Column Ana1ysis--Tangent Modulus Load 

The strength of a centrally loaded column based on the tangent 

modulus concept may be written in the form 

(1) 
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where PT = tangent modulus load, E = elastic modulus, A = total cross 

sectional area, L = effective length of the column and ET effective 

tangent modulus of the shape. The tangent modulus load can be computed 

based on either measured residual stresses or the stress-strain relation­

ship of a stub column test~lO) The stub column approach is adopted 

herein for the theoretical predictions. Figure 12 shows the tangent 

modulus load curves with bending permitted about the minor and major 

axes of the column. 

In-plane Column Analysis--Maximum Load 

The calculations become more involved for maximum strength 

predictions even though the underlying basic concepts are rather simple. 

The method adopted herein is based on the assumption that the initial 

as well as the deflected shape under increasing load can be described 

by a half-sine wave. The equilibrium condition at the midheight cross 

section may be written in the form 

1 
P. = J E€ dA = ~ f E€y dA 

l.nt A urn E 

1 
= '5" Mint 

m 

where € is the strain distribution in the cross section. By assuming 

(2) 

linear strain distribution, Eq. 2 can be solved by employing a numerical 

iterative procedure. The maximum load, under which the column assumes 

a state of neutral equilibrium, is then determined when the rate of 

resisting internal moment of the column approaches zero. 

The in-plane behavior of the column was determined using a 

computer program (CDC 6400 Digital Computer) developed at Lehigh Univer­

sity~ll) The program computes the load-deflection relationship for a 
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column with sinusoidal initial out-of-straightness. It also handles 

residual stress and yield strength variation through the cross section 

but constant through the thickness of the component plates. 

In calculating the load-deflection curves for the H23x68l 

column the measured yield strength, residual stress variations, and 

initial out-of-straightness were used. The flanges and the web Here 

subdivided into 50 and 30 segments, respectively. The average measured 

residual stress and yield' strength values were used as the input data. 

Since the degree of end fixity during the test was unknown the two 

extreme end conditions were used in the analysis: pinned-end and fixed­

end. Thus, the load-deflection curves obtained correspond to the u~er 

and lower bound solutions to the problem. The calculated deflection 

curves are shown in Fig. 8a for the case of minor axis bending and in 

Fig. 8b for the case of major axis bending. In both figures the test 

results are seen to be bound between the two bounds. In Fig. 12 the 

maximum load column curves are shown. The curves are seen to be below 

the CRC basic column curve since the specimen had a yield strength lower 

than the specified value. 

Biaxial Bending Column Analysis--Maximum Load 

Several analytical procedures are available for the determina­

tion of the load deformation behavior of an isolated, initially imper­

fect column under biaxial bending~12) Herein, the tangent stiffness 

method to the solution of the heavy shape column is adopted for the 

theoretical analysis~13) The method is based on the analytical develop­

ment of the linear relationship between the infinitesimal changes of 

the generalized forces [of} and displacements [of}. The derivation is 
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based on the assumption that the initial as well as the deflected shape 

under increasing load can be described by a half-sine wave. 

It has the simple form 

[Of} = [Q] f 86} (4) 

The matrix [Q] is defined as the tangent stiffness matrix 

as it represents the tangent of the force-deformation curve as well 

as the stiffness of the cross section. In this procedure the load is 

applied as a sequence of sufficiently small increments so that during 

the application of each increment the column is assumed to behave 

linearly. Thus, the nonlinear behavior lis determined by solving a 

sequence of linearized equations 

-1 
[56} = [Q] [of} (5 ) 

An improved solution may be obtained by starting with an initial esti-

mate of the displacement solution. This solution is then backsubstituted 

into the equations and the procedure is repeated until an accepted 

convergence or a prescribed tolerance is obtained. The iterational 

scheme is similar to the Newton-Raphson method, thus, the solution will 

generally converge within a few cycles even for larger load increments. 

The load-deflection curves for the H23x68l column based on 

biaxial bending column analysis was performed using a computer program 

developed also at Lehigh university~13) The program computes the 

relationship between the applied load and the three generalized dis-

placements: lateral deflections in the two principal axes and twist 

of the cross section. The program can handle residual stress and yield 
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strength variations throughout the cross section including the varia­

tions through the thickness of the component plates. 

-15 

In the computation both the flanges and the web were divided 

equally into 30 segments through the width and 5 segments through 

the thickness. The average residual stress and yield strength (Figs. 

2 and 5) at each segment was used as the input data. The calculated 

deflection curves are also shown in Fig. 8. It can be seen that the 

theoretical curves predicted by the biaxial bending column analysis 

are in good agreement with the test results. 

The effective-length of the column was determined by plotting 

the curvature variation along the column length for different load 

levels. The curvature at each location is determined from the strain 

gage readings mounted at various levels and at opposite sides of the 

specimen. The curvature curves are shown in Fig. 13(a) for the minor 

axis bending and in Fig. 13(b) for the case of the major axis bending. 

It is noted that the point of inflection, that is, zero curvature points 

are not fixed but rather change with load for the case of minor axis 

bending and seem stationary for the major axis bending. The effective 

lengths determined from the experiment (Fig. 13) were used in the 

biaxial bending analysis of the column. The load versus the deflec­

tions in the two principal axes are compared in Fig. 14 and good 

agreement is observed. 
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6. SUMMARY AND CONCLUSIONS 

This paper contains a theoretical and experimental analysis 

of the behavior and the strength of a heavy shape column built up from 

flame-cut plates. The theoretical part of the analysis includes the 

two-dimensional in-plane column analyses by tangent modulus concept 

and by a load-deflection approach and a three-dimensional biaxial bending 

column analysis. The effects of residual stress, yield strength varia­

tions over the cross section and initial out-of-straightness in the 

two principal axes are considered in the theoretical analysis. Com­

prehensive experimental investigation was performed to determine the 

strength and behavior of one particular heavy built-up shape--H23x68l, 

ASTM A36 steel. The experiment includes. (i) measurements of yield 

stress levels in the cross section; (ii) measurements of resi.dual stresses 

distribution in the cross section; (iii) a stub column test; and 

(iv) a full-size column test. 

Failure of the column was observed in biaxial bending with 

excessive bending about the major axis. The results of the column 

test and the theoretical prediction based on a recently developed 

three-dimensional biaxial bending column analysis are compared and 

good agreement is observed. 

Based on this study the following conclusions may be stated; 

1. The two-dimensional in-plane column analysis considering 

the geometric and material imperfection of the column can 

predict the maximum strength of the heavy shape columns 

with good accuracy; however, the method may give a false 
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representation of the load deflection behavior of heavy 

shape columns. 

2. Because of the particular pattern and variation in residual 

stresses distribution in the cross section as well as the 

initial out-of-straightness in the two principal axes for 

-17 

the heavy shape columns, the three-dimensional biaxial bending 

column analysis is needed in order to predict accurately the 

load-deflectio~ behavior of such columns. 

3. The strengths of heavy shape columns built up from flame­

cut plates are found to be higher than those of lighter 

welded shapes as well as their rolled counterparts. 

4. Bernoulli's hypothesis on the linear strain distribution 

over the cross section of heavy shapes is found to be good 

up to the initiation and including the subsequent yield 

plastification of the cross section. However, when the 

cross section has been substantially plastified, the linear 

strain distribution assumption may not be justified. 

5. The existing AISC Specifications or the CRC design formulas 

may be used to predict the maximum strength of the heavy 

column shape built-up from flame-cut plates made of ASTM 

A36 steel. 
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Table 1 WELDING DATA FOR FABRICATION OF TEST SPECIMEN 

Typ~ Voltage Current Speed 

(ohm) (amp) (:in/min) 
-----------_._--\----- ----- - .. --.------.-.---.. -.----

1st Flange DC 26 700 15 

AC 31 530 15 
______ • ___ ._. __ ~_._ ~ __ ~ •• ___ ••• ___ • ______ ~ •• 0-

, 

2nd Flange DC 26 710 18 

AC 30 
_____ ~ .. _ .•• _._~~ •• ________ •• , __ ~ ~ __ ••• ~.~ ••••• " •• ~ ___ L. __ • .,. 

Welding detail: 
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Fig. 3 Two-Dimensional Variation of Residual Stress 
in the H23x68l Shape 
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Fig. 4 Test Set-Up of Stub Column 
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Fig. 7a) Column Test Under the l2-Million Capacity Testing Machine 
b) The Column Specimen at the End of Test 
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