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ABSTRACT

This paper presents a theoretical analysis of the effects of
disturbances on supercritical flows in an inclined channel, based on

the Method of Characteristics.,

Since the practical application of the method would be severely
limited by the amount of manual computations involved, the adaptation of
the results for computer treatment has been emphasized. A number of

numerical examples concerning a straight flaring transition is presented.




1. INTRODUCTION

In many hydraulic construction projects, one is required to
design transitions for water flows in open channels at high velocities,
that is for supercritical flows, An accurate description of such a
flow will be significantly more complex than that of a subcritical flow
case, because of the formation of standing waves generated at the points

of disturbance.

The theory of these flows was adapted from the analogous

(L)=*

theory of supersonic flow of gases by von Karman and Ereiswerk(z)o
The latter analysis was based én the Method of Characteristics and
resulted in a fairly simple graphical solution for horizontal channels
(explained in detail by Blaisdell(B)), Most of the later work on the
sub ject was similarly limited to horizontal or slightly inclined

(4,5,6,7)

channels,

The present paper is an attempt to analyze supercritical flow
in an inclined channel. The Method of Characteristics which is explained

in detail by OWCzarek(S)is used. The method can be summarized as follows:

Using certain limiting assumptions (frictionless fluid, irrota-
tional flow, hydrostatic pressure distribution) two differential equations
can be derived, involving the partial derivatives of u and v with respect

to y and x, where u and v represent the velocities in the x and y

* Number in parenthesis refer to references on pages 33 and 34,



direction, respectively. From these equations two sets of characteris-

tics can be found, expressed as;

dy, _

(dx)l = fl (u, v, d) and
d

('CF}:')Z = fz (u’ 7, d)

where d indicates the depth of flow, measured perpendicular to the
bottom., Along these lines u, v, and d vary in a prescribed manner,

given in the compatibility relations:

dv. _ dy

(E;)l = g]. (U‘, v, da (Ea)) and
dv d

Gy =8 (v, d, G)

'These equations, when written in finite difference form, make it
possible‘to analyze the entire flow field, that is to determine wvalues

of u, v, and d at various points,




2, DERIVATION OF EQUATIONS

Using the Energy Equation and the Continuity Equation together
with the condition for irrotational flow, two differential equations

are derived, involving the partial derivations of u and v with respect

to x and y.

Assumptions

1, The flow is frictionless, without energy dissipation.

2, Acceleration perpendicular to the bottom is infinitely

small compared to the acceleration of gravity (this
results in a hydrostatic pressure distribution).

Energy Equation
*V

o r——




At x = X the flow is assumed to be uniform, with constant

velocity Vo (= ub). Applying the energy equation from point 0 to I

gives:
1 .2 ‘ . 1 2
p + 5 oV™ + pg (zcosB- (x - xo) sidgB) = p, + P8 zocosB + 5 pVO or
Vv s p) g ((nym 2) cosp G- x) siep) (1)
o 5 P, ‘p g o ) cosB X - X sing
With static pressure distribution (Assumption 2)
p =pg (d - 2) cosB (2)
Differentiation of equation (1) gives:
_QY:_.-].-_@B 1 ‘ K
Vax p O T & sinf (3)
v 13p
v = - = 8 o
3y~ ooy )
& _ 1l ,
VBZ = Y - g cosp » (5)

while differentiation of (2) results in:

d ‘ (
-g—;p{- = pg %}'{‘ COSB “ (6)
d -
L - pg & cosp (7
9P _ g
az - = pg COS'B ( )

Equations (6) and (7) state that the accelerations in the x

and v directions are independent of z., Therefore, u and v must also

be independent of z, since this was the case during the initial (uoiform)

flow,




Equations (5) and (8) combined give that gg = 0 or that V is

independent of z. Now w =,/V2_ 2 v2I must similarly be independent

u -
of z, and since it equals 0 at the bottom one may conclude that

w < <u or v, or that V2 = u2 + vz. (9)

Combining equations (3), (6), and (9) results in:

\4 o\ u du
g cosf ox g cosf ox (10)

Similarly equations (4), (7), and (9) givé:

ad _ v v v Bu ' (11)

— I m eee——— — L, ——— —

dy g cosB dy g cosB oy

Continuity Equation

o7

By X

Figure 2

As the flow can be considered incompressible, the continuity

equation becomes:

by {[() ) + %i&%)y&ﬁ 5y] - [@) @) + a[(g}){ wl . L a[(g; DIPTH

roflom + 3 2Q0L o - @ 4 2Bl 4y g 2liml gy

or

slwwl |, lml _
oy

ox



which can be written as;

d 3% +u 3% + dvay + v Sy 0 (12)

Final Differential Equations

Introducing the expressions for %% and %% from equations (10),
(11) into the continuity equation (12) one gets:
du u2 oV v2 Ju oV uv u
3% (1 - gd cosB) + ¥y a - gd cose) B (S§ + SE) gd cosp +3 tanp=0 (13)

Since the flow is frictionless and initially irrotational it will remain

so. Therefore

%-%=o (14)

These equations are suitable for analysis by the Method of Characteristics

as shown in thewfollowing section.



3, SOLUTION BY METHOD OF
CHARACTERTISTICGCS

From the preceding equations expressions for the slope of
the characteristics are derived with compatibility relations controlling
the variation of u, v and d along these characteristics.  Equations

(13) and (14) can be written in the form:

du du v, v
——— + —— —— ———
AxtThyt Tty N
. du du v Qv
S +B, ==+, L +B ==7F
Tl thy T hwT iy TR
where:
u2 uv V2 u
Al =1 gd cosf °’ AZ B A3 B gd cosB’ 4 =1 gd cosf’ "1 4 tang
Bl =0, Bz = = 1, B3 =+ 1, 34 =0, F2 =0
The physical characteristics can now be determined from the following

e )
w

equation 5

)
- _X.d e - - - =-=-d J - = {
(8,B5-AgB ) (F) - (A BFABo-A B -AsR)) G+ (8,8, -A,B,) =0 (15)

Introducing the Froude number (modified for inclined channel):

2 2

o u_ Ty
4 gd cosp (16)

*)  Further details can be found in reference (8), pp. 278-290.



the solutions of equation (15) become:

B ST

dy _ gd cosp - (172)
dx 2

1 - u

gd cosB
and
W Ve g ,
dy _ gd cosB '
1] o —%
‘ gd cospB

Solutions corresponding to equation (17a) will be called the
C+ - characteristics while the ones resulting from equation {(17b) will
be called the C_ - characteristics. The method is obviously applicable

for supercritical flow only (where F' > 1).

Along the physical characteristics certain compatibility

relations must be satisfied. These can be expressed in the following

. %)
equation “:
, - B - dy
dy _ 23BaABy  ABy-AyB, P8 -8F)q
ol - 2553 - TA3.)d
R R A O N O RS SRS

apydy
. (F1B3-A3F)) 50

ABy-AqB,
Inserting the expression for %% given in equation (17a) this reduces to:
_—w L/ 8 dy.
dv _ gd cosB rrE ! d tanp (du) 18:
du - ) (18a)
1] o« —Y
gd cosf

*) See footnote on preceding page.




10.

Similarly, for the C_ characteristics (equation {(17b)):

dv _ gd cosB F 1 - g tanp (du) (18b)
du ' -2
1] @ —Y
~ gd cosB

Equations (18a) and (18b) must be satisfied along the C, and the C_

characteristics, respectively,

Using the above equations, it is possible to obtain
numerical solutions for specific transition problems, as indicated in

the following section,
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4, ADAPTATION OF SOLUTTION
FOR COMPUTER TREATMENT

The equations of the characteristics and the compatibility
equations will be applied to solve a flow problem involving a straight

flaring transition, The method can be summarized as follows:

R

The solution (u, v and d) is assumed known at

P1 and P2. Inserting the values of u, v and

d from P1 into equation (17a) the approximate

slope of the C, characteristic passing through P, can be determined,

1
Similarly, using equation (17b) the slope of the C_ characteristic

passing through P2 can be found, after which the approximate location

of point Q is determined.

Now equation (18a) can be applied from P. to Q, using finite

1
differences and inserting the values of u, v, and d from P1 while A ¥y
is known as yQ = Yp - Similarly, equation (18b) is used from P2 to Q

1
and the two equations yield values of u and v for point Q. Using the

energy equation the corresponding value of d at Q is determined.

This procedure is subsequently repeated, using the average

values of u, v and d between P, and Q and P, and Q, respectively, until

1

sufficient accuracy is achieved,

2

For points on the boundaries the method must be modified, as

shown in the following detailed description.
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Simple (straight) Flaring Transition

Slope t = tan. 8

y
} 24 302 8
18
A=0lg 12 37
| 19 28 3
2 Xi3 e
'/28 2 e 20 Yag X 32 39
3\ Yo K8 Y21 A27 X33 40
4 10\18' Y22 X28Y 34
—
A=5 11 17 23 29 38
\—Woll or ¢
Figure 3

The channel is initially divided into a number of increments,
depending on the desired accuracy. Although 5 is chosen here, the
approach can easily be modified for a different number of points across

the channel.

Four types of node must be considered, that is the lines con-

necting points 0-5 (I), points 6, 12, 18 etc. (IL), points 11, 17, 23 etc.

(I1I) plus the region inside the boundaries, points 7-10, 13-16 etc. (IV).

I. Points 0-5

Figure &4
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In this region v = 0, which reduces equations (18b) to:

. %K =0 =-YF' - 1 - = tanp ( )
u d
which can be rewritten, using finite differences, as:

Au = - u tanB (Ay) (19)

d VE' -1
- in which form it is suitsble for iteration., A fixed wvalue of Ay is
assumed for each point* and in the first approximation Uy g and dA 1

are used to determine Au, After that

Uy = Uy g + Au
and )
“a-1
) 4 i niii Y
dA T dA-l (from continuity)
In successive approximations u = i=(u +u, ;) and d = L (d, + d ) are
2 “TA A-1 2 A A-1
used, until sufficient accuracy is achieved,
Since v = 0, equation (17b) can be rewritten as:
by _VE' -1
Ax 1 -F 7
x = - Ay VE'-1 (20)

from which equation Ax now can be determined.

* The most accurate results are obtagined if the first Ay 1ncrement
~selected (between point 0 and 1) is very small.



I1. Points 6, 12, 18 etc.
y A
y 'y28+tx
A=0 (P
A-5
3
Figure 5
Using initial values of u = u

%% can be determined from equation (l7a).
A

which give:

and

Now:

Equat

where

1
0 - (A): Yo =3 B + tx,
dy
2 dy
L 22 B - Va5t & *as
A~ dy
&- t
=iB+t
) XA
Ax = xy - *pes

ion (18a) can be written as:

Av _ 3
Au G + Au
—_ o T
. = 2d cosp + J/F 1
1 2
1 v

" gd cosp

are then found as the intersection between the two lines:

vs tu
A
A-5
u
and d = dA-5’

14,

The (x,y) - coordinates of

(21)

(22)
(23)

(24)

(25)

(26)
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-3 tang (Ay)

o et v e ]

and G3 P (277
1 o
. gd cosB

(Ay is known from equation (24))

The boundary conditions for Vo and u, can be written as;

vA = t uA
Vas + Au = t (uA_5 + Au)  or

v = ] N -\ 2 )
Av = t Au t.uA_5 Va5 (28)

Equation (23) and (26) can now be solved for Av and Au resulting in:

G, - tu + v
Au = 3 A-5 A-5 (29)
t - Gl
and Av = GlAu + G~3 (30)

At this point, the (approximate) values of uy and v, can be determined:

uA = uA_5 + Au

v, = V + Av

A A-5
The depth at point A is found using the energy equation:

: L y2 4 ¢ Ly
dA_5 cos@ + Ax sing + 25 Vpos = d, cosp + 28 Va

2 4
(UA—S +
dA = dA-S + Ax tan + (319




16.

The iteration process can now be repeated, using

1
us=7g (4 5+

v = L (v + v,)

2 VA5 T Va

and d=2%@@, _+4d)
2 A5 T 9

until sufficient accuracy is achieved,

IIL. Points 11, 17, 23 etc,

v
y
C.
A
X u
A
Figure 6
1 = = = iz i
Using u Uy 10 V=V and d dA-l’ dx cen be determined

from equation (17b). The (x,y) coordinates of point A will then become:

y
B A-1
Xy =Ky o - -Ez— (32)
dx
and Yo = 0 (33)
Ax = Xy - Xy (34)

By = Y5 = Ypq S (35)
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With known values of u, v, d and Ay, equation (18b) can now be rewritten

as:
G
AV _ 3
-A-E = G2 + ~a (36)
where
uv
— .
Gz _ gd cosB ng - (37)
1] - o—
gd cosB
and G3 is expressed in equation (27).
In this case the boundary conditions become:
v, = 0 (38)
or AV = - v, 39
Combining equations (36) and (39) gives:
v + G .
o= - ALT T3 4%0)
G
2 .
uA = uA-l + Au

The depth dA may now be found using an expression analogous

to the one in equation (31) after which the iteration can continue using

average values of u, v, and d between point (A) and point (A-1).

IV. Points 7-10, 13-16, etc.

A-|
C.(n)
A

Cilp)
A-5

y

Figure 7
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( ) can be determined from equation (17a) using values of u, v and d
(as u,v_and d_) corresponding to point (A-5). Similarly, (gl) is

ﬁ P P dx n
determined from equation (17b) using walues (un, v, and dn) from point

(A-1).

Now, the (x,y) coordinates of A can be found as the inter-

section between the two lines:

y - yA-S = ( ) ( A-S)

. -y ) N
and Y= Va1 T Gdn &7 Eay)
This gives:

Va1 - Ya-s 4 ( ) X5 - (dy) *A

A
( ) - ( >
= ‘ y
and v + @D Gy - %y (42)
(bx), = %) - %) g
(AY)p = yA = yA-S
@x), =%y = %y
(AY)H = yA = yA—l
Introducings
u v
b P T
gd_ cospB
G E ‘
4 2
v
1 .
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u‘ .
;1-5 tang (47),

b) 2
v

R A
gdp cosg

“n'n
gd cosp h an -1
n
G6 = 5 and
“\"T
n

gdn cos@

u[l
I tanp (Ay)

= _ n
¢, 7
v
n

gdn cosp

equations (18a) and (18b) can be written as:

(Av)p Gy
S—= = G, 4 - (43)
u 4 u
(A )p (a )p
and (Av)n G7
@, "% Y@,
From geometry, the following additional relations are achieved:
(Au)p = (Au>n = U'A-l = UA—S = GS (45}
(Av)p - (Av)n = Va1 Vas = Cg (46)
Equations (43) through (46) can be solved giwving:
e S
84 G6 G6 5
(Av) = (47)
P G
: 1. 4
G

6



and

Now

and

For

now

and

for

20,

(Av) -G
G -]
(A U)p G4 (48)

Uy and v, can be expressed as:

o
]

AT Yacs + (4 u)p

<
]

Vas T (B V),

dA the expression in equation (31) can be used. The iteration can
continue, using the average values of u, v and d between A-5
A for the C+ characteristics (subscript p) or between A-1 and A

the C characteristics (subscript n)
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5. EXAMPLES

The variables in a flow problem involving a straight flaring

transition can be expressed in dimensionless form as:

the slope, B
the direction change, ©
the initial (modified) Froude No., Fé

and the initial depth to width ratio, do/B

Since this paper is primarily concerned with the effects of the slope,
constant values of the three remaining variables will be chosen for a

series of examples,

Wall

(Or Wall) o' A B E F

Figure 8

The most significant changes in the flow regime occur along the (expansion)

wave generated at point O and its reflections. In the regions between
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the waves (regions, I, II and III) the flow variables remain approxi-

mately constant at any cross-section.

Figures 9 through 13 show that the effects of change in slope

can be summarized as follows:

(1) With increasing slope the system of waves and reflections
will be moved further downstream from the transition.

(2) The increase of the Froude Number and the decrease in
depth of the flow in the transition will be more

pronounced with increasing slope.
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. y é? = 5°

Fo =15
, 6 dog = 1.0
/28 ,
C—r -— X
2B

Horizontal Channel

w |

w | >

X
O A B 2 E 3 4 F 5 B

y 25° Slope D

B

.5

0 ' X
0] A Bl 2 3 4 E 5 B

Figure 9

Examples, plots of transition
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Figure 11 Depth at centerline versus distance




F'(=v¥gd cos B)

22

20

B B=25°
u 6 =5°
Fo = 1.5
d°/3 = 1.0
b |o°
|
| 1 1 {
2 3 4 5

Figure 12 Froude No. (modified) at wall versus distance

|

‘9t




B = 25°
F'(=v2/gd cos B) E
22+
20

I8

o
1

Figure 13 Froude No. (modified) at centerline versus distance

UJ|><

A4
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CONCLUSIONS

It is obvious from the preceding examples that even a
moderate change in slope will have a signifiéant effect on the super-
critical flow in an open channel transition. Although the analysis
presented in this paper is rather complicated for direct practical use
it would be feasible to design a number of computer programs for

various types of transitions, which could then be applied to actual

flow problems.

The method is limited by the initial assumptions of friction-
less and irrotational flow with hydrostatic pressure distribution,
Future experimental studies would be needed to investigate the

importance of these limitations.,
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PAGE 1, JUL 29 66
# SEQ LABL TYP STATEMENT € ZERO NOT O PLUS MINUS ELSE
001, 10 D X1501,Y[501,U{501.V(50),D(50] t 1ot I 1ot 1t
002. 20 ENDE CRDSLOPE,THETA,B,F,D(0] t 1t DI ¢ N S )t
003, 25 PL { 1ot P ¢ 1ot bt
004, 26 PVLSLOPE,THETA,B,F,D(0] t 1o 1ot 1t 1ot
005, 30 T2SIN, [THETA*3,14159/1801/C08, [THETA*3,14159/C
. 31 180] ( 1t 1ot oot ot
006, 40 BETA=SLOPE*3,14159/180 ( b 1ot ! Yot
007. 50 PL t 1t 1t 1 1
ooe. 60 PL X/B Y/8B u c
. 61 v D/B F c
. 62 A ( 1t 1o DI ¢ 1t
009, 70 PL t 1ot 1o ]t 1t
u10. 8u As0 L TR ¢ 1 oo )t
014, 90 X101=0+Y10)=B/2,V(01=0 t 1t 1 1t 1t
012, 94 UIO}=SORT,[32,2+D[01*COS.(BETAI*F) t 1t 1 ) ot 1t
013, 95 PRIN FalVIAl«x2+U[AIww2)/132,2+D[A1*COS,[BETAI] ( 1t It I 1t
014, 100 PV X[AI/B,Y[AI/B,ULA).VIA),DIA}/B,F,A { 1t Tt 1 )t
015, 105 PL ( 1t I ¢ oot 1t
016. 110 AzAed t )t 11 1t
017. 120 A5 [ AB 1 1 11 1 1 AB 1
018, 130 A6 tcol ot 1ot R ¢ 1t
019, 140 A=12 teo) Tt 1.1 LI ¢
020. 150 A=18 tecol ot 1o ¢ )t
021, 160 Ae24 tepl ot D ¢ ) 1t
g22. 170 A=3D tep ) 1 1 ) 1 )t
028, 175 A=36 tepy 1t I ¢ 1t
024. 176 Ae42 reop1 ¢ 1ot 1t 1t
025, 177 A=48 tepyl 1t I ¢ 1t
026,  1R0 A-11 LEF ) 1t ) 1 1ot
027. 190 Ae17 UEF 1 1o )1 1t
028, 200 A+23 1 EF 1 1 Tt ]t )t
02%. 210 As29 L EF ) 1 11
030, 220 A+35 I EF 3t 1ot )1 1ot
038, 222 A=41 L EF 1 1 ) 1t
032, 224 A=47 [ EF 1 1t 1t bt
033, 230 A+50 [ENDE] )1 11 ot
034, 240 UF=U[A-5),VP=VIA=5],DP=D[A=5] [ 1 1t bt 1ot
035, 250 UNsUCA=1),VUN=VIA~1),DNFD[A=1] ( 1t Tt o )t
036, 260  GW S3UP+R=VP,C=VN,P=DP,0=DN [ 1t DI )t S
037, 270 GF=32,24DP+C0S, [BETA) t 11 1t ]t 1t
038. 280 GN=GP*DN/DF t 1t oot ) ot 1
03%. 290 FF={UP*LP+VP+VF]/GP ( 1t 1ot ]t 1t
040, 300 FAZLUN*UN#VN*VN]/GN t I 1t ) 1t
044, 310 DYDXF=z[«UP*VP/GF=SQRT, [FP=111/11-UP*UP/GP! t 1ot 1ot )t 1t
042, 320 DYDXN=[»UN*VN/GN+SORT, [FN=1)1/11-UNsUN/GN] t 1ot bt bt 1t
043. 330 X[AI[Y[Ar1}-Y[A=51+DYDXP#X[A=5]-DYDXN#X[A®1]C
. 33 1/IDYDXP-DYDXN] t 1t 11 ot ) ot
044, 340 Y{AJ=iX[Avl]eX{A=D)4Y[A5]/DYDXP-YA-1)/DYDXNC
v 341 1/{1/DYDXF=1/0YDXN] { | { ] ( 1 i ] (
045, 350 DYP=Y[A)-Y(A=5],DXPsX[A]=X[A"5] f 1 1 TR 1t
046 360 DYN=Y[Al=Y[A=1] [ 1t it 1t
047, 370 C1=[UP*VP/GP+SQRT, [FP=1]1/11-VP*VP/GP] t 1t 1 1t 11
048, 375 C2s~LP/CP#SIN,IBETA]/COS, [BETAI*DYP/[1=VP*VP/C
. 376 GF) t 11 It 1t )t
045, 380 C3=(UN*VN/GN-SORT.IFNe1))/(1-VN*VN/GN] t )t 1ot 1o )t

—
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SEQ

385
386
390
395
400
402
404
406
408
41U
411
412
440
450
460
470
486
487
488
489
490
500
510
520
530
540
550
560
570
580
585
590
600
610

620

621
622
630
640
650
656
658
660
670
680
690
700
710
720
730
240
750
760
770
771
772

LABL TYP

CC
1J

EF
KL

STATEMENT

¢ ZERO

C4a-UN/DN*SIN, [BETA1/COS. [BETAI*DYN/ [1=YN*VN/C

GN]

CSsUlA-11=L[A=5]

C6aVIA-11=V[A=5]
DVP=[C5#C1=C4%C1/C3~C6+#C1/C3+C21/11-CL/C3]
DVNzDVP«C6

DLP=(DVP~C2])/C1

DUN=IDVYN-C41/C3
ULA]=UlA=5)+DUP,V{A)=V{A-5]+DVP

— e e e

D[A]=D[A-5]*DXP'SIN.[BETA]/§0§.}BETAJ?[U[A-5]C
«324V[AnB)an2~UlA)#w2-V[AI**2]/(64,4+CO0S, [BETC

All

DOP=zD{A}~D[A=5),DDNsDIA)-DIA-1]
UFEUlA=51+DUP/2,UN=UlA=1]1+DUN/2
VEsVIA-51+DVP/2,VN=VIA=1]+DVN/2
DF=DlA-51+DDP/2,DN=D[A=11+DDN/2
ABS,[(0«DN]/DNY-,0005
ABS.I[P-DP)/DPRI-,0005
ABES.[[Q«VN)/VN]~,0005
AES,[[R«VPI/VP}~,0005
AES,[(SeUP1/UF)~,0005
LzU[A=5],M=V[Ar5],N=D[A=5]

Szl ,R=M,Q=N

GL=32,2+«N*C0S,BETA)

FalLaL+MeM1/GD

DYDX={-L*M/GD=SGRT ,{F=111/11-L*L/GD]
X[A}=(B/2=Y[A=51+LYDXeXx{A=>1)/[DYDX~T]
Y[A)=B/Z#T*X[A}
DYaY[A)=Y[A=5],0XsX[A)=X[A"5]
Ci={L*«M/GD+SART,[F=1))/[1=M*M/GD])
CZz=L/N+SIN, [BETA)/COS, [BETAI#DY/[1~M«M/GD]
DLE(C2-T*UlA=5)+V[A=~5]1)/(T=C1]
DV=sC1=Dy+C2
VIA]aVIA=5)1+DV,U{A)=zULA=5]*DU

PRIN

[N e e e e R e e R R M e R ]

D(A1=DIA-51+DX*SIN, [BETA)/COS,IBETAI+[UtA=5]*C
*ZeV[A=51ee2=UlA]##2=V[A)**2])/164,4%C0S, [BETAC

11

. DL=DIA]~D1A=5]

L3U[A=51+DL/2,M=V[A=S 1DV /2
NsD[A=5])+DD/2

AES, {[ReM)/MI1~,0005
AES.I[G~N)/N)=,0005
AES,[[S«L)/L1=,0005
LIULAel),M=VIAn1)sNSDIA~L]
SEL,R=M, Q=N

GD=32,2«N+C0S.IBETA)

FalL*L+M*M)/GD

DYDX= ([~ *M/GD*SGRY, [F=11)/11-L*L/GD]
X[AJ2X[A*11=Y[A=11/DYDX

Y(Al=0.0
DXaX[AleXtAwl],DYSY[A]=Y[A>L1]
Cls[L*M/GD=SGRT.[F=111/(1~M*M/GD)
CZa=L/NaSIN,[BETA1/COS,[BETA)*DY/{1=M*M/GD])

-VIAY=0.D

DV=VIAl=VEA=1]
Dus[Dv-C2)/C1

PRIN

P e el e e R e R e K M T B T T N ]

e At At et b At et At ot b b d hh bt e b At bt d hed A bt

et and o St ok ek bt Ak ek hh At At A d o Gd St et Al A

NOT O

P e ket ke

PR e Lk el ek e laka e ke e e Tl

[ e L el ik ke ke ke Ra R Ko Mo Yo No Ral

At A A e Sk A

@t A At o et St At et frh A d B A Al ek Ak Ak Ad el Aed e At s

e Al Ak Al A At Ard Al e et Al e S e At A Mt et ot

[N e = L e e e R R R R e W]

PR e e e ke e R e e T e R R ]

PAGE 2,

PLUS

GH
GH
GH
GH
GH

1J
1J
1J

At e e Sl Bt e Nk St

et A Ak St A A S Ak At A At b A A Gt A o Ak Ak Sk At At | Mt

ot A o At R At et At At Ak At A R St i N o bt St S

PRIN

PV L L ke ke talia ket ke e ol
L h A e ek At ot S Al A At Aal Sk Al e Sk bl Al el At Mt A

[ ]
[ 1
{ )
[ ]
[ ]
{ ]
[PRIN)
[ ]
! ]
( ]
[ 1
{ ]
{ ]
[ ]
[ ]
[ ]
t 1
( ]
{ ]
[ )

JUL 29 66
MINUS ELSE
1 ] t
r ] t
1 ] t
t ) !

{ ] [
[ ) t
[ 1 {
t ] {

PR e s ke ke e ke ke R e Ko R K B Rt

(R L e ke kel ek e kada Badt e ke Ka Rl

ot et el oh et i ket A b o Nt A At d el et et bt e Al At A

— e bt L e d it A e A At e hrd At el bt At Ls et
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#

101,
102,

103.
104,
108,
106,
107,
108,
109,
110,
111,
112.
113.
114,
115.
116,
117,
116,
119,
120,
12%.
122,
123.
12“’
1286,
126,
127,

SEQ

774
780

781
790
810
820
826
828
830
840
850
854
856
858
860
870
880
890
900
910
920
928
930
940
950
960
970
980

LABL TYP

AB
MM

BU
Ba

STATEMENT [

LUIA)=UTA=1]1+DY
D{AISDIA-1)+DX¢SIN, [BETA)}/COS, [BETA)+[ULA~1]*C
*#Z+VIA=11%#2-ULAI#%2])/164,4%C0S, [BETA])
DD=D(Al=D{A~1]
LIU[A=1]+DUL/2, M=V A1) 4DV/2
NsD[A=11+DD/2
AES,([0=N1/N1~,0005
AES, [[R=M)/M]1~,0005
AES,[1S=L1/L1=,0005
L3UCA=1],N=D[Av1)
S=L,RzN,DYs<B/R
A=2
DY==B/8+4B/300
DYa-8/300
FaL#l/0132,2¢N+CCS, [BETA)]
DUs<L+SIN,[BETA]/COS, [BETAI/N*DY/SQRT, [F-1)
UlAT=UtA=11+DU
D(A)aULA=1)/U[A]eD A1)
DLaD(Al=D(A=1]
L3ULlA=1)+DU/2
NaD[A»1]+DL/2
AES,[[ReNJ/N)=,0005
AES, ([S~-L1/L)=,0005
Dx=-DY*SORT, [Fel)
XTAJ=X[A=11+DX
Y{AISY[A=-11eDY
v{Al=0.0
ENDSEND OF PRCGRAM

ZERO

{ ]

PRIN

e P Pt e e ey e e s e ey ey s by e ey
et At e e et M et G A bt et bd bt At e et bk et bed A b bt Ad bk e ot

NOT O

B e kaialinialakalalaiatialinieiaiaieialntakalaatakel

At e A Al G At ek b e ek et A Al A e et d Ak Ad A A ek e bt

P e e L ke e T e I e N e e ]

PAGE 3.
PLUS

KL

KL

BA

MN
MN

G At At Tt et At At At A® At Al d et Ah At et Gl St d A At s

JUL 29 66

MINUS

{

.

PRIN

BU

T Y S . e e Py Y P S e T T et T T T e e e
o et e Gt Ml Al A St At ot S A G i L ok bt e e i o 8k A ot

ELSE

-
—r

b ot Nk o s At

BA

PRIN

N kel e kalaleiekela el e ke Rake e K kol R NN
G et bt ot b Nt et L Ad At vk At At e o b At b e ek
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