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INTRODUCTION

The present specifications (~) for the design of

shear connectors in composite steel-concrete bridge members

are based on the static properties of the connectors.(~) Hence,

they note only that in the negative moment regions of continuous

beams the slab reinforcement may be considered as contributing

to the moment resisting capacity of a section if connectors are

used. If connectors are provided only in the positive moment

regions the specifications require that the steel beams be

designed to resist the full negative moment.
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Since design procedures based on the static prop-

erties of connectors have led to very conservative designs,

no apparent difficulties have been encountered. In fact, fa-

tigue tests of simple beams which were designed using the cri­

terior suggested in Ref. 1 have shown that adequate connector

fatigue strength is available. The same was also assumed to

be true for continuous beams. Because bridge engineers have

recognized that such a design procedure is conservative the

factor of safety has been reduced in the present specifi­

cations(~). However, a recent study (~) has shown that it is

not possible to arbitrarily reduce the factor of safety be-

cause the fatigue behavior may then become critical. Due to

this apparent divergence in views, it was considered desirable

to evaluate the performance of continuous composite beams with

shear connectors proportioned using the design procedures sug­

gested in Ref. 3. The design criteria used in Ref. 3 was based

on the results of previous fatigue tests of simple span com-

posite beams (~,2,~) and on a fatigue test program which involved

several factorial experiments on stud and channel shear connectors.

In addition, both the fatigue and static behavior required

further study and evaluation to determine the applicability of

the suggested design procedures for continuous composite bridge

members(~).
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All. previous studies on continuous composite beams

have evaluated only their static behavior. Viest, Fountain,

and Siess (~) discussed the negative moment regions of con-

tinuous composite beams in some detail. Their discussion was

based on the static behavior of two composite model bridges

reported by Siess and Viest (2). These two models differed in

that one had shear connectors throughout the beam while the

second had shear connectors in the positive moment regions

only. They concluded that (1) in the negative moment regions

only the longitudinal slab reinforcement can act compositely

with the steel beam, (2) where shear connectors are used

throughout a beam the longitudinal slab reinforcement is fully

effective; when connectors are omitted from the negative mo-

ment region the slab reinforcement is only partly effective,

(3) the action of both continuous composite model bridges was

about the same since the distribution of strains and thus also

of moments in both the positive and negative moment regions was

nearly the same. They also concluded that the use of an elastic

analysis in combination with the usual load distribution factors

is justified, and that no special provisions are needed for the

design of continuous composite bridges (~).

\
Slutter and Driscoll (~) summarized the behavior of a

single continuous composite beam tested statically to its ul-

timate load. They noted that the theoretical plastic collapse
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load was exceeded in the test even though the beam had inade­

quate shear connection throughout its length.

Barnard and Johnson (10) presented the results of a

study on the plastic behavior of continuous composite beams.

These preliminary studies were followed up by further studies

designed to provide more information on secondary failures (11).

In particular, the effects of cracking and transverse bending

of the slab on the plastic behavior and the behavior of the

longitudinal reinforcement in the negative moment regions were

examined, .but under static ultimate loads.

To provide experimental data on the fatigue strength

of continuous composite beams having stud shear connectors in

the negative moment region, comparative laboratory fatigue

tests were conducted at Lehigh University on four full size

two-span continuous composite beams. Two of the beams were

identical except that one had connectors in the negative

moment region while the other did not as is common pra.ctice,

in current designs. Both test beams had identical longi­

tudinal and transverse reinforcement. The amount of rein­

forcement provided was made equal to that required by the

present specifications (~,~) for a bridge deck of similar

proportions and subjected to H20-Sl6 truck loading. The

other two continuous composite beams were similqr to the

first pair but had connectors throughout their length in
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addition to substantially more longitudinal reinforcement

through their negative moment regions. This paper presents

the results of the fatigue test program.

After the fatigue test program was completed, all

four continuous composite beams were tested statically to

their ultimate load capacity. The results of the static tests

of these beams are reported in Ref. 12.

DESCRIPTION OF TEST BEAMS, INSTRUMENTATION AND TEST PROCEDURE

Each of the four continuous composite beams which was

fatigue tested was 50 ft. long and had two equal spans of 25 ft.

between supports. Symmetrical concentrated pulsating loads,

distributed transversely across the slab width, were placed

·10 ft. from the exterior supports in each span. Each beam

consisted of a reinforced concrete slab 60 in. wide and 6 in.

thick connected to a 21W62 steel beam by pairs of 3/4 in. x 4 in.

headed steel stud shear connectors. The transverse spacing

of studs in each stud pair was 4 inches. The rolled beams were

all supplied from the same heat of A36 steel. The four test

beams were designated CC-lF, CC-2F, CC-3S, and CC-4S. Details

of the test beams are shown in Figs. 1 and 2.

Design Criteria

The composite beams were designed according to the trans­

formed moment of inertia method by transforming the concrete slab to
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an equivalent area of steel in the positive moment regions

using an assumed modular ratio of 10. The longitudinal rein­

forcing steel was considered in both the positive and negative

moment regions. For purposes of this paper the dead load point

of inflection will define the positive and negative moment

regions. Table 1 summarizes the resulting design stresses for

the composite beams. A small spreading of shear connectors was

made over the interior support of beam CC-2F so that the tensile

stress in the beam flange adjacent to a stud shear connector did

not exceed the specification value Cl).

The longitudinal and transverse reinforcement for

beams CC-lF and CC-2F was designed in accordance with the AASHO

Bridge Specification (~). The transverse reinforcing steel was

designed assuming that an H20-Sl6 truck was placed on a 6 in.

deck spanning 5 ft. center-to-center of the steel beams. The

longitudinal distribution reinforcement was made continuous and

was taken as 0.67 percent of the required transverse reinforce­

ment. The reinforcement for beams CC-38 and CC-4S was essential­

ly the same except that the amount of transverse reinforcement

was reduced by nearly one half and the amount of longitudinal

reinforcement through the negative moment regions was substan­

tially increased. The longitudinal reinforcement in the posi­

tive moment regions of these two beams (except adjacent to the

negative moment region) was the same as in beams CC~lF and

CC-2F. In CC-4S, the longitudinal reinforcement in the negative
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moment region was determined on the basis that the ultimate

moment capacities of cross-sections in the positive and nega­

tive moment regions would be nearly equal, using handbook ~rop­

erties. In beam CC-3S, the longitudinal reinforcement in the

negative moment region was determined so that the ultimate mo­

ment capacity would be about midway between that for beams CC-2F

and CC-4S.

The shear connectors in all four test beams were de­

signed according to either the fatigue or static criteria pro­

posed in Ref. 3. For beams CC-IF and CC-2F, the connectors were

propo~tioned to sustain a fatigue loading to 2,000,000 cycles of

zero to maximum load application (zero stress ratio). The two

beams differed only in that connectors were not provided in the

negative moment region of beam CC-lF. For beams CC-3S and CC-4S,

the connectors were proportioned on the basis of the static

strength requirements but were subjected to 500,000 cycles of

zero to maximum load application. Consequently, only a certain

number of the connectors in beams CC-38 and CC-4S were subjected

to a range of shear near the value suggested in Refs. 1 and 3.

Table 1 shows the expected forces on the shear connectors and

indicates the critical regions in beams CC-3S and CC-4S.

Design Details and Fabrication

The details of the steel beams and connectors are

shown in Fig.3 Each of the four beams was cut from nominal
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length 57 ft. rolled sections. The excess pieces were de­

livered to the laboratory after all shear connectors were in­

stalled to provide material for tension tests of the steel

section and studs. The bearing stiffeners at the center sup­

ports of CC-IF and CC-2F were designed short to eliminate

welds near the region of high tensile stresses. Web stiff-

eners and additional short bearing plates in the region of

the center supports of beams CC-38 and CC-4S were installed

in the laboratory to stiffen that region and to prevent pre­

mature failure of the beams during the static ultimate load

tests.-

All studs were placed in pairs except in the nega­

tive moment region of beam CC-2F where single studs were stag­

gered as shown in Fig. 3. Before the studs were welded to the

test beams, the welding equipment was calibrated by welding

several studs to the excess lengths that were cut off. The

quality of the welds was verified using the welding and in­

spection procedure outlined in Ref. 13. Two different lots of

studs, supplied by two manufacturers, were installed. Beams

CC-lF and CC-4S had lot A studs, and beams CC-2F and CC-3S had

lot B studs. This choice was random.

The placement of reinforcing bars is shown in Figs. 1

and 2. The lapped No. 4 bars in CC-IF and CC-2F were welded to
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provide continuous longitudinal reinforcement throughout. No

welding was done in beams CC-38 and CC-4S.

The transverse reinforcement in all beams was pro­

vided by No. 5 bars bent into rectangular hoops. In beams

CC-IF and CC-2F, these bars were placed on 6 in. centers

throughout the beam. For beams CC-3S and CC-4S, a variable

spacing was used as indicated in Fig. 1. The crack patterns

and test results for beams CC-lF and CC-2F indicated that it

was not necessary to provide such a large amount of transverse

reinforcing steel in most of the positive and negative moment

regions since longitudinal cracking of the slab was not a fac­

tor. However, a closer spacing was used under the load ,points

and at the center support to provide for cross bending of the

slab at these points.

Construction

Construction of the continuous composite T-beams

began with the erection of a pair of the steel beams on sup­

ports bolted to the dynamic test bed in the laboratory. The

beams were spaced 5 ft. 2 in. apart and clamped to the sup­

ports. Plywood forms for the slabs of the two T-beams were

suspended from the beams. A two-inch timber spacer was used

to separate the slabs of the two T-beams along their length.

The slabs were made with transit-mixed concrete

proportioned Dor a 28-day compressive strength of 3000 psi.
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Beams CC-IF and CC-2F were constructed first. The concrete

placement for these two beams began simultaneously at the

exterior supports of each span and progressed toward the in­

terior su~ports. Placement was stopped 6 ft. on either side

of the interior su~ports. The remaining 12 ft. was placed a

week later to allow ti~e for installation of strain gages on

the reinforcement in that region. Beams CC-38 and CC-48 were

constructed later and the concrete placement began at one ex­

terior support and progressed to the other end. Consolidation

was accomplished by internal vibration along the slab as

placement progressed. The final finish was obtained by hand

troweling. From 16 to 32 test cyclinders were poured with

each placement.

The concrete in the slabs of all beams was moist­

cured for seven days with the exposed surface covered with wet

burlap and a polyethylene sheet. The forms for each pair of

test specimens were removed approximately 14 days after casting,

then the specimens were allowed to cure under dry conditions for

at least 14 days.

The mechanical properties of the structural steel

beams were determined from tests of tensile cou~ons cut from

a 2 ft. piece of the beam that had been flame cut from the orig-

inal 57 ft. length. The coupons were tested in tension at a

speed of 0.025 in. per minute up to the onset of strain
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hardening and then at a speed of 0.50 in. per minute to frac­

ture. The mean values and standard deviation of the yield

poin.t, static yield stress, and the ultimate strength are

listed in Table 2. Values of the modulus of elasticity and

the strain hardening modulus are also given.

The mechanical properties of the Nos. 4, 6, and 7

deformed longitudinal reinforcing bars were determined by

tension tests of 3 ft. lengths of reinforcement. The de­

formed bars were of intermediate grade steel conforming to

ASTM AlS. The average yield points and ultimate strengths

are also given in Table 2.

The properties of the studs were determined from

tensile tests on full-size studs. The average yield points

and ultimate strengths are also summarized in Table 2.

The concrete placed in the slabs of all four beams

was made of Type 1 portland cement, crushed gravel and natural

bank sand. The standard 6 in. by 12 in. cylinders poured during

slab casting were tested at 28 days and at the beginning of

each fatigue test. The 28-day cylinders were moist cured.

The other cylinders were cured under approximately the same

curing conditions as the slabs. The compressive strengths,

splitting strengths and moduli of elasticity are given in

Table 3.
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Actual Cross-Section Properties

The section properties of the composite sections in

the positive moment regions were computed assuming that the

effective width of the slab was the full 5 ft. width, and that

the modulus of elasticity of the concrete was equal to that

determined from the 28-day cylinder tests. The section prop­

erties of the composite sections in the negative moment regions

were computed based on the steel beam and the longitudinal

reinforcing steel. It was assumed that the concrete slab was

cracked throughout. Table 4 gives the values of the moments of

inertia and the distance of the neutral axis from the bottom

of the beam for each test beam.

Instrumentation

The instrumentation for beams CC-IF and CC-2F was

essentially the same. The instrumentation for beams CC-38 and

CC-48 was also essentially the same but differed from that for

the first two beams. A combination of electrical resistance

strain gages, dial gages and level bars was used.

Figures 4 and 5 show the location of the strain gages.

Figure 4 shows the location of the strain gages used to determine

the flexural strains in the steel beams and in the concrete slabs.

These gages were used to ascertain the transverse distribution

of the strain during the fatigue test. Strain gages were also
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attached to the top surface of all the longitudinal No. 4 bars

at the cross-section containing the interior support.

Figure Sea) shows the location of the studs which

had strain gages mounted under them on the bottom of the top

flange. Figure S(b) shows the placement of these gages rel­

ative to a stud. The strain gage is not placed directly under

a stud but offset slightly in the direction of the expected

shear force on the stud. No significance is attached to the

absolute magnitude of measured strain. However relative values

of measured strain serve to indicate the relative magnitudes of

the shear force being transmitted. by the stud above the strain

gage. Their use and development is discussed further in detail

in Refs. 4 and 5.

Dial gages (0.001 in.) were placed under the beams at

the load points to measure vertical deflection. These gage

readings were used to adjust the maximum dynamic load level at

the beginning and throughout the duration of each beam test.

Dial gages (0.001 in.) were also used to measure slip at each

end of the beams and at various sections along the beam spans.

For beams CC-3S and CC-4S, a large compression dyna­

mometer was used at the interior support to measure the center

reaction. This reaction was used together with the known loads

to determine bending moments along the beam. A check was thus
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provided on the bending moments computed from the strain meas­

urements on the steel beam.

A 40 power microscope was used to measure the width

of cracks in the slab in the negative moment region of CC-3S.

Crack widths during the other three beam tests were estimated.

In addition, the crack patterns were photographed following

each beam test.

Test Procedure

A pUlsating concentrated load was applied simul­

taneously to each span by hydraulic jacks. The loading rate

was constant for all beams at 250 cycles of zero to maximum

load per minute. The test set-ups are shown schematically in

Fig. 6. The interior support of CC-lF and CC-2F consisted of

a bearing plate free to rotate on a fixed support assembly.

Longitudinal and lateral stability was thus provided at this

point. For beams CC-38 and CC-48 the interior support was

replaced by a bearing plate resting on a compression dyna­

mometer, which provided no longitudinal or lateral stability

to the beam. A supplementary support assembly was therefore

used to provide horizontal support at this point.

Fatigue testing of beams CC-lF, CC-2F, CC-3S, and

CC-48 was started 35, 71, 39, and 45"days respectively, after
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the concrete slabs were cast. Prior to any fatigue loading,

each beam was loaded once, statically, to the maximum load to

be applied during the fatigue test. This load was applied in

increments of 10 kips up to a maximum of 60 kips at each load

point for beams CC-IF, CC-2F, and CC-3S and up to 70 kips for

beam CC-4S. Readings were taken from all the gages at each

load increment.

The maximum dynamic load to be applied during the

fatigue tests was controlled by the deflections obtained under

the first static load test and under additional static load

tests performed at frequent intervals. During the initial

stages of each fatigue test the dynamic deflections of each

span could not be made simultaneously equal to the corre-

sponding controlling static deflections. In this case the dy-

namic load was taken such that the smaller dynamic deflection

under one of the two load points was equal to the corresponding

controlling static deflection. The dynamic deflection at the

other load point was therefore in excess of its controlling

static deflection during the increment of applied cycles of

fatigue loading. However, the controlling static deflections,

corresponding to equal maximum static loads, also increased

rapidly during the initial stages of each test due to bond fail-

ure between slab and beam as well as other causes. Therefore the

procedure followed was not considered unconservative.
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Th~ maximum dynamic load was always less than the

maximum static load because of the dynamic effect. For beams

CC-lF and CC-2F the dynamic load correction was usually from

1 to 2.5 kips at e~ch load point. In all the beam tests the

higher value was associated with the initial 10 to 20% of the

total number of cycles applied to the beam, except for beam

CC-lF where a value of 6.5 kips was reached' midway through

the test.

The minimum dynamic load varied from 3.5 to 7.5 kips

for beams CC-lF and CC-2F and from 2.0 to 4.0 kips for beams

CC-3S and CC-4S. In this case, the lower values tended to be

associated with the initial stages of the test. The minimum

load was the smallest that could be applied without sepa­

ration of the beam and loading jack throughout the fatigue

testing period.

It was apparent that connectors were failing in beam

CC-IF after 500,000 cycles of load application. This was more

serious in the east span where the resulting loss of stiffness

caused a large difference in the deflections of the two spans

at approximately 1,100,000 cycles. If the fatigue test of beam

CC-IF was to continue to 2,000,000 cycles some means of pre­

venting the large differences in stiffness between the two

spans was necessary. Therefore a clamp was· installed in the
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east span approximately at the inflection point so that greater

frictional resistance could be developed between the slab and

the steel beam. The clamp consisted of two steel plates which

were welded to the underside of the top flange of the steel

beam on opposite sides of the web and then bolted through the

slab to another steel plate on the top of the slab. Even with

this reinforcement, the fatigue test of beam CC-IF was stopped

short of 2,000,000 cycles of load application due to accel­

erated failures of connectors in the west span. The clamp was

installed at 1,074,900 cycles and removed at 1,375,500 cycles

after de·flections in both spans had again stabilized.

After completion of each fatigue test, the continuous

beam was tested to its static ultimate strength (12). After

the static strength test was completed, the. concrete slab was

then removed from the steel beam in the vicinity of the ex­

terior supports, throughout the negative moment region, and

from the positive moment regions near the points of contra­

flexure. Photographs were then taken of the connector fail­

ures and cracked connectors. Also, each connector in these

regions was bent at least 45° with a sledge to ascertain

whether fatigue cracks were present. Several connectors frac­

tured during this p~ocess. The visual inspection and bending

test was used as a verification of the information obtained

from the electrical resistance strain gages placed under the
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,the studs as follows: (1) If a connector was seen to be com­

pletely fractured when the steel beam was exposed or was re­

moved during the 45° bending test, its strain-cycle curve

(Fig. 12 for example) was examined to ascertain its cycle life.

The number of cycles corresponding to a sharp reduction in

strain reading was taken as the cycle life of the connector (~,~).

(2) If a connector did not fracture from the flange during the

bending test but a fatigue crack was visually present, its

cycle life was taken as the total number of cycles applied to

the specimen. (3) If a connector did not fracture and if no

fatigue cracks were visible its cycle life was considered

greater than the total number of cycles applied to the specimen.

TEST RESULTS

Each continuous composite beam except CC-IF was sub­

jected to at least the desired amount of cyclic loading.

1,906,900 cycles of load were applied to beam CC-IF and 2,079,000

cycles of load were applied to beam CC-2F. Beams CC-38 and

CC-48 each had 500,000 cycles of load applied. As previously

stated, it was observed dur.ing testing of beam CC-lF, that

studs in the east span were beginning to fail in fatigue at

about 500,000 cycles and that they were continuously dete­

riorating with increasing cycles of load application. The in­

stallation of a clamp in the east span allowed additional cycles

of load to be applied but accelerated the deterioration of the
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studs in the west span. The· deterioration of the studs in

beam CC-IF eventually progressed to the point where the fa­

tigue test was stopped short of the desired 2,000,000 'cycles

so that a sufficient number of connectors would be left to

develop the ultimate load capacity of the beam.

Deformation of the Continuous Beams

Deflection under the load point of each beam was

measured at intervals throughout the fatigue testing period.

Figure 7 summarizes the load-deflection characteristics of

the east spans of beams CC-lF and CC-2F. The curves are

plotted for the start of testing, for two intermediate cycle

levels, and at the end of testing. Also shown for compar­

ative purposes are the theoretical curves for complete inter­

action and no interaction. Two curves for complete inberac­

tion are shown for beam CC-lF. The steeper curve assumes

complete interaction throughout the beam (same as for beam

CC-2F) and the other assumes complete interaction only in

the regions containing studs.

It was apparent after completion of the test pro­

ram that a small but varying amount of support settlement had

occurred during all of the tests partly because of the pres­

ence of lead shims at the interior supports. The deflections

of the supports were not measured in any of the tests. Some

inelastic support settlement occurred during the initial zero-
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to-maximum static loading of each beam at the start of fatigue

testing. For'this reason the ffO cycle ff curves in Fig. 7 are

plotted so that the unloading curve passes through the origin.

Subsequent zero to maximum load-deflection curves therefore

show only the effect of further inelastic behavior due to

support settlement and other causes as fatig~e testing was

continued.

Strain Measurements in the Continuous Beams

Strains measured with the electrical resistance strain

gages and strains measured using mechanical strain gage points,

were used to obtain the distributions of strain throughout the

depth of the four continuous beams in both the positive and the

negative moment regions. Typical strain distributions in the

positive moment regions are shown in ~ig. 8a. This figure

shows the distribution of strains corresponding to a static

load of 60 kips. It can be observed that omitting connectors

in the negative moment region of beam CC-lF apparently has

little effect on the distribution of strains in the positive

moment regions. Similar behavior is reported in Ref. 7. It

is also apparent from the figure that the difference in rein­

forcem~nt and placement of studs in beams CC-38 and CC-48 had

no significant effect on the distribution of strains in the

positive moment regions of these beams.

Similar comparisons of strains are made in Fig. 8b

for a typical section in the negative moment region of the
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four continuous beams. The comparison is again made for a

static load of 60 kips. It is apparent from the figure that

even though beam CC-IF had no shear connectors in the.nega­

tive moment region, the slab and reinforcement had some effect.

on the strains in this region. Also the effect of the large

amount of longitudinal reinforcement in beams CC-3S and CC-4S

can be observed by comparing the strain distribution for all

four beams.

Figure 9a compares the location of the neutral axis

as a function of applied cycles for typical sections in the

positive moment regions of beams CC-lF and CC-2F. Figure 9b

makes a similar comparison for beams CC-38 and CC-4S. It can

be observed that the number of applications of load had only

a small effect on the flexural behavior in the positive mo­

ment regions of all four beams.

Figure 10 shows the location of the neutral axis

as a function of the applied cycles for typical sections in

the negative moment regions. It is apparent from the figure

that the slab had cracked in all four beams under the initial

application of load and that additional applications of load

had only a small effect on the stresses in the steel beams.

Strain Measurements Near Stud Connectors

Strain gages were placed on the bottom of the upper

beam flaDge to obtain strain-cycle data from the stud shear
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connectors in three regions of each beam as follows: (1) near

the exterior supports, (2) in the positive moment region ad­

jacent to the points of contraflexure, and (3) in the negative

moment regions.

The strain measurements from these gages were taken

during the static tests which were made at intervals during

the fatigue tests. The strains obtained at the maximum load

were plotted as a function of the applied cycles. Typical

results are shown in Figs. 11 and 12. Each figure shows

schematically a portion of two steel beams below a strain

versus cycle plot for certain studs on the steel beam. The

studs are identified as follows:

1. Open circles represents studs from which strain

versus cycle data was obtained, studs which were

examined visually following fatigue testing, or

both.

Shaded circles represent studs for which the strain

versus cycle curves are plotted immediately above.

Circles with strokes through them represent studs

which had failed during fatigue testing as evi­

denced by their separation from the steel beam either

before or during the 45° bending test described

earlier.

Figure 11 illustrates the response observed over the

west exterior supports of three of the four beams. The behavior
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over the east supports was similar. It is apparent from the

figure that, for beams CC-IF and CC-2F, as fatigue loading

was applied to the composite sections, the strains in the

flange increased due to increasing flange distortion, indi­

cating that greater load was being carried by the connectors

as bond was lost. The strains then leveled out after a few

thousand cycles of load application and remained reasonably

uniform throughout the remaining portion of the test. The

soundness of the connectors over the supports of beam CC-lF

is illustrated in Fig. 13 where the photograph taken after

fatigue testing shows all to be sound even after bending 45

degrees. It can also be observed from Fig. 11 that the con­

nector failures in beam CC-48 were not apparent from the

strain measurements taken 'near the studs. However, aTIter the

slab was removed, the studs were removed from the beam during

the bending test. This result was expected in beam CC-48

since the studs in this region were subjected to a high range

of shear load in excess of the allowable load range. (See

Table 1) All studs over the support in beam CC-48 were re­

moved with one tap of a sledge hammer whereas the three

failed studs in beam CC-3S were bent nearly 45° before fail­

ure. No strain-cycle data was obtained in this region of beam

CC-3S.

Figure 12 illustrates the type of response observed

near the 'east inflection points of the four beams. As was noted
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for the regions over the supports, strain increased as the

bond was broken and greater load was transferred to the con­

nectors. In addition, it is significant to note that the

strains measured in beam CC-IF were nearly twice as great as

the strains measured in beam CC-2F. This was because no con­

nectors were provided in the negative moment" region of CC-IF

and the force in the longitudinal reinforcing steel in that

region was being carried by the adjacent connectors in the

positive moment region.

As the fatigue loadi~g continued, the strains in

the flange of beam CC-IF remained reasonably stable for at

least 500,000 cycles. Thereafter, the strains began'to de­

crease as a fatigue crack started to propagate through the

base of the stud shear connector (~). This decrease~was par­

ticularly severe in the east span of beam CC-lF and was~ nearly

the same for all three sets of instrumented studs in this

region. The' failure of connectors near the point of contra­

flexure in the east span was rapid as can be observed from

Fig. 12.

Figure 12 also shows that virtually all of the studs

examined in the negative moment region and near the inflection

points of beam CC-3S had failed. These studs were all removed

easily during the bending test. This behavior was expected be­

cause of the higher than allowable load range in the negative
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moment region. Evidently, as studs in this region began to

fracture, load was transferred to the studs in the positive

moment region closer to the inflection points thus accel­

erating their :rate of failure.

The process of load transfer becomes even more

apparent in Fig. 14 when similar studs in the west span of

beam CC-48 are examined. The studs between the load points

and the inflection points were considerably overloaded. (See

Table 1) Therefore, a transfer of load to both of the ex­

terior support regions and to the negative moment region

would take place as studs began to fracture. Sufficient ca­

pacity existed in the negative moment region to stop com­

plete stud failure near the inflection points. Since no ex­

cess capacity existed over the supports, load transfer prob­

ably accelerated the stud failures in that region. The re­

sponse of studs in the west negative moment region of beam

CC-2F is also illustrated in Fig. 14. A continuous increase

in the apparent strain was noted for the first few hundred

thousand cycles as the bond was broken and the slab cracking

progressed. In this beam three of the studs fractured after

the slab was removed and the studs bent 45 degrees. All six

studs examined iD Beam CC-lF near the inflection point were

fractured.

Photographs of the studs near the east inflection

points of beam CC-lF are shown in Fig. 15. The inflection
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point passes through the two circular craters at. the bottom

of the photo which were left by the failure of .studs 15 (left)

and 16 (right). These studs remained imbedded in the portion

of concrete slab which was removed. Studs 17 and 19 (left)

and 18 and 20 (right) are shown beside their former positions

after they were removed by hand. Since these studs were near­

ly completely fractured from the beam after the slab was re­

moved, it is probable that the high strain readings observed

at the end of the test were caused by the dowelling of the

failed stud in the rather deep crater that ~as taken from the

beam flange. A typical view of the fracture surface of one

of these studs is shown in Fig. 16. The fatigue fracture

surfaces can easily be seen.

Slip Measurements

Slip measurements were taken at the exterior sup­

ports of each beam and at various locations in the negative

moment region. Measurements were started in the negative

moment region of beam CC-IF after about 1,000,000 cycles of

loading.

Previous studies indicated that the range of slip

yields some information on the fatigue failure of connec-

tors (~,~). Figure 17 is a bar graph indicating the range of

slip and direction of the range of slip between 0 and 60 kips

at various cycles of load application for beams CC-IF and

CC-2F. It is apparent that after bond had broken in both beams
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the range of slip at the exterior supports changed very little.

In the negative moment region of beam CC-IF, the range of slip

was much greater than at the exterior supports and at least

twice the range of slip in the negative moment region of beam

CC-2F. The same is true also at the inflection points in both

beams. This is in agreement with the observed levels of shear

connector strain shown in Fig. 12. Since the range of slip

was not re~orded at the inflection points of beam CC-IF until

after obvious stud failures in that region, it is not known

whether the large ranges of slip observed in beam CC-lF oc­

curred after stud failure or was present from the beginning of

the fatigue test.

Cracking of Slabs in the Negative Moment Regions

All slabs were relatively free of cracks at the be­

ginning of each test but cracked during the initial static

loading of the beams. A few additional small cracks general-ly

appeared during the fatigue tests, except in be"am CC-IF where

most of the cracking developed as fatigue testing progressed.

The distribution of slab cracking is shown schematically in

Fig. 18. Crack widths were measured on beam CC-3S, under a

static load of 60 kips following the fatigue test, and are

shown in Fig.18(~). The average width along a crack is shown

as well as the maximum width which is shown in brackets. The

average crack widths shown in Figs. 18 (a), (b), and Cd) were

estimated, based on the known widths in beam CC-3S.
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During the initial static loading of beam CC-lF

to 60 kips relatively large cracks occurred about 8 and 18

inches on either side of the center support. Little or no

cracking was observed elsewhere. This was expected since

flexural conformance in this region due to bond would result

in larger cracks near the center support. The cracks were

approximately perpendicular to the beam axis and increased

in width as fatigue testing progressed. Additional smaller

cracks also appeared throughout the rest of the negative mo­

ment region of beam CC-lF as fatigue testing continued.

These cracks appeared at approximately 12 inch intervals

near the inflection points and at 6 inch intervals near the

center support. Since the crack width did not vary appre­

ciably through most of the negative moment region except

over the support, it seems that the tensile force in the slab

was reasonably uniform in this region. Many additional cracks

would occur during fatigue because of the decrease in flexural

conformance in this region as bond was lost and as studs near

the inflection pOints failed.

Beam CC-2F had connectors placed in the negative mo­

ment region except for a 22 in. length on either side of the

interior support. The crack pattern was substantially dif­

ferent in this beam. Cracking was limited to a region of ap­

proximately 3 ft. on either side of the support. The cracks in
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the regions with connectors were very small and remained

small throughout the test. In the region without connectors,

several large cracks formed with the largest being directly

over the support.

As is apparent from Fig. 18, the crack widths in

beams CC-3S and CC-4S were substantially reduced with the

increased area of longitudinal reinforcement. In beam CC-3S,

cracks extended 4 and 5 ft. on either side of the center sup­

port whereas in beam CC-4S, cracks extended only about 3 ft.

on either side of the support.

ANALYSIS OF TEST RESULTS

Stresses and Bending Moments in Continuous Composite Beams

Figures 9 and 10 show that reasonably good agree­

ment can be obtained by assuming that all beam sections, in­

cluding the negative moment region of beam CC-IF, have com­

plete interaction. It is readily apparent that the steel

beam section of beam CC-lF is interacting with the longitu­

dinal reinforcement in the negative moment region. This be­

havior should be expected since considerable tensile force

will be developed in the longitudinal steel due to the ro­

tation of the beam cross-sections at eac~ inflection point.

Since no shear transfer can take place between the slab and

the beam after bond has been broken (except for frictional
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forces). flexural conformance cannot exist in the negative mo­

ment region of beam CC-1F. A higher degree of flexural con­

formity was present in beam CC-2F, but was less than the as­

sumption of complete interaction would require.

Figure 19 compares the theoretical and experimental

bending moment distributions in beams CC-IF and CC-2F for a

load of 60 kips. The change in the experimental bending mo­

ments from zero cycles to the end of each fatigue test was

relatively small, therefore only the distribution of moments

at zero cycles was plotted in this figure (solid curve). A

small loss of interaction was obtained during the fatigue

tests as expected.

Figure 19 again confirms an earlier observation that

beams CC-IF and CC-2F were carrying load in a similar manner,

even though no connectors were provided in the negative mo­

ment region of beam CC-IF. As discussed earlier, this be­

havior was a result of the considerable magnitude of tensile

forces induced in the longitudinal reinforcement throughout

the negative moment region of beam CC-IF due to the anchor­

age forces which were produced at the inflection points.

Although similar static load behavior of the two beams is

indicated in Fig. 19~ the dynamic response of beam CC-IF was

decidedly poorer than that of beam CC-2F. It was difficult

to maintain the maximum dynamic load during the test of beam
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CC-lF because of the uneven deflection characteristics of

each span, especially in the vicinity of 1,000,000 cycles of

load application. This was undoubtedly due to the rapid

deterioration of studs in the region of the high anchorage

forces which developed near each inflection point.

A comparison of the theoretical and experimental

bending moment' curves tor all four beams indicated good agree­

ment at zero cycles with a small loss of interaction evident

at the end of the fatigue tests. The loss of interaction ap­

peared to be the least in beams CC-IF and CC-2F and a maximum

in beam CC-4S.

Slab Force Resisted by Shear Connection

In composite beams, the degree of interaction and

flexural conformance is determined by the amount of slip be­

tween the concrete slab and the steel beam. A high degree

of flexural conformance can be maintained only if sufficient

shear connection is provided to minimiz~ the slip. Inter­

action and flexural conformance are of partiCUlar interest in

the negative moment regions of continuous composite beams. To

help evaluate the degree of interaction in beams CC-lF and

CC-2F, the force in the slab at the inflection points and near

the center support were computed from the measured strains in

the steel beams. Computations of the tensile force in the slab

based on the strain data from the reinforcing steel over the
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support were not as reliable because of the influence of mo­

ment gradient and slab cracking. Figure 20 shows the computed

slab forces near the center support of beams CC-lF and CC-2F as

a function of the applied cycles of load. Also shown for com­

parison is the theoretical tensile slab force based on three

simplifying assumptions. Assumption (c) considers the ten­

sile force in the longitudinal reinforcement computed from

the rotations at the inflection points.

The figure show that the slab force over the sup­

port of both beams rapidly decreased during the first 200,000

cycles of loading. This was probably due to loss of inter­

action as bond was destroyed, as well as slab cracking. In

beam CC-IF, the initial slab force (force in the longitudinal

reinforcing) was nearly equal to the theoretical value for a

cracked section with complete interaction, but rapidly de­

creased to a level somewhat below the predicted value [as­

sumption (c)]. However it was observed from other data

that at the inflection points of beam CC-lF the slab force

was virtually as predicted [assumption (c)] at least up to

the observed initial failure of connectors. Since frictional

forces can account for the small difference between the meas­

ured and predicted force near the support, it is apparent

that, neglecting friction, the slab force is nearly uniform

over the entire negative moment region when no connectors

are placed in that region.
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The slab force in beam CC-2F maintained a level in

the region near the interior support somewhat greater than

that in beam CC-lF. Because of the presence of shear 'con­

nectors, a higher initial slab force was observed (Fig. 20)

until the slab was fully cracked. The slab force decreased

in both spans of beam CC-2F'at about the same rate. The

force approximately stabilized at a value somewhat above the

predicted value [assumption (b)J after about 200,000 cycles.

Other data indicated that at the inflection points of beam

CC-2F the slab force approached zero, which flexural con­

formance would require. It is obvious then that for beam

CC-2F shear transfer was taking place between the slab in

the negative moment region and the steel beam as a result

of the stud shear connection in that region.

Similar behavior was observed in the negative mo­

ment regions of beams CC-38 and CC-4S. However, the slab

forces were substantially greater in these two beams be­

cause of the increased amounts of longitudinal reinforcing

steel. The degree of interaction was also somewhat greater

in these beams because of the greater number of shear con­

nectors in the negat~ve moment region.

The effect of stud failures near the inflection

points of beam CC-1F on the slab forces at the center sup­

port can also be observed in Fig. 20. The slab forces were
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rapidly changing at about 1,000,000 cycles. The clamp which was

in place from 1,074,900 cycles to 1,375,500 cycles resulted in a

readjustment of the slab forces so that they were again rea­

sonably uniform.

It is apparent from the fatigue behavior of the four

test beams and the comparison shown in Fig. 20 that shear con­

nectors are required to resist the slab force in the negative

moment region of all continuous composite beams which have con­

tinuous longitudinal reinforcement.

Forces on Stud Connectors

It was also of interest to examine the forces to which

the shear connectors were subjected during the progress of the

tests. Of particular interest were those connectors at the ends

of the beams, in the positive mo~ent regions adjacent to the

points of contraflexure, and in the negative moment region.

Figure 20 showed that bond failure between the slab and the beam

as well as slab cracking took place in the negative moment re­

gion. The slab force necessarily had to be resisted by the con­

nectors alone when they were present. In the end portions of

each beam bond failure started at the end of the member and pro­

gressed toward the load points. In the positive moment regions

adjacent to the points of contraflexure bond failure progressed

from the points of contraflexure toward the load points.
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The average force per connector was computed as the

compressive force in the slab at a strain gage location divided

by the number of connectors between that location and 'the end

of the beam or the point of contraflexure, whichever was appli­

cable. Table 5 summarizes the forces on the studs in the west

spans of each beam at various cycles of load application. The

forces in the east spans were similar. The applied load was 60k

for beams CC-IF, CC-2F, and CC-3S, and 70~ for beam CC-4S. A

comparison is made between the shear forces ~omputed from strain

data with the values of shear force computed according to elas­

tic theory for horizontal shear. In general, the agreement

could 'be considered good, taking into account the assumptions

made.

In beam CC-IF, since no connectors were provided in

the negative moment region to resist the slab force, it was re­

sisted only by the shear connectors in the positive moment r'e­

gions adjacent to the points of contraflexure. The test showed

that at least three pairs of studs adjacent to the points of

contraflexure were carrying the additional force .. Qualatative

strain-cycle measurements were not taken on other studs in these

regions, so it was not known how many other studs adjacent to

the points of contraflexure actually resisted the additional slab

force transmitted by the longitudinal slab steel in the negative

moment region. If one assumes this additional force to be aver-
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aged over all the connectors between the load point and the point

of contraflexure, the shear load varied from approximately 5.70

to 5.90 kips per stud as shown in Table 5. If only half the con­

nectors were assumed to carry this load, then they would be sub­

jected to an average shear of about 7 kips per stud.

Figure 21 compares the design cumulative resistance of

the shear connectors in beam CC-lF and CC-2F with the measured

slab force at various locations along the beams. The comparison

is made at 2,000,000 cycles with a load of 60 kips. It is ap­

parent that connectors in beam CC-2F were subjected to forces

that very closely correlated with their design resistance. The

figure also shows that in the negative moment region of beam

CC-2F the tensile force in the slab was being adequately trans­

ferred into the beam by the shear connectors. At the points of

contraflexure little slab force was present, confirming that the

connectors in the negative moment region were effective. Similar

behavior was observed in beams CC-3S and CC-4S.

In beam CC-lF, this was not the case. The slab force

was approximately the same at the points of contraflexure and

near the center support. This confirms again the previous dis­

cussion on the behavior in the negative moment region. It is

apparent that the longitudinal slab reinforcing was acting like

tendons in an unbonded post-tensioned beam, with the reinforcing

being anchored in the region of the inflection points. Consequently,
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the studs near the inflection points were subjected to shear

forces considerably higher than those used in the designs. This

undoubtedly contributed to the early failure of those shear con-

nectars in beam CC-IF.

Fatigue Strength of Stud Shear Connectors

It is realized that the method of detecting connector

failure is not exact but it is believed to give conservative re-

suIts. Table 6 summarizes all the test data to show the cycle

life for the connectors in the five regions of interest for each

test beam. 'Also shown is the average stress on the connectors

in a given region during the indicated cycle life. Failures

were observed in all four test beams.

The test data summarized in Table 6 was compared in

Fig. 22 with the S-N curve developed in Ref. 3. Each failure

point (shaded circle) represents the average stress versus ob-

served cycle life, for from 6 to 24 studs. Where no failures

were observed the points were plotted as runouts (open circle

with arrow). As was noted in Ref. 3, pushout tests provide a

lower bound of the fatigue strength. Since the mean S-N curve

shown in Fig. 10 of Ref. 3 was based on pushout tests, these

beam test results were expected to exhibit slightly greater
\

cycle lives. Most of the test results shown in Fig. 22 verify

this behavior since they lie between the mean curve and the upper

limit of dispersion. Except for one failure point representing
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the early failures near the east inflection point of beam CC-lF,

each failure point lying below the mean curve in Fig. 22 repre­

sents failures detected only by the bending test. No failures

were apparent from the flange distortion gage readings for these

studs. Thus, these points represents a conservative estimate of

cycle life.

Comparison of Beam Performance

The four continuous composite beams in this study pro­

vide several direct comparisons of beam performance. Two major

variables were evaluated: (1) The placement of connectors in

the negative moment region. (2) The effect of increasing the

amount of longitudinal steel in the negative moment region.

The placement of connectors in the negative moment re­

gions of beams CC-2F, CC-3S, and CC-4S provided better flexural

conformance, better dynamic response of the beam, and more uni­

form beam behavior. The performance of beam CC-lF was decidedly

poor. Premature fatigue failures were detected near the points

of contraflexure and the general response of the beam to cyclic

loading was very poor. The two spans of this beam were observed

to behave differently under dynamic load. Since the dynamic be­

havior of CC-2F was considerably improved, this was undoubtedly

due to the presence of shear connectors in the negative moment

region of beam CC-2F, since all other aspec~s of CC-IF and CC-2F

were identical.
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The slab cracking patterns in beams CC-IF and CC-2F

also differed appreciably. In beam CC-IF' the cracks were of

about equal width throughout the negative moment region, con­

firming that the force in the longitudinal reinforcement was

reasonably uniform throughout that region. Although beam CC-2F

had connectors designed to transmit the force in the longitudinal

reinforcement, they were not continuous throughout the negative

moment region partly because only a few were required but mainly

because it was desirable to shift them toward the points of conta­

flexure in order to prevent a premature fatigue failure in the

beam flange over the center support. As a result, large cracks

occurred in the short length in which the connectors were omitted.

As bond was destroyed and the slab force was transferred to the

connectors in the negative' moment region the crack widths de­

creased somewhat as additional smaller cracks appeared closer to

the inflection points. In both beams CC-IF and CC-2F the maximum

crack widths exceeded the limits suggested in Ref. 8 for cracks

in reinforced concrete bridges at the service load level.

Beams CC-3S and CC-4S had substantially more longitudi­

nal reinforcement in the negative moment region. This additional

reinforcement greatly increased the flexural conformance of the

composite beams. In addition, slab cracking behavior was greatly

improved over that of beams CC-IF and CC-2F. There was not much

difference in the behavior of beams CC-3S and CC-4S with respect
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to dynamic response, flexural conformance, and crack width and

distribution. Hence the larger increase in longitudinal rein­

forcement in beam CC-4S provided virtually no improvement in be­

havior over that of beam CC-3S.

Comparison of Test Results with Design Recommendations

Reference 3 suggested that shear connectors are needed

in the negative moment regions to provide resistance to the force

developed in the reinforcing steel. Also, elastic theory assum­

ing complete interaction was recommended to evaluate the hori­

zontal shear resisted by the shear connection. The present study

has confirmed these recommendations. It has shown clearly that

shear connectors are required to resist the force developed in

continuous longitudinal reinforcement steel in the negative mo­

ment regions. When they are omitted, the response of the struc­

ture will be poor and fatigue failure of connectors adjacent to

the points of contraflexure will occur at a sUbstantially lower

number of cycles than that assumed in the design. This study

also confirmed that elastic theory can be used to evaluate the

horizontal shear transferred by the shear connectors. Only the

cracked section of the concrete slab is effective. Thus the

statical moment of the composite section need only consider the

longitudinal:reinforcing steel in the slab. All longitudinal

reinforcing steel in the slab cross-section was observed to be
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effective in these tests. It would appear, then, that all longi­

tudinal reinforcement should be taken into account when ascer­

taining the magnitude of the slab force which must be .resisted,

at least up to the width-to-depth ratio used in this study.
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The results of fatigue tests of four continuous com­

posite steel-concrete beams have been presented in this paper.

Each beam had two equal spans of 25 ft. and consisted of a 60 in.

by 6 in. reinforced concrete slab connected to a 21W62 A36 steel

beam with 3/4 in. x 4 in. headed steel stud shear connectors.

Two beams were designed for 2,000,000 cycles of load applica­

tion; two were designed for 500,000 cycles of load. A pulsating

concentrated load was applied to each span by two hydraulic jacks.

The load varied from near zero to a maximum approximately equal

to the service load for each beam. The loading rate was constant

for all beams at 250 cycles of zero to maximum load per minute.

Two beams were designed according to the current AASHO

Bridge Design Specifications except for the shear connection

which was designed in accordance with the procedure recommended

in Ref. 3. The shear connectors were left out of the negative

moment region of one of the beams so that a comparison of the two

beams could be made.

The other two beams were also designed in accordance

with the AASHO Specifications and the recommendations of Ref. 3.

However, each beam had substantially greater amounts of longi­

tudinal reinforcement in the negative moment region.
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The basic variables investigated in this test program

were: (1) the effect of stud shear connectors in the negative

moment region on the fatigue behavior of the test beams, and (2)

the effect of increased amounts of longitudinal reinforcing steel

in the negative moment regions.

The' following conclusions were drawn from an analysis

of the test results:

1. Shear connectors are required to resist the force in

the longitudinal slab reinforcement in the negative

moment regions of continuous composite beams. The a­

mount of shear connection required depends upon the

percentage of longitudinal reinforcing steel in that

region.

2. More longitudinal reinforcement in the negative mo­

ment regions of continuous composite beams than pre­

sently allowed by the AASHO Specifications appears' to

be desirable in order to control the 'number and widths

of slab cracks as well as to improve interaction and

flexural conformance in that region. It was evident

from the test results that this will also improve. the

deflection characteristics and overall structural be­

havior of the continuous composite beam under dynamic

loads.
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3. Further study is required to evaluate the effects of

stud placement, cover plates prestressing and haunching

in the negative moment regions of continuous composite

beams, as well as to determine the optimum reinforce­

ment required for adequate crack control.
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TABLE 1

SUMMARY OF DESIGN STRESSES

t:1
I-TjPJ
I-J.::='
00 r'.
::r(1)
(1) ~
tj 00,

FLEXURAL STRESS (DL + LL)

LOADS AT LOAD POINTS AT CENTER SUPPORT STUD FORCE (L1)1

TEST
LIVE DEAD FATIGUE EXT. INT.

BEAM
LOAD LOAD .~-Wf WF REINF CONC WF WF

REINF CO.NC pas pas NEGNO. BTM TOP BTM TOP LIFE MOM MOM MOM

K KIFT KSI KSI KSI KSI KSI KSI KSI KSI 10
6

CYC KIPS KIPS KIPS

CC-1F 60 0.44 +20.7 -3.3 -5.5 -0.8 -19.2 +19.2 0
2

0 2.0 4.4 4.4 -

CC-2F 60 0.44 +20.1 -3.3 -5.4 -0.7 -18.8 +15.3 3 +17.2 0 2.0 4.'4- 4.4 4.4

CC-3S 60 0.44- +18.9 -2.9 -5.0 -0.6 -21.1 +11.7 +21.8 0 o .5 5.4- 5.2 6.2

eC-4S 70 0.44 +22.0 -3.4- -5.9 -0.8 -21.8 + '7.8 +24.6 0 o .5 6 .1 6.4 4.3
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Allowable Force: 4.4 KIPS (2 x 10 eyc) or 5.94 KIPS (0.5 x 10 Cye) Ref. 3
Stress in reinforcement was neglected.
Stress adjacent to nearest stud: 10.6 KSI
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TABLE 2

MATERIAL PROPERTIES OF STEEL

Type No. Static

of of Yield Point 2
Yield Stress Tensile Str.ength

Specimen Tests (KSI) (KSI) (KSI)

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Web
l

(21WF62) 12 37.3 2.24 35.0 2.19 62.1 2.26

Flange
1

(21WF62) 12 36.4 0.81 34.3 0.85 61.6 o .87

No. 4 Bar 2 50.1 - 47.9 - 78.4- -

No. 6 Bar 2 45.1 - 43.0 - 75.2 -

No. 7 Bar 2 46.7 - 44.4 - 78.2 -

3/4" Studs A 5 54.9 - - - 70.4 1.86

3/4" Studs B 5 62.3 - - - 73.3 1.76

1 Average Modulus of Elasticity E = 30.1 x 10
3

(ksi)
Average Strain Hardening Modulus Est = 0.685 x 10 3 (ksi)

d
hjPJ
1-'. tj
(J) j-l.

::rro
ro t--J
t-3 (f.)

2 Yield Point applies to 21WF62 only. Other values refer to yield
strength at 2% offset.
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TABLE 3

RESULTS OF CONCRETE CYLINDER TESTS

t:::J
hjPJ
j-J-::i
(I) j-J­
::r'(D
CD ~
t-j (f)

MOIST CURED DRY CURED

Splitting Modulus No.
No_ Tensile Compressive of of Age Compressive

Beam Location of Age Strength Strength Elasticity Tests (Days) Strength

Tests (Days) T (psi) f' (psi) f'c:(psi)
c

Mean Std.Dev. Mean Std.Dev. (xlO
6
ksi) Mean Std. Dev.

CC-IF Positive 35
and Moment 4 28 550 28.1 5164 462.7 3.85 12 to 5602 319.9

CC-2F 84

CC-1F Negative 37
and

Moment 6 28 564 68.0 5247 213.2 3.85 9 to 5611 98.8
CC-2F 78

CC-3S Positive
and and

7 28 432 2.55 116.0 3.57 9 93 3964 131.1
CC-4S Negative

3581

Moment

Note: The 3,000 psi mix design for beams CC-lF and CC-2F
gave substantially higher strengths. The mix was
altered for beams CC-3S and CC-4S to obtain a
reduced strength.
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TABLE 4

PROPERTIES OF COMPOSITE BEAMS

POSI-TIVE MOMENT REGIONS NEGATIVE MOMENT REGIONS

Moment Position of Moment Position

of Neutral Axis of Neutral Axis

BEAM Inertia From Bottom Inertia From Bottom

in 4 in · 4- inl.n

CC-IF 3661 19.35 134-8 10.50

CC-2F 3600 19.35 1662 11.90

CC-3S 3584- 19.4"5 2198 14.25

CC-4S 3594- 19.4-5 2851 16.90

o
t-rjPJ
I-J. ::i
(J) I-J.
::r'CD
CD ~

1-1 (J)

I
U1
o
I



TABLE 5

TYPICAL FORCES ON STUD SHEAR CONNECTORS

\ __1'

hjAJ
I-J. ~
(f) I-J.
::J"(D
CD I-'
t-j (f)

CC-IF CC-2F CC-3S CC-4S

Location Cycles Test Theor. Cycles Test Theor. Cycles Test Theor. Cycles Test Theor.
\.

x 10
6

ki~_s kips x 10
6

kips kips x 10
6

kips kips x 10
6

kips kips

END OF 0 4.50 4.40 0 4.47 4.40 0 5.44 5.40 0 6 .08 6 .10
BEAM - 0.539 4.44 4.40 0.597 4.61 4.40 0.310 . 5.00 5 .40 0.348 5.80 6.10

POSITIVE 1.075 4.47 4.40 0.979 4.49 4.40 0.500 4.84 5.40 0.500 5.90 6.10

MOMENT
1.376 4.51 4.40 1.335 4.51 4.40
1.907 4.44 4.40 2.079 4.55 4;40

0 5.82 5.40
1

0 5.27 4.40 0 5.85 5 .20 0 7.08 6.40
INTERIOR

0.539 5.70 5.40 0.597 5 . 32 4.40 0.310 5.38 5.20 0.348 6.75 6.40
POSITIVE 1.075 5.94 5.40 0.979 5.20 4.40 0.500 5.19 5 .20 0.500 6.86 6.40

MOMENT
1.376 5.72 5.40 1.335 5.20 4.40
1.907 5.68 5.40 2.079 5.57 4.40

0 5.11 4.40 a 6.67 6 .20 0 3.46 4.30
0.597 3.32 4.40 0.310 4.96 6.20 0.348 3.95 4.30

NEGATIVE 0.979 3.19 4.40 0.500 5.44 6 .20 0.500 3.20 4.30
MOMENT 1.335 3.10 4.40

2.079 2.12 4.40

1 Force from longitudinal reinforcement in negative moment region included and distributed
over all studs in the interior moment region.

I
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t::'
t-rjPJ
~. ::J
(f) ~.

::;,ro
ro I-J
I-j (f)

TABLE 6

SUMMARY OF CONNECTOR CYCLE LIVES

C"C-IF c-C-2F CC-3S CC-4S

LOCATION
Cycle Stress Fail

l
Cycle Stress F~ill Cycle Stress Fail

l
Cycle Stress Fail

1

Life Range Ratio Life Range Ratio Life Range Ratio Life Range Ratio

x 10
6

ksi x 10
6

ksi x 10
6

ksi x 10
6

ksi

W.END

POSe MOM. 2.00+ 10.15 0 2.00+ 10.30 a 0.50 11.65 0.38 0.50 13.40 1.00

E. END

POSe MOM. 2.00+ 10.75 0 2.00+ 10.00 a - 11.40 - o .50 13.50 -

w. INTERIOR

POS. MOM. , 1.00 13.01
2

1.00 2.00 11.80 0.17 0.50 13.00 1.00 0.50+ 15.50 0

E. INTERIOR

POSe MOM. 0.50 12.72
2

1.00 2.00+ 10.90 0 0.50 12.70 1.00 0.50+ 14.75 a

NEGATIVE

MOMENT - - - 2.00 9 .60 0.17 o .50 12.80 0.83 0.50+ 8.00 0

1 Ratio of number of studs failed to number of studs examined.

2 The force in the negative reinforcement was distributed over all the studs in the interior
positive moment regions. Distribution of force over 1/2 the studs would increase the stress
ranges to 15.33 and 14.70 ksi respectively for the W. and E. interior positive moment regions.
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Fig. 13 Studs at the End of Beam CC-IF After Fatigue Testing
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Studs at the East Inflection Point of Beam CC-IF
After Fatigue Testing



Fig. 16 Fracture Surface of A Stud at the East Inflection Point
of Beam CC-IF After Fatigue Testing
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