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by 
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ABSTRACT 

This thesis presents the results of an experimental investigation 

to determine the effects of a variable amplitude load. program randomly 

applied to notched butt welded plate specimens. The load program simu

lated actual service conditions for steel beam highway bridges and the 

plate specimens duplicated the fabrication method used in joining these 

beams to form a continuous flange. The tests were performed using a 

high speed resonant fatigue testing machine which included a programming 

device for applying a random load. The results are presented and their 

application in the determination of service life is discussed. 

Factorial experiments were designed to provide information 

regarding the effects of minimum stress, maximum stress, stress range, 

and mean stress on the fatigue behavior of the notched specimens. The 

geometry of the specimen was developed from the experimental program. 

The test results were analyzed by a mathematical model to obtain 

the relative degree of correlation between the stress parameters selected. 

Analysis showed that the stress range produced the greatest correlation 

when plotted against the number of cycles to failure and that maximum 

stress, minimum stress, and mean stress had no significant effect on 

fatigue life. It was found that the slope of the regression line through 

the constant amplitude test data was statistically the same as the slope 

of the regression line through the variable amplitude test data. 
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ABSTRACT 

This thesis presents the results of an experimental investigation 

to determine the effects of a variable amplitude load program randomly 

applied to notched butt welded plate specimens. The load program simu

lated actual service conditions for steel beam highway bridges and the 

plate specimens duplicated the fabrication method used in joining these 

beams to form a continuous flange. The tests were performed using a 

high speed resonant fatigue testing machine which included a programming 

device for applying a random load. The results are presented and their 

application in the determination of service life is discussed. 

Factorial experiments were designed to provide information 

regarding the effects of minimum stress, maximum stress, stress range, 

and mean stress on the fatigue behavior of the notched specimens. The 

geometry of the specimen was developed from the experimental program. 

The test results were analyzed by a mathematical model to obtain 

the relative degree of correlation between the stress parameters selected. 

Analysis showed that the stress range produced the greatest correlation 

when plotted against the number of cycles to failure and that maximum 

stress, minimum stress, and mean stress had no significant effect on 

fatigue life. It was found that the s lope of the regre ssion line through 

the constant amplitude test data was statistically the same as the slope 

of the regression line through the variable amplitude test data. 
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1 . INTRODUCTION 

1.1 Background 

The-problem of structural- fatigue has been recognized for more 

than one hundred years. It was first noted by railroad engineers who 

observed axle failures on railroad cars. The failures occurred even 

though the axles had not been overstressed during their lives. This 

phenomenon was studied by Rankine (1843), Wohler (1850), and others. 

Wohler conducted tests which showed that a material could fail under 

repetitive loading at a stress below the ultimate level and recognized 

that internal damage was occurring to the material. As the damage 

accumulated, the material was finally overstressed and failed. Failure 

in this manner became known as fatigue. 

Wohler plotted his test results on a graph of load amplitude 

versus cycles to failure. This plot is known as an S-N diagram and is 

a means used in evaluating the fatigue properties of a material. An 

ideal S-N curve, as shown in li'ig, 1, consists of two distinct parts: 

a sl~ping line and a horizontal line. The sloping line indicates the 

specimens which fail after continuous stress application while the 

horizontal line defines the so-called endurance limit. Specimens tested 

at stresses below the endurance limit are assumed to have an infinite 

life. The S-N curve is plotted with data derived from constant amplitude 

tests. The junc.tion of the sloping line and the horizontal line is 
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called the knee of the curve. Test results in this area may be subject 

to a fairly large dispersion which is called scatter. 

Failure by fatigue loading was recognized as a problem, but at 

the time most design was done by the allowable static stress method, so 

designers chose to handle the problem by using a greater factor of 

safety for structures subjected to cyclic loading. This procedure 

resulted in the use of excess weight and waste of materials in many 

instances, and still left the possibility that the structure might fail 

before reaching its expected service life. l 

The study of fatigue damage has received less attention from 

civil engineers than it has from mechanical, railroad, or aeronautical 

engineers since civil engineering structures are subjected to fewer 

cyclic loads than gears and engines, railway components, and aircraft. 

Nonetheless, fatigue studies are receiving increasing attention in the 

civil engineering field, particularly from bridge engineers who are 

required to design structures which are subjected to random variations 

of load where the peak stress values of succeeding cycles are different. 

It is ~nticipated that future traffic patterns will reflect 

large increases in size, weight, and frequency of vehicles, with speeds 

up to the 100 mile per hour range. These patterns are a logical 

extension of the relationship between today's traffic and that of thirty 

years ago, and present a challenge to bridge engineers not only to 

design today for tomorrow's needs, but evaluate yesterday's structures 

considering the demands of today. It is of immediate urgency to be able 

to more reliably predict the remaining safe life of existing bridges. 

Although there are few recorded instances of fatigue failure of highway 



-4 

bridges, this fortuitous circumstance is no doubt due to conservative 

design practice and to the less severe traffic loadings of the past. 

Today's construction codes are constantly revised to reflect 

the use of more sophisticated methods of analysis and design. High 

strength materials and welded fabrication methods are increasing in 

2 use. All of these contribute to structures which are more susceptible 

to failure by fatigue, and dictate that suitable methods be developed 

for determining the service life of a structure. Service life is the 

period during which the structure is able to perform its designed use. 

This period may be expressed chronologically or as the amount of stress 

applications that can be endured. 

To. design a structure or a structural component for fatigue 

requires a prior knowledge of the load spectrum which the component 

will undergo during its service life as well as the number of cycles 

it must endure. A load spectrum is a representation of the loads and 

their frequency of occurrence on a structure. It may be either recorded 

from the structure or artifically generated. Once these are known, tests 

can be conducted to provide guidelines for design. The aerospace 

industry has made the most notable advances in fatigue. The industry 

was the first to develop variable amplitude load tests. 3 By incor-

porating them with load spectra representing the various stresses and 

frequencies of stresses which a component must withstand during its 

life, they were able to predict with some degree of accuracy the service 

life of the particular component. Most data produced by this technique 

have related to materials and spectra not typical of bridges. Its 

applicability to civil engineering has not been fully explored. 
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A need exists to follow the lead of the aircraft industry and 

take advantage of the tools which have been developed for variable 

amplitude fatigue testing. Current structural systems, e.g., bridges 

and building components are designed on the basis of the estimated 

number of maximum load cycles. The selection of the design life has 

recognized indirectly the random nature of the loading and the inability 

to ascertain the anticipated load history. Constant cycle data has 

been used to develop design requirements. 

More effort has been placed on the acquisition of data that 

will help define the load histories of structures. The Bureau of Public 

Roads is one agency that is sponsoring research in this area. Various 

state highway departments have been or are now collecting data regarding 

stress magnitudes and frequency of application which are placed on 

highway bridges, in order to determine actual load spectra which must 

be withstood. 

As these histories are more fully defined, more information is 

needed on the behavior of components under these loadings if further 

refinements in design practice are to be made. No relationship has yet 

been found which accurately ties together the effects of traffic 

volume, loads, and bridge strains. 

1.2 Cumulative Damage Theories 

4 
Grover suggests two approaches to the problem of treating the 

complexity of loading in order to predict the service life of a part. 

One is to seek a theory of cumulative damage which will permit the 
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estimation of life when constant cycle S-N curves for the material and 

a specified set of complex variable amplitude loadings are known; the 

second is to seek some spectral loading representative of service 

conditions and make a laboratory appraisal using this load spectrum. 

The first approach will be considered in this section. 

Before the theories of cumulative damage can be considered it 

is needed to appreciate the term "fatigue damage". Fatigue damage is 

difficult to define since there is no simple measure of damage in the 

early stages of fatigue. Two measuring devices proposed are the loss 

of strength of the material and the size of the fatigue cracks present, 

but these both suffer from the problem that for a large part of their 

life, neither quantity is detectable. Despite difficulties in 

accurately detecting or understanding the damage, it is obvious that 

damage does take place and that eventually the specimen fails at a 

stress below its maximum static stLess. Because of the difficulty in 

suitably defining the term "damage", and of evaluating the damage caused 

by complex stress variations, the cumulative damage theories proposed 

5 are based on assumptions regarding the occurrence of damage and methods 

for adding the damages produced by variable amplitude stress cycles. 

One indication of the difficulty in this definition is the plethora of 

cumulative damage theories which have been proposed" studied, and then 

rejected because they indicated, other than for a specific set of 

conditions, an incorrect theory. However, until a sound physical basis 

of behavioral evaluation is established, evaluation of cumulative fatigue 

damage must depend on theories. It is in order to briefly review some 

of these proposed theories and note the key assumptions which can be 
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identified, since, lacking a suitable alternative, these assumptions may 

indicate some factors involved in the design to resist cumulative damage. 

Two characteristics of a cumulative damage theory are the con

sideration of stress independence or stress dependence and interaction 

or freedom from interaction. 6 The magnitude of the stress level must 

also be included since the life of a specimen is determined by the 

number of cycles run at a particular stress amplitude, but a theory may 

be classified as stress independent if it assumes that equal amounts of 

damage are produced at equal fractions of life for all stress amplitudes. 

In such a theory both the life and the damage must be non-dimensiona1ized 

so that both equal 100% at failure. Otherwise it is not possible to 

relate cycles to failure or loss of static strength when considering 

different stress amplitudes. For a stress independent theory, a curve 

plotting damage versus cycle ratio would result in a relationship in 

which the effect of all stresses i~ represented by a single curve. This 

is shown in Fig. 2. For a stress dependent theory, any given value of 

stress would produce a unique curve. This relationship is shown in 

Fig. 3. 

A theory may be classified as interaction free if the relation

ship between the damage and the number of cycles at a specified stress 

amplitude is assumed to be valid whether or not other stress amplitudes 

are applied. Conversely, a theory which holds that the damage at a 

particular amplitude may be altered depending on the prior load history 

is an interaction theory. If a specimen has been damaged to a certain 

level, and subsequently has another cycle of a given stress applied to. 

it, the additional damage to the specimen must equal the increment of 



-8 

cycle ratio n/N times the slope of the damage-cycle ratio curve or the 

theory is not an interaction theory. Both stress-dependent and stress-

independent theories may be interaction free. 

The following are among the cumulative damage theories which 

have been proposed: 

1. 7 Miner Theory - This theory, which was also proposed by 

Palmgren some twenty years earlier, and by Langer in a 

more general framework, is the most generally known of 

the cumulative damage theories. It is a stress-independent 

interaction free theory and has had more use than any other 

theory both in design and in theoretical development be-

cause of its simplicity and ~ase of application. Miner's 

theory states that when a mixture of stress amplitudes is 

applied to a specimen, failure will occur when the 

fractions of life expended at each stress level add up to 

unity. The fraction of life at a particular stress level 

7 is the ratio of the number of cycles applied at stress 

level to the number (N) which would cause fatigue failure 

at that amplitude as determined from a Wohler curve. It 

may be expressed as 

2. 
8 Valluri's Theory' - Valluri has developed a stress-

independent, interaction-free theory which is therefore 

equivalent to Miner's if certain restrictions concerning 



-9 

the definition of fatigue damage are observed. The 

parameters which Valluri uses in his theory are much 

more complex than that used by Miner, and the load 

spectrum encountered must also be well mixed in order 

for failure to occur at the instant when damage equals 

unity. Because of the difficulties in applying Valluri's 

theory without excessive effort, it is not popular. 

It further suffers from not being able to define its 

parameters for materials in which there is little loss 

of strength at the appearance of the first visible crack. 

3. 9 Grover's Theory - Grover proposed a two stage damage 

process with the first stage terminating after cracks 

have been initiated and the second stage including the 

propagation of these cracks to failure. In constant 

level fatigue tests, the boundary between the two stages 

is the function of "a", Some fraction of the total stress 

cycles. Thus crack initiation occurs during "a" and 

crack propagation during (l-a). The value of "a" is a 

constant for any stress level and is interaction free. 

However the theory is stress-dependent since the damage 

curves drawn using this theory differ for different 

amplitudes. 

Grover's theory may be expressed as 

L n. /a. Ni = 1 
i 1 1 

L n./(l-a)N. = 1 
i 1 1 
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where n. is the number of cycles in the first stage, and 
1 

Ni the number of cycles in the second stage. 

The theory is interesting in that it recognizes that 

fatigue damage occurs in two stagAs wh~n viewed micro-

scopically, the first stage being intragranular ~amage 

(within the grains) and the second being the intergranular 

damage resulting in visible cracks. However, there are 

insufficient data at present to determine the value of 

the parameter "a" or how it varies with stress amplitude. 

Use of Grover's theory in design will always result 

in a heavier structure than that designed by Miner because 

its stress dependence would indicate an earlier failure 

for a well mixed spectrum. 

10 
Shanley's Theory - Shanley proposed a mechanism for the 

generation of fatigue cracks caused by the unbonding of 

the atomic structu~e during application of stress cycles. 

At the point where the stresses applied have caused a 

crack length equal to the critical value L ,failure . cr 

occurs. The crack length is a function of the atomic 

unbonding caused by the stress cycles applied. It may be 

expressed as 

L cr 
x = L. exp (C cr. N.) 

ln a1. 1. 

where L. = initial crack depth produced by the first 
1n 

cycle, C = constant, 0 . = stress at ith cycle, x = constant, 
a1 

and Ni = cycles to failure. 
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Kaechele 6 points out that the equation of the S-N 

curve may be established by this approach where 

x x 
N = constant/a = K/a 

a a 

and then proposes that cumulative damage theories which 

contain a means for predicting the S-N curve as well as 

the life expectancy, be termed fundamental fatigue 

theories, while theories which must rely on previously 

established S-N curves in order to predict service life 

be termed cumulative-damage theories. 

11 Freudenthal-Heller Theory - This interaction type 

theory was proposed on the premise that an S-N curve 

could be generated such that Miner's theory, coupled with 

this curve, would be valid for determining cumulative 

damage under spectrum loading. It may be expressed as 

N = k/a x 
a 

similar to the one established by Shanley. However, the 

generation of a value for k poses a problem, and exper~-

mental work on this theory has not yet attempted to handle 

other than smooth specimens. Until it is verified on 

specimens with stress raisers, or subjected to constant 

or variable mean stresses, it cannot be applied to design 

problems. 

12 Corten-Dolan Theory - This interaction theory claims to 

determine interaction effects from constant amplitude 

fatigue tests at two levels. Interaction is introduced 
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by the assumption that the damage produced at the highest 

stress level affects damage growth at the other stress 

levels. Experimental work to check the theory has produced 

favorable results so far but more work must be done before 

this theory will find application in design. 

7. 
1.3 French's Theory - This theory is similar to Miner's in 

that French defined a "damage line" below the generated 

S-N curve and claims that any specimen cycled below the 

line accumulates no damage, which is somewhat similar to 

Miner's hypothesis that a specimen cycled below the 

fatigue limit accumulates no damage. 

8. · h d k' h 14 h h i 1 Ric art an Newmar s T eory - T is t eory s simi ar 

9. 

to Miner's with the exception that Miner assumed a linear 

relationship between damage and cycle ratio, and this 

theory assumes an exponential one. It may be expressed 

as 
p. 

L (n. IN .) ~ = L 
~ ~ 

i 

Determination of P. is generally not feasible for design 
~ 

purposes. 

15 
Marco and Starkey's Theory - This is almost identical to 

that of Richart and Newmark with the exception that the 

exponential value must always exceed unity. No method 

for determining this exponent is proposed. 
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10. 16 Henry's Theory - This theory is limited to materials 

which exhibit an endurance limit, and is completely based 

on an S-N curve. Henry proposed to reduce the constants 

in the equation of the S-N curve as fatigue damage 

accumulates and determines failure as the point where the 

endurance limit reaches zero. It essentially entails 

the translation of the abscissa of the S-N curve at an 

amount determined by the damage accumulated from previous 

stress cycles in the test. 

11. 17 
Manson, Freche, and Ensign's Theory - A double linear 

damage rule was proposed stating that two stages of 

damage occur under fatigue loading (crack initiation and 

crack propagation) and that each stage is linear. 

While other theories have also been proposed, some more 

complicated than the preceding and some less complicated, they have in 

common the feature that they do not successfully predict fatigue life 

under the conditions that designers require. Some may work under given 

conditions, or on a given material, but a universally applicable theory 

has not yet been found. Until one is ,found, prediction of fatigue life 

within the safe limits required by designers can result only from full 

scale testing of the structural components. 
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1.3 Purpose of Test 

The object of the test program was two-fold. It was intended: 

1. To initiate a pilot fatigue study under variable 

loading conditions which simulated service conditions for 

steel beam highway bridges. 

2. To develop data regarding the formation of fatigue 

cracks where welded plate girders have their flanges butt 

welded together and to attempt to relate the data from the 

pilot program to a concurrent test on welded beams. 

In the test program it was attempted to use a load spectrum 

which was recorded by the Michigan Department of Highways from stnHn 

1 d · h' h b' d 18 gages p ace on ~nterstate ~g way r~ ges. This spectrum was applied 

to specimens representing a butt we lded flange on a plate girder in a 

region of transition from one widtb of the flange to another. Actual 

tests of welded beams under. uniform cyclic loading are presently under 

way to test this same condition. It is intended to attempt a correlation 

of data generated by both tests in order to evaluate the accuracy of the 

load spectrum in simulating field conditions. 
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2. DEVELOPMENT OF RANDOM LOAD PATTERN 

2.1 Determination of Testing Method Used 

There are basically three types of testing methods available 

in the representation of service loading conditions by a load sequence, 

19 namely: 

1. Repeated Load Test (or constant amplitude test) 

2. Programmed Load Sequence Test 

3. Random Load Sequence Test 

19 
Repeated Load Test 

In this test a particular variable amplitude spectrum is 

replaced by a single representative load which should be the one 

causing maximum fatigue damage according to the linear cumulative damage 

theory. This method in effect assumes the shape of the S-N curve and 

the object of the test is to fix the curve by locating a single point. 

The advantages of this test are that it is quick and is no more subjected 

to scatter than programmed variable amplitude loading, and that it 

demonstrates the effects of design changes in a structure as well as 

. d' t' . f h h b' t' l' f' 20 ~n ~ca ~ng sect~ons 0 t e structure t at may e cr~ ~ca ~n at~gue. 

The disadvantages of the test are that the S-N curve may be assumed 

incorrectly since its shape varies considerably depending on the 

particular material being tested, and that it does not forecast the 

service life of a structure with any confidence. 
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Programmed Load Sequence Test 

In this test, blocks of loads representing loads taken from 

the load spectrum which the structure would undergo are applied according 

to a prearranged sequence. Each block contains loads of the same amplitude 

and in the ratio of the frequency of occurrence of these loads in the 

spectrum. This type of test was first proposed by Gassner in 1946 and 

has been refined by him to the extent that he chooses a definite number 

of load levels and cycles to complete each program cycle. Byexperi

menting with increasing numbers of load levels he found that no significant 

change in service strength occurred beyond eight levels. 2l He also found 

that a negligible work-hardening effect occurs once the service life is 

above a certain high number of cycles, which he found to be one million 

cycles for aluminum alloy 2024T4. He claimed the number of cycles will 

vary for different materials but the eight load levels will not. Gassner 

also found that omission of low stress levels (between the fatigue limit 

and 5% of the maximum stress) may raise the fatigue life by two to three 

times and thus give a non-conservative indication of service life. Until 

he determined this, low stress levels were not accounted for since they 

were usually below the fatigue limit and contributed nothing to Miner's 

theory of linear cumulative damage. 

Gassner's program test applies the load blocks in a particular 

pattern in order to obtain a mixing of high and low loadings, starting 

at an intermediate level as illustrated in Fig. 4c and alternately 

increasing and decreasing until failure occurs. Other modifications 

of this sequence are known as the high-low and the low-high application 

as shown in Figs 4a and 4b. 
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Unfortunately these three methods of load application do not generate 

results which are in agreement. 

Random Load Sequence Test 

There is disagreement among research workers as to the 

exact definition for this test. Since the natural load sequence would 

be random, and a high positive (or negative) load would not necessarily 

be followed by a high negative (or positive) load, laboratory repre

sentations of such conditions are extremely difficult. Work in this 

field has been done by Head and Hooke 22 in the development of a random 

noise fatigue machine. A random noise generator gives a random output 

voltage which applies a fluctuating force to the fatigue specimen. 

The application of this process to a large specimen would be quite 

complicated. 

Others feel that since th~re is difficulty in developing a 

fatigue machine capable of accepting a truly random load sequence, 

Some modification of the programmed load sequence test should be made 

in which the load levels are applied randomly, as shown in Fig. 4d, 

rather than in a planned 
23 

has done work in this sequence. Freudenthal 

field by taking several recorded load spectra and reducing iliem to six 

finite load increments which are applied to a test specimen in a random 

fashion. It should be noted that both Gassner and Freudenthal believe 

that the fatigue life of a specimen subjected to a constant mean stress 

and a programmed load block is twice as short as the actual life of a 

component which does not have a peak stress duplicated about the mean. 
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The testing method chosen in this stud;' was the random load 

sequence test following Gassner's suggestion for the number of load 

levels, but with the sequence of application of these loads randomly 

chosen. 

2.2 Histogram of Stress Range Selected 

Since one purpose of the test was to simulate service conditions 

for steel beam highway bridges, it was necessary to locate data which 

was representative of a bridge presently in use on the highway system. 

A study undertaken by the Michigan Department of State Highways in 

1966 18 contained the stress histories of certain bridges. From this 

study a typical histogram of stress range versus frequency of occur

rence for an interstate highway bridge was selected and is shown in 

Fig. 5. The histogram was developed by placing a strain gage at the 

1/4 point of the flange on the mos't highly stressed stringer in the 

bridge. It consisted of eleven stress ranges, a desirable number since 

it allowed a direct relationship between the histogram stress ranges 

and the programmed load levels, without introducing a possibility that 

service life indications might be affected by having too few load 

levels in the program. 

The stress selector drum on the Amsler Vibrophore, the testing 

machine used on this program, is divisible into 100 increments. The 

histogram was already separated into eleven blocks by percentages, so 

it was a simple matter to round off decimal points and determine the 

number of drum increments each load level would require. After the 

stress level and relative frequency of the blocks had been determined, 
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the blocks were numbered sequentially and then related to numbers drawn 

from a random number table in order to choose a random load sequence 

as illustrated in Fig. 6. There were two lengths of program cycles 

used - one of five million cycles per drum revolution when the maximum 

stress range in the program was low enough so that more than five 

complete revolutions were expected before failure, and one of five 

hundred thousand cycles when it was felt failure would occur prior to 

the completion of twenty-five million cycles. 

2.3 Factoring of Stress Ranges 

The maximum stress range on the bridge chosen to represent the 

load spectrum was 6300 psi (see Fig. 5) superimposed on a minimum tensile 

stress of 6700 psi. An examination of the literature indicated that the 

entire load spectrum was below the endurance limit .. In order to avoid 

excessive life cycles and to insure failure of the test specimens, the 

stress ranges were factored to higher values. 

Justification for this factoring, in addition to expedience, is 

that the bridge was a modern highway structure, designed under federal 

interstate highway construction specifications in order to support extreme 

loads. Older bridges would not have so high a load capacity and under 

similar loads would have to withstand higher stresses. Additionally, the 

presence of stress raisers produce high local stresses in particular 

components, although not necessarily throughout the bridge. The factoring 

was begun at a value of 60,000/6300 = 9.5, with 60,000 psi the maximum 

stress the vibrophore could produce on the specimen. The load factor was 

decreased as appropriate from the pilot study results. 
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3. DEVELOPMENT OF SPECIMEN GEOMETRY 

3.1 General Fabrication Details 

The test specimens for this program were fabricated from a single 

plate of ASTM A36 steel. Strips 12 inches long were cut from the plate 

which was 48 inches wide and 1/2 inch thick. The 12 inch strips were cut 

in half and the cut edges shaped into vees. The halves were then butt

welded together with an automatic submerged arc welding machine. An 

E6012 electrode was used and excess weld reinforcement was removed. The 

welded plate was then saw cut into twenty four blanks, each approximately 

2 inches by 8 inches. The test specimens were made from these h1anks. 

The plate was cut so that the rolling direction and the direction of 

applied stress were the same. Figure 7 illustrates the fabrication 

process. 

Similar weld details were used in the principal experiment on 

beams. The test specimens were intended to simulate the flange splices 

in the beams as shown in Fig. 8. A thinner plate was used in the pilot 

program than in the beam tests (1/2 inch versus 3/4 inch) because the 

capacity of the testing machine was limited. 

Tensile coupons for coupon tests were taken transverse to the 

direction of rolling. They were tested on a Tinius Olsen mechanically 

operated universal testing machine having a 120 kip capacity, and equipped 

with an automatic load strain recording device. A typical load elongation 
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curve for the tensile coupon tests is shown in Fig. 9. The test results 

are presented in Table 1. 

3.2 Arrival at Final Configuration 

The shape initially tested was a reduced section coupon with 

parallel sides and approximately 0.50 square inches in cross-section as 

illustrated in Fig. lOa. Since the capacity of the vibrophore is 22,000 

pounds, this meant that a maximum stress range of 44,000 psi could be 

applied to the weldment and adjacent sections. A single specimen was 

subjected to this maximum and 35,000,000 cycles were applied with no 

noticeable result. 

In order to introduce a stress raiser, a weld bead was placed 

along the length of the specimen to simulate the flange to web con

nection. The extreme sensitivity of the vibrophore to eccentricity of the 

specimen prevented it from running. The bead was then ground smooth in 

the hope that the effect of heat input by the welding would introduce a 

metallurgical notch of sufficient severity to lower the life of the 

specimen. This specimen survived 57,000,000 cycles of maximum stress 

range. The weld bead was then reintroduced but in order to reduce the 

eccentric mass, the bead was tapered at the ends by grinding. Two 

specimens with this configuration were subjected to the maximum stress 

range and broke after two million cycles. Both breaks were initiated 

at the toe of the weld bead and in the radius, away from the butt weld 

test section. 

At this point it was evident that in order to develop a basic 

S-N curve a higher range of stress was necessary. This meant altering 
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the specimen shape to that shown in Fig. lOb. Because the thickness of 

the specimen was fixed at 1/2 inch in order to relate to the flanges of 

the beams being tested in a concurrent project, it was decided to reduce 

the width. A ratio of 1-1/2 to 1 in width to thickness was agreed 

upon and since the specimens which failed had done so in the radius, it 

was decided to increase the radius in order to cut down on stress con

centrations. A constant radius of 6 inches was selected and a jig to 

shape the blocks to this configuration was developed by Fritz Engineering 

Laboratory machinists (see Fig. 11). It was hoped that since the minimum 

section was in the weld area, failure would be induced there. Again the 

shape proved unsuitable when it was tested. Subsequent modifications 

such as a continuous weld bead, or intermittent weld beads down the side 

occasionally resulted in failure, but the weld bead warped the specimen 

after cooling and necessitated cold straightening of it. This changed 

the residual stress pattern and introduced other variables into the 

program. The fillet~e1dment was discarded to avoid this variable. 

After considering the results derived from the preceding specimen 

it was decided that there was no way to develop a crack in the area of 

the butt weld at lower stress levels without introducing a notch to 

accomplish it. In order to be sure that all data which the test would 

produce could then be related to prior tests in this field, a previously 

used notch was selected as the means of insuring failure of the specimen 

and is shown in Fig. lOco The configuration of the notched specimen 

(actually a symmetric pair of notches opposing each other across the butt 

weld) was made identical to the notched shape used by Payvar and 

Vasarhelyi at the University of Washington in a study of the fatigue 
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1 behavior of welded structural steels. It consisted of a vee notch of 

45 0 with a radius of 0.010 inch at the root and a depth of about 

0.062 inch. 

The reason for introducing a notch was to decrease the life and 

magnitude of applied stress. Results to this point had indicated an 

unacceptably high fatigue limit for unnotched specimens. Subsequent 

tests run using the notched shape generated results within acceptable 

stress levels and life cycles. All specimens tested in the constant 

amplitude and variable amplitude portions of the programs conformed to 

the geometry given in Fig. 10c. 

3.3 Development of the Experiment Design 

An inherent characteristic of the Amsler Vibrophore is that 

it generates stresses around a mean value. This meant that the minimum 

stress could not be held constant as was done in the constant amplitude 

te sts of beams. 

The experiment design of both the constant amplitude and the 

random load tests was based on two values of mean stress. A factorial 

design was developed for the constant amplitude test wh~ch allowed an 

S.-N curve to be developed while testing thirty specimens, with fifteen 

assigned to each mean stress level. The experiment design is summarized 
I" : 

in Fig. 12. Three specimens were included in each test' sequence to 

provide for replication of data. Replication provided a means of 

evaluating the experimental error and determining the significance of 

the test variables. The stress range was chosen from 26 ksi to 50 ksi 

in increments of 6 ksi. It was felt that this range would correspond 
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to the sloping portion of the S-N curve. The experiment design provided 

an opportunity to evaluate the effects which maximum stress, minimum 

stress, stress range, and mean stress had on the cycle life. 

The design of the random load test also provided for replication. 

Fourteen specimens were tested. The first two, one at each mean stress 

level, were run with the random load sequence drum set to the maximum 

load factor. The following four test sequences of three specimens each 

were then run at lower load factors. The results of the first two 

indicated the choice of load factors for the subsequent tests. A minimum 

of five complete program drum revolutions was desired prior to specimen 

failure. 

The two mean values of stress used throughout the test program 

were 10 ksi and 16 ksi tension. While the selection of the actual 

numerical values was arbitrary, it was guided by data from the Michigan 

18 
study which indicated minimum stresses of between 6 ksi and 9 ksi on 

the tension flanges of beams. These stresses were caused by dead load 

forces and are representative of the values usually encountered. 

The development of the S-N curve by constant amplitude tests 

was done first. The curve was intended to serve as a basis for 

evaluating the random load test data. It was also hoped the curve could 

be correlated with data from the concurrent tests of welded steel beams 

having similar weld details at the flange splice. 
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4. TESTING MACHINE AND TEST PROCEDURE 

4.1 Testing Machine 

The fatigue tests were performed in an Amsler High Frequency 

Vibrophore Fatigue Testing machine shown in Fig. 13. It is a high speed 

resonance type testing machine which can be used for tension-tension, 

tension-compression, or compression-compression tests. The machine has 

a load capacity of 22,000 pounds and a maximum frequency of 18,000 cpm. 

The testing frequency is a function of the specimen, always coinciding 

with the natural frequency of the vibra~ory elements; namely, the 

driving mass, the specimen, the load measuring dynamometer, and the 

counter mass. The system is maintained at resonance by a driving magnet, 

controlled by a feed back system.' The load amplitude is measured by 

the reflection of a beam of light from a mirror attached to the dyna

mometer onto a load scale. For static tests, when the load amplitude is 

zero, this light band reduces to a thin line on the load scale. The 

magnitude of the load is automatically maintained by means of a photo

cell controlling the optical-electrical feed back system. Fluctuations 

in line voltage have a negligible effect on the performance of the 

testing machine. 

A small automatic control gear was especially developed by 

Amsler for programmed fatigue tests and is shown in Fig. 14. The device 

runs independently of the operation of the testing machine. A slowly 

rotating drum of non-conducting material contains slots which can hold 
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vertical strips of conducting material. A feeler attached to the load 

maintaining photocell makes contact with these strips as the drum 

rotates, activating an electric motor which moves the feeler towards 

the free end of the strip. As a consequence the height level of the 

feeler may be periodically changed which directly changes the amplitude 

of load. This mechanism allows a large variability in the choice of 

programs since the strips may be placed on the drum at any location and 

height. The rotation speed of the drum can be adjusted and generally 

is set so that one rotation corresponds to one period in a program test. 

One feature of the vibrophore is the specimen fracture relay 

amplifier. With this apparatus it is possible to control the degree of 

fracture of the specimen. It may be adjusted to detect the initial 

crack formation and stop the machine at that time, or it may be set 

less sensitively and allow the crack to progress across the specimen. 

The fracture relay amplifier was s~t to correspond to the definition of 

failure for the particular program, either constant stress or variable 

stress. 

4.2 Test Procedure 

The method of gripping the specimens was that suggested by 

Amsler for flat bars. This was followed throughout the program despite 

changes in the geometry of the specimens. A set of standard vibrophore 

gripping heads were inserted into the machine and the specimen introduced. 

Each end of the specimen was then held between two wedges which were pre

loaded by strong screws so that both tensile and compressive stresses 

could be transferred to the specimen. Figure 15 shows a specimen installed 
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in the wedge grips. A torque wrench applied the pre-load in order to 

provide a uniform distribution of load. Double folded emery cloth was 

inserted around the specimen and between the wedges in order to increase 

the friction and reduce slip during the test. 

The frequency used in the test program was about 185 cycles 

per second which conveniently equated to one million cycles every ninety 

minutes. The use of a high frequency reduces the danger of buckling 

the specimen when stress reversal occurs. 

Alignment of the specimen in the machine was done with the 

aid of a scale, as suggested by the operating instructions. The 

vibrophore has the characteristic of showing misalignment by excessive 

lateral vibrations, the absence of the vibrations indicating satisfactory 

alignment. The alignment was checked by placing a metal pin sideways 

against the gripping head and observing any noticeable lifting of the 

object off the head. 

4.3 Definition of Failure 

After the specimen was installed in the machine, the loads 

corresponding to the desired stresses were calculated and the power 

needed to reach the load was applied. The automatic cycle counter, which 

adjusts to the operating frequency of the machine, was actuated and the 

specimen run until either failure or runout occurred. The value of run

out was chosen as 100 million cycles. Failure for constant amplitude was 

defined as the point where the full stress amplitude could not be sustained 

by the specimen, and the specimen fracture relay amplifier was set 

accordingly. 
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A different criterion for failure was used for the variable 

amplitude tests. The specimen fracture relay amplifier was set to 

correspond to the least sensitive stress block in the program cycle. 

This was necessary to prevent the vibrophore from stopping during the 

program without any damage having occurred to the specimen. Because of 

the low sensitivity, the specimen was able to run after a sizeable crack 

was present even though the specimen could not sustain the full stress 

amplitude of the particular stress block. The crack continued to grow 

until the net area of the test section was reduced beyond that needed 

to carry the mean tensile load. At this point complete fracture 

occurred. 
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S. RESULTS AND DISCUSSION 

S.l Test Results 

The constant amplitude test series included twenty-seven 

specimens, divided between mean stresses of 10 ksi and 16 ksi. The 

results of these tests are tabulated in Table 2 and plotted in Fig. 16 

in the form of a S-N curve. 

The variable amplitude test series included fourteen specimens, 

also divided between the two selected mean stress levels. The results 

of these tests are tabulated in Table 3 and plotted in Fig. 17 as a life 

24 
function curve. This curve relates the number of cycles to failure 

against the maximum stress range in the program cycle. 

Typical photographs of the fractured surfaces of some specimens 

are shown in Fig. 18. The patterns of failure are interesting but did 

not seem related in any consistent manner to the life, load factor, or 

mean stress of a given specimen. The patterns shown in Figs. l8a and 

l8b were most typical of failed specimens. The crack began as a small dark 

spot in a corner and emanated out as a circle. The failure surface became 

lighter as it progressed because the specimen changed its cross-section 

properties as the crack grew. This in turn changed the testing frequency. 

Figure l8c shows a specimen that cracked simultaneously along a .notch and 

then grew uniformly across the specimen. Figure l8e shows the surface 
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of the only specimen in the whole program which failed in fatigue at 

both sides of the specimen. Figure l8d and l8f are combinations of the 

first two failure patterns. This type failure began as a crack in a 

corner but instead of radiating out in a circular pattern, it tended to 

approximate the simultaneous edge crack in its propagation. 

5.2 Discussion of Results 

A statistical analysis of the data for the constant amplitude 

tests was made, and is summarized in Table 4. An analysis of variance 

was made to evaluate mean stress, maximum stress, minimum stress, and 

the stress range. A comparison of values generated indicated that the 

slope of the curves, or regression lines, was not significantly 

different regardless of the parameters chosen, but that the distance 

between the regression lines was significant for both maximum and 

minimum stresses for each mean stress. When the stress range was taken 

as the dependent variable there was no significant difference in vari

ation due to the distance between the curves. This means that a single 

line could be used to represent all data. Hence, the mean stress level 

had no effect on the fatigue life of the specimen as the stress range 

accounted for all the variation. 

The wide scatter of results was a source of concern. One factor 

contributing to the scatter was the welding effects on the specimen 

geometry. Very few of the specimens were perfectly flat before testing 

and most exhibited a slight bowing at the center in the butt weld region. 

As noted in Chapter 3, it was not considered desirable to cold-straighten 

any specimen since it would have changed the residual stress patterns. 



-31 

This out-of-straightness contributed an eccentric bending moment which 

may have affected the fatigue life. 

The analysis of the data from random loading was similar to that 

for the constant amplitude tests, except that only the mean stress levels 

and the maximum stress range within a particular load program were con

sidered. There were three load programs used to develop this data, with 

load factors of 9.5, 8.0, and 7.0. There was no significant difference 

in either the slope of or the distance between regression lines, 

indicating that one regression line defined the life function curve 

and could be used to represent all data from the variable amplitude tests. 

Finally, the relation between the life function curve and the 

S-N curve was analyzed. This is shown in Fig. 19. The analysis 

indicated that there was no statistical difference between the slope 

of the regression lines for each group of data. This result may be of 

significance, although an absoluve judgment cannot be made with the 

limited data available. If it can be verified that the life function 

curve for any load spectrum has the same slope as the S-N curve for the 

same component under constant cycling and is merely translated from it, 

then it would be possible to establish the life function curve by a 

small number of tests. It would seem that a basis exists for future 

studies. 

With the life function curve generated for a random spectrum 

of loading, the determination of the service life of a component is 

facilitated. The maximum stress range caused by the load spectrum is 

related directly to the curve. Thus, if the load spectrum is typical 

for the traffic pattern, and the maximum stress range within the spectrum 
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is known, the service life may be predicted. Some caution is required, 

however. The distinction between stress spectra and load spectra should 

be particularly noted since their relation will be dependent on the 

agreement between analytical and actual behavior of the structure, as 

well as the agreement between the anticipated (or recorded) and the 

actual load spectra. 

Under uniform cyclic loading runout occurred at S = 32 ksi. 
r 

Only one specimen, the first to be tested in the constant amplitude 

tests, was run at a level of S = 26 ksi. The experiment design 
r 

required six to be tested at this level, but since runout was encountered 

at 32 ksi it was decided to test the remaining five specimens at another 

level. The level chosen was S = 35 ksi. This was between two levels 
r 

where runout and failure were respectively cccurring and was intended 

to locate more accurately the knee of the S-N curve. 

Of the eleven load levels in each program cycle, more than half 

were at stresses below the endurance limit for the specimen geometry. 

For load factors of 9.5, 8.0, and 7.0, the program had six, seven, and 

eight load levels respectively below the endurance limit. The levels 

corresponded to 86%, 94%, and 96% respectively of the total number of 

srress cycles applied. By a linear cumulative damage rule, the specimen 

life should have been much longer than that produced by the tests, since 

stresses below the endurance limit are assumed to have no effect. How-

ever, the results show that there was a notable effect on the specimen 

life from these lower stresses. This is explained by considering the 

damage caused to the specimen by a high stress cycle. Although the 

damage is not sufficient to fail the specimen, it does weaken it. The 
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endurance limit is lowered and the specimen is more susceptible to the 

effect of the lower stress cycles. These contribute to the cumulative 

damage causing failure sooner than that predicted by a linear cumulative 

damage rule. 
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6. SUMMARY AND RECOMMENDATIONS 

The results of the pilot test program to evaluate cumulative 

fatigue damage under random loading may be summarized as follows: 

made: 

1. Data produced indicate that butt welded splices 

with the reinforcement removed should be no 

source of fatigue problems. 

2. The fatigue life curve developed by the programmed 

loading had the same slope as the constant amplitude 

S-N curve for the specimen geometry tested, and was 

translated some distance from it. 

3. The stress range was the most significant variable. 

It accounted for the, variation in cycle life. Mean 

stress did not affect the cycle life. 

The following recommendations concerning future tests are 

1. Tests to determine the relationship between the slopes 

of the constant amplitude S-N curve and the fatigue life 

curves for other specimen geometries should be made. 

The object would be to prove (or disprove) conclusively 

whether the slopes of the curves are identical within 

significant levels. 



2. The weld reinforcement should not be removed on Some 

future group of specimens. This would produce a notch 

effect similar to actual conditions. The use of a 

machined notch presents problems in relating test 

results to actual conditions. 
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7. FIGURES AND TABLES 
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Fig. 2 Stress Independent Damage - Cycle Ratio Relationship 
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Fig. 3 Stress Dependent Damage - Cycle Ratio Relationship 
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Fig. 11 Photo of Shaping Jig 
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Fig. 13 Photo of Vibrophore 
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Fig. 14 Photo of Selector Drum 
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Fig. 15 Photo of Gripped Specimen 
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a) Spec. 2-19 b) Spec. 1-19 

c) Spec. 1-17 d) Spec. 2-15 

e) S pe c. 2 - 11 f) Spec. 1-18 

Fig. 18 Photos of Several Fractured Specimens 
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TABLE 1 MATERIALS TEST DATA 

Yield Tensile '70 E longa t ion % Reduction 
Specimen Strength Strength in 8 inches in Area 

1 

2 

3 

(psi) (psi) (%) (%) 

34,660 66,660 23.6 47.7 

35,240 67,150 27.4 44.9 

36,240 67,330 27.6 46.5 

Notes: 1. All specimens were cut longitudinally from 

the edge of the welded plate they represent, 

as shown in Fig. 7. 

2. Specimens were tested to 1.5 percent strain 

at a strain rate of 0.025 inches per minute 

and thereafter at a strain rate of 0.200 

inches per minute. 
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TABLE 2 SUMMARY OF DATA FOR CONSTANT AMPLITUDE TESTS 

Specimen S S N mean range 
.ili.ill ~ksi2 ~kc~ 

'Ie 
3-15 10 26 100,000 

1-14 10 32 447 

3-16 10 
~'( 

32 100,000 

2-9 10 32 
'Ie 

100,000 

3-17 10 35 227 

2-10 10 35 573 

1-15 10 35 542 

3-18 10 38 297 

2-2 10 38 823 

1-7 10 38 835 

3-19 10 44 99l 

2-3 10 44 210 

1-8 10 44 346 

3-20 10 50 124 

2-4 10 50 69 

1-9 10 50 107 

3-21 16 32 726 
'(1( 

2-5 16 32 100,000 

3-22 16 38 380 

2-6 16 38 296 

1-11 16 38 2,851 

3-23 16 44 77 

2-7 16 44 86 

1-12 16 44 434 

3-24 16 50 115 

2-8 16 50 93 

1-l3 16 50 64 

"/\ 
No failure 
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TABLE 3 SUMMARY OF DATA FOR VARIABLE AMPLITUDE TESTS 

Specimen Load Factor S N mean 
~ksi~ (kc~ 

2-11 9.52 16 837 

2-12 9.52 10 1,483 

2-13 8.00 16 2,110 

2-14 S.OO 16 2,094 

2-17 8.00 16 1,015 

2-15 S.OO 10 1,645 

1-16 S.OO 10 2,980 

2-16 S.OO 10 12,746 

1-17 7.00 16 4,302 

2-18 7.00 16 7,200 

1-18 7.00 16 23,168 

2-19 7.00 10 10,778 

1-19 7.00 10 8,132 

2-20 7.00 10 34,867 



TABLE 4 RESULTS OF STATISTICAL ANALYSIS 

Linearized Model Data Used 

Coefficient 
of 

Correlation Standard Error of Estimate 

1. Log N = A + B * S r 

2. Log N = A + B * S r 

3. Log N = A + B * S r 

4. Log N = A + B * S 1 
max 

5. Log N == A + B * S . 1 
m~n 

6. Log N = A + B * Log S r 

7. Log N = A + B * S 
r 

8. Log N = A + B * S 
r 

9. Log N = A + B * S r 

Constant amplitude, 
S = 16 ksi 

mean 

Constant amplitude, 
S = 10 ksi 

mean 

Constant amplitude, 
All data 

Constant amplitude, 
All data . 

Constant amplitude, 
All data 

Constant amplitude, 
All data 

Variable amplitude, 
S = 16 ksi mean 

Variable amplitude, 
S = 10 ksi mean 

Variable amplitude, 
All data 

0.7030 

0.6851 

0.6967 

0.4752 

0.4422 

0.6558 

0.8120 

0.7228 

0.7339 

Notes: Results considering the different mean stress levels are identical 
with those of Models 1 and 2. 

0.4169 

0.2910 

0.3310 

0.4053 

0.4l3l 

0.3480 

0.3231 

0.3701 

0.3534 
I 

V1 
0' 
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