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1. 

ABSTRACT 

The main objective of this dissertation was to analyze 

and evaluate the influence of stress conditions, grade of steel, 

and flaw conditions on the fatigue behavior of welded and rolled 

beams without attachments. 

The first part of this dissertation summarizes the 

relevant portions of the test program that provided the basis 

for part of this study. The observed fatigue lives of the beams 

were related to the flaw condition that causes crack initiation , 

and growth. The stress-life relationship of welded beams fail-

ing from internal pores in the web-to-flange fillet weld is used 

as a reference for other weld defects yielding·shorterfatigue 

lives. Rolled beam failures are shown to provide an upper bound 

condition for the welded beams. 

A fracture mechanics model for cracks originating from 

pores in the web-flange connection is developed. Estimates of 

crack stress-intensity-factors are made that numerically describe 

the initial flaw condition. A crack growth equation was derived 

from the welded beam fatigue test data. 

The derived crack growth equation is compared to crack 

growth measurements on a welded beam and available data from 

crack growth studies. Most of the fatigue life of the welded 
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beams was spent growing a crack from its initial size to a vis i

-6 ble crack. This corresponded to growth rates below 10 in. per 
, 

cycle where little information is available from crack growth 

studies. 

Criteria for the design and fabrication of welded beams 

are outlined and related to the "internal defects and existing 

specification provisions. It is shown for example that an in-

crease in flange thickness and weld size should not permit an 

increase in allowable defect size. The initial crack size is 

shown to be the controlling factor for the fatigue life of the 

beams. 

It is concluded that the fracture mechanics concepts 

of stable crack growth can be used to analyze welded and rolled 

beams. More information is needed outside the regions of avail-

able growth rate data, and on the statistical variation of the 

individual parameters that influence crack growth rates and hence 

the fatigue behavior of welded joints. 

! 
t 
[ 

I 
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1. INTRODUCTION 

"1.1 BACKGROUND 

The investigations of Lea and Whitman (37) Graf (17,18) , , 
and Wilson(64) in the 1930 f s provided an indication of the im-

portance of various welded details on the fatigue strength of 

steel beams. Large reductions in fatigue strength were observed 

for beams with partial-length cover plates, stiffeners, and other 

welded details. 

The earlier fatigue studies were not very extensive. 

Many small studies were made with no coordination of the exper-

irnent designs. This did not permit an unbiased evaluation of 

the various design factors. In addition, no attempt was made to 

determine the eXperimental error. 

(ll)"~ A study ~ was initiated to investigate the effect 

of weldmentson the fatigue strength of steel beams. Plain-

rolled, plain-welded, partial-length cover-plated, and flange-

spliced beams were tested. The experiment design provided for 

appropriate measurement of eXperimental error and the ability 

to deduce the significance of controlled variable effects.(9,43) 

* Ref. 11 contains the detailed test data relevent to a part 
of this dissertation. 
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Cover-plated beams are known to contain defects at the 

toe of the weld at the end of the cover plate. All weld toes 

were shown to have microscopic defects that were directly com

parable to cracks.(57,60) Fractographic examination of cracks 

from plain-welded beams revealed that gas pores in the web-to~ 

flange fillet welds were the most frequent location 9f crack 

initiation. Other crack-initiation sites were found at weld 

repairs, tack welds, and at the flame-cut flange-tips. 

Plain-rolled beams do not usually contain internal 

flaws which result in crack initiation and growth. Most cracks 

in this study were observed to originate from flaws at arbitrary 

locations on the rolled surface of the flange. Slight irregu-

larities at the flange-tip corners were also found to cause 

crack initiation and growth. 

paris(46) introduced the concepts of fracture mechanics 

to rationally evaluate the fatigue life of metal elements con-

taining a crack. Much work followed to establish crack-growth 

rate curves from studies on crack-growth specimens of different 

shapes, sizes and material. Crooker and Lange(8) showed these 

data to fall within a common scatterband for a large group of 

steels. 

Most crack-growth work has concentrated on the genera-

tion of crack-growth data for.aluminum alloys and high strength 

steels. Only recently have data become available on the rate of 

,,:: 
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cpack propagation in steels of various yield strengths below 

100 kSi.(4,20,24,34) Several studies examined the influence of 
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weld material and heat affected zone on crack-growth behav

ior.(24,4l) Little work has been done to integrate this informa-

tion into civil engineering applications. 

Fracture mechanics concepts have provided an explana-

tion for the influence of various defects and geometry on the 

fatigue life of cover-plated beams. ell) Harrison(22) has used 

fracture mechanics to describe a variety of flaw conditions in 

butt-welds. Maddox(42) successfully predicted the fatigue life 

of·a structural specimen based on information from crack-growth 

rate data. Lawrence and Radziminski(36) used fracture mechanics 

to evaluate crack initiation and propagation in butt-welded 

joints. 

It was observed in these earlier studies(22,36) that 

the size and geometry of the defects were the controlling factors 

in the fatigue behavior of the welded details. Pores in the web

to-flange fillet weld of beams constitute a similar defect. 

1.2 OBJECTIVES 

The main objective of this dissertation was to analyze 

and evaluate the influence of stress, grade of steel, and flaw 

conditions on· the fatigue behavior of welded and rolled beams. 

This included the following evaluations and study: 

! 
i 

I 
I: 
Ii 

I 



6. 

(1) Analysis of fatigue test data from rolled and welded 

beams. 

(2) Description and characterization of the flaw condi-

tions that exist in plain-welded and plain-rolled 

beams without attachments. 

(3) The integration of fracture mechanics con~epts for 

fatigue into civil engineering application. 

(4) Examination of the influence of geometry and material 

~actors using fracture mechanics and an appropriate 

model to describe the behavior of the welded beams. 

(5) Discussion of crack-growth data and its applicability 

for estimates of the fatigue life of structural ele-

ments. 

(6) $uggestion of fabrication and. design criteria for 

welded and rolled beams. This includes an evaluation 

of critical design factors and initial defect conditions. 

l.3 OUTLINE OF WORK 

The first part of this dissertation summarizes the 

relevant portions of the test program(ll) that provided a basis 

for part of this study. Findings from the statistically evalu-

ated test data including the influence of grade of steel and the 

major stress variables on the fatigue strength of welded and 

rolled beams are summarized .. 
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Earlier studies had indicated that various flaw condi-

tions existed in welded and rolled beams. These flaw conditions 

are examined and discussed in more detail in this dissertation. 

Both internal and external weld defects in thewep-to-flange 

fillet weld of welded beams were evaluated. ;tnt~rX).!3.1 porEis 
',\,:,', t, "\'i "~ , " ' " ;'~r 

ca~.~4 bYPH'~trag'l?~d g~~'" in tb~ wel.g)itent!3.:t'e krf.9~r to.,>J~rm ~" 

common defect and these are examined in detail. Weld repairs, 

tack welds, < and other weld discontinuities are discussed and,· . 

related to·the behavior of beams with porosity; ...•..... , 

H;i.crO::.flaws in th~ rolled surface were observed to be 

the controlling defects for crack initiation ahd growth in rolled 

b~ams .: :'Cracks"were' also observed to originate from the flange- { 

tips of both rolled and welded beams. The flange-tip flaws in 

rolled beams are believed to be introduced by the rolling opera-:: 

tion. The notch condition at the flange-tips of the welded beams 

resliltedfrom the flame-cut flange~,·.edge. 

Chapter 4 relates the observed fatigue lives of the 

test beams to the observed flaw conditions. The stress-life 

relationship of welded beams failing from internal pores in the 

fillet weld is established and used as a reference for other 

weld defects and rolled beam failures. The data are also used 

to develop a fracture mechanics model of the crack. The scatter 

in the data ~s discussed, and mean lines and confidence limits 

are introduced where appropriate. 
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The application of fracture mechanics concepts to 

characterize the fatigue behavior of rolled and welded beams 

without attachments is introduced in Chapter 5. A fracture 

mechanics model for cracks originating from pores in the web

to-flange fillet weld is compared with the test data. Estimates 

of the stress-intensity factor 0re made that correspond to the 

initial flaw condition. Since the final crack size was known, 

a theoretical crack-growth equation is derived from the welded 

beam test data. 

The derived crack-growth equation is also compared to 

other crack-growth measurements including a welded beam and 

special crack-growth specimens. The correlation is discussed 

and the influence of parameters such as specimen shape, thick

ness, and material on crack growth is evaluated. The regime 

where most of the time is spent growing a fatigue crack in a 

structural element is shown to have little experimental crack

growth data available. The problems connected with extrapola

tion into regions outside the crack-growth data are discussed. 

Deviations from the assumed straight-line model at 

the lower and upper end of the crack-growth curve are noted and 

discussed. Crack growth under various stress conditions 'is 

compared with the welded-beam behavior under the influence of 

welding residual stresses. Very slow growth rates are discussed 

and related to the observed run-out test data from welded and 

rolled beams~ 
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The evaluation of the influence of geometrical and 

material factors on the fatigue life of welded beams is based on 

the fracture mechanics model of a penny-shaped crack. The 

scatter of the beam fatigue-test data is compared to the varia

tion in measured defect size and variations in the fatigue crack

growth rate. 

The relationship between the fatigue strength of rolled 

and welded beams and various defects is reviewed in Chapter 6. 

An upper bound condition for the life of all welded beams is 

discussed. Criteria for the design and fabrication of welded 

beams are outlined and related to the initial defect. 
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2 . TEST PROGRAM 

2.1 EXPERIMENT VARIABLES 

The major objective of the study on the "effect of 

weldments on the fatigue strength of steel beams,,(ll) was to 

develop suitable mathematical design relationships between 

applied stresses and fatigue life. The principal variables were 

grouped into the three categories: (1) type of steel, (2) type 

of beams and details, and (3) stress variables. The discussion 

in this dissertation is concentrated on the fatigue behavior of 

rolled and welded beams without attachments. The relevant data 

are reported in detail in Ref. 11. 

Three grades of steel were included in the welded beam 

study: ASTM A36, A441, and AS14 representing material with yield 

strengths between 36 ksi and 100 ksL All plate material for the 

fabrication of the welded beams (Fig. 1) for each grade of steel 

came from the same heat. 

Only A36 and A441 steel rolled beams (WI4x30) were 

included in the original test program.(ll) ASl4 steel rolled 

beams (W14x30 and WIOx2S) were tested during the continuing 

study and the test data are included in this dissertation. The 

steel for th~ rolling of the beams came from the same heat for 

each grade of steel, except for the smaller AS14 section where· 

steel from two heats was used. 
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The primary stress variables were selected as minimum 

stress S . , and stress range S , in a factorial experiment de-mln . r 
sign.(9,11) All stresses, unless otherwise noted, refer to the 

bending stress at the extreme fib~e of the tension flange of the 

beam. For different levels of minimum stress various stress 

ranges were examined. This had the advantage that one variable 

could be changed while the other was kept constant, as compared 

to stress ratio where both, minimum and maximum stress have to 

be adjusted simultaneously for a given value of stress ratio. 

The arrangem~nt in the factorial also permitted an evaluation of 

the influence of maximum stress. 

2.2 FABRICATION 

Ail welded beams were fabricated using the same tech-

nique. The flange and web plates were flame cut to size and the 

weld areas blast cleaned. The components were then assembled in 

a jig and tack welded at about 10 inch intervals. The 3/16 inch 

web-to-flange fillet welds were placed by the automatic submerged 

arc process. L60 electrodes of 5/64 inch diameter were used for 

the A36 and A441 grade steel, and L61 electrodes of the same 

diameter for A5l4 grade steel. The other weld parameters were 

350A, 30V at a weld speed of 23 in./minute. A Lincoln No. 780 

flux was used. 

The fabricator was instructed to use fabrication 
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procedures, workmanship and inspection requirements in common 

use by state highway departments for bridge construction. Tack 

welds and weld repairs were noted by paint marks on the web to 

facilitate the test evaluation. The burned edges of the flange 

plates were kept to a roughness of approximately 1000 or less 

according to ASA (American Standard ASA B46.l-l962, Surface Tex

ture). The roughness of the rolled beam flanges was about 250 

or less and was highest on the inside edge of the flange tip. 

2.3 TESTING PROCEDURES 

All welded and the A36 and A44l steel rolled beams were 

tested on a ten-foot span with the two point loading shown in 

Fig. 1. The load was applied by a hydraulic jack through a 

spreader beam. The distance between the load points was 42 

inches. The constant moment region was reduced to 24 inches and 

18 inches for the A5l4 steel W14x30 and WlOx25 sections, respec

tively. This became necessary because the limits of the load 

and stroke capacity of the equipment were reached when testing 

at higher stresses. 

The pulsator activating the jack operated at between 

200 and 800 cycles of load applications per minute. When rever

sal of loading was required, a constant upward load at the two 

load points y.7as applied by a hydraulic accumulator-load system. 

When the downward deflection had increased by 20/1000 
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inch the beams were considered to have failed. Loading was 

automatically discontinued through a microswitch. This usually 

occurred when the crack had propagated through enough of the 

flange for net-section yielding to occur. At this stage, most 

of the fatigue life of the beam was exhausted. The crack gener

ally had destroyed 15% to 75% of the flange area. 

At least two beams were tested under identical stress 

conditions to provide replication within the cells of the exper

iment factorials.(ll) Random assignment of the beams to cells 

in the factorial and randomization of the tes~ing sequence was 

used to minimize the influence of uncontrolled variables, such 

as temperature, humidity, laboratory and testing personnel. 

2.4 ADDITIONAL INVESTIGATIONS . 

The residual stress distribution in the plain-welded 

beams was measured for all three grades of steel. Only A36 and 

A441 steel rolled beams.were available at the time of the inves

tigation. All data for the residual stresses measured after 

cyclic loading are given in Ref. 11 together with the stress 

distribution of a previously unloaded beam. 

Redistribution of residual stress due to stepwise in

creased cyclic loads was further investigated in an independent 

program. (39)' A change from a symmetric residual stress pattern 

to an unsymmetric pattern with respect to the neutral axis was 

reported. 
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Data was also obtained from a special study on crack 

propagation in a plain-welded beam. A beam that had failed pre

maturely from a flange-tip defect was repaired. The fillet weld 

was then closely examined during the continuation of testing and 

at intervals under static loads. After first detection of a very 

small crack on the surface of the fillet weld, subsequent crack 

growth was monitored with a 10 power magnifying glass. 

f ' 

I 
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3. DISCUSSION OF TEST RESULTS 

3.1 SUMMARY OF FINDINGS 

, 3.1.1 Plain-Welded Beams 

A total of more than 115 welded beams were tested. 

This included plain-welded beams from the basic eXperiment and 

welded beams from the continuing study on the effect of stiff

eners and attachments. Thirteen beams containing stiffeners or 

short attachments failed in the same mannera~ plain-welded beams. 

The 56 plain-welded beams from the basic experiment 

covered the three grades of steel - ASTM A36, A44l, and AS14. 

The factorials for the three grades of steel were identical with 

the exception of two cells for the A36 grade steel. The test 

data are documented in Ref. 11. None of the factorials were 

complete because of known boundary conditions, such as yield 

stress or expected fatigue life outside the region of interest. 

The cracks causing failure initiated in most cases at 

a flaw in the fillet welds of the flange-to-web junction. Most 

flaws were found in the vicinity of tack welds or at weld repairs. 

The flaw itself was usually a gas pocket or blow hole in the weld. 

Typical examples are shown in Fig. 2. The relatively smooth 

crack surface characterizes the fatigue crack which had grown 
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from the pore through the web-flange junction into both sides of 

the flange and up into the web. The portion of the junction 

without weld penetration, the deposited weld material and heat 

affected zone are apparent in the photographs of the fracture 

surface. 

A few cracks were found to have initiated from other 

weld defects or from the flame-cut flange-tip. The original 

analysis of the data reported in Ref. 11 was based on the ob

served fatigue lives of the beams. A detailed examination of 

the various flaw conditions that caused cracking was not under

taken. In this dissertation emphasis is placed on the character

ization and analysis of the different flaw conditions. 

8-tatistical methods were used to analyze the effects 

of the grade of steel, and the primary stress variables of mini

mum stress and stress range for each grade of steel. Detailed 

discussion of the analysis is found in Refs. 11 and 26 and showed 

stress range to be the dominant variable for each grade of steel. 

Minimum stress and grade of steel were not significant for design 

purposes. 

Multiple regression analysis indicated that the re

gression model using the logarithmic transformation of both 

stress range and number of cycles to failure resulted in the 

best fit to the data. The correlation coefficient was usually 

largest and the standard error smallest for this model. 
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However, statistical evaluations did not reveal a significantly 

better fit than obtained for the semi-logarithmic model. The 

proposed log-log model best described the data at the extreme 

stress range levels and was compatible with the theoretical con-

cepts of fracture mechanics. 

A comparison of the fatigue test data from earlier 

work with the results obtained in the welded-beam study yielded 

good agreement. Other studies(IO,19,50,51) also indicated that 

welded beams fabricated according to current procedures can be 

expected to exhibit crack growth from flaws in the continuously 

fillet-welded web-flange connection. 

3.1.2 Plain-Rolled Beams 

Twenty-two rolled Wl4x30 beams of the A36 and A441 

grade steels were tested in the original test program.(ll) The 

eXperiment factorials were not as extensive as used for the 

welded beam study and reflected the limitations in stresses be-

cause of yield strength or excessive cycle life. A5l4 steel 

rolled beams were tested during the continuation of the test 

program. Nine W14x30 and twenty WIOx25 beams were tested. The 

data are summarized in Chapter 4 and are compared with earlier 

studies on lower strength and T-I steels. 

The cracks in the plain-rolled beams always originated 

from the rolled surface of the tension flange. Cracks some 
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distance from the load points generally initia~ed from a small 

surface flaw. This flaw occurred at random on the surface of the 

flange or at the inside or outside corner of the flange-tip. 

The flaws were always smaller than the flaws detected in the 

fillet-welded beams. Most beams eXperienced only one crack, and 

a number of run-out data were obtained when testing was termi-

nated at 10 million cycles. 

For rolled beams tested under partial reversal of load-

ing, cracks tended to form at locations of high stress concentra-

tion on the contact area between the loading jack and the tension 

flange. A similar condition existed underneath the wooden stiff-

eners that were inserted at the load points (Fig. 1). The 

wooden stiffeners kept the flanges parallel and prevented lateral 

instability during testing. 

The original data(ll) was analyzed regardless of the 

different crack initiation sites. No significant effect due to 

type of steel or minimum stress was apparent from the data, and 

stress range accounted for most of the variation in cycle life. 

The experimental data compared well with the results from other 

eXperimental work within the region of the stresses tested. 

The tests also reflected the strong sensitivity of the 

fatigue life of rolled beams to the initial flaw condition. At 

every stress range level a large scatter was observed, and one 

or more beams exhibited long life. In these cases, the life 
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approached the value reported for plain plate-specimens. 

i 

3.2 DESCRIPTION AND CHARACTERIZATION OF FLAWS 

3.2.1 Locations of Crack Initiation 
) 

It was observed that cracks in the plain-welded beams 

always originated from a flaw in the fillet weld unless a severe 

notch existed at the flame-cut flange-tip. It is common know

ledge(38) that a perfect weld cannot be made. Some imperfections 

always exist in weldments. A number of such imperfections in 

fillet and butt-welds are illustrated for example in Ref. 25. 

Their cause and prevention, effect on strength, and proposed 

correction are also outlined. 

The term defect is defined in Ref. 38 as an imperfec-

tion or discontinuity that is judged damaging to the function of 

the material or weldment. The term flaw is generally used in 

this dissertation to .indicate an imperfection or discontinuity 

in the base material, in the weldment, or introduced by the weld. 

A flaw may become a defect under certain stress conditions. 

Typical conditions that may become critical and result 

in crack growth in a welded beam are schematically shown in 

Fig. 3. The flaws can be classified into three groups according 

to their general location in the cross-section: 



20. 

1. Internal Weld Flaws (a) porosity and slab inclusions 

(b) lack of fusion 

( c) partial penetration 

2. External Weld Flaws (a) undercut 

(b) weld repair 

(c) stop-start positi.on 

(d) weld spatter 

( e) micro-flaws at weld toe 

3. Surface Flaws (a) flange tip irregularities 

(b) rolled surface 

More than 180 cracks were found in the 56 plain-welded 

beams of the basic eXperiment design. Seventy-five cracks were 

cut open for fractographic examination. It was found that about 

80%. of the 'cracks had originated- from porosity, 10% from the 

start of weld repairs, and the remaining 10% from various other 

weld discontinuities or the flange-tip. Other flaws such as 

cracks due to cooling of the weldment were not observed in this 

study. 

3.2.2 Internal Weld Flaws 

The term porosity is used in this dissertation to de

scribe the presence of cavities in the weld metal caused by the 

entrapment of gas. In general, porosity took the form of small 

cavities completely inside the weld. The gas pores appeared on 
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the fracture surface as rounded cavities with a smooth and shiny 

surface as shown in Fig. 2(a). A few pipe or blow holes extended 

to the surface of the weld. 

Except for blow holes extending to the surface of the 

fillet weld, these small pores cannot be detected by visual in

spection and only with great difficulty using modern non-destruc

tive inspection techniques. Radziminski and Lawrence(49) observed 

under favorable inspection conditions on polished butt welds that 

defects causing crack initiation were not always the ones which 

appeared to be most severe from radiographic inspection. 

A collection of pores over a 1-1/2 inch length of 

weldment from the longitudinal fillet-weld of a welded beam is 

shown in Fig. 4(a). The weld was mechanically opened on a 45 

degree plane between flange and web. The flat surface on the 

bottom of the web segment shown is the unfused portion of the 

faying surface between web and flange. Various shapes and sizes 

of pores at random intervals are seen to originate from the root 

of the weld. Various shapes, such as elongated pores and wor.m

holes (a pore consisting of a series of small voids) were found 

inside the weld. 

It is also interesting to observe that small cracks 

existed in most of the pores perpendicular to the axis of the 

weld [Fig. 4(a)]. The large,. elongated pore in the center of 

the specimen was carefully opened. A fatigue crack with less 



than 1/4 inch diameter was found as illustrated in Fig. 4(b). 

This crack had not penetrated to the surface of the fillet weld 

and was completely inside the weld. 

The beams in the original test series were welded by 

individual weld-runs, that is, welds were not placed simultan

eously on both sides of the web. This was necessary for the 
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ASl4 grade beams because of restrictions on the heat input. Be

sides some distortion of the cross-section, more porosity (gas 

pockets) was found in the second weld. This is believed due to 

impurities that were caught between the web-edge and the flange 

during the first weld pass-. In addition, gases could be trapped 

easily at the same location during the placement of the second 

weld especially when approaching a tack weld. More uniform flaw 

sizes were found in a specimen where simUltaneous welding was used. 

The center of the flange and the edge of the flame-cut 

web were blast cleaned prior to welding to insure good fusion. 

Only one case of lack of fusion was found (Fig. 5), and had caused 

a premature failure of a beam. 

Partial penetration did not influence crack initiation 

and growth. This gap at the faying surface was parallel to the 

'applied bending-stress direction and continuous along the.span. 

No cracks were found to initiate at this location. Gurney(l9) 

observed no difference between beams welded with partial or com

plete penetration. Reemsnyder(50) reported that cracks initiated 



from the corners of the gap in the shear span. The principal 

stress in the shear span ~s no longer parallel to the longitu

dinal direction of the gap and the sharp corner at the gap may 

lead to crack initiation and growth. 
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Several cracks originated at or under the applied .loads 

in the shear span. Initiation of the crack proper was however 

from porosity in the fillet weld. Very little influence on crack 

growth was observed when this occurred. 

3.2.3 External Weld Flaws 

Most external flaws in manually placed welds are in-

troduced by ripples on the weld surface, or at locations of 

change of ~lectrode. Automatic welding reduces the surface 

ripples and generally eliminates many restart positions. Under-

cut may still occur as shown in Fig. 6. Only one crack was ob-

served in this study to have initiated from undercutting. Current 

practice(25) recommends that weld metal be added at the point 

where undercutting occurs. Weld repairs were usually placed in 

this study at such locations. 

Another suggested reason for repair is insufficient 

weld profile. The convexity of the profile is repaired by add-

ing more weld metal. Unfortunately, a weld repair may constitute 

a severe notch. In most cases when a weld repair was placed, a 

crack initiated from the start of the repair as illustrated in 
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=Fig. 7. The-fatigue crack is recognized by the fine grained 

fracture surface with a ci~cularboundary in the web-flange 

junction. The coarser grained surface near the circular boundary 

was caused by mechanical tearing of the remaining cross-section 

after saw-cuts had been introduced. These saw-cuts are visible 

in the outstanding legs of the flange and web. 

Other discontinuities introduced by the automatic weld

ing process are caused by accidental stop-start positions. These 

restarts are equivalent to weld repairs and the common discon

tinuities in -manually welded beams. Weld spatter was sometimes 

found in the vicinity of tack welds. Only one crack was found. 

that had originated from a small weld drop. 

Micro-flaws generally exist at the weld periphery. 

They were described as directly comparable to cracks.(57,60) 

These microscopic defects are much smaller than acceptable under

cut. The orientation of these toe-flaws· was parallel to the 

applied stresses in the welded-beams and no cracks were observed 

to initiate from these locations. 

3.2.4 . Surface Flaws 

CraCks in rolled beams generally initiated from small 

flaws in the flange surface that were apparently introduced by 

the normal rolling operation or by locally adhered mill-scale. 

These flaws were much smaller than the porosity observed in the 
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plain-welded beams. A typical crack starting from a surface flaw 

is shown in Fig. 8. The region where slow growth had prevailed 

over a large portion of the life is apparent from the smooth 

fracture appearance. 

Many cracks in the A36 and A441 steel rolled beams 

originated at locations of high local stresses at the load points. 

Fretting(33) contributed to the initiation of these cracks. It 

was difficult to judge the influence of fretting and local 

stresses. This was also true for cracks that originated under

neath the wooden stiffeners that were inserted at the load points. 

Cracks initiated from the flange-tip of plain-rolled 

beams at the inside or outside corner. This location probably 

constitutes. an exposed part in the rolling process. A few lami

nations in the flange-edge were also found to cause crack initia

tion and growth as illustrated in Fig. 9(a). 

The only surface flaws that were critical in plain

welded beams were at the flame-cut flange-tip. During flame

cutting accidental discontinuities may occur in the advancement 

of the machine. Notches in the flange tip as shown in Fig. 9(b) 

can result and are deeper than the usual surface roughness. A 

severe condition can result from the sharp notch in locally em

brittled material. In addition, high residual tensile stresses 

exist at the ·flame-cut flange-tip. 
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3.3 DISTRIBUTION OF RESIDUAL STRESSES 

One welded beam of each grade of steel and one rolled 

beam of A36 and A44l grade steel were used for residual stress 

measurements. The residual stress specimens were taken from the 

region between the support reaction and the load point. The 

method of sectioning(58) was used to determine the distribution 

and the magnitude of residual stresses. 

Strains were measured on both inside and outside sur-

face of the flanges and on both sides of the web. The residual 

stress distributions for typical welded beams measured after 

completion of fatigue testing are given in Ref. 11. These 

studies indicated very high tensile residual stresses at the 

fillet weld and at the flame-cut flange-tips. The tensile 

residual stresses were of the order of the yield strength of the 

weld material at the fillet weld, and about half the yield 

strength at the heat-influenced flange-tip. The compressive 

residual stresses were about 20 ksi to 30 ksi for all three 

grades of steel. 

Much smaller residual stresses were found in rolled 

beams. The normal cooling residual stress pattern was not pres

ent because the rolled beams were straightened by the rotarizing 

process. The resulting residual stresses were usually less than 

+ 15 ksi.(ll) 
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It was also observed that the residual stresses in 

the two adjacent fillet-welds at the same flange-to-web junction 

were not equal. Since the fillet welds were not simultaneously 

placed, the welding and subsequent cooling of the second weld re-

lieved part of the residual stresses in the first weld, and at 

the extreme fibre opposite the second weld. 

A small reduction of residual stress was also observed 

after fatigue testing when compared to the as-welded state. The 

primary residual stress pattern was not greatly influenced and 

the reduction cou~d be correlated to normal redistribution due 

to applied loading. An investigation(39) to further evaluate 

the redistribution in welded shapes was undertaken on two beams. 

The two A36 and AS14 shapes came from the same lot of specimens 
. (11) used in the fatigue study. 

A schematic of the residual stress distributions in 

an A36 and an AS14 welded beam is shown in Fig. 10. The resid-

ual stresses in the tension and compression flanges before load-

ing are shown by the heavy lines, and the stress patterns after 

loading and redistribution are indicated by the shaded areas. 

A fictitious load application equivalent to 30 ksi 

nominal tension and compression stress in the flanges and sub-

sequent unloading may cause a redistribution of residual stresses. 

A number of observations can be made from the comparison of the 

as-welded (heavy lines) and redistributed residual stress-
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patterns (shaded areas) shown in Fig. 10. 

(1) The residual stress pattern in the tension flange of 

both A36 and A514 steel was likely to change because 

of yielding at the fillet weld. Higher applied stress 

may also cause the flange tip region to yield. 

(2) No changes were observed in the compression flange of 

the A514 steel beam because the compressive residual 

stresses were small when compared to the yield point. 

Redistribution did occur in the A36 steel beam because 

the compressive residual stress was much closer to the 

yield point of the base ·metal. 

(3) The residual stress patterns are no longer symmetric 

with respect to the nominal neutral axis after the 

load application. This observation was confirmed in 

Ref. 39. 

A repetition of the applied load will cause very little 

additional change. Constant amplitude cyclic loading will cause 

fluctuations in the stresses in both flanges. The nominal stress 

range, ~cr, in the tension flange of both shapes is shown in 

Fig. 10. It varies between the residual stress and some maximum 

less than or equal to the yield stress. Hence, the full applied 

stress range is effective. 

In.the compression flange of the A5l4 steel, the stress 

fluctuation at the weld is between the yield stress and some 
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lower tensile stress (a -~a). In the A36 steel beam the residual y 

stress at the fillet weld is less than the yield point because 

of redistribution. The fluctuation is hence between this reduced 

residual stress and some lower tensile or even compressive ~tress 

(ar-~a). Hence, the full applied stress range may not always be 

effective. The yield level will be reached in the compressive 

part of the compression flange for the A36 steel beam. 

3.4 CRACK GROWTH OBSERVATION ON A PLAIN-WELDED BEAM 

A plain-welded beam was tested and closely observed in 

order to investigate crack formation and growth on the surfaces 

of the fillet weld, web, and flange. Measurements of crack length 

and load were made so that crack growth could be determined for 

the structural element. 

Beam PRB~341 was selected for this study since" it had 

failed prematurely after 192,000 cycles of stress from a flange-

tip crack. Replicate beams tested at the same stress range of 

36 ksi indicated that a crack from a gas pore could be expected 

to become visible within an additional 200,000 cycles. The 

flange-tip crack was gouged and carefully repaired with a multiple-

pass butt-weld. The reinforcement was removed and the surface 

ground flush. The beam and especially the fillet welds were 

whitewashed to help detect small surface cracks. 

Testing was resumed under the same stress conditions 
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(Fig. 1). The stresses in the extreme fibre were used to set 

the loads and were measured with electrical strain-gauges. The 

fillet welds were searched for cracks using a regular hand mag

nifying-glass while testing at 250 cycles per minute. A length 

of more than 42 inches of weld on both sides of the web was ob

served. The maximum vertical movement of the beam in this region 

was approximately 0.35 in. Testing was interrupted after 103,000 

and 150,000 additional cycles so that the weld could be examined 

under static load. Suspicious locations were further examined 

with a 50-power microscope. 

After the ~econd static loading, a hairline crack was 

detected on the weld surface after an additional 9,000 cycles 

was applied. Testing was temporarily discontinued at that time 

after 351,700 applied stress cycles. The apparent crack size on 

the weld surface was found to measure about 0.05 inch when the 

load was removed from the beam. This increased to 0.25 in. under 

maximum stress of 50 ksi in the extreme fibre. 

A reference grid was placed on the inside surfaces and 

the extreme fibre of the flange as well as on both faces of the 

web. The grids were placed close to the cross section containing 

the hairline crack. It was possible to estimate the crack-tip 

to within 1/5 of a grid line (± 0.01 inch) using 50-power magni

fication. The hand magnifying-glass permitted about 1/2 the grid 

distance to be estimated (..:t 0.025 inch). The crack length tT a" 



on the inside surface of the flange is plotted as a function of 

the total applied cycles in Fig. 11. 
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At intervals of, about 18,000 cycles, testing was in

terrupted and the crack was measured under a statically applied 

maximwn load. These measurements are indicated by crosses in 

Fig. 11. There was good agreement between the crack length mea

surements under dynamic and static loading. 

At 402,000 cycles, a flange-tip crack occurred at the 

repair and testing was again halted. The crack size in the fillet 

weld was measured when the load was removed and is indicated by 

the circle in Fig. 11. The region around the flange-tip crack 

was removed by saw-cut and replaced by a piece of sound metal 

groove-welded to the three inside edges. The weld repair of the 

second flange-tip crack introduced considerable deformation into 

the beam. Hence, further testing was conducted at a reduced 

maximum stress of 38 ksi. The stress range was maintained at 

36 ksi. Since the crack was expected to penetrate the opposite 

fillet weld and the extreme f,ibre (Fig. 11), much attention was 

given to the observation of these locations. 

It was difficult to pinpoint the exact time at which 

the crack reached the extreme fibre. After about 435,000 cycles 

the crack was det,ected on the bottom surface of the flange. This 

was confirmed under a static load at 440,000 cycles. It was also 

observed that the crack had penetrated through the other fillet 
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weld. This was not detected under dynamically applied loads. 

A first set of measurements under static maximum load 

was taken to establish the crack on the inside and outside of the 

flange~ as well as in the web. This three-ended crack is schemat-

ically shown in Fig. 12. The data points for the measured dimen

sions, a and c, on the inside surface of the flange are plotted. 

Also plotted is the length, ef, of the three-ended crack on the 

extreme fibre of the flange. Measurements taken under static 

maximum load are indicated by a cross on top of the symbols. 

It is apparent from Figs. 11 and 12 that the increase 

in crack size was very rapid after the crack had penetrated the 

bottom flange surface. The cross-section of the flange fractured 

at 567,009 pycles as the crack tip reached the flange-tip. A 

schematic of the advancement of the crack after it had penetrated 

the extreme fibre is shown in Fig. 13 and indicates a transition 

from a penny-shaped crack in the flange-web junction to a three-

ended crack. A detailed discussion of the stages in crack growth 
• 

will follow in Chapter 5. 
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4. FATIGUE STRENGTH OF WELDED AND ROLLED BEAMS 

4.1 THE INFLUENCE OF FLAWS ON THE FATIGUE STRENGTH 

4.1.1 Internal Weld Defects 

Cracks initiating from pores in the fillet weld similar 

to those shown in Fig. 2 accounted for most of the failures in 

plain-welded beams. A large variety of conditions can affect the 
. (38) 
welding process and cause porosity in the weld. Careful fab-

rication techniques can reduce the number and size of pores, but 

entrapped gas cannot be eliminated in commercial fabrication of 

structures. 

Fatigue test data from'beams failing at porosity. in the 

longitudinal weld are shown in Fig. 14. Distinction is made be-

tween the three grades of steel tested (A36, A441 and AS14). It 

is visually apparent that the beams where crack initiation from 

porosity was verified by fractographic inspection (solid symbols) 

represent the total sample of the beams well. Since each beam 

often contained a number of ,larger and smaller cracks, those 

examined in detail were assumed to be characteristic for the 

porosity that existed in all the beams tested. This sample of 

pores was also assumed to be stress range independent because of 

randomization of the beams. 

Also shown in Fig. 14 is the mean line of the linear 
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model using the logarithmic transformation of stress range and 

number of cycles to failure. The equation of the mean line re

sulting from the least-squares fit to the data from all three 

grades of steel combined is given at the upper right-hand corner 

of the figure. Also shown is the standard error of estimate. C43 ,61) 

Excluded from the least-squares fit were data at the 

18 ksi stress range level because of the significant influence 

a single datum point would have on the slope of the curve. Also, 

this level of stress range seems to be near the run-out level. 

Not shown in the figure and also excluded from the 

least-squares fit were the beams that failed from defects other 

than porosity. These include weld repairs, stop-start positions, 

other weld defects, and severe notches in the flame-cut flange

tips. These latter defects generally resulted in a more severe 

condition than porosity in the fillet-weld. 

The two lines in Fig. 14 parallel to the mean line 

contain the scatter of the data. This scatter-band theoretically 

predicts with 95% confidence that 95% of all beams tested should 

fall within its limits. A lognormal distribution of the data was 

assumed. The distribution of the data has been found to be very 

close to the theoretical lognormal distribution. Cll) 

All the beams failing from porosity were replotted as 

solid symbols in Fig. 15. Available test results from a current 
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study on welded beams with stiffeners and short attachments were 

also used to provide a larger data base. These supplemental 

tests employ the same type of plain-welded beams with stiffeners 

or attachments added in the shear span. A number of these beams 

failed in the constant moment region from pores in the longitu

dinal fillet weld. There was good agreement between the data 

from the basic experiment and these tests. 

The open symbols in Fig. 15 indicate plain-welded beams 

that failed from defects other than porosity. Also plotted by 

the same symbol are beams with stiffeners or attachments that 

failed in the welded beam mode. This includes beams failing 

from weld repairs, stop-start positions, other weld defects, and 

severe notches in the flame-cut flange-tips. Generally, these 

beams yielded shorter lives than' beams failing from porosity. 

When weld repairs were absent in the fillet weld, fail

ure sometimes occurred at the stiffener or attachment only after 

a large number of cycles without visible cracking in the flange

web fillet welds. Some of these beams yielded longer lives .than 

predicted by the mean line for porosity extended into lower 

stress range regions. The test points are identified by an open 

symbol and an attached arrow. 

An indication of a run-out level is seen at the 18 ksi 

stress range level. Only three data points from beams failing 

from porosity were obtained. One beam sustained 10 million 
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applied load cycles without visible cracking. Hence, the mean 

line in Fig. 15 is representative of test data at stress ranges 

above 18 ksi for beams that failed from porosity (solid symbols). 

The open data points for beams failing from defects other than 

porosity indicate a run-out level in the vicinity of 18 ksi 

stress range. 

4.1.2 External Weld Defects 

Beams with manually deposited fillet welds have been 

observed by Gurney(19) to yield shorter fatigue lives than auto

matically welded beams because of cracks starting from surface 

ripples or stop-start positions of the weld. A similar condition 

exists in continuously welded beams at locations of accidentally 

introduced stop-start positions or at weld repairs. Weld repairs 

become necessary when a part of the weld has to be replaced be

cause of excessive porosity or other undesirable factors. 

A number of the test beams contained weld repairs at 

locations or undercut or insufficient profile. These beams gen

erally failed from a single crack which initiated at the start 

of a repair as illustrated in Fig. 7. The fatigue test data from 

beams having large cracks at weld repairs are shown in Fig. 16 

and indicate a decrease in life. The mean line for these data 

points is parallel to the mean line for beams failing from 

porosity. 
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The start of a weld repair constitutes a local stress 

raiser very similar to the reinforcement at a butt-welded joint. 

The severity of the weld repair seemed to decrease when a smaller 

deposit was placed at the start of the weld repair and a smoother 

weld profile resulted. This observation is reflected by two 

beams that had cracks developing simultaneously from porosity 

and weld repairs (open symbols). Three beams did not reveal any 

visible cracking at the weld repair and failure occurred from 

porosity. The weld repairs were less critical than porosity. in 

these latter cases and the life of the beams is described by the 

mean-life of the beams failing from porosity. 

Weld repair defects appear to be also very similar to 

the defects introduced by stop-start positions in continuously 

welded beams or irregularities ih manually welded beams. Data 

from the test beams with weld-repair defects are compared with 

similar data reported by other inve~tigators in Fig. 17. The 

nominal bending stress on the inside surface of the flange was 

used as a basis for comparison. The mean line and the 95% con

fidence limit for 95% survival from this study correlate well 

with other test data. 

. (19) 
Gurney reported failure of two automatically 

welded beams contain~ng accidental stop-start positions. The 

possibility of improving the fatigue strength of such stop-start 

locations was examined by Gurney with five additional test 

I 
Ii 
II ,I 



beams. A special technique for restarting the weld on the me

chanically tapered stop of the 'weld bead was developed. Treat-
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ment on four specimens was successful. However, one beam failed 

from a repaired restart position. 

Gurney also reported that three of four manually 

welded beams failed at stop-start positions with the crack initi

ating from the surface of the fillet weld. Braithwaite(6) re-

ported multiple cracks from various locations at stop-start 

positions in 24 inch deep manually welded plate girders. Mul-

tiple 1ocations of crack initiation was also observed in this 

study when more than one weld repair was made. This was espe

cially true for beams loaded in partial' reversal where additional 

small cracks were observed in both flanges at various weld re

pairs. Small cracks were also found in the shear span of a few 

beams that started at weld repairs subjected to reduced bending 

stresses. 

Fisher and Stallmeyer(12) also reported several fail

ures from weld-craters. These data are also shown in Fig. 17 

for comparison. The beams were manually welded using a back

stepping procedure. Failure was observed to occur at points 

where the next deposit began to overlap the previous weld. This 

location was similar to the start of a weld repair with high 

local heat input and a larger deposit of material. 

It is apparent from Figs. 16 and 17 that weld repairs 



and discontinuities in the welding process usually lead to more 

severe defects than acceptable porosity. The start of a weld 

repair was ground to the same profile as the continuous fillet-

weld in one beam. However, crack initiation still occurred at 

the original start location of the weld repair and resulted in 

failur,e. The improvement of the surface condition probably did 

not eliminate a small flaw at the start of the weld repair, and 

had no significant effect on the life of the beam. 

4.1. 3 Surface Flaws in Welded and Rolled Beams 

In plain-welded beams most cracks originated from de

fects in the longitudinal fillet weld. 'In this study no cracks 

originated from the surface of the welded-beam flange unless 

fretting and the influence of high local stresses were present. 

A few beams developed cracks from the flame-cut flange-tips. 

The data from beams containing flange-tip cracks are plotted in 

Fig. 18 and compared with the mean life for beams failing from 

porosity. 
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The welded beams which failed from crack growth at a 

single edge crack resulted from unusually large notches as illus

trated in Fig. geb). When simultaneous cracking from the flange

tip and porosity in the weld was observed, the life of the beam 

was comparable to the mean line for porosity as illustrated in 

Fig. 1;8. It was apparent that beams with normal flange-tip 



40. 

roughness (ABA roughness less than 1000) could not develop crit-

ical cracks from the small flange-tip notches before cracks grew 

from porosity and controlled the fatigue life. Porosity provided 

the critical condition for these beams. 

Three beams were reported to fail from the flame-cut 

edge by Fisher and Stallmeyer.(12) These beam data compare well 

with the results of this study as shown in Fig. 18. 

Cracks in the rolled beams originated from either a 
, 

small flaw· in the rolled surface of the flange or from a discon-

tinuity in the flange-tip. The flaws were very small and usually 

not well defined. Fretting was also observed during the test on 

plain-rolled beams. This was particularly true for partial re-

versal of l~ading. 

Most cracks in the A36 and A44l steel rolled beams 

developed under the applied loads. Only a few cracks initiated 

on the rolled surface away from the load. Run-out (~ 10 million 

cycles) was also observed for the A36 steel rolled beams at the 

30 ksi stress range level. 

The test on the AS14 steel rolled beams used improved 

set-up arrangements which made it possible to eliminate most of 

the local influences. Lateral braces in the shear span were used 

in place of the wooden stiffeners·. Cracks usually developed from 

the flange-tip or from the flange surface. These originated from 

\ . 



both the inside and outside corners of the flange-tip. Cracks 

also started on the inside flange surface as well as from the 

extreme fibre. Five run-outs were observed for" the ASl4 steel 

rolled beams at stress ranges of 34 and 36 ksi. 

41. 

The test data are compared with data from previous in

vestigators(37,44,S6,64) in Fig. 19. Only cracks that originated 

from the rolled flange surface away from possible load influence 

are considered. The solid points identify the grades of steel 

beams tested at Lehigh. Previous studies are also categorized 

according to "the yield strengths reported. Most of these data 

are for the high strength T-l steel rolled beams. No failure 

occurred for a number of beams after 4 to 7 million cycles of 

loading even with stress ranges as high as 55 ksi. Run-out of 
. . 
the beams was then assumed in these studies. The number of 

beams surviving a large number of cycles increased with decreas-

ing stress range. All data fall above the mean of the plain 

welded beams and a small increase in life is found at the lower 

stress ranges. 

Gurney(19) reported that four plain-welded beams failed 

from the extreme fibre and approached the life of rolled beams. 

A small reduction in life is apparent in Fig. 19 when these data 

are compared to the rolled-beam data. This might be due to 

higher resid1,lal tensile stresses at the flange-web junction in 

the welded beams and difference in beam geometry. 
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Rolled beams with cracks originating from the flange

tip were distinguished from beams with surface flaws and are 

plotted with solid symbols in Fig. 20. The scatter is relatively 

large at each level of stress range. The plain-welded beams with 

flange-tip cracks are also replotted in Fig. 20 by open symbols. 

The comparison reveals' a further reduction in fatigue life for 

the flame-cut flange-tip cracks in welded beams. This was ex

pected for the following reasons: 

(1) Only the most severe flange-tip notches in welded beams 

could become critical because the defects in the longi

tudinal fillet-weld generally provided the critical 

flaw-condition and prevented further cycles of loading. 

(2) The notches introduced by flame-cutting that caused 

failure were more severe and sharper than the notches 

introduced by the rolling operation. 

(3) The notches in the flame-cut edge were in zones of 

high residual tensile stresses. The residual stresses 

at the tips of rolled beams are usually compressive. 

A summary of all rolled beam data including the beams 

failing from locations of possible load influence is shown in 

Fig. 21. The test data for the three grades of steel combined 

are classified according to the failure mode. All data from 

other investigators(37,44,S6,64) are for beams that failed from 

the rolled surface (Fig. 19). Also indicated in Fig. 21 is the 

mean line for welded beams failing from porosity, and test data(31) 



from machined tension specimens of T-l steel. 

The fo.llowing conclusions can be drawn from the pre

ceding discussion and Fig. 21: 
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(1) The mean fatigue life for porosity in a welded beam 

constitutes a lower bound to the fatigue life of rolled 

beams. 

(2) The longest lives observed for rolled beams approach 

the life of plain plate specimens. 

(3) A run-out level is apparent in the vicinity of 30 ksi 

stress range. 

(4) A decreasing number of beams sustained a large number 

of cycles without failure at higher stress ranges. 

(5) Severe notches can initiate cracks in a rolled beam 

and cause failure at much lower levels of stress range 

as was illustrated by the failure of an A514 steel 

beam at the 20.5 ksi stress range level. 

4.2 CRACK DISTRIBUTION IN WELDED BEAMS 

4.2.1 Crack Distribution in the Tension Flange 

An examination of the crack formation in welded beams(ll) 

revealed that the cracks in the tension flange generally occurred 

at random locations. The A36 steel beams usually failed from a 

single crack in the tension flange. More than one crack formed 
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in each beam for the other two grades of steel. Multiple crack

ing was more frequent in the A5l4 stee~ beams. 

The frequency distribution of cracks in the tension 

flange that initiated from porosity is plotted in Fig. 22(a). 

Only cracks from beams loaded in tension were used to eliminate 

possible load effects. Cracks from the three grades of steel are 

shown combined for both halves of the span. Cracks originating 

from weld repairs were not considered since weld repairs were 

generally necessary in the vicinity of tack welds. Tack welds 

had been placed in this study in a somewhat common pattern 

. starting from the end of the beams. 

It was apparent from Fig. 4(a) that the flaws were 

randomly distributed along the span. Hence, a uniform distribu

tion of cracks should result in the constant moment region. The 

distribution of cracks shown in Fig. 22(a) suggests that slightly 

higher stresses existed a short distance away from the load. 

The stresses calculated by beam theory were corrected 

for the local effect near a load point as suggested in Ref. 59. 

The· correction at the flange-to-web junction was estimated from 

the solution of a concentrated force at midspan of a beam with 

rectangular cross-section. The correction was computed based on 

the web alone and is plotted in Fig. 22(b). The stresses along 

the span are non-dimensionalized by the nominal bending stress 

0B at midspan. Figure 22(c) shows the stress distribution along 
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the span for· beam theory and corrected for the local effect. A 

reduction of bending stress at the load point is apparent together 

with increased stresses in the constant moment region and the 

shear apan. 

This stress distribution was experimentally verified 

on a beam with the loads 24 in. apart. The experimentally ob

served deviations from beam theory stresses were not as large as 

predicted. The load influence decreased faster than expected 

away from the load point. This can be attributed to the shear

lag effect in a welded wide-flange beam as compared to a beam 

with rectangular cross-section as assumed for the analytical 

model. 

~he corrected stress distribution shown in Fig. 22(c) 

models reasonably well the stress distribution at the flange-to

web junction along the span. This stress distribution also cor

relates well with the eXperimentally observed distribution of 

cracks in the beam flange shown in Fig. 22(a). A concentration 

of cracks was observed about 7 inches away from the load applica

tion. This corresponds to the highest stress in the tension 

flange. 

The shape of the frequency distribution for crack 

occurrence is similar to the stress distribution if the concen

trations at the wooden stiffener edges are ignored. The cracks 

at these locations had initiated from porosity in the fillet weld 
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and not from surface defects as was observed in the rolled beam 

study. 

4.2.2 Crack Occurrence in the Compression Flange 

When beams were subjected to partial reversal of load

ing, the compression flange behaved very similarly to the tension 

flange. Cracks were found in all grades of steel with an in

creasing number for the higher grades. A few beams failed due 

to complete fracture of the compression flange. The fatigue life 

of these beams was found to be comparable with the life of the 

beams failing in the tension flange. ell) 

When no reversal of loading was applied to the com

pression flange, the nominal bending stresses remained compres

sive. No visible cracks were found in the compression flange 

of the A36 and A441 steel welded beams. A large number of cracks 

was observed in the compression flanges of welded AS14 steel 

beams in the constant moment region. 

The difference in behavior due to grade of steel is 

believed due to the difference in the residual stress condition 

as was illustrated in Fig. 10. The lower yield strength of the 

A36 steel results in a redistribution of residual stresses in the 

compression flange. This redistribution is caused by yielding of 

the compressive residual stress zones. The tensile residual 

stresses are reduced when this occurs. A cyclic load introduces 
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a stress fluctuation from this reduced residual stress level as 

indicated in Fig. 10. Only a part of the stress excursion may 

be in the tension stress state. Hence, the full stress range is 

not effective. 

No redistribution takes place in the compression flange 

of the AS14 steel beams. Hence, the same stress condition exists 

at the weld for both tension and compression flanges as indicated 

in Fig. 10. 

No beams failed due to fracture of the compression 

flange when only nominal compressive stresses were applied. In 

a few beams cracks were visible in the compression flange before 

the appearance of cracks in the tension flange. However, crack 

growth decreased when the crack grew out of the tensile residual 

stress zone and into a compressive residual stress region. This 

permitted cracks in the tension flange to propagate and cause 

failure. 

Hence, fracture of the compression flange was only 

possible when a tensile stress component was applied to it. 

Crack initiation and growth appears dependent on the state of 

residual stress at the weld. Small cracks may develop in residual 

tensile zones but they seemed to arrest when they grew out of the 

tensile residual stress region unless a tensile stress component 

was applied •. 



5. EVALUATION OF FATIGUE BEHAVIOR USING 

FRACTURE MECHANICS CONCEPTS 

The fatigue test data and fractographic observations 

of small fatigue cracks suggested that fracture mechanics of 

stable crack-growth might be useful in evaluating the observed 

behavior of the test beams. During most of the fatigue life 

of welded beams the cracks cannot be observed on the surface. 
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Hence, a crack-growth equation is derived from the statistically 

evaluated fatigue test data. 

5.1 SUMMARY OF FRACTURE NECHANICS CONCEPTS 

5.1.1 Crack-Growth Data 

Crack-growth data are usually obtained from crack

propagation measurements on specially designed specimens. A 

large variety of specimens have been tested under various applied 

load and boundary conditions.(5,7,27,48,62) Most specimens have 

polished surfaces and sophisticated techniques are used to ob

tain the basic relationship between the number of applied load 

cycles and the crack size a. 

A starter notch is· introduced by mechanical.means or 

the electrical discharge process. Usually the proc~dure is to 

precrack the specimen and advance the crack until it reaches a 
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convenient size for observation. This has resulted in measure

ments of crack-growth rates greater than 10-6 inches/cycle. This 

is equivalent to a crack-increment of one inch per one million 

cycles. Only a few studies have examined very slow growth be

cause of the testing time involved, and the difficulties con

nected with testing and the accurate observation of crack advance-

ment. 

5.1.2 Elastic Stress Analysis 

It has become common practice to use the fracture 

mechanics concepts introduced by Irwin(29) to describe the stress 

field in the vicinity of a crack tip. The linearly elastic 

stress field is defined by polar coordinates with origin at the 

crack tip, and the stress intensity factor K, where 

K = f[~, a, f(a)] (ks~in.) (5.1) 

The stress intensity factor K describes in convenient 

form the influence of the stresses, applied sufficiently away 

from the crack tip,. and the crack size a. The relative size is 

usually expressed in terms of a correction function f(a) where 

the linepr dimensions of the plate, .or the distance to a free 

edge or surface are introduced. 

Because of the assumption of linearly elastic material, 

a change of applied stress causes a proportional change in K, or 

as commonly expressed 



ilK ilo .;rra f( a) (ksij'in. ) (5.2) 

The elastic solution for the stress field indicates 

infinite stress at the crack tip and stresses above the yield 

point over a small distance at the tip. Corrections for the 

plastic zone at the crack tip have been proposed.(53) 

5.1.3 Crack-Growth Equation 

The application of fracture mechanics permits the 

three parameters stress range, crack size, and boundary condi-

tions to be described by one variable, ~K. It is also possible 

to successfully fit semi-empirical models to the crack-growth 

data. The following model was introduced by paris(45) and will 

be used 

da 
dN 

(5.3) 
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This model expresses crack growth per cycle (~~) in terms of the 

variation of the stress intensity factor ~K, and two material 

constants, C and m. The graphical presentation of Eq. 5.3 in 

the log-log transformation is a linear function of the form 

da Log (dN) = Log C + m Log ~K (5.4) 

Deviations from a straight line are often encountered 

due to crack initiation and very slow growth at the lower growth 
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rates. Fracture-mode transition and net-section yielding at 

higher levels of ~K also influence the shape. The slope of the 
, 

curve was also found to be influenced by 'grade of steel (20) and 

mean stress(5,14,27) from growth tests on stress relieved tension 

specimens. These influences will be further discussed in Sections 

5.3 and 5.4. 

5.1.4 Integration of Crack-Growth Equation 

An analytical expression for the theoretical life-

interval between two crack sizes a. and a. of a structural ele-
, 1 J 

ment can be developed from Eq. 5.3. This yields 

N .• 
1J 

j 
= J. dN 

1 

a. 
= ,rJ 

a. 
1 

(5.5) 

The stress-intensity-range ~K can be replaced by Eq. 5.2. 

For the case of a crack with constant correction factor f(a) over 

the range of the integral, and subjected to constant amplitude 

stress, integration yields 

N .• 
1J 

where 

(5.6) 

m 
a, = '2-1. (5.7) 

If 'f(a) is a variaple correction factor, a closed form 

solution of Eq. 5.5 is usually not possible and numerical 



procedures have to be employed. 

For specimens with equal initial crack-size a., final 
1 

crack-size a., and identical boundary conditions, a theoretical 
J 

value for the prediction of the life interval N .. can be ex-
1J 

pressed in terms of a new constant C' times the applied stress 

range Aa as 

(5.8) 

where . C' 1 = C 
1 (5.9) 
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The log-log transformation of Eq. 5.8 yields a straight 

line of the form 

Log N •• - - Log e' - m Log (llO") 
1.J 

5.1.5 Compatibility with Welded Joint Test Data 

(5.10) 

Statistical evaluation of test data in Ref. 11 and 

Chapter- 4 has indicated that 'stress range is the dominant stress 

variable. The mode~ using the logarithmic transformations of 

stress range and cycle life best described the data. In linear 

form this model can be expressed as 

(S.ll) 

A comparison with Eq. 5.10 suggests the equivalence of 



the following terms 

Log C' 

and 

= B 
1 
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(5.12) 

(5.13) 

The validity of this'comparison and the assumptions involved will 

be further discussed in the following sections. 

Mention should be made of the fact that effects of 

stress concentrations have to be included in the comparison. The 

stress range no refers to the stresses removed from the crack. 

At we1dments and changes in geometry a stress concentration 

exists. The stress 60 must reflect this, 

hence = A S r (5.14) 

where Sr is the nominal applied stress range, and A reflects the 

stress concentration effects. For the plain welded beam A was 

taken as unity. 

5.2 APPLICATION TO THE PLAIN-WELDED BEAM 

Two basic stages of growth were observed for cracks 

or~ginating from pores in the longitudinal fillet-weld of welded 

beams. The first stage of growth was in the flange-to-web junc

tion from the initial crack-size up to the point where the crack 

reached the extreme fibre of the flange. The crack was observed 



to be of nearly circular shape during this mode of growth. 

After. penetration of the extreme flange-fibre, the 

crack changed its shape rapidly to.become a three-ended crack. 

Continued growth in this second stage was observed with two 

crack fronts in the flange and one front in the web. 

Fracture mechanics concepts are applied in this sec

tion to characterize the two modes of crack growth. A penny

shaped crack is assumed to model the growth until the crack 

penetrates the extreme fibre of the flange. Crack-growth mea

surements on a three-ended crack are used when evaluating the 

second mode of growth. The computed crack-growth rates for the 

two modes of growth are compared. Comparison with growth rates 

from other. investigations are then made in Section 5.3. 

5.2.1 Application of the Penny-Shaped Crack Model 

Fractographic examination of small cracks that had 

originated from pores in the fillet weld showed that many were 

almost perfectly circular in shape. This circular shape was 

found at various stages of growth up to the point where the 

crack had reached the extreme fibre of the flange, as illus

trated in Figs. 23 through 25. 

aIle of the smallest cracks was discovered when exam

ining a crack in the fillet weld. Another small crack about 

54. 
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0.07 inch in diameter was found in the opposite weld as shown in 

Fig .. 23. The tiny crack had originated from a very small pore. 

The extent of the crack is seen from the smooth crack surface 

surrounding the pore, as compared to the rough appearance caused 

by static tearing when the cross section was opened for inspec

tion. This small crack was completely inside the f~ange-to-web 

junction and could not be detected by inspection of the weld 

surface. 

A small crack discovered by the magnetic particle in

spection method is shown in Fig. 24. The crack had initiated 

from the elongated pore and grown to the surface of the fillet 

weld. Almost no deviation from a circular shape is visible. 

This crack is about 0.26 inch diameter and could not be detected 

on the weld surface with the aid- of a magnifying glass even 

under favorable circumstances and under sustained loading. 

A crack which has nearly penetrated the extreme fibre 

of the tension flange is shown in Fig. 25. Again, no significant 

disturbance of the circular shape is apparent at either side of 

the web or at the front approaching the surface of the flange. 

This crack, although quite sizeable, is not easily detected on 

a structural element under applied loading. The linear dimension 

of the crack on the surface of the flange-to-web junction is 

somewhat less than an inch. 

This phenomenon of a circular crack-shape, seemingly 



not influenced by the free surfaces, is believed to be a conse-

quence of the compatibility condition of the basically elastic 

cross-section. Based on this photographic evidence, a circular 

disc-like crack was assumed to model the actual crack during 

growth inside the flange-web connection. 
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Various stages of crack growth were schematically shown 

in Fig. 13. The cross section at the flange-to-web junction was 

magnified by a factor of three. The pore constituting the ini-

tial defect was random in shape and is indicated by Stage 1. 

Stage 2 represents a circular crack circumscribing the pore. 

The crack growing in the fillet-weld eventually reached the near 

weld-surface (Stage 3) and later the surface of the far weld 

(Stage 4). The penetration to the extreme fibre (Stage 5) ter-

minated growth as a disc-like crack in the flange-to-web core. 

This occurred for beam PWB-34l at 435,000 cycles when subjected 

to a stress range of 36 ksi. The transition to a three-ended 

crack was observed to occur rapidly. 

5.2.2 K-Estimates and Crack Model 

Fractographic examinations revealed that a penny-shaped 

crack describes the crack over a large portion of the fatigue 

life as the crack grows from its initial size to about 3/4 inches 

in diameter •. However, additional assumptions and estimates are 

necessary to account for the various shapes of the pores that 

were illustrated in Figs. 2, 4,.23, 24 and 25. The shape and 

I 
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I 
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~ize of the original pore that is visible on the fracture surface 

was assumed to represent the initial crack. The crack is assumed 

to start growing with the first cycles of loading and no delay 

due to crack initiation was considered. 

The work done by Signes et al.(57) has shown the mor

phology of some defects to be comparable to sharp notches. This 

work lead to the often cited and used "crack growth only'! theory 

for welded details. Porosity constitutes an internal defect and 

was not considered by Signes. An indication of a similar crack-

like condition at the pores in welds was discussed recently by 

Lundin. (40) 

Fracture mechanics provides a means of estimating K-

values at distinct points on the perimeter of an arbitrary shaped 

crack in an infinite body. Equation 5.2 can be expressed as 

AK = ;n:a f( a) 
Aa (5.15) 

This yields a system of parallel lines for various values of 

f(a) in a log-log presentation of ~K/~cr versus a, as shown in 

Fig. 26. 

A number of basic K-values (or ~K/~a values) are in

cluded in this figure.(47) Values for an elliptical disc-like 

crack embedded in an infinite body are plotted for various ratios 

of minor to major half-axes a/b. A tunnel crack (a/b=O) and a 

circular penny-shaped crack (a/b=l) represent the two boundary 
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conditions. Other estimates show a K-value at the convex side 

of a tunnel-like crack [f(a)=1.05], and an estimate of two bounds 

for a penny-shaped crack with an adjacent pore [2/n ~ f(a) ~ 0.75J. 

Figure 27 is an enlarged portion of Fig. 26 for half 

crack-sizes, a, between 0.01 in. and 0.1 inch. The pore in the 

photograph of Fig. 2(a) shows a sequential arrangement of three 

globular voids and was characterized by the idealization shown 

in Fig. 27. A number of K-values were estimated at various loca

tions on the periphery of this pore and are given by solid dots 

in Fig. 27. 

The stress-intensity factors correspond to the follow

ing assumptions: 

(1) At the extreme ends of the pore the estimates for the 

bounds of the stress-intensity factor for the inscribed 

circles are indicated by Kl and K2 for the radii al and 

a2, respectively. 

(2) K3 is the estimate for the neck at the transition 

between the end and center circles. 

(3) The dashed line represents the change in K for an 

ellipse with variable minor axis 2a over the constant 

major axis 2b. 

(4) The smallest estimate of K4 is for an inscribed circle, 

and the largest for a circumscribed ellipse. 

(5) The circumscribed circle with radius a=b contains the 

whole. pore and gives the largest estimate for the 
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crack size a. Its corresponding K-value is about equal 

to the values given at the transition and on the el

lipse 'for this example. 

Obviously, a number of K-valuescan be estimated for 

the flaw idealized in Fig. 27. The stress intensity K3 at the 

neck seems to be the most critical. As a3 grows and approaches 

the value of a4, the estimate of K for a circumscribed ellipse 

with axes 2a4 and 2b is approached. The shadowed path indicates 

one possible change of the K-value with increasing crack size a. 

Only a slight influence is apparent due to the increase of the 

dimension, a, from a3 to b. It is also possible for the crack to 

initiate at the center pore instead of at the transition. K4 

would then describe the critical location. 

For the idealized defect shown in Fig. 27 a circum

scribed ellipse was selected to describe the initial flaw condi

tion. K4 was estimated for the circumscribed ellipse with mirior 

half-axis a4 = 0.032 in. and 6.K/6.(] = 0.250. 

A more complex flaw is shown in Fig. 2(b) where a cir

cular pore is connected by a neck to a long, narrow ellipse. 

The largest K-estimate was obtained for this neck and used to 

describe the initial flaw condition. K is difficult to estimate 

as the crack grows. 

A large number of cracks that originated from porosity 

in the fillet weld were examined closely so that reasonable 
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characterizations of their shape could be made. These cracks 

and defects represented a random sample from the welded beam 

test series shown in Figure 14. The flaws were photographed and 

enlarged at least three times as was illustrated in Fig. 2. The 

dimensions of the defects were measured under 10-power magnifi-

cation which provided an accuracy of about iO.0003 inch. 

Cracks were examined in beams fabricated from three 

different grades of steel. The estimated K-values corresponding 

to the measured flaw dimensions are summarized in Fig. 28. The 

estimate for the defect that corresponds to the largest observed 

crack from each beam is indicated by a solid symbol. The esti-

mates were obtained using a circumscribed ellipse for flaws sim-

ilar to the shapes illustrated in Fig. 2(a) and 27. For flaws 

comparable to those shown in Fig-. 2(b) the estimate at the tran-

sition from the circular void to the elongated pore was generally 

used. 

It was concluded from fractographic inspection of very 

small fatigue cracks (Figs. 23 and 24) that a penny-shaped crack-

model described the shape of these cracks. However, the esti

mated K-values for the initial flaws shown in Fig. 28 represent 

a collection of elliptical shapes with various alb-ratios. Hence 

each individual defect was transformed into a penny-shaped crack 

with an Ifequivalent crack-radius a t! corresponding to the esti-. e 

mated 6K/6a-value. The sample of the resulting equivalent crack-

radii is indicated at the bottom of Fig. 28. 
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An average equivalent crack-radius ae = 0.04 inch was 

selected to represent the sample of measured pores. The initial 

crack-radius a. was assumed equal to this average value. 
]. 

5.2.3 Derivation of Crack-Growth Constants 

The coefficients of the crack growth equation can be 

established from the equivalence of the coefficients given by 

Eqs. 5.12 and 5.13. The following assumptions were made to 

assist with the evaluation of the crack growth constants: 

(1) The crack was assumed to be describ.ed by a constant 

correction factor f(a) over the interval of integra-

tion. A circular, disc-like crack satisfies this 

condition. The correction factor fea) for a penny-

shaped crack is 2/rr. 

(2) The estimates of the initial and final crack radii 

a. and a. were available from visual measurements .. 
]. J 

The average initial crack-radius a. was assumed to 
]. 

equal the estimate of the equivalent crack radius, 

a = 0.04 in. (Fig. 28). This represents a pennye 

shaped crack of 8/100 inch diameter. 

The final crack radius a. was assumed to be reached 
J 

when the crack had penetrated the extreme fibre of 

the flange. Ex.perimental observations indicated this 

to be reasonable. The life remaining after this 

occurred was at most 10% of the total fatigue life of 



62. 

the beam as was illustrated by the measurements given 

in Fig. 13. The final crack radius was assumed to be 

equal to the nominal flange thickness. 

(3) It was assumed that all three grades of steel could be 

rep~esented by the same crack-growth equation. This 

assumption was based on results of tests on welded 

beams. It was shown in Ref. 11 that grade of steel 

did not significantly influence the fatigue life of 

the beams. The values for Bl and B2 from Fig. 14 were 

'representative of all beams that failed from porosity. 

Equating the values fo'r Bl and B2 from the mean re

gression curve to the coefficients mana C1 , and substituting 

the crack radii ai and a j , and. the correction factor f(a) into 

Eq. 5.9 yields the growth constants 

m = 2.98 

C = 2.05 x 10-10 

. Substitution of these constants into Eq. 5.3 yields 

da 
dN = 

(5.16) 

(5.17) 

(5 .18 )~: 

This equation is shown as a straight line in the log-log trans-

formation of Figp . 29 and 30. 

* The dimensions used for crack-growth rates ~ were in./cycle, 
and the stress-intensity-factor range AK was ksi Jin. 



5.2.4 Crack Growth in a Welded Beam 

The penny-shaped crack was used to model the first 

stage of growth from initial crack-size up to the point where 

the crack reached the extreme fibre of the flange. After pene

trating the extreme fibre, the crack changed its shape and be-. . 
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came a three-ended crack. The mode of growth changed from plane-

strain to plane-stress. Crack-growth measurements for a portion 

of this transition and for growth as a three-ended crack were 

discussed earlier. The- .experimentally obtained relationships 

between crack size and applied stress cycles were plotted in 

Figs. 11 and 12. Crack-growth rates were determined from these 

measurements using a secant method as follows: 

(1) Smooth curves were graphically fitted through the 

data points obtained from crack-size measurements 

(Fig. 12). The relationship for the crack length ac 

on the inside of the flange was obtained from the two 

individual measurements at the crack tips at a and c. 

(2) Crack sizes on the inside and outside of the flange 

(3) 

were selected from the smooth curves for ac and ef at 

intervals of 1000 cycles, starting at 440,000 cycles 

of applied loading .. 
. da 

Crack-growth rates dN were determined from the crack 

size increments per 1000 cycles for the inside and 

outside cracks. 

(4) Corresponding 6K values were computed for the mid-
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points of the intervals. The geometry correction 

function f(a) was estimated at each stage as described 

below. The resulting crack-growth rates are plotted 

in Fig. 29 and compared with Eq. 5.18 for crack growth 

before penetration of the extreme fibre. 

6K-values for the app'arent crack size ac on the "inside 

of the flange were estimated using two assumptions for the cor-

rection function f(a). 

(a) A penny-shaped crack was assumed with a diameter 

equal to the total crack size ac. This constituted a TTlower 

boundn for 6K. The data points for the transiti.on zone before 

growth as a three-ended crack are plotted as open dots in 

Fig. 29. They fall well below Eq. 18. 

(b) A through-the-thi'ckness crack in the flange was 

considered as a second possibility. 6K values were computed 

using the secant correction for finite width(30) and a plastic 

. t' (53) zone Slze correc lon. The radius of the plastic zone was 

assumed equal to 

1 = 2rr 
(5.19) 

The value of 6K was computed for the corrected crack size 

a = (5.20) 

0y was taken equal to the yield strength of the base material. 
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This resulted in an "upper bound estimate" of AK for 

crack ac during the transition from a penny-shaped crack to a 

three-end~d crack. The crack length ef on the extreme fibre was 

less than crack length ac during this transiton. Hence, the 

assumption of a through-crack equal to ac overestimated the value 

of AK on the inside of the fl~ge. The data points corresponding 

to the upper bound estimate are plotted as solid dots in Fig. 29. 

They f.all above Eq. 18 in the transition zone. 

The data points for continued growth as a three-ended 

crack are parallel to and slightly below Eq. 18 up to nominal 

net-section yielding. An increase in crack-growth rate is 

apparent after nominal net-section yielaing. 

(c) The apparent crack-size ef on the extreme fibre 

was also used to estimate AK-values fora through-the-thickness 

crack. The same corrections as stated in (b) were used. This 

estimate was not very satisfactory during the transition from a 

penny-shaped to a three-ended crack. The crack inside the flange 

was larger than the apparent crack size ef on the extreme fibre. 

The data points are shown as triangles in Fig. 29 and fall below 

the straight line estimate in the transition'region. 

It was visually observed that the crack on the' bottom 

surface of the flange tried to match the 'Size of the crack on the 

inside surface of the flange during the transition from a penny

shaped to a three-ended crack. The observed growth rates reflect 

this behavior. Growth rates computed from the estimates of the 



inside and outside crack lengths, ac and ef, correlate well in 

the region of growth as a three-ended crack. Good correlation 

is also apparent in Fig. 29 with the extrapolated straight line 

estimate provided by Eq. 18 for a penny-shaped crack. This is 

particularly true for stable growth as a three-ended crack. 
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The various stages of crack growth in the test beam 

are sununarized in Fig. 30. The straight line estimate CEq. 18) 

for crack growth as a penny-shaped crack from initiation until 

penetration of the extreme fibre is shown. Also replotted are 

the data points from Fig. 29 for crack-growth rates on the in

side and outside surfaces of the flange. The various stages are 

labelled and the crack radius, a, for a' circular crack, and the 

length, 2a, for a through-the-flange crack are indicated. The 

corresponding number of cycles are also shown. 

It is apparent from Fig. 30 and the schematic shown in 

Fig. 13 that most of the life is spent growing the crack from 

its initial equivalent flaw-radius, ae = 0.04 inch, to its pene

tration of the extreme fibre-of the flange, af = 0.375 inch. 

The corresponding range of ~K for the test beam was between 8 ksi 

~in. and 25 ksi jin. under a constant amplitude stress range of 

36 ksi while 435, 000 cycles elapsed. The transition from the 

penny-shaped crack to a three-ended crack required about 16,000 

cycles. An additional 10,000 cycles were required to grow the 

crack large enough to cause nomin~l net-section yielding. Rapid 

crack growth and failure of the beam occurred at 467,000 cycles. 
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It- is also apparent from Fig. 30 that most of the life 

was spent while growth occurred in a region of small 6K. This 

is particularly true for lower applied stress ranges as illus
:J 

trated in Fig. 31. The 6K regions applicable to growth as a 

penny-shaped crack are indicated for the test beams subjected to 

the stress ranges used in this study. Crack initiation took 

plac~ at 6K-values below 10 ksi Jin. in all test beams. Most of 

of -6 / the 11 e was spent at growth rates smaller than 10 in. cycles. 

5.3 COMPARISON OF CRACK GROWTH IN BEAMS WITH CRACK PROPAGATION 

STUDIES 

5.3.1 Stable Crack Growth 

The theoretical crack-growth equation CEq. IS) shown 

in Fig. 31 was derived from the stress-life relationship of a 

large number of welded beams failing from pores in the longitu-

dinal fillet-weld. It was based on the penny-shaped crack-model 

and is extrapolated for comparison with data from crack-growth 

specimens. The extrapolated curve falls within the scatterband 

reported by Crooker and Lange. CS ) This scatterband contains data 

from tests on carbon and low-alloy steels with yield strengths 

between 34 ksi and 127 ksi. This was comparable to the yield 

strengths of the steel beams. 

A conservative upper bound for growth rates on ferrite

pearlite steels was proposed by Barsom. (4) This proposed 
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equation is virtually parallel to the derived equation (Eq. 18) 

as shown in Fig. 31. 

_Since much of the growth in the plain welded beams 

took place in the weld metal and heat affected zone, a comparison 

of the theoretical curve with MaddoxTs dataC4l) is relevant. An 

approximate envelope for Maddox'Ts data on four different weld 

metals is shown. Three had about equal yield strength (67 ksi), . 

the fourth had a higher yield point equal to 90 ksi. Also in-

eluded in the scatterband are test data for a simulated heat 

affected zone in mild steel material with the same yield strength. 

The correlation of the theoretical curve CEq. 18) with these 

crack-growth data is good. 

Hertzberg and Nordberg(24) reported crack-growth rates 

in the weld metal an order of magnitude less than in the base 

material. This effect disappeared when the welded specimen was 

heat-treated and stress relieved. Maddox(4l) did not find a 

significantly different crack-growth rate in weld material as 

compared to the plain material reported by Gurney.(20) A close 

examination of the beam-crack fracture ·surfaces shown in Figs. 23 

through 25 revealedoa quite pronounced texture in the vicinity of 

the pores. This indicates that the crack had not grown in a per

fect plane probably resulting in somewhat slower growth. 

It is apparent from Fig. 31 that the Crooker-Lange 

'scatterband does not cover the critical region of interest for 



69. 

plain-welded beams. Most studies of crack growth rates have been 

limited to larger AK-values and higher crack-growth rates because 

of the difficulties encountered in the slow growth region. How-

ever, the theoretical curve (Eq. 18) extrapolated into the higher 

AK-regions shows the same general trend reported by others on 

basic crack-growth specimens (F~g. 31). The theoretical curve 

is just above the crack-growth data and underestimates their 

growth rate. This is surprising since the penny-shaped crack 

assumes the best condition for the crack in the welded beams and 

neglects the influence of free surfaces. This underestimate in 

growth rate may be due to crack initiation or an overestimate of 

the stress intensity. 

5.3.2 Slope of Crack-Growth Rate Curve 

The exponent m of the predicted crack-growth equation 

was equal to 2.98 (Eq. 18). It represents the slope of the 

fatigue test data on plain-welded beams fabricated from three 

grades of steel shown in Fig. 14. Crooker and Lange(8) observed 

from a review of the literature that the value of the slope m 

fell between 2 and 4 for a large range of steels. 

Gurney(20) reported on growth rates in steels with 

yield strengths. varying between 27 ksi and 63 ksi. The mean 

lines from five steels are shown in Fig. 32 together with the 

extreme scatterbands for all data. A change in slope m is in-

dicated for increasing yield strength. The theoretically 



derived curve (Eq. 18) when extended into the higher 6K-regions 

shows, however, good overall agreement with Gurney's test data. 
c 

Gurney(20) reported the slope of the curve to be a 

linear function of yield stress of the material. This straight 

line approximation .for the slope m is shown in Fig,' 33 as a 
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heavy line over the range of test results. A smaller exponent m 

results with increasing yield strength. Maddox's data(4l) on 

weld material and heat affected zone are plotted as crosses and 

Barsom's data(4) from ferrite-pearlite steels as triangles. An 

averaged value for martensitic steels with yi~ld above 90 ksi 

is indicated by an arrow to the right of 100 ksi.(4) Also in-

eluded for comparison are the values for the regression curves 

for plain-welded beams (Fig. 14) derived from the three individ

ual steels used in this study. 

A general trend observed. in crack-growth studies is 

for the value of the exponent m to decrease with increasing 

yield strength of the material. This trend was not as pro-

nounced in the welded-beam study. The exponent m did not 

appear to vary greatly from 3. 

The effect of a decrease in m on crack-growth rates 

as reported by Gurney can be seen from Fig. 32. A decreasing 

slope m (steeper curve in this graphical representation) was 

indicated for increasing yield strengths. These lines inter-

-6. / sected at about 5 x 10 In. cycle. This leads to larger 



71. 

values of the constant C for smaller m values. Hence, a larger 

constant C does not necessarily mean faster crack-growth rate 
c 

since the rate is also dependent on the level of 6K and the ex-

ponent m. The higher strength steels with smaller m showed 

faster growth in the region below 5 x 10-6 in./cycle, and slower 

growth in the higher g~owth-rat~ regions, as compared to the 

growth rates for lower strength steels (Fig. 32). 

Careful evaluation of the coefficients m and C is 

needed for a wider range of rates of growth. Most of the data 

used to fit the straight line approximation only extend over a 

small range of 6K. In other cases, data points at the extremes 

cause rotation of the line. Substantial over- or underestimates 

of the fatigue life of a structural component might result if 

these relationships are used to extrapolate beyond the range of 

the test data. 

5.3.3 Transition Zones 

Most crack-growth rate data on aluminum and 'steel show 

deviations from the straight line model proposed by Paris (Eq. 

5.3).(45) Growth-rates ,smaller than predicted by the model have 

been experienced in the slow growth region. Increases in growth 

rate have been observed at higher 6K-values. Empirical crack

growth equati.ons 'were proposed by Forman et a1., (13) and by 

Broek and Schijve(S) to include transitional behavior. 
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No comprehensive understanding of the causes for these 

deviations has been acquired, although a number of authors have 
c ! 

offered eXplanations based on the fracture-mode appearance. 

Wilhelm(63) and Maddox(41) observed a change of fracture mode 

in the slow. growth region when the slow growth behavior started 

to follow the straight line apppoximation. This transition, 

termed first knee by Maddox,(41) corresponded to a change from 

tensile to shear fracture mode. The slope of the crack-growth 

curve before the knee and the location of the knee itself were 

observed to be stress dependent.(41) The knee was found to 

occur at higher ~K-values under higher applied stresses. Hudson 

and Scardina(27) observed the change of fracture mode to fall 

within a reasonably narrow range of crack-growth rates. 

A second knee is sometimes observed at high ~K-values. 

The crack-growth rates are much higher and growth approaches 

the unstable regime. Wessel(62) has attributed this knee to a 

change of mode from normal incremental crack-growth to the dual 

mode of fracture. Hertzberg and paris(23) found the transition 

from plane-strain to plane-stress to be completed at a constant 

ratio of plastic zone size ry to sheet thickness t equal to 0.5. 

Klingerman(34) observed a short transition to faster growth rates 

when approaching net-section yielding. The growth rate curve was 

almost parallel after the transition to the original curve until 

the stress on the net-section approached the ultimate strength 

'and growth rate increased rapidly. 
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Barsom(4) has related the onset of the transition at 

high 6K-values to the crack-opening-displacement range, 66 which 
r 

is a measure of the strain range at the crack tip. Since crack-

opening-displacement is indirectly proportional to yield-strength 

of the material, the transition should occur at higher 6K-values 

for higher strength materials. 

Most information on the transitional behavior relates 

to fracture-mode changes and hence plastic zone size. Varying 

the grade of steel or the thickness of the material can be ex-

pected to influence the occurrence of the transitions. In per-

forming crack-growth studies one may observe one or more transi-

tional zones depending on the material, specimen shape, and 

thickness. 

The transition regions can significantly change the 

slope m of the straight line approximation. Since transitions 

occur at the extreme ends of the growth-rate vs. 6K relationship 

they can easily cause rotation of the curve. For example, when 

testing various grades of steels accelerated crack-growth will 

occur at relatively lower 6K-values for lower grade steels as 

compared to higher grade steels. Hence, a larger value for the 

slope m for lower grade steels is estimated from the test data. 

5.3.4 Effect of Stress Ratio 

A number of investigators(5,27,28) have attempted to 



~stablish the influence of mean stress or stress ratio in alu

minum alloys. Hudson and Scardina(27) found that the compres

sive part of the stress cycle (negative R-values) did not in

fluence crack-growth rates. Higher stress ratios (R > 0) were 

observed to increase crack growth. 
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Hertzberg and Nordberg(24) observed a moderate influ

ence of the Xmax/6K ratio on the crack-growth behavior of A514 

steel. No statistically significant influence of minimum stress 

was found in Ref. 34 for A36 steel. Crack-growth rates exceeded 

10-6 in./cycle for all these studies. 

Tests on plain-welded beams(ll) indicated no statisti-

cally significant influence due to minimum stress. This was true 

even when the stress cycle was partly compressive. Fig. 10 shows 

the region of the longitudinal fillet-weld to be subjected to 

residual tensile stresses about equal to the yield strength of 

the weld-metal. Hence, the initial flaw was always subjected 

to a tensile state of stress. 

Since both the tension and compr.ession flange fillet

welds were subjected to basically the same cyclic stress condi-

tion, cracks would be expected to OCcur in both the tension and 

compression flange. A large number of cracks were observed also 

in the compression flange of the beams even under no reversal 

of applied loading. These observations confirm the fracture 

mechanics principle of 6K being the controllIng factor for crack 



75. 

growth. The maximum stress has a negligible influence in welded 

beams because the elevated tensile residual stresses are about 

equal to the yield strength of the material. 

5.3.5 Very Slow Growth 

Johnson and paris(32) have suggested that a threshold 

exists for crack growth. In other words, 6K at the crack tip 

may cause a much smaller crack-growth rate than predicted by the 

straight line approximation describing crack-growth-rate vs. ~K 

relationship~ 

A recent investigation by paris(48) on ASTM 9310 steel 

has provided more information on this phenomenon of very slow 

growth. The test specimens were precracked and growth data for 

small ~K-values .obtained. The value of 6K was then reduced 

stepwise and observations made on the relative crack-growth rates 

until a ITthreshold value lT was reached. When 6K was increased in 

steps, the rate of growth was comparable to the rates obtained 

by previous overloading. An approximate mean line fit to Paris' 

data is compared in Fig. 34 with the predicted crack growth 

(Eq. 18) from this .study. A drastically reduced growth rate for 

AK ~ 5.2 ksi fin. is observed. 

Harrison(21) has reviewed the literature for run-out 

data on a variety of specimens. He concluded that !lfor all 

materials with the exception of pure aluminum, cracks will not 
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propagate if ~K < 1 x 10-4 .fin. It He also found for a number of 

materials that the limit for non-propagating cracks fell between 

~K = 1.5 x 10-4 .fin. and 1..8 x 10- 4 .fin. Harrison's levels for 

four types of steel are also shown in Fig. 34. They correspond 

to ~K-values of about 3.3 ksi .fin. for mild steel and 5.3 ksi 

.fin. for austenitic steel. 

5.4 INFLUENCE OF GEOMETRICAL AND MATERIAL FACTORS ON CRACK 

GROWTH IN WELDED BEAMS 

5.4.1 Influence of Plastic Zone Size 

The crack radius, a, for the penny-shaped crack did not 

include a correction for the contribution of the plastic zone at 

the crack tip. An estimate of the plastic zone radius has been 

given in Ref. 53 as 

= 1 
2TT 

2 
(t.K ) 

2(J' 
Y 

(5.19) 

When correcting the crack radius a to account for the plastic 

zone radius r , a new geometry correction factor flea) results 
y 

for the penny-shaped crack: 

ff (a) (5.21) 



This geometry correction is only dependent on the 

yield strength of the material for a given stress range. Equa

tion 5.21 can be approximated by 
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f'Ca) ~ 
2 

f(a) [1 + 1 ~ (~cr ) ].' 
2 rr2 cry 

(5.22) 

This approximation allows a quick evaluation of the influence 

of the plastic zone on the life estimate. For steels with nomi-

nal yield strengths of 36 ksi, 50 ksi and 100 ksi and subjected 

to the highest stress range of 42 ksi, a change in f(a) of 3.5, 

1.8 and 0.45 percent, respectively, results. 

The fracture appearance suggested that a plane strain 

condition prevailed at the crack tip of the penny-shaped crack 

in the welded beams. Hence, the percentage change in f(a) would 

be even reduced by two-thirds.(53) It was concluded that the 

influence of plastic zone size could be neglected for the penny

shaped crack. 

5.4.2 Influence of Flange Thickness 

Observation of crack growth during fatigue testing 

(Figs. 11 through 13) revealed that most of the fatigue life of 

a welded beam had been consumed when the crack penetrated to the 

extreme fibre.of the flange. An estimate of the fatigue life of 

beams with thicker flanges can be made with the penny-shaped 
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crack-model. A thicker flange can be reflected by an appropriate 

final crack-size af . 

Figure 35 shows the mean life for the test beams with 

nominal flange thickness of 0.375 inches. Various other flange 

thicknesses are indicated. Only a slight increase in fatigue 

life occurs for beams with larger flange thickness. The increase 

is not significant and would not justify an increase of allowable 

stresses for thicker flanges. This has been confirmed from the 

comparison with data from other studies on plain-welded beams 

with thicker flanges.(26) Also, the comparison of data from 

flange-spliced beams with 3/4 inch flange-thickness that failed 

from pores in the longitudinal fillet-weld yielded good agreement 

with the data from plain-welded beams with 3/8 in. flanges. Cll) 

It should also be noted that an increase in flange 

thickness generally results in a decrease in fracture toughness 

which can lead to brittle failure. This becomes even more crit

ical with the use of high strength steels. (8 ) 

An additional conclusion can be drawn from the study 

of the mechanism of crack growth in the flange-to-web junction. 

The photographic evidence did not indicate a significant influ

ence of the weld size and geometry on the mode of growth as a 

penny-shaped crack. Most of the life of a welded beam is spent 

as the crack grows from the initial defect to a visible crack. 

The initial crack-size is the dominant factor and is independent 
i . 
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of the exact geometry of the cross-section. Hence, if the size 

of the fillet weld is increased, no increase in fatigue life can 

be expected for the same size pore. 

5.4.3 Influence of Defect Size 

The life interval between the initial and final crack-

sizes a. and a. can be determined from Eq. 5.6. For a given 
~ J 

final crack-size, the computed number of cycles can be expressed 

as a function of the initial crack-size for a given stress range, 

as shown in Fig. 36. 

The final crack-radius for th~ penny-shaped crack-model 

was assumed equal to the flange-thickness of the welded test 

beams. This becomes less import~nt for larger differences be

tween initial crack-radius a. and final radius a. CEq. 5.6). 
~ J 

For very small initial cracks a., the curves become linear with 
~ 

a slope of ~ =; -1 in the log-log representation. For a given 

equivalent pore-radius ae = ai' Fig. 36 yields the theoretically 

computed number of cycles for the penny-shaped crack to reach the 

extreme fibre of the flange. 

Alternately the observed fatigue life of a tested beam 

can be used with the appropriate stress-range line to estimate 

the equivalent initial pore-radius that caused failur~, as illus

trated in Fig. 36. The fatigue data from Fig. 14 are replotted 

"in this manner in Fig. 37. Figure 37 is the enlarged portion 



80. 

lndicated in Fig. 36. The scatter of the equivalent pore-radii 

derived from the fatigue test data is shown on the right ordinate. 

The equivalent 'pore-radii determined from measured 

flaws are shown on the left ordinate of Fig. 37. The scatter of 

the porosity as derived from the fatigue test data (right ordi

nate) is seen to correspond to 'the scatter from the measured 

equivalent pore-sizes (left ordinate). The two scatterbands were 

found independently. 

'If no variation is as-sumed in the crack-growth charac-

teristics, this.comparison suggests that the scatter in the 

fatigue test data is caused by the variation in the initial 

crack-size. This is essentially the same conclusion reached by 

Harrison(22) for the analysis of test results from butt welds 

with lack of penetration defects. He concluded that the width 

of the scatterband probably resulted from variations in initial 

radii at the defect tips. 

5.5 APPLICABILITY OF CRACK MODEL AND PREDICTIONS OF FATIGUE LIFE 

5.5.1 Comparison with Other Crack-Models 

The computations based on the penny-shaped crack~model 

employed an equivalent initial crack-radius. This equivalent 

crack-radius was derived from estimates of the critical K-value 

'for the pore. The scatter in the equivalent crack-radius derived 
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from the fatigue test data was found to be about the same as 

the scatter of the measured crack-radii (Fig. 37). No variabil

ity was considered due to the influence of the pore-shape on 

the estimate of the equivalent crack-radius .. 

Additional crack-models were used to assess their in

fluence on the prediction of the fatigue life. Figure 38 summa

rizes the results for the various models used. Six A441 steel 

beams were selected for the comparison. The observed fatigue 

lives of these six beams are shown by solid dots together with 

the mean and the 95% confidence interval for all test beams 

failing from porosity. 

The defects that caused crack growth and failure of 

the six beams were examined. They were assumed to be character

ized by a circumscribed ellipse with half-axes a and b. The 

following models were used to estimate the fatigue life of each 

individual beam using the known dimensions of the circumscribed 

ellipse and crack-growth equation 5.18: 

Model (a) The open circles in Fig. 38 correspond to 

the life estimates for the penny-shaped crack with equivalent 

crack-radius. The equivalent crack-raqius was computed from 

the equivalence of the K-value with the circumscribed ellipti

cal-crack (Section 5.2). 

Model (b) Penny-shaped cracks were assumed to inscribe 

and circumscribe the ellipse. The shortest life estimates 
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resulted from the circumscribed crack and the longest from the 

inscribed crack. These two estimates constitute Ifupper and lower 

bounds", and are indicated by the T-symbols in Fig. 38. 

Model (c) Additional life estimates were made based 

on the elliptical crack-model. Growth was assumed in the direc

tion of the minor axis 2a with constant major axis 2b until the 

size of the circumscribed crack was reached. The computation 

of the increment of life from an elliptical to a circular crack 

was done using an available computer program.(16) Numerical 

. integration was employed because of the variable correction 

factor f(a). This increment of life was added to the estimate 

for the circumscribed penny-shaped crack. The total life esti

mate is indicated by open triangles in Fig. 38. 

The comparison between: the estimates for each individ

ual beam provided by the different models and the observed 

fatigue life permitted the following observations to be made: 

(1) The life estimates employing the equivalent penny

shaped crack-radius [model (a)] resulted in slightly 

shorter lives than the estimates that assumed the 

elliptical crack first to grow to a circular shape 

[model (c)]. 

(2) Both of these estimates were bounded by the estimates 

provided by the inscribed and circumscribed initial 

cracks [model (b) ] .. 

(3) The observed fatigue data was also contained within 



the bounds from the estimates of the circumscribed 

and inscribed circles in all but one c,ase. 

(4) Long flaws with a small alb-ratio [as .illustrated 

in Fig. 2(b)] provided the greatest deviation between 

the computed Itlower and upper bound lt • 

(5) All three defects of the type shown in Fig. 2(a) had 

their life underestimated when the equivalent initial 

crack-radius was used [model (a)J. The estimate im

proved for the elliptical model [model (c)J. 

(6) 'Most of the estimates from models (a) and (c) fell 

within the two limits of dispersion representing the 

95% confidence interval of all the beam test data. 

5.5.2 Prediction of Fatigue Life 
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Maddox,(42) and Harrison(22) have demonstrated that 

good predictions of the fatigue life can be obtained from crack 

growth data. Barsom l s(4) conservative estimate of crack-growth 

rate (Fig. 31) for ferrite-pearlite steels has been used here to 

predict a lower bound to the fatigue life of the beams failing 

from porosity. The result is shown in Fig. 39 together with the 

mean line and the 95% confidence interval for the original data 

from Fig. 14. The mean-line and confidence limits were extended 

-to the 18 ksi stress range level and the long-life data from 

Fig. 15 added. 

Also shown in Fig. 39 is the prediction based on ParisI 
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data, (48) indicating a threshold level for run-out at about 

23 ksi stress range. This prediction was obtained using the 

straight line segments shown in Fig. 34 which approximate the 

data from the study on very slow growth. The threshold values 

by Harrison(21) shown in Fig. 34 were also used to estimate run-

out. Run-out tests are predicted to occur at levels as high as 

20 ksi stress range for low-alloy steel. 

The predictions based on the crack~growth data underes

timate the mean fatigue life of the test beams at the higher 

stress range levels. This was expected from the comparison of 

the crack-growth data. Since any assumption other than a penny-

shaped crack-model for the welded beams would further reduce the 

life prediction, a crack-initiation period may be responsible 

for the slight underestimate. Other factors that could be re-

sponsible for the unde~estimate are an overestimate of the ini

tial crack-size, an overestimate of the stress intensity, or a 

slower growth rate under plane-strain conditions.(7) 

Using the straight-line segment approximation to Paris! 

slow growth data, the fatigue life was also computed as a func

tion of the initial crack-radiusa. as shown in Fig. 40 for var
~ 

ious stress range levels. Also shown on the left is the sample 

of estimated equivalent crack-radii and the representative flaw-

size a = 0.04 in. from Fig. 28. The observed beam data are e 

plotted on the appropriate stress range lines together with the 
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mean and the 95% confidence interval. Two observations can be 

made from Fig. 40. 

The test data for the 42 ksi, 36 ksi and 30 ksi stress 

range levels indicate a slightly smaller average defect size of 

about 0.03 in. This estimate of 0.03 in. compares with an aver-

age value for the estimated flaw size in Fig. 28 when the shape 

corrections are disregarded. A change of the estimate for the 

initial crack-radius from a. = 0.04 in. to a. = 0.03 in. increases 
~ ~ 

the computed value of the constant C in the crack-growth equation 

from C = 2.05 x 10-10 (Equation 5.17) to 2.51 x 10-10 . This only 

increases the theoretical crack-growth rate slightly if m is kept 

constant. 

It appears reasonable to assume that the flaw sizes at 

the various stress range levels are about the same. The mean 

line for the observed fatigue data should then remain horizontal 

in Fig. 40. The upward slope of the mean line indicates that the 

threshold level of 5.2 ksi fin. suggested by paris(48) is too 

high for the steels used in this study. Figure 39 showed a 

number of beams that sustained longer lives than predicted by 

the mean line at the 18 ksi stress range level. One beam yielded 

a life of 10 million cycles without visible cracking. Hence,_ 

run-out data for the observed porosity seem to fall at or slightly 

below the 18.ksi stress range. 

If this arbitrary run-out level for plain welded beams 
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is correlated with the two 8K-threshold values suggested for low

alloy steel and mild steel in Fig. 34 (4.6 ksi lin. and 3.3 ksi 

/,in.) a "threshold" defect radius aTH can be estimated. Equa

tion 5.2 yields aTH = 0.051 in. for low-alloy steel and 0.026 in. 

for mild steel. This compares with the range of measured equiv

alent pore-radii shown on the left ordinate in Fig. 40. 

The same computation was used to estimate the flaw size 

in the rolled beams. Run-out data were observed in Figs. 19 and 

.20 at the 30 ksi stress range level for A36 and at 34 ksi for 

A5l4 ~teel rolled beams. These run-out levels were confirmed by 

comparison with other rolled beam data. The run-out levels were 

correlated to the 8K-threshold values of 3.3 ksi lin. and 4.6 ksi 

/,in. for mild steel and low-alloy steel, respectively. 

Two crack models were used to estimate the flaw size 

in the rolled beams. A corner crack(47) was assumed to model 

the cracks originating from the flange-tip corners. A defect 

radius of 0.010 in. and 0.014 in. resulted for the two grades of 

steel. An elliptical surface crack (alb very .small) was used 

(with a correction factor tea) equal to 1.0) to describe the 

surface flaws in the rolled beams. The depth of the flaws was 

found to be between 0.004 in. and 0.006 in. 

5.5.3 Scatter in Crack-Growth Rates 

The scatter in the test data shown in Fig. 39 was 
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attributed in part to the variation in shape, size and severity 

of the porosity. Other factors contribute to the variation in 

test data. Beams with equal defects would still experience 

scatter in the fatigue test data because of variation in the 

crack-growth rates and other variables. 

The scatter represented by the 95% confidence interval 

in Fig. 39 can also be assumed to result from variation in crack-

growth rates. This is illustrated in Fig. 41 for an initial 

crack radius of 0.04 in. The scatterband is shown for growth

-5 rates below 10 in./cycle over the range of 6K-values corre-

sponding to the penny-shaped crack used in this study. Since 

three grades of steel were used to fabricate the test beams, the 

scatterband also includes the effect of grade of steel. In 

addition, two different electrodes were used for the fillet 

welds causing different weld material and heat affected zone 

for each grade of steel. 

The scatter in growth-rate data for a single grade of 

steel taken from GurneyTs study(20) is also shown for comparison 

in Fig. 41. This data was obtained from center notched speci-

mens of BS968 grade steel which is comparable in yield stress 

to the A44l steel used in this study. All but two of the nine 

s'pecimens (20) were tested at different stress ranges under zero 

to tension loading. The band is shown over the region of stable 

(20) -6 crack-growth or growth rates larger than 5 x 10 in./cycle. 
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The width of the scatterband of growth rates from specimens 

(measured horizontally for a given 6K-value) is about half the 

width of the band based on the beam data. 

The average width of the envelope for MaddoxTs data(4l) 

for weld metal and heat affected zone that was summarized in 

Fig. 31 compares with the variation observed in the beam tests. 

Hence, the scatter observed in crack growth studies appears in 

part responsible for the scatter in the test data. 

'The derived growth-rate scatter band is also compared 

with the data obtained by Maddox(42) on the propagation of a 

part-through-thickness crack. MaddoxTs data points are replotted 

in Fig. 41 and show comparable scatter. Maddox computed the 

averaged growth rate from measurements of markings on the frac-

ture surface caused by stepwise increased loads. 

The comparison of the growth-rate curve from this 

, study with Maddox data for 6K-values below 10 ksi Jin. indicates 

growth-rates of almost an order of magnitude smaller. As before, 

the question remains whether this can be attributed to a crack 

initiation period, an overestimate of the stress intensity, 

smaller growth rates in the plane strain condition as suggested 

by' Clark and Trout, ( 7) ~r other influences. Further work isc 

needed to clarify these questions . 

. .. '. 



6.· INITIAL FLAWS AND FABRICATION OF ROLLED 

AND WELDED BEAMS WITHOUT ATTACHMENTS 

6.1 PLAIN-WELDED BEAMS 

Welded beams without attachments that are fabricated 

according to current practice can be expected to exhibit crack 

growth from flaws in the continuously welded web-flange connec

tion. Except for blow holes extending to the surface of the 

fillet weld, flaws such as gas pores cannot be detected by 

visual inspection and only with great difficulty using modern 

inspection techniques. Non-destructive testing methods cannot 

define the exact size and shape of these defects in the weld. 

89. 

The comparison of the welded beam test data with data 

from other investigations in Refs. 11 and 26 had indicated that 

good correlation of the data existed. The 95% confidence limit 

for 95% survivals was found to provide a lower bound to the data. 

A study on welded girders(lO) recently reported significantly 

reduced fatigue lives for girders with large porosity in the 

weld. Insufficient information is given to allow a comparison 

with the porosity observed in this study .. It appears desirable 

to evaluate the porosity that can be expected to be found in 

commercially fabricated structures. 

It was concluded from the eXperimental and theoretical 



studies that the size of porosity should not exceed the magni

tude observed in this study. Appropriate welding and fabrica

tion techniques should be used to reduce the possibility of 

premature failure from larger pores. 
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This dissertation used fracture mechanics models to 

evaluate the effect of pore geometry and size on the- fatigue 

life of plain-welded beams. Similar methods can be used to 

analyze the effect of continuous welds in the direction of the 

applied stresses. The continuous welds at longitudinal stiff

eners or the -flange-web connection of box-girders provide one 

upper bound condition for the fatigue strength of the structure. 

Generally, attachments, transverse stiffeners, or the ends of 

the continuous weld at the longitudinal stiffeners provide more 

critical cohditions. 

Other defects in the longitudinal weld are introduced 

by incomplete fusion, undercut, slag inclusions, or cold lap at 

tack welds, and generally result in a shorter fatigue life for 

the beam than porosity causes. It is common practice to repair 

undercut which frequently occurs in the vicinity of tack welds. 

Also, insufficient weld profile is usually filled to the required 

weld size by a local weld repair. 

It was found in this study that the start of a weld 

repair constitutes a defect slightly more severe than the usual 

porosity. This can further reduce the fatigue life of the beams. 
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The same effect was observed at accidentally introduced restarts 

in the continuous weld. Since such defects cannot be eliminated 

during fabrication, design must account for their existence. 

This concept was used in Ref. 11 to develop design stresses that 

were adopted as AASHO Interims Specifications. Cl) The specifi-

cations provide for defects that are comparable to those observed 

in this study. 

Flange-tip cracks may occur from sharp notches that 

are more severe than the regular flange-tip roughness introduced 

by flame-cutting the plates to size. These notches should be 

, removed by grinding. It is possible that handling beams with 

chains and hooks during the fabrication and erection of struc-

tures will introduce undesirable defects. Additional studies 

are necessary to evaluate these effects on the fatigue strength 

of beams. 

6.2 PLAIN-ROLLED BEAMS 

Flaw s'i~e .es~mi3:tes ,for rolled beams were derived from 

fatigue test data with fracture mechanics concepts. A defect 

depth between 0.004 and 0.006 inch was determined from the run-

out data. This crack size is an order of magnitude smaller than 

the equivalent penny-shaped crack Cae = 0.04 inch) in welded 

beams. The defects in the rolled beams are believed to be in-

troduced during the rolling operation or result from mill scale 

which adhered locally to the flange surface. 
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Flange-tip flaws in the rolled beams were found to be 

somewhat larger than the surface flaws. The radius of the quarter-
i . 

circular crack with origin at the flange-corner was of the order 

of 0.010 in. to 0.014 inch. This larger defect was reflected by 

the fatigue data which indicated shorter lives for rolled beams 

failing from flange-tip flaws •.. 

Rolled beams provided the least severe flaw condition 

for a structural element and can yield extremely long lives. 

However, a large flaw in the surface or at the flange-tip can 

reduce the fatigue life of the beam substantially. This was 

observed in a few beams in the high stress range region, and in 

one beam failing in the shear span from'a large notch in the 

flange-tip. These beams yielded fatigue lives equivalent to 

the mean life for welded beams. 'Large or sharp notches at the 

flange-tip should be repaired by grinding to avoid a reduction 

in the fatigue life of the beam. 
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7. CONCLUSIONS 

The main findings of this study are summarized here

after. They are based on a detailed examination of the test 

data, fracture surfaces, initial flaw conditions provided by the 

experimental work, and on the theoretical studies of stable crack 

growth. 

(1) The characterization of the initial flaw condition revealed 

porosity to be the most common defect in plain-welded beams. 

The welded beam fatigue data fell within a narrow scatter

band when plotted as the logarithmic transformation of 

stress range and cycles to failure. 

(2) UnderQut, incomplete fusion, restart of the weld, weld

repair starts, and other discontinuities were found to 

reduce the fatigue life of welded beams. 

(3) Design specifications should account for the existence of 

such defects in welded beams. 

(4) The distribution of the size and location of the pores in 

the longitudinal web-to-flange fillet-weld was random. The 

distribution of the cracks along the span was compatible 

with the theoretical bending stress distribution in the 

tension flange corrected for the local load influences . 

. (5) Cracks were observed in. the nominal compression flange for 

all three grades of steel when partial reversal of stresses 



94. 

was applied. Only A514 steel beams revealed cracks in the. 

compression flange when the applied nominal stresses re

mained comp·ressive. 

(6) The compression flange cracks were related to the initial 

residual stress distribution and the differences in redis

tribution of the· residual stresses under applied loading 

for the three grades of steel beams. 

(7) Compression flange cracks were not critical unless a ten

sion stress component was applied with the stress range. 

This permitted crack growth outside the residual tensile 

stress core. 

(8) Rolled beams yielded longer lives than the welded beams and 

exhibited a large scatter in the data. 

(9) The examination of the initial flaw conditions revealed that 

cracks in rolled beams originate from small defects in the 

rolled surface or from the flange tip. 

(10) Fracture mechanics concepts provided a rational way to ana

lyze and characterize the behavior of welded and rolled 

beams. These concepts were applied to describe numerically 

the initial flaw conditions. in rolled and welded beams,and 

to derive a crack-growth rate vs. range of stress-intensity 

relationship from welded-beam fatigue data. 

(11) A penny-'shaped crack was. found to model cr~ck growth from 

porosity in welded beams. An equivalent crack with a 0.04 



inch radius described the average pores observed in the 

welded beams. 

(12) The depth of the flaws in the surface of the rolled beams 

was estimated to be at least an order of magnitude smaller 

than the welded beam pore radius. Flange-tip defects in 

rolled beams formed a slightly more severe defect than the 

surface flaws. 

(13) Coefficients for a linear log-log transformation of crack

growth rate vs. 6K relationship were derived from the 

stress-life relationship of welded beams using the initial 

and final crack-size. 

(14) The derived relationship correlated'well with measured 

crack-growth data from a welded beam. 

(15) The derived crack-growth equation exhibited the same trend 

as measured. data from crack-growth specimens. It provided 

a lower estimate of the growth rate. Among other factors, 

this difference was attributed to crack initiation, a pos

sible overestimate of the stress intensity, and slower 

growth in the plane-strain condition for the welded beams. 

(16) Available crack-growth data were shown to only cover a 

small region of growth-rates. Extrapolation into regions 

outside the data could be misleading, particularly when 

used for fatigue life estimates. 

(17) It was also apparent that factors influencing the devia

tions from the straight line approximation of the crack-

95. 
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growth equation are not well understood. No experiments 

have been conducted to evaluate statistically the influence 

of the major factors that influence the transitional be-

haviors. 

(18) Very little information is available for growth rates 

-6 below 10 in./cycles. This was found to be the region 

most critical for the fatigue behavior of welded and rolled 

beams. More than 75% of the life was spent in this region 

growing a crack from its initial size to a visible crack. 

(19) It was shown that an increase in flange-thickness and 

larger weld-sizes should not permit an increase in allow-

able defect-size. The initial crack-size was the con-

trolling factor for the fatigue life of welded beams. 

(20) The plastic zone size correction was shown to have no sig-

nificant influence on the fatigue behavior of welded beams 

conta~ning the assumed penny-shaped crack. Since most of 

the life was consumed growing a penny-shaped crack there 

was little effect on beam behavior. 

(21) A transition from plane-strain to plane-stress behavior 

was observed when the crack reached the extreme fibre of 

the flange. The mode of growth also changed to a three-

ended crack. The plastic zone size correction was signif-

icant for the three-ended crack. 

(22) The scatter of the fatigUe data was found to be related 



in part to the variation in the initial pore-condition and 

fatigue crack-growth rates. 

(23) Fracture mechanics concepts were found to be applicable in 

the analysis of welded and rolled beams. More information 

is needed outside the regions of available growth~rate 

data, and on the statistical variation of the individual 

parameters that influence crack-growth rates. 
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SYMBOLS' 

C 

C' 

K 

N 

N •• 
1J 

S 

Smax 

NOMENCLATURE 

= constant; intercept of log-log transformation of 
regression curve 

= constant; slope of log-log transformation of 
regression curve 
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= a material related constant' in crack-growth equation 

·1 = C 
(Eq. 5.9) 

= elastic stress-intensity factor for a crack; 
Cksi /in.) CEq. 5.1) 

= number of applied stress cyCles 

= number of cycles required for a crack to grow from 
size a. to sizea. CEq. 5.6) 

1 J 

= nominal applied stress in the extreme fibre of the 
tension flange 

= maximum stress 

= minimum stress 

= stress range 



a 

a 

ac 

a. 
J 

b 

ef 

f(a) 

fT (a) 

m 

= "crack size; 
crack-radius for penny-shaped crack, half crack
width for tunnel crack or through-the-thickness 
crack, crack-depth for surface crack, crack-radius 
for corner crack, minor half-axis for elliptical 
crack 
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= crack size corrected for plastic zone at crack-tip 
(Eq.5.20) 

= total crack size on the inside surface of the 
flange; computed from the measurements a and c on 
both sides of the web 

= equivalent radius of a penny-shaped crack that 
provides the same K-factor estimated for the 
"arbitrarily shaped crack 

= final crack-size 

= initial crack-size (for integration internal) 

= final crack-size (for integration interval) 

= major half-axis for an elliptical crack 

= crack size on extreme fibre of the flange 

= nondimensidnal geometry correction factor for 
stress-intensity factor K 

= geometry correction factor including correction 
for plastic zone-size at the crack-tip 

(Eqs. 5.21 and 5.22) 

= exponent of crack-growth equation; slope of 
"equation in log-log transformation 
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a. 

AK 

Aa 

a 

GLOSSARY 
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= . plastic zone-size radius at the crack-tip CEq. 5.19) 

= standard error of estimate 

m 
2' - 1 CEq. 5.7) 

= stress-intensity-factor range CEq. 5.2) 

= stress range relevant for the determination of the 
stress-intensity-factor range 

= stress concentration factor CEq. 5.14) 

= stress applied sufficiently away from the crack-tip 

= yield strength (or 0.2% offset) of material 

Blow hole = tunnel-like pore extending to the surface of the weld. 

Cell of factorial = a particular testing condition within the 
factorial experiment 

Compression flange = flange subjected to only 'or predominantly 
compression stresses in the stress cycle 

Confidence interval = statistical interval that is expected to 
contain with a given confidence a given 
percentage of the test data 

Confidence limit = statis.tical limit that describes with a given 
confidence the expected survival of a given 
percentage of the test beams 



Defect = imperfection or discontinuity that is judged damaging 
to the function of the material 

Factorial experiment experiment plan where observations are 
taken at all possible combinations that 
can be formed for the different levels 
of the factors 
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Failure = generally defined in this study as an increase in mid
span deflection of 0.020 inch due to fatigue cracking 
of the test beam 

Fatigue behavior = description of crack initiation and propaga
tion under given stress conditions 

Fatigue life = number of load cycles to failure 

Fatigue strength = derived relationship between fatigue life and 
applied stress 

Flaw = any imperfection or discontinuity in the base material, 
in the weldment, or introduced by the weld. A flaw may 
become a defect under certain stress conditions 

. Fractographic examination = examination of the surface of the 
fatigue crack to evaluate the loca~ 
tion of crack initiation and direc
tion of crack propagation 

Fretting = microscopic slip between two metallic surfaces under 
the action of oscillating forces 

Gas pore = small cavity in the weld metal caused by entrapped gas 

Initial flaw condition = defect that exists in a welded or rolled 
beam before application of cyclic loading 

Life interval = number of cycles required to grow a crack from 
size a. to size a. 

~ J 
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Lognormal distribution = normal distribution of a dependent vari
able in the logarithmic transformation 

Notch = local discontinuity in the geometry of the specimen 

Penny-shaped crack = disc-like crack in an infinite body 

pipe hole = blow hole 

Plastic zone size = size of the plastic zone at the tip of a crack . 

Pore = small cavity in the weldment,caused by entrapped gas 

Porosity = describes the presence of cavities in the weld metal 
that are generally completely inside the weld 

Stable crack growth = region of growth that can be described by 
an analytical model relating crack-growth 
rate to stress-intensity-factor range 

Stress range = algebraic difference between maximum and minimum 
stress 

Stres's ratio = algebraic ratio of minimum stress to maximum stress 

Tack weld = small length (about 3 in.) of manually placed weld to 
preliminarily assemble the components of a structure 

Three-ended crack = crack in the web-flange junction of beams 
with two crack fronts in the flange and one 
in the web 

Threshold crack growth = level of llK-value where diminishingly 
small crack growth occurs 

Tunnel crack = long crack with two parallel crack fronts 
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Worm hole = gas pore consisting of a series of small cavities 

Weld repair = generally local repair of weld because of undercut, . 
insufficient weld, or other weld deficiencies 
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Fig. 2 

(a) Typical gas pore (x4) 

(b) Pore elongated and perpendicular to the 
weld surface (x4) 
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Examples of porosity from the root of the longitudinal 
fillet-weld 
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Fig. 3 Schematic of possible locations for crack initiation in welded beams 
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Location and ~istribution of shapes I 
and sizes of pores in the IOngitudin~ 
fillet weld (x3) 8 

Section 8-8 

Elongated Pore 
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Section A-A 

(ct 8eam Flange) --

( b) 

Small fatigue crack completely inside 
the fillet weld (x6) 

Fig. 4 Small fatigue cracks originating from porosity in the 
flange-to-web fillet weld, and growing perpendicular 
to the axis of the weld 



Fig. 5 

Fig. 6 

Crack initiation from lack of fusion of the fillet 
weld in the flange (x3) 

Local undercut in the flange at the location of the 
continuous weld passing over a tack weld (x2.2) 

109. 



Fig. 7 

Fig. 8 

Initiation of a crack at the start of a weld repair 
placed to fill insufficient weld profile (~x2.5) 

Crack initiation from a flaw in the rolled surface 
of a plain-rolled beam (xl.7) 
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Fig. 9 

(a) Lamination at the flange-tip of a rolled 
beam (x4) 

(b) Severe notch at the flame-cut flange-tip of 
a welded beam (x4) 

Examples for c~ack-initiation from the flange-tip 
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