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ABSTRACT

Twenty-one bolted joints were tested to determine the effect

of oversize holes and slotted holes on the slip behavior and ultiﬁate
strength of bolted joints. Hole sizes studied had standard, 1/4-in.
and 5/16-in. clearances. Slots placed both parallel an& transverse to
the line of load were studied. All joints were of A36 steel plate
fastened by l-in. A325 bolts. Also studied were the need for washers
for oversize holes and changes in bolt tension. For holes with 1/4-in,
clearance there was no decrease in the slip coefficient, excessive loss
in bolt tension or inadequate preload. The studies indicated that a
washer is desirable under the turned element to prevent severe galling.
A decrease in the slip coefficient was observed for the joints with
5/16—in. hole clearance and for the joints with slotted holes. Slotted
holes placed perpendicular to the line of load did not decrease the

ultimate strength of the joints.
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1. INTRODUCTION

The current (1966) Specifications for Structural Joints using
ASTM A325 or A490 Bolts, as approved by the Research Council on Riveted
and Bolted Structural Joints recognizes two types of shear connections,

designated as friétion—type and bearing-type, respectively.l

In a friction-type joint, movement of the connected parts is
not tolerated because of the detrimental effects on the behavior of
the structure. For this type joint slip constitutes failure, and work-
ing loads must be resisted by friction between the connected parts with

a reasonable factor of safety against the occurrence of slip.

Where slip of the bolted joint would not be objectionable, a
bearing-type connection can be used. For this type of joint, the work-
ing loads may be resisted by bearing of the bolts against tﬁe sides of
the holes. 1In such a connection it is the shearing of the bolts or
failure of the connected parts that constitutes failure and allowable‘_

stresses are based on the ultimate strength of the connection,

Behavior of Bolted Joints

In bolted joints with clean mill scale faying surfaces, work-
ing load is resisted by frictional forces acting on the faying surfaces

of the connected material. The value of the maximum frictional force



is related directly to the normal force and the condition of the contact
surfaces. The clamping force of the bolts provides the normal force in

a bolted connection.

When load is applied to a bolted joint, higher frictional
forces exist at the ends of the plates in the joint than in the middle
of the joint because of the strain compatibility condition.2 At one
end of the joint the main plate is carrying a relatively higher load
than the adjacent lap plates. This condition eventually causes a re-
lativé displacement of the faying surfaces near the ends of the joint.
As the load is increased, these areas extend inward from the ends of
the joint. The maximum frictional resistance of the connection occurs
when the slip areas cover the entire faying surface. If the load is
further increased, a large relative displacement between the plates
of the connection occurs, an event known as major slip. The load at
which this movement occurs is called the slip load. The relationship
between the initial clamping force of the bolts and the load at major
slip is known as the slip coefficient.3 This does not necessarily
compare with the "coefficient of friction" values obtained from slid-
ing block tests which involve a more uniformly applied normal force

and a rigid body behavior of the adjacent materials,

After slip occurs, the joint load is transmitted by the bear-
ing of the plate against the bolts., Failure occurs either when the
bolts shear or when the connected plate fails. The ultimate strength

can usually be predicted by knowing the ultimate shear strength of the




bolts as determined by shear calibration tests and the ultimate tensile
strength of the connected material as determined by coupon calibration

tests.

The'present specifications specify that the bolts in a bolted
connection are to be used in holes not more than 1/16 inch in excess of
the bolt diameter. There are no provisions in the specifications for

the use of holes any larger than this.

1.1 Purpose

The studies that have been conducted to date on bolted con-
nections have been primarily on holes with a 1/16 inch clearance. There
is a need to evaluate the performance of bolted connections with a
greater amount of oversize as it frequently occurs because of reaming

and mis-matching.

Slotted holes are also often necessary when a new steel struc-
ture is connected to an existing structure.4 Both oversize and slotted
holes are desirable to permit erection adjustments. The purpose of
this study‘was to evaluate the effect oversize and slotted holes have
on the slip resistance and ultimate strength of bolted joints. The
results of this study would be useful to determine whether joints with
oversize or slétted holes could function satisfactorily as friction-
type or bearing-type connections. This information could provide use-

ful guidance in the use of specifications, .



1.2 Scope

The study was primarily concerned with the effect oversize and

slotted holes have on:
(1) losses in bolt tension after installation,
(2) the slip resistance of a joint,

(3) the ability to tighten bolts using the standard

installation technique
(4) whether washers are needed for oversize holes;.and

(5) the changes in bolt tension during testing.

The effect of slotted holes placed perpendicular to the line

of loading on the ultimate strength of a joint was also observed.

The testing program consisted of twenty-one bolted joints. Fif-
teen were designed as friction-type joints _and six were designed as
bearing-type joints. Twelve of the friction-type joints were oversize
hole specimens with hole clearances ranging from 1/16-in., (the present
maximum allowable clearance) to 5/16-in., five times the present maxi-
mum allowable clearance. The remaining three friction-type joints had
slotted holes in the enclosed plies with the slots placed parallel to
the direction of load. The six specimens designed as bearing-type joints
had slots placed perpendicular to the line of loading. The joint geo-
metry was varied to evaluate the effect on joint strength. These joints

also provided information on slip resistance.




2, PREVIOUS WORK

Various studies have analyzed the behavior of high strength
bolts and bolted joints when the bolts were installed in holes larger
than their diameters. Early laboratory and field tests indicated that,
among other things, high strength bolts could be installéd in holes up
to 1/16-in. larger than their diameter without a noticable effect on
the performance of the bolts or of the joints.5 The Research Council
on Riveted and Bolted Structural Joints, in their first specification

issued in 1951 permitted a bolt hole clearance of 1/16-in.

Hoyer6 reported in 1959 that studies conducted in Germany in-
dicated that there was no influence on the sliding load for holes up

to 1/8-in. larger than the bolt.

Chesson and Munse7 studied the effects of tightening bolts in
holes with up to 1/8-in. clearance using the turn-of-nut method with
and without washers under the turned element. They concluded that in-
the case of oversize holes up to 1/8-in. greater in diameter than the
bolt there may be some reduction in bolt tension when washers are
omitted and when finished hex head bolts and nuts are used, but the
clamping force will still be in excess of the required tension for

A325 bolts. (See Fig. 1).

Studies to determine the loss in preload of high strength bolts

due to relaxation have generally indicated that the total loss is about



10% of the initial preload. Research that has been conducted in
Germany since 19548’9 has shown that high strength bolts were ob-
served to lose about 10% of their preload over a two-year period.

Also, the preload was unaffected by temperature changes.10

In South Africa, Denkhaus11 observed that the total loss in
bolt load using a washer was about 9% after 1 day, and 2% from 1 day

to 1 year.

Studies on high tensile bolts in Japan12 showed bolt relaxa-
tions of about 6% after 11 years for bolts tightened to their yield

point.

Chesson and Munse7 also observed the effects of holes with up

to 1/8-in. clearance on the relaxation of A325 bolts. They found that

there was no significant difference in the amount of bolt tension lost

with time for the 1/8-in. clearance holes either with washers or with-
out washers, The loss in bolt tension for all tests was less than

10% over a period of from 1 to 5 days.

Tests conducted by the Lamson and Sessions Company on a load
13
analyzer showed a loss in tension of less than 10% over a period of

days.

A study to determine the decrease of the preload in high

strength bolts over a period of time was conducted in the Netherlands.

It was concluded that the loss would be about 5% over 20 years for a

14



bolt with 2 washers and about 10% over 20 years for a bolt with one

washer.

Studies to determine the changes in tension in the bolts of a
joint as load was applied were conducted at Lehigh Um‘.versity.l5 The
results showed that the bolt tension decreased from 1% to 8% at major
slip due to the Poisson effect. Joints with a 4-in.grip showed a de-
crease in bolt tension after major slip. Nester16 observed a decrease

in bolt tension from O to 8.6% at major slip.

.

There is no record of any research done to date on the effect
of slotted holes on the performance of either high strength bolts or

of bolted joints,




3. TESTING PROGRAM

3.1 Description of Specimens

All twenty-one test specimens were fabricated from l-in. thick
A36 steel plate supplied from the same heat. They had two lines of
1-in. diameter A325 bolts connecting four plies of plate at a pitch of

5-1/4-in. The faying surfaces were clean mill scale.

Twelve specimens containing holes of varying amounts of over-
size and three specimens containing slotted holes were designed as
friction-type joints. The geometrical layout of the oversize hole

joints is shown in Fig. 2.

The twelve joints with oversize holes were divided into four
groups of three joints. The ratio of net plate area to total bolt

shear area, (the An/AS ratio) was 0.68.

The first group of three joints, designated OHl, had a hole
diameter of 1-1/16-in. providing the maximum allowable hole clearance
of 1/16-in. These three joints served as control specimens for the
entire test series. Because the holes were normal size, the bolts were

installed without washers.

In another phase of this research project, a number of bolted
joints were tested to determine the influence of variation of the con-
tact area upon the slip resistance. These specimens were fabricated

from the same plate as the specimens being discussed. The faying sur-



face condition for both groups of joints were identical. The joints of
the latter seriés had a single line of four 7/8-in. A325 bolts and the
contact area was varied by inserting washers between the main and lap
plates. The hole diameter was 1/16-in. larger than the bolt size. The
three control specimens for the series did not have washers between the
plates, Thus the physical conditions affecting the slip behavior were
the same for thesé control specimens as they were for the three control
joints (OHl series) of the oversize hole joint series. Therefore a

direct comparison of the slip coefficients can be made.

The second group of three joints, designated OH2, had a hole

diameter of 1-1/4-in,providing four times the maximum allowable hole

clearance. These joints were also bolted up without washers.

The third group, designated OH3, also had a hole diameter of
1-1/4-in. These were bolted up with washers under the nuts in order
to determine whether or not washers should be required for holes of

this amount of oversize.

The fourth group of joints, designated OH4, originally had hole
diameters of 1-3/16-in which provided three times the maximum allowable
hole clearance. The holes in these three joints were to be enlarged to
1-5/16-in. if the joints with the 1-1/4-in, holes indicated no signifi-

cant change in slip behavior from the control specimens.

The nine joints with slotted holes had the slots placed in the
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middle, or main piates. This is because slotted holes located in the
outside plies would normally be covered with large washers which would
cause these plies to act as enclosed plates., The slots were 2-9/16-in,
long and 1-1/16—ingwide. The holes in the outside plates provided the
maximum allowable hole clearance of 1-1/16-in. The joints were as-

sembled without washers.,

Three joints contained slots placed parallel to the line of
load. These were designed as friction-type joints and were designated
SH1 (See Fig. 3). The An/As ratio was the same as that of the over-
size hole joints so that the effect of slotted holes placed in the

direction of slip on the slip resistance could be observed.

Six joints were designed as bearing-type joints and contained
slots placed perpendicular to the line of load (Fig. 4). Three of
these joints, designated SH2, were proportioned with currently used

allowable stresses and failure was expected to occur by a tearing
of the plate at the net section. Their net section area was equal to

the bolt shear area. The net section efficiency was 60%.

The remaining three joints, designated SH3, had an increased
net section area so that failure would occur by a shearing of the bolts.
Earlier experimental and theoretical studies had shown that this would

occur if its net section area was 36% greater than the bolt shear area,
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3.2 Plate Properties

The A36 steel plate that was used for the specimens was pur-
posely ordered to minimum strength. The plates were furnished from
the same heat and were rolled 28-1/2 inches wide and 34 feet long. A
2-foot long section was cut from the middle of each plate. Standard
tensile coupons were cut from this piece to evaluate the material pro-
perties. These coupons were tested in a mechanical universal testing
machine equipped with an automatic load-strain recorder; The testing
sbeed was 0.025 inches per minute until strain hardening began. The
static yield load was obtained by stopping the machine 3 times during
yield and allowing the machine to equalize each time. When the coupon
went into strain hardening, the testing speed was increased to 0.3
inches per minute until the coupon failed. The load-strain curve for
an 8 inch gage length was plotted by the automatic recorder for each

coupon.

The yield point of the plates was less than the specified mini-
mum because the testing speed was lower than the mill rate. The joints
were fabricated from plates having material properties that were simi-

lar,

The results of the temsile coupon calibrations are summarized

in Table 1.

3.3 Calibration of Bolts

One inch diameter A325 bolts were used to bolt up all 21 joints.
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Because some joints were bolted up with washers and some without washers,
two different bolt lengths were required. The bolts used in joints
without washers were 5-1/4-in.long and were designated lot XB. The
bolts used in joints with washers were 5-3/4-in. long and were designated

lot XC. Both lots had the standard length of threads.

Representative samples of bolts from each lot were calibrated
in both direct tension and torqued tension to determine their proper-
ties. Three bolts from each lot were chosen at random for each calibra-
tion. An extensometer, consisting of a‘counterweighted C-frame and a
dial reading to the nearest ten-thousandth of an inch, was used to take
elongation measurements of each bolt as it was loaded. From this in-
formation, mean load-elongation curves were obtained for each lot of

bolts and are summarized in Fig. 5.

All of the bolts calibrated satisfied the minimum proof load
and ultimate load requirements specified b§:the ASTM. Since the bolts
were held at the same grip when tested as existed in the joint, the
load-elongation curves used in the torqued tension calibration tests
were used to determine the tension in the bolts that were installed in

the joints.

It was found from the direct tension calibration tests that
both lots of bolts had tensile strengths that exceeded minimum strength
by 13% to 15%. 1In both the direct tension and torqued tension cali-
brations, the bolts remained elastic well above the required minimum

tension.
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3.4 Fabrication and Assembly of Joints

The tesf joints were fabricated by a local steel fabricator.
In most cases, the four pieces of plate used for each joint was taken
from the same plate; otherwise they were matched as closely as possible
using the data obtained from the plate coupon calibration tests. The
individual platés were flame cut to rough size and then milled to the
specified joint dimensions. The faying surfaces were cleaned of loose
mill scale and burrs. The four éorner holes of each oversize hole
joint assembly were then sub-drilled and reamed for alignment. The
four remaining holes were then drilled through all four plies of steel
to the specified size while the plates were held in alignment by steel

pins in the corner holes.

The slotted holes were formed by drilling two adjacent holes

in the plate and removing the metal between them.

Filler plates were welded to the lap plates on one end of each
joint and the main plates were welded together at the grip end to en-

sure a uniformity of wedge grip action during testing.

Cleaning, assembly and instrumentation of the joints were per-
formed at Fritz Engineering Laboratory. Before assembly the joints were
cleaned with shop solvent to remove any grease or other foreign material,
They were then assembled and aligned. The bolts were either installed
with or without washers depending on the individual test. The turn-of-

nut installation procedure was used. The bolt tensions were determined
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by measuring the changes in bolt length with the extensometer and then
determining the corresponding bolt tension from the torqued tension

calibration curve.

In all of the joints except for the three joints with hole dia-
meters of 1-5/16-in. the bolt tension varied from the required minimum

tension to 50% in excess of the required minimum tension,

When two of the joints with the 1-5/16-in.holes (OH4 series)
were bolted up with washers under the nuts using the standard turn-of-
nut method, half of the bolts failed to achieve proof load. The bolts
were removed and the two joints were rebolted with washers placed under
both the heads and the nuts. The third joint of the series was also

bolted up with washers under both the head and the nut.

3.5 Instrumentation .of Joints and Bolts

3

All of the specimens were instrumented to record their perform-
ance during testing. The friction-type joints were instrumented to

record joint slip, elongation, and alignment.

Dials reading to 0.000l-in were attached to tabs tack welded
to both sides of the main plate in line with the.bottom row of bolts.
The pointers of these gages rested on a frame that was tack welded to
the lap plates in line with the tabs. Thus slip movement between the
main and lap plates was measured on one line and effects due to axial

strains were minimized,
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Joint elongation was measured between points one gage length
above the top 1ine of bolts and points one gage length below the bottom
line of bolts. These points were located on the center line of the
joints, the top points being located on both faces of the main plate
and the bottom points being located on both lap plates. One-half inch
studs were tack welded to the plates at these points. Elongations
were read from 0.0001l-in.dials that read the relative movement of the
studs by means of a sliding rod arrangement. The arrangement of the
joint slip and joint elongation dials on one of the friction-type

joints is shown in Fig. 6.

The bearing-type joints were instrumented to record joint slip,
joint elongation, and also overall member elongation. The instrumenta-
tion used to record joint slip and elongation was the same as for the
friction-type joints. The pverall member elongation was measured be-
tween points placed as far apart on the faces of the joint as the test-
ing machine gripping clearance would allow, The elongations were read
from 0.0001-in.dials that were mounted on the top studs and connected

to the bottom studs by piano wire.

Electrical resistance strain gages were attached to the sides
of the main and lap plates of all of the joints to detect any eccen-
tricity of loading caused by uneven gripping or curvature of the joint

and also to determine the onset of yielding.

A number of the bolts were instrumented with electrical resis-

tance foil strain gages cemented to their shanks. Flat areas 1-1/16-in,
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long and 1/16-in.deep were milled into the shank under the bolt head

to provide a mounting surface for the gages. The gages were placed on
opposite sides of the shank parallel to the axis of the bolt. The gage
wires passed through two holes drilled through the bolt head. This

arrangement is shown in Figs. 7A and 7B.

It was discovered during the direct tension calibrations that
the shanks of the bolts remained elastic into the range of bolt tension
achieved by the turn-of-nut method of installation, and a linear load-

strain relationship existed as shown in Fig. 8.

Since the gaged portion remained elastic it would not be as
affected by the high load and very little creep would occur. On the
other hand, inelastic deformation was occurring in the threads so that
the overall bolt elongation could not be expected to yield consistent

results.

Each gaged bolt was calibrated in direct tension in order to
relate the strain readings with the tension in the bolt. During the
calibration, the bolts were loaded in 10 kip increments to 50 kips and
then in 5 kip increments to 65 kips. The overall bolt elongations were
also checked with the extensometer. It was observed that the reduced
area of shank due to the milled surfaces did not cause any measurable
difference in the load-elongation relationship of the bolts as compared
to the bolts without gages. The load-strain reading relationship of

the gaged bolts was linear for both the loading and unloading cycles.
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The gaged bolts were used in six of the bolted joints. These
were: OHLl-1 and OHL-2 (1-1/16-in. diam.), OH2-1 (1-1/4-in. diam., no
washers), OH4-1 (1-5/16-in. diam., 2 washers), SHLl-1 (slots parallel to

line of load) and SH3-1 (slots perpendicular to the line of load).

Four gaged bolts were installed in each of these six joints,
They were arranged in a staggered pattern in the joint as shown in Fig. 9.

These were tightened in the same manner as the ungaged bolts.

3.6 Testing Procedure

All of the joints were tested in a 5,000 kip universal testing
machine using flat wedge grips. Each joint was held by the top grips of
the machine while dials were placed on the specimen. The dials and
strain gages were all read at zero load. The bottom grips were then ap-
plied, and loading started., Load was applied in 25 kip increments until
major slip ;ccurred. At each increment all dials and strain gages were

read.

For the friction-type joints, the slip behavior was observed
closely. Following major slip, the dials and gages were read and load
was applied in 10 kip increments until another slip,smaller than the
original slip and designated as a minor slip, occurred. This loading
sequence as repeated for all subsequent minor slips until the joint

went into bearing, at which time the test was stopped.

For the bearing joints, the test was carried to ultimate and
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failure. The initial slip load was observed and the joint was then
loaded in 50 kip increments until the load approached the predicted
ultimate strength. The testing machine was then stopped and the dial
gages were removed from the joint. A protective steel cage was then

placed around the joint.

The plate failure specimens were then loaded to failure, which

occurred when the main plate tore apart at the top line of slots.

The bolt failure specimens were loaded until the top row of

bolts failed in shear,

After the joints were removed from the testing machine, each
one was dismantled. The condition of the faying surfaces was inspect-
ed. The fracture surfaces of the plate failure specimens were in-
‘spected. A sawed section of one of the bolt failure specimens was

taken to inspect the condition of the boltss and of the slotted holes.

3.7 Loss-in-Tension Studies

Immediately after the nut on a high-strength bolt is tightened
a loss in bolt tension occurs. This is thought to be as a result of
an elastic recovery accompanied by a creep or plastic yield in the
threaded portions. 1In addition, some plastic flow may occur in the
steel plates under fhe head and nut. Some research has been done on
holes that had the standard hole clearance of 1/16=in. Only a few

relaxation tests have been conducted on larger holes.
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It was desirable to evaluate the effect on relaxation of holes
that were substantially oversize. The largest hole size studied was
5/16-in. oversize, or 2-1/2 times the amount of any previous studies
which evaluated holes 1/8-in. oversize. The effect of the enclosed

slotted holes on loss of bolt tension was also evaluated.

Since the load-elongation relationship of the bolt shanks was
linear within the range of bolt tension used, the bolts with the strain
gages cemented to their shanks should give an accurate indication of
the bolt tension at any time. Thus a meaningful relationship of the
bolt tension variation with time could be established. The six bolted
joints containing the gaged bolts provided a good representative

sample of all of the joints in the study.

The six joints were placed horizontally in a location where
‘they were not disturbed for the duration of the study. (See Fig. 10).
Strain gage readings were taken at the moment each bolt was installed.
Subsequent readings were taken at 1 minute, 5 minutes, 1 hour, 1 day,
1 week, 2 weeks and 1 month after installation. The strain gage in-
dicator was left connected to the strain‘gaged bolts through a switch
box for the duration of the study. 1In addition to the strain gage
readings, extensometer readings were taken at the same intervals on
all 8 bolts of each joint. This provided an opportunity to correlate

the strain readings on the bolt shanks with the bolt elongation readings.

At the completion of the study, the six joints were tested using
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the standard proéedure. During each tést, strain readings were taken

so that the changes in bolt tension during testing could be observed,

In order to check the accuracy of the bolt gage readings over
an extended period of time, gaged bolts of the same lot were installed
in a load cell as shown in Fig. 11. The load cell was made of hardened
tool steel and had a hole 1-1/16-in. in diameter through its center
through which the bolt was inserted. Four strain gages were cemented
to the outside of the load cell, two placed horizontal and two placed
vertical. They were connected to a strain gage indicator in a wheat-

stone bridge arrangement.

One-half inch thick A36 steél plates were placed over each end
of the load cell so that the behavior of the plates under the head and
nut would be similar to the behavior of the plates in the actual
joints. Three sets of these plates were used, one set for each of the
three hole diameters used in the oversize>hole specimens. The total
grip of the assembly was 4 inches. Thus the conditions that éffected

the relaxation behavior of a bolt in the test joints were closely

approximated.

The bolt to be studied was installed while the load cell assembly
as firmly held in a vise. The bolt gages and the load cell gages were
connected to separate strain gage indicators that were set to indicate
a load of 60 kips. The nut was tightened by a hand wrench until the
desired load was reached. Readings were taken for both the bolt tension

and load cell deformation at intervals of one minute, 5 minutes, one
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hour, and each day for a week. Overall bolt elongation readings were

also taken using the extensometer,
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4. TEST RESULTS AND ANALYSIS

4.1 Effect of Hole SizZe on Bolt Tension and Installation

It is of interest to examine the effect of varying hole dia-
meters on the ease of installation, degree of scouring and clamping

force of bolts installed by the turn-of-nut procedure.

The bolts in the OHL joints (1-1/16-in. hole diameter) were
installed without washers., This was in accordance with the present
specifications for bolted joints which permits installation without
washers when using the turn-of-nut method. There was no difficulty
achieving a bolt tension above the required preload in these joints.
The tension achieved in the 24 bolts of the 3 control joints ranged
between 116% and 149% of the required preload as shown in Fig. 12. The
average bolt elongations and tensions for';ach joint are listed in
Table 2. The mill scale on the plate area under the turned element
around the 1-1/16-in. holes was slightly galled as shown in Fig. 13.

A slight depression occurred under the bolt head, as shown in Fig. 14,
This nominal amount of damage indicated that washers are not required

under the head or the turned element for holes that contain the nominal

amount of clearance.

The bolts in the 3 joints of the OH2 series (l-1/4-in. hole

diameter) were installed without washers while the bolts for the OH3
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series (also 1-1/4-in. hole diameter) were installed with washers under
the turned elehents. There was no difficulty achieving bolt tensions
above the minimum required tension in all six joints. The average bolt
elongations and tensions for the 2 series are summarized in Table 2.

The range of bolt tensions achieved for each series is shown in Fig. 12,

As can be seen in Fig. 13, the average bolt tensions for the
two groups containing 1-1/4-in., holes were about equal (1187 of proof
load) but were noticeably lower than the average tension in the control
groups (13% of proof load). An examination of the plate areas under
the bolt heads indicated depressions had occurred during tightening
(Fig. 15) that were greater than the indentations that had occurred
under the heads of the bolts in the control joints. This meant that
the longations of the bolts in the l-1/4-in. holes were smaller than
the elongations in the control joints and hence the bolt tensions were

reduced.

Observation of the plate areas under the nuts of the OH2 series
joints indicated that severe galling of both the plate and the nut had
occurred during installation. The damage to the plate and the nut is
shown in Figs. 16 and 17. For comparison, the surface condition of the
plate where washers were used under the nuts in the OH3 series is shown
in Fig. 18. Only a slight depression occurred under the washer. It
can be seen from Fig. 12 that the use of washers in the 1-1/4-in. holes
did not affect the average clamping force of the bolts. However, the

scatter in bolt tension for the bolts that were installed without washers
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was nearly twice as large as the scatter in the bolt tension for the
bolts that were installed with washers. Hence, the clamping force

for the joints with washers was more uniform.

The holes in the OH4 series joints were drilled from the ori-
ginal 1-3.16-in. diameter to 1-5/16-in. diameter after the results of
the studies on the slip behavior of the OH2 and OH3 series were ob-
served., The bolts in two of the three OH4 series joints were installed
with washers placed under the nuts. This was done after observing
the severe galling that occufred in the OH2 series where the bolts
were installed without washers. When the bolts in these two specimens
were tightened by the standard turn of nut procedure, half of the 16
bolts failed to achieve their required minimum tension. The bolts
were then removed from the-joings. Inspection of the two joints re-
vealed that the bolt heads had recessed severely into the plate around
the holes. This condition was far more severe than the recessions
that occurred in the OH2 and OH3 series, as shown in Fig. 19, 1In
this instance, the elongations of the bolts were reduced sufficiently

so that the bolt preload was less than the required minimum tension.

All three OH4 joints were then rebolted with washers installed
under both the heads and nuts. This time there was no difficulty
achieving bolt tensions above proof load. The range of bolt tensions
achieved for the OH4 series joints both with and without washers in-
stalled under the heads are compared in Fig. 20. The range of tensions

achieved for bolts installed with washers under both the head and the



-25-

nut was from 110% to 144% of proof load with an average tension of 125%
of minimum tension. This compares with the range of bolt tensions

achieved in the bolts in the control joints, as shown in Fig. 12.

The results of these studies can be extended to determine the
maximum allowable hole clearance for other sizes of A325 bolts for the
given grip length in A36 steel plate. The difficulty in achieving
proof load tension was a result of the bolt depressing into the plate
éround the hole. 1In the holes with the 5/16-in. clearance, the bolt
heads recessed severely into the plate because thé bearing pressure
between the flats of the heads and the plate was initially too high.
This was not the case for the bolts that were installed in the holes
with 1/4-in. clearance. It can be assumed that the bearing pressure
that was developed under the flat areas of the bolt heads with 1/4-in.
clearance holes was the maximum allowable bearing pressure. This
bearing pressure was 72 ksi when the bolt preload was 207% in excess of
the required tension. The maximum hole clearance for any size bolt
may then be computed on the basis that the area of plate remaining
under the flat of the head must be sufficient to permit a maximum bear-

ing pressure of 72 ksi when the bolt is installed.

The results of these computations are summarized in Table 3.
All of the hole diameters have been rounded off to the nearest six-
teenth of an inch. The maximum allowable hole clearance for bolts
equal to or less than one inch in diameter is 3/16-in. For bolts with
diameters greater than one inch diameter 5/16-in. hole clearance is

permissible.



—26-

4.2 Loss-in-Tension of Bolts with Time

The results of the study relating the loss-in-tension of high-
strength bolts with time following installation are listed in Table 4.
The time-tension relationship of bolt XB29 that was installed in joint
OH1-2 is shown in Fig. 21, This was typical of the behavior of all 24

gaged bolts installed in the 6 joints included in the study.

The loss-in-tension one minute after installation agreed with

. . . . . . 7
the one minute losses reported in a previous investigation, where the
loss-in-tension for heavy-headed bolts and nuts ranged between 2% and

4% of the initial clamping force.

Nearly all of the loss for each bolt occurred within the first
few hours after installation. Also, none of the variations of hole
diameter or the presence of slots had any significant effect on the
percent loss-in-tension of the bolts during the study period of one

month. The extensometer readings indicated that the ungaged bolts be-

haved the same as the gaged bolts.

The load cell studies are compared with the bolt gage readings
in Table 5. Since virtually all of the losses in the bolts installed

in the joints occurred within a week after installation, the load cell

studies were also conducted for one week. The results showed good agree-

ment between the bolt strain measurements and the load cell, The maxi-

mum error was 2-1/2% of the initial clamping force.
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4.3 Slip Behavior

The slip resistance of a bolted joint is a function of its
slip coefficient and the bolt preload. The slip coefficient has been
defined as:3 K, = PS/NTi’ where KS is the slip coefficient, PS the
slip load, N the number of slip planes and Ti the total initial clamp-

ing force.

The total clamping force was taken as the sum of all of the
bolt tensions measured approximately one minute after installation,
The slip coefficients for each of the joints are summarized in Table 2,
The load-slip and load-joint elongation relationships for typical joints

of each series are shown graphically in Figs. 22 to 28.

The load-slip response of the joints was linear until the load
approached the region of major slip. The dial gages that recorded slip
moved very slowly in this region. Occasionally, there would be a slight
noise and the slip dials Woﬁld indicate a sudden movement of about
0.0001-in. This was probably caused by the extension of the slip zone
into the joint. When the load approached the major slip load the dials
usually began to move faster and when major slip occurred, there was a
loud noise accompanied by a sudden movement (about 0.04-in.) of both
the slip and elongation dials which caused a drop in the testing machine
load. This initial slip was never equal to the hole clearance of the
joint. Subsequent loading of the bolted joint produced small additional

slips until the joint was in bearing. These small slips seldom occurred
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at higher loads tﬁan the major slip load. The number of smaller slips
increased as the hole diameter increased. The reason that the initial
slip did not bring the joint into bearing was due to the decrease in
load caused by the slip. 1In an actual structure the load may remain
constant and the joint would slip into bearing at the initial slip. An
examination of Figs. 22 to 28 shows that each joint of the OH series be-

haved in a similar fashion.

The three joints of the OHl series which had the nominal hole
clearance of 1/16-in. served as control specimens. The average slip
coefficient for these three joints was 0.29. This value is comparable
to the average slip coefficient of 0.34 obtained by Nester16 from a
series of bolted connections that were made from the same heat of steel.
Tests conducted at the University of Washington17 on A36 steel bolted
joints yielded comparable results,

i

Investigation of the faying surfaces of the OHLl joints (See
Fig. 39) indicated that damage to the mill scale surface was mostly
confined to the areas immediately adjacent to the holes. This is in
accordance with the theory that the areas immediately adjacent to the
holes of a bolted joint are the areas of highest contact pressure and

therefore provide most of the slip resistance.

The OH2 and OH3 joints with the 1/4-in. hole clearance provided
slip resistance comparable to the OHLl tests. The average slip co-

efficient for both the OH2 and OH3 series was 0.28. 1Inspection of the
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faying surfaces indicated that most of the surface damage occurred a-
round the holes (See Fig. 30). This also showed that the pressure dis-
tribution in these joints was similar to the pressure distribution that
existed in the control joints. The damage was more severe for the 1l/4-in.
hole clearance joints because the distance of slip was four times as

great.

The three joints of the OH4 series which had hole clearances of
5/16-in. showed a decrease in slip resistance. The average slip co-
efficient for these joints was 0.24. 1Inspection of the faying surfaces
after testing (See Fig. 31) also showed that most of the surface damage
occurred around the holes. The damage for these joints was the most
severe of the oversize hole joints because the greatest amount of slip

occurred.

The three friction joints of the SH1 group had slotted holes
in the enclosed plates that were placed parallel to the line of load.
These joints also showed a decrease in the slip coefficient. The aver-
age slip coefficient for the series was 0.20. Inspection of the fayiﬁg
surfaces (Fig. 32) shows severe mill scale disturbance over the entire
face of the joint. This resulted from the large amount of slip (1-

9/16-in.) permitted by the slotted holes.

The slip behavior of three of the bearing joints (SH2-1, SH2-2,

and SH3-1) was different from the behavior of the rest of the joints.
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The behavior of tﬁese three joints prior to major slip was basically
the same as the other joints; slow dial movements with an occasional
sudden movement of 0,000l inch. When major slip occurred there was no
loud noise or drop of load. Instead, the dials began to move very
rapidly while the load continued to increase. The total amount of
rapid dial movement was enough (0.30-0.05 in.) to be considered as a
major slip. Following this the joints underwent a few minor slips
until the bolts went into bearing. The slip coefficients of the six
bearing joints of groups SH2 and SH3 are summarized in Table 2. The
average slip coefficients for the SH2 and SH3 series were 0.23 and 0.21

respectively.

The average slip coefficients of all of the joint series are
compared in Fig. 33. It is observed that the average slip coefficient
for the OH2 and OH3 series was about the same as the average slip co-
efficient of the OHl joints. There was a decrease in the slip co-
efficient for the OH4 joints. This indicates that for l-in. bolts
there is no decrease in the slip coefficient for holes with up to 1/4-in.
clearance. The slip coefficients for all of the slotted holes were

also lower than the average slip coefficient of the control joints.

A possible hypothesis to explain the reduced slip resistance of
the OH4 joints (5/16-in. clearance) and the slotted hole joints is
based on the theory that the greatest contact pressure between two plates
bolted together occurs immediately adjacent to the hole. High frictional

forces that are proportional to the contact pressure and the interlocking
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of the surface irregularities in these areas constitute a major portion
of the resistaﬁce of the bolted joint to slip. Removal of a large por-
tion of this area, as in the case of the OH4 joints with 5/16-in. hole
clearance and the slotted holes, causes very high contact pressures im-
mediately adjacent to the hole which tends to flatten the surface ir-
regularities. This reduces the slip resistance of the joint. This re-
duced resistance to slip should be taken into consideration in the de-

sign of friction-type joints containing large oversize or slotted holes.

4.4 Changes in Bolt Tension During Testing

The results of the study to determine the changes in bolt ten-
sion during testing of the six joints with gaged bolts are summarized
in Table 6. The results listed are the averages of the four gaged bolts
of each joint. The behavior of a typical bolt in joint OH2-1 up to
slip is shown in Fig. 34. AThe behavior of the four gaged bolts in

joint SH2-3 up to joint failure is summarized in Fig. 35.

The percent change in bolt tension at time of slip for joint
OH1-2 was observed to be much larger than for joint OHl-1. This was

because joint OHl1-2 yielded at the net section before major slip occurred.

The changes in bolt tension were analogous to the changes ob-

15,16

served in earlier studies, The presence of oversize or slotted

holes did not greatly affect the changes in bolt tension during loading.
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4.5 Effect of Transverse Slotted Holes on the Ultimate Strength of

The Joint

The three joints of the SH2 series were designed to fail by
tearing of the plates. The results of these tests are summarized in
Table 7. The load-joint elongation and load-specimen elongation re-

lationship of joint SH2-3 is summarized in Fig. 36.

In all cases the interior slotted plate failed at the first
row of slots. Fig. 37 shows the deformation that occurred in the

slotted holes of joint SH2-2 at failure.

The ultimate load for all 3 specimens was roughly 110% of the
predicted loads based on the coupon tests. This behavior is in agree-
ment with the results of earlier studies conducted on bolted joints with

standard round holes.

The three joints of the SH3 series were proportioned so that
failure would occur by shear of the bolts. The geometry of the joints
was based on the assumption that minimum strength bolts.Were to be used
for the tests. Joint SH3-1 was bolted up with bolts of the high strength
XC lot. The shear strength of the bolts exceeded the plate capacity

and the joint failed by a tearing of the plate.

A new lot of bolts specified to be of minimum strength was

ordered, This lot, designated XE, was tested in shear jigs with both
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slotted and round holes. The average ultimate shear strength of the
bolts in the siotted hole shear jigs was 84.3 ksi while the ultimate
shear strength in the round hole was 81.3 ksi. This was caused by a
ballooning of the plate as the bolt bearing caused deformation on the
flat portion of the slot as shown in Fig. 38. This caused a shifting
of the shear pléne with a resultant increase in the shear area of the

bolt shank.

Bolts from the XE lot were then installed in joints SH3-2

and SH3-3, The results of these tests are also summarized in Table 7.

The deformation of a bolt and the plates of joint SH3-2 are shown in
Fig. 39. 1In both cases failure occurred when the head end of one of

the two top bolts sheared off.

The average bolt shear stress at ultimate was about 6% lower
in both joints than was predicted from the slotted hole shear jig
tests. The sawed section of joint SH3-2 (See Fig. 40) shows the de-

formation of the bolts and of the enclosed plate.

It can thus be concluded that the presence of slotted holes
in the enclosed plates of a bolted joint does not reduce the ultimate

strength of either the plates or the bolts in shear.
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5. SUMMARY

On the basis of this study the following conclusions have been

reached:

1, - 1-in. A325 bolts installed by the turn-of-nut method in holes
with a 1/4-in. clearance achieved average preloads 20% above the
required bolt tension. Washers under the turned element are re-
commended to prevent severe galling. Bolts installed in holes wiﬁh
a 5/16-in. clearance reqqired washers under both the head and the
turned element to achieve preloads in excess of the required bolt

tension.

2. Oversize or slotted holes do not greatly affect the losses in
bolt tension with time following installation. Virtually all of
the losses occurred within one week after installation. The loss

in tension was about 8% of the initial preload.

3. The slip behavior of joints with oversize or slotted holes was
similar to the slip behavior of joints with holes of nominal size.
There was a series of small slips before the joint went into bear-
ing. The number of small slips increased as the distance of slip

increased.

4, The average slip coefficient for the joints with 1/4-in. hole

clearance was about the same as the slip coefficient for the con-
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trol joints. The joints with 5/16-in. clearance holes showed
a 17% decrease in the slip coefficient. The slip coefficient
for slotted hole joints showed a 22% to 33% decrease when com-

pared to normal test specimens.

Changes -in bolt tension during testing were not greatly
affected by the presence of oversize holes or of slots in the
enclosed plates. All changes in bolt tension at major slip
were within the previously observed range for change in tension

at slip.

Slotted holes placed perpendicular to the line of load in
the enclosed plates of a bolted joint did not reduce the ten-

sile strength of the plates or the shear strength of the bolts.
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TABLE 1

Material Properties Determined by Coupon Tests
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Coupon Static Yield Ultimate % Elong. % Red.
No. :ii;:s Si;;ss Siensi%g) in 8 in. in Area
ress
(psi) (psi) (psi) (%) (%)
P1-1 29,600 31,600 61,000 34.0 64.1
P1-2 29,000 31,200 61,600 33.2 62.0
P1-3 29,000 32,400 61,000 33.5 62.6
P2-1 29,300 32,600 60,500 36.2 64.1
P2-2 28,500 31,800 59,300 .35.0 63.1
P2-3 29,200 32,200 60,200 33.8 61.0
P6-1 30,100 31,200 61,800 29.0 61.6
P6-2 28,200 31,200 60,700 34.0 63.6
P6-3 29,600 31,600 61,700 33.8 65.0
P7-1 29,800 31,600 61,100 34.4 64.8
P7-2 28,800 30,600 60,100 32.5 64.9
P7-3 29,900 31,400 61,800 32.5 64.5
P8-1 29,900 32,500 61,100 31.9 62.5
P8-2 29,800 31,800 62,800 31.2 61.7
P8-3 29,300 30,900 61,100 -——— ————
Avg. 29,300 31,600 61,000 33.2 63.3
Std. Dev. 560 530 730 1.7 1.4.
()
Mill Report: Gy = 38,800 psi.
(b)

Mill Report:

Gult

= 62,300 psi.




Test Results

TABLE 2

[2

- Slip Behavior of All Joints
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Joint Hole Average Initial Initial Slip
Diam. Bolt Bolt Slip Coefficient
Elongation Tension Load
OH1-1 1-1/16" .0213 551.6 314.5 0.285
OH1-2 1-1/16" .0227 558.0 327.5 0.293
OH1-3 1-1/16" .0227 570.4 322.5 0.283

Average 4 0.287
OH2-1 1-1/4" .0178 522.8 274.5 0.263
OH2-2 | 1-1/4" .0119 422.0 2642.5 0.290
OH2-3 1-1/4" .0132 474.5 295.0 0.312

Average 0.282
OH3-1 1-1/4" .0143 495.2 286.5 0.290
OH3-2 1-1/4" .0139 482.5 267.0 0.277
OH3-3 1-1/4m .0135 473.5 260.0 0.274

Average 0.280
OH4-1 1-5/16" .0151 502.6 265.0 0.264
OH4-2 1-5/16" .0173 531.2 253.5 0.238
OH4-3 1-5/16" L0174 533.1 236.0 0.222

Average 0.245
SH1-1 Slotted .0154 504.0 185.5 0.184
SH1-2 (Parallel .0162 524.1 199.0 0.190
SH1-3 to line .0191 549.5 237.0 0.215

of load)

Average 0.196
SH2-1 Slotted .0223 573.9 248 0.237
SH2-2 (Perpen- .0230 574.5 220 0.192
SH2-3 dicular .0161 525.7 262.5 0.250

to line
of load)

Average 0.226
SH3-1 Slotted .0223 568.5 225 0.200
SH3-2 (Perpen- .0232 475.4 210 0.221
SH3-3 dicular .0250 480.2 214 0.223

to line

Average of 1oad) 0.215




Allowable Hole Clearance for Different Hole Sizes

TABLE 3

Bolt Proof Min. Flat | Max. Hole Area = Max. Hole Amount Bearing
Size Load Area Area* | Flat Area-Min. Area Diam. Clearance Pressure
1/2 12 .200 .601 0.401 11/16" - 3/16" 62.6
5/8 19 .315 .887 0.570 13/16" 3/16" 62.0
3/4 28 .465 1.227 0.761 15/16" 3/16" 62.5
7/8 39 .647 1.623 0.973 1-1/16" 3/16" 62.9

1 51 .846 2.074 1.224 1-1/4" 1/4% 72.0
1-1/8 56 .930. 2.580 1.646 1-7/16" 5/16" 70.3
1-1/4 71 1.180 3.142 1.962 1-9/16" 5/16" 1 69.5
1-3/8 85 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>