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ABSTRACT

Design formulas are presented for evaluating the ultimate

strength of transversely stiffened plate girder panels under bending,

shear, or a combination of shear and bending. The plate girder may be

homogeneous or hybrid with a symmetrical or unsymmetrical cross section.

The formulas were evolved from a study of the numerical data obtained

using the analytical methods previously developed in the course of this

research. The ultimate strength of a panel is obtained as a sum of the

contributions by the web buckling strength (beam action), the web post-

buckling strength (tension field action), and the flange flexural strength

(frame action). The formulas may be used directly in a load factor design

approach or serve as a basis for a working stress design method. A ten-

tative recommendation is made for precluding the development of fatigue

cracks due to the back-and-forth deflection of the web plate.

lprofessor of Civil Engineering, Lehigh University, Bethlehem, Pennsylvania.

2Assistant Professor of Civil Engineering, North Dakota State University,
Fargo, North Dakota. Formerly, Research Assistant at Lehigh University,
Bethlehem, Pennsylvania.

3Research Assistant, Department of Civil Engineering, Lehigh University,
Bethlehem, Pennsylvania.
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1. INTRODUCTION

The conside~able post-buckling strength of plate girder

webs has been tacitly recognized in design by using lower factors

of safety against buckling than against yielding. However, tests

showed that the relationship between the ultimate and buckling

strengths is not proportional. Thus, a consistent margin against

the ultimate strength cannot be achieved by using a constant

factor of safety in conjunction with the buckling strength - - - the

ultimate strength must be evaluated as such. (3)

Basler offered a plausible theory(3,4,~ which gave good

agreement with test~6) and was accepted by AlSO as the method for

designing plate girders in buildings. (2) A slightly modified

version of this theory was also incorporated i~ the load factor

method proposed under(auspic.~_s of AISI for designing steel

highway bridges$21) Recently, this method has been accepted by

AASHO for use in practice. (1) Further developments of the ultimate

strength theory were made, among others, by FUjii(13) and Rockey and

Ska1oud(11) who included the effect of flanges on the strength of

the web plate. All these theories are based on the development of

a failure mechanism by the plate girder panel.

Djubek ,proposed that ,the maximum web stress in the post-

buckling range of deformations remain under the yield level. From

a series of theoretical computations he established the stress
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amplification factors for various panel proportions to be used with

the buckling stress. (12)

All of this work has been concerned with symmetrical plate

girders, that is, girders having the neutral axis at the mid-depth of

-2

the girder web. Also, none of these theories have a continuous descrip-

tion of the girder failure mode for a variable combination of shear and

moment. To compensate for these deficiencies, a new approach was dev

eloped by Chern and Ostapenko. (8,9,10) This method was also success-

fully extended to longitudinally stiffened plate girders(14) and confirmed

by additional tests.(11,18)

Since for an efficient application the method requires use of

a computer, it is hardly suitable for manual calculations. To overcome

this difficulty, the numerical computer output was utilized to develop

simplified formulas for practical use. So far, this approximation has

been successful only for transversely stiffened plate girders and the re-

sultant formulas are described in this report. They can be used directly

in a load factor design approach or serve as a basis for a working stress

design method.

Design Conditions - A typical plate girder panel is shown in Fig. l(a).

The cross section is unsymmetrical and, for the sake of discussion, the

smaller top flange is assumed to be subjected to compression and the lar-

ger bottom flange to tension. "A larger portion of the web plate is thus

under compression. The internal forces acting in the panel are defined at

the mid-length as moment M and shear V. As indicated in the moment dia-

gram, Fig. ICc), a greater moment M is developed at one end of the panelmax

and it also is taken into consideration in design.
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Since for a particular arrangement of loads on a plate

girder the moment in a panel is directly proportional to the

shear in it, it is convenient to define the moment in terms of the

shear span ratio ~.

-3

where

M ='~bV

M=--
b V

(1)

(2)

Analogously to the theory presented in References 8, 9

and 10 three force conditions are considered here: pure bending

(V = 0), pure shear (M = 0, but M ~ 0), and a combination ofmax

shear and bending (M =f 0, V 1= 0). In the following, the strength

formulas for these cases are de"scribed separately and ,then their

application is illustrated with numerical examples.

Design of Stiffeners - This report does not deal with the design of

stiffeners since no additional studies on their strength were conducted

by the project. Current recommendations for proport~oning stiffeners

in panels designed for ultimate strength are considered to be adequate. (1,2)



328.12
-4

2. ' 'BENDING' STRENGTH

It has been" found that the' ultimate capacity of a plate: girder

panel" subjected' to pure bending is limited by the strength of the

compression or tension flange rather than by the buckling of the web

plate, although the web plate after buckling does not contribute to the

strength of the panel as much as it would if it were flat.

The effective cross section of the plate girder panel after

web ~uckling can be visualized to have the compression flange column

composed of the flange itself and a portion of the web plate. A method

of analysis based on such an assumption is presented in Ref.9. Good

correlation was obtained with test results on symmetrical, unsymmetrical,

hybrid and homogeneous plate girders. Although the generality of this

method is very attractive, it was desirable to compare it with the

popular method developed by Basler and ThUr1imann (3) which has been

already accepted by AISC (2) and AASHO (1)

A series of sample computation showed that Basler's method agreed

quite well for symmetrical homogeneous girders and also that its familiar

and relatively simple formula could be modified to apply to unsymmetrical

'*and hybrid girders. Such a modified version of the Basler formula is

given here.

*The approximate_a.daptation to unsymmetrioal "girders made in Refs. 1
and 21 is not suffioiently aocurate for the ~neral case, but rather,
applicable only to plate girders of slenderness ratio less than approxi
mately 200. The method for hybrid girders given in Ref. 20 is limited
to symmet'rical girders having the web which d.oes not bucl<:le before
yielding.
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. (3)
is

-5

The original Basler formula established for symmetrical girders

M ~ I"cr ~: 1 - 0.0005 "~w ( ~ - 5".7 J- E )]
u y.. cf Af t '!cf

(3)

where I is the moment of inertia of the cross section t A = bt is the
w

area
area of the web. Af = Afc =Aft is the flange~of a symmetrical girder, E is

the modulus of elasticity,''!cf is thes;i.tis~l s1=I'el:3f:l()~ the compression

flange_~_and y = y , band t are indicated in Fig. lb. A plausiblec .

extension of this· formula. to unsymmetrical sections can be made by assuming

that the effect of the buckled web may be evaluated as that for a syrnmet-

rica! section whose total depth is equal to the double of the web portion

under compression in the unsymmetrical section.

are then,to be'made in Eq. 3:

The following replacements

A = 2y tw c
and bIt = 2y It

c
(4)

Design of hybrid girders requires consideration of different

material properties of the web and flanges. Of particular interest is the

case when the web is of lower strength than the flanges. The following

formula which also incorporates a modification for unsymmetrical girders

is propo~ed here:

~ i\ Y. r-E I } ',.:
O.ooz:.E....-.. (-.E.-2.85i!-)] + (1-~)(5)

Af t· (] I·
C '. yvJ

in which

2.85 \(?) > 0
Oyv{

and .(6)

Due to a lack of research information, set ~yw = (Jef when (Jyw > (Jef·
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The additional notation in Eq. 5 is

I = moment of in~rt'ia of the web plate about·
W the centroidal axis of the whole section.

~ = yield stress of the web.yw

acr= ,critical stress of the compression ,flange
due to lateral or local buckling.

--6

,,2e 'L
1) , 'Lateral 'buckling (d ~. ~ 12 + 2c ):

.>i . c c

C!cf = (1 - 4 ) a (7a), .ye

for O'~AL< f2
. '1

or
~cf

=- a
i\2 , .yc
L·

J

(7b)

for .~~f2.

and (7c)

where

c = half width of the compression flangec

de =t~ickness .of the compression flange

L = unbra-ced length' of the compression flange j,""-

, t,,,,//i

.I f = moment of inertia of the compressi.on flange ....~~~'-~_~'1~~. __~
vert~~al axis

a = yield stress of the compression flange
.ye
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2)

i '!cf

Loeal - (Torsional) -bticklin~ (2ee _> 12 +-.!!.-) :
d _. ,'2c

c 'c

= [ 1 - 0.53 <. A - 0.45)1.36]'
t '!yc.

or

for

. 'I
(J =--cr

, · cf . A2 ' yc::
t

for

(Sa)

(8b)

where
20.425 7f E

(Bc)

According to Eq. 5 the plate girder strength is assumed to consist.

of two contributions. The first~ as given by the expression in brackets,

is the contribution of the web plate up to the point of yielding in the

web. This term is nothing else but the Basler formula (Eq. 3) with the

critical flange stress replaced by the web yield stress and modifications

made for unsymmetrical sections. Since the strength of the panel is

not(~_~hausted .:~t this point, the second term in parentheses reflects the

total moment contributed by the flanges.

Equation 5 is on one hand somewhat unconservative since its

composition assumes. that the neutral axis remains at its original position

in spite of redistribution of the web stresses due to buckling and

yielding. On the other hand it is conservative since it neglects the

contribution to the moment from the increases in web stresses, especially

in the tension zone. Since the equation gives very good correlation with
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experimental results and a more rigorous approaCh~9) these two effects

apparently cancel each other.

For symmetrical ( b = 2Ye ) and homogeneous (CT = rr )
'" . yw . ~ cf

girders Eq. 5 reduces to the original Eq. 3.

"Tension"Flange'Failure. When the tension portion of the web is

sufficiently larger than the compression portion, the bending capacity of

the panel may go up to the plastic moment M. Due to some uncertainties in
p

the behavior of a very slender web, it is more conservatively assumed that

the~capacity is limited by the yielding of the tension flange.

"r
M =-cr [1

u Yt ,· yt

I
w

I
(9)

When it is uncertain whether the compression or the tension

flange failure controls the design, both, Eq. 5 and 9 should be

used to determine which one gives the smaller ultimate moment.
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3. SHEAR STRENGTH

The ultimate strength of a plate girder panel subjected to

pure shear is assumed according to Ref.8 to consist of three con-

the buckling strength of the web V (beam action), the
rr

post-buckling strength of the web V (tension field action) which
0"

leads to the formation of a tension diagonal in the web, and a con-

tribution resulting from the resistance of the flanges to the change

of the panel from a rectangular to a parallelogram shape V£ (frame

action).

These three ·strength contributions are shown in Fig. 2.

(10)

A parametrical study of the numerical output from a computer

program based on the method of Ref. 8 showed that the three individual

contributions could be computed with adequate. accuraoy from relatively

simple formulas suitable for manual computations.

Beam Action. - Beam action contribution V is the shear buckling strength of
'T

the web and is given by the product of the web area and the shear

buckling stress:

(11 )
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In order to conveniently define T in the elastic, iner

elastic, and strain-hardening ranges, the following non-dimensional

shear buokling parameter is introduced:

-10

where:

b
A = 
'I t

12 (I-v2
) ~

J3 if E kv
(12)

v = Poisson's- ratio

a = yield stress of the web
yw

E = modulus of elasticity

k, = plate buckling coefficient in the elastic range
v

Assuming the web plate to be fixed at the flanges and pinned at the

stiffeners, k is computed as follows:
v

k
v

= 5.34 + 6.55 _ 13.71 + 14.10a
rfd O!

for a < 1.0

/i ~
"l.-. I .

(13a. )

or k
v

= 8.98 + 6.18
2

Q'

for a ::: 1.0

2.88--'- (13b)

With the shear yielding stress

(14)

the shear buckling stress T is given then as a function of Avon1ycr
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for Av:::' 0.58
(strain-hardening range)

[::'

'fer =[1 - 0.6150.. ,,- 0.58)1018J 'f
y

~d~~"

for. 0.58 < Av ::: /2
(inelastic range)

-11

,.
cr (150)

for "A.,,> .[2
(elastic range)

These are the same relationships as were used in the theory\8)They

are shown in Fig.3.

Tension Field Action. - The tension field stresses are assumed to

develop in the pattern shown by the middle sketch of Fig.2. The

inclined band has the maximum intensity which in combination with

the stresses at buckling may not exceed the yielding condition.

According to Ref.8" the tension field action contribution V
cr

is a· function of the aspect ratio Ct, web slenderness ratio (bIt), and

the material yield stress IT • Since the" method of Ref.8 requires
yw

the use of a digital computer, an analysis of the computer output

was performed for various combinations of geometry and material

properties. It was found possible to separate the effects of ~ and

Thus, V can be given as a function of
(J
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v = 0
(J

for Av~ 0.58

-12

(16a)

where

Va

v
(J

= 0.6 Av - 0.348 V

Vel + 1.6 P

for 0.58 < Av~J2

= 0.9 - O.787/Ae V
~ if + 1.6 p

v = A ~ -::bt~
p W {3 "J:>

(16b)

(160)

(17)

is the plastic shear force.

Frame Action. - The frame action contribution V
f

is the resistance of the

flanges to the distortion of the panel from a rectangle into a parallelo-

gram. The maximum frame action shear is assumed to be reached when the

mechanism shown by the right sketch of Fig. 2 is formed. Because the con-

) tinuity of the web provides sufficient rigidity to, essentially, preclude

rotation of the transverse stiffeners, plastic hinges are assumed to form

in the flanges.

According to the method of Ref. 8 a portion of the web plate

is assumed to act with the flanges. For the sake of simplification,

the contribution by the web plate is neglected here. Since the frame
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action contribution to the ultimate panel strength is, in most cases,

about 10%, this assumption does not introduce any appreciable error in

the final result. Thus, Vf is given by

-13

(18a)

where me and rot are the plastic moments of the compression and tension

flanges, respectively. For flanges consisting of rectangular plates,

this equation can be rewritten by

V 1 (0' A d + a Ad)
f = 2a yc fc c yt ft t

(18b)

where Gyc ' Afc ' dc and Gyt ' Aft' dt are, respectively, the yield stress,

the area, and the thickness of the compression flange and the tension

flange.

Design Formulas. - Substitution of the three contributions into Eq.l0

from Eqs. 11, 16 ~d 18 gives the following design formulas

for the ultimate shear strength. It is assumed that the yield stress

of both flanges is the same, Gyc = Gyt = GyfO

(199.)

for Av:: 0.58
(strain-hardening range)
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f
I
; -14

or V = v
p
fl[l_ 0.615 (A v- 0.58)~18J + 0.6 Av - 0.348

u ~ ~ cl' + 1.6 I

for 0.58 < Av <J:2
(inelastic range)

(19b)

{
1 0.9 - O.787/A~

or V = V - +
u P A~ +

(190)

for Av>.J2
(elastic range)

For steel with v = 0.3 and E = 29,000 ksi, Eq. 12 gives

a is in ksi and k is obtained from Eq. 13.
yw v

(20)

Comparison with Test Results and Other Methods. - Aoomparison of the

proposed formulas, Bas1er's~4) and Fujii's (13) methods with the available

test results are shown by the cumulative distribution curves in,

Fig.5". It is seen that the correlation of the proposed formu~as

with the test results is within 10%. Basler's method gives less than

10% deviation for about 65% of the tests' and larger deviations (up

to 33%) for about 35% of the tests. Since Fujii's method does not

apply to unsymmetrical p~ate girders, two sets of computations
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were made. The thin dashed line denoted by "s" in the figure re-

-15~

presents the Fujii's case when both flanges were assumed to be of

the smaller flange size, and the thin solid line denoted by "L" re-

presents the case of assuming both flanges as the larger flange. It

is seen that Fujii's method gives good correlation with tests for

symmetrical girders, but the method is ambiguou~ when applied to un-

symmetrical girders.

End Panel. - Full development of the tension field oapaoity requires

that the neighboring panels be sufficiently strong to anchor it.

This me8~ns that either tlle panel at the encl of a girc1er Sllould have

a very strong end stiffener capable of resisting tlle horizontal

OOnl})Onellt of the tension field. force, or that the panel should be

designed to develop only the bucklirl.go strength. The latter approach

is recommendE}d here. Thus, the shear ca.paoity of the end panel is

to be oomputed from Eq.lO with V~ = o.

The res'ul tant shear capacity of the e11cl panel is grea.ter

than that specified by AASHO(l) and AISC(2)because of two reasons:

1) the \veb plate is assumed to be fixed at the flanges and simply

supported at the stiffeners ra.ther than simply supported at all

edges, and 2) the frame action shear Vf is included.
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4. STRENGTH UNDER BENDING AND SHEAR

-16

The strength of a plate girder panel under various combinations

of shear and moment can be described by the interaction curve 0 ~Q -Q ~Q -Qa
"'5 4 1 2

shown in Fig.6. The ordinate gives the shear non-dimensionalized with

respect to the ultimate value for the pure shear case, and the abscissa

is the moment non-dimensionalized with respect to the ultimate moment

for pure bending. The right and left parts are,'respectively, for the

larger portion of the web plate under compression and tension as indicated

by the small sketches under the diagram.

Depending on the relative magnitude of shear and moment and

on the direction of the moment, the ultimate strength of the panel may

be controlled by one of the following three conditions: 1 the shear

~~h=·~J:.e,Q,g£,~"st,,,~,Q,Yc,=,,§n:stt!fg)(web failure---portion Q4 -Ql -Qa ), 2) !Jl~,

~~~"""fl~E~pg"~ll reduced by shea!." ~.~~ liUl~~_:"~.~! t~=J::omI>~~~~f~~~!a.~~e

~~](portion Qa ..Q3)' and 3 )~~~~P~!n&f'l~E~!1.g!!t:t"~~~~~~_-!>Y~.~lle_Cl.~

and limi~~d_~ythe lding of the tension flange (portion QS-Q4) 0 The

mechanisms of failure are indicated by the insert sketches. The in~

dividual contributions due to beam, tension field and frame actions are

shown schematically by separate areas in the interaction diagram o The

design procedure recommended here is to compute the ultimate strength

for each applicable strength condition and use the lower value as the

controlling one.

Web Failure. (Curve Q4 -~ -Qa in Fig. 6 ) - As the insert in Fig. 6 shows,

the panel strength is obtained as a sum of buckling (beam action), post-

buckling (tension field action), and flange flexural (frame act~on)

contributions.



328.12

This is analogous to the case of pure shear, except that now each con-

tribution is affected by the presence of bending moment.

-17

vue VTC + VCJC + Vfc (21 )

where subscript c indicates the combination of shear and bending forces.

The beam action contribution is

v =,. A
T'C c W

T is the shear buckling stress of the web subjected to shear and
c

bending stresses as shown in Fig.7. It may be computed with adequate

accuracy from the following interaction equation

where

R = ratio of the maximum tensile stress (or minimum com-

pressive stress) to the maximum compressive stress

(see Fig.7.' ). R is negative when the stress is tensile.
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The buckling stress under pure bending, IT ,is to he computed fromcr

-18

the following equations which are analogous to Eqs.15

CJ' = (Jcr yw

for Ab ::: 0.58

(yielding)

for 0.58 < Ab :::. Vi'
(inelastic range)

or

used for T :
cr

(24a)

(24b)

where

(J
cr

1
= -- cr

A 2 yw
b

for Ab > V2 \'\;
(elastic range)

(240)

~, the plate buckling coefficient is conservatively obtained by as

suming a = 00 and deriving the following formula by curve fitting

~ = 13.54 - 15.64 R + 13.32 R2 + 3.38 R
3 (26)

for (-1.5) ~R~ (0.5)

Since G is directly related to T by
c c

\
,-'

)



328.12

crc (l-L bAy II) T
wee

-19

(27 )

Equation 23 can be solved for Tc

where

Tc
= or ; ( _n 2 + 16 - (l+R) F

cr 2 .. [2 + (l-R) F3 ]
(28)

F
~ b Y A T___c_w_ • -E.

I crcr

Experimental evidence shows that full plastic moment and

shear force can be developed for low bit. In view of this, it is

tentativ~ly~,reconnnended here not to consider interaction whenever A
V

and A
b

are les s than 0.58. Thenr--cr = er and 1" = rr •
(' . c yw c' cr

The tension field action contribution to the web strength

was found from numerical computer results to yaty only abo~t 2% due to the

application of bending. Therefore, it is assumed that

v = V
crc cr

where V is computed using Eqs.16.
cr

The frame action contribution is usually quite small in

ordinary welded plate girders (see Fig. 6). Thus, it would be quite

(30)

adequate to use an approximate reduction factor to consider the effect

of axial force in the flanges instead of performing exact computations

of Ref .. lO. The effect of bending on the frame action is assumed to be

the same as on the shear buckling stress.
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v = (0. 01 + ~) Vfc T. fcr

-20

(31)

where Vf is from Eq.18 (the constant 0.01 serves to simplify

computations when the strength is limited by the failure of the

compression flange).

The ultimate shear is then obtained by adding the results

of Eqs.22, 30 and 31 according to Eq. 21.

Compression Flange Failure. (Curve Q -Q in Fig. 6 ) ... In this range of
2 3

moment-shear combinations, the compression flange fails before the web

strength ,can be fully developed. Thus, bending is now the principal

loading parameter. However, it is still convenient to define the panel

strength in terms of shear given as a sum of the beam, tension field

and frame action contributions.

The beam action and frame action contributions are computed

from Eqs. 22 and 31.

However, the tension field action does not fully develop and

a special study was needed to arrive at an acceptably simple formula

for its computation. The formu~a finally selected on the basis of a

parametrical study of the numerical computer output of the method of

Ref .10 is

where

v' =crc

(Af + 30 t
2

) (cr f - cr ) - ~ Vfc c c c > 0

3 (,~) (~~~) V;~ :C'I + ~
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B = O.338A - 0.196
v

-21

(33a)

or

for A > V2v

(33b)

A is given by Eq.12
v

and a is in ksi.
yw

Besides the composition of Eq.32, the parameter which

was developed from the numerical output is B g Figure 8 shows a plot

of B versus A. The points give the values of B obtained by equating
v

the ultimate strength expressed by the design formula to the theore~

tioal ultimate strength at the p~,int of transition from web failure

to compression flange failure; ea~1:lPQintrepJ'esentsa l'Clrti<:t1lal:'l'c9.IleJ.'!,-------'---- "'-

A ~~~~~;~~~~~/:f'ii)thrOUgh the plotted points was used to find the

expression for B when A > Vi, Eq.33b. Since for 0.58 < Av:::' Vi ,v

V· represents only a small portion of the total shear strength,ere

7 the ~_f_~ec~ Qf,_B- would,_b__e __ne_gligj~p __!~_~__ Thus, a straight-line approxi-

mation is made, Eq.33a.

The ultimate panel shear causing failure of the compression

flange is given by the sum of the values from Eqs. 22, 31 and 32.
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and the corresponding panel moment is

Mue =Mb V
I· uc

~M
u (35 )

Equation 35 indicates that M should not exceed M
uc ·u Since the nature

of the approximations involved in the evaluation of VI could lead to an
(J'C

unrealistic condition of Muc ' computed from Eqs. 34 and 35, being less

than Mu for the case of pure bending, the constant 0.01 was introduced

into Eq. 31 to preclude this situation. The result is illustrated in the

right lower corner of the interaction diagram of Fig. 9.

Ultimate strength Under Bending and Shear. - Since the specifio combi

nations of moment and shear which are controlling for the web or oompre-

esion flange failure modes are not defined, it is neoessary to check

both modes and seleot the one which gives a lower oapacity.

A typical interaction diagram based on the above derived

formulas is shown in Fig. 9. A ray emanating from the origin repre-

sents an inoreasing load for a partioular moment-shear combination.

Two interseotion points with the interaotion curves are shown, one due

to web failure and the other due to the compression flange failure.

The smaller shear is to be selected as the controlling ultimate shear.

For the two rays shown, the controlling cases are indicated with the

heavy dots.
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Maximum Panel Moment. - Since in a panel under combined ,forces the

moment at one end of the panel is greater than the mid-panel moment

used in the analysis (Fig. 1), it may happen that the strength will

be controlled by this maximum panel moment M • This is particularly
max

true for panels with large aspect ratios.

A reasonable and sufficiently accurate approach appears to

be a requirement that the maximum panel moment be below the moment

M
uv· =

u 'b (~ + ~ 0') "

\vhere M is the smaller value of Eq.5u or Eq.9.*

Tension Flange Yielding. - As indicated by the vertical line marked

"Flange Yielding" in Fig. 9 , t!!_~ ~h~Q~_1?Y __ Eq 32a.lao-co1lers__ :t_he~_c-a-a.Et-~

fl~g~. This oriterion may be somewhat conservative for sections with

low bit (compact seotions) or in cases when most of the web is in
rI'

tension and essentially full plastio moment may be attained (see the

left-most curves in Figs. 6 and 9). It is left to the judgement of

the designer when he \"{ould want to take advantage of the addi ti'onal

panel c~paoity due to plastification.

"k
A more refined check on the compression flang~ capacity is (with
from Eq.5)

M
V. = u

u b (~ + ~ a)

Mu
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5· CO:NSIDERATION OF FATIGUE
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Many tests as well as a oomprehensive study oonducted speci

fically for this purpose(19) showed that initial out-of-plane deflec-

tiona of the web plate have no detrimental effect on the ultimate

strength of girders Bubjected to statio loads. However, when the load

applioation is repeated many times as is the case for bridge and orane

girders, fatigue cracks may develop in the web due to the lateral

flexing ("breathing") of the web at eaoh load application. Initial

deflections and the amo~pt of stressing beyond the buckling stress

level of the web plate appear to be tile principal factors influencing

the development of these fatigue cracks.(16) Since both of these

factors are functions of the web slenderness ratio bit, a recommendation

, was made to limit the web slenderness ratio to a specific value.(l, 21)

This bit limitation was crit:tcally reviewed in Reference 15

in the light of additional tests on unsymmetrical plate girders. It

waS found to be somewhat oonservative for oonventionally proportioned

girde~s but is endorsed here until more research is conO.uoted.

/

2 Yo 1,150 b
~ ~t \I rJirw' t

where o;w is in ksi.

(38 )
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It should be noted, however, that Eq. 38 may be unconservative

for girder panels with stiffeners of high torsional rigidity, such as

heavy bearing stiffeners and stiffeners with closed sections. Until more

research is conducted, it is tentatively recommended here that the web

panels adjoining such torsionally rigid stiffeners, be checked not to

buckle under a load equal to abowt 1.1 of the working load.

/
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6. GIRDERS WITHOl~ INTEm}~DIATE STIFFENERS

Plate girders having stiffeners only at the sup~orts (bearing

stiffeners) an<1 possibly under l1eavy concentrated loads are of considerable

economic interest. As described in Referenoes 8 Ana. 10, 8ll0h 'Plate

girders may be safely al1d aCcllrately designed by neglecting the

contribution of the tension field action (post-buclcling strength) \l\Thenever

the panel aspect ratio cf..... exceeds 3.0. 'rhus,

v = Vrr- + Vflie t: C 0

where V~c and Vfo are given by Eqs. 22 and 31, res~ectively, or by

Eqa. 11 and 18 for the ca.se wIlen M= O. It is important that su.ch

long parlels be a.lvv-ays checlced for the maximum panel momer:t according

to Eq. 36.

Plate girders without intermediate stiffeners and subjected

to uniformly distributed static loading, such as roof girders, have

attracted attention of engineers in Swed_en. (7) A temporary design

specification was developed ~rimarily on the basis of experimental

work. A com~arison of Eq. 39 with this specifioation,for a few samr)le

girders showed that for most cases Eq. 39 was more conservative than

the specification rl11es.
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7. DESIGN PROCEDURE'AND'NUMERICAL'EXAMPLE

The sequences for the computation of the ultimate strength of

a panel subjected to pure bend~ng~ pure shear or a combination of bending

and shear are shown schematically by block diagrams in Figs. lOa, lOb

and 11, respectively. The following numerical example illustrates the

procedure in detail.

Example

Given is a bridge girder panel with the following dimensions

(in inches) and material properties:
/

Panel length

Panel depth

Compression flange:

Tension flange

Web

a = 126.0

b = 84.0

2c x d = 27.0 x 2.5
c c

2c
t

x d
t

= 27.0 x 1.75

b x t = 84 x 7/16

Unbraced length of the compression flange:

Yield stress of the compression flange

tension flange

web

L = 126.0

cryc = 100.0 ksi

a = 100.0 ksi
yt

Uyw = 36.0 ksi

Cross-sectional properties: I = 229,000.0 in.
4
,Iw = 22,750.0 in.

4
, If =

4,100 i~,AfC = 67.5 in.
2

, Aft = 47.2 in.
2

, Aw = 36.75 in.
2

, Yc = 36.4 in.,

Y
t

= 47.6 in.

Non-dimensional parameters:

R =- (y Iy ) =- 1.28
t c

a, = alb = 1.5, bIt = 192, 2y/t =
c
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Find:

The ultimate panel str~ngth for:

(a) Pure bend~ng

(b) Pure shear

(c) Combination of bending and shear with ~ = M/bV = 14.0

-28

Check fatigue requirement:
1,150

Eq. 38: ---=
~.yw

1,150

1"36
= 192 = b/t

> 2y,/t, therefore, O.K.
c

(a) rB~nding Strength

Check: 2 c /d = 27.0/2.5 = 10.8
c c

12 + L/(2c ) = 12 + 126.0/27 = 16.7 > 10.8. c

Thus, lateral buckling of the compression flange governs

/

Eq. 7c:

Eq. 7a:

Check:

Check:

Eq.5 :

A = 126 100 2. (67.5 + (1/3)(36.4)(7/16» = 0.314< {2
L 29)00011 4,100

O"cf:;: 100(1 - 0.3142/4) = 97.5 ksi

r:::r = 36.0 ksi <cr f = 97.5 ksi. Thus, use C) = 36.0 ksi
yw c 'YW.

y/t 2.85~E/cr~:;: (166/2) - 2.85 ~. (29,000/36)' :;: 2.0> 0

(M) = 229,000 (97.5»)~ _ 22,750 + 36 [22,750
u c 36.4 l 229,000 ~7.5 229,000

- 0.002 (36.4(7/16) )(2)]} = 575,000 kip-in.
67.5

O.K.

Eq. 9: ( ) = 229,000 (100)[1 _ 22,750
Mu t 47.6 229,000 (1 ~ ~)] = 450,000 kip-in.100

(MU)t <: (Mu)c ' thus, yielding of the tension flange governs:

M = 450,000 kip-in.
U i
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(b) $hear Strength

-29

For 0( = 1.5 > 1.0

Eq. 13b: k = 8.98 + 6.18/1.52 - 2.88/1.53
= 10.88v

Eq. 17: V = 36(36.75)/[3 = 763 kips

p J12(1 - 0.32) 36 - >.17
Eq. 12: Av = 192 29,000 11'2 T3 10.88 = ~.64 v2

Eq.19c: V = 763 S 1 . + [0.9 - 0.787/(1.64) ] +.[3
u l 2 J 2 ·

(1.64) 1.52 + 1.6

67.5(2.5) + (47.2)(1.75)(100 )}
· 126(36.75) 36

= 763 (0.372 + 0.310 + 0.127) = 284 +237 + 97 = 618 kips

(Vrr) (VG'") (Vf)

V = 618 kips
u

(c) Combined Shear and Bending Strength

Web Failure:

For R = -1.28

Eq. 26: ~ = 13.54 - 15.64(-1.28) + 13.32(-1.28)2 + 3.38(-1.28)3 = 48.24

IlO:88
Eq. 25: Ab = 1.314(1.64) ~ 48j4 = 1.03 , 0.58< 1.03<[2

Eq. 24b: cr = 36[1 - 0.615(1.03 - 0.58)1.18] = 27.4 ksi
cr

For A = 1.64) J2
v

Eq. 15c:

Eq. 29:

Eq. 28:·

rr = 36 2 = 7. 72 ksi
cr [3 (1.64)

F = 14(84)(36.4)(36.75) 7.72 = 1.94
229,000 27.4

r 2 . 2
~ = 7.72 ~(1.94) (3 + 1.28) + 16 - (1 - 1.28)(1.94) = 3.56 ksi

c 2[2 + (1 + 1.28)(1.94)2]

Eq. 22: V~c = 3.56(36.75) = 131 kips
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Eq. 30:

Eq. 31:

Eq. 21:

Vo- c ;:: Vcr = 237 kips

Vfc = 97(0.01 + ~:~~) = 45.6 kips

(V ) = 131 + 237 + 45.6 ;:: 413.6 kipsuc w

(v ) ~ 413.6 kipsuc w

-30

Eq. 32:

For '" ;:: 1.64 >f2.v

Eq. 33b: B = 0.235(1.64) - 0.05 = 0.335

Eq. 27: ~ = 3.56(1.94)(27.4/7.72) = 24.4 ksic

[67.5 + 30(7/16)2](97.5 - 24.4) -14(45.6)v' =~---~~.....---=--------.-;..-..,.;....-~:...-----=--
O-c

0.335(;~~)(i~~) ~~~~~~4) + 14

Eq. 34: (V ) = 131 +305 + 45.6 = 481.6 kipsuc c -

(V ) =481.6 kipsuc c

= 305 kips

v = 413.6 kips
lie

Eq. 35: M = 14(84)(413.6) = 486,000 kip-in.uc
M = 486,000 kip-in.ue

Check Maximum Panel Moment

s~

Eq. ~ (or from(a»:

Eq. 9 (or from(a»:

(M ) = 575,000 kip-in.u c

Since (M) ) (M )t' useu c u

Eq. 36: The ultimate shear

(Mu)t

,_ 450,000
Vu - 84(14 +(1/2)1.5) = 363 kips
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v~ <. Vuc ,(363 <. 413.6) t the ultimate capacity of the panel

un~er combined loads (~= 14) is

.;f,

v = V' = 363 kipsuc u

and (Eq~ 35): Muc 14(84)(363)

M = 427 t OOOkip-in.uc

427,000 kip-in.

(d) Summary of Results

·i
(a)~Pure Bending: -------------------------- M = 450,000 kip-in.u

(b ): Pure Shear: ---------------------------- V = 618 kipsu /

(c) Combined Bending and Shear (r= ~v = 14): v = 363 kipsuc

M = 427,000 kip-in.ue
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10. APPENDIX II. - NOTATION

Area of the compression flange.

Area of the tension flange.

Area of the web.

B

E

Parameter defined by Eq. 33.

Modulus of elasticity (Young's modulus).

F Factor defined by Eq. 29.

I hiloDlent of inertia of the girder cross section.

Moment of inertia of the compression flange about the vertical
axis.

./

I w Moment nf inertia of the web about the centroidal axis of
the whole cross section.

tJnbrftced lengt4 of the oompression flange.

Design moment at mid-panel.

Maximum moment in the panel.

Plastic moment of the panel.

Ultima,te moment of the panel under pure bending.

Ul t:imate moment of the panel under combined forces.

L

Muc

M Moment ca~sing yielding of the tension flange.
y

R Ratio of the maximum tensile stress (or minimum oompressive
stress) to the maximum compressive stress of,the web (negative
when the stress is tensile).

M
p

l~u

Mmax

V Design shear at mid-panel.

V
f

FraJIle action shear und.er pure shear.

Vfo Frame action shear uncler combined for'ces.

V Plastic shear of the web.
p
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v~ Tension field action shear under pure shear.

v~c Tension field action shear under combined forces.

V~o Inoomplete tension field aotion shear under oombined forces.

V~ Beam action shear under pure shear.

V1c Beam action shear under combined forces.

Vu Ul timate shear strength of the pane1 tmder pure;' shear.

V' Ultimate shear oontrolled by the maximum panel moment.u

V Ultimate shear strength of the panel under combined forces.uo

a Panel length.

b Panel depth.

co Half width of the com!)ression flange.

Half widt'h of the tension flangte.

Thiokness of the oompression flange.

Thickness of the tension flange.

Plate buckling ooefficient for pure shear (Eq_ 13a and 13b).

Plate buckling coefficient for pure bending (Eq. 26).

Vleb thicl{ness.

"

Distance from the oentroidal axis to the compression edge of the we?- .__
'- -.,.-

Distanoe from the centroidal axis to the tension edge of the web.

Aspect ratio.

Web buckling parameter for bending, Eq. 25.

Web buckling parameter for shear, Eq. 12.

Lateral buokling parameter, Eq.7c.

Local (tor;si'onal) buckling parameter, Eq. 80.

Shear span ratio.

Poisson's ratio.
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Bending buokling stress at the extreme compression fiber of
the web.

Buckling stress of the oompression flange.

Web buckling stress under pure bending.

Yield stress of the compression flange.

Yield stress of the tension flange.

Yield stress of the web.

Shear buckling stress under oombined forces.

Shear buckling stress under pure she~r.

Shear yielding stress.
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Fig. 8 Plot of Parameter B (Combined Forces),.
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(a) Bending strength

(b) Shear strength

Note: Letters A, B, C, D and E designate operations the ~esultB of
which are also used in Fig. 11.

Fig. 10 Computational Sequence for Bending and Shear strengths
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Fig. 11 Computational Seqllenoe for Combination of Shear and Bending
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