Simple interaction equations for beam-columns, April 1971, PB 224 803/AS

W.F. Chen

T. Atsuta

Follow this and additional works at: http:// preserve.lehigh.edu/engr-civil-environmental-fritz-labreports

Recommended Citation

Chen, W. F. and Atsuta, T., "Simple interaction equations for beam-columns, April 1971, PB 224 803/AS" (1971). Fritz Laboratory Reports. Paper 281.
http:// preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/281

LEHIGH UNIVERSITY

Space Frames with Biaxial Loading in Columns

OFFIGE $0 F$ RESEAROH

by
W. F. Chen ${ }^{1}$
T. Atsuta ${ }^{2}$

ABSTRACT

Computations to obtain the ultimate strength of an inelastic beam-column are fairly involved and, at present, only numerical methods are available to get the best possible solutions in most cases. For practical purposes, however, these numerical approaches are often laborious. This paper presents simple approximate forms of solutions by assuming an idealized relationship among moment, curvature and thrust in the ultimate state.

[^0]
FIGURES

Figure 1
Idealization of Moment Curvature Relation
22

Figure 2
Laterally Loaded Beam-Columns 23

Figure 3
A.Bounded Solution of Beam-Column 24

Figure 4
Average Flow Moment of Fixed Beam-Columns

Figure 5
Simple Beam-Column with Uniform Load

Figure 6
Fixed Beam-Column with Uniform Load

Figure 7
Simple Beam-Column with Concentrated Load
$\xrightarrow{\text { Figure } 8}$
Fixed Beam-Column with Concentrated Load

Figure 9
Beam-Column with End-Moments

Figure 10
Accuracy of Eq. 15 (Uniform Load on Simple Beam-Column)

Figure 11
Accuracy of Eq. 15 (Uniform Load on Fixed Beam-Column)

Figure 12
Accuracy of Eq. 15 (Concentrated Load on Simple Beam-Column)

Figure 13
Accuracy of Eq. 15 (Concentrated Load on Fixed Beam-Column)

Figure 14
Laterally Loaded Beam-Column $\quad 35$

Figure 15
Ultimate States $\quad 35$

1. INTRODUCTION

In most reference works [2, 7] on the approximate theory of beam-column problems, the axis of the deflected beam-column is often assumed to be a certain shape of curve, such as a sine curve or a parabolic curve. As a consequence of this, the analysis of the beam-column problems is considerably simplified. Simple interaction equations which define the load carrying capacity of the beam-column can then be obtained. It has been found [2, 5] that this simplification gives satisfactory results for simply supported beam-columns under symmetric loading conditions. It is clear, however, that this type of simplification is not very suitable for the fast determination of beam-column strength for the unsymmetric cases or for the case of beam-column with fixed end supports.

The work reported in this paper is an effort to help fill part of this gap. Toward this purpose, an alternative but extremely simple approximate analysis is developed and applied to various beam-column problems.

In the analysis; the moment-curvature-thrust relationship is idealized as elastic-perfectly plastic. The moment-curvature relationship for a constant thrust is assumed to be linear up to a certain moment level $M_{m c}$. From here on the section is assumed to flow plastically at the constant moment $M_{m c}$ (Fig. 1). The adoption of this idealized relationship must not be thought of as
neglecting curvature work-hardening, but rather as averaging its effect over the entire beam-column. The appropriate average flow moment $M_{m c}$ must lie between the initial yield moment $M_{y c}$ and the plastic limit moment $M_{p c}$ of the cross section (Fig. 1). The choice of the level $M_{m c}$ is dependent on the section used as well as on the geometry and loading of the entire beam-column. Once the proper value of $M_{m c}$ is selected, the maximum load carrying capacity of beam-columns can be computed in a rather simple manner by the elastic analysis. The subsequent discussion in this paper shows how this average flow moment $M_{m c}$ may be determined.

2. ESTIMATION OF AVERAGE FLOW MOMENT

All beam-columns to be considered are assumed to be made of an ideally plastic material which is elastic up to the yield point and then flows under constant stress. The corresponding moment-curvature-thrust relationship of a common structural section with or without the influence of residual stress is shown by the curve $0-E-F$ in Fig. 1. The curve may be divided into two parts: Linear elastic part ($0-E$) with an initial yield moment $M_{y c}$ and curvature work-hardening part (E-F), with the moment asymptotically approaching the 1 imit value $M_{p c}$ as curvature ϕ tends to infinity. If $M_{y c}$ is used for the idealized flow moment, the ultimate strength of a beam-column will be lower than the actual one, on the other hand, if $M_{p c}$ is used, the
solution will be an upper bound. The exact solution is thus bounded by the two extreme solutions. A satisfactory selection of the average flow moment $M_{m c}$ will therefore enable the estimation of the ultimate strength of the beam-column with high accuracy.

The yield moment $M_{y c}$ and the plastic limit moment $M_{p c}$ for a constant thrust P have been obtained in Refs. 3, 4 for several commonly used structural sections. As an example, the expression for strong axis bending of a wide flange section including the influence of residual stress is

$$
\frac{M_{y c}}{M_{y}}=\left[\begin{array}{ll}
0.9-\left(\frac{\mathrm{P}}{\mathrm{P}_{y}}\right) & \left(\frac{\mathrm{P}}{\mathrm{P}_{y}} \leq 0.8\right) \\
-1.1+3.1\left(\frac{\mathrm{P}}{\mathrm{P}_{y}}\right)-2\left(\frac{\mathrm{P}}{\mathrm{P}_{y}}\right)^{2} & \left(\frac{\mathrm{P}}{\mathrm{P}_{y}} \geq 0.8\right)
\end{array}\right.
$$

$$
\frac{M_{p c}}{M_{y}}=\left[\begin{array}{ll}
1.11-2.64\left(\frac{\mathrm{P}}{\mathrm{P}_{y}}\right)^{2} & \left(\frac{\mathrm{P}}{\mathrm{P}_{y}} \leq 0.225\right) \tag{1}\\
1.238-1.143\left(\frac{\mathrm{P}}{\bar{P}_{y}}\right)-0.095\left(\frac{\mathrm{P}}{\overline{\mathrm{P}}_{y}}\right)^{2} & \left(\frac{\mathrm{p}}{\mathrm{P}_{y}} \geq 0.225\right)
\end{array}\right.
$$

where P is the applied thrust, P_{y} is the yield thrust, and M_{y} is the yield moment in the absence of the thrust P.

Since the average flow moment $M_{m c}$ must lie between the values $M_{y c}$ and $M_{p c}$, hence, the value of $M_{m c}$ may be represented by

$$
\begin{equation*}
M_{m c}=M_{p c}-f\left(M_{p c}-M_{y c}\right) \tag{2}
\end{equation*}
$$

where f is the parameter function
$f=0$ corresponds to $M_{m c}=M_{p c}$ (the upper bound solution)
$f=1$ corresponds to $M_{m c}=M_{y c}$ (the lower bound solution)

The parameter f will be a function of the thrust P, the length L and the boundary conditions of a beam-column. For simplicity, the parameter function f is assumed to have the form

$$
\begin{equation*}
f=f_{1}\left(\frac{P}{P_{y}}\right) f_{2}\left(\frac{L}{r}\right) f_{3}(B . C .) \tag{3}
\end{equation*}
$$

the functions f_{1}, f_{2}, and f_{3} need to be determined for each type of beam-column.

Example 1 Beam-Column with an Uniformly Distributed Lateral Load (Fig. 2a)

If $P / P_{y}=0$, it is a beam problem and the plastic limit moment $M_{p c}$ will govern the ultimate state, i.e., $f=0$. If $P / P_{y} \approx 1$, it is an axially loaded short column problem and the yield moment $M_{y c}$ will be the governing one, i.e., $f=1$. The elastic solution [see Eq. 7] using $f=0$ and $f=1$ then gives the upper- and lower-bound interaction plot shown in Fig. 3. The solution $f=f_{1}=$ P / P_{y} (assuming $f_{2}=1.0, f_{3}=1.0$) is found to be in good
agreement with the exact solution reported in Ref. 6. The approximate solution can be improved by taking $f=$ $f_{1}=\left(P / P_{y}\right)^{0.6}$. The improved result is plotted as small circles in Fig. 3 and given a very good approximation to the exact solution. Therefore, it seems reasonable to assume that the function f_{1} has the general form

$$
\begin{equation*}
f_{1}\left(\frac{p}{p_{y}}\right)=\left(\frac{p}{p_{y}}\right)^{N} \tag{4}
\end{equation*}
$$

Consider, next, the second parameter $f_{2}(L / r)$, where L/r is slenderness ratio of the beam-column. If the member is very short, it will lose the nature of a column, and the value of f should be close to 0 . By comparison with the exact solution, the following formula is an appropriate one as correction for short beam-columns

$$
f_{2}\left(\frac{L}{r}\right)=\left[\begin{array}{ll}
1 & \left(\frac{L}{r} \geq 60\right) \tag{5}\\
\frac{1}{40}\left(\frac{L}{r}\right)-\frac{1}{2} & \left(20 \leq \frac{L}{r}<60\right) \\
0 & \left(\frac{L}{r}<20\right)
\end{array}\right.
$$

Usually, the slenderness ratio of a column is greater than 60 , so that $f_{2}(L / r)$ may be chosen as unity.

The third parameter $f_{3}(B . C$.$) is determined based on$ boundary conditions. If a beam-column is fixed, plastic hinges will form at the ends first as shown in Fig. 4 a. Until the third (and the last) plastic hinge forms at center C, large rotations will have been experienced at the previously formed plastic hinges at both ends. At
the ultimate state, the moments at both ends will be close to $M_{p c}$ and the moment at center C will be close to $M_{y c}$. Therefore, the mean value of $M_{y c}$ and $M_{p c}$ will be one of the approximate values of $M_{m c}$; or $f_{3}($ fixed $)=0.5$. On the other hand, if the beam-column is simply supported, $M_{y c}$ will be the governing flow moment; $f_{3}(\operatorname{simple})=1.0$.

> In summary, for a beam-column of usual length (LIr
$\geq 60), M_{m c}$ has the form

$$
M_{m c}=\left[\begin{array}{ll}
M_{p c}-\frac{P}{P_{y}}\left(M_{p c}-M_{y c}\right) & (\text { simp le) } \tag{6}\\
M_{p c}-0.5 \frac{P}{P_{y}}\left(M_{p c}-M_{y c}\right) & (\text { fixed })
\end{array}\right.
$$

Using the average flow moment $M_{m c}$ in Eq. 6, the ultimate load w of the beam-column shown in Fig. aa can be compted by the formula [7]:

$$
\begin{equation*}
Q=w L=k M_{m c} k L \frac{\lambda+\cos \frac{k L}{2}}{1-\cos \frac{k L}{2}} \tag{7}
\end{equation*}
$$

where

$$
k^{2}=\frac{P}{E I}
$$

and

$$
\begin{array}{ll}
\lambda=0 & \text { for simple supports } \\
\lambda=1 & \text { for fixed ends }
\end{array}
$$

Using the proposed values, a comparison is made with the exact solution of a beam-column of a wide flange section (8 WF 31) with residual stresses and shown in Fig. 5 (simply supported) and Fig. 6 (fixed ends). The solid lines are exact solutions reported in Ref. 6 , and the dotted 1 ines are results obtained by the present method. They show a sufficiently good agreement with each other. In case of simply supported beam-columns, however, an approximation by $N=0.6$ gives a better result as plotted by small circles in Fig. 5.

Example 2 Beam-Column with a Concentrated Lateral Load (Fig. 2b)

The parameter for the average flow moment $M_{m c}$ will be the same as in the case of a uniform load. For a fixed end beam-column, since plastic hinges will be formed at both ends and under the load at the same time (Fig. 4b), the governing flow moment will still be the mean value of $M_{y c}$ and $M_{p c}$, i.e., $f_{3}(f i x e d)=0.5$.

Using the average flow moment $M_{m c}$ in Eq. 6, the ultimate load Q of the beam-column shown in Fig. $2 b$ can be computed by the formula:

$$
\begin{equation*}
Q=2 k M_{m c} \frac{\lambda+\cos \frac{k L}{2}}{\sin \frac{k L}{2}} \tag{8}
\end{equation*}
$$

Comparison with the exact solution [6] is shown in
Fig. 7 (simply supported) and Fig. 8 (fixed ends). A good agreement is observed in both cases. Eq. 8 can be
rewritten in the form:

$$
\begin{array}{ll}
Q_{s}=2 k M_{m c} \cot \frac{k L}{2} & \text { (simply supported) } \\
Q_{f}=2 k M_{m c} \cot \frac{k L}{4} & \text { (fixed end) } \tag{10}
\end{array}
$$

It is seen that in these two cases equations are analogous to each other (note: the values of $M_{m c}$ are different, see Eq. 6), and the ultimate strength for a beam-column with both ends fixed (Eq. 10) may be computed from the beam-column with hinged ends having a reduced length equal to half the actual length. (It is evident from symmetry that this conclusion is true for the actual situation).

Referring now to the partially distributed load cases represented in Fig. 2(c) and proceeding as for an elastic solution with plastic hinges, one finds the following expressions for the ultimate lateral load:

$$
\begin{equation*}
Q=w C=2 k M_{m c} \frac{\frac{k C}{4}}{\sin \frac{k C}{4}} \frac{\lambda+\cos \frac{k L}{2}}{\sin \left(\frac{k L}{2}-\frac{k C}{4}\right)} \tag{11}
\end{equation*}
$$

where $M_{m c}$ is given by Eq. 6. As can be seen here, the ultimate load for the fully distributed load case (Eq. 7) and the concentrated load case (Eq. 8) are particular cases of Eq. 11.

Example 3 Beam-Column with End-Moments (Fig. 2d)

Consider, next, a beam-column subjected to end moments M_{o} and $K M_{o}$ as shown in Fig. $2 d$. Average plastic. moment $M_{m c}$ is assumed in a similar form as before:

$$
\begin{equation*}
M_{m c}=M_{p c}-\left(\frac{p}{P_{y}}\right)^{N}\left(M_{p c}-M_{y c}\right) \tag{12}
\end{equation*}
$$

Here, $N=1 / 2$ gives a good approximation for $M_{m c}$. A plastic hinge occurs either within the span or at one of the end supports depending upon the ratio of applied moments k. The ultimate moment M_{o} is given by the following formulae [7];
if $\quad k \leq \cos k L$

$$
\begin{equation*}
M_{0}=M_{m c} \tag{13}
\end{equation*}
$$

if $\quad k \geq \cos k L$

$$
M_{0}=M_{m c} \frac{\sin k L}{\sqrt{\sin ^{2} k L+(k-\cos k L)^{2}}}
$$

Comparison with exact solutions [1] is shown in Fig. 9 $(K=1)$. Results by the present method (dotted lines) are computed using $N=1 / 2$. A sufficiently good agreement is observed.

3. UNSYMMETRICALLY LOADED BEAM-COLUMN

The average flow moment $M_{m c}$ for a symmetrically loaded beam-column has been obtained in the previous section. This result (Eq. 6) is considered to be applicable to unsymmetric problems as well, if the unsymmetricity is not very large.

The ultimate concentrated load applied unsymmetrically to a beam-column (Fig. 2e) is computed by assuming that the last plastic hinge is formed under the load. It has the form

$$
\begin{equation*}
Q=2 k M_{m c} \sin \frac{k L}{2} \frac{\lambda \cos \frac{k L_{A}-k L_{B}}{2}+\cos \frac{k L}{2}}{\sin k L_{A} \sin k L_{B}} \tag{14}
\end{equation*}
$$

In case of partially distributed load (Fig. 2f), the expression for ultimate strength becomes lenghty (see Appendix), but a simple form of solution can be analogized based on the results for the symmetrically distributed case (Eq. 11), and the unsymmetrically concentrated load case (Eq. 14) as
$Q=2 k M_{m c} \frac{\frac{k C}{4}}{\sin \frac{k C}{4}} \sin \left(\frac{k L}{2}-\frac{k C}{4}\right) \frac{\lambda \cos \frac{k L_{A}-k L_{B}}{2}+\cos \frac{k L}{2}}{\sin \left(k L_{A}-\frac{k C}{4}\right) \sin \left(k L_{B}-\frac{k C}{4}\right)}$

This is considered to be the most general form of solution for a laterally loaded beam-column, as it covers the ultimate value of a symmetrically distributed load $\left(L_{A}=L_{B}=\right.$

L/2), Eq. 11, or a concentrated load $(C=0), E q .14$.

Accuracy of Eq. 15 is investigated by comparing with the elastic solution (Eqs. 25 to 29) presented in Appendix, where location of plastic hinge is computed exactly. In Fig. 10 to 13 , the comparison of interaction relationship between thrust P and lateral load Q is made. Diagrams drawn to the right represent location of the last plastic hinge.

In case of uniform load of the width L/3 (Figs. 10 and 11) some difference is observed between the two solutions. If the eccentricity of the load is less than $L / 6$, the error remains within 5% and for $e=L / 4$, it is 13%. Location of the plastic hinge moves in as P increases, and when p reaches the critical value $P_{\text {cr }}$ (Euler's buckling load) the hinge is formed at the center, in this state the allowable lateral load. Q is zero as to be obvious.

In case of concentrated load (Figs. 12 and 13), results by Eq. 15 checks very well even for large eccentricity of loading. The location of plastic hinge does not move until P reaches certain values, then it moves in as P increases following a curve shown in the right diagram of Fig. 12 . It is interesting to note that this curve is common for all values of eccentricity of loading.

4. CONCLUSION

The ultimate strengths of beam-columns are obtained in simple closed forms. Although they are approximate solutions, their validity has been shown by comparison with exact solutions in symmetrically loaded cases. This validity is considered to be true in unsymmetric cases also as long as the unsymmetricity is not very large. The formulas for the ultimate strength of beam-columns may be considered as suitable bases for a method of design for symmetrically as well as unsymmetrically loaded compression members.

5. ACKNOWLEDGMENTS

The junior writer is grateful to Kawasaki Heavy Industries, Ltd., Japan, for providing him with the opportunity to study at Lehigh University. The preparation of this report was sponsored by the National Science Foundation, under Grant Gk-14274 to Lehigh University. All computations were made at the Computer Center through the Department of Civil Engineering, Lehigh University.

6. REFERENCES

1. Atsuta, T. and Chen, W. F.
"ON COLUMN CURVATURE CURVES," Fritz Engineering Laboratory Report No. 354.404, Lehigh University, Bethlehem, Pennsylvania, June 1970.
2. Bleich, F.
"BUCKLING STRENGTH OF METAL STRUCTURES,"
McGraw-Hill Book Company, Inc., New York, 1952.
3. Chen, W. F.
"GENERAL SOLUTION OF INELASTIC. BEAM-COLUMN PROBLEM," Journal of the Engineering Mechanics Division," ASCE, Vol. 96, No. EM4, Proc. Paper 7482, August 1970, pp. 421-442.
4. Chen, W. F.
"FURTHER STUDIES OF INELASTIC BEAM-COLUMN PROBLEM," Journal of the Structural Division, ASCE, Vol. 97, No. ST2, Proc. Paper 7922, February 1971, pp. 529-544.
5. Chen, W. F.
"APPROXIMATE SOLUTION OF BEAM-COLUMNS," Journal of the Structural Division, ASCE, Vol. 97, No. ST 2, February 1971, pp. 743-751.
6. Lu, L. W. and Kamalvand, H.
"Ultimate strength of laterally loaded columns," Journal of the Structural Division, ASCE, Vol. 94, No. ST6, Proc. Paper 6009, June 1968, pp. 1505-1523.
7. Timoshenko, S. P. and Gere, J. M.
"THEORY OF ELASTIC STABILITY," McGraw-Hill Book Company, Inc., New York, 1961.

7. APPENDIX

 (I)
GENERAL SOLUTION OF ELASTIC BEAM-COLUMN

Consider a member which is subjected to a thrust P, end moments M_{A} and M_{B}, and partly distributed uniform load w as shown in Fig. (14). The governing equations for this elastic beam-column problem are

$$
\begin{array}{ll}
\frac{d^{4} y_{1}}{d x^{4}}+k^{2} \frac{d^{2} y_{1}}{d x^{2}}=0 & \left(0 \leq x \leq x_{1}\right) \\
\frac{d^{4} y_{2}}{d x^{4}}+k^{2} \frac{d^{2} y_{2}}{d x^{2}}=\frac{w}{E I} & \left(x_{1} \leq x \leq x_{2}\right) \tag{16}\\
\frac{d^{4} y_{3}}{d x^{4}}+k^{2} \frac{d^{2} y_{3}}{d x^{2}}=0 & \left(x_{2} \leq x \leq \ell\right)
\end{array}
$$

where

$$
k^{2}=P / E I
$$

The general solutions are obtained in the following forms:

$$
\begin{align*}
& y_{i}=A_{i} \cos (k x)+B_{i} \sin (k x)+C_{i} x+D_{i}+f_{i}(x) \\
& (i=1,2,3) \tag{17}
\end{align*}
$$

where $f_{i}(x)$ are particular solution of the above differential equations and

$$
\begin{equation*}
f_{1}(x)=f_{3}(x)=0 \quad f_{2}(x)=\frac{w}{2 k^{2} E I} x^{2} \tag{18}
\end{equation*}
$$

The twelve integration constants $A_{i}, B_{i}, C_{i}, D_{i}$ are solved from the following twelve boundary conditions:

$$
\begin{align*}
& x=0: y_{1}=0, \quad y_{1}^{\prime \prime}=-\frac{M_{A}}{E I} \\
& x=x_{1}: y_{1}=y_{2}, \quad y_{1}^{\prime}=y_{2}^{\prime}, y_{1}^{\prime \prime}=y_{2}^{\prime \prime}, y_{1}^{\prime \prime}=y_{2}^{\prime \prime \prime} \\
& x=x_{2}: y_{2}=y_{3}, \quad y_{2}^{\prime}=y_{3}^{\prime}, y_{2}^{\prime \prime}=y_{3}^{\prime \prime}, y_{2}^{\prime \prime \prime}=y_{3}^{\prime \prime \prime} \\
& x=l: y_{3}^{\prime \prime}=0, \quad y_{3}^{\prime \prime}=-\frac{M_{A}}{E I} \tag{19}
\end{align*}
$$

These conditions become twelve simultaneous equations as follows:

where

$$
\begin{array}{ll}
\mathrm{C}_{1}=\cos \left(\mathrm{kx}_{1}\right) & \mathrm{S}_{1}=\sin \left(\mathrm{kx}_{1}\right) \\
\mathrm{C}_{2}=\cos \left(k x_{2}\right) & \mathrm{s}_{2}=\sin \left(k x_{2}\right) \\
\mathrm{C}_{\ell}=\cos (\mathrm{k} \mathrm{\ell}) & \mathrm{s}_{\ell}=\sin (\mathrm{k} \ell)
\end{array}
$$

The constants are solved as follows:

$$
\begin{align*}
& A_{1}=\frac{{ }^{M} A}{k^{2} E I} \\
& B_{1}=\frac{1}{k^{2} E I} \frac{M_{B}-M_{A} \cos k \ell}{\sin k \ell}-\frac{w}{k^{4} E I} \frac{\cos k\left(\ell-x_{1}\right)-\cos k\left(\ell-x_{2}\right)}{\sin k \ell} \\
& C_{1}=\frac{M_{A}-M_{B}}{k^{2} \ell E I}-\frac{w}{2 k^{2} \ell E I}\left(x_{2}-x_{1}\right)\left(2 \ell-x_{1}-x_{2}\right) \\
& \mathrm{D}_{1}=\frac{1}{\mathrm{k}^{2}} \frac{\mathrm{M} A}{\mathrm{EI}} \\
& A_{2}=\frac{M_{A}}{k^{2} E I}+\frac{w}{k^{4} E I} \cos k x_{1} \\
& B_{2}=\frac{1}{k^{2} E I} \frac{M_{B}-M_{A} \cos k \ell}{\sin k \ell}-\frac{w}{k^{4} E I} \frac{\cos k x_{1} \cos k \ell-\cos k\left(\ell-x_{2}\right)}{\sin k \ell} \\
& C_{2}=\frac{M_{A}^{-M} B}{k^{2} \ell E I}-\frac{W}{2 k^{2} \ell E I}\left(x_{1}^{2}+2 x_{2}^{\ell \ell-x_{2}^{2}}\right) \tag{21}\\
& D_{2}=\frac{M_{A}}{k^{2} E I}-\frac{W}{k^{4} E I}\left(1-\frac{k^{2} x_{1}^{2}}{2}\right) \\
& A_{3}=\frac{M_{A}}{k^{2} E I}+\frac{w}{k^{4} E I}\left(\cos k x_{1}-\cos k x_{2}\right) \\
& B_{3}=\frac{1}{k^{2} E I} \frac{M_{B}-M_{A} \cos k \ell}{\sin k \ell}-\frac{W}{k^{4} E I}\left(\cos k x_{1}-\cos k x_{2}\right) \cot k \ell \\
& C_{3}=\frac{M_{A}-M_{B}}{k^{2} \ell E I}-\frac{w}{2 k^{2} \ell E I}\left(x_{1}^{2}-x_{2}^{2}\right)
\end{align*}
$$

$$
\begin{equation*}
D_{3}=\frac{M_{A}}{k^{2} E I}+\frac{w}{2 k^{2} E I}\left(x_{1}^{2}-x_{2}^{2}\right) \tag{21}
\end{equation*}
$$

Let them be expressed in the following form:

$$
\begin{align*}
& A_{i}=\frac{M_{m c}}{k^{2} E I}\left(a_{i m}+q a_{i w}\right) \\
& B_{i}=\frac{M_{m c}}{k^{2} E I}\left(b_{i m}+q b_{i w}\right) \\
& C_{i}=\frac{M_{m c}}{k^{2} 1 E I}\left(c_{i m}+q c_{i w}\right) \tag{22}\\
& D_{i}=\frac{M_{m c}}{k^{2} E I}\left(d_{i m}+q d_{i w}\right)
\end{align*}
$$

Where

$$
q=w / k^{2} M_{m c}
$$

Location of the maximum bending moment $x=x_{i}{ }^{*}$ for each portion is obtained from the condition

$$
\frac{d^{3} y_{i}}{d x^{3}}=A_{i} k^{3} \sin \left(k x_{i}^{*}\right)-B_{i} k^{3} \cos \left(k x_{i}^{*}\right)=0
$$

or

$$
\begin{equation*}
k x_{i}^{*}=\tan ^{-1} \frac{B_{i}}{A_{i}}=\tan ^{-1} \frac{b_{i m}+q b_{i w}}{a_{i m}+q a_{i w}} \tag{23}
\end{equation*}
$$

The ultimate state is obtained when the maximum bending moment reaches the plastic moment of the member $M_{m c}$, ie,

$$
\begin{aligned}
&\left.\frac{d^{2} y}{d x^{2}}\right|_{x}=x^{*}=-A_{i} k^{2} \cos \left(k x^{*}\right)-B_{i} k^{2} \sin \left(k x^{*}\right) \\
&+ f_{i}^{\prime \prime}\left(x^{*}\right) \\
&=-\frac{M_{m c}}{E I}
\end{aligned}
$$

or

$$
\begin{equation*}
A_{i} \cos \left(k x^{*}\right)+B_{i} \sin \left(k x^{*}\right)=\frac{M_{m c}}{k^{2} E I}-\frac{1}{k^{2}} f_{i}^{\prime \prime}\left(x^{*}\right) \tag{24}
\end{equation*}
$$

Elimination of x^{*} from Eq. (23) and Eq. (24) gives the ultimate load q_{0}. There are five possible cases in the ultimate state according to the location of the plastic hinge (Fig. 15):

Case-I The plastic hinge in the left portion

$$
\begin{align*}
& x^{*}=x_{1}{ }^{*}\left(x_{1}{ }^{*}<x_{1}, x_{2}^{*}<x_{1}, x_{3}^{*}<x_{2}\right) \\
& q_{o}=\frac{1}{b_{1 w}}\left(\sqrt{1-a_{1 m}^{2}}-b_{1 m}\right) \tag{25}
\end{align*}
$$

Case-II The plastic hinge at the left boundary

$$
\begin{align*}
& x^{*}=x_{1}\left(x_{1}{ }^{*}>x_{1}, x_{2}{ }^{*}<x_{1}, x_{3}{ }^{*}<x_{2}\right) \\
& q_{0}=\frac{1}{b_{1 w}}\left[\frac{1-a_{1 m} \cos \left(k x_{1}\right)}{\sin \left(k x_{1}\right)}-b_{1 m}\right] \tag{26}
\end{align*}
$$

Case-III The plastic hinge in the middle portion

$$
\begin{align*}
& x^{*}=x_{2}{ }^{*}\left(x_{1}{ }^{*}>x_{1}, x_{1}<x_{2}{ }^{*}<x_{2}, x_{3}{ }^{*}<x_{2}\right) \\
& q_{0}=\frac{1-a_{2 m}{ }_{2}{ }_{2 w}-b_{2 m}{ }^{b} 2 w}{1-a_{2 m}^{2}-b_{2 m}^{2}}-\sqrt{\left(\frac{1-a_{2 m}{ }_{2}^{2}-b_{2 m} b_{2 w}^{2}}{1-a_{2 m}^{2}-b_{2 w}^{2}}\right)^{2}} \\
& -\frac{1-a_{2 m^{2}-b_{2 m}^{2}}^{1-a_{2 w}^{2}-b_{2 w}^{2}}}{1-2} \tag{27}
\end{align*}
$$

Case-IV The plastic hinge at the right boundary

$$
\begin{align*}
& x^{*}=x_{2}\left(x_{1}{ }^{*}>x_{1}, x_{2}{ }^{*}>x_{2}, x_{3}{ }^{*}<x_{2}\right) \\
& q_{0}=\frac{1-a_{3 m} \cos \left(k x_{2}\right)-b_{3 m} \sin \left(k x_{2}\right)}{a_{3 w} \cos \left(k x_{2}\right)+b_{3 w} \sin \left(k x_{2}\right)} \tag{28}
\end{align*}
$$

Case-V The plastic hinge in the right portion

$$
x^{*}=x_{3}^{*}\left(x_{1}^{*}>x_{1}, x_{2}^{*}>x_{2}, x_{3}^{*}>x_{2}\right)
$$

$$
\begin{aligned}
& q_{o}=-\frac{a_{3 m}{ }^{a_{3 w}+b_{3 m} b_{3 w}}}{a_{3 w}^{2}+b_{3 w}^{2}}+\sqrt{\left(\frac{a_{3 m} a_{3 w}+b_{3 m} b_{3 w}}{a_{3 w}^{2}+b_{3 w}^{2}}\right)^{2}}+ \\
& \frac{1-a_{3 m}^{2}-b_{3 m}^{2}}{a_{3 w}^{2}+b_{3 w}^{2}}
\end{aligned}
$$

The location of the plastic hinge $x^{*}{ }_{i}(E q .23)$ and the ultimate load q_{0} (Eq. 25 to 29) are functions of each other. Therefore, they have to be solved by iteration. A computer program was made for this purpose.

Fig. I Idealization of Moment Curvature Relation

(c) Paritially Disiributed

Load

(e) Unsymmetrical Concentrated Load

(f) Unsymmerrical Distributed Load

Fig. 3 A Bounded Solution of Beam-Column

Fig. 4 Average Flow Moment of Fixed Beam-Columns

Fig: 5 Simple Beam-Column with Uniformi Load

Fig. 6 Fixed Beam-Column with Uniform Load

Fig. 7 Simple Beam-Column with Concentrated Load

Fig. 8 Fixed Beam-Column with Concentrated Load

Fig. 9 Beam-Column with End-Moments

Fig. 10 Accuracy of Eq. 15 (Uniform Load on Simple Beam-Column)

Fig. 11 Accuracy of Eq. 15 (Uniform Load on Fixed Beam-Column)

Fig. 12 Accuracy of Eq. 15 (Concentrated Load on Simple Beam-Column)

Fig. 13 Accuracy of Eq. 15 (Concentrated Load on Fixed Beam-Column)

Fig. 14 Laterally Loaded Beam-Column

Case I $x^{*}=x_{1}{ }^{*} \rightarrow 0 \rightarrow 0 \rightarrow$
Case II $x^{*}=x_{1} \rightarrow 0 \rightarrow$
Case III $x^{*}=x_{2}{ }^{*} \rightarrow 0 \rightarrow$ TITI $\rightarrow+$

Fig. 15 Ultimate States

[^0]: ${ }^{1}$ Associate Professor of Civil Engineering, Fritz Engineering Laboratory, Lehigh University, Bethlehem, Pennsylvania.
 ${ }^{2}$ Engineer, Kawasaki Heavy Industries, Ltd., Japan. Now a graduate student, Department of Civil Engineering, Lehigh University, Bethlehem, Pennsylvania.

