The effects of simple transitions on supercritical flow in an inclined open channel, 1966, MS Thesis

G. Bagge

Follow this and additional works at: http:// preserve.lehigh.edu/engr-civil-environmental-fritz-labreports

Recommended Citation

Bagge, G., "The effects of simple transitions on supercritical flow in an inclined open channel, 1966, MS Thesis" (1966). Fritz Laboratory Reports. Paper 258.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/258

THE EFFECTS OF SIMPLE TRANSITIONS ON SUPERCRTICCAL FLOW IN AN INCLINED OPEN CHANNEL

Open Channe1 Research

THE EFFECTS OF SIMPLE TRANSITIONS ON SUPERCRITICAL FLOW IN AN INCLINED OPEN CHANNEL
by
Gunnar Bagge

ACKNOWLEDGEMENTS

I would 1ike to thank Dr. John B. Herbich, Chairman of the Hydraulics and Sanitary Engineering Division at Lehigh University for helpful advice and suggestions during preparation of this thesis.

A special note of thanks is also due to Mr. John R. Adams who reviewed the original draft and offered valuable advice and to Miss Linda Nuss who typed the manuscript.

Dr. L. S: Beedle is Acting Chairman of the Department of Civil Engineering and Director of Fritz Engineering Laboratory.

TABLE OF CONTENTS

Page
Certificate of Approval ii
Acknowledgements iii
Table of Contents iv
List of Figures v
List of Symbols vi
Abstract 1

1. INTRODUCTION 2
2. DERIVATION OE EQUATIONS 4
3. SOLUTION BY METHOD OF CHARACTERISTICS 8
4. ADAPTATION OF SOLUTION FOR COMPUTER TREATMENT 11
5. EXAMPLES 21
6. CONGLUSIONS 28
APPENDIX 29
REFERENCES 33
VITA 35

LISTOF FTGURES

Figure Page
1 Derivation of Energy Equation 4
2 Derivation of Continuity Equation 6
3 Sketch of Transition 12
4 First boundary condition 12
5 Second boundary condition 14
6 Third boundary condition 16
7 Intermediate points 17
8 Examples, explanatory sketch 21
9 Examples, plots of transition 23
10 Depth of wall versus distance 24
11 Depth at centerline versus distance 25
12 Froude No. (modified) at wall versus distance 26
13 Froude No. (modified) at centerline versus distance 27

LISTOFSYMBOLS

$B=$ Initial width of the channe1
$\mathrm{d}=$ Depth of flow, measured perpendicular to the bottom
$F^{\prime}=$ The Froude number, modified for inclined channe1 ($=V^{2} / \operatorname{gdcos} \beta$)
$g=$ Acceleration of gravity
$\mathrm{p}=$ Pressure
$u=V e l o c i t y$ in the $x-d i r e c t i o n, ~ p a r a l l e l$ to the undisturbed flow
$\mathrm{v}=$ Velocity in the y-direction, perpendicular to the undisturbed flow
$\mathrm{V}=$ Total velocity
$\mathrm{w}=$ Velocity in the z-direction, perpendicular to the bottom
$\beta=$ Slope of the bottom
$\theta=$ Change of angle in a straight flaring transition
$\rho=$ Density of the liquid

This paper presents a theoretical analysis of the effects of disturbances on supercritical flows in an inclined channel, based on the Method of Characteristics.

Since the practical application of the method would be severely limited by the amount of manual computations involved, the adaptation of the results for computer treatment has been emphasized. A number of numerical examples concerning a straight flaring transition is presented.

1. INTRODUCTION

In many hydraulic construction projects, one is required to design transitions for water flows in open channels at high velocities, that is for supercritical flows. An accurate description of such a flow will be significantly more complex than that of a subcritical flow case, because of the formation of standing waves generated at the points of disturbance.

The theory of these flows was adapted from the analogous theory of supersonic flow of gases by von Karman ${ }^{(1)}{ }^{\circ}$ and Preiswerk (2). The latter analysis was based on the Method of Characteristics and resulted in a fairly simple graphical solution for horizontal channels (explained in detail by Blaisdel1 (3)) Most of the later work on the subject was similarly limited to horizontal or slightly inclined channe1s. $(4,5,6,7)$

The present paper is an attempt to analyze supercritical flow in an inclined channe1. The Method of Characteristics which is explained in detail by Owczarek ${ }^{(8)}$ is used. The method can be summarized as follows:

Using certain limiting assumptions (frictionless fluid, irrotational flow, hydrostatic pressure distribution) two differential equations can be derived, involving the partial derivatives of u and with respect to y and x, where u and v represent the velocities in the x and y

[^0]direction, respectively. From these equations two sets of characterisetics can be found., expressed as:
\[

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)_{1}=f_{1}(u, v, d) \text { and } \\
& \left(\frac{d y}{d x}\right)_{2}=f_{2}(u, v, d)
\end{aligned}
$$
\]

where d indicates the depth of flow, measured perpendicular to the bottom. Along these lines u, v, and d vary in a prescribed manner, given in the compatibility relations:

$$
\begin{aligned}
& \left(\frac{d v}{d u}\right)_{1}=g_{1}\left(u, v, d,\left(\frac{d y}{d u}\right)\right) \text { and } \\
& \left(\frac{d v}{d u}\right)_{2}=g_{2}\left(u, v, d,\left(\frac{d y}{d u}\right)\right)
\end{aligned}
$$

These equations, when written in finite difference form, make it possible to analyze the entire flow field, that is to determine values of u, v, and d at various points.

2. DERIVATIONOF EQUATIONS

Using the Energy Equation and the Continuity Equation together with the condition for irrotational flow, two differential equations are derived, involving the partial derivations of u and v with respect to x and y.

Assumptions

1. The flow is frictionless, without energy dissipation.
2. Acceleration perpendicular to the bottom is infinitely smal1 compared to the acceleration of gravity (this results in a hydrostatic pressure distribution).

Energy Equation

Figure 1

At $\mathrm{x}=\mathrm{x}_{\mathrm{o}}$ the flow is assumed to be uniform, with constant velocity $V_{o}\left(=u_{o}\right)$. Applying the energy equation from point 0 to I gives:

$$
\begin{gather*}
p+\frac{1}{2} \rho v^{2}+\rho g\left(z \cos \beta-\left(x-x_{0}\right) \sin \beta\right)=p_{o}+\rho g z_{0} \cos \beta+\frac{1}{2} \rho v_{o}^{2} \text { or } \\
v^{2}-v_{o}^{2}=\frac{2}{\rho}\left(p_{o}-p\right)+2 g\left(\left(z_{o}-z_{0}\right) \cos \beta+\left(x-x_{o}\right) \sin \beta\right) \tag{1}
\end{gather*}
$$

With static pressure distribution (Assumption 2)

$$
\begin{equation*}
p=\rho g(d-z) \cos \beta \tag{2}
\end{equation*}
$$

Differentiation of equation (1) gives:

$$
\begin{align*}
& V \frac{\partial V}{\partial x}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+g \sin \beta \tag{3}\\
& V \frac{\partial V}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\rho y} \tag{4}\\
& V \frac{\partial V}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial z}-g \cos \beta \tag{5}
\end{align*}
$$

while differentiation of (2) results in:

$$
\begin{align*}
& \frac{\partial p}{\partial x}=\rho g \frac{\partial d}{\partial x} \cos \beta \tag{6}\\
& \frac{\partial p}{\partial y}=\rho g \frac{\partial d}{\partial y} \cos \beta \tag{7}\\
& \frac{\partial p}{\partial z}=-\rho g \cos \beta \tag{8}
\end{align*}
$$

Equations (6) and (7) state that the accelerations in the x and y directions are independent of z. Therefore, u and v must also be independent of z, since this was the case during the initial (uniform) flow.

Equations (5) and (8) combined give that $\frac{\partial V}{\partial z}=0$ or that V is independent of z. Now $w=\sqrt{V^{2}-u^{2}-v^{2}}$ must similarly be independent of z, and since it equals 0 at the bottom one may conclude that $w \ll u$ or v, or that $v^{2}=u^{2}+v^{2}$.

Combining equations (3), (6), and (9) results in:

$$
\begin{equation*}
\frac{\partial d}{\partial x}=\tan \beta-\frac{v}{g \cos \beta} \frac{\partial v}{\partial x}-\frac{u}{g \cos \beta} \frac{\partial u}{\partial x} \tag{10}
\end{equation*}
$$

Similarly equations (4), (7), and (9) give:

$$
\begin{equation*}
\frac{\partial d}{\partial y}=-\frac{v}{g \cos \beta} \frac{\partial v}{\partial y}-\frac{u}{g \cos \beta} \frac{\partial u}{\partial y} \tag{11}
\end{equation*}
$$

Continuity Equation

Figure 2

As the flow can be considered incompressible, the continuity equation becomes:

$$
\begin{aligned}
& \delta y\left\{\left[(d)(u)+\frac{1}{2} \frac{\partial[(d)(u)]}{\partial y} \delta y\right]-\left[(d)(u)+\frac{\partial[(d)(u)]}{\partial x} \delta x+\frac{1}{2} \frac{\partial[(d)(u)]}{\partial y} \delta y\right]\right\}+ \\
+ & \delta x\left\{\left[(d)(v)+\frac{1}{2} \frac{\partial[(d)(v)]}{\partial x} \delta x\right]-\left[(d)(v)+\frac{\partial[(d)(v)]}{\partial y} \delta y+\frac{1}{2} \frac{\partial[(d)(v)]}{\partial x} \delta x\right]\right\}=0
\end{aligned}
$$

or

$$
\frac{\partial[(\mathrm{d})(\mathrm{u})]}{\partial \mathrm{x}}+\frac{\partial[(\mathrm{d})(\mathrm{v})]}{\partial \mathrm{y}}=0
$$

which can be written as:

$$
\begin{equation*}
d \frac{\partial u}{\partial x}+u \frac{\partial d}{\partial x}+d \frac{\partial v}{\partial y}+v \frac{\partial d}{\partial y}=0 \tag{12}
\end{equation*}
$$

Final Differential Equations

Introducing the expressions for $\frac{\partial d}{\partial x}$ and $\frac{\partial d}{\partial y}$ from equations (10), (11) into the continuity equation (12) one gets:

$$
\begin{equation*}
\frac{\partial u}{\partial x}\left(1-\frac{u^{2}}{g d \cos \beta}\right)+\frac{\partial v}{\partial y}\left(1-\frac{v^{2}}{g d \cos \beta}\right)-\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \frac{u v}{g d \cos \beta}+\frac{u}{d} \tan \beta=0 \tag{13}
\end{equation*}
$$

Since the flow is frictionless and initially irrotational it will remain so. Therefore

$$
\begin{equation*}
\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0 \tag{14}
\end{equation*}
$$

These equations are suitable for analysis by the Method of Characteristics as shown in the ${ }^{\text {afollowing section. }}$

3. SOLUTION BY METHOD OF CHARACTERISTICS

From the preceding equations expressions for the slope of the characteristics are derived with compatibility relations controlling the variation of u, v and d along these characteristics. Equations (13) and (14) can be written in the form:

$$
\begin{aligned}
& A_{1} \frac{\partial u}{\partial x}+A_{2} \frac{\partial u}{\partial y}+A_{3} \frac{\partial v}{\partial x}+A_{4} \frac{\partial v}{\partial y}=F_{1} \\
& B_{1} \cdot \frac{\partial u}{\partial x}+B_{2} \frac{\partial u}{\partial y}+B_{3} \frac{\partial v}{\partial x}+B_{4} \frac{\partial v}{\partial y}=F_{2}
\end{aligned}
$$

where:

$$
\begin{gathered}
A_{1}=1-\frac{u^{2}}{g d \cos \beta}, A_{2}=A_{3}=\frac{-u v}{g d \cos \beta}, A_{4}=1-\frac{v^{2}}{g d \cos \beta}, F_{1}=\frac{u}{d} \tan \beta \\
B_{1}=0, B_{2}=-1, B_{3}=+1, B_{4}=0, F_{2}=0
\end{gathered}
$$

The physical characteristics can now be determined from the following equation *) :

$$
\begin{equation*}
\left(A_{1} B_{3}-A_{3} B_{1}\right)\left(\frac{d y}{d x}\right)^{2}-\left(A_{1} B_{4}+A_{2} B_{3}-A_{4} B_{1}-A_{3} B_{2}\right) \frac{d y}{d x}+\left(A_{2} B_{4}-A_{4} B_{2}\right)=0 \tag{15}
\end{equation*}
$$

Introducing the Froude number (modified for inclined channel):

$$
\begin{equation*}
F^{\prime}=\frac{u^{2}+v^{2}}{g d \cos \beta} \tag{16}
\end{equation*}
$$

*) Further details can be found in reference (8), pp. 278-290.
the solutions of equation (15) become:

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\frac{u v}{g d \cos \beta}-\sqrt{F^{\prime}-1}}{1-\frac{u^{2}}{g d \cos \beta}} \tag{17a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d y}{d x}=\frac{-\frac{u v}{g d \cos \beta}+\sqrt{F^{\prime}-1}}{1-\frac{u^{2}}{g d \cos \beta}} \tag{17b}
\end{equation*}
$$

Solutions corresponding to equation (17a) will be called the C_{+}- characteristics while the ones resulting from equation (17b) will be called the $C_{\text {_ }}$ - characteristics. The method is obviously applicable for supercritical flow only (where $\mathbb{F}^{\circ}>1$).

Along the physical characteristics certain compatibility relations must be satisfied. These can be expressed in the following equation ${ }^{*}$):

$$
\begin{aligned}
\frac{d v}{d u}=\frac{A_{3} B_{2}-A_{2} B_{3}}{A_{4} B_{3}-A_{3} B_{4}} & -\frac{A_{4} B_{2}-A_{2} B_{4}}{\left(A_{4} B_{3}-A_{3} B_{4}\right) \frac{d y}{d x}}-\frac{\left(E_{1} B_{4}-A_{4} F_{2}\right) \frac{d y}{d u}}{\left(A_{4} B_{3}-A_{3} B_{4}\right) \frac{d y}{d x}}+ \\
& +\frac{\left(E_{1} B_{3}-A_{3} F_{2}\right) \frac{d y}{d u}}{A_{4} B_{3}-A_{3} B_{4}}
\end{aligned}
$$

Inserting the expression for $\frac{d y}{d x}$ given in equation (17a) this reduces to:

$$
\begin{equation*}
\frac{d v}{d u}=\frac{\frac{u v}{g d \cos \beta}+\sqrt{E^{\prime}-1}-\frac{u}{d} \tan \beta\left(\frac{d y}{d u}\right)}{1-\frac{v^{2}}{g d \cos \beta}} \tag{18a}
\end{equation*}
$$

[^1]Similarly, for the C_characteristics (equation (17b)):

$$
\begin{equation*}
\frac{d v}{d u}=\frac{\frac{u v}{g d \cos \beta}-\sqrt{F^{f}-1}-\frac{u}{d} \tan \beta\left(\frac{d y}{d u}\right)}{1-\frac{v^{2}}{g d \cos \beta}} \tag{18b}
\end{equation*}
$$

Equations (18a) and (18b) must be satisfied along the C_{+}and the C_{-} characteristics, respectively.

Using the above equations, it is possible to obtain
numerical solutions for specific transition problems, as indicated in the following section.
4. ADAPTATION OF SOLUTION

The equations of the characteristics and the compatibility equations will be applied to solve a flow problem involving a straight flaring transition. The method can be summarized as follows:

The solution (u, v and d) is assumed known at P_{1} and P_{2}. Inserting the values of u, v and
d from P_{1} into equation (17a) the approximate slope of the C_{+}characteristic passing through P_{1} can be determined. Similarly, using equation (17b) the slope of the C_ characteristic passing through P_{2} can be found, after which the approximate location of point Q is determined.

Now equation (18a) can be applied from P_{1} to Q, using finite differences and inserting the values of u, v, and d from P_{1} while Δy is known as $\mathrm{y}_{\mathrm{Q}}=\mathrm{y}_{\mathrm{P}_{1}}$. Similarly, equation (18b) is used from P_{2} to Q and the two equations yield values of u and v for point Q. Using the energy equation the corresponding value of d at Q is determined.

This procedure is subsequently repeated, using the average values of u, v and d between P_{1} and Q and P_{2} and Q, respectively, until sufficient accuracy is achieved.

For points on the boundaries the method must be modified, as shown in the following detailed description.

Slopet $t=\tan . \theta$

Figure 3

The channe 1 is initially divided into a number of increments, depending on the desired accuracy. Although 5 is chosen here, the approach can easily be modified for a different number of points across the channel.

Four types of node must be considered, that is the lines connecting points $0-5(I)$, points $6,12,18$ etc. (II), points $11,17,23$ etc. (III) plus the region inside the boundaries, points 7-10, 13-16 etc. (IV). I. Points 0-5

Figure 4

In this region $v=0$, which reduces equations (18b) to:

$$
\frac{d v}{d u}=0=-\sqrt{F^{\prime}-1}-\frac{u}{d} \tan \beta\left(\frac{d y}{d u}\right)
$$

which can be rewritten, using finite differences, as:

$$
\begin{equation*}
\Delta u=-\frac{u \tan \beta(\Delta y)}{d \sqrt{\pi^{y}-1}} \tag{19}
\end{equation*}
$$

in which form it is suitable for iteration. A fixed value of Δy is assumed for each point* and in the first approximation u_{A-1} and d_{A-1} are used to determine Δu 。 After that

$$
u_{A}=u_{A=1}+\Delta u
$$

and

$$
d_{A}=\frac{u_{A-1}}{u_{A}} d_{A-1} \text { (from continuity) }
$$

In successive approximations $u=\frac{1}{2}\left(u_{A}+u_{A-1}\right)$ and $d=\frac{1}{2}\left(d_{A}+d_{A-1}\right)$ are used, until sufficient accuracy is achieved.

$$
\begin{align*}
& \text { Since } v=0 \text {, equation }(17 \mathrm{~b}) \text { can be rewritten as: } \\
& \qquad \begin{array}{c}
\frac{\Delta y}{\Delta \mathrm{x}}=\frac{\sqrt{F^{1}-1}}{1-F^{\prime}} \text { or } \\
\Delta \mathrm{x}=-\Delta \mathrm{y} \sqrt{F^{3}-1}
\end{array}
\end{align*}
$$

from which equation Δx now can be determined.

[^2]II. Points 6, 12, 18 etc.

Figure 5

Using initial values of $u=u_{A-5}, v=v_{A-5}$ and $d=d_{A-5}$, $\frac{d y}{d x}$ can be determined from equation (17a). The (x, y) - coordinates of A are then found as the intersection between the two lines:

$$
\begin{aligned}
& 0-(A): \quad y_{A}=\frac{1}{2} B+t x_{A} \\
& (A-5)-(A): \quad y_{A}=y_{A-5}+\frac{d y}{d x}\left(x_{A}-x_{A-5}\right)
\end{aligned}
$$

which give:

$$
\begin{equation*}
x_{A}=\frac{\frac{1}{2} B-y_{A-5}+\frac{d y}{d x} x_{A-5}}{\frac{d y}{d x}-t} \tag{21}
\end{equation*}
$$

and $\quad y_{A}=\frac{1}{2} B+t x_{A}$

Now:

$$
\begin{equation*}
\Delta x=x_{A}-x_{A-5} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\Delta y=y_{A}-y_{A-5} \tag{24}
\end{equation*}
$$

Equation (18a) can be written as:

$$
\begin{equation*}
\frac{\Delta v}{\Delta u}=G_{1}+\frac{G_{3}}{\Delta u} \tag{25}
\end{equation*}
$$

and $\begin{array}{r}G_{3}=\frac{-\frac{u}{d} \tan \beta(\Delta y)}{1-\frac{v^{2}}{g d \cos \beta}} \\ \quad(\Delta y \text { is known from equation (24)) }\end{array}$

The boundary conditions for ${ }^{v_{A}}$ and u_{A} can be written as:

$$
\begin{align*}
& v_{A}=t \cdot u_{A} \\
& v_{A-5}+\Delta u=t\left(u_{A-5}+\Delta u\right) \quad \text { or } \\
& \Delta v=t \Delta u=t u_{A-5}-v_{A-5} \tag{28}
\end{align*}
$$

Equation (23) and (26) can now be solved for Δv and Δu resulting in:

$$
\begin{equation*}
\Delta u=\frac{G_{3}-t u_{A-5}+v_{A-5}}{t-G_{1}} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta v=G_{1} \Delta u+G_{3} \tag{30}
\end{equation*}
$$

At this point, the (approximate) values of u_{A} and v_{A} can be determined:

$$
\begin{aligned}
& u_{A}=u_{A-5}+\Delta u \\
& v_{A}=v_{A-5}+\Delta v
\end{aligned}
$$

The depth at point A is found using the energy equation:

$$
\begin{align*}
& d_{A-5} \cos \beta+\Delta x \sin \beta+\frac{1}{2 g} v_{A-5}^{2}=d_{A} \cos \beta+\frac{1}{2 g} v_{A}^{2} \\
& d_{A}=d_{A-5}+\Delta x \tan \beta+\frac{\left(u_{A-5}^{2}+v_{A-5}^{2}-u_{A}^{2}-v_{A}^{2}\right)}{2 g \cos \beta} \tag{31}
\end{align*}
$$

The iteration process can now be repeated, using

$$
\begin{aligned}
& u=\frac{1}{2}\left(u_{A-5}+u_{A}\right) \\
& v=\frac{1}{2}\left(v_{A-5}+v_{A}\right)
\end{aligned}
$$

and

$$
\mathrm{d}=\frac{1}{2}\left(\mathrm{~d}_{\mathrm{A}-5}+\mathrm{d}_{\mathrm{A}}\right)
$$

until sufficient accuracy is achieved.
III. Points 11, 17, 23 etc.

Figure 6

$$
\text { Using } u=u_{A-1}, v=v_{A-1} \text { and } d=d_{A-1}, \frac{d y}{d x} \text { can be determined }
$$

from equation (17b). The (x, y) coordinates of point A will then become:

$$
\begin{equation*}
x_{A}=x_{A-1}-\frac{y_{A-1}}{\frac{d y}{d x}} \tag{32}
\end{equation*}
$$

and

$$
\begin{align*}
& y_{A}=0 \tag{33}\\
& \Delta x=x_{A}-x_{A-1} \tag{34}\\
& \Delta y=y_{A}-y_{A-1} \tag{35}
\end{align*}
$$

With known values of u, v, d and Δy, equation (18b) can now be rewritten as:

$$
\begin{equation*}
\frac{\Delta v}{\Delta u}=G_{2}+\frac{G_{3}}{\Delta u} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{2}=\frac{\frac{\mathrm{uv}}{\mathrm{gd} \cos \beta}-\sqrt{F^{\prime}-1}}{1-\frac{v^{2}}{g d \cos \beta}} \tag{37}
\end{equation*}
$$

and G_{3} is expressed in equation (27).

In this case the boundary conditions become:

$$
\begin{equation*}
v_{A}=0 \tag{38}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta v=-v_{A-1} \tag{39}
\end{equation*}
$$

Combining equations (36) and (39) gives:

$$
\begin{align*}
& \Delta u=-\frac{v_{A-1}+G_{3}}{G_{2}} \tag{40}\\
& u_{A}=u_{A-1}+\Delta u
\end{align*}
$$

The depth d_{A} may now be found using an expression analogous to the one in equation (31) after which the iteration can continue using average values of u, v, and d between point (A) and point (A-1).
IV. Points 7-10, 13-16, etc.

Figure 7
$\left(\frac{d y}{d x}\right)_{p}$ can be determined from equation (17a) using values of u, v and d (as $u_{p} v_{p}$ and d_{p}) corresponding to point (A-5). Similarly, ($\frac{d y}{d x}{ }_{n}$ is determined from equation (17b) using values (u_{n}, v_{n} and d_{n}) from point (A-1).

Now, the (x, y) coordinates of A can be found as the intersection between the two lines:

$$
y-y_{A-5}=\left(\frac{d y}{d x}\right)_{p}\left(x-x_{A-5}\right)
$$

and $\quad y-y_{A-1}=\left(\frac{d y}{d x}\right)_{n}\left(x-x_{A-1}\right)$

This gives:

$$
\begin{equation*}
x_{A}=\frac{y_{A-1}-y_{A-5}+\left(\frac{d y}{d x}\right)_{p}{ }^{x_{A-5}}-\left(\frac{d y}{d x}\right)_{n} x_{A-1}}{\left(\frac{d y}{d x}\right)_{p}-\left(\frac{d y}{d x}\right)_{n}} \tag{41}
\end{equation*}
$$

and

$$
\begin{align*}
& y_{A}=y_{A-5}+\left(\frac{d y}{d x}\right)_{p}\left(x_{A}-x_{A-5}\right) \tag{42}\\
& (\Delta x)_{p}=x_{A}-x_{A-5} \\
& (\Delta y)_{p}=y_{A}-y_{A-5} \\
& (\Delta x)_{n}=x_{A}-x_{A-1} \\
& (\Delta y)_{n}=y_{A}-y_{A-1}
\end{align*}
$$

Introducing:

$$
G_{4}=\frac{\frac{u_{p} v_{p}}{g d_{p} \cos \beta}+\sqrt{F_{p}^{\prime}-1}}{1-\frac{{ }_{p}}{g_{p} \cos \beta}}
$$

$$
G_{5}=-\frac{\frac{u_{p}}{d_{p}} \tan \beta(\Delta y)_{p}}{1-\frac{v_{p}^{2}}{g d}{ }_{p} \cos \beta}
$$

$$
G_{6}=\frac{\frac{u_{n} v_{n}}{g d_{n} \cos \beta}-\sqrt{F_{n}^{\prime}-1}}{1-\frac{v_{n}^{2}}{g d_{n} \cos \beta}} \text { and }
$$

$$
G_{7}=-\frac{\frac{u_{n}}{d_{n}} \tan \beta(\Delta y)_{n}}{1-\frac{v_{n}^{2}}{{g d_{n}}^{\cos \beta}}}
$$

equations (18a) and (18b) can be written as:

$$
\begin{equation*}
\frac{(\Delta v)_{p}}{(\Delta u)_{p}}=G_{4}+\frac{G_{5}}{(\Delta u)_{p}} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(\Delta v)_{n}}{(\Delta u)_{n}}=G_{6}+\frac{G_{7}}{(\Delta u)_{n}} \tag{44}
\end{equation*}
$$

From geometry, the following additional relations are achieved:

$$
\begin{align*}
& (\Delta u)_{p}-(\Delta u)_{n}=u_{A-1}-u_{A-5}=G_{8} \tag{45}\\
& (\Delta v)_{p}-(\Delta v)_{n}=v_{A-1}-v_{A-5}=G_{9} \tag{46}
\end{align*}
$$

Equations (43) through (46) can be solved giving:

$$
\begin{equation*}
(\Delta v)_{p}=\frac{G_{8} G_{4}-\frac{G_{7} G_{4}}{G_{6}}-\frac{G_{9} G_{4}}{G_{6}}+G_{5}}{1-\frac{G_{4}}{G_{6}}} \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
(\Delta u)_{p}=\frac{(\Delta v)_{p}-G_{5}}{G_{4}} \tag{48}
\end{equation*}
$$

Now u_{A} and ${ }^{\mathrm{V}} \mathrm{A}$ can be expressed as:

$$
u_{A}=u_{A-5}+(\Delta u)_{p}
$$

and

$$
\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{A}-5}+(\Delta \mathrm{v})_{\mathrm{p}}
$$

For d_{A} the expression in equation (31) can be used. The iteration can now continue, using the average values of u, v and d between $A-5$ and A for the C_{+}characteristics (subscript p) or between $A-1$ and A for the C _ characteristics (subscript n)

5. EXAMPLES

The variables in a flow problem involving a straight flaring transition can be expressed in dimensionless form as:
the slope, β
the direction change, θ
the initial (modified) Froude No., $\mathrm{F}_{\mathrm{o}}^{\mathrm{I}}$
and the initial depth to width ratio, d_{o} / B

Since this paper is primarily concerned with the effects of the slope, constant values of the three remaining varialles will be chosen for a series of examples.

Figure 8

The most significant changes in the flow regime occur along the (expansion) wave generated at point 0 and its reflections. In the regions between

```
the waves (regions, I, II and III) the flow variables remain approximately constant at any cross-section.
```

Figures 9 through 13 show that the effects of change in slope can be summarized as follows:
(1) With increasing slope the system of waves and reflections will be moved further downstream from the transition.
(2) The increase of the Froude Number and the decrease in depth of the flow in the transition will be more pronounced with increasing slope.

Figure 10 Depth at wall versus distance

Figure 11 Depth at centerline versus distance

Figure 12 Froude No. (modified) at wall versus distance

Figure 13 Froude No. (modified) at centerline versus distance

CONCLUSIONS

It is obvious from the preceding examples that even a moderate change in slope will have a significant effect on the super critical flow in an open channel transition. Although the analysis presented in this paper is rather complicated for direct practical use it would be feasible to design a number of computer programs for various types of transitions, which could then be applied to actual flow problems.
The method is limited by the initial assumptions of friction-
less and irrotational flow with hydrostatic pressure distribution.
Futare experimental studies would be needed to investigate the importance of these limitations.

JUL 2966 GLNNAR BAGGE SUPERCRITICAL FLOW TRANSITIONS

RE FERENCES

(1) Von Karman, T.

EINE PRAKITSCHE ANWENDING DER ANALOGIE ZWISCHEN ÜBERSCHALLSTROMUNG IN GASEN UND UBERKRTTISCHER STR.OMÖNG IN OFFENEN GERINNEN (A Practical Application of the Analogy Between Supersonic Elow in Gases and Supercritical Flow in Open Channe1s) Zeitschrift Von Angewandte Mathematik Und Mechanik, Vol. 18, No. 1, pp. 49-56, February 1938.
(2) Preiswerk, E.

APPLICATION OF THE METHODS OF GAS DYNAMICS TO WATER FLOWS WITH FREE SURFACE, PART I. FLOWS WITH NO ENERGY DTSSIPATION, Institut fur Aerodynamik Eidgenossische Technische Hochschule, Zürich, Translated as Technical Memorandum No. 934, National Advisory Committee for Aeronautics, Washington, D. C., March 1940.
(3) Blaisde11, F.W.

GRAPHICAL CONSTRUCTTON OF THE FLOW IN TRANSITION BY THE METHOD OF CHARACTERISTICS (AFTER PREISWERK), U. S. Dept. Agr., Soil Conservation Service, Minneapolis, Minn., May 1944, revised February 1946 .
(4) Ippen, Arthur T.

MECHANICS OF SUPERCRTTICAL TILOW, 1st Paper in High-Velocity Flow in Open Channels: A Symposium, Transactions, American Society of Civil Engineers, Vol. 116, pp. 268-295, 1951
(5) Knapp, Robert T.

DESIGN OF CHANNEL CURVES FOR SUPERCRITICAL FLOW, 2nd Paper in High-Velocity Flow in Open Channe1s: A Symposium, Transactions, American Society of Civil Engineers, pp. 296-325, 1951
(6) Ippen, Arthur T. and Dawson, John H. DESIGN OF CHANNEL CONTRACTIONS, 3rd Paper in High-Velocity Elow in Open Channels: A Symposium, Transactions, American Society of Civil Engineers, pp. 326-346, 1951.
(7) Rouse, Hunter, Bhoota, B. V. and Hisu, En-Yun DESIGN OF CHANNEL EXPANSIONS, 4th Paper in High-Velocity Flow in Open Channels: A Symposium, Transactions, American Society of Civil Engineers, pp. 347-363, 1951.
(8) Owczarek, J. A. FUNDAMENTALS OF GAS DYNAMICS pp. 278-290, Internationa1 Textbook Company, Scrantion, Pa., 1964.

[^0]: * Number in parenthesis refer to references on pages 33 and 34 .

[^1]: *) See footnote on preceding page.

[^2]: * The most accurate results are obtained if the first Δy increment selected (between point 0 and 1) is very small.

