
Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1966

The effects of simple transitions on supercritical
flow in an inclined open channel, 1966, MS Thesis
G. Bagge

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact
preserve@lehigh.edu.

Recommended Citation
Bagge, G., "The effects of simple transitions on supercritical flow in an inclined open channel, 1966, MS Thesis" (1966). Fritz
Laboratory Reports. Paper 258.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/258

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228623464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/258?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu




Open Channel Research
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A B S T RAe T

This paper presents a theoretical analysis of the effects of

disturbances on supeF.critical flows in an inclined channel, based on

the Method of Characteristics 0

Since the practical application of the method would be severely

limited by the amount of manual computations involved, the adaptation of

the results for computer treatment has been emphasizedu A number of

numerical examples concerning a straight flaring transition is presented~



10 I N T ROD U C T ION

In many hydraulic construction projects, one is required to

design transitions for water flows in open channels at high velocities,

that is for supercritic:al f~ows 0 An accurate description of such a

flow will be significantly more complex than that of a subcritical flow

case, because of the formation of standing waves generated at the points

of disturbance~

The theory of these flows was adapted from the analogous

(1)* (2)theory of supersonic flow of gases by von Karman and Preiswerk · 0

The latter analysis was based on the Method of Characteristics and

resulted in a fairly simple graphical solution for horizontal channels

(explained in detail by Blaisdell(3»). Most of the later work on the

subject was similarly limited to horizontal or slightly inclined

(4 5 6 7)
channels 0 '"

The present paper is an attempt to analyze supercritical flow

in an inclined channel 0 The Method of Characteristics which is explained

in detail by owczarek(8)iq used. The method can be summarized as follows:

Using certain limiting assumptions (frictionless flui.d, irrota=

tional flow, hydrostatic pressure distribution) two differential equations

can be derived, involving the partial derivatives of u and v with respect

to y and x, where u and v represent the velocities in the x and y

'if;: Number in parenthesis refer to references on pages '.33 and' 34 0



direction, respectively, From these equations two sets of characteris-

tics can be found., expressed as:

where d indicates the, depth of flow, measured perpendicular to the

bottomo Along these lines u, v, and d vary in a prescribed manner,

given in the compatibility relations~

gl (u, v, d, (d
y» and

du

These equations, when written in finite difference form, make it

possible to analyze the entire flow field, that is to determine values

of u, v, and d at various points~



2. D E R I V A T ION o F E QUA T ION S

I

Lt.

Using the Energy Equation and the Continuity Equation together

with the condition for irrotational flow, two differential equations

are derived, involving the partial derivations of u and v with respect

to x and y.

Assumptions

1. The flow is frictionless, without energy dissipation.

2. Acceleration perpendicular to the bottom is infinitely

small compared to the acceleration of gravity (this

results in a hydrostatic pressure distribution).

Energy Equation

Figure 1



5 ~

At x = x the flow is assumed to be uniform, with constant
o

velocity V (= u.)~ Applying the energy equation from point 0 to I
o 0

gives:

V
2

- V 2 = ~ (p - p) + 2g «zo- z) cos~ + (x - x ) sin~) (1)
o P 0 0

With static pressure distribution (Assumption 2)

p = pg (d - z) cos~ (2)

Differentiation of equation (1) gives~

voV
OX

lQE.POX + g sin~ (3)

·avv- =OZ
1:. .QE. _ g cos~
p OZ

(4)

,.. (5)

while differentiation of (2) results in~

Equations (6) and (7) state that the accelerations in the x

flow.

and y directions are independent of Zo Therefore, u. and v m~st also

(7 )

(8)

(6)OP = ad
cosSOX pg OX

.QE.= ad
cosSoY pg aY

QE. = - pg COBSOZ

be independent of z, si,nee thi.s was the case during the ini.tial (uniform)



6.

avEquati9ns (5) and (8) combined give that a
Z

= 0 or that V is

independent of z. 2 2' must similarly be independent
u - v

of z, and since it equals 0 at the bottom one may conclude that

222
w < < u or v, or that V = u + v .

Combining equations (3), (6), and (9) results in.:

(9)

ad
-=OX

tanS- v aV _ U aU
g coss OX g cos~ oX (10)

Similarly equations (4), (7), and (9) give:

ad = _ v OV u au
OY g cos~ oy - g cos~ oy

(11)

Continuity Equation z,

d

Figure 2

As the flow can be considered incompressible, the continuity

equation becomes:

oy{[(d) (u) + ~ a[(~; (u)] oy] _ [(d) (u) + a[(~~ (u)]

+ ox {[(d) (v) + - a[(d) (v)] ox] _ [(d) (v) + a[Cd) (v)]
2 OX oY

or

o[(d) (u)] + a[(d~ (v)] = 0
OX . dY

oy + - 0 [ (v)] o~}= 0
2 OX



which can be written as:

(12)

Final Differential Equations,

ad adIntroducing the expressions for ~ and ~ from equations (10),
uX oY

(11) into the continuity equation (12) one gets:

2au (1 _ u ) + av
OX gd cos~ aY

2
(1 _ v ) (eu + OV) uv +-du tan~=O (13)

gd cos~ - oY OX gd cos~

Since the flow is frictionless and initially irrotational it will remain

80" Therefore

o (14)

These equations are suitable for analysis by the Method of Characteristics

as shown in theJ?following section.



30 SOL UTI a N B Y M E·T HOD 0 F

C H.A RAe T E R I S TIC S

From the preceding equations express.ions for the slope of

the characteristics are derived with. compatibility relations controlling

the variation of u, v and d along these characteristics o Equations

(13) and (14) can be-written in the form:

Al au + A ou + A . av +'A "'ov F1
-=OX 2 oY 3 OX 4 OY

B
l

,aU + B au + B qv + B ov F2
-=ax 2 Oy 3 ex4 oy

where:

,2
1. _ U A

gd cos~' 2

2
1 _ V F U t Q

gd cos~' ~1 d ,an~

The physical characteristics can now be determined from the .following

~() oQequation

Introducing the Froude number (modified .for inclined channel):

(15)

F' .( 16)

*) Further details can be found in reference (8), pp~ 2]8-290~



the solutions of equation (15) become:

UV IFi
-t... - 1

~= gd cosS
dx 2

1
u....

gd cosS

(17 a)

(17b)

1 ­ gd ,cos\3

uv +IF' _ 1
~ _ gd cosS, '
dx - ,2

ti.

and

Solutions corresponding to equation (17a) will be called the

C+ characteristics while the ones resulting from equation (17b) will

be called the C - characteristics 0 The met,hod is obviously applicabl<e

for supercritical flow only (where F U > 1)0

Along the physical characteristics certain compatibility

relations must be satisfied o These can.be expressed in the following

equation*):

A3B2-A2~3 A4B2 -A2B4.
dy

dv (F IB4 -A4F2) du
+-= -

(A4B3-A3B4):~ (A4B3-A3B4)~du A
4

B3-A3B
4

+
(F IB3-A3F2)~

A4~3-A3B4

Inserting the expressi,.on for dy . in equation (17 a) this requces to ~dx gl.ven

uv + IFv _' 1. _ ~d tan~ (dY)
dv gd cosS du
du'= ,2

V­I ....
gd cosS

(18a)

*) See .footnote on preceding, page 0



10.

Similarly, for.the C ,characteristics (equation (17b»:

uv
dv gd co~6
du' =

/ ff f U (dv)
- v~ -- 1 - J tan~ ~

·2
v

1.- gdcosS

(18b)

Equations (18a) and (18b) must ·be satisfied along the ~+' and the C

characteristics, respectivelYe

Using the above equations, it is.possib Ie ~o obtain

numerical solutions for specific transition problem~~ as indicated in

the following section o



11,

4, A D APT A T ION o F SOL UTI a N

FOR COMPUTER TREATMENT

The equations of the characteristics and the compatibility

equations will be applied to solve a flow problem involving a straight

flaring transition, The method can be summarized as follows:

The solution (u, v and d) is assumed known at

......._-~-x
PI and Pz' Inserting the values of u, v and

d from PI into equation (17a) the approximate

slope of the C+ characteristic passing through P
l

can be determined e

y

Similarly, using equation (17b) the slope of the C characteristic

passing through Pz can be found, after which the approximate location

of point Q is determined.

Now equation (18a) can be applied from PI to Q, using finite

differences and inserting the values of u, v, and d from PI while 6 y

is known as YQ = Yp ' Similarly, equation (lSb) is used from P2 to Q
1

and the two equations yield values of u and v for point Q, Using the

energy equation the corresponding value of d at Q is determined.

This procedure is subsequently repeated, using the average

values of u, v and d between Pi and Q and Pz and Q, respectively, until

sufficient accuracy is achieved.

For points on the boundaries the method must be modified, as

shown in the following detailed description.



Simple (straight) Flaring Transition

Slope t:l tan. 8

A=O

x

Figure 3

The channel is initially divided into a number of increments,

depending on the desired accuracy. Although 5 is chosen here, the

approach can easily be modified for a different number of points across

the channel.

Four types of node must be considered, that is the lines con-

necting points 0-5 (I), points 6, 12, 18 etc. (II), points 11, 17, 23 etc.

(III) plus the region inside the boundaries, points 7-10, 13-16 etc. (IV).

I. Points 0-5

Figure 4

v

A--I A u



In this region v = 0, which reduces equations (lSb) to:

. dv {l I U dv.
-- - 0 =- F' - 1 - ~d tan~ (~du)du -

which can be rewritten, using finite differences, as:

6.u - - u.tanS (I:::.y;)

d I.Fu '"'" I'
(19)

in Which form it is suitable for iteration o A fixed value of Ay is

assumed for each point* and in the first approximation u
A

_
1

and d
A

_
1

are used to determine 6u o

U
A

After that

and
UA_1
--u~= d

A
_
1

(from c.ontinuity)
. A

In successive approximations u

use'd, unti 1 sufficient aCC'L1r acy is 9chieved 0

Since '\i1 0 9 equation (~7b) can.be rewritten. as:

(20)

from which equation 8xnow can be determined?

* The most accurate results are obtained if the first I:::.y incr~ment

selected (between point 0 and 1) is very small o
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II. Points 6, 12, 18 etc.

y

A-O

A-5

v
v. tu

w.._---__- u
Figure 5

Using initial values of u = uA_5' v = vA_5 and d = dA_5 ,

~~ can be determined from equation (17a). The (x,y) - coordinates of

A are then found as the intersection between the two lines:

a - (A): Y =1. B + tx
A 2 A

(A-5) - (A):

which give:

and

Now:

1: B dy
2 - YA-5 + dX xA_5xA =

dy _ t
dx

(21)

(22)

(23 )

(24)

Equation (18a) can be written as:

~v G1

G3
- = +-Au Au

uv
+ IF' 11

gd -
where G1 =

cosB
2

1 v- gd cosS

(25)

(26)



and

u-d: tan~ . (l1y")
G3 = ='=2 -

1 _ .-.\i-....;.. __

. gd cosi3

(Ay is known from equation (24))

(27)

The boundary conditions for vA and uO
A

can be written as ~

VA_5 + Au = t (uA_5 + Au) or

Av = t ~u = tu - vA-5 A-5
(28)

Equation (23) and (26) can no,w be solved for Av and lJ.u resulti.ng in~

G
3 - tU

A
_

5 + vA_
5

6.u -
t "'" Gl

and A,v = G1Llu + G,3

(29)

(30)

At this point, the (approximate) values of uA and VA can be determined~

The depth at point A is found using the energy equation:

2g case
(31)
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The iteration p~ocess can now be repeated, using

until sufficient accuracy is achieved.

and

III. Points 11, 17, 23 etc.

vy

A-I

A

Figure 6

A-I

A"'------4..._-__- U

- ~Using U = uA_l ' v = vA_1 and d - dA~l' dx can be determined

from equation (17b). The (x,y) coordinates of point A will then become:

and y = 0A,

(32)

(33)

(34)

(35)



17.

With known values of u, v, d and ~y, equation (18b) can now be rewritten

as:

b.v G3
A = GZ + AU
.uU u

where uv

GZ
gd cosS - IFf - i'=

2
1

v- gd cos\3

and G
3

is expressed in equation (27).

In this case the boundary conditions become:

(36)

(37)

(38 )

or 6,v = - vA-I (39)

Combining equations (36) and (39) gives:

AU - - (40)

The depth dA may now be found using an expression analogous

to the one in equation (31) afte~ which the iteration can continue using

average values of u, v, and d between point (A) and point (A-1).

IV. Points 7-10, 13-16, etc.

y A-I
C_(n)

A
C+ (p)

A-S x
Figure 7

v A-I

~)A
Ap)

A-5
~-------U



18~

(dy) can be determined from equation (17a) using values of u, v and d
dx p

(as up'vp and dp). corresponding to point (A-5). Similarly, (~~)n is

determined from equation (17b) u.sing 'values (u ,'\/ and d ) from poi.nt
n n n

(A-I) g

Now, the (x,y) coordinates of A can be found as the inter-

section between the two lines:

dy
(x - x

A
_

S
)y - YA-5 = (dx)p

and = ~ (x xA_1)y - YA- 1 (dx)n -

Thi.s gi'ves~

and YA = YA- S +
dy

(x
A

- xA_'S)(dx)p

(~x) = xA - xA_
5> p

(6.y) = YA - YA-5p

(t:J.x) = x - x
A

_
1n A

(~Y)n = YA - YA- 1

(41)

(42)

Introdu'cing: u v
p p + IFI - Ie

gd cos~ P
~

'2
Til

1 - -.P
gd coss

p



li,

t tanf3 (Ay)
p

GS == :e.
2

v
l' - P

d cos\3g p

u v
n n - IF' I'

gd cos~
-n

G6
n and

2
'.""':1 ...... \'1

1
n- gd' cos~

n

u
n

(/1y)d tan~
n

G
7

n
= - ,2

v
1

n- gd cos~
n

equations (18a) and (ISb) can be written as~

(bv) GSp
(6u) = G4 +(L\u)

p p

and (Av) G
7n

= G
(8u) 6 +(~u)

n n

From geometry, the following addi ti.onal rel~tions are achie'iled:

(~v) - (bv) = vA 1 - v = GP n - A-S 9

Equati.ons (43) through (46) can be sol'ved gi~~7ing~

(43)

(44)

(45)

(46)

(4,7)



and (6. u), p

(6. v) - G
p ·5

~4

20 0

(48)

Now uA and vA can be expressed as:

uA = u
A

_
S + (6 u). p

and vA = vA_5 + (8 v), p

For dA the expression in equation (31) can be used o The iteration can

now continue, using the average values. of u, v and d between A-5

and A for the C+ c,haracteristiqs (subscript p} or between A-I and A

for the C characteri.stics (subscript n)
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5. EXAMPLES

The variables in a flow problem involving a straight flaring

transition can be expressed in dimensionless form as:

the slope, ~

the direction change, e

the initial (modified) Froude No. , F'
0

and the initial depth to width ratio, d /B
0

Since this paper is primarily concerned with the effects of the slope,

constant values of the three remaining vdLictbles will he chosen for a

series of examples.

oWall

i------..a..~_ ..........---..__---.:X----...3rL- ...

(Or Wall)

Figure 8

The most significant changes in the flow regime occur along the (expansion)

wave generated at point a and its reflections. In the regions between



the waves (regions, I, II and III) the flow variables remain approxi­

mately constant at any cross-sectiono

Figures 9 through 13 show that the effects of change in slope

can be summarized as follows~

(1) With increasing. slope the system of waves and reflections

will be moved further downstream from the transition o

(2) The increase of the Froude Number and the decrease in

depth of the flow in the transition will be more

pronounced with increasing slopeo
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~--.

y

......-.-------- x

8 ;::',5 0

F~:; 1.5

dOle:; 1.0

Hor.izontal Channel
y
B 0
.5

.!.
0 0 A 8 I E 2 F3 4 5 B

1.
B
.5

0
x

0 A B I 2E 3 F 4 5 B

y 10 0 Slope
DB

.5

0
x

'. B0 A B I 2 E 3 4 F 5

Y 250 Slope 0
B
.5

0
0 A 81 2 3 4 E 5

Figure 9 Examples, plots of transition
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Figure 10 Depth at wall versus distance
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Figure 12 Froude No. (modified) at ~all versus distance
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Figure 13 Froude NOG (modified) at centerline versus distance



CON C L U S ION S

It is ,obvious from the preceding examples that even a

moderate change in slope will have a significant effect on the super­

critical flow in an open channel .transition o Although the anal.ysis

presented in this paper is rather complicated for direct practical use

it would be feasible to design a number of computer programs for

various types of transitions, which could then, be applied to actual

flow prob lems 0

'rhe method is limited by the initial assumptions of friction­

less and irrotational flow with hydrostatic pressure distribution q

Future experimental studies would be needed to investigate the

importance of these limitationso
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computer Program
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#1 SEQ L.ABL TYP STATEMENT C ZERO NOT 0 PL,;US MINUS ELS!=

050. 385 C4~.UN/ON*SlN,[8ETA]/COS.tBETA1*OYN/[1~VN*VN/C. 386 G~l
[ ] [ ] [ ] [

051. 390 C5;:U(A"'1brlJ(A~5]
[ 1 t 1 [ J t'

052. 395 C6:r\l[A,,1]-V[A.Sl [ ] t ] f , t

05~. 400 DVP~[C5.C1·C4*C1/C!·C6.C1/C3+C2]/[1·C1/C3] [ ] t ] [ J [

05 •• 402 DVNI:DVP~C6
[ ] t 1 [ ] [

055. 404 Ol,.P:;[DVp ... C21/C1 [ ] [ ] [ 1 [

066. 406 Dl.IN::;(OVN ... C4]/C3 [ ] [ 1 ( J [

05'1. 408 U[Al:UtA-51+0UP,V[Al=V[A-5]+DVP [ I [ 1 [ ] [

q~~l' ~1U DtA]=D[A-5J+qXP.SIN,[8ETA!/~O~.~BtTAJ~[U[A.51C

411 •• 2+V[A~5].*2~U[A]*.2~V[Al**2]/(64.4.COS.t8ETC.,.2 A] ]
( ] t J ( ! t

059. 440 DDP=D[A]-O[A-5),DDN:DtAl-D[A~1] ( ) [ ] [ ] [

060. 450 UP=U[A~5]+DUP/2,U~:U(A·1]·DUN/2 [ ] [ ] [ ] t

061. 460 VF=V[A~5J+DVP/2,V~=V(A·11+0VN/2 [ ] [ ] [ ) [

062. 470 DF=DtA·5]·DOP/2,D~:D(A·11+DDN/2 [ ] [ 1 [ ] [

06;3. 486 A8S.[[O.ON]/DN]~.On05 r ] [ 1 [ GH 1 [

064. ~B7 A8S.[[P.DP]/DP1-.0005 [ J [ 1 r GH ] t

065" 488 A8S.[[O.VN1/VN1·.OOO5 r ] [ ] [ GH ] [

066. 489 AES.[[R.VPJ/VP,·.OOO5 [ ] [ ] [ GH ] t 1

067. 490 AES.[(S.UP1/UP'~.OD05 rPR1N] [ ] [ GH ] [PAIN]

068. 500 CI: L=U[A-5],M=V(ArS],N=D£A-5] [ J [ ] [ ] [ ]

069. 510 IJ S;L,R:M,Q=N [ ] [ ] [ ] t ]

070. 520 GC=32.2.N*COS. (SETA] { ] [ 1 [ , [ 1

071. 530 F.,[L*L+I'I*M]/GD [ ] [ ] [ J [ ]

Q~~. 540 DYDX=[-L*M/GD.SCRT.[r~11]/[1-L·L/GDl [ ] [ ] [ ] [ ]

073. 550 X(A]={B/2.Y[A-5]+CYDX*X(A·~]l/[DYOX-T] ( ] [ ~ [ J [ ]

074. 560 Y[AJ=B/2+T"X(A' [ 1 I 1 [ ] [ ]

07~. 570 DY.Y[A]·YtA-51,DX:xtA]~X[A·5] [ ] t 1 [ ] t 1

076. 580 C1 z [L*M/GD+SQRT.[F p 11)/[1 9M -M/GDl [ ] [ 1 [ 1 t )

07'. 585 C2~·L/N*SI~.[8ETA]/COS.[BETA]-OY/[1~M*M/GO] [ J [ 1 [ ] [ 1

078. 590 DL=(C2-T*U[A~5}.V[A·5]]/[TeC1J [ ] [ ] [ ] [ ]

079. 600 O\J;;Cl.0l;+C2 ( ] [ ] [ ) [ ]

080. 610 V[A]=V£A-51+DV,UrA):U(A.51+DU [ ] r ] [ 1 [ )

081. _ 620 D[A]:D[A-5]+DX*SIN.r8ETA1/COS,[BETA]+(UrA·5J*C
621 .2.VrA·5]*·2~U[A].*2-V[Al*·2]/(64,4*COS,(BET~C. 622 ] 1 [ ] [ ] [ ] t

082, 630 , DO;1DtA) .. D[A-5] ( 1 [ 1 [ ] t

08~. ~40 L;U[A.51+D~/2,~=V[A~5)·DV/2 [ ) [ ] [ ] [

O~4. 650 N;D[A·5]+OD/2 [ ] [ ] ( 1 [

085, 656 AES,[[R.M]/M]~fOOO5 [ ] t ) [ IJ j t

086. 658 AES.[[Q~N]/N)w.OOO5
[ J [ ] [ IJ ] t 1

06'. 660 AES,t[S-L]/L]·.OD05 [PRIN] t ] ( IJ ] [PRIN]

088. 670 t:F L;UIA.l1.M:V[A.11IN~D[A-l1 [ ] [ ] [ ] t ]

OB9. 680 KL S;l!lL~R=M,Q=f\
[ ] [ ] [ ] [ ]

090. 690 GC_32,2.N*COS,lSETA] [ ] [ ] [ ] t ]

091, 700 F',rL*L*M*M]/GD [ ] t , [ 1 [ ]

092. 710 DlDX=[·L*M/GD+SQRT,[F.11J/tl-~*~/GDJ [ ] t ] [ ] t ]

093,- 720 X(A]=X[A·11·Y[A·1]/DYDX [ ] [ ] [ , t ]

09 ... 730 ytA]:O.D ( ] t ] [ ] [ 1

095. 140 D~'X[A]·XtA·1J.DY;Y[Al·V[A~1] [ ] t , [ ) t ]

096. 750 C1~[L·M/GO~SQRT.[F~1]]/[1~M.M/GD] [ ] [ ] [ ] [ ]

09'. 760 C2.~L/N*Sl~.[8ETA]JCOS.[BETA]*DY/r1·M*M/GD' [ ] t ] [ ] t 1 ..
098. 770 - V(A]=Q.O [ ] [ ] [ ] [ ] t ]

w

099. 771 O\iIlV[A)-VrA-11 [ ] t 1 [ ) [ ]
t--t

100. 772 DlPJ [lJV-C2] le1 [ ] [ ] [ 1 t ]
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101.. 774 UfAl=U[A-11+DU [

102. 780 D{AJ:D[A-1]·DX*SI~.[BETA]/COS.[8ETA)+[U[A·l1*C

781 *2+V[A~1]··2·U[A]*·2]/[64.4.COS.(8ETA]] [ ] [ J [ 1 [ 1 t
103. 790 DD=D(A]~DtA·1] [ ] t 1 t 1 [ 1 [
10 •• 8:1.0 L~U[A~1]+Du/2.~=V(A·l]+DV/2 [ ] [ ] f J [ ] t
105. 820 N=D[A",1]+DD/2 { ] r ] [ ] [ 1 (

106. 826 AES.[[Q~N1/N]·.OOO5 [ ] [ ] [ KL ) [ ] [

107. 828 AES.[[R·M]/M1~.OOO5 [ ] [ ) [ KL J [ ] l
106. 830 ASS, [-lS-L]/LJ-,OOO5 [PRIN] [ ] ( KL 1 [PRjN] r
109. 840 AS L.U[A-1]IN=D[A·11 r ] t ] [ ] [ ] t
110. 850 Mf\ S=L .. -R~N .. DY:·8J8 r J [ ] [ 1 [ ] [

111. 854 Al!t2 [ ] [ ] [ SA ] t BU ] [

112. 856 D'Y:-8/8.8/3QO { J [ ] [ ] t --- ] [ SA
113. 858 BU DYJll·S/3QO [ ] [ ] [ 1 [ J t
11-4. 860 BA F=L*L/[32.2*N-CCS,lBETA]] ( ] [ ] r 1 [ ] [
115. 870 DL=·L*StN.[BETAJ/COS,tBETAJ/N*DY/SQRT.IF-11 [ J [ J [ 1 [ ] t
116. 880 U(A]=U[A-1)+DIJ [ J [ ] [ , [ ] t
11'. 890 D[A]~U[A·1]/U[A].DfA·1] [ ] [ ] I ] [ ) r
1.1.1;. 'IOU Di,;~D[AJ-D[~~lJ [ 1 [ J [ J [ ) t
ii9. ?~Q L~U[A.l)+DLJ/2· l 1 [ j [ j l ] t
120. 920 N;;D[AI"1]+DD/2 [ ] [ ) [ i [ ] t
121. 928 AES,[[R.N1/N1-,UijQ5 [ ] [ ] [ MN 1 t ] [

122. 930 AES.([S~L]/L]·.OOO5 [ ] [ 1 [ MN 1 t ] t
12:1. 940 D).·DY·SORT.[F~1J ( ] [ ] [ ] t ] [

12-. 950 X[A]::X[A·1J.nX { ] [ , [ 1 t ] [
125. 960 Y[A]:;Y[A"'l]+DY [ ] [ J [ ] [ J t ]

126. 970 V{A];O.O [ ] [ , [ J [ ] [PRIN]
127. 980 END!END OF PROGRAM [ ] t ] [ ] t 1 [ ]

w
tv
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