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ABSTRACT

This dissertation is concerned with developing a finite element

formulationof the analysis of beam-columns, and with demomstrating the

applicability of the method to general beam~column problems as a practical

tool. The treatment includes linear static, linear stability and non-

linear analyses of beam-columns.

In the linear static analysis, a formulation is presented to
develop a one-dimensional finite element using variational principles.
The formulation is based on a functional consisting of two independent
fields: apolynomial approximation of a strain field in the domain, and
displacements at the boundary. The beam element has two nodes and

seven degrees of freedom at each node.

The linear stability analysis, which reduces to an eigenvalue
determination, utilizes a displacement formulation based on a finite
element idealization. A systematic procedure is developed to evaluate
the geometric stiffness matrices for beam-columns. The matrices derived
correspond to large displacements in axial and transverse directions and
also in twist. The finite element solutions are compared to analytical
solutions and the convergence characteristics are studied for a variety
of problems which include: columns with distributed axial loads, tapered
columns, columns on elastic foundations, pretwisted columns, space frames

and the lateral buckling of beams.

Finally, a finite element formulation of nonlinear analysis is
given to study general instability problems of beam-columns. A solution
procedure, using a direct incremental approach, is applied to numerical

examples to demonstrate the validity of the procedure.




The contributions achieved in this dissertation are:

-A one~dimensional finite element model is developed to

analyze general linear static beam-column problems.

-A systematic procedure is presented to evaluate geometric
stiffness matrices for beam-columns which are required to

perform a finite element analysis of stability problems.

-The geometric stiffness matrices are derived which corres-

pond to large lateral and torsional displacements,

~-The advantages of the finite element method are demonstrated
in the solution of a few stability problems, such as the
buckling of pretwisted columns and the lateral bﬁckling

of tapered beams, the analytical solutions of which are not

yet available,



1., INTRODUCTION

A beam-column, also known as a rod in classical terms, is
defined in this dissertation as a three dimensional body having one
dimension significantly greater than the other two. Examples of bodies
which may be so regarded are numerous, such as members of framed struc~-
tures, arches and curved beams. In the case of framed structures,
for example, the members are identified further depending on the
loading conditions, where columns represent the one limiting case where
the bending moments become zero, and beams the case in which the‘axial

force vanishes.

The purpose of a theory of beams is to provide appropriate
one~dimensional equations applicable to beam-type bodies. A one-
dimensional analysis, referred to as a beam theory, is necessarily
approximate and furnishes only partial or limited information. Indeed,
the desire for such limited information is the basic motivation for
the construction of a one-dimensional theory with the aim of providing
a simpler theory for the limited information sought. While the three-
dimensional viewpoint is certainly the most fundamental, the possibility
of employing a one-dimensional model for beam~type bodies presents it-
self in a natural way because of the considerable difficulties associated
with the derivation of the beam theory from the three-dimensional equa-
tions. The model, however, must be capable of supplying a substantial
portion of information the three-dimensional theory would furnish. The
notion of employing a model for an idealized body is frequently used
in classical continuum mechanics, in fact, the continuum itself is a

model representing an idealized body in some sense.



An approximate system of equations for beam~type bodies may

be developed by converting formally the three-dimensional field rela-
tionships to their one-dimensional analogue. Historically, interest

in the construction of more elaborate theories of beams arose from the
desire to treat wave propagation and vibrations of elastic rods. After
the three-dimensional theories were accepted in certain domains of
mechanics, Cauchy and Poisson sought to obtain theories by averaging
over a cross-section the results from a three~dimensional theory and

(1,2,3)

then letting the cross-sectional area approach zero Recently,
the use of polynomial approximations has been adopted extensively

to develop analytical beam theories., For example, the three-dimensional
field relations may be converted to their one dimensional analogues by
replacing the field variables by series expansions in products of

Legendre polynomials(4’5’6).

In these efforts, the Legendre expansions
lead to reducing the governing partial differential equations to either
ordinary differential equations, or to more tractable partial differen=
tial equations. The exact analysis of beam behavior, when treated

in this fashion, will be intrinsically more complex, necessitating the

satisfaction of the boundary conditions on numerous planes as compared

to one pair of surfaces for plates or shells,

Inasmuch as considerable difficulties remain in the deriva-

tion of a system of equations from the three~dimensional theory, the
alternative development is to utilize a direct approach if a simplified
formulation is sought. The '"classical beam theory'", for example, is
based on a direct approach, In the development of the classical theory,

Bernoulli (1705) was the first to make kinematical assumptions to solve



flexural problems, and hypotheses regarding the constitution of the
material were first given by Euler (1771). Saint-Venant (1855) was the
first to remark that six equations are needed to express the equilibruim
of rods which are twisted as well as bent, based on special simplifying
hypotheses. The general equations were given in principle, but obscurely,
by Kirchhoff (1859). The process by which Kirchhoff developed his

theory was, to a great extent, kinematical. Clebsch (1862) modified

the theory and gave explicit general equations which were confirmed

by later writers(l’7).

Recently, it has been established that the Euler-Bernoulli
theory of beams was not applicable to thin-walled beams because of the
inherent distortion of the cross section that occurs during bending.
Wagner (1929) was the first to introduce the concept of "warping' in
the analysis of thin-walled beams<8). Comprehensive reviews on the
bending and torsion of open sections inc luding the buckling character-

(9) (10)

istics were made by Goodier and Timoshenko . A general treat=-

ment of beams is fully described in Vlasov's treatise of thin-

(11)

walled beams A common feature in these investigations is that
each formulation results in the development of the governing differ-
ential equations from consideration of equilibrium conditions. Many
particular problems based on these general formulations have been
solved either exactly or approximately by seeking the analytical solu-
tions of the differential equations or by employing different numerical
techniques. A historical review on this subject, particularly on the

development and utilization of the various numerical approaches that

have been used to solve the governing equations is given in Ref, 12.



More recently, the calculation of complex structural problems
by means of the concept of piecewise approximations has received a
great impetus. A significant intermediary step in the evolution of
modern structural mechanics is the discrete element method. Here,
in the context of beam-type bodies, the structural beam is physically
replaced as a combination of elastic blocks, rigid bars, torsional springs
and flexural springs. This is equivalent to the early works of
Hrenikoff<13), representing a plane solid as an assembly of discrete
systems, which is regarded as a forerunner to the development of general
discrete methods of structural mechanics. It has been shown that
the discrete element approach is mathematically equivalent to the finite
difference method and thus it may be considered as a physical inter-

pretation of the finite difference method(lé).

During the past decade, great strides have been made on the
development and utilization of the finite element method. This method
can be considered as the most powerful and versatile technique presently
available for the numerical solution of complex structural problems.
Moreover, it can be formulated in terms of simple physical concepts
without recourse to complex differential equations. The method was
developed originally as an application of the standard structural
analysis procedure to a physically discretized approximation of the
actual system. The concept has been extensively described in Refs.

15 and 16. Study of the mathematical foundations of the method(16’17)

as well as its application to a wider class of field problems(15’16)

has clarified the basic requirements for its effective formulation.



Two parallel developments were responsiblg for the widespread
acceptance of the finite element method; the formulation of the matrix
transformation theory of structures and the introduction of high-~speed
digital computers. The use of matrices allows a very efficient, sys=-
tematic and simplified calculation superior to any other currently
available scheme. Once the initial matrices are assembled, the sub=~
sequent operations involve merely elementary matrix algebra, which are

ideally suitable for automatic computations using the computer.

While the advantages of the finite element method have been
widely recognized and its applications éxtensively demonstrated
particularly to a variety of problems in solid mechanics and in struc=
tural mechanics, more specifically to plate and shell structures, the
application of the method to beam-column analyses has not been explored
to an equivalent degree. Analysis of beam-columns, and in particular,
beam-columns under generél loading and support conditions, is a subject
of wide interest in current research. Most of the previous develop-
ments in beam-column analysis by finite elements are found in Refs.

18 to 22.

In this study, a direct approach is employed to analyse the
beam-column problem where a numerical solution is sought by utilizing
the finite element concept and its applications. The beam is ficti-
tiously subdivided by imaginary planes into an assembly of elements’
and is regarded as a one~dimensional problem. This notion of sub~-
division, which is mathematical and not physical does not consider the

beam to be divided into separate physical elements that are assembled
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in the analysis procedure, Using this concept, a variational prin-

ciple is employed in constructing a finite element formulation to
evaluate the properties of the elements and finally to solve the com-
plete system. In order to demonstrate the best balance in practical
usage, the study takes into consideration factors such as simplicity
of formulation, versatility of application, reliability, computational

efforts and accuracy of results.



2. FORMULATION FOR THE STIFFNESS
MATRIX OF THE BEAM ELEMENT

2.1 INTRODUCTION

The finite element technique may be applied to analyse the
beam problem in which the beam can be treated as a three-dimensional
body with the use of three~dimensional elements, or as a general plane
stress problem when two-dimensional elements are used. Here the sole
interest is to comstruct a one-dimensional model capable of furnishing
a substantial portion of the information a three-dimensional theory
would furnish. Indeed, the evaluation of the element is one of the
most iﬁportant aspects of the finite element analysis. A fundamental
property of finite element models is that typical elements can be
isolated from the idealized system and their behavior can be studied
independently. The process of connecting the elements to form the‘final
system is mainly a topological one and is independent of the physical

nature of the problem.

In evaluating the element properties, either a direct method
or a variational method may be used. The direct approach, in which
direct consideration is given to the conditions of equilibrium and
compatibility, is mnot used in this study. A thorpugh treatment of

the direct approach is given in Ref. 23,

The formulation presented herein is based on an appropriafely
constructed functional where variational principles are applied to
develop the finite element model. The functional is established based

on two independent fields: a polynomial approximation of the strain
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field in the domain, and displacements at the boundaries. The use of

polynomials is advantageous since it permits differentiation and in-
tegration with relative ease., The main purpose of the choice of
such a formulation is its ability to incorporate the underlying hypo-
theses given by the beam theories in a rather simple manner. Further
discussions and justifications for the choice of the formulation are
given in a later section. Of course, in most structural problems,
assumption of the displacement field alone usually will furnish good
results, This is because the strain field can be derived in a straight-
forward manner, by using the relationships given by the deformation
theory, as the derivatives of the displacement. However, the same
logic does not hold true for the case of a one-~dimensional analysis

of the beam problem due to the complex nature of the problem.

2,2 A VARTATIONAL FORMULATION FOR THE BEAM ELEMENT

A Generalized Variational Principle

The variational principle may be regarded as one of the most
o (24,25)
important bases for the finite element method . It has con-

tributed to the development of structural analysis in leading to finite
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element formulations. Numerous finite element models may be derived,
based on variational principles, by introducing different constraining
conditions within the element or at the interelement boundaries. Since
the problem usually cannot be solved exactly, the variational method
provides an approximate formulation of the problem which yields a

(26)

solution compatible with the assumed degree of approximation ]

The variational formulation has several other advantages
once the existence of a functional is assured. ' The functional which
is subject to variation may usually be given a physical interpreta-
tion (such as strain energy or complementary energy) and is inva;iant
under coordinate transformation. The original problem may be trans-
formed into an equivalent ome that can be solved more easily, for
example, by applying the method of the Lagrangian multiplier for problems
having subsidiary conditions., Another advantageous aspect of the
variational principles is that they may lead to establishing upper and
lower bounds of the exact solution; also, they may provide convergence

proofs(24’26).

The generalized variational principle, often referred to as
the Washizu~-Hu principle, involves several free and independent fields
(26’27). The general principle is based on three independent fields
in the domain, namely, the displacement field uss strain field eij
and stress field cij; and two fields on the boundary, the displacement
field u, on Su and boundary traction p; on S. The generalized func-

i
()

tional may be expressed by

(*)Standard tensor notation and the summation convention is used, A
comma denotes partial derivation with respect to the variable that
follows.
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In this expression

Pijir

eij

=1

= generalized Hookean constant

= gtrain tensor

= stress tensor

= displacement

= prescribed body force

= prescribed traction on boundary Sc

= prescribed traction on boundary S

= prescribed displacement on boundary Su

= portions of boundaries over which Ei and ;i are prescribed,

{
respectively

n

S + S = whole surface
o u

There are eighteen independent variables subject to variation

in the functional Ty with no constraining or subsidiary conditiouns,

these are: three displacements uss six strains €qy six stresses Ty

and three boundary tractions Pi' Taking variations with respect to

these quantities leads to the following

(28)

s, = IV (DijkL S gij) 8 €4 dv (constitutive equations);

1
- -z i+ d ~displ £
IV [eij Z(Uj,i ui,j)] 8 04 V  (strain-displacemen

relations)
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the fields and impose

(gij,i + Fj) 8 uj dv

(T, = ng g;4) 6 u, ds

(u,

- u.) 6
i ui) Py ds

(Pj = ni o‘lJ) § u. ds

J

= 1|3‘;

(equations of (2.2)
equilibrium)

(static boundary
conditions on S )
o

(kinematic boundary
conditions on Su)

(continuity of
tractions on Su)

The vanishing of o1, will establish the velations between

on them the appropriate field equations, and

boundary and continuity conditions as expressed by the following Euler

equations

(1)

(ii)

(iii)

(iv)

(v)

(vi)

ey T 205 Y
0j3,5 T F1 =0
Tj ni o'ij T
. =3

1 1

P. = n = T

i 193 i

in V

in V

inVv

(2.3)

on S

on S
u

on S

Based on the generalized variational principle given by Eq.

2.1, different forms of variational principles may be derived by making

a priori assumptions on one or more subsidiary conditions. For example,

by stipulating that the stress and the strain fields are related by

the constitutive equations, the variational principle will be involved
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with one less independent field. The functional Ty thus will be
reduced to another functional R equivalent to the Hellinger-Reissner
principle(zg), Stipulating further that the strain fields are related
to the displacement field, and by satisfying the kinematic boundary
conditions, the functional s reduces to another functional %P’ which
is equivalent to the principle of minimum potential energy. Similarly,

the principle of minimum complementary energy also can be derived by

introducing the appropriate subsidiary conditions(26).

A Variational Principle for a Beam Model

At this stage, a variational principle can be established
from the generalized principle to evaluate the properties of the finite
element model. The functions that will be assumed in this variational

principle are

a) strain fields €1 in the domain V
b) boundary displacement fields Gi in 8.
If, in addition, it is stipulated that the stress and the strain fields
are related by the constitutive equations and the static boundary con-~
ditions are satisfied, then incorporating these constraint conditions
in the functional given by Eg. 2.1, and introducing the Lagrangian
multiplier technique, the functional will be reduced to:
= (l D -F, u ) dv
" Lrv 2 “ijke €1j kg ii ,
2.4)
-j Tiuids+f T, u; ds
S Su

where uy is the interelement boundary displacement and is the same for

two adjacent elements on their common boundary.
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Taking the variationms with respect to the independent quanti-
ties results in the following,
§m = fv L4 jieq €157,5 F Fd 8y OV
+ . -
fv O 5ip g My 7 Ty) 8 Uy 98
(2.5)

+ Js (uy - ui) 5 Ty ds

+=JS T, § u, ds
u

The vanishing of §n for am arbitrary U in V and an arbitrary

gu, on the interelement boundaries Su’ will give the following Euler

equations
. .+ F, =0
Dijk& €icp nj - Ti = () on S (2.6)
u, = u =20 on S
i u

A finite element model that satisfies the conditiong inEq.
2.6 is developed in the following section. In the development of this

model, the functiomnal given by Eq. 2.4 is applied directly.

A Finite Element Model

In this analysis, the body forces'fi are ignored and the matrix

(30)

notation following Pian's notations 15 employed. The functions {e}
and {u} are simply chosen as polynomials with unknown coefficients. The

strain field fg} is expressed in terms of polynomial functions of the

coordinates [P7] and undetermined strain coefficients {B}. The displacements
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along the interelement boundaries {u} are represented by the interpo-
lating functions [L] and the generalized displacements {§} at the

nodes., In matrix form they may be written respectively as

{e} =[] {p) | (2.7)
{{h = [L] {8} (2.8)
{u} = [?_] {8} | (2.9)

The stress field may be derived from the strain field using

the constitutive equations, thus

{c} = [D] [?] {g} (2.10)

The tractions at the boundaries {Gb} are expressed in terms
of the stress field {g} and the undetermined coefficients {g} as

follows

{opd = [R] {g} (2.11)

where [R] contains the coordinates on the surface.

The functional given in Eq. 2.4 when written in matrix form

will reduce to

me [ 7 080" 1207 (0] 2] 6} v
- rp)" [R1" [L] {5} ds (2.12)
S

rp}" [HY f8Y - {837 [T] (6}

N =

where

) = [ re1’ [p] [B] @V
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and

(7 = [ (r1" [L] ds

Minimizing the functional ¢ with respect to each {p}, that
is an/3 B; = 0, yields
(1] {g} = [T] {6} =0 (2.13)

from which the undetermined coefficients are solved as

{8} = [E)"" [T] {6} (2.14)

Since the functional can be expressed in terms of the element
stiffness matrix [k7], the generalized force vector {f}, and the general-

ized displacements {§} as

=7 0637 (1) 183 - 1837 (1) (2.15)

comparison with Eq. 2.12 yields the element stiffness matrix,

re] = 137 rugt o (2.16)

and the generalized force vector

r€} = (11" 1H7Ny 117 f6) = K] {6} (2.17)

2.3 EVALUATION OF THE BEAM STIFFNESS MATRIX

Following the outline described above, the stiffness matrix
for the beam element is derived. The beam is assumed to be a straight
bar of uniform cross section. Among the many possible, and perhaps
equally acceptable, ways of representing generalized displacemeﬂts,

the chosen set consists of extensions, bending rotations, transverse
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displacements, torsional and warping rotations. The corresponding
generalized stresses, sometimes referred to as stress resultants,
are determined by lumping the integrals of the boundary stresses at

the nodes of the element.

In this study, the generalized force system is reduced to

smaller uncoupled systems in order to demonstrate the application

of the formulation more effectively. This is achieved, without much
loss of generality, by making an appropriate selection of the reference
axes. The flexural and torsional components, for instance, will be

uncoupled by employing as reference axes a right-handed rectangular |
coordinate (cartesian) system where one of the axes is oriented parallel !
to the element. Of course, this is true only if the material is

linearly elastic. The reference axes system adopted for the beam

element is shown in Fig. 2.1, where the x-axis is directed parallel

to the element.

It has been indicated earlier in this study, that the major
problem associated in formulating the beam problem is in developing
a kinematical model from which the strain-displacement relationship
can be easily established. The formulation of the beam problem is
based on Vlasov's hypothesis of the invariability of the beam cross
section(ll). The hypothesis implies that distances between points
on the normal plane of the beam do not change during defofmation.
This reduces the strain field to fewer strain components which can be
represented directly by using a polynomial expansion. Polynomials

are used, as in many other situations, because of their simplicity in
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manipulation. Based on these approximate fields and utilizing the
finite element model described in Section 2.2, the beam problem can then

be formulated by treating separately the flexural and torsional problems.

Stiffness Matrix in Extension and Flexure

For a linearly elastic material the flexural problem can be
further uncoupled into three systems; two bending components about the
two axes and the extension component, provided the axes of the beam
element coincide with thg centroidal-principal axes of the cross section.
However, it is found inexpedient to limit the analysis based on the use
of the centroidal-principal axes, therefore, the general flexural problem

will be analyzed.

The strain field {g} in the beam element when expressed in

terms of polynomial functions of the coordinate [P and the undetermined

coefficients {B} is rewritten as

fe} = [P] {p} (2.18)

The assumption that the cross section remains invariant will set the

i : zero. For flexural problems, the remain-
strain components eyy’ €y eyz (o) [o] Xu pro ms , m
ing three strain components may be approximated by taking the linear tems

in x, y, and z of a polynomial. Thus, Eq. 2.18 is written as

° o vy L

€yx 1 v xy Z Xz By
o lalo o om0 o]
xy p = e T By C(2.19)
- 0 0 yoz) 0 v&.2)||%
L 4 - - LBS
P




It is noted that, when the shear strain functioms ¢(y,z), x (¥,2)

and {(y,z) in Eq. 2.19 are set to zero, shear strains are eliminated
in the formulation and the strain field will be equivalent to Bern=-
oulli's hypothesis: plane sections remain plane where normals to the
reference axis before bending remain normal after bending (elementary
beam theory). Similarly, prescribing the functions ¢(y,z) and ¢(y,z)
with constant values introduces shear strains in the formulation, and
the resulting strain field will be equivalent to that derived from

Timoshenko's kinematical model(Bl)

, where points on normals to a
reference axis before deformation remain on a straight line after
deformation (Timoshenko beam theory). Or, when stated differently,
plane sections remain plane but planes normal to a reference axis
before deformations do not neceésarily remain normal after deformation.
In a similar fashion, various forms of kinematical models mavy be
developed by manipulating the shear strain functions. Inclusion

of higher order terms of y and z in €xx will also furnish mainfold

forms of more sophisticated kinematical models.

In the discussion presented so far, it has been tacitly
assumed that the shearing strains Sy and €y, are linearly dependent
functions of Cxx” It is shown at a later state that this reiationship
exists as a result of a minimization process. From a different‘stand-
point, the established relationship can be viewed as a result of the
overall equilibrium condition of the beam element. The manner in wHich

these relationships are established is now presented.

The stress field corresponding to the strain field giﬁen by

Eq. 2.19 is obtained by employing the constitutive relationships,



r oY T I1r
Txx Pjp P Pyt YW
ﬁl oxy { = | P21 Pz Dy3 | |0 O o(y,2)
xz | D3g;p D3y Dyg | 10 0 x(v,2)
y - 4L

=21

Xz Bl

x (¥52) ‘ (2.20)
§(v.2) || Pa
1 g

L)

For a beam whose material is elastic, isotropic and homogeneous, the

Hookean constants are taken as

Dy

])22 =

D, .
1]

E (Young's Modulus)
D33 = G (Shear Modulus)
0 (for i # j)

For different situations, as in the case of the inelastic beam or a

beam of anisotropic material, the appropriate Hookean constants must

be used.

Figure 2.2 shows the stress resultants which are equivalent

to the integrals of the boundary stresses lumped at nodes 1 and 2.

The stress resultants are,

= fA Gxxi da
= IA nyi dA

=, oxa,

(2.21)

where i = 1,2 which are the node points of the element.
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The unbalanced stress resultants in the beam element,

determined from the equilibrium condition, become

AP = I (Gxx T Ogx ) dA

A 2 1
Avy = AVZ =
(2.22)
AMY = IA Z(cxxz - Gxxl) dA

M= ylo. - o.. ) dA
Z v.rA XXZ XXI

Or, when expressed in terms of the strain coefficients they are written

in matrix notation as

i

AP EL{A [y 2] {gi} dA

B3
o, ELIA (yz 221 {Bs} dA (2.23)

i

AM ELI (v vyz] {63} dA
z A Bs'
where L = length of the beam element,

These unbalanced forces are counteracted by introducing

shearing forces at the nodes. The magnitude of the shearing stress

resultants {V}, which satisfy the equilibrium condition of the element,

are

~

(v} = T [mm (2.24)

or, in terms of the axial forces {AP] as

s

v} = % o] {sP} (2.25)



r~

where [e] consists of the associated distances from the reference
axis to the resultants of {AP}. Substitution of Eq. 2.23 in Eq.
2.25 will furnish the shearing stress resultants, which are required
for the overall equilibrium condition, in terms of {g} and which are

written in the form

{V} = E [J] {g} (2.26)
where
y2  yz
[J] = dy dz
yz z2
and
~ B3
8 =1,

It is noted that [J] is equivalent to the inertia matrix of the cross

section.

In the same manner, the shearing stress resultants of Eq.

2.20 may be expressed as

[v] = ¢ [2] {g} (2.27)
where

~ ] ez x(3,2)
[P] = J dy dz
AL yv(ysz) §(y,:2)
Obviously, the shearing stress resultants given by Eq. 2.27 are equiv-

alent to those given by Eq. 2.26, thus

~

(vl = [v] (2.28)
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At this stage, a vector consisting of the average shearing
strains {;ﬂ is introduced to account for the variation in shearing
strains over the cross section. The expression for {;} can be written

in the form

v} = 36 [o] V) = [] [B7 {8} (2.29)
where
[o] = Yy  Oyz
Opy Oz

The matrix [] is composed of numerical factors which are commonly
known as shear deformation coefficients. A coefficient determines the
shear deformation, by considering an average value of the shear induced
transverse displacemeni, due to a transverse shearing force. For

examp le, . is the coefficient in the y direction due to a shear force
in the same direction, o, is the counterpart of Oy in the z direction,
and Oy is the coefficient that determines the shear deformation in the

y direction due to a force in the z direction, and vice versa.

In order to evaluate the elements in [g], it is necessary
to establish the general solution of the problem of bending by terminal
transverse loads. The customary approach to the solution of this
problem, based on the semi-inverse method of St. Venant, has been given

(2332’33). A recent contribution(34)

by several authors reduces the |
elasticity solution, by introducing appropriate simplifying assumptions,
in order to derive a formula for shear coefficients which is applicable
to symmetric shapes only. Based on this formula, numerical values

of [o] are calculated for simple geometric cross sectioms. The latest
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(35,36)

contributions , furnish a numerical solution based on displacement

formulation by a finite element technique.
Comparison of Eq. 2.29 and Eq. 2.26 yields the following,

(Y} = = [a] [3] T8} (2.30)

Substitution of Eq. 2.30 in the strain field equations given by Eq.

2.19 results in defining the strain field explicitly as

{e} = [P] fg}
rexxw B 1 v Xy z X2z i r617
B2
Er Er z
Loy be| 0 0 G 0 |15 @31
By,
El ET, 8
4 Z7Z 5
e o o o =7
L J L. -

where

r = J + J

vy %y “yy " %z “zy
Tyz = oyy Jyz + Ayz 2z
I" =

zy %y Jyy * oy, Jzy
Toz = gy Jyg + gy Iy

or, in tensor notation it may be expressed as
Fig = %k Jig
where the summation convention for repeated indexes is employed.
Once the strain field is defined explicitly in terms of the

undetermined coefficients, the stiffness matrix can be determined by



following the outline described in Section 2.2.
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ness matrix [k7] is expressed in terms of the matrices [H] and [T].

In Eq. 2.16 the stiff-

These matrices are determined, by integrating over the volume of the beam

element, the matrices [P], [D], [R] and [L] which are defined in Eq.

2.7 to 2.9.

The [H] matrix is written in the form

T
[H] =J‘ [P]" [D] [P] dv (2.12)
\
where the matrix [P] is given by Eq. 2.31 for the problem at hand.
Substitution of [P results in the following symmetric matrix
[ .
Ey Fy? SYMMETRIC
= Ex Exy? | EX®*y2+G[._ 24 2 /
[H) = [ | B | B yPH6r, 24T 2] av
Ez | Eyz Exyz Ez?
2 y2 2 2 52 2 2
_Exz Exyz | ExPy +G[Fyyrzy+ryzrzzj Exz? | Ex?z +G[Fzy T, ]

el

(2.32)

Obviously, the matrix reduces to a diagonal matrix when the centroidal-~

principal axes of the cross section are used.

In order to determine [T7], the matrices [R] and [L] must be

evaluated first.

The matrix [R] is obtained by relating the boundary

force vector {Gb} in terms of strain coefficients {p}. The bouudary

force vector {gb} consists of six elements representing the y and z

components of the boundary forces at the two nodes,

Thus,



{Gb} = [R] {B}

~ T e
Gxxl =E =By ELy =Bz
o 0 0 “E[" /A O
Xyq yy
cle 0 0 "'Erzy/A 0
< 3=
%xx, E Ey Exy Ez
o 0 0 Er /A 0
XYo Yy
zez 0 0 Erzy/A 0
. J =

The matrix [L] relates the displacements at the boundary

~

u} and the generalized displacements .
5.

Efz

“EFyZ/A BZ

mErzz/A 4 P3

Egz By,
EFYZ/A LBS
EFZZ/A

o

27

(2.33)

For the problem at hand,

L

there are six prescribed displacements at the boundary {u} which

are related to the ten generalized displacements {5} at the nodes in

the following form

fu} = [1] fs)
ru1 1 r~1 0 =y 0 =z ]
vy o 1 0 0 0 0
) W, . 0O 0 0 1 0
u, 1 0 =y 0 =z
v, 0 0o 1 0 0 0
sz | L 0 0 0 1 0 |

Once the matrices [R] and [L] are determined, the matrix

e

72

[T] is obtained by integrating the product over the boundary

(2.34)
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(=, (R [L] dy dz

- -
-E 0 Ey E Ez E O =Ey 0 ~lz
-Ey O Ey2 Ey Ey° Ey O -Ey2 0 =EyR
= E{y -EI'__/A -ELy?® ELy -E ELy E A -E E_ /A ~Egyz dy dz
=f L | B Ry y? Bty -Ely® Bty Er /A -Ety® B, /A -ty y da
~Ez 0 Eyz Ez Ez® Rz O =Eyz O -Ez?
- - 2 =F
E{z EFyz/A E{yz Efz Efz® Ejz EFYZ/A ELyz EFZZ/A Efyz

(2.35)

At this stage, the stiffness matrix [k7] can be determined
from Eq. 2.16 sincé the matrices [H] and [T] are known and are given
by Eq. 2.33 and Eq. 2.35, respectively. This matrix is not evaluated
here in the manner described above since it requires a rather tedious
manipulation consisting of manual integrations and matrix operations.
However, review of the derivation process discloses a complete sequence
of numerical integration and matrix operations, which can be performed

in a systematic mammer, by developing a suitable computer program,

Alternatively, the manipulation required to evaluate the
general stiffness matrix is significantly reduced from the viewpoint
of manual computations, by performing transformations to the stiffness
matrix computed for the centvoidal=-principal axes. For this particular
set of axes the non-diagonal elements in [H] will vanish and most of
the elements in [T] reduce to zero, thus the required matrix operation
in Eq. 2.16 is simplified. Once the stiffness matrix for these setsof
axes has been evaluated, the corresponding stiffness matrix for an

arbitrarily assigned set of axes can be easily established following
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the standard transformation procedure of stiffness matrices used in

structural mechanics.

The computation for the element stiffness matrix [E] corres-

ponding to the centroidal-principal axes results as given below:

(£} = [k] {8}

r 3 1 r
F FE& 5 ]
1 L Y1
B 1285 -
Va1 o | Faw,) 1
6EJT 4 E
. ] (e JET _
y1 T, | TR, A ®y1
B 1285, B
Vo 0 0 0 T ) v,
_ 6EI, (448 )ET, _
le = 0 [¢] 0 - ﬁil?;)‘ L(1+<§y) SYMMETRIC ezl
3 . EA EA -
?, T 0 0 0 0 T “
128 6EJ 12EJ
7 . ey -
Vi2 O & Tmy) T ik, 0 0 0| (i, )
6EJ. (2~ EJ. 6EJ 4 EJ
. , Y 1) , , Sl | ey -
v2 F(lh,) | L+, P+ [ TL0H,) 82
_ 127, 6EJ, 1283, _
Vo2 0 0 0 T Ty | TR 0 0 0 EX ) vy
y y
_ 6EJ (2~3_)EJ 6EJ 4+g YEJ
i 0 0 0 B Y B g 0 0 Sy | GayE, 5,
22 F(H) | L+, P (e, | L(i+,) 22
L y v ¥ y
J L = S 4
where (2.36)
12%
5 = 1-‘zz
y GA1R
and
12Er
%, = TGATR

In the above expressions, the terms ryy and r,, are defined in Eq.
2.31. It is observed that use of the centroidal-principal axes sets

the cross terms such as ryz’ N - etc., to zero thus resulting in

yz
a more simplified form of stiffness matrix.
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In order to obtain the general stiffness matrix, for an
arbitrary set of axes, the stiffness matrix [E] given by Eq. 2.36
is subjected to a transformation. The new set of axes which pass
through point P, is shown in Fig. 2.3, where the axes are translated by
vp and WP from the original point 0, (the centroid) and are rotated

by an arbitrary angle .

The transformation matrix, designated by [Tr], is obtained
by expressing the displacement field at the boundary as coordinates

of each reference axes. This relationship is,

fs) = [1.] {6}

[ ulw -1 0 —vp 0 wp ] ual )
Wy 0 =siny O cosy O 51
eyl 0 o0 =siny O CoSy 0 6&1
vy 0 cosgy O siny O ;1
0,1 0 O cosy O singy 6;1
u, T' 10 v, 0 v Qu, ¢
Wy 0 =-sinyg O cosy O Gé
ey2 0 0 o =siny O coSy gyZ
v, 0 cosy O siny 0 . ;2
LQZZ J ] 0 0 | cosy O sin(yH L?;ZJ
(2.37)

Since the transformation matrix [Tr] is orthogonal the

general flexural stiffness matrix is obtained from
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(k] = [Tr]T [k] [T,] (2.38)

Stiffness Matrix in Torsion

In this section, the stiffness matrix is derived for a beam
element having the characteristics of "'thin-walled beams'. A thin-
walled beam is composed of plates which are assumed to undergo in-
plane strains alone when subjected to loads. The theory of torsion of
thin-walled beams, unlike solid beams, has as a distinctive feature
the occurrence of considerable axial strains as a result of torsion.
The general theory of thin-walled beams as developed by Vlasov(ll)
is essentially based on the assumptions that the cross section remains
undeformed and the shearing deformation in the middle surface vanishes.

In this study, the cross section will also be assumed to be rigid but

the shearing strains at the middle surface are not neglected.

The stiffness matrix for the beam element subjected to
torsion is derived by following the same procedure adopted in the
flexural problem. Figure 2.4 shows a component plate of the beam model
used for deriving this stiffness matrix, 1In order to simplify the
computations, the z=-axis is oriented parallel to the mid-surface of

the element and the x-axis passes through the center of torsion.

The strain field for a torsional problem is approximated

in a similar manner shown in Eq. 2.19 as

fe} =[P] {8}
C z ZX 0 B
C o= < B (2.39)
exy | 0 £z (-a)| |gg
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It is noted that the shear strain function £(z) is assumed constant

through the thickness,

But the variation along the z-axis may be

accounted forby1'11’51?o<iu<:il1ga‘nev\rer‘ageshearingst:r::.tin@yZ and a shear

deformation factor o, in a similar wanner described earlier in this

section.

as follows

exx] Z Rz 0 Bs

= B7
ogwEJ

ey 0 et (y-a)| | Ps

The corresponding [H] watrix for the given strain field

becomes

[u] = J"V

Ez?

Exz=e

0

Relating the boundary force vector {Gb} and the strain

2

SYMMETRIC
B,
&@ﬁ+qﬁ%fmj

6(5-3) (04 9, /GA)  G(y-a)

coefficients {p} yields the matrix [R], thus

Oxx1

Oxz1

Oxx2

C

xz2
-

) P.-Ez
0
}: Ez
0
J L

{Gb} = [R] {p}

Etz 0 rB6 1
nawEJyy/A =G(y-a) r
Efz 0 ﬁ B7

O,WEJyy/A G(y=-a) | LBBJ

—

dx dy dz

Thus, the approximated strain fleld is defined explicitly

(2.40)

(2.41)

(2.42)

There are four prescribed displacements {u} at the boundary

which are given in terms of four generalized displacements {5} at the
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nodes. The relationship is written in the form,

fu} = [L] fs}

. .,1 = i I
u 0 4 ! v
P
1 ' 0 1
W]_ -a=2 (y-a) 0 z Q)l
{ e Fe——————— ! (2.43)
u, ' 0 | 01 oy
. 0 l
\ (1)2 P - i a2 (Yma) (3, . UJZ "

It is noted that the term (y=a) in the displacement w given by fq. 2.43
is multiplied by a factor of 2. The well known explanation given by

(32,37) on the manner in which an applied torque

Lord Kelvin and Tait
is resisted by a bar having a thin rectangular cross section, refers

to the stress distribution in the cross section. They have explained
that one-half of the applied torque is carried by a system of ghearing
stresses parallel to the longer dimension of the cross section. The
other half, is carried by the transverse shearing stresses which act
normal to the plate. These transverse stresses are normally neglected
even though they become of an appreciable magnitude near the short

sides of the rectangle. However, since they act at a greater distance,
their contribution to the torque is significant and thus they constitute
the other half. 1In this study, the aforementioned difficulty is cir=-

cumvented by establishing an appropriate kinematical model which will

yield a solution consistent with the approximate elasticity solution.

The matrix [T] is computed as follows,

()= J, (R1Y [1] dy oz
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3 0 Ez? 0 -Ezgr

[T] = IA ~G(a-2y)(a¢EJyy/A) =E¢z° G(a»2y)(Q¢EJyy/A) =Epz2|dy dz

~G(y-a)(a-2y) 0 G(y-a) (a=2y}) 0

(2.44)

The general stiffness matrix is obtained by substituting
Eq. 2.41 and Eq. 2.44 in Eq. 2.16. If the y-axis passes through the

centroid of the element, the stiffness matrix reduces to the following:

f£) = [k] {8}
(] 1422 (14 ) 10
? o
T 25 SYMME TR IC !
L 12
M1 12ET "3 17 (448,) Wy
4 $ = ——
I* (142 ) L 2 %
MT2 wl-ﬁ"(l“hﬁw) 5 1"1-1-2"(1"4-@(”) 9y
L L, i 13
- (2 = = (4
L M2 2 iz7(278) 2 e ) |y
4 oo - L J
(2.45)
where
I = warping moment of imertia about the shear cenierx
) ‘
KT = St. Venant torsiom constant
124EJ
NN

w = JGK_ 1R /EI
T W

0f course, for profiles with zero warping rigidity (I = 0), the factor
W :

u must be expressed such that EI does not become a denominator.
W

The torsional stiffness of a beam element may be derived

consistently from the displacement approach also as a minimization of
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the total potential energy. 1In the following, two different forms
of displacement functions are considered, namely, hyperbolic functions
and polynomials. The stiffness matrices derived from these two forms

of displacement functions are compared to that given by Eq. 2.45.

Hyperbolic Functions

(11)

According to Vlasov's beam theory the governing differen-

tial equation for the beam element in torsion is given by

BI "' - Gy = 0 (2.46)

The solution of Eq. 2.46 yields the following displacement functions

written in matrix form as

® 1 x cosh kx sinh kx oy
= oy ’ (2.47)

W 0 1 k sinh kx k cosh kx a3

%4
where w = ® x
e
EI
w

Corresponding to the displacement function given by Eq. 2.47 the

following stiffness matrix can be derived(38’39)
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a —- ' sy
5 [
MTIW n3sinhy Py
| SYMMETRIC
M w2 L(l=coshu)  uI? (ucoshy : W
ol BT 1
?::: —-(D.DLB _=~Siﬂh%) 4
MT2 -y (1=-coshy) =uIf (L-coshy) usinhy Py
u2L(l=coshy)  wI? (sinhu-u) ~ulR (1=coshy)  «IP (ucoshul|w.
Ll ' L 2]
L. =] il‘lh)«(,)
(2.48)
where

D = 2(1 ~ coshp) + n sinu

and » = kL

Polynomials

The displacement field for the beam element may be expressed

by a polynomial of the third order as follows,

{u} =[] {o}
, F
1. x x? x3 o
- Er J %
0 1 2x (3x24__-—GA¥z) o {
| L%

In order to take account of shearing deformations due to warping,
an appropriate term is incorporated in [P] as described earlier in

this section.

The vector {y} consists of the coefficients which are to be
determined in terms of the nodal displacements {§} from the relation-

ship




{8} =[C] {o}
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(2,50}

The strain field {e} corresponding to the displacement field of Eq.

2.49 may be written as follows,

L

e} =[Q] fo}
-az<10’xx 0 0 «6x%
ET
2(y-a)g 0 2(y-a)  6[x? (y-a)+gi¥]
ET
+ GA 7 ,xxx B

oy
)
°’3J (2.51)

oy,

Following the standard finite element procedure, the stiffness matrix

can be obtained from

Thus,

=

T1

wl

T2

=1

wz

-1.T T -1
(k] = 67 (] [Q)" [P] [Q] 4V} [C] (2.52)
{£) = [k] fe)
~ - )
11 )] !
SYMMETRIC
_%[1+%%] %%[3+(1+§w): By
12E1 w1, H8)) J L
= B(1+ )? +Z(5 3 ]
- Ww
1505+, )| B0 g as) ) %
L 12 3 L 12 o -
I froves) | | 5
o1 (148 ) o 1 (11 )
G T
I )
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If warping shearing deformations are ignored, the parameters § are
w

set to zero, and the stiffness matrix will reduce to the following,

" : Tr
rMle ﬁﬁiﬁ, , @11
. SYMMETRIC
Lo, #® 2. " A
Mol 121 |20 60] TT[1+§6] Wy
f =_‘&L3 . o * + (2.54)
12 L w .
Mo ~1-75 ST ] 435 )
L 12 Log2. IPo. w2
szj [1 ] [1 60] 2l1*60] T30l | w2 |
" - and

The stiffness matrix gien oy Eq. 2.54, whi.ch is a special case of

(40)

Eq. 2.53, is identical to previous derivations

2.4 APPLICATIONS AND SAMPLE SOLUTIONS

Before any finite element solution can be used with confidence
some idea of its accuracy and convergencefcharaCteristics are required.
Suitable evidence is usually provided by:&gmparing the finite element
results with accurate results derived by alternate means. To illustrate
the validity and application of the method the finite element formula-
tion developed is applied to a number of the few numerical examples
whose analytical solutions are straightforward., The procedure of
analysis is based on the displacement method which is adequately covered

in many publications(18’19’23).

The structural member under consideration is suitably idealized
by a set of basic beam elements with a 7-degrees-of~freedom at each node.
The stiffness matrix for such an element is given in Appendix I when
the centroidal-~principal axes system is used. Once the member is

idealized as an assemblage of beam elements, the over-all unconstrained



-39

structural stiffness matrix is generated following the rules that
govern the assembly process used in the matrix analysis of framed
structures. This matrix is generated by a simple summation of the
individual stiffnesses and loads at the nodes using nodal compatibility
for this process. Alternatively, the variational concept may be used
on the entire assemblage to derive a mathematical statement of the
assembly rules. The assembly rules for the assemblage of the stiff-

ness matrix and load vector is written as

N

(K] = = [ki] (2.55)
i=1
N

[F] = = [£] (2.56)
i=1

where N is the total number of elements.

It is evident that structural members are subjected to bound-
ary conditions in forms of tractions or displacements. The traction
boundary conditions are incorporated automatically into the 1oad vector
{F}. When imposing the displacement boundary conditions, the standard
procedure, which involves eliminating the equilibrium equation at
which the particular displacements are specified, results in reducing
the size of the master stiffness matrix and thus requires reorganization
of the computer storage. However, the same conditions can be imposed
without changing the size of the matrix, simply by modifying the stiff-
ness matrix and the load vector. This is accomplished by multiplying
with a very large number the element on the diagonal of the matrix [K]

at the location concerned and also by replacing the corresponding element
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in the load vector {F} by the same large number multiplied by the
specified displacement(ls). This procedure applies whether the pre-
scribed displacements are homogeneous or nonhomogeneous. For the case
of elastic restraints, the matrix [K)] is modified by adding the sup-

port stiffness on the appropriate matrix element on the diagonal of

the stiffness matrix.

The resulting equilibrium equations of the complete system

are expressed in the form

(F} = [K] {a} (2.57)

in which the number of simultaneous equations in the preceding relation-
ship is equal to seven times the number of nodal points. The nodal
displacements {A} are unknown and are determined by solving the set
of simultaneous equations (Eq. 2.57) and then the stress resultants

are evaluated by using the relationships of the individual elements.

Numerical Examples

The first numerical example to illustrate the application
and validity of the procedure described is that of a cantilever beam
subjected to a concentrated torque at the free end. The beam repre~
sented in Fig. 2.5 allows warping and twist at one end and these dis-
placements are restrained at the other end. The twist and warping
displacements are computed at the nodal points for different values
of the parameter u = /ﬁ—E;—I§7§E; in order to cover a wider range in
cross-sectional properties., The computed values plotted in Fig. 2.5

agree very well with the charts given in Ref. 41,
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The second example consists of the same beam used in the first
example but loaded with a concentrated bimoment at the free end instead

of a torque. The results are plotted in Fig. 2.6 where close agreement

is observed with those given in Ref. 42,

In order to compare the differences in solutions that may
arise when using the element stiffness matrices given by Eqs. 2.45,
2.48 and 2.54, the cantilever beam used in the earlier examples was
‘used again. The stiffness matrices are determined based on three
different formulations, namely, the strain field formulation, the
polynomial formulation and the hyperbolic functions formulation as
described in Section 2.3. The cantilever beamwas loaded by a con-
centrated torque and bimoment at the free end as shown in Fig. 2.7,
Different values of the cross sectional parameter ywere used in order
to cover a wider spectrum in beam characteristics rahging from those
having resistances in pure warping to those in pure torsion (St. Venant
torsion). As indicated in Fig. 2.7, good correlation is observed for
the values of u normally regarded as thin-walled beams. However, for
larger values of the parameter u, or when Iw approaches zero, the
differences in the solutions increase and the computational errors
grow when using the stiffness matrix based on the strain formulation
(Eq. 2.45). Moreover, for this particular formulation, the results
oscillate for larger values of y as shown‘in Fig. 2.8 whereas good
agreement is observed for values of y less than 10, This problem of
numerical instability arises from the fact that the strain field
formulation necessarily assumes that the cross section has warping

resistance, I . This is not regarded as a serious practical problem,
w
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since useful solutions can be obtained using ordinary analyses omnce

it is known that the cross section has no warping resistance.

The final numerical example is intended to demonstrate the
versatility of the method by considering a continuous beam with two
equal spans subjected to a concentrated bimoment M& = 1.0 acting at
the right support as shown in Fig. 2.9. The shear centers of both spans
are assumed to form one straight line which is considered as the axis
of the beam. For both spans, the cross section parameter u is assumed
equal to 1.0. The variations of the torque MT

are shown in Fig., 2.9, It is important to distinguish the two components

and the bimoment ME

of the torque MT which are present in thin-walled beams. The torque

Tsv is the more familiar St. Venant's torsion, the other component T
: ‘ w

is the warping torsion. The latter results not from warping but from

the suppression of warping.
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3. LINEAR STABILITY ANALYSIS OF BEAM-COLUMNS

3.1 INTRODUCTION

The theory of linear stability, which is based on the concept:
introduced by Euler, represents closely the circumstances of failure
of beam~columns., Although the actual conditions of failure require
the inclusion of nonlinear influences for the precise determinationat
the failure condition, as in determining the completé response of an
imperfect column, the critical condition obtained from linear stability
analysis is useful from the design standpoint. iinear stability analysis
is defined here as the calculation of the'bifurcation of equilibrium, -
the point of bifurcation occuring at the critical load which is charac=~

terized by the existence of a fundamental state of equilibrium.

In the conventional linear stability analysis of structural
problems, two approaches are normally used. The first approach is to
determine the lowest eigenvalue of the governing differential equations
of the structural system for a given set of boundary conditions.
Alternatively, if the governing differential equations are too diffi~
cult to prescribe, numerical methods are utilized by establishing a
strain energy expression for large deflections which is subsequently

minimized, leading to roots representing instability conditionms.

The use of matrix methods in solving problems of stability
based on the concept of discrete element idealization has recently
received considerable attention. In particular, diéplacement formu~
lations based on finite element idealization are found to be more

suitable. The adoption of the matrix force method has been accomplished
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(19) but is employed to a lesser extent. From the viewpoint of éta-
bility an§ finite displacement analyses, the possibility of incorpora-
ting geometric nonlinearities within a displacement method offers a
suitablé means of utilizing the finite element concept and its appli=-
cations., Moreover, the finite element approach plays an importan£
role through its ability to lead to solutions to problems with ir%e-
gularities in loading and geometry which defy adequate treatment Ly

the classical means. Another important characteristic for the use of

|
finite elements has been their intrinsic simplicity. Useful reviews

|
of the accomplishments in finite element stability analyses are found
|

{

in Ref. 43 to 47. : |

As in other aspects of the finite element method, the tfeat-
ment of problems dealing with linear stability consists of two component
parts: the formulation of the element relationship and the solutiqn of
the complete system. Furthermore, the formulation of the element
relationship involves the calculation of corrective terms to the linear=-
ized equations., Consequently, application of the conventional matrix
displacement methods to problems in elastic stability has been concerned
with the derivation 6f so~called geometric stiffness matrices to account
for the instability effects, The inclusion of the geometric stiffness
matrices into the formulation is performed by adding them directly to
the elastic stiffnesses to form a resultant stiffness matrix. The ‘
derivation of the elastic stiffness matrix for the beam element is
given in Section 2.3, 1In the following section, a formulation is

presented for deriving the element geometric stiffness matrices.
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3.2 A FINITE ELEMENT MODEL FOR DERIVING GEOMETRIC STIFFNESS MATRICES

In this section a general method for evaluating geometric
stiffness matrices for the stability analysis of general discrete
structural systems is presented. The formulation provides a meansﬂfor
a direct determination of geometric stiffness matrices that are con-
sistent with any kinematically admissible displacement field assumed
for the element. The derivation of stiffness matrices often is based
on the approximate displacement field, as defined by suitable interpo~
lation polynomials or shape functions [N] of coordinates, and a set

of nodal parameters {g§}, element by element, as

{u} =[] {e} (3.1
The displacement field may also be defined more conveniently by poly-
nomial functions of the coordinates [P] and a set of generalized

coordinates or generalized displacement amplitudes {y} expressed by

{u} = [P] fo} (3.2)

A relationship between the vectors {§} and {o} is established using a
displacement transformation matrix [C]. This matrix is determined by
substituting the coordinates of the nodes in Eq. 3.2 in the following

form

fe} = [C] fo} (3.3)

o=

When performinga stability analysis, use of the non-linear

total strain-displacement equations is essential and leads to relevent —

(48,49)

solutions The strain-displacement equations as given by the

general theory of deformations or known as the Lagrangian

(35)

strain tensor are written in tensor notation as
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3 e T g B (3:4)

In Eq. 3.4 the summation convention for repeated indexes is employed and
a comma denotes partial derivation with respect to the variable that
follows. A typical strain component, frequently used in structural
Ianalysis is the axial strain, e’ and can be expanded from Eq. 3.4
which is written in standard mathematical notation using the engineer-
ing definition as
w2 [(G) G+ (G] G.5)
In developing the strain-displacement relationships for beam~-
type bodies it is necessary to convert formally the relationships
given by the three-dimensional theory of deformations into their one=-
dimensional analogue. An attempt is made here to formulate the
stability problem of beam~columns by making use of the strain-displace-
ment relationships provided by the classical theory of thin-walled

beams(11’50’51).

The displacements of a thin-walled beam of rigid cross=-section
is adequately described by the lateral displacements v and w and by
the rotation ¢. The displacements at any point on the beam are functions

of the coordinate x and are given by

u=-zbﬂ-y%§+¢(y,Z)g§

3%
v = v(x) + 2z px) (3.6)
w=w(x) -y gx)
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Where u, v and 5 are arbitrary functions of the coordinate x and y(¥5>2)
is the warping function. Based on the assumption that the elongations
are negligible compared to unity, Novozhilov(48) has developed the
strain-displacement relationships for thin rods by expanding the dis-

placements u, v and w (Eq. 3.6) in series in the coordinates of y

and z of the points of the cross section.

The expressions for the nonvanishing components of strains

which become adequate for the problem at hand are:

]

wx = Cpx TZ Mg, () Y nyy(x) + 4 (¥,2) %ﬁ

Cxz " %z T (gf * y> ? G0

€xy_exy+<§2}§-z)w

where ey are the strain components given by Eq. 3.4, and nzz(x) and
nyy(x) are the curvatures of the deformed axis of the beam which take

into account large displacements in u, v and ©- The expressions for ““

the curvatures for large displacements are found in Ref. 48.

The strain vector given above may be resolved into two com- -

ponents and is written in matrix notation
fe} = fe)] + e} (3.8)

where {eo} is the usual linear, infinitesimal strain vector while
{eL} represents the non-linear strain contribution. It is well known
that the mere presence of {eL}, without regard to magnitude, has a

decisive influence on the behavior predicted in stability situations.




-48

Having established the displacement field it would be logical
to define the strain field in terms of the same parameters {y} used in

Eq. 3.2 which may be written collectively as

fe} = feg} * feg) = [Q1 fod *+7Q,] fal (3.9)

The matrices [Q] and [QL] introduced in Eq. 3.9 represent derivatives
of the displacements corresponding to the linear and non~linear strain

contributions, respectively.

Following a similar development normally used in finite
element formulation, the strain energy in the new configuration of

equilibrium is evaluated as
1 T |
U=3 jv {e}” [D] fe} av (3.10)

The matrix [D] represents the generalized Hookean constant. On sub=
stituting Eq. 3.9 into Eq. 3.10 and neglecting the non~linear strain
product {GL}T [D] {eL}, since it is of much higher order, the strain

energy functional reduces to
U=y [ [ 100" Teod +2 (03" feg) | av (3.11)
where a new stress matrix
foo} = [P] fe,}

has been introduced to denote the stresses corresponding to the linear

strains {¢ }.
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From Castigliano's first theorem, which is applicable to
non-linear strains provided that the total strain energy is evaluated,

the following relationship is obtained

m} =S =L (1 11+ 26, 10p)) @ 1)

(3.12)
= [, + [k ] fa)
In performing the differentiation with respect to the generalized
coordinates {} the linear stresses {go} have been assumed to remain

constant. Introducing the displacement transformation matrix [C]

into Eq. 3.12 yields the force~displacement relationship

7} = [0 + %51 o) (3.13)
where

(k1 = ¢ 7" HV Q" (0] [@] @v] [c™ (3.14)
is the usual stiffness matrix obtained by the linear theory, and
(K] = et [ZJ"V ( co,[QL]‘> dv] rehy (3.15)

is the geometric stiffness matrix. The geometric stiffness matrix
derives its name from the fact that it depends on the geometry of the
displaced element. It is noted that the geometric stiffness matrix

can easily be determined from an integral of simple matrix producfs
evaluated over the volume of the element. The approach avoids the usual
procedure of determining strain energy in terms of displacements and

its subsequent differentiation with respect to the displacement, which

in this case would be more time consuming. Furthermore, the formulation
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allows for a systematic investigation of the effects of higher order
terms in the strain-displacement relationship by introducing the

appropriate matrices.

Application of the finite element model developed above is
made to derive the geometric stiffness matrix of the beam element.
This matrix may be derived in a single operation by formulating one
general strain expression which includes all the strain components
corresponding to the generalized displacements and substituting it
into the strain energy functional given by Eq, 3.11, Although this
approach may seem to offer simplicity it suffers from the drawback
that the required computations become cumbersome. Alternatively, the
derivation may be carried out more conveniently by treating separately
each of the large displacements that introduce geometric nonlinearity.
The stiffness matrices corresponding to each form of large displacement
are finally aggregated together to constitute the general geometric

stiffness matrix for the beam element,

The displacements that introduce geometric nonlinearity as
they become 'large' may be put under three categories:
a) Axial displacements
b) Transverse displacements
c) Twist
In the following sections, the constitutive geometric stiffness matrices

[k are derived corresponding to each large displacement given above.

cJi

The derivation of the usual linear stiffness matrices [kE]i is not given

here; it is presented in Section 2.3.
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3.3 LARGE AXTAL DISPLACEMENTS

When a beam~column is subjected to an axial force, it is well
known that the stiffness of the beam in flexure and torsion become
dependent on the magnitude of the applied axial force. 1In the following,
the influence of the axial force om the flexural and torsional stiff-

nesses of the beam element are derived separately.

Flexural Geometric Stiffmness Ma;rix

Consider a uniform beam element shown in Fig. 3,la, The element
sustains only flexural displacement in the x~-y plane under the generalized
forces P, Vy and Mz applied at the nodes, A simplified model is used
here merely for convenience; however, a model capable of sustaining
flexural displacements in both x-y and x~z planes simultaneously could

also be used without introducing significant complications,

For the beam element shown in Fig.3.la, the axial displacement,
u, is taken to be adequately represented by a linear polynomial and a
cubic polynomial is assumed for the transverse displacement, v. The

assumed displacement field is written in matrix notation as,(sz)

fu} = [P] {o}

r g oy
" 1 ¢ 0 0 o ofa]
{vb=]o o 1 ¢ e ef|™ (3.16)
<°’3}
=10 4
o] Lo o o 1 25 3ef|%
s
La6J

where £ = X/L
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The approximate strain-displacement relationship based on the
ordinary beam theory (Bernoulli's hypothesis) and which, #n additionm,
included the predominant component of Eq. 3.5 to account for the large

transverse displacement is given by ; o
| L > 'i: ’“ -

1
®xx %o + L EQ,x yv,xx] +-[2 Vg,x (3.17)

Note that CH. is a nonlinear transformation under the assumption that
the strain due to midline rotation is not small when compared to the

midline axial strain,

The matrix [QL] is determined by expressing the nonlinear

strain component {eL} in terms of the parameter {y} as expressed in

Eq. 3.9, thus,

_ 1
Q=3 (3.18)
0 0 0 1 2t 3

0 0 0 2 4g? e6g3

0 0 0 32 683 9

The transformation matrix [C] is determined by substituting
the coordinates of the nodes (Eq. 3.2) into the equations of the
displacements given by Eq. 3.16. At this stage, the matrices [QL]
and [C] are known. Finally, by substituting these matrices into Eq.
3.15, and integrating over the whole volume of the beam element the

geometric stiffness matrix is evaluated as




o
0 6/5
p |0 L/10
(ke] =T 0 o
0 -6/5
0 1L/10
.

The result agrees with that found in the literature

SYMMETRIC |

21R /15

0

0

-L/10 0 6/5

-12/30 0 ~L/10 21”/15

(52)

Torsional Geometric Stiffness Matrix

=
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(3.19)

A uniform beam element is comsidered here (Fig. 3.2b) which

sustains only torsional and the associated warping displacements under

the generalized forces P, MT

and My, at the nodes.

For convenience,

the x-axis is chosen such that it passes through the shear center of

the beam section. As in the flexural analysis, the axial displacement,

u, is taken to be adequately represented by a linear polynomial; the

twist, ¢, 1s represented by a cubic polynomial and a quadratic polynomial

is assumed for the warping displacement, .

field when written in matrix notation is

fu} = [P] {a}

( u 1 0 0 0 0 O nylw
\ =10 0 1 & g g %2
% a3

>
0 0 0 =1 =28 =3g2|{%
| © i g 3 .
5

[ % |

where £ = x/L

The assumed displacement

(3.20)
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It is noted that the displacement field given above is identical to

Eq. 3.16, likewise, the transformation matrix [C] will be the same.

For open thin-walled beams, which are composed of plates
assumed to undergo in-plane strains only, a strain-displacement rela=-
tionship can be established based on the assumption that the cross
section remains undeformed, The approximate axial strain, Exx? based
on Vlasov's beam theory, and which includes, in addition, the second

order effects of large twists is given by

n L B
= + = - ., J + [_
xx €0 " &L [u,x i§1 Pi % P xx 2 i§1

: Gf o + 12 0)] 3221

where n = number of component plates of the shape

p = the perpendicular distance between the.shear center
of the section and the middle line of a plate

r = the distance from the center of twist of a component
plate (due to St. Venant torsion) to a general point
on the middle of the plate

The kinematics of the beam section under torsion, from which the

strain-displacement relationship was established (Eq. 3.21), and the

dimensions defined above are shown in Fig. 3.2.

By expressing the nonlinear component of the axial strain
(Eq. 3.9), €y’ in terms of the parameters {a} the matrix [QL] is

determined, thus

(p;*r) o o o o o0 o
Q] = —5—* (3.22)

0 0 0 1 2t 32

0 0 0 2 42 6

0 0 0 382 683 9%*
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At this lgvel, the matrices [QL] and'[C], required for the computation
of [kG], are known; on substituting these into Eq. 3.15 and performing
the reqﬁired integration over the volume of the beam element, the
torsional geometric stiffness matrix of a beam element under axial

load is obtained as

0
SYMMETR IC
0 6/5
PI_ 0 -L/10 212/15
[kG]='iAT' . . . . (3.23)

0 =6/5 1/10 0. 6/5

K -L/10 12/30 0 1L/10 2L2/15J

where Io = polar moment of inertia of the section about the shear

center.

3.4 IARGE IATERAL DISPIACEMENTS

When a beam is subjected to a major axis bending, the minor
axis flexural stiffness and the torsional stiffness become dependent
on the applied moment., For a perfect member, there is a critical load a
which the beam buckles in a combined mode involving twist and lateral
deflection., 1In the following,‘the influence of the major axis bending
on the stiffnesses in torsion and in flexure about the weak axis are

investigated.

Flexural=-Torsional Geometric Stiffness Matrix

Consider a uniform beam element that undergoes only trans=-

lational displacements v, in the y direction, when subjected to unequal
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moments Mi» and Mz2 at the two nodes (Fig. 2.2). Just prior to

1

buckling, the initial axial stress at any point in the beam, accord-

ing to the elementary beam theory, is given by

Mozy V_xy
0, T 71 + —%—— (3.24)
Z z
where
M =lM +M,)
0z 2( z1 z2

-1 -
Vy = 21Myp ~ Mpp)

Obviously, the initial stress o, must be modified for the case when,
in addition, the beam element carries distributed loads between the
nodes. For instance, the additional term becomes quadratic in x for
a uniformly distributed load. However, such additional terms may not
be required whenever a finer discretization is‘used and a proper

lumping of the nodal forces is performed.

At the critical state, the adjacent equilibrium configuration
assumes lateral displacements associated with twisting. For a finite
element formulation, these displacements may be represented adequately

by polynomial functions which are written in matrix form as

{u} = [P] fo}
r R = - h
I v 1 g g g 0 0 0 0 0 0 0 0}fey
o
0, 0 1 263 0 0 0 0 0 0 0 0
o o
W 0 '0 0 O 1 e € g 0 0 0 O ag
r = l % (3.25)
oy 0 0 0 0 0 1 232 0 0 0 0o ¢
og
" © 0 0 0 0 0 0 0 1 & g g|lg
0 0 0 O 0O O O 0 0 -1 -2 -3¢ Lo
. 0 J N =l =28 - §_ ¥11
%12
7
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where £ = x/4

In deriving the geometric stiffness matrix, it is important
to identify the nonlinear strain components when establishing the
strain-displacement relationship. The total axial strain Cpye MRV be
obtained from the general strain-displacement relationship for beams
(Eq. 3.7) by substituting the appropriate curvatures due to large
displacements. The relevent terms, in the case of lateral torsional
displacements, are those which are products of @ and o and their
derivatives. Tt is believed that inclusion of all the terms in the
analysis will result in furnishing a more complete geometric stiffness
matrix. 1In the study presented herein, only a limited number of these
terms are adopted merely to constitute a formulation which is compa~
tible with the classical analysis of lateral-torsional buckling. 1In
the classical approach, for example, it is assumed that the flexural
rigidity about the major axis is very much greater than about the minor
axis. This is equivalent to the assumption that the deflections prior
- to buckling are small and can be neglected. However, if the flexural
rigidities about both principal axes are of the same order of magni-

tude, the deflections may be of importance and should be considered.(37)

In the energy formulation for K lateral buckling of a beam

(53)

as given by Timoshenko , or in the kinematical model demonstrated

(54)

by Bleich , the equivalent strain-displacement relationship is

written as

€= €, + er © r- YV’xx - pzw,xx] + [YwW’xx] (3.26)



Once the nonlinear strain component is defined, the matrix
[QL] is determined by establishing the strain-displacement relation-

ship in terms of the parameters {y}, as expressed in Eq. 3.9, thus

0

0

0

0 0 0
0O 0 o
0 0 o
0 0 0
0 2 3¢
0 28 3g?
0 262 3g3
0 2g® 3g*

2

0

0

0

0

0 0 0
0 0 o0
28 2g7 2g°

0

0

0

0

3g 382 3g3 3¢*

0 o
0 O
0 o
0 0

3

The transformation matrix [C] is evaluated by substituting the coor-

.27)

dinates of the nodes into the equations of the displacements (Eq. 3.3).

On substituting the matrices [QL], [C] and {co} into Eq.

3.15 and performing the required integration over the volume of the

beam element, the geometric stiffness is obtained.

matrix, where the columns and rows corresponding to the torsional

The resulting

displacements are eliminated since they are all zero, is written as

0Z
ke = 301

36

3L

-33L

412

0

0 0

36 -3L
-3L,  ~I?
0 0

0 0

SYMMETRIC
0

0 0
=36 33L

-3L

412




=59

0 0 SYMMETRIC

30 21L 0

3L 22 0 0
v
* %0
0 0 -3 3L 0
0 0 9L -2 0 0
30 9L 0 0 -30 21L 0
3L 12 0 0 -3L 22 0 0
e =

(3.28)

3.5 LARGE TORSIONAL DISPLACEMENTS

A straight shaft may become unstable under the action of a
torque. Similar to the case of Euler buckling in flexure when subjected
to an action of axial compressive force, the bending moment in the shaft
remains zero so long as the axis remains straight. However, as
soon as a deflection occurs, bending moments are introduced about
both principal axes at various sections of the shaft. The deformed
configuration in this case is not a plane curve, and the bending
moments vary accordingly as components of the applied axial torque.

A comprehensive treatment of buckling of shafts, based on the conven-~
tional approach of establishing the governing differential equations,

(

is given by Ziegler 33) for different loading and support conditionms.

Torsional-lateral Geometric Stiffness Matrix

In the finite element formulation, the displacement of the
beam is represented adequately by a system of third order polynomial

as given by Eq. 3.25. Just prior to buckling, the initial torsional
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stress at any point in the beam is given by

0o =77 (3.29)

where p radial distance from the center of twist

~
[

polar moment of inertia of the section about the shear center

In deriving the geometric stiffness matrix, it is important
to identify the linear and nonlinear displacement components. For a
beam subjected to a large torsional displacement, Fig. 3.3 shows
schematically the displacement components. The total unit torsional

displacement is written as
6 =8, +0, =[(0) 1+[0,6,) -6, ] (3.30)

where a comma denotes a differentiation,-
When these generalized displacements are expressed in terms of the

displacement functions of the beam, the relationship becomes
e = ¢, + ep = [@,x] + [W,x v,xx - V,x W,xx] 0 (3.31)

Note that the nonlinear strain components are associated with the curva-

ture of the beam.

The matrix [QL] is determined by expressing the nonlinear
strain component {GL} in terms of the parameter {y} as expressed in

Eq. 3.9, thus
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0 o 0 0o 0 0 0 o
0o 0 0 o 0o o0 0 0
0 O 0 0 0 2/48 4x/p*  6x2 /45
0 o0 0 0 0 6x/4* 12x2/45 18x3/48 :
Q] = (3.32)
o o 0 0 0 0 0 0
0 0 ‘2/1,3 6x/2* 0 0 0 0
0 0  4x/g* 12x3/25 0 0 0 0
| 0 0 6x/e5 18x3/18 0 O 0 o

The displacement transformation matrix [C] is determined by
substituting the coordinates of the nodes into the displacement
function given by Eq. 3.25. At this level, the matrices [QL] and
[C], required for the evaluation of the geometric stiffness matrix
[kG], are known; on substituting these into Eq. 3.15 and performing
the required integration over the volume of the beam element, the
geometric stiffness matrix of a beam element under pure tension is

obtained as

0
0 0 SYMMETRIC
o 1.0 o0
M| -1.0 0 0 0 ‘
T 0 o 1.0 o -39

0 0 -1.0 -L/2 0 0

0 -1.0 0 0 0o 1.0 0
| o w2 o 0 1.0 0 0 0
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3.6 LINEAR EIGENVALUE PROBLEMS

Solution Technique

Once the elastic and geometric stiffness matrices are deter-
mined for each structural element, the element stiffnesses can be
transformed into a common displacement system and the assembled stiff=-
ness matrix is obtained using conventional procedures from the summa-
tion of the element stiffnesses. The resulting equations for the com-
plete system, which take into account the nonlinear effects of large

displacements, are expressed in general form
{F} = [Kg] (A} + F) (K], 1A} + F, (K], 43
+ ...+ Fn [KG]n {a} (3.34)

where the matrices [KG]i (i =1,2,...n) represent various components

of geometric stiffness matrices which are conveniently resolved such
that the generalized forces become the scalar multipliers. Since

the geometric stiffness matrix depends on the nodal displacement vector

{A}, the system of equation given by Eq. 3.34 becomes nonlinear.

In dealing with linear stability problems, it is tacitly
assumed that the buckling deformations are independent of the defor-
mations prior to instability. This leads to the possiblility of
expressing the load vectors of each element as ratios of those parti-
cular loads that introduce instability to the whole structure. Since
the critical load is unknown, a factor ) and an arbitrary measure
(scale factor) of the normalized load vector {f@ is introduced to

represent the relative magnitude of the applied loads only
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[F} =1 {F) (3.35)
The factor ) is the instability factor or eigenvalue. Since the

geometric stiffness matrix is proportional to the intermal forces,

it follows that
[KG] = A [KG] (3.36)

where [KG] is the geometric stiffness matrix for the reference value

of the applied loading.

In performing the numerical analysis, the stiffness matrices
are resolved into two components; the effective elastic stiffness
matrix, which includes the effect of prestress in the element, and the
geometric stiffness matrices whose instability factors are unknown.
The effective elastic stiffness matrix [E%] is composed of the initial

elastic stiffness matrix and those geometric stiffness matrice whose

load parameters ) are known,
o

[EE] = [Kg] +a, [Kgl; (2=1,2, ...m) (3.37)
1

For small displacements {Z} the effective elastic stiffness matrix

may be taken as a constant. Hence, Eq. 3.37 reduces to
[Kg] {8} + Aoy [Kg] fa} = {0} (3.38)

The requirement for a non~trivial solution is

Det |[EE] + Aoy [Kl| =0 (3.39)
or
Lo = 17 R (o) (3.40).

cr
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From Eq. 3.40 the eigenvalues Aop? which represent the critical loads,
and the associated eigenvectors {A}cr’ representing the buckling modes,
are determined using standard matrix methods. The eigenvalue routine
used in this study is based on the Jacobi reduction scheme. The routine
yields the complete eigenvalues and eigenvectors corresponding to the
order of the matrix [KG} Consequently, the higher buckling modes and
the associated critical loads are obtained without introducing extra

‘provision.

Numerical Examples and Results

At this stage it is appropriate to examine the-
numerical accuracy that may be attained in the solution
of actual problems. In general, the adequacy and validity of a
numerical formulation is measured by its performance on problem cases
for which accurate solutions have been derived by alternate means. A
simple and fundamental measure of accuracy may be furnished by referring
to the case of the flexural buckling of the Euler column. 1In Fig. 3.4
the results of the finite element solutions are shown for centrally
‘loaded columns ﬁith different forms of end conditions, where the
percent error of the solutions are plotted versus the number of
elements in the idealization. The convergence of the numerically
computed critical loads toward the exact solution is remarkably good
as indicated in Fig. 3.4. A similar plot is made in Fig. 3.5 of the
results obtained from the application of the finite differences(56)l
to the governing differential equations for the case of a centrally

loaded pinned-end column, where also a comparison is made with a

finite element solution. It is noted that the error in a'two element
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idealization, which is regarded as the coarsest possible grid, is less

than 0.8% for the finite element solution.

0f course, the finite element method is not intended as a
procedure for calculation of problems given above which can be treated
rather efficiently by the classical method. However, there are
numerous problems whose solutions are not straightforward when con=-
ventional épproaches are used especially when there are irregularities
in loading and geometry. Such problems lead to mathematical problems
which are usually intractable. The formulation given here will enable
the solution of a wide variety of problems. 1In order to demonstfate
the efficacy of the finite element method in the solution of linear
stability problems, several basic problem cases are selected whose
solutions by classical'means are not straightforward. Another aspect
taken into consideration in the selection of the demonstrative problem
cases is that each case possesses a distinctive feature from a finite
~element standpoint. In the following, several basic examples,ywhich
are encountered in many engineering situations are studied and the

numerical results are presented.

a) Colums with Distributed Axial Loads

Variations in axial loads in columns is a condition encountered
in many engineering situations. A vertical column having significant
self~weight, the décrease in axial load with depth in a pile embedded
in a frictional medium, guyed towers, industrial racks and library
stacks are but a few examples. Solutions to such problems by

conventional means are not straightforward especially when there are
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irregularities in loading and geometry. For instance, the solution
of the governing differential equation for a pinned-end prismatic
column under a uniformly distributed axial load requires the applica-

(53)

tion of Bessel functions For such problems, the finite element

method furnishes solutions in a simple manner.

In formulating a finite element relationship consider a
colum having general boundary conditions and carrying some arbitrarily
distributed axial load of intensity q(x) per unit length together with
.an end load P. Both the distributed load and the end load may be
compressive as shown in Fig. 3.6, or either one may be tensile while
the other is compressive. 1In all cases, however, thg conditions for
buckling are represented by the critical combination of the two sets
of loads. The influence of the initial load can readily be intro-

duced by modifying the elastic stiffness matrix [k_] of each element

7]
by adding a scalar multiple of the associated geometric stiffness

matrix.

For the case when the end load P is the initial load {(pre-

stress load), the modified elastic stiffness matrix is

[kgl; = [kgly + P [k, (3.41)

Or, when the initial load is a distributed axial load, the corres=-

ponding modified stiffness matrix becomes

[kgly = [kgly + oy 95 [kgDy (3.42)
where q; = resultant axial load at element 1
o. = consistent load factor of element i
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Once the modified matrix for each element is evaluated, the critical
loads are determined by finding the non-trivial solution for the homo-

geneous equations of the complete system given by Eq. 3.40.

To illustrate the advantages of the finite element method,
examples are selected whose closed-form solution are available. Very
few analytical solutions are found in the literature since the solutions
involve integrals which are difficult, and usually impossible, to
evaluate(37). The examples selected are prismatic columns, having the
four conventional boundary conditions, and loaded by end loads together
with uniformly distributed axial loads q(x) = q,- The analytical
solutions for the critical combinations of buckling loads, as evaluated

by Da1a1(57)

are compared to the results obtained through the applica-
tion of the finite element method. The results are compared in graphi-
cal form in Fig. 3.7. A very good agreement is observed for all ranges
of combinations of loads. The results from the finite element solutions
are also given in tabular form in Table 1. For two of the numerical

examples solved, the first buckling modes, under different combinations

of loads, are shown in Fig. 3.8.

Unlike the conventional approaches, which require additional
and usually tedious computational scheme to determine the higher buck-
ling loads and the associated modes, the finite element approach readily

furnishes these values as part of the original operational scheme.

b) Tapered Columns

Tapered columns of different cross-sectional shapes are used

for structural purposes in a variety of applications. Their use is
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attractive in many situations where the applied load can closely be
specified and a saving in weight is encountered. Analysis of tapered
columns of different shapes and end conditions by classical means is
difficult and has been the subject of a number of investigations
(53,58,59,60)_

Such problems, however, can be treated in a simple

manner by the use of the finite element method.

In formulating the finite element relationship, the columm
is idealized as an assemblage of discrete elements, where either
piecewise prismatic elements or uniformly tapered elements may be
used. For the stepped representation, the section properties at the
mid-length of the element sufficiently describe the element. However,
such idealization may furnish less accurate results when coarse
discretication is employed and when the member has a high gradient
of taper. For such members, use of tapered elements will yield
results with a better accuracy. The derivation of the stiffness matrix
for beams with a uniform taper in either one or both principal axes

is given in Appendix I.

The assembled stiffness matrix of the complete system is
obtained from the summation of the geometric stiffness matrices, which
are independent of the cross-sectional properties, and Ehe elastic
stiffness matrices of each element. The critical loads are then
determined by finding the non-trivial solution of the homogeneous

equation (Eq. 3.40).

To illustrate the advantages of the method, the critical

loads of tapered columns with one end fixed and free at the other end
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are computed for uniformly tapered columns. For these columns, a

taper parameter is defined as the ratio of moment of inertia at the

two ends 1) = IT/IB, where IT is the moment of inertia at the free end
(top) and IB represents for the fixed end (bottom). For colummns with
n < 1.0, the results obtained by the finite element method are compared
to the theoretical solutions given by Timoshenko(37). The comparison
is shown both in graphical and tabular form in Fig. 3.9 and Table 2,
respectively, A very close correlation is observed for all values of

1. The critical loads for n > 1.0 is shown in Fig. 3.10 and a study

on convergence is demonstrated in Fig. 3.11.

c¢) Columns on Elastic Foundatiomns

The behavior of axially loaded columns with continuous elastic
support can be considered as the idealized form of a number of related
problems in engineering. Embedded piles receive lateral support
from the surrounding soil, compression flanges of beams and girders
are laterally supported through the web system, and railway tracks or
continuous crane rails subjected to axial loads, such as during tem=~

perature changes, also receive lateral elastic support.

A considerable amount of literature exists regarding the
analysis of beams supported on elastic foundations by seeking solu=

tions to the governing differential equations(53’61’62).

This approach
becomes more difficult to solve those problems with variations in

loading, the supporting medium and on the geometry of the member.

In formulating the finite element relationship, a columm

supported on a Winkler-type foundation(61) is assumed, that is, the
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elastic foundation can be replaced by a continuous set of springs each

*
of which can deflect independently.( ) The supporting medium may have
a variation in the foundation modulus k(x) along the column length
and may be capable of developing lateral, rotational and torsional

restraints.

The discrete element stiffness formulation results in a

simple matrix relationship of the form
[Ty + O, + Tgdy] fog = (7} (3.43)

where a new stiffness matrix [kF] is introduced to represent the
consistent stiffness matrix of the foundation. The derivation of [kF]
for a Winkler-type foundation is given in Appendix II. Once the
evaluation of the element stiffness matrices is completed, they are
assembled to obtain the equations of the complete system. The critical
loads are determined by finding the non~trivial solution of the homo-

geneous equation (Eq. 3.40).

To demonstrate the usefulness of the method, the critical
loads of axially loaded pinned~end columns on elastic foundations
(lateral springs) are evaluated for various values of foundation

modulii k(x) = k. In Fig. 3.12, the results are compared, in graphical
(61)

form, to the analytical solutions obtained by Hetenyil A very

good agreement of results is observed even when a coarse discretiza=-

tion is used (N = 4),

(*)There are also other types of foundation models which have been
suggested by Wieghart(63), Filenko-Bordich (64), Vlasov (65) and
Biot (66). The use of such models may also be incorporated by
developing the appropriate consistent stiffness matrices of the
foundation as demonstrated in Appendix II for the case of a Winkler=
type foundation.
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d) Piecewise Prismatic Columns

Piecewise prismatic columns are occasionally encountered
in special situations in engineering. The main differing feature which
is characteristic of such columns, when compared to the example cases
studied above, is the variation of the direction of the principal axes
of the cross section along the length. During buckling of a piecewise
prismatic column, the deflected configuration does not necessarily
become perpendicular to the axis of the 1east.moment of inertia and
thus will exhibit a non-~planar configuration. This feature causes the
governing differential equations to be nonlinear, consequently the
solution by the classical approach becomes difficult, For the parti-
cular case of elastic buckling of a two-component columm composed of

(67)

identical components, the solution was given by Hsu using classical

methods.

In order to demonstrate the application of the finite element
method to stability problems of piecewise prismatic columns,
consider a two-component column composed of two prismatic columns of
the same cross section. The components are assumed to be rigidly
connected, with one component on top of the other (Fig. 3.13), in such
a manner that their centoidal axes are coincident but the principal
axes are offset by an arbitrary angle . The shear center of each

column cross section is assumed to coincide with its centroid,

In formulating the finite element relationship, two local

coordinate systems, namely the x-y-z system and the x-y'~z' system (Fig. 3.13)

are used such that y-z and y'=z' coincide with the principal axes

of the cross-section of the lower and upper compomnents of the column,
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respectively., The x-axis is identical to both segments and coincides

with the centroidal axis of the column. The stiffness expressions,

when written with reference to the local coordinate system, are
fF} = [k;] {6} + P [k;] {8} (3.44)
for the lower component, and
{F'} = [kg] {8'} + P [k, {s'] (3.45)

- for the upper component. In Eq. 3.45, {F'} and {g'} are the force

and displacement vectors corresponding to the y'-z' axes system.

To obtain the equétions of the complete system, a common
displacement system is used by choosing a global system of axes which
coincides with the y-z system of the lower component. Following conven=
tional procedures, the géneralized displacements of the upper component

{§'} are transformed to the global system, through the relations

= = q
() 10 0 0 0o 0 0 u
w' 0 cosy -0 ~sing 0 0 o0 W
e; 0 0 cosy 0 sing 0 O ey
{yvy' =] 0 sinyg 0 cosy 0 0 o0 ﬁ y (3.46)
e; 0 0 -sing 0 cosy .0, O 0,
1o o o0 0 0 o 1 0 0
. ! 0 0 0 0 0 o 1
L@ L : | Lw J

where o is the angle of offset shown in Fig. 3.13, In a similar manner,
the force vector {F'} is determined using the same transformation matrix,

thus
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{F'} = [1] {F} (3.47)

Since the matrix [T] is orthogonal, Eq. 3.47 may be written as
T T
fF} = (137 k] [T {8} + 2 [T (k.1 [T] {s)

Finally, the evaluation of the element stiffness matrices is performed
with reference to the global system and the element stiffness matrices
are assembled to form the equation of the complete system., The critical

loads, Pcr’ are obtained from the non-trivial solution of Eq. 3.15.

In order to demonstraté the application of the finite elément
solution procedure described above, the critical loads of two-component
colums with arbitrary offset angle , are determined for various values
of the stiffness factor n = Il/IZ' The analytical solutions for such

columns are given by Hsu(67) for

limited values of the factor ).

For the available analytical results, the finite element counterparts

are compared. TFigure 3.14 compares the critical loads of columns sup-
ported on spherical pins, and in Fig. 3.15 for columns with fixed end
conditions, Additional results, which cover a wider range in values

of the factor m, are given in graphical form (Fig. 3.14 and Fig. 3.15)

and also in tabular form (Table 3).

As a second example, the critical loads of multi-segment
columns, where the segments are offset orthogonally (y = 900) in
consecutive order, are determined for different values of the factor
n = Il/IZ' The'approximate analytical solutions are given by Fischer
(68)

. The results are compared in Fig. 3,16 for columms with pin

ends and in Fig. 3.17 for fixed columns, where in both cases good

correlation is observed. The results are also given in Table &4,
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e) Pretwisted Columms

A pretwisted column is a structural member that has a natural
twist about the longitudinal axis which may vary in some arbitrary
manner along the length. While pretwisted beams are used in a variety
of applications, as in turbine blade -and aircraft propellers,
pretwisted columns are also encountered occasionally. More than its
practical justification, the study of pretwisted columns here offers
a good example to demonstrate the efficacy of the finite element
method to beam~column problems. In the buckling of pretwisted columms,
as in the case of piecewise prismatic columms, thé column assumes a
non-planar deformed configuration and the resulting deflect ion is no
longer perpendicular to the axis of least stiffness. This character-
istic makes the equilibrium equations to be nonlinear differential

equations whose solution may be difficult to obtain in a simple manner.

Little information is available on the study of pretwisted

columns. Ziegler(69)

investigated the buckling of pretwisted beams
and columns. Later, Zicke1(70) developed a theory concerned with the
behavior of pretwisted beams and columns of thin-walled section. More

(71)

recently, Fischer investigated the influenée of pretwisting on

the buckling load of a column for different boundary conditions and
moments of inertia. These investigations deal essentially with
approximating the nonlinear differential equations by a set of uncoupled

homogeneous linear differential equations, introducing certain

simplifying assumptions.

In formulating the finite element relationship, the pretwisted

column is idealized as an assemblage of either uniformly pretwisted
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beam elements or prismatic beam elements which are piecewise twisted
with respect to one another along the centroidal axis. For the piece-
wise prismatic representation, the section properties and the incre=~
mental twist at the mid-length of the element may sufficiently describe
the interval modeled. However, for situat;ons when coarse discritiza-
tion are used and when the member has a high gradient in twist, the

use of pretwisted elements will furnish results with better accuracy.

The derivation of the stiffness matrix for a uniformly pretwisted element

is given in Appendix ITI.

Once the stiffness matrices for the elements are determined
with reference to the local coordinates they are subsequently trans-
formed to the global coordinates using Eq. 3.48. The transformed
matrices are finally assembled following the conventional procedure of
summation of the element stiffnesses. The critical loads are determined
by finding the non-trivial solution for the homogeneous equation of

the complete system (Eq. 3.15).

In order to obtain a verification of the finite element
solution, a short test program was carried out to compare the experi=-
mental and theoretical strengths of pretwisted columns. It appears
that very little theoretical study and no experimental work is found
in the literature on the elastic buckling of pretwisted columms. The
test program conducted in this study consists of four high-strength -
steel wide flange shapes (2-5/8 x 1-1/2 WF). The specimens were
prepared from beams which were originally prismatic by twisting the

beams, to simulate a natural twist along the length, until a permanent
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twist of the desired magnitude was attained. 1In order to induce a
uniform twist along the length, pure torque was applied to the specimens
in an engine lathe as shown in Fig. 3.18, by controlling the rotational
displacements. Four specimens were‘prepared having natural twists of

0% (prismatic), 90°, 180° and 360°.

The pretwisted columns were tested under a hydraulic testing
machine (Fig. 3.19) following a standard testing procedure for centrally
loaded prismatic columns(72). For each column test, a boundary condi-
tion consisting of a knife edge condition along the web of the cross
section (the minor principal axis) was used at each end of the columm.
The test data and the experimental results of the stability tests are
summarized in Table 5. The Table also gives the theoretical critical
loads predicted by the finite element method and estimates of the
experimental critical loads which were derived by extrapolating from

d(37). The results

the load and deflection using a Southwell Plot metho
are also shown graphically in Fig. 3.20. It can be seen, in general,
that thecritical loads are consistentlymore than the experimental
loads and there is good correlation between the theoretical and
experimental critical loads. Comparisons between the theoretical

and experimental buckling modes of the tested colummns are shown in

Fig. 3.21.

Theoretical predictions of critical loads of pretwisted
columns for various angles of pretwist y and different values of the
factor n = Il/IZ are shown graphically in Fig. 3.22 and also in tabular
form in Table 6. A knife edge condition about the minor principal

axis is imposed at each end of the pretwisted columm, It is seen that,
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for cross sections with n > 1.0, the critical load is always greater
than that of the prismatic column counterpart. The increase in strength
becomes significant for larger values of the factor m and for certain

ranges in values of o as shown in Fig, 3.22,

It is instructive to note the variation in strength for the
particular case np = 1.0 shown in Fig. 3.22. Hypothetically, within the
context of the beam theory, pretwisting has no effect on the buckling
strength of columns whose cross sections have equal moment of inertia
about all centroidal axes (1) = 1.0). However, the variation in strength
shown in Fig. 3.22 is attributed to the directions of the knife edge
condition imposed at the ends. For the particular case when o = 90°, the
strength of the pretwisted column is equivalent to that of a prismatic
column with pinned~-fixed end conditions or to that of crossed pin end
conditions oriented orthogonally. The latter view leads to the classic
problem of the buckling of prismatic columns with crossed pins or
ginglymus joints, that is, the pins that permit rotations in a single
plane at the column ends are oriented atan arbitrary angle to each
other. Ashwe11(73) solved the problem of buckling of prismatic columms
with crossed pins for cross sections with yj = 1.0. Analytical solutions
for cross sections with unequal moment of inertias about the principal
axes become difficult since, in pretwisted columns, the column deflec-

tions during buckling are non-planar.

These complications do not arise when using the-finite
element method, since it is needed only to have an additional trans-~
formation at the node where the arbitrarily oriented pinned end

condition is imposed. At this node, transformation is performed from
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the local to the global system using the matrix given by Eq. 3.48.
Applying the finite element method described, thevcritical loads

were determined for prismatic columns of arbitrary cross sections with
crossed pins. The results are shown graphically in Fig. 3.23. For

the particlar case when n = 1.0 the theoretical solution given by Ash-
we11(73) is compared to that of the finite element solution, Prismatic
columns fixed at one end and pinned at an arbitrary angle at the other
end are also solved and the numerical results are shown graphically

in Fig. 3.24.

f) lateral-Torsional Buckling Problems

The importance of lateral-torsional buckling in governing
the strength of thin-walled beams has long been recognized. For
perfectly straight beams subjected to major axis bending, failure in
the lateral-torsional buckling mode may occur at loads considerably
below those necessary to cause failure in the plane of the applied

loads.

The classical procedure for determining the buckling loads
of beams involves the formation and solution of the governing differ-
ential equations. Alternatively, the solution is obtained by employ-

(53’54). These methods

ing energy methods such as the Ritz procedure
are not, however, sufficiently general to deal with many situations
which occur in practice, such as in handling complex 1oading‘and support
conditions and irregularities in the beam geometry. The advantages

of the finite element approach are therefore considerable since a

general formulation once established may then be applied to a wide

variety of lateral-torsional problems.
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In order to demonstrate the accuracy and convergence charac=-
teristics of the finite element formulation (Sec. 3.4), a few examples
are examined whose solutions are available by alternate means. The
convergence characteristics are demonstrated by examining a simply~
supported beam subjected by equal end moments Mcr' The results are
shown in Fig. 3.25 where the percent error is plotted versus the number
of elements used in the idealization, using the elastic stiffness
matrices based on cubic polynomial and strain field formulation (Sec.
2.3). For a four element idealization, the percent error is less than
0.17% which may be regarded as a remarkable convergence characteristic.
Note that the convergence characteristics of torsional buckling under
axial loadingare identical tothe case of lateral-torsional buckling as
shown in Fig. 3.25. To demonstrate the accuracy of the formulation,

a simply-supported beam subjected to a concentrated load at the midspan
of the beam is examined. In Fig. 3.26, the finite element solution
is compared graphically to the analytical solution given by Timoshenko(SB)

for a wide range of cross section properties (see also Table 7).

The application of the finite element formulation to complex
problems may be demonstrated sufficiently by examining the experimental
investigations performed by Trahair on the elastic stability of

(74) and simply supported tapered beams(75). In both

continuous beams
cases the loadswere applied at the top of the flange. In the finite
element approach, effects of applying a load P at distance a from thé
shear centerare taken into the formulation simply by adding a moment

term (P;) in the [kG] matrix corresponding to the degree of freedom

@ at the node where the load is applied.
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The experimental results of two-span aluminum beams tested

by Trahair(74)

, which are presented in the form of an interaction
diagram, are compared to the finite element solution in Fig. 3.27.

The agreement with the experimental results is satisfactory. The
theoretical values are obtained by taking the appropriate displacement
and loading conditions during the assembly of the element stiffnesses.
The moment diagram prior to buckling is taken as the loading condition
whiqh consists of terms as multiples of the unknown load parameter Pcr
applied at one span and the known load P at the other span. The effect

of the known load P is added to the elastic stiffness matrix [kE].

is determined by solving

For different values of P the corresponding PCR

the eigenvalue problem.

In the case of the buckling of tapered beams, the only
differing feature is the elastic stiffness matrix [kE] which varies
for each element. As in the case of tapered columns a stepped repre-
sentation may sufficiently describe each element by taking the section
properties at mid-length of each element. However, when beams with _
high taper gradients are encountered, the elastic stiffness matrix
of uniformly tapered elements may be used (Appendix II), The experimental
results of simply supported aluminum beams (Fig. 3.28) tested by Trahair

(73) are compared to finite element solution in Fig. 3.29. Also, the

(75), where the differential equations

theoretical values given by Trahair
are solved by numerical methods, are compared in Fig. 3.30. In both
cases, the agreement is satisfactory. Using the finite element method,

additional numerical results are given in Fig. 3.31 for different

combinations of taper parameters.
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g) Space Frames

The study of the overall stability of a space frame to obtain
the actual buckling condition of the entire system has been a subject
of numerous investigations. A number of methods are now available for
obtaining exact or approximate solutions. A detailed account of the
work in this field is found in Ref., 54 and 76. The application of
the finite element method in solving problems of space frame buckling

is now presented.

In formulating the finite element relationship, the internal
forces in each member prior to buckling are first evaluated. The
frame is then idealized as an assembly of discrete beam elements. The
members which are not subjected to axial forces during the prebuckling
state are sufficiently represented by single elements since the geo-
metric stiffness matrices for such elements are null matrices. 1In
such situations, a one-element representation does not introduce addi-
tional numerical errors since the displacement expression of the
element, which is a third order polynomial, describes consistently

the assumed deflection of a beam with constant shear.

Once the element stiffness matriceé are determined in terms
of the local coordinate systems, a displacement transformation is
performed for each element involving the direction cosines when rela-
ting the local and global systems. The equilibrium equations for an

element when expressed in terms of the global coordinate system is

[[kE]g + kgl | 18}, = (¥} (3.49)
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where

[kglg = (71" [l [T]

]

[kglg = (71" [k, [T]

(7}, = (10" (7},

The subscript g and f represent the global and local reference axes

systems, respectively.

Applying the procedure described above, numerical results
of a few sample problems are now presented. In order to demonstrate the
convergence characteristics of the method, knee-bent frames subjected
by axial forces and having two different boundary conditions are
considered. The results are compared to analytical solutions in Fig.
3.32 where the percent errors are plotted versus the number of elements
used in discretizing the columns. The accuracy of the method is
demonstrated by comparing the results to the analytical solutions
of the four standard cases of single-story portal frames. The

results are shown graphically in Fig. 3.33.

The application of the method to more complex problems is
illustrated by solving the space frame used in the investigation by
Morino(77) based on the determinantal approach which makes use of the
concept that the determinant of the overall stiffness matrix becomes
zero at the critical load. The space frame is shown in Fig. 3.34
and is subjected to vertical loads P at each joint. All members are
made of the W10x49'shape and the columns are oriented as indicated

in the Figure. Also shown is the idealization of the frame for the
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finite element analysis. The critical loads and the associated buckling
modes are obtained in one operation as in the previous examples and

do not require iteration. 1In Table 8 the results from this analysis

are compared to the results in Ref, 77.

h) Buckling of Shaft under Torsion

In order to demonstrate the use of the geometric stiffness
matrix derived in Section 3.5, which corresponds to large torsional
displacements, the buckling strength of shafts under pure torsion
is now presented. For the purpose of simplicity, two shafts are con-
sidered having simple boundary conditions: pinned and fixed in flexural
rotations at both ends. 1In both cases concentrated torques are applied
at the ends and the shafts are assumed to have equal moment of inertias
about all axes. The buckling analysis of shafts having unequal moments
of inertia about the principal axes is not straightforward. For
such members, just prior to buckling, it is possible that the member
is excessively deformed in torsion, thus, the stiffness of the beam
at buckling is bettér represented by a pretwisted beam. However, the
pretwist of the beam at the instant of buckling is unknown since
the buckling load 1is yet to be determined. In such situat ions, there=-
fore, it is-suggested to employ iterative schemes in solving the

problem.

In order to study the convergence characteristics of shafts
having equal moments of inertia about all axes, the shaft is discretized
into different numbers of elements. For a specified number of elements,

the assembled stiffness matrix of the complete system is obtained in
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the usual manner from the summation of the individual matrices. The
critical loads are determined by finding the non-trivial solutiea Qf.
the homogeneous equations (Eq, 3.40), The results are given in Table
9 and are compared to the analytical solution. For both shafts the
eigenvalues corresponding to the first buckling modes are shown in

Fig. 3.35.




-83

4. NONLINEAR ANALYSIS OF BEAM-COLUMNS

4.1 INTRODUCTION

Nonlinear behavior in-structural systems arises from two
distinct sources, namely, material nonlinearities and geometric non=-
linearities, the former being reflected in nonlinearities in the
constitutive equations and the latter in the noniinear‘terms in the

kinematical equations of large displacements.

The application of nonlinear theory to conduct the conven-
tional closed form analysis of structural responses leads to mathe-
matical problems which are usually intractable. 1In order to obtain
quantitative solutions, it is natural, therefore, to resort to numerical
methods. In general, numerical methods of structural analysis may be
described under two categories. 1In the first category are the methods
that lead to numerical solution of the governing algebraic or differ=~
ential equations, by approximating the mathematical functions, which
are then solved by either finite differences or by numerical integra-
tion., In the second category is the finite element method which is
based on the concept of piecewise approximating continuous fields.

The adaption of the finite element method has been accelerated in recent
years and is employed extensively in a wide range of nonlinear problems

mainly due to its simplicity and generality. A comprehensive treatment

on the theoretical foundations of the method to nonlinear problems

is given in Ref., 16.

The problem of material nonlinearity arises from the non-

linearity of the constitutive equations as a consequence of describing
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the laws of material behavior under multiaxial stress states. The

relationships do not involve only the current state of stresses as

in the case of elastic behavior; rather, they depend as well upon the
past histories of these components. Despite these complexities,
substantial progress has been made in developing the finite element
method based on the principles of the general theory of plasticity.
Useful reviews of accomplishments in finite element inelastic analysis

are found in Refs. 16 and 17 and also in Refs. 78 to 80.

The problem of geometric nonlinearity may be considered as
having several levels of nonlinearity. For a more realistic evaluation
of actual behavior, additional measures of nonlinearities must be
considered. Such measures, however, will result in increasing the

complexity of the formulation and of the solution.

The problems that may be considered at the lowest level in
this hierarchy of nonlinearity comprise those that can be transformed
into linear eigenvalue problems. This is the classical stability
problem, such as in the buckling of perfectly straight colummns, where
satisfactory predictions can be made for critical loads (eigenvalues)
and the corresponding buckling modes (eigenvectors) by solving a typical
eigenvalue problem. These problems involve a bifurcation of equili-
brium, the point of bifurcation occurring at the critical load, which
is characterized by the existence of a fundamental state of equilibrium.

A detailed treatment of such problems is given in Chapter 3.

The problems dealing with predicting post-buckling behavior

or those characterized by initial imperfections extend to the next
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level in the hierarchy of geometric nonlinearity. The investigation

of post-buckling behavior requires higher order approximations, which,
unlike the linear eigenvalue problem, depend on the type of singularity
occurring at the critical load, In a similar manner, the presence of
geometric imperfections will introduce nonlinearity, but of a different
nature when compared to the linear analysis; since the load-deflection
relationships are no longer based on the initial geometry. The critical
load for an imperfect system is characterized by the load for which

the deflections increase indefinitely, Further higher levels in the
hierarchy of nonlinearity include problems with large rotations and
axial strains as in snap-through type instability problems arising in

arches.

4.2 SOLUTION TECHNIQUES

The solution techniques for nonlinear problems are funda-
menﬁally the same despite the sources of nonlinearities. A variety
of solution procedures utilizing the finite element concept and its
applications have been employed extensively in recent years. Basically,
most of the numerical procedures fall into two broad classes: namely,
incremental and iterative methods. The incremental methods do not
necessarily satisfy equilibrium conditions, whereas the iterative
methods tend to stay on the true equilibrium path at all steps of the

computation,

The procedures are described by considering the nonlinear

equilibrium equations of the complete system

(K] {8} = {F} 4.1)
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The nonlinearity occurs in the stiffness matrix [K] which itself is

a function of the load {F} and displacement {s}. In the following,
the fundamental principles in the two solution techniques are pre-

sented.

Incremental Methods

The application of the piecewise linear incremental procedure
to the finite element analysis of nonlinear structural behavior was
first proposed by Turner et a1(81). In this method nonlinear behavior
is determined by solving a sequence of linear problems. The load is
applied as a sequence of sufficiently small increments so that during
the application of each increment the structure is assumed to respond
linearly; consequently, the equations become linear., For each load
increment, the corresponding increment of displacement is computed;
it is accumulated to give the total displacement at any stage of
loading. A subsequent increment of load is applied and the incremental

process is continued until the desired number of load increments has

been completed., The solution procedure takes the following form,

[tx7 + t)p7]oq 18, = 17, 4.2)
where [K] = linear stiffness matrix
[KI] = incremental stiffness matrix at load step (i-1)
{8} = incremental displacement

incremental load

{F}
Essentially, the incremental procedure solves a sequence of linear

problems where the stiffness properties are recomputed based on the

current geometry prior to each load increment. This process is basically
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the Euler-Cauchy integration scheme applied to Eq. 4.1 with the load
{F} playing the role of the dependent parameter. The method is

schematically indicated in Fig. 4.1,

One of the principal advantages of the incremental method is
its complete generality and simplicity in application to many types
of problems with nonlinear behavior. 1In addition, it provides a
relatively complete description of the load-displacement behavior.
Nevertheless, the method has the disadvantage ‘that a real estimate
of the solution accuracy is not possible since, in general, equilibrium
is not satisfied at any given load level., 1In some situations, the
incremental method may lead to a deviation from the true load-displace-
ment relationship especially in the neighborhood of instability

conditions.

In order to reduce the deviation from the true behavior,
an effect which is prominent with Euler type integration schemes,

more accurate schemes such as the Runga-Kutta method may be used.

The addition of a corrective term to the incremental method, for instance,

which requires only insignificant computational effort, has been
demonstrated by Haisler et a1§82) to increase the accuracy considerably.
This procedure includes a load vector representing the out=-of=-balance

force {FR} determined from equilibrium considerations. Consequently,

the self-correcting incremental procedure becomes

[[KJ + [KI]]i_l {é}i= ri*}i+ fFe) (4.3)
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Iterative Methods

The iterative  approach is one of the oldest procedures
used by many investigators for solving systems of nonlinear algebraic
equations. 1In this procedure a sequence of linearized equations is
solved to obtain an improved solution by starting with an initial
estimate to the displacement solution. This improved solution is back=
substituted into the equations and the process is repeated until an
acceptable convergence measured by a prescribed tolerance is obtained.
For the nonlinear equilibrium equations given by Eq. 4.1 the iterative
procedure consists of successive corrections to the solution until
equilibrium condition under the total load {F} is satisfied. The
success of iterative methods, in general, depend

estimates of the displacements.

To obtain rapid convergence for problems exhibiting high
nonlinearities, many investigators have utilized the Newton-Raphson
iterative  approach. This method is accurate and converges rapidly,
whenever a realistic initial estimate of the solution is made, and is
considered as one of the most reliable(sz). Based upon an initial
estimate of the displacement {5}i at a given load {F} in Eq. 4.1,

and using a first-order Taylor series expansion corresponding to

{6 + 5}i a linear incremental relationship is established
[x1 + (x0]; 7804 1934 f 4.4)

An increment to the displacements {5}1 is computed during the i th
cycle of iteration; it is added to the approximate displacement

{5}1 to obtain a more nearly correct (i + l)th approximate solution, thus
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T8}, = To}; + fs}, .5)

This new solution {6}i+1 is then substituted into Eq. 4.4 to obtain
a further correction by utilizing the tangent stiffness at the end of
the previous iterative step. This process is repeated until the

increments of displacements {5}1 become sufficiently null. The method

is described schematically in Fig. 4.2(a).

The Newton-Raphson method requires updating and subsequently
inverting the stiffness matrix at each cycle. This process may become
lengthy in particular for larger systems of equations. In such
situations, it may be advantageous to employ the modified Newton=Raphson
procedure(45’82). In this method the stiffness matrix is held constant
for several iterations or load increments after which the stiffness
matrix is updated based on the current displacements. Obviously,
the procedure necessitates a greater number of iterations; however,
it guarantees a substantial saving of computations as it does not

require an inversion of the matrix at each cycle. A schematic repre-

sentation of the method is shown in Fig. 4.2(b).

4.3 GEOMETRIC NONLINEARITY

This section deals with the general instability problems of
beam-columns in which the displacements are large but the engineering
strains remain 'small'. Geometric nonlinearities enter the finite
element formulation as a result of nonlinear strain-displacement
relationships, which consist of strain products of the same order
of magnitude as the engineering strains, and also from the effect of

large displacements on the equilibruim equations.
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A formulation that takes into account geometric nonlinearities
can be used to study the response of imperfect structures as well
as the post-critical behavior of perfect structures, In general,
actual structural systems are never built precisely as planned and thus
inevitably contain small imperfections associated with geometric errors.

These imperfections can change the response of the system.

The nonlinear response of a structure is obtained by utilizing
linearized incremental methods(44). The resulting incremental equili-

brium equation may be written in the form

[ Tr51 + [%61]oy 1835 = 173, 4.6)

where [KE] is the conventional linear stiffness matrix and [KG] is
the geometric stiffness matrix. The subscript (i-1) indicates the
stiffness matrices are evaluated for the state of displacement at the
beginning of the increment. At each load increment the local dis=-
placement vector, the overall stiffness matrix and load vector are

related to those in the global system by the transformations

fog} = [T {s,) .7)
[k,] = (13" [K,] [T] 4.8)
rr} = (11 (F,) .9)

The subscripts {4 and g represent the local and global systems, repsec=
tively. 1In incremental formulations, the direction cosines in the
transformation matrix [T] become also functions of the current displace-

ment state in addition to the initial geometry. Thus, the transformation
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matrix [T] is modified at each load increment. The load {F}, which

is the scalar multiplier of the geometric stiffness matrix [KG], is

also evaluated at the beginning of each load increment.

In the iterative method, a load increment {f} is applied
to the structure and the resulting displacements are used to revise
the new configuration of the structure. At each cycle of iterationm,
the new geometry is used to recompute the stiffness matrix and the
load vector by using a linear analyses. The solution procedure takes

the following form

(K], ré}i - [F);_, (4.10)

where {ﬁ}i—l [T]Ti_l {F&}

(15 | g3 + %3], 114,

(K11

4.4 MATERTAL NONLINEARITY
The stiffness matrix for problems of material nonlinearity

is computed from the relationship given by Eq. 2.16

x] = rr1° et oy (2.16)

where [H] = Iv (2] [D,,] [P] &V

The matrix [Dep]’ which describes the material behavior under multiaxial
stress, is now a variable and depends not only on the state of stresses
but also upon the history of loading. The constitutive relationship

for an inelastic material can be expressed in terms of finite increments
fo} = [Dg,] {e} (4.11)

The matrix [Dep] is modified by updating the components of the matrix
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according to the deformation laws of plasticity. For metallic structures,
in general, idealization of the material by a Prandtl-Ruess material

obeying the von Mises yield criterion is universally used.

Two general methods, which are based on essentially different
concepts, have been developed for inelastic analysis of solid bodies.
These are the method of "initial strain' and the method of ''tangent

modulus".(78)

The initial strain method is based on the idea of modifying
the equations of equilibrium so that completely elastic behavior may
be assumed. This approach introduces modifications to compensate for
the fact that the inelastic strains do not cause any change in the
stresses. Details on the development of the method are found in Ref.

80.

The tangent modulus method is based on the linearity of the
incremental laws of plasticity and approaches the problem in a piece~-
wise linear fashion. As the load is applied in increments, a new set
of coefficients is obtained for the equilibrium equations. This
approach is used now more extensively among many investigators due to
its consistencywith the classical methods of plasticity analysis and
also due to its computational efficiency. In Ref. 79 the use of this

method is described in detail.

In this study further investigation on the material nonlinearity
aspect is not made. The problem of material nonlinearity in beam=-

columns is identical to those problems of solid mechanics or plates
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and shells. Substantial information is available in the literature
on the application of finite elements to problems of material non=-

1inearity.(16’17,78,79,80)

4.5 SAMPLE PROBLEMS AND RESULTS

The first numerical example to illustrate the validity of the
procedure described is that of a cantilever column with an initial
out-of-straightness 5o'at the free end. The out-of-straightness along

the length of the column is assumed to be expressed by

8, = 6,4 (1 - cospy x/L) | (4.12)

For this column the analytical solution for the complete load-displace=
ment relationship is given in Ref. 53. 1In the application of the
finite method, the direct incremental procedure is used in evaluating
the load-displacement relationship. The effect of the number of load
increments in the final solution is shown in Fig. 4.3 when using the
direct incremental procedure. It is observed that the results agree

closely to the analytical solution as the load increments become small.

In Fig. 4.4 a set of load-displacement relationships is shown
for the same column for different values of 8o ranging from L/500 to
L/5000. The results indicate fairly close correlation to the analytical
solutions. 1In Fig. 4.5 the finite element and analytical solutions
are compared when the column is bent excessively to large displacemeﬁts

having the order of magnitude of the length of the columm.
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5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE DEVELOPMENTS

The principal objective of this study is to develop a finite
element formulation for the analysis of beam-columns and to demonstrate
the applicability of the method to general beam-column problems as a
practical tool. In the»formulation of the finite element model, the

beam column is regarded as a one~-dimensional body.
The contributions achieved in this dissertation are:

-A one-dimensional finite element model is developed to analyze

general linear static beam-column problems.

-A systematic procedure is presented to evaluate geometric
stiffness matrices for beam-columns which are required to

perform a finite element analysis of stability problems.

-The geometric stiffness matrices are derived which correspond

to large lateral and torsional displacements.

~The advantages of the finite element method are demonstrated
in the solution of a few stability problems, such as the
buckling of pretwisted columns and the lateral buckling of
tapered beams, the analytical solutions of which are not

yet available.

The study has served in demonstrating the use of the finite
element method in conducting linear static, linear stability and non-
linear analyses of beam-columns. Furthermore, the advantages of the

method are demonstrated in solving a wide variety of problems having




irregularities in geometry, loading and support conditions which defy

adequate treatment by the classical means.
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In the linear static analysis, a one-dimensional finite element

model is developed by making use of variational principles. The eval
tion of the element properties is performed by developing a formula-
tion based on a functional constituting of two independeﬁt fields:

a polynomial approximation of the strain field in the domain, and
displacements at the boundary. The beam element has two ﬂodes with
seven degrees-of-freedom at each node: three linear displacements,
three rotations about the cartesian system, and a warping displace-
ment. The formulation has an advantage when compared to previous
work in that the required manipulation to evaluate the element pro-
perties is simple especially when additional kinematical assumptions
are introduced such as shearing deformations due to bending and warp-
ing. Reviews of the derivation process disclose a complete sequence
of numerical integration and matrix operations which can be operated

in a systematic manner.

In the linear stability analysis, a systematic procedure
is developed to evaluate the so-called geometric stiffness matrices
for beam-columns by making use of the nonlinear strain~displacement
relationships. The model developed is used in deriving the geometric

stiffness matrices for beam-columns when the displacements are large

ua-=

in axial and transverse directions and also in twist. The use of these

matrices is demonstrated in solving a variety of stability problems

through a direct eigenvalue determination. The examples are selected
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such that each has a differing feature from the finite element stand-
point. The types of examples include: columns with distributed axial
loads, tapered columﬁs, columns on elastic foundations, pretwisted
columns, space frames and lateral-stability problems. In all cases,

a remarkable convergence is observed and satisfactory accuracy is
obtained by using relatively few elements. Moreover, the required

computational effort is found to be minimal.

In nonlinear analysis of beam columns, the use of geometric
stiffness matrices is found to play an important role in determining
nonlinear responses of structures. The use of the direct incremental
method is demonstrated on a few numerical examples whose analytical
solutions are available. For beam~columns with geometric nonlinearity,
it is found that the direct incremental method furnishes satisfactory
results, especially when the load increments are small. 1In addition,
the method is straightforward and requires very little computational

effort.

While the applications presented in this study are very simple
the finite element method enables the study of complex and practical
problems. The method derived here should find applications in linear
static and linear stability analyses of novel structures. The stability
analysis, in particular, should find immediate application to ordinary
structural problems such as space frames. Other applications of the
method include performing oétimization studies on the strength of |
structural members such as tapered columns and piecewise prismatic

members.
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For a more general application of the method, the formulation
should be extended to enable analysis of thin-walled closed beams,

multi-cellular beams, curved beams and the like.

Finally, extension of the method to include material non-
linearity will encourage studies on a wider variety of practical
problems. Among the many possible applications, the validity of some
of the universally accepted assumptions used in inelastic analysis
of beam~columns can be investigated. For instance, the universally
accepted assumption that the shear response is always elastic for an
inelastic beam~column is but one of the many possible items for
investigation. Other problems of interest are related to the investi~
gation of structures under repeated loading, cyclic loading and shake-

1

down.
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6. APPENDICES
APPENDIX I
ELASTIC STIFFNESS MATRIX FOR THE BEAM ELEMENT

The linear elastic stiffness matrix for a straight beam element
of uniform cross section is now presented. A cartesian reference axes
system is used which coincides with the centroidal=principal axes of the
cross section. The element is represented by two nodes with seven
degrees of freedom at each node; three linear displaceménts, three
rotations about the reference axes and a set of warping displacements.
The stiffness matrix is derived based on the formulation given im Section
2.3 which take into account the shearing deformations due to flexural
and torsional-warping loadings. 1In the stiffness matrix given below the

following expressions are used:

2 [1 2
y =1+ Q%E" (3 + (1 +1.53) ] (A1.1)
A=r1+ﬂf3—Ii | (A1.2)
) 60
2 2 ri 2
Q=3+ (1L+155) + ﬂ%——-[g + (1 + 1.5 5) ] | (A1.3)
(141.55 )
= Rt I ettt
6=3-(1+1.535) +% [5 5 ] (A1.4)
12E7,
where § = =
y GASyL
1257
3, = %
b4 GA IP
SZ
o = /‘GKT/EE;

Asy’Asz = Effective shear area for Vy and Vz’ respectively.
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APPENDIX II
FLEXURAL STIFFNESS MATRIX OF TAPERED BEAMS

Consider a beam element with the smaller end denoted as end
i and the larger as end j. The element may have uniform taper in
either one or both principal axes. Gere and Carter(SS) defined the
depth, dx’ and the moment of inertia, Ix’ at a distance x from end i

of the member as

a =d, [1 + (;i - 1) %] | (42.1)
I, - I, [1 + (;i - 1> %ﬂa (A2.2)

in which y refers to the shape factor that depends upon the shape of

the cross section and may be obtained from

log (Ij/Ii)
o= Tog_ (dj/di)

(A2.3)

The values of y for various types of cross sections are found in Ref. 59.

Once all values of y are known for various sectional proper=-
ties, such as cross-sectional area and moments of interia, the flexi-

bility matrix may be determined by the matrix integration

rfjj] ) IL I-'ij]T [Ux] [ij] dx ' (A?.4)

where [ij] translational matrix from j to x

the basic sectional property matrix

(v, ]




which are defined as

1 0 0 0o o]
0 1 0 0 0
[Tyl = | © 0 1 0 o0
0 0 -(L-x) 1 0
0 (L-x) 0 0o 1
L p
and
r -1
1
A 0 0 0 0
XX
1
0 GA 0 0 0
U = 0 0 1 0 0
o]
zZX
1
0 0 0 BT 0
h2S
1
0 0 0 0 FI
L_ zX .

The flexibility matrix is determined by performing the

integration of Eq. A2.4 over the length of the beam(sg),
Bt 0 0 0 0 i
EA_.
X1
B3l® Byl . . B
(wx.*dm. 2ET_.
zi yi zi
B3Ll® gL B,I?
[£..7=1 o 0 ( + ) - 0
ij 3EIyi GAZi 2EIyi
0 ﬁsz Byl
0 " TET_. EI. 0
yi yi
0 Bl 0 0 Bl
281, EL .
Z1 Z1
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(A2.5)
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The values of R and are given in Ref. 59 for various types of
By By B3 yp

cross sections.

Finally, the stiffness submatrix is determined from

-1
[ky41 = Tfyy) (A2.6)

the other stiffness matrices are found through the use of equilibrium

equations (1?) and symmetry considerations as follows.

[y = = [Ty40 [yl

lkyyd = Ty T @2.7)
and legy] = = [Ty, [kyy) (71

Or, the element stiffness matrix may be determined in a simple operation

from

(k] = ny" [fjj]-l [N] (A2.8)

where [N] = [T, I, [I] = identity matrix.
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APPENDIX TIII
CONSISTENT STIFFNESS MATRIX FOR BEAMS ON EIASTIC FOUNDATION

Consider a beam element on a Winkler-~type elastic foundation
with spring constant (foundation modulus) k over the length of the
element. For a consistent formulation, the deformation of the founda-
tion must be identical to that of the beam it supports. Accordingly,
the displacement field for the foundation is expressed as a-polynomial

of the third order which is written in matrix notation, as

ful = [P] fo}
y=[1 x x® x8] ai (A3.1)
%
o3
%

The displacement, y, can be either lateral or torsional, depending
on whether the foundation is represented by lateral or torsional springs.
The vector {g} consists of the coefficients which are to be determined

in terms of the nodal displacements {g} from

fs} =1[C] fo} (A3.2)

Using the principle of vietual work, the total external work

is written as
W = {a}T {F} (A3.3)
ext '

where {F} is the vector of nodal forces. The total internal work is

Wy = jL ru}T [k] fu} ax (A3.4)
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Assuming a homogeneous foundation modulus over the element length,

the total internal work is expressed in terms of the nodal displacements
T . =1.T T -1
W, =k {8} [¢7] (j [P]" [P dx> (e rs) (A3.5)
L
Comparison of Eq. A3.4 and Eq. A3.5 yields
_ -1.T T -1
rkpd =k e 1" (1 reg” e ax) [c7 (A3.6)
L

Substituting the values of [C_lj and [P] and integrating over the length

1L furnishes the consistent stiffness matrix as follows

- -
156

2 ‘
KL 22L, 41 SYMMETRIC

(k] = o (A3.7)
F- 420 54 13L 156

-13L =312  =22L 4I?
- .
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APPENDIX IV
FLEXURAL STIFFNESS MATRIX OF PRETWISTED BEAMS

Consider a uniform beam element of length L with natural
twist about the centroidal axis Whicﬁ var les linearly with the axial
coordinate x. The element has a total angle of pretwist . Let the
end at x = 0 be denoted as end 1 and the other as end j. At distance
x from end i, the angle of pretwist about the centroid iine Oy is

defined as
X
o + T (A4. 1)

By assigning o = 0 and “j = oy the y and z axes become aligned with

the principal axes of the cross section at x = 0, The flexural stiff-

nesses about the minor and major principal axes of the beam cross sec-

tion areEIl,and EIZ’ respectively, and are independent of x.

A direct evaluation of the stiffness matrix for a pretwisted
beam, in the manner performed for the case of a prismatic beam (Section
2.3) is difficult and is not attempted here. Nevertheless, the
determination is simplified by evaluating the flexibility matrix first,
such as by utilizing previous investigations which have dealtwith establish-

ing the governing differential equations for pretwisted beams.

The equations governing displacements of pretwisted beams
due to terminal loads are found in Refs. 83 and 84. For matrix appli~
'cations, these governing equations are separated and integrated(ss)

to estab lish explicit displacement functions describing the transverse

displacements and rotations of the beam about the y and z axes. The



flexibility matrix is found by imposing the displacement boundary

conditions at end j where unit terminal loads are assigned, thus,
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(EL, - EI;) [2(1 = cosq)/oP = 1/q]

(EL, + EL)) + (EI, - EI,) (¢ - sing)/oP
& [EI, + EL, + 2(EL, - EI,) (1 - cosg)/o?]

217 [EI1 + EI2 + (EI2 - EIl) (sing) /o]

- %t (EIZ - EIl) (o = sing)/oP

1

Eﬂg (EI2 - EII) (1 - COSa)/a

. 1 .
= 515 [EI; + EL, - (EL, - EI;) (sing)/q]

-1D8:

(A4.2)

Once the flexibility matrix is determined, the evaluation of

the stiffness matrix is accomplished following the same procedure of

matrix operationsdescribed in Appendix II, thus

where

el = 7 gy, 7 N

[N] = [T, I], [I] = identity matrix.

(at.3)
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7. NOTATIONS

A = cross sectional area

[Cc] ’ = displacement transformation matrix

D,[D] = generalized Hookean constant

E = Young's modulus of elasticity

F = body force

{F},{F'},{F} = load vector of assembled system

{é} = incremental load vector

G = shearing modulus

[H] = stiffness matrix in terms of generalized displacement
amplitude

I,IB,IT = moment of inertia

Io = moment of inertia about the shear center

Iw = warping moment of inertia

Jy,Jz = moment of inertia about the y and z axes, respectively

[J] = inertia matrix

KT = St. Venant torsional constant

[X] = assembled (master) stiffness matrix

[KE] = linear stiffness matrix

[KG] = geometric stiffness matrix

[KI] = incremental stiffness matrix

L = length of beam element, column length

[L] = displacement interpolating function matrix

M = bending moment

MCr = critical moment

M = total torque




(Mx)CR

[?]
[Q1,[2;]

[R]

H1

(13,01, ]
U

[, ]

\Y

V.,V

® ]

(£}
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critical torque

bimoment i
number of elements

shape function

axial thrust

axial critical load

Euler load

polynomial functions of coordinates

polynomial functions of generalized displacement
amplitudes

suface coordinates of tractions

surface area and portions of boundaries
traction on boundary Sc

transformation matrices

strain energy

basic sectional property matrix

volume

shear force in y and z directions, respectively

work or energy

distance from rotation axis to shear center
point of load application from shear center
depth of beam |

Lagrangian strain tensor

element load vector

frame height
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k = foundation modulus, cross sectional parameter
[k] = element stiffness matrix
n = directional vector
p = traction on boundary S
9,9 = intensity of distributed load
r = distance from axis of twist
u = displacement in x~direction
u = displacement on boundary Su
~
u = interelement boundary displacement
v = displacement in y-direction
W = displacement in z=-direction
X,¥,Z = reference axes
r = cross sectional parameter
{A} = displacement vector of complete system
A = cross sectional property
3 3B _5® = cross sectional property
y Uz w
v = cross sectional property
Q = cross section property
o = angle between pins, angle of pretwist
{Og,{;h = generalized displacement amplitudes
L] = gshear coefficient matrix
B8 = critical load parameter

strain coefficients

{el

v = average shearing strain




8
{8},{s}
s}

{e}
{eg)
{eg}

{O’} ’{0'0}

P
X
¥
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variational convention

element displacement .

incremental displacement

strain field

linear strain

nonlinear strain

ratio of moment of inertia

rotational displacements

cross sectional parameter

instability factor or eigenvalue, frame parameter
nondimensionalized length

functional or objective function

radial distance of component plate from shear center
stress

stress field

shear strain function, angle of twist

shear strain function

cross sectional property

warping displacement
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8 . TABLES AND FIGURES
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*
TABLE 1 CRITICAL LOADS OF COLUMNS WITH DISTRIBUTED AXIAL LOADS( )

A. When the end loads (P) are prescribed:

‘ QCR/PE

g

Case 1 Case 2 Case 3 Case 4

-2.0 | 5.1875 | 6.6611 | 8.5779 | 5.2296
-1.0 | 3.5931 | 4.7505 | 6.0030 | 3.6146
-0.5 | 2.7565 3.7088 | 4.6199 | 2.7694

0.0 1.8846 2.5849 3.1633 1.8909
0.2 1.5242 2.1072 2.5584 1.5285
0.5 0.9692 1.3553 1.6257 0.9712
0.8 0.3949 0.5561 0.6613 0.3956
1.0 0.0000 0.0000 0.0000 0.0000

B. When the distributed loads (Q = qw) are prescribed:

P /P
Q CR''E

PE Case 1 Case 2 Case 3 Case 4

-2.0 1.9351 1.6471 1.5786 1.9391
-3.0 2.3564 1.9405 1.8542 2.3653
-4.0 2.7502 2.2171 2.1214 2.7664

(*) Refer to Fig. 3.7 for identification of cases



*
TABLE 2 CRITICAL LOADS OF UNIFORMLY TAPERED COLUMNS( )

Boundary condition:

Fixed at bottom

Free at top

Pog = 8 (EL,/1?)

Values of p:
_Ip | mmestenko | T tenents)
ne E; Solution(53)

N =2 N =4 N =10

0.1 1.202 1.0906 1.1740 1,1985
0.2 1.505 1.1409 1.4818 1.5014
0.3 1.710 1.6309 1.6906 1.7071
0.4 1.870 0.8036 1.8535 1.8672
0.5 2.002 1.9482 1.9890 2.0002
0.6 2.116 2.0740 2.1060 2,1149
0.7 2.217 2.1861 2.2097 2.2163
0.8 2.308 2.2879 2.3032 2.,3075
0.9 2.391 2.3816 2.3886 2.3907
1.0 2.467 2.4687 2.4675 2.4674
2.0 3.1328 3.0502 3.0286
4.0 4.0098 3.7658 3.7025
10.0 5.6887 4.9892 4,8071
20.0 7.5899 6.2088 5.8447
40.0 10.3745 7.7947 7.1029
100.0 16.3334 | 10.7359 9.2046

(*) Compare with Figs. 3.9 and 3.10.
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TABLE 3 CRITICAL LOADS OF TWO-COMPONENT COLUMNS

C

P R = BPE where P

E

o

Values of the factor g:

A. Columns with :spherical pins

angle of offset

Euler load for a prismatic column

(*)

n=1,/1, | «=0° 30° 60° 75° 90°

2 1.0000 | 1.0315 | 1.1280 | 1.2037 | 1.299%

4 1.0000 | 1.0452 | 1.1917 | 1.3146 | 1.4810

10 1.0000 | 1.0530 | 1.2292 | 1.3818 | 1.5947

20 1.0000 | 1.0555 | 1.2415 | 1.4042 | 1.6327

30 1.0000 | 1.0563 | 1.2456 | 1.4116 | 1.6453

50 1.0000 | 1.0570 | 1.2489 | 1.4175 | 1.6554

1000 1.0000 | 1.0580 | 1.2536 | 1.4298 | 1.6697

B. Columns with fixed ends

n=1,/1,| a=1° 30° 45° 60° 75° 90°
2 1.0116 | 1.0446 | 1.0901 | 1.1524 | 1.2298 | 1.3209
4 1.0152 | 1.0854 | 1.1790 | 1.3029 | 1.4468 | 1.6091
10 1.0456 | 1.1822 | 1.3984 | 1.6620 | 1.9429 | 2.1876
20 1.0965 | 1.3536 | 1.7461 | 2.2240 | 2.6740 | 2.9509
50 1.2238 | 1.8438 | 3.2228 | 3.5044 | 3.6792 | 3.7818
100 1.4352 | 2.6498 | 3.5864 | 3.7836 | 3.8884 | 3.9483
1000 3.6315 | 3.9380 | 4.0037 | 4.0273 | 4.0388 | 4.0442

(*) Compare with Figs. 3.14 and 3.15.
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' *
TABLE 4 CRITICAL LOADS OF PIECEWISE PRISMATIC COLUMNS( )
PCR = yPE where PE = Euler Load
M = Number of segments

o = 90°

Values of the factor v

A, Pinned columns

B.

n=1,/1, M =2 M =4
2 1.3121 1.3243
5 1.5428 1.6210
10 1.6246 1.7447
15 1.6520 1.7892
20 1.6658 1.8121
30 1.6796 1.8355

Fixed columns

= 1,/1, M =2 M =4
2 1.3209 1.4346

5 1.7184 2.2937

10 2.1876 3.0442

15 2.5948 3.3870

20 2.9434 3.5605

30 3.4262 3.7399

(*) Compare with Figs. 3.16 and 3.17
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TABLE 5 EXPERIMENT ON PRETWISTED COLUMNS

Cross Section Properties:

5 1
Shape: 2§ X 17 WF
B = 1,838 in. A = 1,110 in® B
p—=—
D = 2.628 in. Ly, = 1.246 in* R g | T
T = 0.202 in. gy = 0-210 in® D |x —- —x
W
W = 0.165 in. I, = 0.308 i .:_j_@:,
L =75 in. Kp = 0.0131 in%*
Modulus of Elasticity, E = 31,374,000 psi
Summary of Test Results:
Critical PC /P
Specimen |Angle of Failure | Load (1b) R E
No. Pretwist | Load (1b) |(Southwell ’
Plot) Experiment Theory
01 | 0° 7800 8403 1.00 1.00
02 90° 20000 25500 3.04 3.14
03 180° 14050 21212 2.52 2.54
04 360° 10600 12800 1.52 1.71




End Conditions: Knife edge along minor axis

TABLE 6 CRITICAL LOADS OF PRETWISTED COLUMNS

(*)

P.. = BFp where P

cr

]

o

Values of the factor B:

E

angle of prestwist

-119

= Euler load for a prismatic column

o M = Il/I2 = 1.0 n=2.0 1 =5.0 7 = 10.0

0° 1.0 1.0 1.0 1.0
60° 1.5086 1,8629 2.9037 3.6967
90° 2.0499 2.7409 3.0990 3.2178
120° 1.5086 2.0543 2.4849 2.6436
180° 1.0000 1.5126 2.3539 3.1961
210° 1.1388 1.9968 3.6843 5.4572
270° 2.0499 2.8252 3.5910 3.9160
360° 1.0000 1.3391 1.6684 1.8129

(*) Compare with Fig. 3.22
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*
TABLE 7 IATERAL TORSIONAL BUCKLING LOADS( )

Beam: Simply supported, free warping at ends

Loading: Concentrated load at mid span of beam (at shear center)

P Al Z
PCR A L 12 T}

Values of the factor )

1 G Timoshenko Finite Element Solﬁtion
EIw Solution(53) N=4 N=2©6
s ?/4 86.4 85.6827 86.2257
4 31.4 31.4772 31.6772
16 21.8 21.4772 21.6110
32 19.6 - 19.3055 19.4225
64 18.3 18.1135 18.2184
160 17.5 | 17.3448 17.4393
400 17.2 17.0136 17.1057

(*) Compare with Fig. 3.26



TABLE 8 SPACE FRAME BUCKLING

STRUCTURE:

SHAPE :

DIMENS IONS:

BOUNDARY CONDITION:

One-story space frame (Fig. 3.34)

W10x48 (all members)

L]

20 r
y

Span, L = 60 ry

Height, h

Fixed at bases

Comparison of results:

Mode CRITICAL LOAD, P (kips)
of

Buckling Determinanta1(77) Finite Element
SWAY 11,93 11.73
TWIST 11.96 12,21

-121




-122.

TABLE 9 BUCKLING OF SHAFTS UNDER PURE TORSION

Cross Section; I =1
X y

el - EI
Critical Torque, (Mx)CR o

Values of g

Number End Condition in Flexure
of . "
Elements Pinned Fixed

2 6.405 ~——-
3 6.322 9.862
4 6.298 9.305
5 6.289 9.182
6 6.284 9.09%
Analytical®|6.283 (=27) |  8.988
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Yo
Fig. 2.1 Reference Axes System for the Beam Element
eyl vMyl
ul ’Pl e
P
Wi ’vzl
ViV, y .
Node |
z X
8y2 s My2 |
672 ,\Mz2
W‘Z ,sz /?\ P
u
v-2 ’Vyz 2’ 2
Node 2

Fig. 2.2 Notations for Generalized Stresses and
Displacements of the Beam Element in
Flexure and Extension
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<t

NI

Fig. 2.3 The Centroidal-Principal Axes and the
Generalized Coordinate System

Axis of Twist \ wy M,

¢2 ’ MT2

Fig. 2.4 Notations for a Beam Component
Subjected to Torsion and Warping
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Fig. 2.5 A Cantilever Beam Loaded by Torque
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Fig. 2.6 A Cantilever Beam Loaded by a’
Concentrated Bimoment
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Fig. 2.7 Comparison of Beam Element Stiffness Matrices using a Cantilever Beam under Torsion and Bimoment
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Fig. 2.8 ‘Comparison of Beam Stiffness Matrices
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Flg 2.9 Continuous Beam Loaded by
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Fig. 3.3 Schematic Description of the Kinematics of a
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Fig. 3.4 Convergence of Finite Element Solution
for Axially Loaded Columns
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5 o Finite Differences (Wang)
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Fig. 3.5 Comparison of Convergence Between Finite
Element and Finite Differences Solutions
for the Euler Column :
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Fig. 3.6 A Column Under Distributed
Axial Loads
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Fig. 3.11 Convergence of Finite Element Solution
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Fig. 3.14 Buckling Loads of Two-Component
Columns with Pin Ends
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Fig. 3.18 Preparation of a Pretwisted Column

Fig. 3.19 Buckling Test of a Pretwisted Column
with Knife Edge Conditions
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Fig. 3.21 Comparison of Theoretical and Experimental Buckling
Modes of Pretwisted Columns
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Fig. 3.22 Finite Element Solution of Pretwisted Columns with Knife Edge Conditions
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Fig. 3.23 Buckling Loads of Prismatic Columns

with Crossed Pins (Pin Ends)
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Fig. 3.24 Buckling Loads of Prismatic Columns
with Crossed Pins (Fixed-Pinned Ends)
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