
Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1967

Residual stress and the local buckling strength of
steel columns, January 1967
F. Nishino

L. Tall

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact
preserve@lehigh.edu.

Recommended Citation
Nishino, F. and Tall, L., "Residual stress and the local buckling strength of steel columns, January 1967" (1967). Fritz Laboratory
Reports. Paper 179.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/179

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/179?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


by

Fumio ishino

Lambert Tall

Welded and Rolled T-I Columns

l

Fritz Engineering Laboratory Report o. 290.11



Welded Built-up and Rolled Heat-Treated T-l Steel Columns

RESIDUAL STRESS ,AND

LOCAL BUCKLING STRENGTH OF STEEL COLUMNS

by

Fumio Nishina

Lambert Tall

This work has been carried out as part of an investigation
sponsored by the United States Steel Corporation.

Fritz Engineering Laboratory
Department of Civil Engineering

Lehigh University
Bethlehem, Pennsylvania

January 1967

Fritz Engineering 'Laboratory Report No. 290.11



TABLE OF CONTENTS

ABSTRACT

1. INTRODUCTION

2. ASSUMPTIONS

3. ANALYSIS OF PLATE BUCKLING

3.1 Stress-Strain Relationship and Basic
Differential Equation

3.2 General Approach

3.3 Differential Equation and Boundary
Conditions in Finite Differences

4. PROCEDURE OF NUMERICAL COMPUTATION

4.1 Formation of Matrix Equation

4.2 Determination of Critical Width­
Thickness Ratio

4.3 Plate Buckling Curve

s. NUMERICAL RESULTS

5.1 Aspect Ratio and Critical Width­
Thickness Ratio Relationship

5.2 Plate Buckling Curve

5.3 Reduction Factor of Width-Thickness
Ratio

Page

1

8

10

10

13

16

25

25

26

27

31

32

34

35

6 •

7 •

8.

9.

10.

11.

12.

5.4 Numerical Results for Column Sections

COMPARISON WITH TEST RESULTS

SUMMARY AND CONCLUSIONS

ACKNO\~LEDGEMENT

NOMENCLATURE

APPENDICES

TABLES AND FIGURES

REFERENCES

36

39

42

44

45

47

63

81



290. 11

ABSTRACT

This report presents the results of a study of the

local buckling strength of steel columns. The effect of

residual stress is given attention. The finite difference

method was employed throughout the analysis and proved to

be a suitable method for obtaining solutions for this type

of problem. Numerical results are presented for plate

buckling curves for plates with idealized residual stress

distributions of various magnitudes. The boundary con­

ditions of the plates are simply supported at the loading

edges, and four combinations of free, simply supported

and fixed at the unloaded edges. A few illustrative

results are also presented for the local buckling of

column cross sections.

The theoretical results were correlated with experi­

mental results of four pilot tests of square welded columns

of ASTM AS14 constructional alloy steel.
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1. INTRODUCTION

The strength of steel columns has been investigated

to a great extent and variety by many investigators (1)

through (6) h - d d -d 1 h-, W 0 lntro uce reS1 ua stresses as t e maIn

factor influencing the buckling strength of centrally

loaded columns. As a rule, most of the cross sections

of steel columns consist of plate elements. It is possible,

therefore, that even before instability of a column takes

place, the component plates may buckle locally so that a

premature failure of the entire column will occur character­

ized by a distortion of the cross section.

Local buckling may be defined as the bifurcation of

equilibrium of adjacent theoretically flat plates into dis­

torted shapes in their own plane with the lines of inter­

section of the plates remaining straight. The efficient

design of a column requires a cross section with compara-

tively thin plates, and so, local buckling may increase in

significance as steels .of higher yield point are used.

Hence, consideration must be given to the stability of

plate elements so that the most economical cross section

can be designed.

The buckling load of plates is different from the

ultimate load which the plates can carry, as opposed to a

column for which the buckling load has been found to be of

a similar magnitude to the ultimate load for practical

columns. Plates may be able to sustain the buckled state

- 1 -
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with ultimate loads considerably exceeding the buckling

load. However, the difference between buckling and ulti­

mate loads becomes significant only for very thin plates

which,is not the case for plate elements of structural

steel columns. Once buckling occurs in plate elements

of columns, the stiffness for axial compression of the

plates reduces, and this in turn reduces the bending·

rigidity of the column, possibly leading to overall fail­

ure of the- column. Hence, the buckling load of plate ele­

ments or plate assemblies is more important as a guide

for the design of column cross sections than in determin­

ing the ultimate load.

The local buckling of a steel column with thin com­

ponent plates is considered in this report. The development

of the theory of elastic buckling of thin plates is reviewed

in References 7 and 8. Reference 7 includes an approximate

solution of elastic local buckling problems in plate assem­

blies, together with a review of other investigations in

the field. A solution of buckling of the plate assembly

has been obtained by the energy method for elastic columns

having I, Z, channel, and rectangular tube sections (9)(10).

Attempts to extend the theory of plate stabili·ty into

the inelastic range were made by many investigators in the

early 30'5(7)(11)(12). However, a comprehensive theory of

the inelastic buckling of plates has had to await the dev­

elopment of the theory of plasticity.
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There are two main current trends in the development

of inelastic buckling of plates, one based on Hencky's

total strain or deformation theory(13) and the other on

Prandtl-Reuss' incremental theory(14). Bijlaard appears

to have been the first to arrive at satisfactory theoretical

solutions for inelastic buckling theories of plates(15)(16)(17).

His work is the most comprehensive of all available including

those which appeared later. He considered both the incremental

and the total strain theories and concluded that the total

strain theory is correct since it leads to lower inelastic

loads than are obtained from the incremental theory(18).

Ilyushin applied the total strain theory to de~ive the basic
. (19)

differential equation for the straIn-reversal model ,

which was further modified to non-strain-reversal models

by Stowell (20). H dId P t d th · 1 t·an e man an rager presen e e Ine as 1C

buckling theory of plates based on the incremental theory

of plasticity(21). Pearson improved it by using Shanley's

concept(22). The assumptions of these theories are sum­

marized in Table 1.

The total strain theory assumes a one-to-one corres-

pondence between stress and strain in the inelastic range

when the material is under load. The incremental theory,

on the other hand, assumes a one-to-one correspondence

'between the rate of change of stress and the rate of change

of strain. The important basic difference between these

two theories lies in the fact that the st~ess-strain rela-

tionship is independent of the loading history in the total
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strain theory. In the incremental theory, the stress

depends on the manner in which the state of strain is

obtained.

Although many discussions have been made, no defin­

ite conclusion on these theories of plasticity has yet

been made(2l) through (27). It appears logical that the

loading history must playa role, in general. It has

been said, however, that for the special case of the buck-

ling of materials such as aluminum, magnesium, titanium

alloys and high-strength steels, the behavior is similar

to that defined by the total strain theory(27). Test

results have further shown that only the total strain theory

gives good agreement(17)(20)(28)(29)(30). The assumptions

which lead to the best agreement between theory and test

data for the inelastic buckling of aluminum-alloy flat

plates under compression are the stress and strain inten-

sities defined by the octahedral-shear law and the total

strain type stress-strain relationship applied to the plates,

together with Shanley's concept(30). In this report, both

theories are used to determine the stiffness of the yielded

portion of the plates.

The above theoretical studies and the experiments

have been advanced mainly for aluminum plates. The plastic

buckling theory of steel plates were developed in Ref. 31.

In that study, the four independent instantaneous

flexure and shear moduli of an orthotropic plate were
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determined from the test results of the material under

consideration.

The effect of residual stress on the elastic buck-

ling strength of steel plates were studied and presented

in Ref. 32, where a case of center welded plates was

analyzed with the aid of integral equations; it was shown

that the residual stresses could influence the elastic

buckling strength of a plate. The analysis was further

developed into the inelastic range, where it was shown

that integral equations could be used to solve the inelas­

tic buckling problem(29). An analytical solution was

obtained in Ref. 29 for simply supported, fixed and elas­

tically restrained plates at the unloaded edges, together

with a numerical solution for simply supported plates with

a particular distribution of residual stress.

A column cross section consists of a few plate ele-

ments. Since the plate elements are connected to each

other, a complete analysis of local buckling must be made

for the plate assembly as a unit. If an individual analysis

is made for each plate element, the restrictions at the

unloaded edges of each plate must be determined. However,

if such individual analyses are made on plate elements

for several combinations of particular edge condition, such

as: free, simply supported and fixed, the results may be

useful in estimating the overall buckling strength of the

cross section. Hence, the study covered in this report
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includes the analysis of plate elements and the analyses

of plate assemblies.

The local failure of plate elements of a column

is a particular case of plate instability in which the

plates can be considered as simply supported at the two

opposite loading edges on which the distributed thrust

is applied. The other two edges are free of loading and

the supporting conditions would be, in general, either

fixed for translation and elastictical1y restrained for

rotation, or else free. Since exact solutions can be

made for most of th~ cross sections of structural columns,

the following analysis considers only special boundary

conditions at the unloaded edges to obtain buckling solu­

tions for plate elements. These are the combinations of

free, simply supported and fixed at the unloaded edges.

At the two opposite loading edges the boundary con­

ditions for the local buckling of cross sections are the

same as for the plate elements, namely, simply supported.

The boundaries at the other two edges of the plate elements

are either free, when the edge does not meet with the

other plate, or elastically restrained for rotation when

the edge intersects with the other plates. Only rigid

connections, which resemble joints in rolled shapes and

welded intersections, are considered for the intersection.

Particular attention is given to column cross sections of

rectangular box-, H-, channel-, tee-, and angle-shapes.
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When residual stresses exist, the stress in the

-7

plate cannot-be considered as uniform. The plates may

yield, partially, at a certain loading due to the exist-

ence of compressive residual stress; thereafter, the

plate is no longer homogeneous. The tangent modulus

concept is introduced for the buckling in this state of

stress, namely, no str~in reversal is assumed to occur

at the instant of buckling(7).

The anlytical solutions are not feasible, in general,

without a considerable amount o~ effort, consequently,

approximate methods must be considered. The solutions

are obtained by a finite difference approximation of dif-

ferential equations. A digital computer was used to

obtain numerical solutions.
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2. ASSUMPTIONS

In addition to the usual assumptions for the analyses

of thin plates(7)(8) and to the assumption that no strain

reversal takes place at the instant of buckling, the follow­

ing specified conditions are implied in the analyses of

this study:

Specified Conditions

(1) The thrust is at the two opposite edges of the

plate element in the middle plane, when the plate is

simply supported. The strain distribution due to the

thrust is uniform in the direction of the thrust and

changes linearly in the direction perpendicular to the

thrust.

(2) The boundary conditions at the two edges where

no loading 'is applied, are either free, simply supported

or fixed if no plate intersects; the boundary at the inter­

section of component plates is considered as rigidly con­

nected where the line of intersection remains straight.

(3) The plate thickness and material properties are

constant in the same direction as the application of thrust.

(4) The residual stress is present only along the

same directions as the thrust and its magnitude is constant

in that direction.

(5) The wave length of buckling is identical on each

plate element in a buckled plate assembly, and there is

- 8 -
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no phase lag between plates.

Further, the following assumptions are made in

obtaining numerical solutions:

(1) The stress-strain relationship of uniaxially

loaded steel is elastic-perfectly-plastic.

(2) The plate thickness is constant in the plate

element.

(3) The residual 'stress distribution is symmetric

if any symmetri~ axis is present in the plate element

or in the plate assembly.

(4) Poisson's ratio in the elastic range is 0.3.

(5) The residual stress varies linearly inside the

cell; deflections are known at the centers of mesh cells

in the analysis by the finite difference approximation.

Some additional assumptions are necessary with

the progress of the analyses and they will be discussed

when they appear.

The coordinate systems for plate elements and for

plate assemblies are shown in Fig. 1. The coordinate x

is perpendicular to the middle plane of the plate, y is

normal to the thrust in the middle plane and z is the

coordinate parallel to the thrust and to the residual

stress. When a plate assembly is considered, a coordinate

system is set to each plate and they are distinguished

by subscript numbers.
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3. ANAYLSIS OF PLATE BUCKLING

3.1 Stress-Strain Relationship and Basic Differential

Equation

When a buckling problem is analyzed, the relation-

ship between stress and strain must be defined both in

the elastic and inelastic ranges of material. The mo~t

fundamental relationship of stress and strain is that

obtained from a coupon test in uniaxial tension or com-

pression. Figure 2a shows a typical stress-strain rela­

tionship for a strain hardening material. Figure 2b pre­

sents an idealized stress-strain relationship for steel,

that of elastic-perfectly-plastic.

The stress-strain relationship by Bijlaard(15) is

derived under the assumption that plastic deformations

are governed by the elastic shearing energy of the oct­

ahedral type. By subtracting the initial stresses and

strains before buckling from the total stresses and

strains, the relationship between stress components and

strain components due to buckling is obtained(lS) (16) ,

where no strain reversal is considered. Denoting the

normal stress components in the z and y direction by oz
and OJ and shear stress by'--C, for buckling from a state

of uniaxial compression ( ~z' OJ = 0 and L= 0 ) the rela­

tionship is given by the following equations

- 10 -
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(1)

where k1 to k4 are defined as follows by Poisson's ratio}),

tangent modulus Et on the stress-strain curve of the com­

pression coupon at the stress intensity of OZ' and by the

secant modulus E , which is shown in Fig. 2.
5

~(E;;~\
J -r ,-) [:~.)k:= ,~_.__".,l' .. ' - -'---.-' ,...

I ' '2 E)
(5-42Jt-3e) - (/ - 20') ( E_er:

z- Z( I-ZV)(7J)
A~ -- "'~+"'--'.-" .- •• ,'-""--"~--

2 (S-4V+3e ) _ (J-2v5Y~t)

kJ :: 4 ------------. (2)

(S-42Jt-Je)- ()-2))J(-~t)

K~ =: /

4 2 -t-2u+ ~p
'-" --

e -=· E*-l
*_c-

E is the modulus '"'of elasticity, 8crz ' bo-y' and bEz ' bEy are

the stresses and strains due to the buckling of the plate

in the z- and y-directions, respectively. Substitution of

Es = Et = E and e=O into Eq. 2 changes the relationship of

Eq. 1 to that in the elastic domain.

The relationship derived by Ilyushin(19) and by

Stowell(20) with the assumption of Poisson's ratio being

equal to 0.5 even in the elastic domain, can be obtained

by substituting 0= 0.5 into Eq. 2.
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A loss of strain in the strain history, which is

the main assumption of the incremental theory, amounts

only to a neglect of the initial plastic deformation

at the instant of buckling, which is taken into account

by equating e, as defined by Bq. 2 (which is equal to

the ratio of plastic strain to elastic strain, 6 p /Ee )

to zero. Equation 2 then becomes identical with the .ones

derived by Handelman and Prager(2l). With the stress-

strain relationship, the bending and twisting moments,

Mz ' My' and Mzy ' which exist in an element of a slightly

buckled plate are shown by the following equations

(3)

in which I is the moment of inertia of the plate defined

by its thickness t

(4)

The differential equation of equilibrium of an ele­

ment in a slightly bent plate is(8)

Substitution of Eq. 3 into Eq. 5 results in the basic dif­

ferential equation, Eq. 6, which is applicable both in the

(5)
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elastic and in the inelastic domain of the plate.

-13

E .. 6 d· d b B··1 d(15)(16)(17) fquatl0n was er1ve y 1J aar or

a plate. When a plate assembly is considered, an equation

can be set up for each plate el~ment forming the same

number of simultaneous equations as the number of plate

elements.

3.2 General Approach

The equation governing plate buckling is a fourth

order partial differential equation with variable coef-

ficients, as seen in Eq. 6, where the stress oz is a

function of the residual strain distribution and the

strain distribution due to thrust. Both of these strains

are assumed to be constant along the z-direction; .however,

both of them change their intensities in the direction

perpendicular to the thrust in the middle plane of the

plate, and consequently, the stress intensity is a function

of the coordinate y. Since k
1

through k
4

are functions of

strain intensities, they are also variables in the y-direc­

tion and thus, functions of the coordinate y.
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i = 1, 2, 3,and 4

-14

(7)

The distribution of strains due to thrust in the

column cross section can be approximated by a simple

function for practical purposes, such that the distribu­

tion along the coordinate y is uniform or changes lin­

early. The distribution of residual strain varies

considerably as presented in Refs. 4, 6, 33, 34, and 35.

Hence, idealization could be made in several ways for

analysis, such as those of a triangular or parabolic

distribution or a combination of broken straight lines.

It would be evident, therefore, that a rigorous solution

of the present problem is a quite difficult task.

Several approximate methods to obtain an eigenvalue

have been developed for the cases where exact solutions

are not obtainable or for the cases where they are quite

difficult to obtain. They are summarized and discussed

in Refs. 7 and 8. Among the methods, the finite differ­

ence method wit~ the help of a high speed computer ~ffords

a powerful tool for the solution of the many problems

involving ordinary and partial differential equation.

The method has first been suggested by Richardson(36) for

the determination of the eigenvalue, investigated independ­

ently by Collatz(37) and it was presented in a very broad

and clear manner by Salvadori(38) (39) with examples of the

buckling of columns and plates.
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The governing equation can be solved as it is by the

finite difference method; however, if the deflected

shape can be expressed as a product function of which

one term is a simple known function, the problem can

be reduced to an ordinary differential eq~ation. The

solution of the ,ordinary differential equation by the

finite difference method is obtained much simpler and

with less involved numerical computations. In the sub­

sequent analysis, the deflected shape of the plate is

assumed by the following product function which satisfies

the boundary conditions at the loading edges

w = Y sin tK' z (8)

where Y is a function of the coordinate y alone and p is

the number of half waves in the z-direction. This assumed

shape is known to be the exact deflected shape for an

elastic plate free of residual stress and the shape has

been presumed as satisfactory by many investigators(l5)

(19)(20)(21) for the plastic-buckling of a plate. It is

known that the lowest buckling stress can be obtained by

considering a plate buckling into a half wave in the z­

direction; thus, it is necessary to consider only p equal

to 1. Substituting Eq. 8 into Eq. 6, the basic differential

equation can be shown finally in the following form, where

the equation is divided by a constant 10
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(9)

3.3 Differential Equation and Boundary Conditions· in

Finite Differences

A finite difference analogue of a differential

equation can be obtained directly from the given differ­

ential equation by replacing the derivatives with differ­

ence quotients. When the coefficients of the differential

equation are not constant, average values replace the

variable coefficients for the cells. It is necessary

also to express the boundary conditions by finite differ-

ences in solving the difference equations.

The quotients which are used in the subsequent

analysis can be found in most of the literature on num­

erical analysis, as, for example, in Refs. 38,· 39, and 40.

The first order central difference quotients are employed

throughout the following analyses since the first order

equations are easier to use than the higher order equations

and the central differences are more accurate compared

with backward or forward difference, and are particularly

useful in the solution of boundary value problerns(39).

The basic difference equation for an evenly spaced
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mesh is derived by replacing the derivatives of Eq. 9

by the corresponding difference quotients. Thus, the

equation at a mesh point is derived as follows showing

the relationship of the deflections at five nearby

mesh points

C1,? Yt+-Z + C2, i Yt'+1 + (CJ1i- C6"i)~' (10)

+ C4 ) -l Y-L-1 + C:s; i Y(-1 + C:J,2' Yt'-z = 0

where subscript i of the coefficients G shows that

it is for the equation at mesh point i and subscript to

the function Y denotes the deflection at the points.

These are shown in Fig.3a. The coefficients are defined

as :
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where r is the distance between mesh cells. In the above

definitions, the subscripts indicate that the coefficients

with subscripts are the average values at the mesh points

or at the middle of the mesh points. If the properties

are not given at the middle of the mesh points, they have

to be approximated from the properties of the neighboring

mesh ·points.

It is noted that the k's are a function of loading
2 2 2 .

and residual strains and that the term ~r /L is a func-

tion of the aspect ratio of the plate and width of mesh

points; thus C
6

. is the only term including the width­
,1

thickness ratio. Noting that the width of the mesh points

is equal to the plate width b divided by the number of

cells, n, the term is rewritten

(12)

The last term is the square of the non-dimensionalized

width-thickness ratio, ~..

(13)

Introducing a new coefficient C., defined as
1

(14)
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the difference equation is written as

-19

(15)

When the spacing is not equal as shown in Fig. 3b,

the coefficients of the difference equations are different

from Eq. 11 at mesh points, i+l, i and i-I. They are sum-

marized in Appendix A.

Boundary Conditions

It is customary and convenient to end the plate on

a mesh point (an "integer" station) or at the middle of

mesh points (a "half-integer" station).

The boundary conditions for fixed, simply supported

and free ends and at a point of symmetry are similarly

obtained by replacing the expression~ of boundary condi­

tions by finite difference quotients and are summarized

below. It is assumed that the plate thickness is constant

near the boundaries. For boundaries on an integer station, i:
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(18)

where k . and k3 · or k2 i l' and k3 · 1 are the,2,1+1 ,1+1 , - ,1- ,

material properties outside the plate and, consequently,

they must be assumed by the values within the plate.

Linear extrapolation may be used, thus

1rz,7.+1 = 2112 ,7' - Irz l i-l

(4) At point of symmetry

(19)

Yi+2 = Yi-z (20)

For boundaries on a half-integer station i '+ 1/2.

(1) Fixed

(2) Simply supported

(21)

Yft-Z == - 'Ii-/
(22)
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(3) Free

-21

(4) At point of symmetry

(23)

(24 )

The boundary conditions at the intersection of

plates and compatibility of slope and ~quilibrium of

moment can be obtained in finite difference forms by

replacing the derivatives in their e~pressions. However,

instead of simply transferring the conditions for the

differential equation into the difference forms, a

different approach can be made. Consider the folded

plate as if it is a continuous plate simply supported

at the intersection. Then the whole plate can 'be solved

as a single plate with such internal restraints that the

deflections are zero at the intersections. The zero
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deflection implies that the lateral force is in equilibrium

with the reaction at the point, regardless of its value.

The basic difference equation at a mesh point is the

equilibrium equation of lateral force; zero deflection,

in turn, implies that no difference equation is to be

considered at the point. Thus, if an angle cross section

is considered as shown in Fig. 4 as an example, the dif­

ference equations are set up at all mesh points except

at point 6, and consequently the problem results in 9 sim­

ultaneous equations with proper boundary conditions at

edges I and 10.

The difference equations at mesh points 4, 5, 7,

and 8 become those as follows, since the deflection Y

is equal to zero at mesh point 6.

cL4~ -t G4 r:; -r ~/4' '6 -t- (!~~4 "(:'" ('4.')"2r:. at mesh .point 4

(75 'r7 .' ••.<-~ 'Y':.... \ ...." -f /-1 \'l~/ -r? .~/ \-/ at mesh point 5
! ~ '<: r • J- -t-~4 S i' C Ij' t- J . '-5/; i ....v'-..,) I ~.: 1--.) ~

l/,71+~ 7Y; +-0- 7 'ri c: ~/ 7)/ at mesh point 7-r 5: 7 S ~~. ~7)J 7" (25)

G,l?~~ +-t;,'?''1 +(r,~)~ -t-(4, d'7 = Cj-17.'T3 at mesh point 8

When tee- and H-sections are considered, three plates inter-

sect at a point. In this case, consider half of a flange,

of which the flexural rigidity and the thickness are twice

as large as actual, because of the symmetry of the shape.

Then, the analysis is the same as for an intersection where

only two plates intersect.
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Averaging

When local buckling of columns is considered, the

stress intensity in the component plates is not uniform.

This is partially due to the existence of residual stress

and partly due to the nonuniform external thrust, which

arises due to the bending of the column prior to loc·al

buckling. The finite difference method of solving dif­

ferential equations can be interpreted as solving a dis­

crete physical system whose properties are uniform within

the unit and whose response approximates that of continuous

plates'. New assumptions must be made concerning this

averaging.

It is assumed that the eigenvalue of the set of

basic difference equations, Eq. 15, is proportional to

the coefficient, Ci 2, which includes the term to be deter­

mined, and proportional to the reciprocal of the other

coefficients. This is an assumption extended by a know­

ledge of the buckling of uniform columns where the dif-

ferential equation is

EI d4u dlu
= 0 (26)

dz4 + ACJ;l' dzl

and the eigenvalue is shown(8) to be proportional to

ACT lEI, where cr is the term to be determined.
cr cr
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Based on the above assumption, the averaging of

the stress and material and geometric properties is

accomplished as follows:

(27)

The above averaging method for stress intensity and

flexural rigidity follows from the physical meaning of

them. The averaging method of the k's is not straight­

forward, however; they are constant in the elastic range

and even in the inelastic range where they are variable.

No significant difference of numerical value is possible

from their definition. Thus, the method of averaging

for these variables may not be important. This assumption

can be justified from the fact that it is made in order

to obtain accurate results as far as possible with the

smallest amount of labor, and from the fact -that, if a

closer mesh is used, the averaging method will lose its

significance for engineering problems.
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4. PROCEDURE OF NUMERICAL COMPUTATION

For the buckling analysis of a partially yielded

plate, the distribution of stress and the stiffness of

the material are a function of the loading and of the

resi'dual stress distribution so that it is easier to'

solve for a critical width-thickness ratio under a

known loading rather than for a critical load on a

plate with known geometry.

4.1 Formation of Matrix Equation

The geometric shape of a plate or a plate assembly

must be fixed, for which the analysis will be made.

Since the analysis is made for the critical width­

thickness ratio under a given strain and consequently

under a given loading, the thickness of the plate is

yet to be determined. When a plate assembly is considered

it is necessary that the relationship of the thickness

among plate elements is given so that when a width­

thickness ratio of an element is determined, the rest

will be determined automatically. Then specifying the

number of mesh points and giving the magnitude of residual

strains and strains due to thrust at the edges of the

plates and at all edges of the mesh cells, the concen­

trated stress intensity may be computed at each mesh

point, as well as the average moduli of the plates (k}

through k4), and rigidity, I, at each mesh cell and the

loading, of which details are given in Appendix B. With

- 25 -
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rna t r 1
- x -t · ( 39) (41) (42) (4 3)equa 10n .

-27

Preference is given to

a method which leads to accurate results with the least

amount of computation. Two procedures are considered;

atrial method with which one seeks to find X by trial

and error, substituting a guessed value into Eq. 29 and

evaluating the determinant; and an iterative method

which converges to the largest eigenvalue and at the same

time gives. the corresponding eigenvector when the form

of the matrix equation is as follows,

(30)

where H is a square matrix. It is necessary to change

Eq. 29 into the above form prior to applying the iterative

method. Computing the inverse of the-A-matrix and mult­

iplying it on both sides of the equation, Eq. 28 becomes

as follows.

(31)

Considering (A- l m) as fl, it is obvious that the procedure
I .

results in the largest root of jfand consequently in the

smallest value of JL2 and the corresponding eigenvector.

A brief comparison of the two methods for this particular

problem are given in Appendix C.

4.3 Plate Buckling Curve

The critical width-thickness ratio is a function of

the aspect ratio of the plate as well as of the loading,
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when the mechanical properties, width of the plate and

residual stress distribution are fixed. Usually the

structural column is long enough, so that local buckling

takes place in such wave lengths that the aspect ratio

of the buckled plate in half wave lengths corresponds

to the ratio which giveS the minimum width-thickness ratio(7).

Repeating the analysis described in the previous

article for different lengt~s of the plate, the relation­

ship between the width-thickness ratio and the aspect

ratio under a constant loading is obtained, from which

the minimum width-thickness ratio and the corresponding

aspect ratio and thus the half wave length of local buck-

ling, are determined. The computational schemes are given

in Fig. 5 for both the iterative and the trial methods,

to obtain the relationship between aspect ratio and width­

thickness ratio. Although it is possible to determine the

minimum width-thickness ratio and the corresponding aspect

ratio by plotting the results, an additional scheme is

considered in such a way that the computer seeks the aspect

ratio and determines the minimum width-thickness ratio.

Repeating the computation on several different loadings,

the results can be plotted as they are for the plate buck-

ling curves of stress versus the minimum critical width­

thickness ratio relationship.

It is well known that when only the length of a

buckling plate is changed, the corresponding critical

width-thickness ratio is infinite for the infinitesimally
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short plate, then it will decrease and reach the minimum

value for a certain length which is sought, thereafter

it will increase monotonically with the increasing length. (7)

As a special case of the curves, a plate simply supp~rted

and free at the unloaded edges has no minimum width-thick-

ness ratio, instead it decreases monotonically with increase

of the length and is asymptotic to the extreme value.(7)

The local buckling of plate assemblies responds to the

change of the local buckling length in a man'ner simi lar

to that of the buckling of a plate element. Any relation­

ship which resembles the above relationship can be used

to seek the aspect ratio numerically. The following rela­

tionship between the width-thickness ratio and the aspect

ratio may be assumed for numerical computation.

(32)

where C
l

' CZ' and C
3

are constants. Knowing three points

which are on the A versus LIb curve, the constant can be

determined. Then the aspect ratio, for which A is the

minimum, can be obtained by differentiating A with respect

to Lib and equating it to zero. Thus,

and the aspect ratio sought is obtained from

L 4 1C
J

----- - 1h-=-d-b - VC2

(33)

( 34)
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The known three points are

- 30

and finally, the aspect ratio is computed from

(35)

With this aspect ratio, the corresponding width-thickness

ratio which must be compared with the known values of

~ l' A2' and.;\ 3' may be computed. Since the re la tionship

of Eq. 32 may be close to the actual relationship (but

not exactly true) and also due to the error involved in

numerical computation, several trials are necessary to

find out the true value of the aspect ratio and thus the

minimum critical width-thickness ratio. The scheme for

this procedure is shown in Fig. 6 with the iterative

method of finding the eigenvalue.
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s. NUMERICAL RESULTS

In Chapter 2, the material properties are specified

to resemble steel so that the following numerical results

are applicable only to steel plates.

The effect of residual stress on the buckling

strength of the plates is the main purpose of this study.

Idealized patterns of residual stress distributions are

considered as shown in Fig. 7. The triangular distribu­

tion as shown in Figs. 7a and 7b resembles the patterns

found in the flange and web on rolled wide-flange shapes

in which the magnitudes of the maximum compressive and

tensile residual stresses are assumed to be the same.

The patterns shown in Figs. 7c and 7d·resemble the patterns

found in welded built-up shapes. The tensile residual

stress of the weld is assumed to be equal to the yield

stress of the parent material at the weld. (The tensile

residual stresses.at the weld in actual welded plates are

higher than the yield stress of the parent material for

plates of structural carbon steel(33)(34) and they are
(35)

lower for plates of constructional alloy steel . How-

ever, the tensile residual stress is distributed over

only a small fraction of total area. of the plates and the

effect of the difference may be neglected.) The pattern

of real residual stress distribution in rolled heat-

treated shapes of T-l' steel is the closest to those of

Figs. 7a and 7b among rolled shapes of structural steels(4)(44).

-31 -
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The distributions of Figs. 7c and 7d are very close to

the pattern found in welded T-l plates. (35)

An error is inherent in finite difference solutions

when the method is used as an approximate method for

problems governed by a differential equation. In a

engineering problem, it is not essential to have a solu­

tion of great accuracy. Instead, the aim was that the

errors in the numerical results would not exceed two

percent in any case; in most cases they were less than

one percent. Somewhat generalized and detailed analyses

and discussions of the errors of this particular problem

are given in Ref. 45, on which this report is based.

5.1 Aspect Ratio and Critical Width-Thickness Ratio Relationship

It is important for "the analysis of local buckling

to find the minimum critical width-thickness ratio which

is obtained when a plate of a particular aspect ratio is

analyzed. Figure 8 shows the variation of the width­

thickness ratio for the change of the aspec~ ratio of a

buckling plate simply supported at the unloaded edges.

Figure Sa is for a plate without residual stress, in

which the minimum width-thickness ratio occurs at the

aspect ratio of 1.0 for elastic buckling and at the aspect

ratio of 0.7 for plastic buckling. A sudden jump of the

aspect ratio, at which the width-thickness ratio is a

nimimum, is noted between the elastic buckling and plastic

buckling. This is because of an abrupt change of material
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properties due to yielding of the material. A similar

relationship for plates with residual stress distribu­

tion of welding type and cooling type are shown in

Figs. 8b and Bc, respectively. The relationship for

elastic buckling and plastic buckling are similar to

those of plates free of residual stress. The sudden'

jump of the aspect ratio is observed between elastic

buckling and elastic-'ptastic buckling of a plate wi th

welding type residual stresses; the aspect ratio changes

gradually with the increase of critical strain and

approaches the value for plastic buck'ling. The jump is

due again to the abrupt yielding over the large portion

of the area of the plate. Since no abrupt yielding

takes place in a plate with cooling type residual stresses,

the change of the aspect ratio for the minimum critical

width-thickness ratio is gradual from the value of elastic

buckling to that of plastic buckling with increase of

the critical strains.

The relationships between the critical width-thick­

ness ratio and the· aspect ratio for plates fixed at both

of the unloaded edges and for plates fixed and free is

similar to the relationship for simply supported plates.

Figures 9 and 10 show the relations~ip for these plates.

A plate simply supported and free at the unloaded edges

does not have a mimumurn critical width-thickness ratio;

instead, there is an asymptote to a limiting value with

increase of the aspect ratio of the buckling plate, as
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shown in Fig. 11.

It should be noted that the above figures are

results based on the total strain theory of plasticity.

The incremental theory of plasticity results in a rela­

tionship similar to these figures for elastic-plastic

buckling and in an identical relationship for plastic

buckling with the plates free of residual stress and

buckled right at the completion of full yielding.

5.2 Plate Buckling Curve

The minimum critical width-thickness ratio is a

function of the critical strain and in turn a function

of the critical stress, and hence the ratio is deter­

mined for a given critical strain or for a given stress.

The relationship between the critical stress and the

minimum critical width-thickness ratio was computed for

plates with residual stresses. The residual stress pat­

terns of Figs. 7b and 7d are assumed for plates both

simply supported and fixed at the unloaded edges so as

to resemble the component plates of box-se~tion and web

plates for wide-flange and channel-sections. Half of

the residual stress patterns of Figs. 7a and 7c are

assumed for plates free at one unloaded edge and fixed

and' simply supported at the at,her edge so as to resemble

outstanding flanges of column cross sections. The com­

plete results are shown in Figs. 12 through 15, where

the figures are for the ratio of average critical stress

to the static yield stress versus 't"he non-dimensionalized
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width-thickness ratio. The results are based on the

total strain theory of plasticity unless otherwise

noted.

The assumed residual stress patterns reduce the

buckling strength in all cases considered. The reduction

in the elastic buckling strength is rather constant for

a residual stress pattern regardless of the width-thick­

ness ratio of the plate', while the reduction in elastic­

plastic buckling depends largely on the width-thickness

ratio. The sudden jump of the plate buckling curve for

plates with welding type residual stress is due to the

penetration of yielding over a large portion of area at

the same instant.

A critical value of width-thickness ratio exists

in all cases considered; plates with width-thickness

ratio less than this critical value sustain full yield­

ing loads. The critical value depends on the magnitude

of residual stress for the assumed residual stress dis­

tribution of the cooling type, whereas it is constant for

practical purposes for the assumed residual stress pat­

terns of the welding type.

5.3 Reduction Factor of Width-Thickness Ratio

Of practical interest in designing the component

plates of columns is the width-thickness ratio with

which the maximum load of a column can be sustained

without any local failure; or, stated differently to

find the ratio for which no local instability takes
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(36)

place until the yield load of the cross section is

reached. For this purpose, a reduction factor of the

width-thickness ratio is introduced, which incorporates

all effects due to the existence of residual stress.

The critical width-thickness ratio of a plate with

residual stresses can be expressed as follows with a

reduction factor R and with the width-thickness ratio

of the same plate free of residual stress

(l~\ b',
.. 'f~; = P-(-t- )cry-·'D

where the subscript ~r refers to the width-thickness

ratio for a plate with residual stress and the sub-

script () = 0 refers to a plate free' of residual stress.
r

Multiplying both sides ofEq. 36 with a factor .;r;; the

non-dirnensionalized relationship was obtained as follows

(37)

The reduction factors were obtained from the plate

buckling curves, Figs. 12 through 15, for critical stresses

of 90, 95, and 100 percent of yield stress and they are

plotted against the maximum magnitude of compressive resi­

dU~l stress in Figs. 16 through 19.

5.4 Numerical Results For Column Sections

Numerical results of the local buckling analysis

on column cross sections can be obtained in a form similar

to the plate buckling curve. However, the fact that there
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(36)

place until the yield load of the cross section is

reached. For this purpose, a reduction factor of the

width-thickness ratio is introduced, which incorporates

all effects due to the existence of residual stress.

The critical width-thickness ratio of a plate with

residual stresses can be expressed as follows with a

reduction factor R and with the width-thickness ratio

of the same plate free of residual stress

( fJ\ b"
-I :-- = P-(j--) ~, ., Ivy '..J err c

where the subscript ~r refers to the width-thickness

ratio for a plate with residual stress and the sub­

script () = 0 refers to a plate free' of residual stress.
r

Multiplying both sides of 'Eq. 36 with a factor ~ the

non-dimensionalized relationship was obtained as follows

(37)

The reduction factors were obtained from the plate

buckling curves, Figs. 12 through 15, for critical stresses

of 90, 95, and 100 percent of yield stress and they are

plotted against the maximum magnitude of compressive resi­

dU~l stress in Figs. 16 through 19.

5.4 Numerical Results For Column Sections

Numerical results of the local buckling analysis

on column cross 'sections can be obtained in a form similar

to the plate buckling curve. However, the fact that there
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(38)

are so many factors such as geometric shape, residual

stress distribution and the stress at which the section

buckles, on which the critical width-thickness ratio

depends, makes it quite difficult to prepare curves which

cover a wide variety of column cross sections with vari-

ous 'patterns of residual stress distributions. Instead,

numerical results were obtained for a few cases to illus-

trate the effect of res'idual stresses. Box- and H- sections

were selected with idealized residual stress patterns of

the welding type as shown in Figs. 20, and 21. The assumed

patterns are more severe for local buckling strength than

the residual stress distribution found in medium size welded

It **built-up shapes of T-l steel and are somewhat conserva-

tive when compared to those found in similar shapes of

structural carbon steel. Thus, the patterns are not intended

to predict the strength of any real column, but are only

for demonstration and comparison purposes.

The analysis is made such that the minimum critical

width-thickness ratio of the flange plate is obtained as

a solution in non-dimensionalized form, with the given

ratio between the widths of the web and the flange, bw/bf

and with the given ratio between the thicknesses, tw/tf,

A = k£.(W
f tf E

* "Medium size section" denotes in this study a cross section
of which the component plates are roughly 6 to 12 inches
in width and 1/4 to 1 inch in thickness.

** T-l steel meets the requirements of ASTM AS14 and/or
AS17 steel.



290.11 -37

(38)

are so many factors such as geometric shape, residual

stress distribution and the stress at which the section

buckles, on which the critical width-thickness ratio

depends, makes it quite difficult to prepare curves which

cover a wide variety of column cross sections with vari-

ous patterns of residual stress distributions. Instead,

numerical results were obtained for a few cases to i11u5-

trate the effect of res'idual stresses. Box- and H- sections

were selected with idealized residual stress patterns of

the welding type as shown in Figs. 20, and 21. The assumed

patterns are more severe for local buckling strength than

the residual stress distribution found in medium size welded

* **built-up shapes of T-l steel and are somewhat conserva-

tive when compared to those found in similar shapes of

structural carbon steel. Thus, the patterns are not intended

to predict the strength of any real column, but are only

for demonstration and comparison purposes.

The analysis is made such that the minimum critical

width-thickness ratio of the flange plate is obtained as

a solution in non-dimensionalized form, with the given

ratio between the widths of the web and the flange, bwlbf

and with the given ratio between the thicknesses, twltf,

A = kP./W
f t f E

" "Medium size section" denotes in this study a cross section
of which the component plates are roughly 6 to 12 inches
in width and 1/4 to 1 inch in thickness.

** T-l steel meets the requirements of ASTM A514 and/or
AS17 steel.
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where subscripts wand f denote the values for web and

flange plates, respectively. The critical width-thick-

ness ratio of the web may be of interest in some cases;

it is obtained from Eq. 39.

(39)

The results are obtained in the same form as the

plate buckling curve demonstrated in Fig. 20 for a box­

section. The reduction of buckling strength due to the

presence of residual stress is similar to that found

for the buckling of plates with residual stress. The

reduction factors can be obtained similarly as for plates

from the curve of critical stress versus width-thickness

ratio. Figure 21 shows the' reduction factors for a

limited number of sections such that the sections ctn-

taining the assumed residual stresses remain stable until

the yield load is reached.

Since the critical width-thickness ratio can be

obtained without much difficulty for column cross sections

free of residual stress, or found even in the literature(9)(lO)

tabulated for most of the practical column cross sections,

the reduction factor makes it possible to determine the

critical width-thickness ratio of column cross sections

containing residual stress with a simple mUltiplication.
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6. COMPARISON WITH TEST RESULTS

A series of two welded square box-columns of T-l

steel were tested. The section was selected to simulate

the plates simply supported at the unloaded edges. The

lengths of the test columns were chosen such that column

buckling could not occur (upper limit), and at the same

time, such that the end" disturbances would not affect

the plate buckling behavior of the test section as well

as the distribution of residual stresses (lower limit).

The width-thickness ratios of the specimens were selected

such that the critical loads were reached in both the

elastic range and in the elastic-plastic range. Two

identical specimens were cut from a long fabricated piece

for both shapes, thus a total number of four specimens

were tested. Table 2 shows the detail of the specimens.

Prior to the buckling tests, tensile coupon tests

and residual stress measurements were carried out. The

static yield stress had average values of

116 ksi for specimens T-IA and T-lB and

104 ksi for specimens T-2A and T-2B.

Figure 22 shows the distribution of residual stresses

in the specimens, from which the fo~lowing average values

of non-dimensionalized compressive residual stresses were

obtained.

<!i-c
- =try

0.12 in specimens T-IA and T-IB and

0.16 in specimens T-2A and T-2B.

- 39 -
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Local buckling tests were made under the "as-placed"

condition in an 800 kips mechanical type testing machine.

The deflection was measured at the center of the width

of each side plate at short intervals along the length.

The detail of the experiments have been described in Ref.46.

The critical stresses were determined by the so

called "top of the knee method,,(47) from the load-deflection

relationship of the test specimens. Test results are sum­

marized in Table 3 and compared with theoretical predictions

in Fig. 23.

The specirnen~ T-IA and T-IB, which buckled in the

elastic region, showed good agreement with the prediction,

(with a slightly lower stress). Two theoretical predictions

were made for specimens T-2A and T-2B, which buckled in

the elastic-plastic range; one based on the total strain

theory of plasticity and the other based on the incremental

theory. The incremental theory predicted no buckling until

the specimen reached the yield load, whereas the total

strain theory predicted 92% of the yield load. Although

both predictions were for loads higher than' the tes t resul ts ,

the difference is very small for the prediction of the

total strain theory. It can be concluded, therefore, that

the experiments correlated with the theoretical prediction

of elastic and elastic-plastic buckling of steel plates

with residual stresses, except for the prediction based

on the incremental theory. The lack of correlation of

the incremental theory was expected from the results of
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experimental studies on aluminum-alloy plates(17)(20)(23)(30).

The test results of both critical stress and ulti-

mate strength are also plotted on the plate buckling curve

in Fig. 24, together with the results of similar test on

A7 square tubes cited from Ref. 29. The non-dimensionalized

comparison of test results in Fig. 24 shows that the\welded

T-I plates are stronger than the similar plates of A7 steel.

The result was expected from the study on residual stresses

and the similar conclusion was obtained in comparison of

T-l and A7 welded columns (48) .

The specimens T-IA and T-IB buckled in the elastic

range and showed significant post-buckling strength as

seen in Fig. 24. On the other hand, T-2A and T-2B buckled

in the elastic-plastic range had a relatively small reserve

of post-buckling strength.
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7. SUMMARY AND CONCLUSIONS

This report has presented the plate buckling

strength as well as the local buckling strength of column

sections, both containing residual stresses and loaded

into the inelastic range of the material. Since the coef­

ficients of the basic differential equation governing

plate buckling are variables, it is quite difficult to

obtain rigorous solutions. Instead, solutions are obtained

on the basis of a finite difference approximation of the

differential equation.

The numerical results for plates of various edge

conditions are presented in plate buckling curves of non­

dimeasionalized stress against non-dimensionalized width­

thickness ratio, from which reduction factors of width­

thickness ratio due to the presence of residual stress

are plotted at several stress levels.

The numerical results of local buckling strength

were obtained for a few cases.

A series of four welded built-up reet'angular tubes

of "T-l" constructional alloy steel have been tested to

substantiate the theoretical results.

The following conclusions may be drawn from this

study 'for both plate buckling and the local buckling of

columns:

(1) The finite difference approximation of the

differential equation was found to be quite powerful in

obtaining the eigenvalue of the basic differential equation

- 42 -
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governing plate buckling.

(2) The elastic buckling strength depends largely

on the magnitude and distribution of residual stresses.

(3) The effect of residual stresses on the elastic­

plastic buckling depends greatly on the width-thickness

ratio of the plates.

(4) A critical value of width-thickness ratio exists;

plates with width-thickriess ratio less than this critical

value sustain the full yielding load.

(5) The incremental theory of plasticity predicts

a much higher critical width-thickness ratio (and conse­

quently a much higher critical stress) than the total

strain theory.

(6) The comparison with the tests shows correlation

between the theoretical results and the test results; for

elastic-plastic buckling, the theoretical results based

on the total strain theory gives good correlation with the

experimental results, but the results based on the incre­

mental theory predict a much higher critical stress.

(7) Comparison of experiments on welded square tubes

shows that the tubes of T-I steel are stronger for local

buckling than those of A7 steel when compared on a non­

dimensionalized basis.

(8) The square tubes buckled in the elastic range

showed a significant post-buckling strength, while the

tubes buckled in the elastic-plastic range"had a relatively

small reserve of post buckling strength.
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9. NOMENCLATURE

fA

lB

b

square matrix

square matrix

width of a plate

Cl ,C
Z

,C
3

,C 4 constant coefficients
,

C1,i to C6 i'C. C. coefficients to appear in basic difference
, 1., 1

equation at mesh point i

E modulus of elasticity, error

Es secant modulus of elasticity

Et tangent modulus of elasticity

e E/E - 1, a subscript to show exact solution
s

I moment of inertia

I a constant value of moment of inertia
o

i a sequence number used as a subscript

k
l

to k4 coefficients relating to stress-strain relationship

M moment

MY bending moment per unit length along a line parallel

to z-axis

M bending moment per unit length along a line parallel
z

to y-axis

OM
zy

n

P

R

twisting moment per unit length, Mzy = -Myz

number of mesh cells in width of a plate, number of

plate elements to meet at an intersection

number of half waves in the z-direction

reduction factor of width-thickness ratio

- 45 -
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r

t

w

~

y

x,y',z

JV
S

Ccr

c r

~

Cy

Ez

A

-46

width of mesh points

thickness of a component plate

deflection of a plate

eigenvector (column matrix)

a function of Y

cartesian coordinates

shear strain

an operational notation indicating a small value

strain at buckling load

residual strain

yield strain

normal strain component parallel to y-axis

normal strain component parallel to z-axis

non-dimensionalized slenderness ratio, non-dimensionalized

width-thickness ratio

~ ratio of width for unevenly spaced mesh

l) Poisson's Ratio

~ buckling stress
cr
~ residual stress

r

0- compressive residual stress at the flange tips
rc
~ tensile residual stress at the center of the flange
rt

cry static yield stress

a- normal stress component p~ral1el to z-axis
z

Ir shear stress
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10. APPEND ICE S
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APPENDIX A: COEFFICIENTS OF THE BASIC DIFFERENCE

EQUATION FOR UNEQUAL SPACING

This appendix compliments the coefficients of

basic difference equation, Eq. 15 for an unevenly spaced

mesh. The following equations replace the coefficients

defined by Eq. 11 for an evenly spaced mesh at mesh.

point i-I, and i+l in Fig. 3b.

1. AT MESH POINT j = i+l IN FIG. 3b

- 48 -
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I - 1 I - + 7[ Zell: r) 2 •C4 - = 2j-l -l.:.... k3 ,j-1 + 2 ~ k
, J 10 10 3,j L2

I - I - I j - 1 / 2
k4 ,j-1/Z).(~ kz · + -1 k + 4

10 ,J -1 10 2,j 10

= 2jJ.2
1+(\

C. = 127(2 (~ \
2

• (o-z! j )
J n 4 L ) rry

(A. I)

2. AT MESH POINT i IN FIG.3b

1 1-+1
C 1 k 3 - 1

1, i ::a )-12 ~ ,1+

[2( ) 1_+1 II-
__ 1 1+~ 1 + 4 k

C2 ,i ~-(1-+?-·-) )-'f ~ k 3 ,i+1 1
0

3,i

+ lC.2r 2 (I i +1 k Ii Ii+1/Z \]
---2- -1--- 2 i+l + ~ k 2 i + 4 I k4 ,i+l/Z)

L 0' 0' 0

I- 11-
-1- k 3 ,i-1

o

= ~ I i +1 k 4 Ii
)-lZ 1

0
3,i+1 + }1 ~ k 3 ,i +

C4 - =
,1

C
3,i
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Cs ·,1

c.
1

CA.2)

3. AT MESH POINT j = i-I IN FIG. :sb

1 1.+1
C1 ,j - )A (l'jl'{) ~ k 3 ,j+l

C = 2 I j +1 k + 2 ~ k
3

.
2,j )A 1 0 3,j+1 1

0
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0
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10 1,j

I - 1 I -
C

4
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I. 1
Cs · --J...:-:!:..= I k3 ,j-l, J 0

c. = 12;2 (~)2 (o-~j) (A.3)
J n
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APPENDIX B: DETERMINATION OF COEFFICIENTS OF

THE DIFFERENCE EQUATION

Appendix B substantiates the equations in computing

the coefficients of finite difference equations as des­

cribed in Art. 4.1.

The strain distribution due to external thrust under

which the plate will buckle is specified. The external

thrust and the width-thickness ratio of the plate are

computed under this external strain distribution. The

residual strains as well as the external strains are

given at the edges of mesh cells and at the edges of the

plate elements and they are assumed to change linearly

inside a mesh cell. As seen in Figs. 25a and 25b, the

number of necessary data for a plate with n mesh points

is n+1, when the plate ends on half-integer stations.

Similarly, for a cross section as seen in Fig. 25c, n+3

data are necessary for n mesh points.

Consider the i-th cell and compute the moduli and

the thrust acting on the mesh cell. The strains at both

edges of the cell are

E· 1 =E" · . + E · 11- r,1-1 cr,1- e. =e · +~cr i1 ·r,1 ,
(B .1)

where e:'cr and S denote strain due to external load and

residual strain, resp~ctively" and the subscripts i-I and i

- 52 -
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show the strains at the edges of i-th segments as shown

in Fig. 25. When the strains exceed the yield strain,

a function of strain, e, is defined at both edges (by

the total strain theory) by

where ~y is the yield strain. The average thrust at the

i-th mesh cell as well as the coefficients k
I

through k 4
are obtained by the following equations depending on the

~i-l
e ' = ------- - 1
i-I ey

strains at ~he edges

(B.2)

(1)

( oz) = 1
OYi

1 1

5- 4 U + 3e. 5 - 4 ).) + 3e. 1
1 1-

k I i = 5 - 4 JJ + 3e. I

' In ( 5 - 4 Y + 3e ~ - )
1

k = 2k
2,i 1

k = 4k l3,i

(B.3)

k 4 · =
,1

1 1----
2+2V+3e. 2+2~+3e

1 i-I

In (2+2J>+3e i _I)

\: 2+21)+ 3e .
1
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(~)

( oz)~ 1 - 0.5
cry 1

2
(1 - Ci-l)

ei -ei-l

I-E. 1
'1-

2
( I-J) )6i -ci -1

1
~

I 5-4V )
In\ 5 - 4)) +3e i

/ S-4J.J \
In\S-4Y+3e

i
")

1 (S-4D :\
n \S _4)) + 3e i )

(B.4)

1
- S-4P

=k4 ·
,1

l-e
i

_
1

E
i

-
1

+ (2+22.». £ i-ei-l'Ei--6"i-l
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( 3)

-55

The equations are the same as Eq. B. 4 if~. and e.
1. l.

are interchanged with Ei - l and e i - l , respectively.

(4)

k1 ·
1=

1- ))2,1.

k z ·
D

=
l-l1,1 (B.5)

1
k 3 · =

1_))2,1

k 4 ·
1

= --
,1 2(1+1))

The averaging at cells 0 and n in Figs. 25b and 2Sc

must be made with the values at the edges of the plate

and those at the edge of the cells. Similarly, the averaging

at the intersection j in Fig. 25c must be made with quan­

tities at three points j-l, j and j.

Since the plate thickness is assumed constant for

each plate element, the averaging of the moment of inertia

of the plate 'is necessary only for local buckling of column
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cross sections at the intersection of plate elements.

Usually, there is no relation between depth of the web

and width of a flange and, consequentiy~ it is conven-

ient to change the width of the mesh at the intersection

for each plate element. The average value of moment of

inertia is represented as follows at the intersection as

(B.6)

shown in Fig. 2Sc which appears in cross sections such

as rectangular box, channel and angle
1

1
12

When two identical plates and another plate meet at an

intersection, which is the case for cross sections such

(B.7)I. = (1 +)-1) 2 J,j I + I
1 ../' 1 2

as H and tee , the two identical plates can be considered

as if they are a plate with moment of inertia of 21
1

; thus

the average inertia at the point is

21
1

1
2

Substituting the above quantities into Eq. 11, or

into the equations in Appendix A depending'on the problem,

simultaneous finite difference equations are obtained,

from which the critical width-thickness ratios can be

determined together with suitable boundary conditions.

The critical $tress corresponding to the specified

strain is computed simply as the sum of average thrust

at each mesh cell. For a plate which ends on half-integer
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stations, the critical thrust is, in the non-dimensiona-

Ii zed. form

0- n (0::)cr = L: ~
oy i=l <Jy i

and for a plate ending on integer stations, it is

(B.8)

0­cr
cry (B.9)

The critical stress forI a cross section is obtained by

considering the same equations as above for each plate

element.
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APPENDIX C: COMPARISON OF DIRECT METHOD AND ITERATIVE

METHOD IN DETERMINING EIGENVALUE OF A MATRIX

The generally accepted criterion·of the advantage of

a given computational scheme is the number of necessary

multiplications and divisions and also additions and sub­

tractions. Fundamental to this, is the number of multi­

plications and divisions and, therefore, methods are com-

pared from this point of view. Simplicity and uniformity

of the operations to be performed, as well as the coding

program, may be one of the factors to be considered. Another

important factor influencing the choice of a computational

scheme is the absence of a loss of significant figures in

the process of computation.

From the viewpoint of simplicity and uniformity, the

iterative method is preferable. The matrix inversion and

multiplication routines may be available as common computer

library routines. The scheme for iteration itself is also

simple. Once the coding is made, the program automatically

converges to the desired eigenvalue and thus no tfguess work"

is necessary. It is noted in the literature(41)(42)(43)

that the iterative method is the easiest and the most pre­

ferable when only the largest or the smallest eigenvalue

is sought and the existence of such a real eigenvalue is

guaranteed. In a case of a physical problem such as the

- 58 -
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buckling of a plate, the above conditions are satisfied

and the method may be preferable. The number of opera-

tions necessary to invert an n by n matrix is approxi­

mately n
3

by the Gaussian elimination method, and the

number for one iteration to obtain the eigenvalue is
2roughly n •

It is important to note that the best method also

depends on the problem at hand and will not always be

anyone particular method. The discussion on a parti­

cular matrix equation is limited to the finite difference

solution of Eq. 9. Sparseness is the characteristic of

the matrices of this buckling problem. The reduction of

the number of operations due to the sparseness is less

than half for inverting the matrix~ in Eq. 28 as long

as the elimination scheme is used. The resulting~-l is

no longer a sparse matrix and, therefore, the sparseness

of the original matrix does not contribute to cutting

the operation for the iteration to the eigenvalue. The

sparseness of the matrices, as discussed, does not reduce

the total operation dramatically in'any sense.

The method to find the eigenvalue directly from Eq.29

is not recommended, generally, except for the case of such

a small matrix where the number of.operations in obtaining

solutions has no importance. The method considered now

is a trial and error method designed to find the eigenvalue

by evaluating the determinant of Eq. 29. Fortunately, it

is not difficult to estimate the bounds within which the
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solution of the present problem exists. Since analytical

solutions can be obtained easily for plates without residual

stress, such solutions will furnish the basis for estimating

the bounds of solution when plates with residual stress

are solved by the finite difference method. Similarly,

analytical solutions for each component plate of column

cross sections give some idea for estimating the local

buckling solutions of the sections. Once the bound is

obtained, a limited number of trials may result in a solu­

tion with the desired accuracy.

The major computation of this trial method is to

evaluate the determinant

(29)

The trial value of eigenvalue affects only the diagonal

matrix IB; thus, the number of operations needed to set

up the terms of the matrix, of which the determinant is

evaluated, is equal to n per each trial after the initial

setup of fA and lB matrices are made., The determinant

can be evaluated by the elimination scheme, since the terms

on the main diagonal are dominant in any case of matrices

which are generated for the finite difference solution of

the differential equation. The number of operations are

reduced significantly because of the sparesness. Only

five multiplication processes and ten division processes

are necessary for each row of the matrix, thus, the total.

number of multiplication and division processes necessary



to evaluate an n by n matrix is roughly 15 n. It is

quite important that the order of the necessary compu­

tation is not squared or cubed, but of the first power

matrix size.

Supposing fifteen iterations are necessary to con­

verge for a certain desired accuracy by the iterative

method, the total operations are roughly n
3

+ lsn
2

,

whereas if 20 trials result in the same accuracy with

the trial and error method, the number of total opera­

tions necessary is 300n .', The above number of iterations

and trials are good averages obtained by actual computa­

tions. Equating these numbers, it may be concluded that

the iterative procedure is preferable, roughly, for a

10 by 10 or smaller matrix and the trial method is suita­

ble, roughly, for a 15 by 15 or larger matrix. Coding

of the matrix operation for the trial method is far easier

than the iterative method, however, an additional effort

is necessary in order to "guess" the bounds in which the

solution is present.

Although the trial method may converge to the eige~­

value second in line instead of the smallest, such an

error is easily detected by checking the eigenvector cor­

responding to the eigenvalue as to whether the buckled

shape is compatible with the expected buckling mode.

Concluding the campa'rison, the di rect method wi th

trial and error is defini,tely preferable for a larger

matrix, while for a smaller size matrix both methods are
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equally good; the trial method is easy to cod~ but needs

additional "guess work", and the iterative method needs

more coding efforts but results in a straight forward

operation for determining the solution.
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11. TAB L E SAN D FIG U RES

- 63 -



TABLE 1 ASSUMPTIONS OF INELASTIC PLATE BUCKLING THEORY

N
t.O
o

~

~

* Stress-Strain Poisson's Plasticity Buckling
Investigator Law Ratio Law Model

!
1

Bijlaard(lS) Incremental and Instantan- Octahedral No Strain
Deformation eous Shear Reversal

(21)
Incremental Instantan- Octahedral StrainHandelman

Prager eous Shear Reversal
(22)

Incremental Instantan- Octahedral No StrainPearson
eous Shear Reversal

Ilyushin(19) Deformation 0.5 Octahedral Strain

I Shear Reversal

Stowell(20) De forma tion 0.5 J Octahedral No StrainI,
Shear Reversal! j

: I !

*The numbers in parenthesis refers to the list of references.

J

0\
~
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TABLE 2 DETAIL OF SPECIMENS

-65

*ece Length Basic Specimen Length LIb bIt
J • in. Description Tests No. in.

1 200 11-1/2 x 11-1/2 x 1/4 Coupons T-IA 60 5.31 44.0

in. Box Residual T-IB 60 5.34 44.0
stress

2 140 7 x 7 x 1/4 Coupons T~2A 35 5.18 26.2

in. Box Residual T-2B 35 5.18 26.2
Stress

tAverage of four plates

~ -

I
I

I

1 I

... -
.. l

-t
l

I
b

~

TABLE 3 SUMMARY OF PLATE BUCKLING TESTS

¥II~
p Per

\
Pmax/py p cr/py pcr/pymax

ecimen arc/cry Kips Kips Test Test Predicted
1

!

r-lA \ 2.61 0.12 ( 700 520 0.53 0.39 0.43
!

T-IB 2.61 0.12 694 510 0.52 0.38 0.43

T-2A
I

1.64 0.16 651 630 0.90 0.87 '0.91
t
I

T-2B ! 1.64 0.16 657 1 645 0.91 0.89 0.91
1 II
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READ A SET OF DATA READ A SET OF DATA

READ ASPECT RATIO READ ASPECT RATIO

NOTATION

COMPUTE: EXTERNAL 'X EIGENVECTOR COMPUTE: EXTERNAL
LOADING AND ,,-2 EIGENVALUE LQ!\DING AND

COEFFICIENTS OF COEFFICIENTS OF
DIFFERENCE EQUATION A~X UPPER BOUND OF DIFFERENCE EQUATION

EIGENVALUE
14· LOWER BOUND OF1n
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SET UP MATRICES A WIDTH~·THICKNESS SET UP MATRICES
RATIO

A AND B A AND B

INVERT MATRIX A
A-I

READ: 1\2 "A, 2
max, mi

YES

COMPUTE X

PRINT A, X

FiND A2 FOR

DET(A-i\.2B) =0

PRINT:
WRONG
GUESS

BY ITERATION

COMPUTE A, X

PRINT 'A, X

SET UP MATRIX
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START

READ A SET
OF DATA

COMPUTE EXT LOADING
AND COEFFICIENTS

OF DIFFERENCE
EQUATION

, SET UP MATRICES

A AND B

INVERT MATRIX A

A-I

SET UP MATRIX
EQUATION

(A-1B) X=~ X

COMPUTE A AND X

BY ITERATION

NOTATION

L = HALF WAVE BUCKLING LENGTH

A = NONDlMENSIONALIZED WIDTH­
THICKNESS RATIO

X = EIGENVECTOR
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(0) Cool ing Pattern

I CTrt I=ICTrc I

(b) Cooling Pattern 2

I CTrt I= I~rc I

IDEALIZEl) RES I DIJAI., STRESS DISTRIBUrrrON\

~c

FIG. 7

(d) Welding Pattern 2

(c) Weld in g Pattern
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