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SIMPLE INTERACTION EQUATIONS

FOR BEAM-COLUMNS

by
W. F. Chen1
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ABSTRACT.

Computations to obtain the ultimate strength of an
inelastic beam-column are fairly involved and, at present,
only numerical methods are available to get the best possi-
ble solutions in most cases. For bractical purposes, how-
ever, these numerical approaches are often laborious. This
paper presents simple approximate forms of solutions by
assuming an idealized felatibnship among moment, curvature

and thrust in the ultimate state.

'lAssociate Professor of Civil Engineering, Fritz
Engineering Laboratory, Lehigh University, Bethlehen,
Pennsylvania.

zEngineer, Kawasaki Heavy Industries, Ltd., Japan. Now
a graduate student, Department of Civil Engineering,
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1. INTRODUCTION

In most reference works [2, 7] on the approximate
théory of beam-column problems, the axis of the deflected
beam-column is often assumed to be a certain shape of
curve, such as a sine curve or a parabolic curve. As a
consequence of this, the analysis of the beam-column
problems is considerably simplified. Simple interaction
equations which define the load carrying capacity 6f the
beam-cqlumn can then be obtained. It has béen found [2,
5] that this simplification gives satisfactory results
for simply supported beam-columns under symmetric loading
conditibns. It is clear, however, that this type of sim-
plification is not very suitable for the fast determina-
tion of beam-column strength for the unsymmetric cases or

for the case of beam-column with fixed end supports.

The work reported in this paper is an effort to
help fill part of this gap. Toward this purpose, an
alternative but extremely simple approximate analysis is

developed and applied to various beam-column problems.

In the analysis, the moment-curvature-thrust
relationship is idealized as elastic-perfectly ﬁlastic,
The moment-curvature relationship for a constant thrust
is assumed to be linear up to a certain moment level MmC
From here on the section is assumed to flow plastically
at the constént moment MmC (Fig. 1). The adoption of

this idealized relationship must not be fhought of as



neglecting curvature work-hardening, but rather as
averaging its effect over the entire beam-column. The
apgropriate average flow moment Mmc must lie between the
initial yield moment Myc and the plastic limit moment M
of the cross section (Fig. 1). The choice of the level
Mmc is dependent on the section used as well as on the
gedmetry and loading of the entire beam-column. Once the
proper value of MmC is selected, the maximum load carrying
capacity of beam-columns can be computed in a rather sim-
ple manner by the elastic analysis. The subsequent dis-
cussion in this paper shows how this average flow moment

M may be determined.
mc

2., ESTIMATION OF AVERAGE FLOW MOMENT

All beam-columns to be considered are assumed to

be made of an ideally plastic material which is elastic

up to the yield point and then flows under constant stress.

The corresponding moment—curvature—thrust relationship of
a common structural section with or without the influence
of residual stress is shown by the curve O-E-F in Fig. 1.
The curve may be divided into two parts: Linear elastic
part (O=E) witﬁ an initial yield moment Myc and curvature
work-hardening part (E-F), with the moment asymptotically
approaching the limit valué-Mpc as curvature ¢ tends to
infinity. If Myc is used for the idealized flow moment,
the ultimate strength of a beam-column will be lower than

the actual one, on the other hand, if MpC is used, the



solution will be an upper bound. The exact solution is

thus bounded by the two extreme solutions. A satisfac-

tory selection of the average flow moment MmC will there-

fore enable the estimation of the ultimate strength of

the beam-column with high accuracy.

The yield moment Myc and the plastic limit moment

M__ for a constant thrust P have been obtained in Refs. 3,

pc

for several commonly used structural sections. As an

example, the expression for strong axis bending of a wide

flange section including the influence of residual stress

is

=
<
[¢]

<

M
pc
M

Y

0.9 - (3 (3— < 0.8)
y y
P P .2 p
-1.1 + 3.1(3— - 2(-—p—-' (-p—?_ 0.8)
y y y
(1)
1.11 - 2.64(5)° (3— < 0.225)
Y y A
1.238 - 1.143(3—) - 0.095(5—) " (3— > 0.225)
y y y

where P-is the applied thrust, Py is the yield thrust,

and My is the yield moment in the absence of the thrust P.

Since the average flow moment MmC must lie between

the values M
yc

and M_ , hence, the value of M may be
Pc o ‘mc

represented by



Mine = Mpe = F (Mpc - M) (@

where f is the parameter function

Hh
1

0 corresponds to Mmc M (the upper bound solution)

pPc

+h
[l

1 corresponds to Mmc M (the lower bound solution)

yc

The parameter £ will be a function of the thrust P, the
length L and the boundary conditions of a beam-colunmn.
For simplicity, the parameter function f is assumed to

have the form
£ = 0 . £ B.cC 3
” 1py) 2%y 3(' -) ()

the functions fl’ f2’ and f3 need to be determined for

each type of beam-column.

Example 1 Beam-Column with an Uniformly Distributed
Lateral Load (Fig. 2a)

If P/Py = 0, it is a beam problem and the plastic
limit moment MPc will govern the ultimate state, i.e.,
f =0. If P/Py ~ 1, it is an akially loaded short column

problem and the yield moment‘Myc will be the governing

one, i.e., £ = 1. The elastic solution [see Eq. 7] using
f = 0 and £ = 1 then gives the upper- and lower-bound
interaction plot shown in Fig. 3. The solution f = fl =

P/Py (assuming f2 = 1.0, f3 = 1,0) is found to be in good




agreement with the exact solution reported in Ref. 6.
The approximate solution can be improved by taking f =
f1'= (P/Pyj0'6. Tﬁe improved result is plotted as small
circles in Fig. 3 and given a very good approximation to

the exact solution. Therefore, it seems reasonable to

assume that the function fl‘has the general form
£, = ) | (4)

Consider, nekt, the second parameter fz(L/r), where
L/r is slenderness ratio of the beam-column. If the mem-
ber is very short, it will lose the nature of a column,
and the value of f should be close to 0. By comparison
with the exact solution, the .following formula is an appro-

priate one as correction for short beam-columns

1 (-if > 60)
L 1 L 1 . L
£, = 75 - 35 (20 < = < 60) | (5)
0 (-115 < 20)

Usually, the slenderness ratio of a column is greater

than 60, so that fz(L/r) may be chosen as unity.

The third parameter fS(B.C,) is determined based on
boundary conditions. If a beam-column is fixed, plastic
hinges will form at the ends first as shown in Fig. 4a.
Until the third (and the last) plastic hinge forms at
center C, large rotations will have been experienced at

the previously formed plastic hinges at both ends. At




thé ultimate state, the moments at both ends will be
close to Mp-C and the moment‘aﬁ center C will be close to
Myc' Therefore, the mean value of M c and M c will be
oné of the approkimate values of Mmc; or fz(fixed) = 0.5,

On the other hand, if the beam-column is simply supported,

Myc will be the governing flow moment; fs(simple) = 1.0,

In summary, for a beam-column of usual length (L/r

> 60), MmC has the form

P .
Mpc - (Mpc - Myc) _ (simple)
M = i | (6)
mc p .
Moo - 0.5 p—; (MpC - M) (fixed)

Using the average flow moment MmC in Eq. 6, the ultimate
load w of the beam-column shown in Fig. 2a can be compu-

ted by the formula [7]:

2\ kL
+ cos 5=
Q = wL =k Mmc kL 5 (7)
1 - cos —
2
where
2 P
K= g7
and
A =0 for simple supports

.l =1 | for fixed ends



Using the proposed values; a comparison is made with
the exact solution of a beam-column of a wide flange sec-
tion (8 WF 31) with residual stresses and shown in Fig. 5
(simply supported) and Fig. 6 (fiied ends). ~The solid
lines are exact solutions‘reported in Ref; 6; and the
dotted lines are reSults obtained by the present method.
"They show a sufficiently good agreement with each other.
In case of simply supported beam-columns, however, an
approximation by N = 0.6 gives a better result as plotted
by small circles in Fig. 5.

Example 2 Beam-Column with a Concentrated Lateral Load
: (Fig. 2b)

The parameter f for the average flow moment Mmc will
be the same as in the case of a uniform load. For a fixed
end beam—column; since plastic hinges will be formed at
both ends and under the load at the same time (Fig. 4b),
the governing flow moment will still be the mean value of

Myc and Mpé’ i.e., fs(flxed) = 0.5,

Using the average flow moment MmC in Eq. 6, the
ultimate load Q of the beam-column shown in Fig. 2b can

be computed by the formula:

kL

qQ = 2k Mmc A + cos —5 | (8)
. kL
S1n -——i'

Comparison with the exact solution [6] is shown in
Fig. 7 (simply supported) and Fig. 8 (fixed ends). A

good agreement is observed in both cases. Eq. 8 can be



rewritten in the form:

2
1]

KL . '
s 2k Mmc cot — (simply supported) | (%)
Q. = 2k M__ cot XL (fixed end) (10)
£ me 4 '

It is seen that in these two cases equations are
analogous to each other (note: the valueé of MmC are
different, see Eq.lé), and the ultimate stfength for a
beam-column with both ends fiked (Eq. 10) may be computed
from the beam-column with hinged ends having a reduced
length equal to half the actual length. (It is evident

“ from symmetry that this conclusion is true for the actual

situation).

Referring now to the partially distributed load cases
represented in Fig. 2(c) and proceeding as for an elastic
solution with plastic hinges, one finds the following ex-

pressions for the ultimate lateral load:

kC 2 kL
. T + COS—Z— 11
Q = wC = 2k Mmc i KT o (EE - &9) (11)
4 2 4
where M;c is given by Eq. 6. As can be seen here, the

ultimate load for the fully distributed load case (Eq. 7)
and the concentrated load case (Eq. 8) are particular

cases of Eq. 11.



Example.S Beam-Column with End-Moments (Fig.:Zd)

Consider, next, a beam-column subjected to end
monients.MO and KMO as shown in Fig. 2d. Average plastic:

moment MmC is assumed in a similar form as before:
(M_ = M) (12)
Here, N = 1/2 gives a good approximation for Mmc‘ A
plastic hinge occurs either within the span or at one of
the end supports depending upon the ratio of applied
moments K. The ultimate moment M0 is given by the follow-
ing formulae [7];

if K. < cos kL

M = M ' | (13)

if K > cos kL

sin kL

) me
'/;inz kL + (kK - cos kL)2

Comparison with exact solutions [1] is shown in Fig. 9
(k = 1). Results by the present method (dotted lines) are
computed using N = 1/2. A sufficiently good agreement is

observed.
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3. UNSYMMETRICALLY LOADED BEAM-COLUMN

The average floQ moment Mmc for a symmetrically
loaded beam-column has been obtained in the previous
section. This result (Eq. 6) is considered to be appli-
cable to unsymmetric problems as well, if the unsymme-

tricity is not very large.

The ultimate concentrated load applied unsymmetrically
to a beam-column (Fig. 2e) 1s computed by assuming that the
~last plastic hinge is formed under the load. It has the
form- |

kL, -kL kL
KL A cos ——55——2 + cos 2
Q= 2k Mmc sin =% sin kLA sin kLB (14)

In case of partially distributed load (Fig. 2f), the

expression for ultimate strength becomes lenghty (see

Appendix), but a simple form of solution can be analogized
based on the results for the symmetrically distributed |
case (Eq. 11), and the unsymmetrically concentrated load

case (Eq. 14) as

kC : A cos Efﬁ_iiﬁ + cos kL

Q= 2k M —% _ sin (XL . kG 2 2
me g ipkb 2 4 ginokn -X8y gin(xL. -XG

g | | ATTE B~ 4

(15):

This is considered to be the most general form of solution
for a laterally loaded beam-column, as it covers the ulti-

mate value of a symmetrically distributed load (LA = LB =
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L/2), Eq. 11, or a concentrated load (C = 0), Eq. 14.

Accuracy of Eq. 15 is investigated by comparing with
the elastic solution (Eqs. 25 to 29) presented in Appendix,
where location of plastic hinge is computed exactly. 1In
Fig. 10 to 13, the comparison of interaction relationship
between thrust P and lateral load Q is made. Diagrams
drawn to the right represent location of the last plastic

hinge.

In case of uniform load of the width L/3 (Figs. 10
and 11) some difference is observed between the two solu-
tions. If the eccentricity'of the load is less than L/6,
the error remains Qithin 5% and for e = L/4, it is 13%.
Location of the plastic hinge moves in as P increases, and
when P reaches the:.critical value Pcr‘(Euler's buckling
load) the hinge is formed at the center, in this state the

allowable lateral load Q is zero as to be obvious.

In case of concentrated load (Figs. 12 and 13), results
by Eq. 15 checks very well even for large eccentficity of
loading. The location of plastic hinge does not move until
P reaches certain values, then it moves in as P increases
followihg a curve shown in the right diagram of Fig. 12.

It is interesting to note that, this curve is common for all

values of eccentricity of loading.
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4., CONCLUSION

- The ultimate strengths of beam-columns are obtained
in simplebclosed forms. Although tﬁeyvare approkimate
solutioﬁs, their validity has been shown by comparison
with exact solutions in symmetrically loaded cases. This.
validity is considered to be true in unsymmetric cases
also as long as the unsymmetricity is not very large. The
formulas for the ultimate strength of beam-columns may be

considered ‘as suitable bases for a method of design for

symmetrically as well as unsymmetrically loaded compression

members.
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7. APPENDIX (I)

GENERAL SOLUTION OF ELASTIC BEAM-COLUMN

Consider a member which is subjected to a thrust P,

end moments M, and MB, and partly distributed uniform load

A
w as shown in Fig. (14). The governing equations for this
elastic beam-column problem are

i

4 2
dyy g 4y
it k 5 = 0 (0 <x < xl)
dx dx
4 2
e R R N T, (e
dx dx - - |
4 2
d Yy 5 d Y3 ) .
7 + k 5 = 0 (x2 < x <)
dx dx
where
k? = P/EI

The genéral solutions are obtained in the following forms:

<
it

Ai cos(kx) + By sin(kx) + Cix + Dy o fi(x)

(17)
(i =1, 2, 3)
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where fi(x) are particular solution of the above differential

equations and

g x2 (18)
2k"EI :

fl(x) = fSCX) =0 fz(x) =

The twelve integration constants Ai’ Bi’ C., Di are solved

1

from the following twelve boundary conditions:

M
A
x = 0 Yy = 0, y'l' = - BT
- = | J— t (K — 1 LI - '
X = Xgi ¥y T Yo Yi T Yo Y T Y5 Y] Y5
= - " TR 1"t
X = X Y, ¥h'= vy

2f Yo = Ygs Yy = ¥z Vo
(19)
M
A
X = 8% yg = 0, yg = - ET
These conditions become twelve simultaneous equations

as follows:



/‘ ~
1 0
-1 0
_sl C % S1 -C1 —% 0
_C1 -5 0 C1 S1 0 0
§; -C 0 =S, G 0 0
C2 S2 X, 1 -C2 —82 -X, -1
-Sz _C2 % 0 82 —C2 —% 0
—C2 —S2 0 0 C2 S2 0 0
82 —C2 0 0 —82 C2 0 0
- Cz. SQ L1
”Cg =S, 0 0
~N —
where.
= cos (kx,) = sin(kx,)
= cos(kxz) = sin(kxz)
= cos (k2) = sin(kQ)

16

1 MA
2 EI

o

1 up

(20)
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The constants are solved as follows:

Ma
Ay 5 3o
k“EI
_ 1 Mp~M, cos kg e cos.k(g—xl) - cos k(z—xz)
1 kZEI sin k¢ k4EI sin kg
M, -M
C1 = é B - 2w (xz—xl)(Zl—xl—xz)
k“2EI - 2k %EI
poo 1M
1 k2 EI
M
A W
A, = + cos kx
2 1%pr k%1 1
o 1 MB~MA cos k& ) y Cos le cos k&-cos k(z—xz)
2 szI sin k% k4EI sin k%
(21)
M, -M
Cp = g 2 - (xlz *o2x,h - Xzz)
k" 2EI 2k“4EI
2 2
MA W k X
D2 = 2 - 4 (1 - 2 )
k“EI k 'EI
M
A = é + 4w (cos kx; - cos kx,)
k“EI k EI
M,-M, cos k&
1 B A w
B, = - - (cos kx, - cos kx,) cot k&
3 szI sin k& - k4EI 1 2
M,-M
_ A B w 2 2
C3 = - (x1 - X, )

K2gET  2k2gEI
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+ (x;7 - x,7) (21)

Let them be expressed in the following form:

M
me
A, = (a. + q a. )
1 szI im iw
Mmc
B. = (b, + q b. )
i szI Soim iw
(22)
me
c. = (c. + q c..)
1 kzlEI im iw
me
D. = (d.  + q d. )
i -szI im iw
.Where
2
q = w/k Mo
: *
Location of the maximum bending moment x = X, for
each portion is obtained from the condition
a’y 3 3 -
= A.k” sin (kxi ) - B.k cos-(kxi ) =0
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orTr

1 bim * qbiw

+ a.
4 iw

: (23)
i im

The ultimate state is obtained when the maximum

bending moment reaches the plastic moment of the member

M, ie,
mc
d2y 2 * 2 *
> =-A.k" cos (kx ) - B.k" sin (kx )
dx * i i
X = X
M
* mc
' = -
R (k) = ET
or
* * Moc 1 *
Ai cos (kx ) + Bi sin (kx ) = 5 - = fg (x ) (24)
k"EI k

*
Elimination of x from Eq. (23) and Eq. (24) gives
the ultimate load 9, There are five possible cases in the
ultimate state according to the location of the plastic

hinge (Fig. 15):

Case-I The plastic hinge in the left portion

X =Xy (xl < X1, X, < X s Xg < x2)
(25)
1 /i 2
9% = b v1 %1m blm)
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Case-II The plastic hinge at the left boundary

(26)

1w
Case-III The plastic hinge in the middle portion

X < XZ)

1._a2m a2w-b2m b2w B /{1—a2m a2w—b2m b2w)2

9 = - ) 2 2
1—aZm—me l-a 0Py
1-a, %-p. 2 (27
_ 2m  2m
2 2
lvaZW—bZW

Case-1V The plastic hinge at the right boundary

* * * *
X = X, (xl > X1 X, > Xys Xg < x2)
' ' . (28)
_1—a3m cos(kxz)—b3m sin(kxz)

(o] a

3y cox(kx2)+b3w 51n(kx2)

Case-V The plastic hinge in the right portion

* * * * *

Xq > X,)



21

aSm a3w+b3m b3w + /<;3m a3w+b3m wa 2 +

q_ = - )
o] 2 2 2 2
A3y * 3w : B3y * wa
(29)
2 2
1-a3m-bSm
2 2
agy * b3

. *
The location of the plastic hinge x i (Eq. 23) and
the ultimate load q, (Eq. 25 to 29) are functions of each
other. Therefore, they have to be solved by iteration.

A computer program was made for this purpose.
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Plastic Limit Moment
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. 1 Idealization of Moment Curvature Relation
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