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ABSTRACT

iv

A test program was recently completed which had as its objective

the investigation of various symmetrically-loaded moment-resisting beam­

to-column connections which are of extreme importance in design and

construction of steel multi-story frames. This report discusses the

results of three specimens included in the overall twelve-specimen

program.

The three connections presented are: (a) a fully-welded

connection where the beam flanges and web are groove welded to the

column flange (b) a seated connection where the column flanges again

are groove welded to the column flange but beam shear is carried by a

beam seat which is fillet welded to the column flange, and (c) a connec­

tion in which only the flanges of the beam are groove welded to the

column flange, leaving the beam flanges t~ carry both shear and ~~ment.

All three connections were fabric~ted of the same size beams and columns.

Presented in this report are comparisons of items such as

load-deflection, load-rotation, and stresses at various locations on- the

three connections.

Test results show that Test (a) performed well achieving good'

stiffness, strength and ductility at maximum load. Test (b) also

displayed good strength and stiffness but had very little ductility at

maximum load due to buckling of the beam web. With the use of bearing

stiffeners on the beam, the ductility of Test (b) was increased to a

value close to that of Test (a). Test (c) attained only a very low

strength level but exhibited initial stiffness and ductility at maxi­

mum load nearly equal to Test (a).
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1. INTRODUCTION

With the many types of connections available for construction,

one of the decisive factors in the choice of a particular type of

connection is economy, especially in high-rise steel buildings. One

of the most common types of connections used in high-rise steel buildings

is the moment-resisting beam-to-column connection.

In 1971 a test program was initiated at Lehigh University to

study the behavior and to develop the method of design of moment resist­

ing beam-to-column connections. These- are connections in which the

beams are framed into the ~olumn with the beams causing bending of the

column about the major axis. The-test program consisting of twelve

full-size beam-to-column connections was under the guidance of the

Welding Research Council (WRC) Task Group on the Beam-to-Column

Connections. The details of this test program are described ~lsewhere (7).

Presently, all twelve tests of the series of twelve specimens

have been completed. Reference 12 presents the result of a'complete

analysis of a fully welded connection. This specimen (test e12 of

Ref. 7) serves as a control specimen for the purpose of evaluating the

performance of seve~al other connections of different joint design in

the series. References 4 and 9 summarize the theoretical and experi­

mental results on the phase of the flange-welded web bolted connections

(Cl, C2 and C3) in the series. The test results on fully bolted

connections (web-bolted and flange-bolted through moment plate,C6, C7,

C8 and C9) is currently under preparation.
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This report presents the test results on three interrelated

welded connections in this series (C4, CS and eI2). Figure 1 shows

the geometry of these three connections. All three connections are

compo~ed of the same size columns. (W14x176) and beams (W27x94). The

primary difference among the three is the method by which shear is

carried. The fully-welded connection (C12, the control specimen)

utilizes the beam web to carry shear; the second connection, the flange­

welded, web unconnected with a beam seat (C4) carries shear by means of

a beam seat; and finally the third connection, which is only flange­

welded (C5) carries both moment and shear in the beam flanges.

Economy for field construction is the main factor in deter­

mining what types of the moment-resisting connections to be used. The

fully-welded ~onnections (C12) must be welded in the field including

the expensiveveritcal welding. Furthermore, the quality control for

welding is hard to achieve in the field. Whereas, the beam 'seats in

the connection (C4) can be welded to the column in the fabrication shop

and thus reduce the expensive vertical field welding to only horizontal

groove welding for the flanges. The connection (C5), which is flange­

welded only is even more appealing for field construction. This study

compares the performance of these three interrelated welded connections

as shown in Fig. 1.
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2. DESIGN CONCEPTS AND CRITERIA

The three connections discussed in this report represent

actual interior beam-to-column moment connections and are designed

according to plastic analysis procedures and comply with the AISC

Specifications~l) The moment-rotation curve in Fig. 2 schematically

illustrates the behavior of a beam-to-column connection under symmetric

loading. By properly designing the joint and preventing possible pre-

mature failure, the connection will be able to carry the plastic moment

of the beam w~th sufficient rotation capacity and overall stiffness,

as indicated by Curve A. However, if the design i~ unsatisfactory,

the connection behavior will not be adequate. This is depicted by

Curves B, C, and D. The connections tested are proportioned so that

Curve A can be obtained.

As will be seen later, C4 (the connection with the beam seat)

failed prematurely with the beam ,web buckling. This connection was

then redesigned to include a beam web stiffener and labeled C4R. In

the redesign the web was considered to act as a column with one end

hinged a~d one end fixed.

The connections, along with all the others in the series,

were designed so that the plastic moment of the beam section would be

obtained. The column section chosen was that which had the least size

permitted without requiring horizontal stiffeners. The connection

members were p~oportioned such that at the beam-to-column junction

the plastic moment and factored shear capacity would be achieved

simultaneously.
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The shear capacity used, 374 kips, was the shear capacity

obtained for the bolts in the design of the shear plate for test C2

(see Ref. 7). The three connections were then designed using a 374

kip shear capacity and the beam span was then calculated as the ratio

of moment to shear. "The detailed design procedure of C12 is presented'

in Appendix 1 as an example.

The specimens were welded according to the AWS Building Code(2)

with E70TG electrodes. The electrodes for fillet welds were E7028.

NR31l filler metal was used for beam flange groove welds; and NR202

filler metal was used for beam web groove welds. All groove welds

were inspected by ultrasonic testing and fillet welds by magnetic

particle as per AWS Code.
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3. TEST PROGRAM

3.1 Description of Connections

The joint detail of C12 is shown in Fig. 3; the beam flanges

and beam web are connected by groove welds to the column flanges. To

simulate field practice, an erection plate is tack welded to the column

flange and A307 bolts are used temporarily to attach the beam to the

column.

The joint detail of C4 is shown in Fig. 4. Vertical shear is

resisted by a two-plate welded stiffener seat which is designed accord­

ing ·to. Table VIII of the AISC Manual. The beam flanges are groove

welded to the column flanges, and the seat plates and stiffener plates

are fillet welded to the column flanges. To simulate field conditions

for this connection, the seat plates and stiffener plates are attached

to the column at the fabrication shop first,' and ,then the beam is held

in place by the A307 bolts during the welding of the flanges.

As seen in Fig. 5, only the groove welds of the flanges

connects the beam to the column flanges for test C5. It has neither

an erection seat nor an erection clip. The strength of this connection

should be weaker than that of Test C4.

A' detailed description of these test specimens is given in

Ref. 7.

3.2 Material Properties

The material used for both beams and column is ASTM A572

Grade 55 steel. Properties used in determining stresses are as follows:
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Modulus of elasticity (E) = 29,570 ksi;

-6

= 0.001857 in/in;Yield strain (e )
y

Yield stress (0 ) =
y

54.9 ksi;

Strain at onset of strain hardening (est) = 0.0150 in/in;

Strain hardening modulus (E ) = 581 ksi.st

A detailed report of material properties is included in Ref. 1~.

3.3 Instrumentation

Figures 6, 7 and 8 give an overall view of the instrumentation

us~d for stress analysis in this report. SR-4 strain gages were placed

on beam flanges to provide checks for possible lateral buckling, and

to determine the stress distribution. SR-4 strain gages were also

attached at upper portion of the column and were used to align the

connection and testing machine crosshead. Deflection dial gages were

located directly under the column for measuring overall deflection and

in the column web compression region for determining web buckling.

Level bqrs were attached near beam-to-column juncture to determine

the rotation-capacity of the joint.

In Figs. 9, 10 and 11 the panel zone instrumentation is shown.

SR-4 strain gages were provided in the beam web to obtain the vertical

stress distribution throughout this section. The~rain gages in the

column web panel zone were placed to provide the general stress distri-

bution and flow throughout the zone. Strain gages were placed at ~'

distance of ~ (tb + 5k) from beam flange centerline where t b = thickness

of beam flanges and k = distance from outer face of column flange to

web toe of fillet. [In the present AISC specifications~l) formula
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(1.15-1), which pertains to requirements for stiffening in the compres-

sion region, was developed from the concept that the column flange acts

as a bearing plate. It distributes the load caused by the beam compres-

sion flange to the column web with a width of t b + 5k.] The information

from these, along with that in- later tests~ should provide data for

determining the validity of present assumptions of stress distribution

at the k-line in the column web. Hence, all strain gages shown along

the column innerface were placed at the toe of fillet or the k-line.

Strain rosettes labeled K in Figs. 9 and 11 6r P in Fig. 10 were placed

on opposite sides at the same location. These values were averaged

to account· ~or any early web buckling.

3.4 Test Setup
i

The test setup is shown in Fig. 6. A 5,000,000 pound-capacity

hydraulic testing machine was used to apply axial load in the column.

The beams were supported by two pedestals resting on the floor. Rollers

were used to simulate simply supported end conditions. Because of the

size of sections and the short span of the beam used, no lateral bracing

was needed to provide stability. Bearing stiffeners were provided over

supports to insure no web crippling would occur in the beam.
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4. TEST RESULTS AND DISCUSSION

As described in Sec. 2, the connections simulate actual

interior symmetrically-loaded beam-to-column moment connections. The

test setup as shown in Fig. 6 is in an inverted position so that a

concentrated load can be utilized.

4.1 Test Procedures and Observations

The applied load for the tests was increased continuously

until failure, with all the strain and dial.gage readings recorded

after each load increment. Vertical alignment was checked by transit

after each load to insure that no lateral buckling occurred.

The 'load deflection curve of each test, Cl2, C4, C4R and C5

as shown in Fig. 12 were plotted continuously so that general specimen

behavior could be observed and compared. Figure 13 shows the corres­

ponding load rotation curves -for the specimens C4, C5 and C12.

4.1.1 ·Specimen e12

Load increments of 25 kips were used initially until 600 kips

was attained. Then 20 kip increments were used until 680 kips was

reaGhed and the connection was unloaded completing the first loading

cycle.

On the second loading cycle after reloading to 680 kips,

the load was increased another 20 kips to 700 kips. From there on

including the third loading cycle, the increments were changed from a

load rate to a deflection rate of 0.20 in. After each deflection the



333.30

load was allowed to stabilize until there was no further movement of

the sensitive crosshead, with the loading valve closed.

-9

The first yield lines began forming in the compression web

of the column at an applied load of 475 kips. Both localized yielding

~t the toe of the fillet and yielding at the web center were observed.

At this point the load deflection curve began to deviate from the linear.

At 600 kips yielding was observed in the tension region of

the column web near the toe of the fillet. Yielding now appeared to

extend completely through the web in the compression region and in

the upper beam web area near the compression flange.

The connection attained a maximum load of 838 kips at a

deflection of approximately 2.7 in. Figure 14 shows a view of the

fracture of the weld at the tension flange. As seen by the picture,

the weld did not fail but pulled out the surrounding column flange

material. Figure 15 shows fracture of weld along the beam-web which

occurred simultaneously. The connection is shown at the end of the

test in Fig. 16.

4.1.2 Specimen C4

A SOk load increment was used until a load of 450 kips was

attained. Then a deflection {ncrement was used until a load of 660

kips was reached. At this stage of loading the specimen began to

unload.

Yielding was first observed at the cope of the beam web under

the beam seat while loading the specimen from 150 to 200 kips as shown
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in Fig. 17. Maximum load was attained at 660 kips with a deflection

of 0.386 in. At this point the beam web near the junction began to

buckle anQ c~used the specimen to unload. The beam web then tore at

the cope and an overall view of the specimen at failure is shown in

Fig. 18.

4.1.3 Specimen C4R

Because of the premature failure of c4 caused by excessive

beam buckling, it was decided to retest the connection. The buckled

beam was replaced and vertical stiffeners were added on both sides of

both beams. The stiffeners, 5x5x3/8" angles attached with five A307

bolts, were designed assuming the beam web neaT the junction to act

as a column which was hinged at one end and fixed at the other end.

This assumpt~on was based on the observations of the way the beam web

plate of specimen C4 buckled.

Specimen C4R was then loaded in the same manner as specimen C4.

The only data- obtained for this retest specimen was deflection which is

plotted in Fig. 12 along with the load-deflection curves of the other tests.

First signs of yielding occurred at a load of 450 kips in the

beam web: directly under the beam seat. Failure d~ to weld fracture at

the heat-affected zone of the tension flange occurred while the specimen

was unloading at a load of 768 kips. The maximum load attained was 776

kips with a corresponding deflection of 1.2 in. A picture of the specimen

at the end of the test is shown in Fig. 19.

4.1.4 Specimen C5

The load increment for this test was also 50 kips until 350

kips was attained and then deflections were used.
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Yielding first occurred at a load of 300 kips in both beam

-11

tension flanges and one compression flange. Yielding was also observed

at the toe of the column fillet welds in the compression area. At a

load 9£ 375 kips, local plastic hinges formed. Figure 20 shows this

connect~on at the end of the test.

4.2 Discussion of Results

Methods for determining the state of stresses and yielding

from· strain gages are presented in Appendix 2.

Stress analysis for the three connections tested will be

presented in terms of the following sequence: column behavior, beam

behavior and beam-to-column interaction.

4.2.1 Column Behavior

Figure 21 illustrates the horizontal stress variation (cr )
x

along the column innerface (k-line) for the three connections, with

compressive stresses occurring in the upper region and tensile stresses

occurring in the lower region. The greater distribution of cr in test
x

C12 is due to the effective use of thebeamweb to carry shear; whereas,

in C4 and C5 the shear is carried by the beam seat and the beam flange

respectively. The pattern of the stress distribution in the tension

and compression zones of column web is seen to be the same for all

connections.

~igure 22 illustrates the corresponding vertical stress variation

(cr ) along the column innerface or k-line for the three connections, with
y

the stresses being primarily compression except in the lower region of



333.30 -12

el2'. This shows that biaxial tension can occur at the k-line near the

~eam tension. flange. Indications are that the specimen el2 may be more

critical in the sense of fracture failure than the other two connections.

The horizontal stress variations along the centerline of the

column web ~s illustrated in Fig. 23 are in close proximity to being

linear and approximately equal to zero at the centerline intersection.

However, linearity is not maintained after the initial yielding has

been attained which occurred in the compressive region of each connection.

4.2.2 Beam Behavior

Figure 24 shows the horizontal stress variation across a

beam section six inches from the column flange. As seen, the cr values
x

for C4 and C5 are very low; this owing to the fact that the beam web

i~ not welded to the column flange as is C12.

Figures 25, 26 and 27 show the stress distribution for the

beam flanges. A pattern can be seen when comparison of the distributions

is made from el2 to C4 to C5; there is a tendency of reversal in the

distributions from parabolic in one direction to the other direction.

This degree of reversal ·is obviously caused by the amount of shear force

carried by the beam flanges. The flanges, in specimens C12, C4 and C5

carry the minor part, the significant part and the entire part of the

shear force respectively. The diagrams in Fig. 28, from left to right,

show, the horizontal stress (cr ) variation, vertical stress (cr ) varia-
x y

tion, and the shear stress (~ ) variation respectively in the vertical
xy

Qeam seat stiffener plate along the column flange (top diagrams) and

the beam flange (bottom diagram) for C4. From the shear stress (~ )
xy
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diagram, it can be shown that the amount of load carried in shear in

the stiffener plate increases from 9% at l50
k

to 30% at 600
k

with the

remainder being carried by the two flanges and th'e seat plate. Using

Fig. 28 in conjunction with Fig. 26, it can be seen that the amount

of shear transferred to the beam seat has a significant effect on the

stress distrib~tion of beam flanges. Figure 27 shows the extreme

cond~tion of the distribution with the flanges carrying all the shear.

4.2.3 Beam-to-Column Interaction

As ~he load-deflection curve in Fig. 12 begin~ to deviate

from linearity, yielding begins to occur either in the beam flanges

or in the panel zone adjacent to the column .flanges as shown in Figs.

29, 30, and 31. The stresses then redistribute to the adjacent area

with the majority of the stress being distributed over a distance of

~ (tb + 5k) from the centerline of each flange as shown in Fig. 21.

Simultaneously, the connections begin to rotate inelastically with el2

and C4 being _'fairly equal.

From the load deflection curve of Fig. 12 it can be seen that

the AISC Specifications(l) are adequate for the design of C4R as well as

C12.

As can be seen in most of the plots, el2 and c4 or C4R have

similar results; therefore, a designer has a choice of two connections

to use. They are a fully-welded connection, C12, or a flange-welded

connection, C4R, with a beam seat for shear carrying capabilities and

a beam web stiffener to prevent buckling. Although the stress results

are not available, load~deflection curve of C4R indicates that C4R is

a much better connection than C4.
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5. SUMMARY AND CONCLUSIONS

Herein, test results on three interrelated, welded, steel

Qeam-to-c61u~rt moment connections are reported. The size of columns

and beams of these three connectiDns is identical. The primary dis­

tinction among them is the way the beam shear force is carried. The

fully.welded 'connection (C12) utilizes the beam web to carry a signi­

ficant part of the shear force; the stiffened seated beam connection (C4)

carries the shear force through both the ~eam seat and the beam flanges;

and the connection (C5) which is beam flange-weld,ed only, carries the

entire shear force and moment capacity through the beam flanges. On

the basis of the test results in this study, the following conclusions

have been reached.

1. The AlSO Specification provides adequate rules in design of

such fully welded connections as C12 or stiffened seated beam

connections as C4. For ~he latter case, however, ~he possi­

bi~ity of buckling of the beam web above the stiffened seat

must be checked and beam web stiffeners may be added (C4R).

This type of connection can be used in plastic design as

the plastic limit load, sufficient rotation capacity, and

adequate elastic stiffness are developed (Figs. 12 and 13).

2. Although the stiffened seated beam connection (C4) fails by

excessive buc~ling of the beam web and eventually fractures

at the cope hole of the beam web, specimen (C4) does exhibit

sufficient stiffness under working load.

3. The fully welded connection (C12), and the stiffened seated

beam connection with beam web stiffeners (C4R) are basically
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identical in their general behavior to the applied loads

and may be used interchangeably (Fig. 12).

'4. The flange-welded only connection (C5) attains 51 percent of

its predicted pla~tic limit load based upon whole section,

and showed substantial deformation and rotation capacity.

This type of connection can be used in a design where the

initial stiffness and deformation capacity rather than the

full strength of connections is the controlling factor.

5. The basic patterns of stress distribution in the panel zone

of the column are essentially the same for all the connections

tested. However, the stress distributions in the beam flanges

and web are effected significantly by the amount of shear

force transferred to the beam flange.
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7 •
APPENDIX 1:

APPENDICES
DESIGN OF CONNECTION C12

-17

(W27x94 beam and W14x176 column)

1. Determine beam span.

Plastic Moment

M = F Z = (55K/in. 2 )(278 in. 3 ) = 15290 kip-in.
pyx

Design Ultimate Shear

Design from test C2 (Ref. 6): 7-1" A490-X bolts, in single

shear, V = 7(1.7)(0.7854 in. 2 )(40K/in. 2 ) = 374K. [See Ref. 6 for

explanation of 40 ksi shear stress.]

Check: V < 0.55 F td = (O.55)(55K/in. 2 )(O.490 in.)(26.91 in.)
p - y .

= 399.0 K ~ 94.7% V O.K. [ArSe, 2.5-1J
p

Beam Span

L = M Iv = 15290 K-'in./374 K = 40.8 in.. p .

Use 41 in. length (3'-5")

2. Determine groove welds.

Allowable tension normal to effective throat of complete-

penetration groove weld is same as allowable tensile stress for base

metal. Use E70XX electrodes and weld TC-U4-S of the AISC Specification.
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o
cp = 30 .

---;'------
~

/
./ T ~ 3/4"

I /
L _ ~:""'------'-----t

~ R = 3/811

o
For web, use cp = 45 , R = \:".

3. Check horizontal stiffener requirements.

Opposite compression flange:

Using A~SC Specification,

for flanges

-18

[ArSe,1.1S-1J

t < (1)(9.990 in.)(O.747 in.) = 0.694 in .
.0.747 in. + 5(2.0 in.)

t for W14x176 column" is 0.820 in. ,', O.K.

[AISe, 1.15-2J

t ~ (15.25 in - 4·~~0 in.) ,.!?5 K/in
2

= 0.464 in < 0.820 in. O.K.

ff3)Using Fritz Engineering Laboratory Report 333.14( ,

d a jF + 180 C1 Aft c y
:S 125 d 4jF

C Y

t 5 (11.25 in.)2 ~5 K/in. 2 + 180 (1)(9.990 in.)(0.747 in·2
125 <11.25 in.) 4/55 K/in.2

= 0.596 in. < 0.820 in. ,', O.K.

Stiffeners are not required opposite the compression flange.
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Opposite tension flange:

-19

[ArSe, 1.15-3J

t f < 0 4/"(1)(9.990 in.)(0.74i-in.) = 1.093 in.

t f for W14x176 column is 1.313 in.; therefore stiffeners not required.

4. Design erection plate.

Connection is to be designed as a field welded connection.

Therefore, an erection plate is to be attached to the column to facil-

itate field welding.

(a) Choose a plate.

Erection plate ~st be able to carry dead load of beam

Dead load ~ (0.094 K/ft)(3.42 ft) = 0.32 K '

Try a 3/8 in. x 23 1/2 in. plate. (A572 Grade 55)

F = 0.40 Fv y [ArSe, 1.5.1.2J

Shear plate can resist = 0.40 F td = 0.40 (55 K/in. 2 )(.375 in.)(23.5 in.)
y

= 194 K » 0.32 K .... O.K.

Use a 3/8 in,. x 23 1/2 in. plate.

(b) Weld plate to column.

Tack weld using allowable shear stress of 21 ksi' (E70XX

Electrodes). From AISC 1.17.5, minimum weld size is 5/16 in. Using

intermittent welds and conforming to AISC 1.17.8, try 3 two-inch fillet

welds.

,Allowable shear = (1.7)(21 K/in. 2 )(6.0 in.)(O.3125 in.)(O.707) = 47.4 K

47.4 K » 0.32 K ,·.O.K.
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(c) Transfer load by bolts.

Try 2-3/4"c.p A307 erection bolts.

Allowable shear = 2 (1.7)(0.4418 in.2 )(4.42 K/in. 2 ) = 6.64 K

6.64 K > 0.32 K O.K.

See Fig. 3 for design sketch of connection C12.



333.30 -21

APPENDIX 2: STRESS-STRAIN-RELATIONSHIP

1. For Strain Rosettes

(a) Tension or Compression

Using the Von Mises yield criterio~, the effective stress

is defined as

The effective strain is defined as

Fora simple tension test,

These equations reduce to cre = crl and ee = s1' respectively.

(al = ay and el = ey from tensile tests)

From linear elasticity,

1
ex = E [ax - ~ (Oy + oz)]

1
ey = E [Oy - ~ (ox + oz)]

1
ez = E [oz - ~ (ox + Oy)]

(See Ref. 5\)

For .the connection web portions; assume plane stress condition, i.e.

O"z = o. Therefore,

E:z =
_ ~ (ex + e;y:)

(1 - JjI)

= (1 - LL) E + U E (ey + ez )'(Jx (1 + ~)(1 - 2~) ex (1 + lJ,)(1 - 2~)

= (1 - u) E + u E
(ex + €z)cry (1 + \.1)(1 - 2}.1) €y (1 + l-L) (1 - 2}.1)
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(b) Shear

·For cases of high shear, the effective stress and strain

equations reduce to

e = 2 (f'+ 11) Y12

(c) Shear and Axial Stresses in Panel Zone

From Ref. 5, for high shear and axial stresses in a connec-

tion panel, the effective stress and effective strain are:

cr a
1O"e =Jz [2

/2. [2 (1 + j2
2 (1 + ~) ~

Using.etther Mohr's circle for stress and comparing the

principal stresses to the appropriate effective stress, or Mohr's

circle for strain and comparing the principal strains to the appro-

priate·.effective strain, yielding at the strain rosette can be deter-

mined.

It was found that by neglecting € results of rosette stresses
z

changed insignificantly so that in future tests, data could be

analyzed considering only a two-dimensional system.

In determining e12 from the strain rosette,
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2. For' 90° Gages

-23

The effective stress used was .ae = a1 (where 0"1 = O"y of tensile

· tests). Stresses in' the 90° gages were determined by

= E
( € 2 + ~. E: 1),ax 1 - J..L2

E
(€1 + ~ €2)cry =

1 1-1
2

3. Linear Gages

Strain readings were compared directly to e
y Below
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Fig. 14 Weld Fracture at Tension Flange of el2

-37
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Fig. 15 Fracture of Weld Along Beam Web of C12



333.30 -39

Fig. 16 Connection C12 at End of Test

Fig. 17 Yielding at Cope of Test C4
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Fig. 18 c4 at Failure

-40
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Fig. 19 Connection C4R at End of Test

Fig. 20 Connection'C5 at End of Test



C 12 C4 C5
w
w
w.
w
oExceeded. Between

250 And

~CTx

cry
.~ _ Compressi0.!1

--,.-r-CTx Tension

gE in.

Exceeded Bet ween
495 And 542k

Compressi on

Exceeded Between
450 And 475k

Exceeded Between
425 And 450k

60 40 20

ux (ksi)

60 40 20
o-x (ksi)

·60 40 20

o-x (ks i)

t
+'
tv

Fig. 21 Variation of Horizontal Stress (cr ) Along Column Innerface (K-Line)
x



CI2

Compression Tension Compression

tTy

-¢-ux

iE in.

r:Ty-tux

C4
Tension

C5
Compression 1 Tension LV

LV
W

LV
o

Variation of Vertical Stress (cr ) Along Column Innerface (K-Line)
y

I I I I L·
-20 -10 0 10 20

o-y (ksi)

Fig. 22

I I I
-20 0 20

U-y (ksi)

-' I I L
-40 -?O 0 20

o-y (ksi)
I

+'
w



I I J I J

-40 -20 0 20 40
CTx (ksi)

w
W
LA>

C 5

M

, I J I I

-40 -20 0 20. 40
(Jx (ksi)

Compression Tension ~

Elastic Limit
Exceeded Between
250 And 300k

000 0
OlO 0 0
J"")(\J (\J

Q
~ ,
\~

\ ,
'~\ ,

" \\ ,
\ \

000
\0 lO to
V rt) -

\ \ 1 -t-P,

C 4
Compression Tension

Elastic Limit
Exceeded Between
400 And 450k

EJast ic Limit R
Exceeded Between

495 And 542k
I

I I I I I
-40 -20 0 20 40.

CTx (k s i)

(Ty

~
(Jx~D~

t\

\'~
\ ,
\ \

0 0
0 LO,.., - -t-K,

\,
\
\

\
\

Elastic Limit M
Exceeded
At 768 k

C 12

Compress ion Tension

E1asti c Lim i t
Exceeded Between
500 And 520k

Fig. 23 Variational Horizontal Stress Along-Column Center~ine J
.po.
+:'"



C 12

Compress ion Tension Compress ion

C4

Tension

C5

Compression Tension

w
w
w.
w
o

Yielded Between
520 And 540k

o 0 0 0o 1.0 0 t()
t.O V' to

J " ,
J .

~ ",
, ,
.", "'~\

.... , ~

"'~ ~
a-r\ ,..~

\ , ....

\ ' '­
\ ' ~

R+\ " .... ',
\ "I
\ "\ ',I

J I J I I J I

-60 -40 -20 0 20 40 60
CT'x (ksi)

o
o

AC

AD

AE
Yielded. Between
450 And 475k

I , I , J I I I I ,

-20 -10 0 10 20 -20 -10 0 10 20
(Tx (ksi) o-x (ksi)

Fig. 24 Horizontal Stress (0 ) Variation Through a Beam Section
x

I
.p-..
Ln



333.30 -46

-40

crx
(ksi)

-20

o

Yi'e Ided Between
425 and 450 k

,/'" Compression

P=:~75 '", Flanges

/' ,

"

Yielded Between
425 and 450 k

,~

P=4".- ""
/37",,5 ,, \.

I 300 ,.-... '\
.,,-' .....

/ ..... ~

// 225 "
/ ,

/ ,
\.

75

I'

Section c-c Section D-D

/

/;
I

/
/

~,

,
/

Between
400
and
425k

Be tween
425
and
450

P=75
~
',150

" "
~5

'\300
\

\

\ 375
\

\450
\ .

\

Tension
Flanges

'I,
\, /

\~50 --.I'
Between ./"--e;twee~ '-Between

425 400 400
and and and
450 425 42 5 k

40

20

o

CTX
(k s i)

Fig. 25 Variation of Stress Across Beam Flanges A~jacent to Column--C12



333.30

-40

Ux
(ksi)

-20

20

60g./"',
/ \

"" \/ \,," \
\

300
r--~

/ ,
/ ,

/ 150 ,
/ "

J_--a.-.--a-_--a.-

Section D-D

r

Compression

Flanges

-47

Section E-E

O"'x
(ksi)

40

Tension
Flanges

"300 II

", -""' I
',,"""', I, I,,'

,/
Between

300
and
350

Beween
350
and
400

'setween
350
and
400

Between
300
and
350

Between
350
and
400

Between
350
and
400

Fig. 26 Variation of Stress Across Beam Flanges Adjacent to Column--c4



333.30 ~48

40

U x
(ksi)

20

o J_ ____..L

Compression
Flanges

Section E-E Section F-F

0 l r

~ "I "Tension 2001 ,
20 I ,

Flanges I
I /\O""x

(ksi) '/ \
"I \ /

I \ /

40 I \ /"
",

I \""
I

I
300..-......-....-..,. ./
"...-- ..............._-

Between/ 'B~ween
250 and 300 200 and 200

Fig. 27 Variation of Stress Across Beam Flanges Adjacent to Column--C5



333.30 -49

~ "1 2
VII5 2

S" 4
11

TI' 4"
UI'\: w X 4"
V!L ~ ~ I} ..

T J 2

311 311 11/211

I- ·1· -I J-.l
0000 0000 0000
0.001.0 o LOOLO OI.OOlO
c.oq-tf)- CD ~ ro- tOVtf')-

S I S ItrS
I ,
I I

I
,,

T I
T I T,

I~ I

II I
J I

U
J u

,
UI ,

I I
t I
I I

V I V I V

-20 -10 0 10 -10 0 10 -20 -10 0 10
o-x(ksi) o-y(ksi) Txy(ksi)

w

x
o 000
o lOOtO
U) vrt')-

o 00
10 0 1.0
V rtl -

o
o
<D

w

0000
lOOlOO
q-tf)-<.D

X,

v V V
I I I 1 I I I I I I -

-10 0 10 -40 -30 -20 -10 0 10 -20 -10 0 10

o-x(ksi) a-y (ksi) T xy (ksi)

Fig. 28 Stre~~ Variation in Beam Seat--C4



333.30 -50

®~
690

4
~o-

(5)
~ ~

520 500 540

~
540

~
750 680

~ ®
0 @~

776
660

@
0

@'
......0.-
560

Q) ®
475 ~

450 475

@
o

720

Fig. 29 Sequence of Panel Zone Yielding for Specimen C12



333.30 -51

0

0

0
(j)

® 0 0 ?
® 660

0 0
600 450 ? 10t uj~

250k 250k
250k

0 CD CD @

?<V0

660

t 0

I
0 0 0

o

o

® ® ®..[)-
0 542 1....-0---

700k
l~ 7 300

660

0

0

o

Fig. 30 Sequence of Panel Zone Yielding for Specimen C4



333.30

@
....a....
350

o
~

250

o

o

o

o

o

®
,300

o

o

o

o

o

o

o

o

@

350

o
350

o

o

o

o

o

-52

Fig. 31 Sequence of Panel Zone Yielding for Specimen CS



333.30 -53

9. REFERENCES

2. AWS
CODE FOR WELDING IN BUILDING CONSTRUCTION, AWS Dl.O-69,
9th ed., American Welding Society.

3. Beedle, L. S. and Christopher, R.
TESTS OF STEEL MOMENT CONNECTIONS, AISC Engineering Journal,
1(4), October 1964, p. 116.

4. Chen, W. F., Huang, J. S. and Beedle, L. S.
RECENT RESULTS ON CONNECTION RESEARCH AT LEHIGH, Proceedings,
Regional Conference on Tall Buildings, Bangkok, January 1974,
pp. 799-813.

5.' Fielding, D. J. and Chen, W. F.
STEEL FRAME ANALYSIS AND CONNECTION SHEAR DEFORMATION, Journal
of the Structural Division, ASeE, Vol. 99, No. SrI, January
1973, pp. 1-18.

6. Fisher, J. W. and Beedle, L. S.
CRITERIA FOR DESIGNING BEARING-TYPE BOLTED JOINTS, AISC
Structural Division Journal, 91, STS, paper No. 4511,
'October 1965, p. 129.

7. Huang, J. S. and Chen, W. F. ,
STEEL BEAM-TO-COLUMN MOMENT CONNECTIONS, ASeE National
Structural Engineering Meeting, April 9-13, 1973, San
Francisco, meeting preprint 1020.

84 Huang" J. S., Fielding, D. J.) Chen, W. F. and Staff
FUTURE CONNECTION ,RESEARCH PROBLEMS, Fritz Laboratory Report
333.7, Lehigh University, Bethlehem, Pa., July 1972.

9. Huang, J. S., Chen, W. F. and Beedle, L. S.
BEHAVIOR AND DESIGN OF STEEL BEAM-TO-COLUMN MOMENT CONNECTIONS,
WRC Bulletin 188, October 1973.

10. Popov, E. P. and Stephen, R. M.
CYCLIC LOADING OF FU~L-SIZE STEEL CONNECTIONS, Earthquake
Engineering Research Center Report 70-3, University of
California, Berkeley, California, July 1970.

11. Regec, J. E., Huang, J. S. and Chen, W. F.
MECHANICAL PROPERTIES OF C-SERIES CONNECTIONS, Fritz Laboratory
Report 333.17, Lehigh' University, Bethlehem, Pa., April 1972.



333~30 -54

12. Regec, J. E., Huang, J. S. and Chen, W. F.
TEST OF A FULLY-WELDED BEAM-TO-COLUMN CONNECTION, WRC Bulletin
188, October 1973.

13. Newlin, D. E. and Chen, W. F.
COLUMN WEB STRENGTH IN BEAM-TO-COLUMN CONNECTIONS, Journal
of the Structural Division, ASCE, Vol. 99, No. ST9, September
1973, pp. 1978-1984.


	Lehigh University
	Lehigh Preserve
	1974

	Tests of welded steel beam-to-column moment connection, December 1974 76-3
	J. Parfitt Jr.
	W.F. Chen
	Recommended Citation


	tmp.1342713828.pdf.wWRim

