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ABSTRACT

Design formulas are presented for evaluating the ultimate
strength of transversely stiffened plate girder panels under bending,
shear, or a combination of shear and‘bending. The plate girder may be
homogeneous or hybrid with a symmetrical or unsymmetrical cross section.
The formulas were evolved from a study of the numerical data obtained
using fhe analytical methods previously developed in the course of this
research. The ultimate strength of a panel is obtained as a sum of the
contributions by the web buckling strength (beam action), the web post~
buckling strength (tensioﬁ field action), and the flange flexural strength
(frame action). The formulas may be used directly in a load factor design
approach or serve as a basis for a working stress design method. A ten-
tative recommendation is made for precluding the development of fatigue

cracks due to the back-and~forth deflection of the web plate.
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1, INTRODUCTION

The considerable post-buckling strength of plate girder
webs has been tacitly recognized in design by using lower factors
of safety against buckling than against yielding. However, tests
showed that the relationship betweeﬁ the ultimate and buckling
strengths is not proportional. Thus, a consistent margin against
the ultimate strength cannot be achieved&5§ using a conétant
factor of safety in conjunction with the buckling strength - — - the

ultimate strength must be evaluated as such.(3)

(3,4,9

Basler offered a plausiBle theory which gave good

agreement with testg6) and was accepted by AISC as the method for
(2)

designing plate girders in buildings. A slightly modified

version of this theory was also incorporated in the load factor

method proposed under;auspices of AISI for designing steel

highway bridgesﬁzl) Recently, this method has been accepted by

(1)

Further developments of the ultimate

(13)

AASHO for use in practice.

strength theory were made, among others, by Fujii

(17)

and Rockey and
Skaloud who included the effect of flanges on the strength of
the web plate. All these theories are based on the development of

a failure mechanism by the plate girder panel.

Djubek proposed that the maximum web stress in the post-
buckling range of deformations remain under the yield level. From

a series of theoretical computations he established the stress




328.12 -2

amplification factors for various panel proportions to be used with

(12)

the buckling stress.

All of this work has been concerned with symmetrical plate
girders, that is, girders having the neutral axis at the mid-depth of

the girder web. Also, none of these theories have a continuous descrip- ™\

tion of the girder failure mode for a variable combination of shear and

moment. To compensate for these deficiencies, a new approach was dev-

(8

eloped by Chern and Ostapenko. »9,10) This method was also success-

(14)

fully extended to longitudinally stiffened plate girders and confirmed

by additional tests.(ll’ls)

Since for an efficient application the method requires use of
a computer, it is hardly suitable for manual calculations. To overcome
this difficulty, the numerical computer output was utilized to develop

simplified formulas for practical use. So far, this approximation has

)

been successful only for transversely stiffened plate girders and the re-
sultant formulas are described in this report. They can be used directly
in a load factor design approach or serve as a basis for a working stress

design method.

Design Conditions - A typical plate girder panel is shown in Fig. 1(a).

The cross section is unsymmetrical and, for the sake of discussion, the
smaller top flange is assumed to be subjected to compression and the lar-
ger bottom flange to tension. A larger portion of the web plate is thus
under compression., The internal forces acting in the panel are defined at
the mid-length as moment M and shear V. As indicated in the moment dia-
gram, Fig. 1(c¢), a greater moment Mmax is developed at one end of the panel

and it also is taken into consideration in design.
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Since for a particular arrangement of loads on a plate
girder the moment in a panel is directly proportional to the
shear in it, it is convenient to define the moment in terms of the

shear span ratio u.

M o= BbV (1)

where
_ M
b=5Y (2)

Analogously to the theory presented in References 8, 9
and 10 three force conditions are considered here: pure bending
(Vv = 0), pure shear (M = 0, but Moo # 0), and a combination of
shear and bending (M # O, V # 0). 1In the following, the strength
formulas for these cases are described separately and then their

application is illustrated with numerical examples.

Design of Stiffeners ~ This report does not deal with the design of

stiffeners since no additional studies on their strength were conducted
by the project. Current recommendations for proportioning stiffeners

in panels designed for ultimate strength are considered to be adequate.

(1,2)
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2. 'BENDING STRENGTH

It has been found that the'Ultiméte c%pacity of a plate girder
panel subjected to pﬁré béndiﬁé is limited by the strength of the
compression or tension flénge rather than by the buckling of the web
plate, although the web plate after buckling does not contribute to the

strength of the panel as much as it would if it were flat.

The effective cross section of the plate girder panel after
web buckling can be visualized to have the compression flange column
composed of the flange itself and a portion of the web plate. A method
of>analysis based on such an assumption is presented in Ref.9 . Good
correlation was obtained with test results on syﬁmetrical, unsymmetrical,
hybrid and homogeneous plate girders. Although fhe generality of fhis
method is very attréétive, it was desirable to compare it with the

(3)

popular method developed by Basler and Thilr1imann which has been

already accepted by AISC (2) and AASHO (l).

A series of sample computation showed that Basler's method agreed
quite well for symmetrical homogeneous girders énd also that its familiar
and relatively simple formula could be modified to apply to unsymmetrical
and hybrid girders.* Such a modified version of the Basler formula is

given here.

*The approximate adaptation to unsymmetrical girders made in Refs. 1
and 21 is not sufficiently accurate for the general case, but rather,
applicable only to plate girders of slenderness ratio less than approxi-
mately 200. The method for hybrid girders given in Ref, 20 is limited
to symmetrical girders having the web which does not buckle before
yielding.
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The original Basler formula established for symmetrical girders
is (3 |

w <Lo  [1-0.00055¢ (b 5'7‘fTET')] )
u y .cf O Ar " t ’ O.f

where I is the moment of inertia of the cross section, AW = bt is the
area of the web, A_ = A, = A__1s the flangelgﬁei symmetrical girder, E is
the modulus of elasticity,jqcf is the critical stfegswof>the compression
- _flange, and y = y_» b and t are indicated in Fig. 1b: A plausible
extension of this formula to unsymmetrical sections can be made by assuming
that the effect of the buckled web may be evaluated as that for a symmet-
;ical section whose totalldepth is equal to the double of the web pértion
under compression in the unsymmetrical section. The following replacements

are then to be made in Eq. 3:

A = 2yct and b/t = 2yc/t o (4)

Design of hybrid girders requires consideration of different
material properties df the web and flanges. Of particular interest is the
‘case when the web is of lower strength than the flanges. The folloﬁing
formula which also.incorporates a modificatibn for unsymmetrical girders

1s proposed here: ' C

o I vt v, I /
Mu - ';[_7 O {Em _iﬂ - 0.002 .AE._K ( -EE‘_-'Z.BS S_E—")] + (l'iﬂ)} (5) .
\\(\chfﬁ_ | ’ cﬁ fc o yw
in which
.
¥
o E > £
—_ - 2,8 (———) = 0 and 6. = 6. ' (6)
( t 5\6§W v of

Due to a lack of research information, set Oy = Oct when Oy > Ocg
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The additional notation in Eq. 5 is

.or

and

where

Q
i}

I = moment of inertia of the web plate about
the centroidal axis of the whole section.

o}w; yield stress of the web.

= critical stress of the compression flange

Ocf
due to lateral or local buckling.

1) Lateral buckling ( =g 12+5):
2 ¢ |
Ocg a - _Z-).qyc
for o< A< JEﬂ
o =1
Tef - L2 .
for A ;;\ﬁ?_
J{ - fc + (1/3) y t
\EAT ”If ’
c, = half width of the compression flange
dc = thickness of the compression flange
L = unbraced length of the compression flange
L
If = moment of inertia of the compression flange aboqt the
vertlcal ax1s - ‘”
yield stress of the compression flange

yc

(7a)

(7b)

(7c)
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=7
2 ACe
2!
#le 7
L e
2) Local (Torsional) buckling (a-c——> 12 + -éq).
L o ey 1.36.
o T [1-0.53 (A - 045 T o
for : 0.45T<‘Xt'< -JE; (8a)
or -1
e -~ }\2 qyc
-t
for >\t > J_Z— ' (8b)
‘ 2
where A =T : S K (8¢)
"¢ Y 0,425 TR

According to Eq. 5 the plate girder strength‘is assumed to consist .
of two contributions. The first, as given by the expression in brackets,
is the contribution of the web plate up to the point of yielding in the
web. This term is nothing else but the Basler formula (Eq. 3) with the
critical flange stress replaced by the web yield stress and modifications
made for unsymmetrical sections, Since the strength of the panel is
notéé%ﬁépsted;at this point, the second term in parentheses reflects the

total moment contributed by the flanges.

Fquation 5 is on one hand somewhat unconservative since its
composition assumes that the neutral axis remains at its original position
in spite of redistribution of the web stresses due to buckling and
yielding. On the other hand it is conservative since it neglects the
contributi§n to the moment from the increases in web stresses, especially

in the tension zone. Since the equation gives very good correlation with
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(9)

experimental results and a more rigorous approach, these two effects
apparently cancel each other.

)

For symmetrical ( b = 2y, ) and homogeneous (=Qyw =0.¢

girders Eq. 5 reduces to the original Eq. 3.

' 'Tension Flange Failure. When the tension portion of the web is

sufficiently larger than the compression portion, the bending capacity of
the panel may go up to the plastic moment Mb. Due to some uncertainties in
the behavior of a very slender web, it is more conservatively assumed that
the -capacity is limited by the yielding of the tension flange.

. I o
M o= 1--2@q-L 9
L S 9

When it is uncertain whether the compression or the tension

flange failure controls the design, both, Bg. 5 and 9 should be

used to determine which one gives the smaller ultimate moment.
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3. SHEAR STRENGTH
The ultimate strength of a plate girder panel subjected to

pure shear is assumed according to Ref.8 to consist of three con-
tributions: the buckling strength of the web VT (beam action), the
post-buckling strength of the web Vc (tension field action) which
leads to the formation of a tension diagonal in the web, and a con-
tribution resulting from the resistance of the flanges to the change
of the panel from a rectangular to a parallelogram shape Vf (frame
action).

Vg =V +V_ 4V, (10)

These three strength contributions are shown in Fig. 2.

A parametrical study of the numerical output from a computer

program based on the method of Ref. 8 showed that the three individual

contributions could be computed with adequate. accuracy from relatively

simple formulas suitable for manual computations,

Beam Action., - Beam action contribution VT is the shear buckling strength of

the web and is given by the product of the web area and the shear

buckling stress:

V. =A T :bt‘tc.r‘ (11)
w cr
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In order to conveniently define Ter in the elastic, in=-
elastic, and strain-hardening ranges, the following non~dimensional

shear buckling parameter is introduced:

) = b |12 a-2) Syw 5 & iy
v t k \
Vﬁ;,nz E v

where:
v = Poisson's ratio
o = yield stress of the web
yw
E = modulus of elasticity
kV = plate buckling coefficient in the elastic range

Assuming the web plate to be fixed at the flanges and pinned at the

stiffeners, kv is computed as follows:

g =2:3% 835 43 91 4 14,100 (13a)
v o o ;B
~
qu = \;»ffgz '3 v for ¢ < 1.0
or 1< k = 8.98 + 818 _ 2.88 (13v)
' v 2 3
5! o o
¢ - for o 2 1.0
R
With the shear yielding stress
T =0 N3 = 004 Qp (14)
y yw

the shear buckling stress Tep is given then as a function of Ayonly
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Tcr - [1 + 4.3 (0.58 _)\v)l.EG:l T = @S“Z V@RQ (153)

y

for Ay< 0,58
(strain-hardening range)

L = (D
- (TN iED L - Q‘%&q C(\\‘
Top = Ll - 0.615 (- 0.58)]"18:, Too=0 e (15b)
y
for 0.58 < A< V2
(inelastic range)
= — - e i ok W‘g“\! c
cr }\i y N 2 w
for A > V2

(elastic range)

(8)

These are the same relationships as were used in the theory. / They

are shown in Fig,3.

Tehsion Field Action. - The tension field stresses are assumed to

develop in the pattern shown by the middle sketch of Fig.2 . The
inclined band has the maximum intensity which in combination with

the stresses at buckling may not exceed the yielding condition.,

According to Ref.8 , the tension field action contribution vy
o]
is a function of the aspect ratio o, web slenderness ratio (b/t), and
the material yield stress T Since the method of Ref,8 requires
the use of a digital computer} an analysis of the computer output
was performed for various éombinations of geometry and material
properties. It was found possible to separate the effects of « and

A on Vo as shown in Fig.4 . Thus, Vc can be given as a function of

o and A,in three ranges of A,.

[J3

&
L)

™,
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for A< 0.58

_ 0.6 A= 0.348 |

for 0.58 < Ay<y2

- 2
g = 0:9 - 0.787/A3 |

o Vo2 +1.6 P

for Ay> 2

where

o) as
Vv =A —mz\a'\:"}"v!'

P W 3 J3
is the plastic shear force.

Frame Action. - The frame action contribution Vf is the

flanges to the distortion of the panel from a rectangle

(162)

(16v)

(16¢)

(17)

resistance of the

into a parallelo~

gram. The maximum frame action shear is assumed to be reached when the

mechanism shown by the right sketch of Fig. 2 is formed

. Because the con~

tinuity of the web provides sufficient rigidity to, essentially, preclude

rotation of the transverse stiffeners, plastic hinges are assumed to form

in the flanges.

According to the method of Ref.8 a portion of the web plate

is assumed to act with the flanges, For the sake of simplification,

the contribution by the web plate is neglected here.

Since the frame
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action contribution to the ultimate panel strength is, in most cases,
about 10%, this assumption does not introduce any appreciable error in

the final result. Thus,Vf is given by
Ve = 2 (m_ +m) (18a)
£ a c t .

where m, and m_ are the plastic moments of the compression and tension
flanges, respectively, For flanges consisting of rectangular plates,

this equation can be rewritten by

=L 18b
Vf 2a (ch Afc dc + 0yt Aft dt) ( )

where o A

ye? Age dc and o A dt are, respectively, the yield stress,

yt? Tft’
the area, and the thickness of the compression flange and the tension

flange.

Design Formulas. - Substitution of the three contributions into Eq.lO

from Eqs., 11, 16 and 18 gives the following design formulas
for the ultimate shear strength. It is assumed that the yield stress

of both flanges is the same, ch = Gyt = Gyf.

dC + Aft d

u

A o
Vo= vp{[l + 4.3 (0.58 -)\V)1-56] +{2—3— fe t Gyf} (19a)

a A
w yw

for A,< 0.58
(strain~hardening range)
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or v = vp{[r- 0.615 (A~ 0.58)x° | 4 Q:Brv= 0.348

N7 116 | (25%)

+

ié_Afc dc + Aft dt Oyf
2 aaA c
W yw

for 0.58 < A <2
(inelastic range)

. 2 A, d +A__d_ o
o Vu=vp{—1— o 0.9 -0.78708 | J3 Rge 9 T Aee 9 %ye

| (19¢)
A2 \e? + 1.6 2 a &y -
for A,> J—Z_
(elastic range)
For steel with \y = 0.3 and E = 29,000 ksi, Eq. 12 gives
b\’fm | |
Ay= 0.00465 k, (20)

cyw is in ksi and kv is obtained from Eq. 13.

Comparisbn with Test Results and Other Methods. - A comparison of the
proposed. formulas, Basler's$4) and Fujii’s(l3)nbthods with the available
‘test results are shown by the cumulative distribution curves in

Fig.5 . It is seen that the correlation of the proposed formulas

with the test results is within 10%. Basler's methodvgiQes less than

107 deviation for about 65% of the tests‘and larger deviations (up

to 33%) for about 35% of the tests. Since Fujii's method does not

apply to unsymmetrical plate girders, two sets of computations
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were made, The thin dashed line denoted by "S" in the figure re-
presents the Fujii's case when both flanges were assumed to be of
the smaller flange size, and the thin solid line denoted by "L" re-
presents the case of assuming both flanges as the larger flange., It
is seen that Fujii's method gives good correlation with tests for
symmetrical girders, but the method is ambiguous when applied to un-~

symmetrical girders,

End Panel. -~ Full development of the tension field capacity requires
that the neighboring panels be sufficiently strong to anchor it.
This means that either the panel at the end of a girder should have
a very strong end stiffener capable of resisting the horizontal
component of the tension field force,or that the panel should be
designed to develop only the buckling strength. The latter approach
is recommendéd here. Thus, the shear capacity of the end panel is

to be computed from Eq.l0 with Vg = C.

The resultant shear capacity of the end panel is greater
than that specified by AASHO(l) and AISC(Z)because of two reasons:
1) the web plate is assumed to be fixed at the flanges and simply
supported at the stiffeners rather than simply supported at all

edges, and 2) the frame action shear V. is included.




328.12
-16

4, STRENGTH UNDER BENDING AND SHEAR

The strength of a plate girder panel under various combinations
of shear and moment can be described by the interaction curve QE-Q4-Q1—Q2—Q3
shown in Fig.6 . The ordinate gives the shear non-dimensionalized with
respect to the ultimate value for the pure shear case, and the abscissa
is the moment non~dimensionalized with respect to the ultimate moment
for pure bending, The right and left parts are, respectively, for the
larger portion of the web plate under compression and tension as indicated

by the small sketches under the diagram.

Depending on the relative magnitude of shear and moment and
on the direction of the moment, the ultimate strength of the panel may
be controlled by one of the following three conditions: 1) the shear

§££§Bgthux§dqggdzhxmﬁéhdizg (web failure=---portion Q,-Q -Q ), 2) the

bending strength reduced by shear and limited by the compression flange

i

;ﬁéi}ﬁ?eW(portion Q,-Q_), and 3) the bending strength reduced by shear
ggévyipited by the yielding of the tepsion flangg (portion QS-Q4)° The
mechanisms of failure are indicated by the insert sketches., The in-
dividﬁal contributions due to beam, tension field and frame actions are
shown schematically by separate areas in the interaction diagram., The
design procedure recommended here is to compute the ultimate strength
for each applicable strength condition and use the lower value as the

controlling one.

Web Failure. (Curve Q4~Q1-Qe in Fig.§ ) - As the insert in Fig. § shows,
the panel strength is obtained as a sum of buckling (beam action), post=-

buckling (tension field action), and flange flexural (frame action)

contributions.
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This is analogous to the case of pure shear, except that now each con-

tribution is affected by the presence of bending moment,

Vuc = VTC + Voc + Vfc (21)

where subscript ¢ indicates the combination of shear and bending forces.

The beam action contribution is
V. =T A (22)

Te is the shear buckling stress of the web subjected to shear and
bending stresses as shown in Fig.7 . It may be computed with adequate

accuracy from the following interaction equation

N N o o \2
€i> +1;4$(ﬂ;)+1£‘§ %i = 1.0 (23)
where Jleows
Tcr = shear buckling stress for pure shear according to
Eqs. 15
o, = buckling stress at the extreme compression fiber of
the web for combined loading (Fig.7 )
Oup = buckling stress under pure bending according to Eq..24
R = ratio of the maximum tensile stress (or minimum com~

pressive stress) to the maximum compressive stress

(see Fig.7-). R is negative when the stress is temnsile.
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The buckling stress under pure bending, 0. is to be computed from

the following equations which are analogous to Egs.15

for Ab < 0.58
(yielding)

_ - - 118
Oup = [1 0.615 (kb 0.58) ] Gyw

for 0.58 <A <\[2

(inelastic range)

or

1
Oup = N cyw
b

for hb > sz %

(elastic range)

where

used for T
cr

(242)

(24¢)

_by\|12_(1-v?) %y \’ 5 (2
r =L = 1.314)_\|—=X- 5)
b t\‘j ?E 5 Av Ky,

kb, the plate buckling coefficient is conservatively obtained by as-

suming o = © and deriving the following formula by curve fitting

k, = 13.54 - 15.64 R + 13,32 R + 3.38 &° (26)

for (~1.5) < Rg (0.5)
Since . is directly related to Te by

LS v

) e N Ao, o "
C»’! ¢ 4 ‘L S ok B

~. Loy

\/\ h
£ v
0
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o, = Wb Ay /I)T (27)

Equation 23 can be solved for Te

VF oy 16
(3=R)® 4+ 16 ~ (1+R)F

= 8
TC cr 2.[2 + (1-R) F°] (2 )
where
Lby A T
F = cC w . cr (29)
I o

crY

Experimental evidence shows that full plastic moment and
shear force can be developed for low b/t. In view of this, it is
{ tentatively recommended here not to consider interaction whenever hv

and \, are less than 0,58, Then{ o =o  and T = R R
b e yw c cr '

The tension field action contribution to the web strength
was found from numerical computer results to vary only about 2% due to the

application of bending, Therefore, it is assumed that
Voc - VG (30)

where V_ is computed using Eqs.16.

The frame action contribution is usually quite small in
ordinary welded plate girders (see Fig. g ). Thus, it would be quite
adequate to use an approximate reduction factor to consider the effect
of axial force in the flanges instead of performing exact computations
of Ref,10, The effect of bending on the frame action is assumed to be

the same as on the shear buckling stress,
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where Vf is from Eq.18 (the constant 0,01 serves to simplify
computations when the strength is limited by the failure of the

compression flange).

The ultimate shear is then obtained by adding the results

of Eqs.22y 30 and 31 according to Eq. 21.

Compression Flange Failure. (Curve Qz_Qa in Fig. 6 ) ~ In this range of
moment~shear combinations, the compression flange fails before the web
strength can be fully developed. Thus, bending is now the principal
1oading parameter, However, it is still convenient to define the panel
strength in terms of shear given as a sum of the beam, tension field

and frame action contributions,

The beam action and frame action contributions are computed

from Eqs, 22 and 31.

However, the tension field action does not‘fully develop and
a special study was needed to arrive at an acceptably simple formula
for its computation., The formula finally selécted on the basis of a
parametrical study of the numerical computer output of the method of

Ref,10 is

(A +30t2) O =0) =BV

fc

V' o= fc 9 (32)

¢ (180 335, )
b/t gw Ve

T

|
1

3

where

.
- C
Vee = (0,01 + == >vf (31)
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=21
B = 0.338) - 0.196 (33a)
for 0.58 <A, < \2
or B = 0.235A, - 0.05 (33b)
for >\v >\/2
Av is given by Eq.12 and Gyw is in ksi,
Besides the composition of Eq. 32, the parameter which
was developed from the numerical output is B. Figure 8 shows a plot
of B versus KV. The points give the values of B obtained by equating
the ultimate strength expressed by the design formula to the theore—
tical ultimate strength at the point of transition from web failure

to compression flange failure; each point represents a particular aggl,x/
_each p P particu.ar pe o

A EgégégggégéﬁFfiﬁthrough the plotted points was used to find the

expression for B when KV >\[E: Eq.33b.

vt
oC

mation is made, Eq.33a.

represents only a small portion of the total shear strength,

o the effect of B would be negligible, Thus, a straight-line approxi-

Since for 0,58 < ?\vf_\/-21 ’

The ultimate panel shear causing failure of the compression

flange is given by the sum of the values from Egs. 22, 31 and 32.

- ]
vuc - ch + vfc + VGC

(34)
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and the corresponding panel moment is

N

Mpe =P Ve = M, (35)

Equation 35 indicates that Muc should not exceed Mﬁ. Since the nature

of the approximations involved in the evaluation of Véc could lead to an

unrealistic condition of Mﬁc, computed from Eqs. 34 and 35, being less
than Mﬁ for the case of pure bending, the constant 0.01 was introduced

into Eq. 31 to preclude this situation. The result is illustrated in the

- right lower corner of the interaction diagram of Fig. 9

.

Ultimate Strength Under Bending and Shear. — Since the specific combi-

nations of moment and shear which are controlling for the web or compre-

ssion flange failure modes are not defined, it is necessary to check

both modes and select the one which gives a lower capacity.

A tyﬁical interaction diagram based on the above derived
formulas is shown in Fig. 9; A ray emanating from the origin repre-
gsents an increasing load for a particular moment-shear combination.
Two intersection points with the interaction curves are shown, one due
to web failure and the other due to the compression flange failure.
The smaller shear is to be selected as the controlling ultimate shear.

For the two rays shown, the controlling cases are indicated with the

heavy dots.
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Maximum Panel Moment, - Since in a panel under combined forces the
moment at one end of the panel is greater than the mid-panel moment
used in the analysis (Fig. 1), it may happen that the strength will
be controlled by this maximum panel moment Mﬁax‘ This is particularly
true for panels with large aspect ratios.

A reasonable and sufficiently accurate approach appears to
be a requirement that the maximum panel moment be below the moment
which would cause failure underiéﬁiéﬁkgﬁﬂ?éé}j
Thus,

Mu .
Vd T h o+ ¥ ) (36) ,

where Mﬁ is the smaller value of Eq.5 or Eq.9.%

Tension Flange Yielding. — As indicated by the vertical line marked

when the panel strength is limited by the yielding of the tension
flange. This criterion may be somewhat conservative for sections with
low b/t (compact sections) or in cases when most of the web is in
tension and essentially full plastic moment may be attained (see the
left-most curves in Tigs. 6 and 9 ). It is left to the judgement of

the designer when he would want to take advantage of the additional

panel cépaoity due to plastification.

*A more refined check on the compression flange capacity is (with Mﬂ

from Eq.5)
M o

u . ye
b (W + % o) O.¢

Vo = (37)
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5. CONSIDERATION OF FATIGUE

Many tests as well as a comprehensive study conducted speci-
fically for this purpose(l9) showed that initial out-of-plane deflec-
tions of the web plate have no detrimental effect on the ultimate
gtrength of girders subjected to static loads. However,.when the load
applicatien is repeated many times as is the oase for bridge and crane
girders, fatigue cracks may develop in the web due to the lateral
flexing ("breathing") of the web at each load application. Initial
deflections and the amount of stressing beyond the buckling stress
level of the web plate apvear to be the principal factors influencing
the development of these fatigue ciacks.(16) Since both of these
factors are functions of the web slenderness ratio b/%, a recommendation

© was made to limit the web slenderness ratio to a specific value.<1’ 21)

This b/t limitation was critically reviewed in Reference 15
in the light of additional tests on unsymmetrical plate girders. It
was found to be somewhat conservative for conventionally proportioned

girders but is endorsed here until more research is conducted.

23, 1,150 v |
£ —=2m e > \ (38)
* \/ 5w ’

where G;W‘ is in ksi.
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It should be noted, however, that Eq. 38 may be unconservative
for girder panels with stiffeners of high torsional rigidity, such as
heavy bearing stiffeners and stiffeners with closed sections. Until more
research is conducted, it is tentatively recommended here that the web
panels adjoining such torsionally rigid stiffeners, be checked not to

buckle under a load equal to abowt 1.1 of the working load.




6. GIRDERS WITHOUT INTARVEDIATE STIFFENERS

Plate girders having stiffeners only at the supports (bearing
stiffeners) and possibly under heavy concentrated loads are of considerable
economic interest. As described in References 8 and 10, such plate
girders may be safely and accurately designed by neglecting the
contribution of the tension field action (post—buokling strength) whenever

the panel aspect ratio o exceeds 3.0. Thus,

V =V_. +7 (39)

where VTG and Vfo are given by Eqs. 22 and 31, respectively, or by
Egs. 11 and 18 for the case when M= O, It is important that such
long panels be always checked for the maximum panel momert according

to qu 36.

Plate girders without intermediate stiffeners and subjected
to uniformly distributed static loading, such as roof girders, have

(7)

attracted attention of engineers in Sweden. A temporary design
gpecification was developed nrimarily on the basis of experimental
work. A comparison of Eq. 39 with this specification for a few samnle

girders showed that for most cases Ig. 39 was more conservative than

the specification rules.
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7. DESIGN PROCEDURE AND NUMERICAL EXAMPLE

The sequences for the computation of the ultimate strength of
a panel subjected to pure bending, pure shear or a combination of bending
and shear are shown schematically by block diagrams in Figs. 10a, 10b
and 11, respectively. The following numerical ekample illustrates the

procedure in detail.

Example

Given is a bridge girder ﬁanel with the following dimensions

(in inches) and material properties:

Panel length ¢ a = 126.0

Panel depth : b= 84.0

Compression flange: 2cC X dc = 27.0 x 2.5
Tension flange : 2ct X dt = 27.0 x 1.75
Web : bxt=284x7/16

Unbraced length of the compression flange: L = 126.0

Yield stress of the compression flange H Gyc = 100.0 ksi

tension flange : Gyt = 100.0 ksi

web : Gyw = 36,0 ksi
Cross~-sectional properties: I = 229,000.0 in.4,Iw = 22,750.0 in.4, If =
4,100 1nh, A, = 67.5 in.%, AL = 47.2 1n.%, A =36.75 in.%, y_ = 36.4 in.,

V. = 47.6 in.

Non-dimensional parameters: a = a/b = 1.5, b/t = 192, 2yc/t = 166,

R == (y./y,) == 1.28
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Find:
The ultimate panel strength for:
(a) Pure bending
(b) Pure shear

(¢) Combination of bending and shear with ﬁ = M/bv = 14.0

Check fatigue requirement:
1,150 1,150

/qyw v 36

Eq. 38: 192 = b/t

> 2yc/t, therefore, 0.K.

(a) &ending Strength

Check: 2 c /d_ = 27.0/2.5 = 10.8

12 + L/(2c ) = 12 + 126.0/27 16.7 > 10.8

A Thus, lateral buckling of the compression flange governs

N 100 67.5 + (1/3)(36.4) (7/16) ) _
Eq. 7e: N[ = 126\’;9’000“2( T = 0.314< {2

100(L - 0.314%/4) = 97.5 ksi

1l

Eq. 7a: Créf

Check:
ec Cryw

Check: y /t - 2.85B/0 = (166/2) - 2.85 y (29,000/36) = 2.0 0 0.k

36.0 kei <:crgf = 97.5 ksi. Thus, use O, = 36.0 ksi

Eq. 5 (Mu)c T 36.4

_ 229,000 22,750 . 36 . 22,750
(97.5) {1 229,000 * 97.5  |329,000

36.4(7/16)

- 0.002 ( €7.5 )(2)]} = 575,000 kip-in.

(Mu)c = 575,000 kip-in.

_ 229,000
u’'t 47.6

22,750

(100)[1 - 555560

- 36 S
(1r - T(.:)-O_)] = 450,000 kip-in.
(Mu)t <:(Mu)C , thus, yielding of the tension flange governs:

Mu = 450,000 kip-in.
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(b)
For
Eq.
Eq.
Eq.

Eq.

'(C)

For

Eq.

Eq.
Eq.

For

Eq.
Eq.
Eq.

Eq.

12 -29

Shear Strength

o =1,5> 1.0

13: k = 8.98 + 6.18/1.5% - 2.88/1.5° = 10.88
17: v = 36(36.75)/V3 = 763 kips
: .
, B 12(1 - 0.3%) 36 _
12: Ay = 192 \[29,000 2 V3 10.88 - —;—'—65—3_—_@—

2

u 2
(1.64) J 1.5%2 4+ 1.6

67.5(2.5) + (47.2)(1.75) ,100 )}
126(36.75) Y36

763 (0.372 + 0.310 + 0.127) = 284 +237 + 97 = 618 kips

W) ) ()

Vu = 618 kips

Combined Shear and Bending Strength

Web Failure:

26: kb = 13.54 - 15.64(~1.28) + 13.32(—1.28)2 + 3.38(—1.28)3 = 48,24

~ 10.88

1.18

24b: O"__ = 36[1 - 0.615(1.03 - 0.58)" "] = 27.4 ksi
A, = 166572
L5e: - ————99————2 = 7.72 ksi
T3 (1.64)
b9 p o 1MA(8L)(36.4)(36.75) _7.72  _ | g,

229,000 27.4

Jﬁ1}94>2(3 +1.28)% + 16 - (1 - 1.28)(1.94)
202 + (1 + 1.28) (1.94)%]

28:. ’I; = 7.72

22: V., = 3.56(36.75) = 131 kips

= 3.56 ksi
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Eq. 30: Voo = Vg = 237 kips

3.56 \

Eq. 21: (Vuc)w = 131 + 237 + 45,6 = 413.6 kips

(V,.), = 413.6 kips

For "\, = 1.64 >V2
Eq. 33b: B = 0.235(1.64) - 0.05 = 0.335

Eq. 27: (rc = 3.56(1.94)(27.4/7.72) = 24.4 ksi

_ [67.5 + 30(7/16)%1(97.5 = 24.4) -14(45.6)

Eq. 32: z; 305 kips
R 33:]763>(180) 33(84) 4y
"2 \237/\192 36(36.,4)
Eq. 343 (V ) = 131 +305 + 45.6 = 481.6 kips
(Vuc)c =481.6 kips
Since (V) <’\4(vuc)c , Vo= 413.6 kips

Eq. 35: M = 14(84)(413.6) = 486,000 kip-ir.
Muc = 486,000 kip-in.

Check Maximﬁm Panel Moment

s -
Eq. & (or from(a)): (Mu)c= 575,000 kip-in.

Eq. 9 (or from(a)): (Mu)t = 450,000 kip-in.

Since (Mu)c‘>'(Mu)f y use (Mu)t

Eq. 36: The ultimate shear v' 450,000

w " BG4k +@A/DI.5y - 363 kips
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S%?ce V& <.Vuc , (363 ( 413.6), the ultimate capacity of the panel

uﬁéer combined loads (/{= 14) is

i
i

V. =V' = 363 kips
uc u

Vi,

and (Eq. 35): M _ = 14(84)(363) = 427,000 kip-in.

M = 427,000kip-in.
uc

(d) Summary of Results

(a) Pure Bending: =----=---mmmesccmmeeeoeea- M o= 450,000 kip=-in.
(b) Pure Shear: ====mr-emrmemcccmcamccasneenn—— Ve = 618 kips

, " .
(¢) Combined Bending and Shear (f4= o 14): Vie = 363 kips

M
uc

]

427,000 kip-in.




328.12 : =32

8. ACKNOWLEDGEMENTS

This report was’prepared as part of a research project'on
unsymmetrical plate girders c;nducted in the Department of Civil Engi-
.neering, Fritz Engineering Laboratory, Lehigh University, Bethlehem,
Pennsylvania. Dr. David A. VanHorn is Chairman of the Department and

Dr. Lynn S. Beedle is Director of the Laboratory.

The authors express their,gratitude to the American Iron and
Steel Institute, the Pennsylvania Department of Transportation, the
federal Highway Administration of the U. S. Department of Transportation,
and the Welding Research Council for supporting this project. They also
gratefully acknowledge the technical guidance provided by the Welded Plate

Girder Subcommittee of the Welding Research Council under the consecutive

. ’ .
chairmanship of Messrs. M. Deuterman, E. G. Paulet, and G. F. Fox and by

the Task Group on Unsymmetrical Plate Girders under the chairmanship of

Mr. C. A. Zwissler and, lately, of Mr. L. H. Daniels.

The detailed reviews of this report and suggestions made by

Messrs. H. G. Juhl, J, Nishanian and J. L. Durkee are sincerely appreciated.




328.12 -33

9. APPENDIX I. - REFERENCES

1. American Association of State Highway Officials, Interim Specifica-
tions for Highway Bridges, 1970-71, AASHO, Washington, 1971.

2. American Institute of Steel Construction, Specification for the
Design, Fabrication and Erection of Structural Steel for
Buildings, AISC, New York, 1963.

3. Basler, K., and Thurlimann, B., "Strength of Plate Girders in Bending",
Proceedings ASCE, Vol. 87, STT, August 1961.

4. Basler, K., "Strength of Plate Girders in Shear," Proceedings
ASCE, Vol. 87, ST7, October 1961.

Se Basler, K., "Strength of Plate Girders under Combined Bending and
Shear," Proceedings ASCE, Vol. 87, ST7, Cctober 1961.

6. Basler, K., Yen, B.T., Mueller, J.A.,and Thurlimann, B., "Web Buckling
Tests on Welded Plate Cirders," Welding Hesearch Council Bulletin
No. 64, Few York, September 1960.

7.  Bergfelt, A.,and llovik, J., "Thin-walled Deep Plate Girders Under
Static Loads", Final Report of the Eighth Congress of the Inter-
national Association for Bridge and Structural Engineering, held
in Tew York, September 1968, ETH, Zurich.

8. Chern, C.,and Ostapenko, A., "Ultimate Strength of Flate CGirders
Under Shear", Fritz lngineering Laboratory Revort No. 328.7,
Lehigh University, August 1969.

9. Chern, C.,and Ostapenko, A., "Bending Strength of Unsymmetrical
Plate Girders", Fritz Lngineering Laboratory Report No. 328.8,
Lehigh Tniversity, September 1970.

10. Chern, C.yand Ostavenko, A., "Ungymmetrical Plate Cirders under
Shear and Xoment'", Fritz Ungineering Laboratory Revort No.328.9,
Lehigh University, October 1970.

11. Dimitri, J.R.,snd Ostapenko, A., "Pilot Tests on the Static Strength
of Unsymmetrical Flate CGirders", Melding Research Council
Bulletin No.l56, New York, November 1970.

12. Djubek, J., "The Design Theory of Slender Webplate Pars',
Stavebnicky Casovis, Sav &V, 8, Bratislava, 1967.




=34

328.12

13.

14,

150

16,

17.

18.

16.

20.

21.

Tujii, T.y "On an Imvroved Theory for Ir. Basler's Theory," Final
Report of the Eighth Congress of the International Association
for Bridge and Structural Engineering, held in Wew York,
September 1968, LTI, Zurich. '

Ostapenko, A. and Chern, C., "Strength of Longitudinally Stiffened
Plate Girders under Combined Loads", Fritz lingineering Laboratory
Report ¥o.328.10, Lehigh University, December 1970.

JLParsane jad, S.,and Ostavenko, A., "On the Matigue Strength of Un-
symmetrical Steel I'late Girders," YWelding Research Council
Bulletin No. 156, Yew Yerk, November 197C.

Patterson, P.J., Corradc, J.A., Fuang, J.S5.,2nd Yen, B.T., "Fatigue
and Static Tests of Two Welded Plate Girders," Welding Research
Council Bulletin Yo.155, New York, October 1970,

Rockey, K.C., and Skaloud, M., "Influence of Flange Stiffness upon
the Load Capacity of Webs in Shear," T[inal Report of the Tighth
Congress of the International Association for Bridge and Structural
Engineering, reld in Yew York, September 1968, ETH, Zurich.

Schueller, W.,and Cstanenko, A., "Tests on a Transversely and on a y
Longitudinally Stiffened Tmsymmetrical Plate Girder", Welding
Research Council Bulletin No.156, New York, November 1970.

Shelestenko, L.P., Dushnitsky, V.M. and Borovikov, V., "Investigation
of the Influence of Initial Wedb Deformations on the Ultimnte
Strength of Welded Plate Girders", Research Qg_Sfeel and Comnosgite
Suverstructures of Bridges, No.76, Transport, Moscow, 1970.(In Russian)

Subcommittee 1 (Hybrid Besms and Girders) of the Joint ASCE-AASHQ
Committee on Flexural Members, "Design of Tybrid Steel Beams",
Proceedings ASCE, Vol.U4, ST6, June 19686,

Vincent, G.S., "Tentative Criteria for load Factor lesign of Steel
Highway DBridges", American Iron and Steel Institute Pulletin
0.15, ¥arch 1969.




328.12

fe

£t

A =bt
w

(2}

- T

< <

<}

fec

|_d<-‘n

10. APPENDIX II. - NOTATION

Area of the compression flange.

Area of the tension flange.

Area of the web.

Parameter defined by Eq. 33.

Modulus of elasticity (Young's modulus).
Factor defined by Eq. 29.

Moment of inertia of the girder cross section.

Moment of inertia of the compression flange about the vertical
axis.

Moment of inertia of the web about the centroidal axis of
the whole cross section.

Unbraced length of the compression flange.

Design moment at mid-panel.

Maximum moment in the panel.

Plastic moment of the panel.

Ultimate moment of tke panel under pure bending.

Ultimate moment of the panel under combined forces.,

Moment causing yielding of the tension flange.

Ratio of the maximum tensile stress (or minimum compressive
stress) to the maximum compressive stress of the web (negative
when the stress is tensile).

Design shear at mid-panel.

Frame action shear under pure shegr.

Frame action shear under combined forces.

Plastic shear of the web.
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Tension field action shear under pure shear.

Tension field action shear under combined forces.
Incomplete tension field action shear under combined forces.
Beam action shear under pure shear.

Beam action shear under combined forces.

Ultimate shear strength of the panel under pure shear.

Ultimate shear controlled by the maximum panel moment.
Ultimate shear strehgth of the panel under combined forces.
Panel length.

Panel depth.

Half width of the compression flange.

Half width of the tension flange.

Thickness of the compression flange.

Thickness of thebtensioﬁ flange.
Plate buckling coefficient for pure shear (Eq. 13a and 13b),

Plate buckling coefficient for pure bending (Eq. 26).

Web thickness. |

Distance from the centroidal axis to the compression edge of the web.ﬁ
Distance from the centroidal axis to the tension edge of the web.
Aspect ratio.

Web buckling parameter for benaing, Eq. 25.

Web buckling parameter for shear, Eq. 12.

Lateral buckling parameter, Eq.Tc.

Local (torsional) buckling parameter, Eq. 8c.

Shear span ratio.

Poisson's ratio.
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Bending buckling stress at the extreme compression fiber of
the web.

Buckling stress of the compression flange.
Web buckling stress under pure bending.
Yield stress of the compression flange.
Yield stress of the tension flange.

Yield stress of the web. |

Shear buckling stress under combined forces.
Shear buckling stress under pure shear.

Shear yielding stress.
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Fig. 1 Plate Girder Panel With Design Forces
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Compute Nen-dimentional Porometers

l

|

Comprassion 'F\B\V\%E] Fo;\\ur 2

Loteral 'P.D\AC‘.\(\EV\'&

|
M (Eg, 7e)
—

e

%a/éc AN Xy

.meal Bucklive

]

Tension ?\Qh%g

YCQ\A\V\%_

|
Ay (B9, Be)
[

0‘,:; (Eﬂ,_"]a. oy B)

A

[

T (.20 0orb) | B

E)Q.nA'm% S\t\few}ﬂx (M‘Qc: M

(E9. B)

1

B onding Strength (Mu),= My,

(Eg. 9)

of (My) o d (Mu)

Bending $\=ven%¥\\ My is ¥he wwmallew C

(a) Bending Strength

Compute
o and K, (Eq \3)

|

Ay g V)| E

]

Ulimake Shear Vy (B4, V9)

(b) Shear Strength

Note: letters A, B, C, D and E designate

which are also used in Fig. 1ll.

operations

the results of

Fig. 10 Computational Sequence for Bending and Shear Strengths
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Compute non-dimensional parameters
o<, b/t, R( Flg. 7)

k (Bq. 13 or Operatlon D of Flg.IOb)

Check Maximum
Aoy (bq.12 or Operatlon E of Fig.1l0b) Panel Moment

(Lq 15)

A, (Ba.25) | I, from Operation G in

1 .
- Fig. 10
T, (Ba. 24) ~e =2

l
{F (ﬁ.q. 29) —]
. (Eq- 28)

Beam Action Shear o (Eq; 22)
|

Vf'(Eqb 18) ~ |Shear Strength
| vl (Eq. 36)

Frame Action Shear for Combined Loads

Compression Flange| Web Tailure
Failure
|
U‘f from Operation A or B
of Fig. 10a
B (Eq. 33)
o (hT. 27)
Incomplete Ten51on Tield Tensicn Field Action
Action Shear v (Bq.32) Shear V__ (Eq.16)
, l
Shear Strength Shear Strength
(v 0), (50.34) (V,0), (Ba.21)

{ - 4
N !
Ultimate Shear Strength V is the|

c ]
smallest of (vuc)c’ (Vuc‘)lW and V.

Fig. 11 Computational Sequence for Combination of Shear and Bending
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