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ABSTRACT.

Computations to obtain the ultimate strength of an

inelastic beam-column are fairly involved and, at present,

only numerical methods are available to get the best po~si-

ble solutions in most cases. For practical purposes, how-

ever, these numerical approaches are often laborious.

pap~r presents simple approximate forms of solutions by

This

as~uming an idealized relatibnship among moment, curvature

and thrust in the ultimate state.
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1. INTRODUCTION

I"n most l"eference \vorks [2, 7] on the approxiJnate

theory of beam-column problems, the axis of thi deflected

beam-column is often assumed to be a certain shape of

curve, such as a sine c~rve or a parabolic curve. As a

consequence of this, the analys'is of the b,eam-column

problelllS is considerably silnplifie"d. Simpl'e interaction

equations which .define the load carrying capacity of the

beam-column can th~n be obtained. It has been found [2,

5], that this simplification gives satisfactory results

for Si'1111Jly sUPIJorted beam-co~umns under symmetric loadil1g

conditions. It is clear, however,' that this type of sim-

plification is not very suitable for the fast determina-

tion of beam-column strength for the unsymmetric cases or

for the case of beam-column with fixed end supports.

The' work reported in this paper is an effort to

help fill part of this gap. Toward this purpose, an

"alternative 'but extremely simple approximate analysis is

developed and applied to various beam-column problems.

I n the ana 1y sis', the mOlnen t - curva t ur e -tl1.rus t

reI a t.i 0 n s hip i side ali zed a s e las tic - per fee t 1 Y pIa s tic ~

The moment-curvatu~e relationship for a constant thrust

i s ass umedt 0 bel i n ear up t 0 a, c·e r t a i n ill 0 ill en tIev -e 1 ~1
me

Fro.1n here on the section is-"_as~umed to flow plastically

at the constant moment M (Fig. 1).. - me The adoption of

this idealized relationship must not be thought of as
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neglecting curvature work-hardening, but rather as

averaging its effect over the entire beam-tolumn. The

app!opriate average flow moment M must lie between the
me

initial yield moment ,M and the plastic limit ~oment Myc pc

of the cross section (Fig. 1). The choice of the level

M is dependent on the section used as well as on the
mc'

ge'OTIletr)' and loading of the el1tire beam-column. 011ce the

proper value of M is selected, the maximum load carrying
TIle

capacit'y of beam-columl1S cal1 bec·OTIlputed in a rather sim-

pie manner by the elastic analysis. The subsequent dis-

cussion in this paper shows how this average flow moment

M may be determined.mc

2. ESTIMATION OF AVERAGE FLOW MOMENT

All beam-columns to be considered are assumed to

be mad'e of an ideally plastic material which is elastic

up to the yield 'point and then flows under constant stress.

The corresponding moment-curvature-thrust relationship of

a common structural section with or without the influence

of residual stress is shown by the curve O-E-F in Fig. 1.

The curve may be divided into two parts: Linear elastic

part. (O~E) with an initial yield moment M and curvatureyc

work-hardening part (E-F), with the moment asymptotically

approaching the limit value- M as C~Tvature ¢ tends topc

infinity. If M is used fOT the idealized flow moment,yc

the ultimate stre~gth of a beam-column will be lower than

the actual one, on the other hand, if M is used, thepc
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solution will be an upper bound. The exact solution is

thus bounded by the two extreme solutions. A satisfac~

tory selection of the average flow moment M will thereme

fore enable the estimation of the ultimate strength of

the beam-column with high accuracy.

The yield moment M and the plastic limit moment
yc

M for a constant thrust P have been obtained in Refs. 3, 4pc

for several commonly used structural sections. As' an

example, the express~on for strong axis bending of a wide

flange section including the 'influence of residual stress

is

M 0.9 - Cf-) (f- < 0.8)P p
yc = y y
tr

-1.1
,p

2 Cf-) 2 Cf- > 0.8)Y + 3.1 Cp-) - p py- y y

(1)

M
~=

M
Y

1.11 - 2.64Cf-)2
Y

p
1.238 - 1.143(p-)

Y
0.095C;'-)2

Y

C~ < 0.225)p
Y

C~ > 0.225)
Y

where p. is the applied thrust, P is the yield thrust,
y

and M is the yield moment" in the absence of the thrust P.
y ,

Since the average flow moment M must lie betweenme

the values M and M "hence, the value of M may be
yc pc' ·me

represented by



Mme

4

(2)

where f is the parameter function

f = 0 corresponds to M M (the upper bound solution)me pc

f = 1 corresponds to M = M (the lower bound solutinn)mc yc

The parameter £ 'viII be a fUl1ction of the thrust' P, the

length L and the boundary conditions of a beam-column.

For simplicity,_ the paranleter function f is assumed to

have the form

f = f "COP ) f (~) £ (B C )
1 P 2 r 3 · ·y

the functions £1' £2' and £3 need to be determined for

each type of beam-column.

Example 1 Beam-Column with an Uniformly Distributed
Lateral Load' (Fig. 2a)

(3)

If PIP = 0, it is a beam problem and the plastic
y

limit moment M will govern the ultimate state, i.e.,pc

f = O. If P!P ~ I, it is an axially loaded short column
y

pioblem and the yield moment M will be the governingyc

one, i.e., f = 1. The elastic solution [see Eq. 7] using

f = a and f = 1 then gives the upper- and lower-bound

interaction plot shown in Fig. 3. The solution f = £1 =

P/P
y

(assuming f
2

= 1.0, f 3 = 1.0) is found to be in good



5

agreement with the exact solution reported in Ref. 6.

The approximate solution can be improved by taking f =

f
1

-- ( PIP y)' 0 · 6 . Th· d 1· 1 d 11e lmprove resu t 15 P otte as sma

c ire 1esin Fig. 3, and g i v en a ve r y goo d a p pro x i ill a t ion t 0

the exact solution. Therefore, it seems reasonable to

assume that the function £1 has the general form

= (~)N
p

Y
(4)

COl1sid.er, next, tIle -second paramete.r f 2 (L/r), wllere

L/r is slenderness ratio of the beam-column. If tlle, mem-

ber is very short, it will lose the nature of a column,

and the value of f should be close to O. By comparison

with the exact solution, the .following formula is an appro-

priate one as correction for short beam-columns

1 (~ > 60)
r -

f (.!:) 1 L 1
(~-O < ~ < 60) (5)= W(r-} - 22 r - r

0 (~ < 20)
r

Usually, the slenderness ratio of a column is greater

than 60, so that f
2

(L!r) may be chosen as unity.

The third parameter f 3 (B.C.) is determined based on

boundary conditions. If a beam-c~lumn is fixed, plastic

hinges will form at the ends first as shown in Fig. 4a.

Until the third (and the last) plastic hinge forms at

center C, large rotations will have been expe~ienced at

the previously forlued plastic- hinges at both ends. At
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the ultimate state, the moments at both ends will be

close to M and the moment at center C will be close topc

M Therefore, the mean value of M
yc yc

one of the approximate values of M ;me

and M \vill be
pc

or £3(fixed) = 0.5.

On the other hand, if the beam-column is simply supported,

M will be the governing flow moment; f 3 (simple) = 1.0.yc

In summary, for a beam-column of usual length (L/r

> 60), M has the-form
me

M
P

(M
pc

M
yc

) (simple)- -
p-c Py

(6)
M ::

me p
M - OGS P (Mpc - Myc ) (fixed)

pc
y

Using the average flow moment M in Eq. 6, the ultimateme

load w of the beam-column shown in Fig. 2a can be compu-

ted by the formula [7]:

Q = wL

where

and

:: k Mme

p
=Ef

kL
A' + cos

1 - cos

kL
'"2
kL
2

(7)

It = 0

A = 1

for simple supports

for fixed ends
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Using t,he proposed values, a comparis.on is made ''''ith

the exact solution of a beam-column of a wide flange sec-

t ion' (8 'V F 3 1 ) \y i t h res i du a'i s t res s e sand 5 h 0 \" n in Fig. 5

(sinlply supported) and Fig. 6 (fixed ends). "The solid

lines are exact solutions ~eported in Ref. 6, and the

dotted lines are results obtained by the present method .

. They sh,ow a suff'iciently good agreenlen.t w'i t]l each otlleT.

In case of simply supported beam-columns, however, an

approximation by N = 0.6 gives a better result as plotted

by small circles in Fig. 5.

Example 2 Beam-Column with a Concentrated Lateral Load
.( Fig. 2b)

The parameter f for the average flow moment M willme

be the same as in the case of a uniform load. For a fixed

end beam~column, since plastic' hinges will be formed at

both ends and under the load at the same time (Fig-. 4b),

the governing flow momen't will stilI be t11e inean vallIe of

M and M ., i.e., f
3

(fixed) == 0.5.
yc pc

Using the average flow moment M in Eq. 6, theme

ul timate I'oad Q of the beam-column sho\qn in Fig. 2b can

be computed by the formula:

Q ::: 2k Mme
A + cos kL

2
. kL

SlD 
2

(8)

Comparison" \V-it]l the exact solution [6] is shown in

Fig. 7 (simply supported) and Fig. 8 (fixed ends). A

good agreement is observed in both cases. Eq. 8 call be
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rewritten in the form:

Q = 2k ~1s me

= 2k M
me

·kL
cot 2

cot kL
if

(simply supported)

(fixed end)

(9)

(10)

It is see~l t]1at in these two cas,es equa.tions are

analogous to each other (note: the values of Mare
TIle

different, see Eq. 6), and the ultimate strength for a

beam-column with both ends fixed CEq. 10) may be computed

from the beam-column with hinged ends having a reduced

length equal to half the actual length. (It is evident

from symmetry that this conclusion is true for the actual

situation) .

Referring now to the partially distributed load cases

represented in F~g. 2(c) and proceedi~g as for an elastic

solution with plastic hinges, one fi~ds. the following ex-

pressions for the ultimate lateral load:

Q =

kC
= 2k ~1 if

me sin kC
if

kLA + COS Z
sin (kL kC)

2 4

(11 )

where M i~ given by Eq. 6. As can be seen here, theme

ultimate load for the fully distributed load case CEq. 7)

and the concentrated load case CEq. 8) are particular

cases of Eq. 11.

J
(
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Example 3 Beam-Column with End-Moments (Fig. 2d)

Consider,· next, a beam-colunlll subjected to end

moments.M and KM as shown in Fig. 2d. Average plastic,o 0

moment M is assumed ·in a similar form as before:me

M = M
me pc

(12 )

Here, N = 1/2 gives a good approximation for M . Ame

plastic hinge occurs either within the span or at one of

the end supports depending upon the ratio of applied

moments K. The ultimate moment M is given by the follow
o

ing formulae [7];

if K, < cos kL

M = 1\1o me

if K > cos kL

(13)

sinMo = M

mC/sin2kL + (K

kL

- cos

Comparison with exact solutions [1] is shown in Fig. 9

(K = 1). Results by the present meth6d (dotted lines) are

computed.'using N = 1/2. A sufficiently good agreement is

obser'ved.

J
!
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3. UNSYMMETRICALLY LOADED BEAM-COLUMN

The average flow moment M for a symmet~icallyme

loaded beam-column has been obtained in the previous,

section. This result CEq. 6) is considered,to be appli-

cable to unsymmetric problems as well, if the unsymme-

tricity is not very large.

The ultimate concentrated load applied unsymmetrically

to a beam-column (Fig. 2e) is computed by assuming that the

. last plastic hinge is formed under the load.

form'

It has the

Q 2k f\1 me sin

kLA-kL B kL
kL A cos 2 + cos~
~ --s-i-n-k-r L-A--s-i-n-k-L-

B
--- (14)

In case of partially distributed load (Fig. 2£), the

expression for ultimate strength becomes lenghty (see

Appendix), but a simple 'form of soltition can be analogized

based on the results for the symmetrically distributed'

case CEq. 11), and the unsymmetr~cally concentrated lo~d

case CEq. 14) as

Q = 2k ~1me

kC
if
'. kCSln-

4

sin (kL
2

kLA-kL B kL
A cos .2 + cos -2

kG)
4 sin(kL _kG) sin(kL _kG)

, A 4 B 4

(15) .

This is consideied to be the most general form of solution

for a laterally Ibaded beam-column, as it covers the ulti-

mate value of a symmetrically distributed load (LA = LB =
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L/2), Eq. 11, or a concentrated load (C = 0), Eq. 1,4.

Accuracy of Eq. 15 is investigated by comparing with

the elastic solution (Eqs. 25 to 29) presented in Appendix,

where location of p·la.stic hi11ge is computed exactly. In

Fig. 10 to 13, the comparison of interaction relationship

between thrust P and lateral load Q is made. Diagrams

drawn to the right represent location of the last plastic

hinge.

In case of uniform load of the width L/3 (Figs. 10

and 11) some difference is observed beiween the two solu-

tions. 1fth e e c c e 11 t ric i t y' 0 f the loadis 1 e ssthan L/ 6 ,

the error remains within 5% and for e = L/4, it is 13%.

Location of the plastic hinge moves in as P increases, and

when P reaches the :critical value P '(Euler's buckling
-cr

loa d ) t 11' e h i n g e i s. for me d a t' t 11 e c en t e r, i 11 t 11 iss tat e the

allowable lateral load.Q is, zero as to be obvious.,

In case of concentrated load (Figs. 12 and 13), results

by Eq. 15 checks very well even for large eccentricity of

loading. The location of plastic hinge does not move until

P reaches certain values, then 'it moves in as P increases

following a curve shown in the right diagram.of Fi~. 12.

It is interestil1g to note tl1at., this curve is common for all

values of eccentricity of loading.
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4. CONCLUSION

. The u~timate strengths of beam-columns are obtained

in 'simple closed forms. Althougl1 they. are approximate

solutions, their val.idity has been shown by comparis6n

with exact solutions in symmetrically loaded cases. This

validity is considered to be true in unsymmetric cases

also as long as the unsyrnmetricity is not very large. The

formulas for the ultimate strength of beam-columns may be

considered as suitable bases for a method bf design for

symmetrically as well as unsymmetrically loaded compression

members.
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·7. APPENDIX (I)

GENERAL SOLUTION OF ELASTIC BEAM-COLUMN

Consider a member which is subjected to a thrust P,

end moments MA and MB> and partly distributed uniform load

w as s11o\vll in Fig. (14). The governing equations for this

elastic b'eam-column problem a're

(0 < x < xl)

(16 )

where

k 2
= PIEI

The general solutions are obtained in the following forms:

y. = A. cos(kx) + B. sin(kx) + C.x + D. + f.ex)
1 1 1 111

(17)

(i = 1, 2 ~ 3)
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where f. ex) are particular solution of the above differential
1

equations and

(18 )

The t\velve integration C011stants A. > B., C., D. are solved
1 1 1 1

fr~m the following twelve boundary conditions:

x ::; o· y" :::
1

x = y'
1 y'"

2

These conditions beco·me t'velve silnultaneous equations

a s f a 1 1 0 \v S :.
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=
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a
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Al
M

A
=

k 2EI

1 ~1B - ~1A cos k.Q, cos .k(~-Xl) - cos 1( (Q,-x
2

)
B1

\v
=

k 2EI S i11 k~
-

k 4 EI sin kQ,

C1

MA - ~1B \v
(x 2 -x 1 ) (29.-x

1
-x 2):::

k2~Ei 2k2~EI

D1
1 ~1A

= k2 Ef

AZ
~1A \v kX

1
:::

k 2EI
+

k 4EI
co-s

1 MB-MA C'os k~ cos kX
1

cos k~-cos k (Q,-x
2

)
B

2
w

=
k 2EI sin k.Q., -

k 4EI sin ]( .Q,

(21)
M -M 2 2

C2
A B w

(xl 2x 2 .Q,:::

k2~EI 2k 2 Q,EI
+ - x 2 )

M
A

k2 2

DZ
w

(1
xl

:::

k
2

EI
-

k
4 EI

- 2 )

A
3

.M'A \y
(cos kX

1
kX

2
)=

k 2EI
+

k 4EI
- cos

1 MB-MA cos k~

B
3

,~

(cos kX
1

kX
2

) kt=
k2E~ sin k9v - - cos cot

k.4 E·r

~II -M
2 2

C
3

A B \v
(xl:=

k 2 .Q,EI 2k 2
.Q,EI

- x
2

)
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(21 )

Let them be expressed in tl1e followil1g form:

]\1

A. me
+ a. ):::

k 2EI
Ca. q

1 lnl lW

M
B. me

(b . + b. ):=:

k
2

EI
q

1 lnl 1 ,y

(22)
M

c. me (c. + c. ):=: q
1 k 2 1EI 1m lW

M
D. me (d. + q d. ):::

·k 2 E1
1 1m 1 \"1

Where

= w/.k 2 Mq me

*Location of the maximum bending moment x = x. for
1

each portion is obtained from the condition

3d y.
1

=
dx.

3
sin *(kx. )

1
B.k 3 cos (kx. *) = 0

1 1
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kx.
1

* -1 Bi
= tan A.

1

l b. + qb.
= tan- 1m , lW

aim + qa i VI
(23)

Tl1e ultimate state is obtained lvhen tlle maximum

bending moment reaches the plastic moment of the member

M ,ie,mc

*x = x

2=-A.k
1

cos *(kx ) sin

+ f'.'
1

01~

* Mme
(x ) = - IIT

A. cos
1

*(kx. ) + B. sin
1

*(kx )
M 1 *:::; me £1.' ex )
k 2EI - k2 1

(24)

*Eliminatiol1 of x from Eq. (23) and Eq. (24) gives

the ultimate load q. There are five possible cases in theo

ultimate state according to the location of the plastic

hinge (Fig. 15):

Case-I The plastic hinge in the left portion

* * * * *x· = Xl (Xl < ~,1' x2 < Xl' x
3

< x
2

)

(25)
1 ell 2

b. )qo = b
1w

- aIm -
1nl



Case-II The'plastic hinge at the left boundary
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* * * *x == xl ex 1 > xl' x
2 < xl' x

3
< x

2
)

(26)

1 [1 - aIm cos(kx 1 )
qo = b

lw
sin(kx

1
) - b J1m

Case-III The plastic hinge in the middle portion

* * * * *x = x 2 (xl > xl' xl < x < 'x
2

, x
3

< x
2

)
2

-~

I-a a -b b ..!1-a a 2w -b 2m b 22m '2\y 2m 2\\1 ( Zm Zw)
qo == -

'2 2 2 21- a - b I-a -b2m 2m 2m 2\\1

2 2I-a -b
2m 2m

2 2
I-a -b2\'/ 2,..,

Case-IV The plastic hinge at th~ right boundary

(27)

*x == x
2

*> xl' x 2

.1-a~m cos(kxZ)-b 3m s~n(kx2)

qo = a 3w cox(kx 2)+b 3w sin(kx
2

)

Case-V The plastic hinge in the right portion

(28)

* *x == x
3

· *.ex
1
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/ a +b b
+ ! (- 3m 3\ 3m 3w) 2 +

2 2a
3
, + b

3'v- w

(29)

2 2
1- a - b

3m 3m
2 2-

a 3w + b 3w

The location of the plastic hinge *x .
1

CEq. 23) and

the ultimate load qo CEq. 25 to 29) are functions of each

other. Therefore, they have to be solved by.iteration.

A computer program was made for this purpose.
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M Plastic Limit Moment
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---r
I

:2: Myc l
h'-----------------

t- E
z
w
:a:
o
~

. Fig. 1 Idealization of Moment Curvature Relation
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Fig. 3"A Bounded Solution of Beam-Column
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Fig. 4 Average Flow Moment of Fixed Beam-Columns
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Fig., 6 Fixed Beam-Column with Uniform Load
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Fig. 7 Simple B"eam-Column \vith" 'Co'nc"el1trate'd Load
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Fig. 14 Laterally Loaded Beam-Column

Case I x*= XI· +~+

Case]I x*= XI +~+

Case ll x*=xz* +o~+

CaseISl X*=X2 +~+

Case-sl X*=X3* +o~-}

Fig. 1 5· U1 t i ill ate S tat e s
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