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ABSTRACT

The effect of residual stress on the buckling strength of
centrally loaded columns of structural steel is studied. Numerical
methods of computing the tangent modulus and the reduced modulus
column curves of non-dimensionalized stress versus non-dimensionalized
slenderness ratio are presented for pinned-end columns. The methods
can be applied to columns containing residual stress of any distri-
bution., Box, H, tee and equal leg angle cross sections are

considered.

Numerical results are obtained for two wide flange columns,
8WF31l, and 27WF94, containing idealized residual stress distri-

butions of various magnitudes.
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1. INTRODUCTION

The strength of a column may be defined by either of two
criteria; the bifurcation (or buckling) load, and the ultimate
load. The buckling load may be defined as the load at which the
theoretically straight column is indifferent to its deflected
position. The ultimate load is the maximum load a column can carry.
Although no such perfectly straight member exists in practice, the
buckling strength is the most fundamental characteristic of the
compression member on which the strength of practical compression
members is dependent, and the uncertainties such as initial out-of-
straightness are best taken care of for design purposes by the

(1 The buckling strength of a steel column

factor of safety.
depends mainly on the slenderness ratio, the sectional properties
of the column, the stress-strain relationship of the material, the

(1(2)(3)(4)

residual stress distribution in the cross section

Residual stresses were introduced in the past decade as the
main factor influencing the strength of centrally loaded

(3 (A (5)(6)(7)

columns. Residual stresses are observed in almost
all structural steel members. They are formedAas a result of
plastic deformations which take place during or after various
fabrication procedures. For instance, rolled sections contain
residual stress due to uneven cooling after rollingﬁB)(B) There

are several other causes by which the residual stresé may be formed,

such as cold straightening, shearing, flame cutting, and welding.

The residual stress formed by the welding process is usually larger
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in magnitude than that existing in rolled shapes, or those due to
shearing and flame cutting and consequently welding residual

stresses have more effect on buckling strength(s)(7).

Since welded built-up members are being used more frequently
in steel construction due to economy and convenience, it is quite

important to have a knowledge of the strength of these members.

When a column containing residual stress is subjected to
thrust, it will behave elastically until the thrust reaches a
certain value which causes yielding in some portion of the cross
section. Under a thrust less than this value and for certain
geometrical limitations; the column may buckle elastically. The
residual stress has no effect for this elastic buckling® and thus

the buckling stress is equal to the Euler stress,

When the thrust exceeds this value, some parts of the cross
section start to yield due to the presence of compressive residual
stresses. Thereafter, the cross section consists of elastic parts
and plastic parts** and the buckling under this loading is called

"inelastic buckling™ in this report.

In the literature the computation of buckling strength has
been made mainly in the form of column curve of stress versus

slenderness ratio because of the convenience of computation.

¥ In general, residual stress does have some effect on the elastic
buckling of a column(9)(lo); however, in this report only the
buckling due to excessive bending in the direction parallel to a
symmetrical axis of the cross section is considered, in which
case residual stress plays no role.

*%The word plastic is used, since structural steel can be considered

as an elastic - perfectly plastic materia1(11)(12).
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This has been carried out by either of two methads: one is an
analytical method based on the assumed or measured residual stress
distribution in the cross section and the other is an approximate
method based on the stress-strain relationship of the cross section

(3)(13)(14)

containing residual stresses However, because of the
difficulty encountered in computation, the analytical method was
made only for é column with a simplified residual stress distribution
such as the triangular distribution for rolled shapes and thé

rectangular distribution for welded shapes in the flanges; the

residual stress present in the web plate was mostly neglected.(ls)

Residual stresses have been measured on a wide variety of
welded plates and on welded built-up shapes of various

stee1s(16)(17)(18)(19)(20)

The results obtained are significantly
different compared to the idealized patterns of residual stress
assumed for the analyses of column strength in the literature._
Further, a significant difference in the patterns of residual
stress distribution existed depending on material and on geometry
of the shapes. The analytical approach to computing column curves
seems to be quite difficult and does not cover a wide variety of

residual stress patterns. A numerical method of computation is

considered in this report, with the help of a digitél computer.

This report presents a method of compute column curves by

means of a digital computer for structural steel columns containing

"

residual stress. The analysis includes the preparation of equations
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for column curves based on the tangent modulus and the reduced
modulus concepts of column buckling so that the upper and lower

limits of the ultimate strength<l)

of a straight and centrally
loaded steel column are obtained over a wide range of slenderness

ratios.
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2. BUCKLING STRENGTH OF COLUMNS

2.1 Assumptions

The following assumptions are the basis for the subsequent

analysis:

(1

(2)

(3)

4)

(5)

The column is initially straight and free of imperfec-
tions. The deflection due to the moment from partial
yielding® is small so that the column is straight

before buckling even in the inelastic domain.

The external load is applied to the centroid of the
cross section, causing uniform strain over the cross

section, and along the whole length.

The mechanical properties, and the residual stress, are
uniform along the whole length of the column for each

fiber,

The cross section has at least one axis of symmetry

and does not change along the length of the column.

The residual stress is constant in the thickness
direction of the wall of the cross section. The
distribution of residual stress is symmetric about

the axis of symmetry of the cross section.

*The partial yielding is due to the presence of residual stress in
the case of a column with homogeneous material.
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2.2 Buckling Strength of Columns

The differential equation of equilibrium of a slightly buckled
(1) (2)(10) (14)(21)

column is well known and can be written in the

following form,

BE= 4+ PSs =0 (1)

where z is the co-ordinate along the length of a column and u
denotes the deflection. P is the axial load at which the column
is going to buckle. The bending rigidity of the column, B, is
defined by the product of modulus of elasticity, E, and moment of

inertia, I, of the cross section for an elastic column, thus

B = EI (2
For an inelastic column, the bending rigidity is defined by either
of two theories; the tangent modulus theory or the reduced modulus
theory. The tangent modulus theory defines the rigidity by the
following expression with the tangent modulus of elasticity

8= [ E vy da (3)
A

where y is the distance from the neutral axis to a fiber in the
cross section and A denotes the area. The tangent modulus of

elasticity, E_, is not a constant for a column containing residual

t
stress, since it is a function of strain at each fiber, which is
not uniform but it is shown by the sum of residuval strain and the

strain due to loading.
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The reduced modulus theory defines the rigidity by the
following equation

o 2
_ 2
B = b/ﬁ E.y ddi+ , Ey dA (4)

Al Au

where Al and Au denote the area respectively, where strain is
increasing and the area where strain is decreasing. The neutral
axis is determined by the condition that no increment of axial

load occurs at the instant of buckling, thus

jEt (y-Y_) dA + /I;E (y-Y_) dB =0 (5)

Al u
where YO is thecoordinate of the neutral axis.

The expression for the buckling strength of a column is
obtained as the characteristic value of Equation 1. For the
analysis of a column with residual stress and loaded into the
inelastic range of the material, it is not, in general, practical
to solve for the buckling load, but it is easier to solve for the
critical length under a known loading. The expression for the

buckling of a pinned-end column is(lo)(zl).

L =1
cr

vl jvs)

(6)

where Lcr is the length of a pinned-end column which is going to
buckle under a loading P. Since the bending rigidity is a function
of loading and of residual stress distribution in the inelastic

range, the explicit numerical solutions need more consideration.




3. NUMERICAL COMPUTATION OF COLUMN CURVES

The numerical method of computation is considered for steel
columns of box-, H-, tee-, and equal-leg angle-sections, contain-
ing residual stress. The method, by its nature, is applicable for
columns with any kind of residual stress distribution under the
given assumptions and it is suitable for computation by a digital

computer.

In addition to those in Article 2.1, an assumption that the
stress strain relationship of steel is elastic-perfectly plastic
is made for the following analyses. Because of this assumed stress
strain relationship of steel, the bending rigidity, B, at the
instant of buckling becomes simply the product of modulus of

elasticity and the effective moment of inertia, Ie
B = EIe (7)

290.6 -8
The tangent modulus theory defines the effective moment of inertia
by the moment of inertia of the cross section which remains elastic, |
and the reduced modulus theory defines it by that of the cross

section which consists of the elastic part in the loading region

of the cross section and the whole part in the unloading region at

the instant of buckling.

In order to compute the non-dimensionalized column curves, and
using Eq. 7, Eq. 6 may be changed to
e I

a
cr
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where, v and I are the radius of gyration and the moment of inertia
of the cross section, respectively. Oap is the buckling strength

defined by the axial load divided by the area of the cross section.
The left hand term of the above equation is the non-dimensionalized

slenderness ratio.

The analysis is made in such a way that the results are
presented in the form of column curves of stress versus slenderness
ratio. Only the analysis for box-columns, including H-columns as a
special case, is described in this article and the analyses for

other sections are given in Appendix A.

3.1 Tangent Modulus Column Curve

Since two axes of symmetry exist in a box-section, Eq. 8 holds
for flexural buckling both in the x- and y-direction. For the
buckling in the y-direction, Eq. 8 can be rewritten in the following
form with subscript x for both the moment of inertia and the radius

of gyration denoting them as values about the x-axis.

A A T (9)
T T E IX Oap

Similarly for buckling in the x-direction, the following equation

is obtained

A I 7 & (10)
b T E I c
y y —er

where the subscript y denotes that the values are about the y-axis.
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On specifying a strain due to the external load which is
distributed uniformly in the cross section, the load which causes
the specified strain may be computed from the stress distribution
in the cross section. The effective moment of inertia Ixe and Iye
under the load are also determined. The slenderness ratio is a

function of the external load and the moment of inertia as seen in

Eq. 8, and consequently it is a function of the specified strain.

A cross section of a box-column may be considered as consisting
of small segments as shown in Fig. 1, with the change of the
residual stress distribution inside each segment linear in the
tangential direction. The magnitudes of residual stresses or
strains are assumed to be known at the boundaries of the segments.
Since the cross section has two axes of symmetry, it is enough to
consider only a quarter of it. A half of the flange consists of
n small segments of the same size. Similarly a half of the web
consists of m segments. Numbers are given, 1 to n, to the segments
for the flange part, and 1 to m for the web as shown in Fig. 1. It
.is noted that the H-shape is a special case of the box-shape when

b is ejual to zero.

The strain due to external load at which the column is going
to buckle is denoted as €op Since the residual stresses are in
equilibrium in the cross section, the external load may be

computed by the sum of stress at each segment

P =43 o 0B (11)
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where AA is the area of each segment and og is the average stress

in the segment. nzm denotes the summation of segments throughout
b

a quarter part of the cross section. The average stress og can be

computed from the residual strains at the edges of the segment and

uniform external strain €op' The strains at the edges are
€i-1 7 Cp,i-1 T Cor
(12)
€5 T epi Yt €op

where €, denotes the residual strain and the subscripts i and i-1
refer to the values at both edges of segment i as shown in Fig. 1.

Then the average stress in the segment can be obtained by simple

arithmetic in a form non-dimensionalized by the yield stress Ty s
depending on the value of strain at the edges.
.Oé. = 1
% for e;>ey €112y
= f47%i-1 for e.< <
2 €i<€y €i-1%¢y (13)
2
= 2€l-€i—l—l for e.>e €. <e
2eY(ei—el l) 1="Y i-17%Y
2
- 261_1-61 . for e.<
2e,(e;_1-€5) €i%€y  €i-12fy

Then the critical stress non-dimensionalized by using the yield

stress can be computed as
(02
<r._4 5 (—S)-AA (14)
n,m o'Y

where A is the cross sectional area.
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The moment of inertia of the cross section about the x- and

y=- axes, IX and Iy’ can be computed as

B 2 AB 2
IX_4[n§my oA+ Ty (8y) ] (15)
o 2 Y 2]

I, = ¢ [ngm x“on + T 2R (M) (16)

where x and y are the coordinates at the center of each segment.

Ax and Ay are the dimensions of eéch segment in the x- and y-
directions, and AR is its area. Figure 1 shows the detail of those
notations. The moment of inertia of the cross section which remains

elastic can be computed similarly,

i
|

ARy 2 ] (17)
xe

2
B 4[—n§m Yo AAe +n§m 12 (Aye)

I

2
ve 4[n>,3mx My +T, e m 2] (189

where Xg and Yo are the coordinates at the center of the elastic
part, of which the dimensions are Axe and Aye in each segment.

AR, is the area which remains elastic in each segment,

With notations b, b, d, t, and w for the dimensions of the
cross section as shown in Fig. 1, the following relationships hold

true for a segment in the flange

M = ey, Ay = t, AR == (19)

5l
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and in the web

d dw
M =w, Ay = o AA = oo (20)

With these relationships, the non-dimensionalized stress, Eq. 14,

can be written for the convenience of computation as
o n 4o n o
gr:%[%‘ﬁl (f) . +c11n_w.i§l(l) ] (21)
Y v/ i %9/ 1

When yielding penetrates partially into a segment, the dimensions
of the elastic part and the coordinates at the center of the part

can be obtained by the following equations:

for a flange segment

. .
Ax . = i1l Ax, W
e,l Gi-ei_l
AXe i
= ;i s,
Xe,i AX‘(l 1) + 5
for ejzeys €3 g<ey \ (22)
.o.-1
Mx . = %i- A
e,i P —— ’
i- 1
AXe i
= - St
Xe,i Ox i 5
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and for a web segment

_ i :
Aye,:L Coegmes g o
Ay .
e
Ve = Ay (i-1) + —jfi
for e,>e;» €._+<e &
i="Y i-177Y (23)
o o.=1
_ i-1
Aye,i B i_17¢4 by
. Ayez:’L
ye,i = by 3- 2

for €i<€Y’ €. lZﬁY

where the subscript i shows the values at the i-th segment. Then
the moment of inertia about the x-axis can be computed as follows

in the non-dimensionalized form

I n Ax
xe 1 e 1
L = —IX {(Sd +6dt+4t )(——6 ) 1—1 ( )

Ty
(24)
wd> ) Z ¢ ezl)[ﬂ( e21> + e,iJ
24 3 By
and similarly about the y-axis
—Y—-I e- L (352 + 6bw + 4w2) (-V-J—d- %1 (Aye’i
I, I, em/ 121\ By
(25)

Ax

JeoRAC DIE

24n i=1
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With a specified strain €ap due to external loading, and with
the known residual stress distribution, Eq. 21 gives the critical
stress corresponding-to the critical strain. Equation 9, together
with Egqs. 21 and 24, gives the non-dimensionalized critical slender-
ness ratio of a column which is going to buckle in the y-direction
under the action of the stress. Similarly Eq. 10, together with
Eqs. 21 and 25 gives the ratio for buckling in the x-direction.

By varying the strain, e from a small value to a large value at

cr?
a certain increment, a column curve of stress versus slenderness

ratio can be obtained.

3.2 Reduced Modulus Column Curve

The procedure followed in computing a column curve based on
the reduced modulus concept is similar to that based on the tangent
modulus concept. The difference involved is that under the reduced
modulus concept, the neutral axis does not remain at the axis of
symmetry of the cross section at the instant of buckling even for
the cross section with two axes of symmetry with symmetric distri-
bution of residual stress; instead the location of the neutral axis
is a function of loading. This is due to the difference of modulus
of elasticity in the loading and in the unloading portion of the

cross section where yielding has penetrated.

Assuming buckling in the negative y-direction, the neutral axis
is parallel to the x-axis and will be such that y is positive. The
distance between the neutral axis and the axis of symmetry is denoted

by YO, which is shown in Fig. 2(a). The distance YO has to be
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determined to satisfy Eq. 5, which can be written in the form of a

summation of stress at each segment,

E (y-Yo) AR + E (ye - Yo) AAe =0 (26)

u 1

where ¥ and X denote summation of area of each segment throughout
Ry Ay

the unloading region and the loading zone, respectively. Equation

26 may be rewritten for the box cross section considered here,

k-1
bt ,d+t wd T
=(=—=-Y )+ = (y:=Y)+w £ (y_. .-Y) Ay .
2 ( 2 o) 2m i=k41 L+ O i=1 e,1 "0 e,i
(27)
d+t 2 m
- t(——-2 +Y,) iil Mg g = W izl(ye,iwo) Aye’i+8k =0

where k is the number of a segment where the neutral axis passes
through as shown in Fig. 2(a). The last term in the left hand side
of Eq. 27, Sk’ is the stress acting in the segment k. The expres-
sion of Sk depends on the penétration of yielding into the segment,
and is considered in Appendix B. Equation 27 is valid when the
resulting neutral axis is located in the web, namely under the

following condition,

YO

A
N Qs

When the resulting neutral axis is located in the flange, Eq. 27

must be modified, thus,

2 2 n m
d 1,, d )
7t t_Yo) -7 (g7 ) iil Axe,i o iil (ye,i Yo)Aye,i

Ao

n (28)
~e (B vy o

. e,i
i=1 ’




290.6 . -17

for

Nl
HA
P
1A
N

After the neutral axis is determined, the moment of inertia
of the cross section, which consists of all the parts in the
unloading section of the cross section and the parts remaining
elastic in the loading section, can be computed by the following

equations in the non-dimensionalized form

I_I_:_{bt [(d+t 2+ %] bt [(d+t Yo)2+ E_i]'
3
‘ .1—1 ( Xe 1) 4Zm¥{1"k+l [l ( Ayo) ]
(29)

2 2
y_ .-Y Ay . Ay
[ o)+ (59 J 2t

4 z [12( ) ( J )}+ 2T,

when

N Q.

=
o
A

and

IXe

xe . L112b
T

2 n Ax_ . 3 n
. [g%z + YO) + %J T ( i}’(l) + d ‘%7 { hM []_2( ) + l]
i=1 48m i=k+1

3 [ BT L (g J( 0
] ( }+ 21,

vz [12( )+
i=1
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when

N Q.
1A

d
YO ‘§+t

A

where Ty is the contribution to moment of inertia of segment k, of
which the expressions are shown in Appendix B, and depending on the

penetration of yielding into the segment.

Similarly as for the tangent modulus curve, a column curve for
the buckling in the y-direction can be computed from Ej. 9 sub-

stituting Egs. 14 and either Egs. 29 or 30.

A column curve for the buckling in the x-direction is also
obtained by a procedure similar to that for buckling in the y-
direction. The expression of the effective moment of inertia,
however, is different depending on the location of the neutral

axis, inside or outside of the web.

The equations which determine the location of the neutral axis
become the following, depending on the resulting location of the

neutral axis:

= n k-1
wd |, b+w bt
(== - X))+ 5= T (X,=x)+Ttzr (x_ .-x)d_ .
2 2 o 2n i=k4l * O i=1 €170 e,1
m n (31)
b+w T Ay .-t % B
- w (5t X)) =1 €5t i=l(xe,i + Xo)Axe,i+ S = 0
when
b
=72
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— 2 —2 m n
d ,b ~ 1 b bt
= (z+w-x) -5 (x-3) T Ay L T (X.-%X)
4 %2 o] 2 o 2 jo1 i 2n i=k41 1 ©
k-1 -b-+W m n
+t ¥ (x_ .-x) M . -w(—=—+ X)) Ay -t T e (32)
=1 © >+ 5 ° =1 T =1
° (Xe,i + X ) Axe, + 8 = 0
when
b b
-2— < XO é ? + W
and
— k-1
b + w m bt O
w ( - X))z Y .+ 5= I (Xs=x ) + £ (X, .-X)e
2 o’ J_, e 2n 1=kl i"0 1 ,i "0
D+ w m 2 (33)
- A -
¢ AXe,i W ( 2 + Xo) ?zl ye,l ¢ Z=1 (x ,i+xo) Axe,l
¥ Sk =0
when
% +w<x_ <Db
°©zZ73

where Xo is the distance between the neutral axis and the axis of

symmetry.,

In a manner similar for that of Eq. 29, equations by which the
effective moment of inertia of the cross section can be calculated

are derived as follows, depending on the location of the neutral

axis,
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Ele_ 1 dw (b+w X) ]
i = f; ( o) 12 + t 12
b t k-1 X X
12( ) +1H T [12(—Z-A—)
—k+l i=1
2

X L4X AX

+ Z [lZ(—Eii———) + (——-i-*-a

i=

when

k-1
+ X
i=1

BX
(=

when

N o]

A

——31L5)}' + 21 }

— — Ay .
1 2d ,b 3 d _2 3 e,i
LT (Frw-X )" + 33 (X307 & (5=
2 m Ay
2 \Y e,1
XY  +=—=1 % ( =) 4+ '{
° A i Y agn>
X .-X
e,1 "0.2
[12 (——ﬁg?———)
)2 ] (__iile} + 9 I
b
é 7+ W

21)2] ( ezl) + Z [12 ( e,1i 0)2
i=1

X
.‘:12(l

-20

m Ay

2 (5 5\

e,1) ]( )'

=X

O)2 + 1]

X

Ax

Ax

(34)

(35)
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I = 2 2 2
_Ig='f];{ %[(PZ_W_XO)JF ] ( el) dw[(b+w Xo3

y y
r;[:1 (Ayea'i bst{ [12 % XO)2 1] < [12
’ + + + M
i=1 & ) 48n l—k+l Ax i=1 )
XX 2
.( ezi<o) ezl) J( e21>

(36)

1_ [12 ( > QJ(AXZ’(i} + 2T,

when ' //

+ w < X

N[ ol

A column curve can be computed, as above, from Eq. 9 substituting

Eq. 14 and one of the Egs. 34, 35, and 36.
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4. NUMERICAL EXAMPLES

Numerical computation was carried out by a digital computer.®
Although any distribution of residual stress‘can be considered,
only idealized patterns of residual stress distribution in H-shapes
were used (as shown in Fig. 3) for the illustration of column
aurves., The triangular distribution of Fig. 3a is close to the

(3)(5)(20)

patterns found in rolled shapes and a similar pattern was

assumed to predict the strength of centrally loaded columns of

(3)(8),

rolled shapes the pattern of Fig. 3b resembles the pattern

in the welded shapes, among which the residual stress pattern in

welded T-1 shapes is the closest(6)(18)(19)(22)

Figure 4 shows the tangent modulus column curves of non-

dimensionalized stress against non-dimensionalized slenderness

ratio for columns with cross sections of 8WF31l and 27WF94 containing

residual stresses of the triangular patterns. Similarly, Fig. 5
presents the tangent modulus curves for the same columns with
welding type residual stress patterns. The curves were computed
for various values of the compressive residual stresses. The
discontinuities of the column curves for the sections with welding
type residual stress patterns are due to simultaneous yielding over
a large portion of the cross section due to the assumed residual
stress pattern. The column curves for strong axis bending are

slightly different for the two cross sections; 8WF31l, and 27WF94,

*The descriptionsof the programs are given in Appendix C.
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While'the difference of the curves for weak axis bending is

insignificant for the two columns.

For the assumedvresidual stress patterns of Fig. 3a, the
larger the compressive residual stress is, the greater the
reduction of strength for the entire elastic-plastic buckling.
The same is true for the assumed residual stress pattern of Fig.

3b except for columns of small slenderness ratio.

The reduced modulus column curves were computed for the same
column shapes as used for the tangent modulus curves, and the
results are shown in Figs. 6 and 7; Fig. 6 for the triangular
distribution.and Fig. 7 for the welding-type distribution. The
general shape of the column curves based on the reduced modulus
concept is similar to those found in curves based on the tangent
modulus concept. The only difference in the general pattern of
the column curves is that there is a visible difference in the
reduced modulus column curves of 8WF31l and 27WF94 for weak axis
bending as seen in Figs. 6b and 7b, while no visible difference
resulted in the corresponding tangent modulus curves. This is dﬁe
to the relatively large contribution of the web to the moment of

inertia when strain reversal is taken into account.

Both the tangent modulus and the reduced modulus column curves
are plotted in Figs. 8 and 9 for 8WF31l columns with various residual
stress distribution. As can-be seen in the figures, the difference
between the tangent modulus load and the reduced modulus load

depends largely on slenderness ratio. Both the tangent modulus
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load and the reduced modulus load coincide with the Euler load for
a column with a large slenderness ratio. Generally, the difference
first appears between the loads at a certain slenderness ratio,

and it increases with decreasing slenderness ratio reaching the
maximum point. After the maximum point is passed, the difference
between the loads becomes small and the loads coincide again for a

colunn with zero slenderness ratio.

The strength of steel columns is often represented by the
tangent modulus loads taking into consideration residual

(3)(6)(10)(14)

stresses The comparison of the reduced modulus

curves and the tangent modulus curves of Figs. 8 and 9, however,

suggests that some caution has to be paid in some cases. For

example, the strength of an 8WF31l column containing residual

stress of o, = % o, with the distribution pattern of Fig. 3b

cannot be more than the tangnet modulus load, because of unavoid-

able initial.crookedness and eccentricity, when its non-dimension-

alized slenderness ratio is larger than 0.7, (Figure 9b). For a

shorter column, on the other hand, there is so large a difference

between the reduced modulus load and the tangent modulus load that it may
be possible that the strength exceeds the tangent modulus load.(l4)
When the difference is large, as found in a case of a column with
welding type residual stresses and bent about the weak axis, an
analysis of ultimate strength of the column would be made preferably

(15)

in addition to the tangent modulus analysis
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5. SUMMARY

The report has presented numerical methods of computing the
tangent modulus and the reduced modulus column curves of non-
dimensionalized stress versus non-dimensionalized slenderness
ratio such that the lower and the upper limits of the ultimate
strength of a straight and centrally loaded column are obtained.
These limits are defined by the tangent modulus and reduced
modulus, respectively. Ejuations were developed for the flexural
buckling of pinned-end columns of structural steel containing
residual stress of any distribution. BAmong the shapes considered,
H, box, tee, and equal leg angle, ejuations for the reduced modulus
curves were developed only for H and box columns. Numerical results
were obtained by a digital computer for 8WF31l and 27WF94 columns
with idealized residual stress distribution of various magnitudes.
Tt was found that the difference between the reduced modulus load
and the tangent modulus load depends largely on the slenderness
ratio of the column and the residual stress pattern. It was found
in the numerical results that there might be a large difference
between the reduced modulus and the tangent modulus loads for a
welded built-up column of medium to small slenderness ratio-so that
the ultimate strength of a practical column of this range may exceed

the tangent modulus load.
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7. NOMENCLATURE

area of a cross section

loading area in a cross section

unloading area in a cross section

bending rigidity

width of a flange

width between inside faces of webs of a box section
depth of a cross section

modulus of elasticity

tangent modulus of elasticity

moment of inertia

effective moment of inertia of a cross section
contribution of moment of inertia by the segment k
moment of inertia about x-axis

effective moment of inertia about x -axis

moment of inertia about y-axis

effective moment of inertia about y-axis

a number used as a subscript

the number of a segment where a neutral axis passes
critical length of a pinned-end column

critical length of a pinned-end column bent on the x-axis
critical length of a pinned-end column bent on the y-axis
number of segments in a web

number of segments in a flange

load

distance as shown in'Pig. 10

stress acting in the segment k
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thickness of
displacement
thickness of
x-coordinate
coordinate x
y-coordinate

coordinate y

-28

a flange plate

a web plate

of a neutral axis

of the center of the elastic part in a segment
of a neutral axis

of the center of the elastic part in a segment

cartesian coordinate

strain

strain a buckling load

residual strain

yield strain

buckling stress

average stress in a segment

yield stress

area of a segment

area of elastic part in a segment

length of a segment along the centerline of plates

length of the elastic part of a segment along S.

length of a segment in the x-direction

length of the elastic part of a segment in the x-direction

length of a segment in the y-direction

length of the elastic part of a segment in the y-direction

sunmation of all the segment in a flange and in a web
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AREA
AVESTRESS
B

BT

DA

DAA

DB
EINERTTIA
ELN

ELNF
EXINERTIA
EYINERTTIA

FINALSTRAIN

IB

IXK

INER

ISTRAIN

J, JA

KX, KY, KZ

-29

PROGRAM LANGUAGE

= P/A

d, b
1/2-(d+t), 1/2-(b+w)
d, b
, I
xe’ “ye
Aye/Ay, Axe/AX

I

Axe/Ax

Ixe

Iye

the maximum strain to which a column
curve is computed
2

.
12

H

W
12
Ik’ name of a subprogram to compute Ik
increment of strain at which interval

critical slenderness ratios are computed
name of a subprogram to compute location

of neutral axis and the effective moment
of inertia

the minimum strain from which a column
curve is computed

sequence numbers

sequence numbers to be used in deter-

mining location of neutral
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L
LENGTH
M

NA, NB
NE

NW

RF

RW

SELN

SF

SFEL

SK
SRN
SRNA
STRAIN

STRESS

SW

SWEL

SWA, SWB, SWC, SWD

S1, S2

-30

d

bx, Ay

(d/2+t)/1008y, b/200Ax

n, m

n

m

residual strains in a flange (er)

residual strains in a web (er)

T by 3/09)s B (Mg /5O

i |
¥=l %5 ‘
. |
i& (&xg /50

Sk’ name of a subprogram to compute Sk

€i-1

€1

€ eCI‘

Og> E 03,1

m

Z o

m

z . (byg 5/89)

variables for switching name of a
subprogram to compute average stress
and penetration of yielding at each
segment

variables used in determining a
neutral axis and the effective moment
of inertia
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TA
TB
TLN

TLNF

XINERTIA
XLENGTH

XMFACTOR

XSLENDRATIO

YIELD STRAIN

YINERTTIA
YLENGTH
YMFACTOR

Y SLENDRATTO

-31

Y /by, X,/ bx
xe/Ax

w

I
X

Ly

nrx//éY
L L/

€
r Y
™
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APPENDICES
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APPENDIX A: BUCKLING STRENGTH OF COLUMNS WITH TEE AND
EQUAL LEG ANGLE CROSS SECTIONS

The procedure for computing the column curve for tee and
equal leg angle cross sections is the same as for.the Box- and H-
columns described in Chapter 3. Only the final forms of equations
for the tangent modulus column curves are presented here, so that
the column curves are computed simply by substituting these results
into Eq. 9. The cross section considered are shown in Fig. 10
together with the dimensions, coordinate axes and numbering system

to the segments.

1. TEE-COLUMNS

1 o(Zy L gy | .
Cr AI N4 <0Y)i * im1 (GY>i (r.1)
= bt + dw (A.Q)

2

d

2 T 5 (5Y)
Yo T - (R.3)
© bt U ) dw m By i)

in which 8o 12 is the distance from the junction of flange and web
b .

to the center of elastic part of the i-th segment.

Tex _ 1 ‘ bt (Y2+ t2) ; (Axe£>+ a>w ; (Ayeji>l;<ye,i>
IX Ix g n o 12 io1 Ax m3 121 DAy - Qy .

~.

(A.4)
2

1 e ; J
v (—2E)

s
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2. COLUMNS OF EQUAL LEG ANGLE

(e} n g
<L -2 5 ES—) (3.5)
%y i=1 \°v7/i
A = 2bt (B.6)
n AS . -
e, 1 pa
b .z AS )(l D Se,1>
y =2, 3= (3.7)
o /7 n A4S, . ’
2/7 2 (—5%")
i=1
3 2
I n AT S .
xe _ 1 bt e,i e,1)
T -1 —3.% (=) (& (A.8)
X X n- i=1

where Se 5 is the distance from the corner to the center of elastic
b

part of the i-th segment.
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APPENDIX B: SUMMARY OF STRESS AND MOMENT OF INERTIA
CONTRIBUTED BY A SEGMENT CUT BY THE NEUTRAL AXIS

The expression for thé stress caused by the buckling, and
present in the segment where the neutral axis passes, depends on
the penetration of yielding into the segment. Similarly, the
contribution of the segment to the bending regidity depends on the
penetration of yielding. This appendix summarizes the expréssions

for the stress and the moment of inertia.

For buckling about the x-axis:

(1) €x < ) ek—l <e:Y
. (B.1)
Sk. =W (yk. - YO) Ay
2 a2y
I =w {(yk - Y%+ —X—lz} Ay (B.2)
- Ve k Y <0
(2) ey <eys €1 Z €y> Yo i 3 o
Sy éAw (ye,k - Y) Aye,k (B.3)
- 2 e k2
L = w by, L(ye,k - Y ) s J (B.4)
Aye k :
(3) oy <eys €y 2 6y Yo i T T " ¥, 20
| (B.5)
. Ly _ oy 32
S =5 g + 75 = Y)
=¥ vyl
Ik =3 (yk + YO) (B.6)
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By
ek
(4) € = Sy» €1 <Cy> ye,k + —> YO >0
(The same as Case 1)
Aye k
() €k 2 fy> k-1 “8y> Yokt T2 T Yo <0 (B.7)
- 2 Ay 2
_ 2 Ay~ w e,k
Sk“WAyL(yk'Yo) LIS B AL S PR S W
~ 2 : Ay 3
— : - 2 by 1w _ _ e,k
hemwly | Y +5 ) ~ 3, =Y -~ (B.8)

(The same as Case 3)

Replacing Yo’ Y and w by XO, X, and t, the equations of Sk and

I, are obtained for buckling about the y-axis.

k
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APPENDIX C: COMPUTER PROGRAMS

Based on the analyses of Chapter 3, programs for a digital
computer were prepared with WIZ language(23) as summarized in
Table 1. A representative flow diagram is shown in Fig. 11 for
computation of the tangent'modulus.curves of H and Box columns.

All of the programs prepared are shown in Programs Nos. 1, 2 and 3.

The basic nomenclature used in the program is listed in

Chapter 7.

All programs prepared provided memory spaces of up to 100 for
the number of segments in a flange and in a web. The number is
sufficient for practical distributions of residual stress. The
location of_the neutral.axis has to be determined for the computation
of column curves based on the reduced modulus concept. The program
is prepared to determine the location with an accuracy of 1/100 of
a half width of a flange and a half depth of a web for the buckling

of a box column in the x- and y-direction respectively.

The prepared programs include manual controlling instruction
such that, when the pinned-end length of columns is needed in
addition to the non-dimensionalized slenderness ratio, it can be

obtained by pressing the console switch No. 1 of the GE 225 computer.

l, Data Input

Tdentical data cards can be used for computation of both the
tangent modulus and the reduced modulus curves for H and box

columns, while for computation of tee columns, only the data for
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dimensions of the cross section are different. Sign convention is
such that compressive stresses and strains are positive and tensile

stresses and strains are negative,

The sequence of data input is as follows: .

(a) The Yield Strain

The yield strain (in/in) has to be placed first when
console switch no. 1 is pressed by operator. Otﬁerwise, the
data is not necessary.

EXAMPLE: For a steel with yield stress of 100 ksi and the,
modulus of 30,000 ksi, the data is

3.3333333-3

(b) Three Data on Critical Strains

The data on strains due to loading at which the column
is going to buckle must be put in. It is necessary to

compute at several strains over a wide range with certain

increments in order to draw a column curve. The data consist ;
of three numbers; initial strain, increment, and final strain.
A1l data have to be non-dimensionalized by the yield strain, €y -
EXBMPLE: Critical slenderness ratios to be computed for a

range of critical strains from 0.3 to 1.2 of the

yield strain with a interval of 0.05 will have

data as shown

.3 .05 1.2
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(c) Two data on Number of Segments

The number of segments in half of the flange must be
put in, followed by the number of segments in the web (for
a tee column) or a half of the web (for a H and box column).
EXAMPLE: Referring to Fig. 1 or to Fig. 10, if n is equal

to 4 and m is equal to 2, the data will be,

4 2

(d) Data on Dimensions of Cross Section (5 Data for an H
and Box Column and 4 Data for a Tee Column)

Data concerning the dimensions of the cross section

must be put in as the fourth group of data. The sequence is
b, b, t, d, and w for an H and box column and b, t, d, and w
for a tée column, which refers to Fig. 1 and Fig. 10, respect-
ively. Although any unit can be used as long as the same unit
is used for all dimensions, a unit of one inch may be preferable.
EXAMPLE: (1) 8WF31 8. O .433 7.134 .144

(2) ST 4wWrFl5.5 8. .433 3,567 .288

NOTE: the width of the web plate for 8WF31l is not

.288 but a half of this.

(e) Data on Residual Strains

The last group of data is the amount of residual strains
present at the edge of segments. Data must be non-dimension-
alized by the yield strain of the material. The data have to
be arranged in a sequence such that the residual strain at
one edge of segment 1 in the flange is first, and then

followed by that at the edge between segments 1 and 2; that
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between segments 2 and 3 and so on, till that at the
extreme edge of the flange. The similar set-up of data
for the web follows from the segment 1 to the segment m,
Thus a total number of (n+l) data for the flange and (m+1)
data for the web are necessary, resulting in a grand total

of (n+m+2) data. .

It is noted that the residual strain distribution has
to be so arranged that the residual stress is in equilibrium.
EXAMPLE: (1) No residual stress (N=4, m=2)

0 0 0 0 0 0O 0 O

(2) Idealized Residual Stress Distribution of
Fig. 3.b, crc/cy = 0.25 (n=5, m=5)
-1, -.375 .25 .25 .25 .25 .25 .25

.25 .25 -,375 -1,

(f) Other Sets of Data

Other sets of data arranged in the same manner as (b)
through (e) can be followed directly as many times as
necessary. A "WIZ DATA" card and an "END OF DATA"™ card
followed with two empty cards are necessary at the front

and at the end of the data, respectively.
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An example of typical data set up is summarized as
follows:

WIZ DATA CARD

3.3333333-3

.3 .05 1.2

4 2

8. 0 .433 7.134 .144

0 0 0 00 0 0O

.75 .05 2.

8. 0 .433 7.134 .144

-1. -.375 .25 .25 .25 .25

.25. .25 .25 .25 -.375 -1,

END OF DATA

(Two Empty Cards)

2. Output
Example of outputs are shown in Program No. 4 computed by the
program based on the tangent modulus concept with the data shown

above,

Following the title of the program, all the input data are

printed out so that any error in punching the data may be detected.

The area of the cross section and moment of inertia on the x-
a*is and on the y-axis are printed, below the title "CALCULATED
RESULTS". The units are square inches for the area and in4 for
the moments of inertia, provided a unit of one inch is used for the

dimensions of the cross section. Next follows the computed results




290.6 42

for a column curve. The output consists of 6 columns, under the
headings, "STRAIN", "AVESTRESS", "XSLENDRATIO", "YSLENDRATIOM,
"XLENGTH", AND "YLENGTH". These headings mean the strain and the
- stress at which column is going to buckle, the critical slenderness
ratio for the strong axis and for the weak axis bending and the
critical pinned end length of the column for the strong axis and
for the weak axis bending, respectively. The strain, stress, and
slenderness ratios are non-dimensionalized. Plotting the average

stress against the slenderness ratio, the column curve is obtained.

,
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9.

TABLE, FIGURES AND COMPUTER PROGRAMS
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Table 1 LIST OF COMPUTER PROGRAMS
Program | Program :
No. Identifi- | Cross Section | Buckling Concept | Bucklg. Mode
cation®

1 290-3-2 H and Box Tangent Modulus | Flexural Bucklg.
on both princ.
axes

2 290-3-6 Tee Tangent Modulus | Flexural Bucklg.

3 290-3-3 H and Box Reduced Modulus | Flexural Bucklg.
on both Princ.
axes

4 -- H and Box Example of Qutput

* Programs are identified and stored at Fritz Laboratory,

Lehigh University.
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SUBPROGRAM
[DIMENSION: €, ((100), €,,(100)]
z AS =0
(Rm]): €i, 66; ef, Nf, Nw) s =0
i g = 1
( meap: b, b, t,d,w )
READ: Erf,i (i=0 to Ng)
ery,i (i=0 to Ny) ce 18
x AS BN ]
A = 2(bt + wd) A8
I, -4% bt(4t2 + bdt + 3d%) + wd® . $=3-5
1 2, 6+ 2 3 (1-€,)A8
Iy-tg dw (4w +6wb+b)-_i-tbj Oﬂl__.L...._z
1-¢,
—j-1
AS = g5
i j-1
§ = j-1+ 42§
<0 (- e, us
O=1 - — AL
€j-1 = €cr + €f, - 2
Sj - Scr + Gf’j
As =1
§$=J-0.5
€, - €,
o= 4 J-1
2 TAS = TAS + Ag
£S = 55 + 8
So=0+0

NOTATION
Nf : NUMBER OF SEGMENTS IN FLANGE
N NUMBER OF SEGMENTS IN WEB

DISTANCE FROM ONE OF THE PRINCIPAL AXES
TO THE CENTER OF EIASTIC PART IN A
SEGMENT

AS : WIDTH OF ELASTIC PART IN A SEGMENT
ALONG THE MIDDLE PLANE OF THE PILATE

£ : A SUBSCRIPT DENOTING PROPERTIES OF

w
5]

FLANGE
Yo i,j : 'SUBSCRIPTS FOR SEQUENCE NUMBERS
bto,  dwo W : A SUBSCRIPT DENOTING PROPERTIES OF WEB
Oy = S o
T TAYN N € _: CRITICAL STRAIN
2 £ 2 i aus r
1 = befht tbdet3d ), W e, : INITIAL VALUE OF CRITICAL STRAIN
X £ X
e 6N 24N, € + FINAL VALUE OF CRITICAL STRAIN
aw (GHEH6WDH3D ) B3tse
= AS, + 5 8¢ : INCREMENT OF CRITICAL STRAIN
ye 6N W 24Ng

Y
[ 2

A = / Lxe

x Ocrlx

A =.‘}'_£Ye_

Yy 0,1
7

Fig. 11 FLOW DIAGRAM FOR FLEXURAL BUCKLING OF
BOX~- AND H-COLUMNS CONTAINING RESIDUAL STRESS
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005 2082 FUMIO NISWINC COLUMN BUCKLING

DEC 21 66 09 03,5
PAGE 1, DEC 21 66
1 SeEG  LAEBL TYP STATEMENT C ZERO NOT 0 PLUS MINUS ELSE

ovti, o00u0 ¥ 290-3-3 ( ) t ] ( )] { 1 4 }
062, 001U F CALCULATION OF COLUMN CURVE BASED oN { ] { ] ( ] [ 1 ( ]
003. 0020 ¢ REDUCED MODUI LS CONGEPT ( ] { 1 t 1 [ 1 ( ]
004, 0030 § DECEMBER, 1946 BY FUMIQ NISHINO ( ] { ] ( 1 [ ] ( ]
065, 0040 D RF(100), RW[100}, SUB.[14}, INER.[221, c

. 00%0 SK.[22), IK,[15}, FLNF[100), ELN[100], c

o 0060 TLN(100), TLNF100) { 1 [ ] { 1 ( } (
006, 0070 ShT. (1) {READ] [ 1 [ ] ( ] {
007, 0080 CRDYIFLDSTRAIN [ ] ( 1 ( ] ( ] {
008, 1090 READ CRDISTRAIN ( } { ) 4 1 (FIN ] [
009. 0100 CRDINCREMENT,FINALSTRAIN ( ] { ] ( 1 [ 1 ( )
0i0. o01l0 CRDNF , NW } 1 [ ] ( )} [ 1 ( )
0i1. 0120 CRDBsBI»TsL,W { ] L ] { ] [ ) { ]
0i2. 0130 SL CALCULATION OF COLUMN CURVE BASED ON REDUCEN C

. 08140 MCDULUS CONCEPT, FLEXURAL BUCKLING, BOX- AND C

. 0150 H=0OLUMNS (290-3-3) £ 1 [ 1 [ ] ( 1 [ ]
013. 0160 PL s ] 4 ] ¢ ] ( ] [
014, 0170 PL BY FUMTIO NISHINO [ } t ] [ ] { ] (
015, 018¢ PV »» ( ) t ] 4 ] { } t ]
016, 019¢ PL  INPUT PARAMETERS [ ] [ ) { ) ( ) {
017, 0200 PVL, NFs NWsy Bs RI, T, L, W [ 1 { ] ( ] { ) t )
018, 0210 PVL ISTRAIN, INCREMEANT, FINALSTRAIN, [ ) { 1 ( 1 [ ] 4
0ie. 0220 PL RESIDUAL STRESSES IN THE FLANGE C ] 4 ] { ] [ ] (
020. 0230 PV t ] [ 1 { 1 [ ) {
02, 0240 J=0 [ ] [ 1 { } ( ) (
022, 0250 CRDRF (J1 [ ] [ ] { ] [ ] {
023. 0260 PV SKI1P,RFI[J] ( ) [ 1 { ) ( ] (
024, 0270 fvzJ+1]1=NF €4 ] [ 1 { } [« ] ( 1
025, 0280 { ] 4 1 ( ] t ] t
026, 0290 PL RES]DUAL STRFSSES IN THE WEB 4 ] ( ) [ ] { ] (
027, 0300 PV ( 1 t ] [ ] { 1 ( ]
0z8, 0310 J=0 ( ) t 1 ( ) t ] t 1
029. 0320 CRDRW [J] ( ) { ] { ) ( ) { )
030, 0330 PV SKIP,RW{J} § 1 ( ] [ ] ( ] ( ]
031, 0340 [wzJ+ilNW [ 1 t )] [ 1 (8] 1 4 ]
032. 0350 AFEA=2%[BwT+HeL ) [ )] ( ) 4 ] { ) 4
033, #3060 XINERTIA= [BaTo doTT+owl #aT+3«lwl ) +Waiwl*L}/56 [ 1 { ] t 1 { ) { 1
034, 0370 YINERTIAZ [LaWw[d*WaW+6uW*BI+32BIwBI1+T#BxB* ¢

. 0380 B)/6 s ) [ 1 [ 1 [ ] [
036, 0390 SkT, (1] [1 ] [ 1 { ] [ ] (
036, 0400 XVFACTOR=3,1415926+S0RT. (XINERTIA/AREA/ c

. 0410 YIELDSTRAIN] ¢ ] [ 1 [ ] ( 1 (
037, 0420 YMFACTOR=3,1415926+SQRT, [YINERTIA/AREA/ c .

« 0430 YIELDSTRAIN) r ] [ 1 [ ) [ ] ¢ ]
036, 0440 1 PV 5 L ] t 1 { ] [ ] (
039, 0450 PL CALCULATED RESULTS [ ] [ ] [ 1 ¢ 1 4
040, 0460 PVL,» AREA, XINERTIA, YINERTIA,, [ ] [ 1 ( ] ( ] [
044, 0470 ShT. (1) (2 ] 4 ] ( ] ( 1 4
042, 0480 PL STRAIN AVESTRESS XSLENDRATIO C

0490 YSLENDRATIO XLENGTH c

.. 0500 YLENGTH { )| 4 ] 4 ] { ) 13
043, 08510 2 PL STRAIN AVESTRESS XSLENDRATIO C

. 0520 YSLENDRATIO s ) { 1 { } ( ] ( 1
044, 0530 3 PL [ 1 { 1 { ) [ ] ( ]
045, 0540 STRAIN=ISTRAIN ( ] [ 1 [ ) ( } 4

PAGE 2, DEC 21 66

# SEQ LABL TYP STATEMENT C ZERO NOT 0O PLUS HINUS ELSE
046, 0550 ww KXx=KY=0 ( 1 4 ) ( ] [ 1 4 ]
047. 0560 STRESS=SELN=J=0 t 1 [ ] ( 1 [ ] ( ]
048, 0570 w NEENES] [ 1 ( ] 4 1 ( ) ( 1
049, 0580 SRN=STRAIN+RF (J) [ 1 { 1 t ] 4 ] ( 3
050, 0590 SANA=STRAIN+RF{JA] ( 1 { 1 { ) [ ] (suB )
051, 0600 ELNF{JAI=ELNs TLNFL[JA)=TLN [ ] { ] { ] { ] { )
052. 0610 {vaJA)-NF [ ) { ] [ ] {* ] [
053, 0620 SF=STRESS, SFEL=SELN [ ) { ] [ ] ( ] t
054, 0630 STRESS=SELN=J=0 [ ] { 1 4 ] { ] ¢
055, 0640 JAzg+1 ¢ 1 4 ) t ] [ ] t 1
056. 0650 SAN=STKAIN+RW(J] ( 1 ¢ 1 [ ] { 1 4 ]
057. 0660 SANASSTRAIN+RWJA) { ] ( ) ( 1 [ ] (sus 1
058, 0670 ELN[JAT=ELN, TLNCJAI=TLN ¢ ] ( ) 4 1 ( 1 ( )
059, opé8C0 [ezJA)-NW { ] ( ] ( )] [ ] { ]
060, 06Y0 Sk=STRESS, SWEL=SELN t 1 4 ] { } [ ) { ]
061, 0700 KZ=KY,SWA=0, NA=NW, NB=zNF { } ( -] { 1 ( ] t
662, 0710 DA=L, DB=B, DAA=.5#L+,5%T, TA=W, TB=T [ ) { ] ( ] { 1 4
063, 0720 1BaT=T/12,, SEL=SFEL, LENGTH=,5*L/NW ( ] 4 } ( ] [ ] ¢ 1
064, 0730 M=[.5«L+T1/LENBTH/100, { ] 4 ] 4 ) 4 1 [ INER)
065, 0740 EXINERTIASEINERYIA/XINERTIA ( 1 4 ] 4 )] ( ] {
066, 0750 KY=KZ ( 1 t ) { ] ( ] [ 1
067. 0760 JENF { 1 { ] ( ] { ] ¢ ]
068, 0770 TLNCJISTLNF(J], ELN[JI=ELNFLJ] ( ] [ 1 ( 1 ( 1 ( 1
069, 0780 NENESY ( 1 4 ] (* ] ( } 4 ]
070, 0790 K2=KX, SWA=1, NA=NF, NB=NKW 4 ] [ 1 [ 1 [ } 4 ]
071, 0800 DA=BI, DB=L, DAA=z,5%BI+.5+*W, TA=T, TR=zW s ) [ ) ( } [ ] ( ]
672, 0810 LENGTH=,5%B/NF ( ] ( 1 [ 1 [ ] { ]
073, 0820 16=WwW/12,, SEL=SWEL, M=NF/100. ( ] 4 ] ( 1 ( ] {INER)
074, 0830 EYINERTIA=EINERTIA/YINERTIA ( ] { ] { ) ( ] t
075, 0840 KX=KZ i 1 ( ] [ ] ( ] 1
076, 0850 AVESTRESS=2,# [SF*T#B/NF+SW*HeL/NW]/AREA ( ) { 1 { ) 4 ] C 1
077, 084G XELENDRATIQ=SQRT . (EXINERTIA/AVESTRESS]) ( 1 t 1 { 1 ( 1 ( 1
078, 0870 YSLENDRATI0=SQRT, (EYINERTIA/AVESTRESS) ¢ 1 ( ] { ) { ] ( 1
079. 0880 SkT,. (1] L4 ] { ] 4 1 { ) t ]
080, 0890 PV STRAIN,AVESTRESS,XSLENDRATIO,YSLENDRATIO,SKIPC

. 8900 »XSLENDRATIO*XMFACTOR, YSLENDRATIO*YMFACTOR ( { ) ( 1 [ ) 5
0B1, 0930 4 PV STRAIN,AVESTRESS, XSLENDRATIO, YSLENDRATIO [ [ } ( 1 ( ] (
Obz, 0920 5 [ETRAIN=STRAIN+INCREMENT 1=FINALSTRAIN-,0001 r ] [ 1 C ] [ex ) [READ]
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0e3.
Otd4,
05,
0be.
0E7.
OBg.
089,
090,
091,
0%2.
093,
094,
095.
0%6.
097,

ie7.
128,
129.
130.
1384,

132,
133,

134,

155,

SkG

101cC
102t
1040
1046
1021
160
1070
10860
109¢
1100
i1in
110
1190
1140
1150

2010
2020

2080
2040
2050
2060

2070

2080
2090
2100
2110
2120
2330
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
22860
2290
2300

SEg

2310
2320
2330
2340
2350
2360
2370
2380
2390
2400

3010
3020
3050
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
J150
3160
3176
3158¢
3194
Jauh
21

LabL TYP

Sub

11

12

13

14

INER,

*u

10
it

iz
13

14
15

16
17

LABL TYP

18
19

20
21

22

SK

14
15

STATEMENT

ShN=1,

SRNA=1.

FLN=TLN=0, §=1.
ELNz(4.~SRNA]/[SRA=SRNA)
TUNzJ+1, =, 8«ELN
S31.+[SANA=1.)v . 5%ELN
SRNA=1.

ELN=[1,-5RN]/ [SRNA-SRN)
TLN=J+ S*ELN

S+ [SRAN=1,) % S+ELN
ELN=1,

TLN=J+.5

S22, 50 [SRN+SRNAY
STRESS=STRFSS+S
SELN=SELN+ELN

$ DETERMINATION OF N. AXIS
K2=100

ShT, (1001

Z2KZ*M § LCC. OF N, AXIS
KSINT.(Z+1.)

$i=0

JENA

$1281-LTLN(JI+71*ELNLY)

J=K

S1=81+(J=-,5=2)

S1=SL+ [TLN[JI=7)*ELNTJ)
Jad=1

K22KZ+1

ShB=Z#+LENGTH~ . 54DA

S2= ,5%DB*TB* (DAA-Z+LENGTH)
SWA

ShC=SUB=W

S2=,25%DB* [ S*DA+TR~Z#LENGTH])*#¥2=-,25+(,5%DA- C

Z*LENGTH)w#2*SEL*TB/NB

S2=TB* (DAA=Z*LENGTH]*SEL*,5*DB/NB

S2~TBe« [DAA+Z*LENGTH]*SEL*.5%DB/NB+
TA*LENGTH¥#2#S1+SK. (K1-1,E-6

K2zKZ=1

§ DETERMINATION OF M. OF I[.

Si=0

JENA

S1=81+ (12, # [TLNIJI+Z]1wn2+ELN[JI**2)*FLN(J]

J-K

1281412, w([J=.5-Z)#*244,

S1281+112,w {TLNIJ)I=Z)##2+ELN(J)**2)*ELNTJ]

Jzd-1

STATEMENT

ShA
SezNB#TB*[[DAA-Z*LENGTH]x#2+18)
Sha

5hC

SE=DB/3 ¥ (2, %[, 5*DA+TB=Z*LENGTH ] ##3+
[Z+«LENGTH=,5%DAa)**3+SEL/NB)

Sz=TB*DB* ([ [DAA-Z*LENGTH]**2+[B)*SEL/NB

(

C ZERO

EINERTIA=S2+DB+TB* [ [DAA+Z*LENGTH]I##2+[RI*SEL/C

NE+TAYLENGTH*%3/6 #5142+ 1K, [K]
EINERTIA=0

K=NA

ShA

SFN=STRAIN+RWIK=1], SRNA=STRAIN+RWIK?!
SAN=STRAIN+RF(K=1], SRNA=STRAIN+RF (K}
SRNA=1

SAN=1 .,

SwD=12

TUNIKI+ELN(KI*,5~2

Swh=10

Sah=13

SEN-1,

TLN(K]~ELNIK]*,5-2

Swh=12

Shh=11

ShD=10

SK(1]aK=,5-72

SKI1)=(TLN[K)=71+ELNIK]
SKI1L)=.5#[K=Z]sa2
SK[1]2K=,5-2=.5+[2=TLN(KJ=ELN[K]* ,5]sw2
SA[1)=SK[11#TA+LENGTHw»2

SKi1y=l

NOT O

NOT 0

PAGE 3.

PLUS

22

MIN

(12
(11
[
(
{
[
(13
[

(
(
(
(
{
{
[

-
o

MIN

(18
(16

117

(20
(19

ELSE

ELSE

DEC 21 66
us

) t

1 {

) (14

) (

} [

) (14

1 t

) t

) t

1 (14

] t

) t

) {

) (

] [

3 [

] (

1 {

] {

) t

] (

1 (

) {

! {

} [11

1 {

) (

} (

) {

] (15

] (

] 4

] [15

] t

| [

) (

1 {

] (

] t

1 ¢

] (

] (17

] t

] L
DEC 21 66
us

] {

] [21

] (

1 4

] (21

1 (

] [

) T .

suB
SuB
SUB
SuB
sus
sue
sus
suB
suB
sus
SUB
suB
suB
SuB
suB

INER,

INER.

INER,
INER,
INER.
INER.

INER.,
INER,

INER.,
INER,

7]
=

57
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# sEo
156, 4010
157,  40%0
158, 4030
159, 4040
160, 4050
. 4060
161, 4070
162, 4080
163, 4090
164, 4100
165, 4110

LAB

1K
10
14
12
13

14
15
FIN

L TYP STATEMENT

. K=NA
IK{1)e{K=-,5-2]e*241,/42,

IK(1)=CUTLNIK]~Z)wa2+ELNTK)w#2/12, ) *ELNIK]

IR(1)e{K=Z)#*3/3
IK[1)=s(K=,5=2}%u2+%1,/12,
<[Z-TLN[K]=,5%ELN[K)]1%#3/3
IK[11=IK[11#TA*LENGTH»#3
IK[1]=0

PV 41

PL END OF PROGRAM

END

*#¥ 24k SYMBOL TAB| Ewwwwd

AREA

81

DAA
EXINERTIA

KZ
LENGTH
NW

RF

SuB

SKIP

TLN
STRESS
SRNA

SHW

TA

S

W

SWD
XSLENDRATIOQ
YMFACTCR

UMUSED MEMORY FROM [OCTAL] 10034 TC (OCTAL) 14603.

AVESTRESS
DA

ELNF

EINERTIA

FINALSTRAIN

ISTRAIN
*INT

XINERTIA
YIELDSTRAIN
YSLENDRAT!O

C ZERO

NOT 0

— e

PAGE 5,
PLUS

(15
(
(
t

— -

DEC 21 66

MINUS

B
D8

EYINERTIA
NER
INCREMENT

SEL

Swe

SWC
XMFACTOR
YINERTIA
Z

ELSE

[SWD ]

(14
(14
(14

(
L.
t.
{
(
(

]
)
]

58
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005 2082 FUMIO NISKINC

DeC 20 66
" sko
001, oo0l0
002, 0010
003. 0020
004, 0030
005, 0040
006, 0050
007, 8060
008, 0070
009, 8080
010, 8090
014, 0400
612, ailo
013, 0420
. 0130
014, 0140
015, 0150
0i6, 0160
0i7. 0170
018, 0180
019, 08190
020, 0200
024, 0210
022, 0226
023, 0230
024, 0240
025. 0250
026. 0260
027, 0270
0ze, 0280
029, 8290
030, 0300
031, 0310
032, 0320
033, 0330
034, 6340
035, 0350
036, 0360
037, 0370
. 0380
038, 0390
039, 0400
. 8410
040, 0420
041, 0430
042, 0440
043, 0450
044, 0460
. 0470
045, 0480
. 0490
046, 0500
047, 0510
048, 520
049, 0530
050, 0540
* SEQ
054, 0550
052. 0560
053, 0570
054, 0580
055. 0590
056, 0600
057. 0610
058, 0620
059, 0630
060, 0640
061, 0650
062, 0660
063, 0670
064, 0680
. 0690
065, 0700
066, 0710
0720
067, 0730
068, 0740
. 0750
069, 8760
070, 06770
074. 0780
072, 0790
. 0800
073, 0810
074, 0820
075, 0830
076, 0840
077. 0850
078, 06860
079. n870
060, 0880
061, 0890
0b2. 0900
063, 0910
064, 8920
065, 8930
066, 0940
067, 0950
0kE, 1960
069, 097¢
090, 0980
091, 0990
09z. 1000

COLUMN EUCKLING

12 36.4
LabL TYP STATEMENT
$ 290-3=6
% CALCULATION OF COLUMN CURVE RASED AN
$ TANGENT MODULLS CONCEPT
§ FLEXURAL BUCKLIAG, TEE COLUMN
§ DECEMBER, 1966 BY FUMIO NISHINO
D RF[100], RW(100), TLN(100), ELN(100].SUB,(14]
ShT,01)
CRDY!ELDSTRAIN
READ CRDISTRAIN
CRDINCREMENT,FINALSTRAIN
CRDNF ) NW
CRDBIT,L,H

LABL

LIS

sue

11

12

13

14

SL CALCULATION OF TANGENT MODULUS COLUMN' CURVE,
FLEXURAL BUCKLING, TEE-COLUMNS B

PL
PL EY FUMID NISKING
PV
PL INPUT PARAMETERS
PVLs NFs» NWs, BsT,losh
SkT,11)
PVLYIELDSTRAIN
PVL ISTRAIN, INCREMENT, FINALSTRAIN,
PL RESIDUAL STRFSSES IN THE FLANGE
PV
J=0
CRDRF L J)
PV SKIP,RFLJ)
[v2)+1]=NF

PV »
PL RESIDUAL STRESSES IN THE WEB
PV .

Ja0 .
CRDRW[J)
PV SKIP,RW[J) “
[vuJ+1)=NW
AREA=R*T+Ww|
YEm= ,S5*{L+T)*WeL/AREA
XINERTIA=(BaTww3+Wal#u3]/12,+BeTHYE*#2+
WHL¥ [ .54 [L+TI+YE]*#2
ShT. (1)
XMFACTOR=3,1415926+SQRT. [XINERTIA/AREA/
YIELDSTRAIN)
PV 4
PL CALCULATED RESULTS
PVL, SKIP,» AREA, XINERTIA,,
ShT.11) .
STRAIN AVESTRESS
XSLENDRATIO XLENGTH
PL STRAIN AVESTRESS
XSLENDRATIO
PL
STRAINSISTRAIN
STRESS=SELN=0
J=i, STWA=1
SAN=STRAIN#RF[J=1]

TYP STATEMENT

SANA=STRAIN+RF (J)

[voJ+1)«NF

SFeSTRESS

SFEL=SELN

STRESS=SELN=STLN=SWTL=0

Jat, STWA=D

SEN=STRAIN*RW{J=1}

SANA=STRAIN+RWIJ]

[vaj+il=NW

Sh=STRESS

SWEL=SELN

SFEL

XSLENDKAT10=0

YFa<We [L/NW)*#24STLN/

J {B'T/NF'SFEL°L*R/NN'SNELl

=
“ShTL=ZELNIJ)«LITLNIJ)+#NW/L*YP ) we2+
ELNIJ)#*2/12,)+SWTL
(vag+ileNK
EXINERTIA=(YP*YF+T#T/12,)*SFEL*B*T/NF/
XINERTIA#SHTL #Wa (L/NW]*#«3/XINERTIA

AVESTRESS=SF#B*T/NF/AREA+SW*L*W/NH/AREA

XSLENDRATIO=SQRT, (EXINERTIA/AVESTRESS]

ShT,[1]
PV SKIP,STRAIN,AVESTRESS,XSLENDRATIO,SKIP,

XSLENDRATIO«XMFACTOR
SKI1P,STRAIN,AVESTRESS, XSLENDRATIO
[STRAIN=STRAIN+INCREMENT)~FINALSTRAIN=,0001

p

<

SRN=1,

SRNA=1.

ELN=TLN=0,8=1.
ELN=z[1.=SRNA]/[SRN=SRNA)
TUNzJ= S#ELN
S31,+[SRNA=1.}* ,B*ELN
SKNA~L.
ELN=[1,=SRN1/[SRNA=SRN]
TLN=J=1,+,5%ELN
S§21,+(SRN=1,] %, 5+ELN

ELN=1,

TLN=J=.5
S=,5*[SAN+SRNA]
STRESS=STRFSS+S
SELN=SFLN+ELN
STwA

Ce,asTeNW/L

C ZERO

c

c

c

c
c

PAGE 1.
NOT O PLUS
{ )| t 1
{ ) t )
{ ] ( l
( ] ( ]
t 1 ( }
t ) ( )
( ) ( 1
( 1 ( ]
( } ( }
( ] ( )
( ] ( )
( ] { 1
{ ] ( ]
{ 1 { 1
( ) [ ]
( 1 { ]
( ] ( ]
( ) [ ]
{ 1 { )
{ 1 [ ]
[ 1 { )
( ] ( ]
( 1 ( ]
[ 1 [ ]
( 1 ( }
( ] ( 1
( ] ( 1
( ) { )
( 1 [ ]
( 1 t 1
{ ] t 1
{ ] t ]
( ) { ]
{ 1 { ]
( } t ]
{ ) ( 1
( ] ( 1
( ] ( 1
[ ] ( 1
( ] ( 1
t ] ( )
( ] ( 1
( 1 ( }
( 1 ( ]
[ ] [ 1
( ] ( ]
( ] ( 1
( ] { ]
{ ] { ]
[ ] ( 1
PAGE 2.
NOT 0 PLUS
( 1 [ 1
{ ] ( 1
( 1 { 1
{ 1 ( ]
{ ] ( ]
{ ] t ]
[ ] t 1
{ ] t ]
{ ] ( ]
4 ] { ]
(7 ) [ )
(7 1 t )
{ ) { 1
[ ] [ ]
t ] t 1
( ] [ )
( 1 [ ]

DEC 20 66
MINUS ELSE
t (I 1
( 1t |
{ 1t ]
{ 1t 1
{ 1t )
t bt )
{ 1t )
[ 1 )
IFIN )t )
1 1ot )
t 1t )
( 1t )
t 1t )
[ 1 3
t 1 )
( 1 ]
( 1o ]
{ 1t ]
{ [ )
[ [ )
t )t )
( 1t ]
{ 1o )
( 1t )
t 1ot )
{ 1ot )
t« 1 )
t I )
{ 1ot 1
{ 1t )
{ 1 )
{ 1ot )
{ 1ot )
« 1 )
( 1ot 1
{ 1t )
t 1ot )
t 1ot )
t 1t )
{ 1o 1
( )t )
t ot )
( )t )
( )3
t )t )
t 1ot )
{ 1ot )
( 1t |
( 1t ]
{ 1t )
DEC 20 66
MINUS ELSE
t ! tsuB )
s« 1t )
{ (I ]
{ ot }
{ 1ot )
{ 1t )
{ 1t ]
( 1 [SUB 1
t« 1 )
t [ )
( 1t )
{ ) )
{ 1t4 )
( 1t ]
t 1t )
t 1t )
« ) )
( 1 ]
{ 1t ]
{ S )
{ 1ot )
t (NI
t ot ]
{s+ 1  [READ)
12
11
14
14
13
14

sus

sus
sus
sue
sus
sus
sus
suB
sus
sue
sus
suB

suB
Sug
SuB
sus




290.6

% SEQ
093, 4010
094, 1020
095, 1030
096, 1040

LABL TYP STATEMENT
STLN=STLN+ELN*TLN([J)
FIN PV
PL END OF PROGRANM

END$S END OF PROGRAM

*r#aaxSYMBOL TABLExwhwn

UNUSED MEMORY FROM [OCTAL)

AREA
FINALSTRAIN
J

NW

READ

SKIP

STRESS

SELN

SRNA

STLN

SWEL
XINERTI[A
YIELDSTRAIN

06232 10 (0CTAL)

15713,

PAGE 3,

C ZERO NOT 0

t (
t {
t t
t t

(
(
{
(

AVESTRESS
EXINERTIA
ISTRAIN

L

RF
sup
SQRT
TLN
STWA
SF
SHTL
s

XMFACTOR
YE

PLUS

]
]
1
}

DEC 20 66
MINUS ELSE

( ] {
( ! t
( } (
( ] (

B

FIN
INCREMENT
NF

RW

SWT
STRAIN
T

SRN
SFEL
SwW

W
XSLENDRATIO
Ye

sus
sus

suB

60
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0CE 2382 FUMIO NISWING  COLUMM RUCKLING

DEC 21 é¢ 21 52,2
PAGE 1, DEC 21 #n
» Skt LABL TYP STATEMENT C 7EKC NOT O PLUS ¥INUS FLSE
- : 0C1. 0011 § 290=3e2 ' 1 4 ) t ] ( ] t
0cz, 003! t CALCULATICN OF COLUMN CURVE BASER ON ' 1 ( ) ( ] ( 1 (
0u3. 0020 ITANGENT MODULLS CONCEPT . ) { ] i 1 ( 1 { !
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CALCULATICN OF COLUMN CURVE BASED ON TANGENT MOBULUS CONREPT Y FUMIC NISKINO

INPUT PARAMETERS

2.0000GCU400 § NF 2.0000000+00 § NW 8,0000000+00 $ B 0,000000C+u0 & BI 4,3300000-01 $ T 7.1340900+00 $ L
1.4400v00-01 § W

6.5000000-01 § [STRAIN 5,0000000-02 § INGREMENT 1.2200000+00 ¥ FINALSTRAIN

FRESIDUAL STRESSES IN THEF FLANGE

=1.8830089-01
3.000000V=-01

RESIDUAL STRESSES IN THE WER

-1.8830000-04
-1.8830000-01

CALCULATED RESULTS

8.9825920+00 § AREA 1.0799554+02 § XINERTIA 3,6963535401 § YINERTIA

STRAIN AVESTRESS XSLENCRATIO YSLENDRATIO EXINERTIA EYINERTIA
6,5000000-04 6,5000204-01 1,1413789+02 1.1413789+02 1.0000000+00 1.0000000+00
7.0000000-01 7.0000204-01 1.,0998603+02 1,0998603+02 1.0000000+00 1.0000000400
7.5000000-04 7+3072030-01 749130993401 3.8110954+01 5.4034361-01 1,2533617-01

8.0000000-01 746143856701 747518395+01 3,7334297+01 5.4034361-01 1.2533617-01

8.5000000-04 7.9215682-01 7.6000530+01 3.6603265+01 5.4034361-01 1,2533617-01

9.0000000-04  8.2287508-01  7.4568473+01  3.5913560+01 5.4034361-01  1.2533617-01
9.5000000-01  8.5359334-01  7.3214432+01  3.5261428+01 5.4034361-01  1.2533617-01 i
1.0000000400 8,8431160-01  7.1931571+01  3.4643579+404  5.4034361-01  1.2533617-01
1.0500000400 9,1502986-01  7.0713864401  3.4057109+01  5,4034361-01  1.2533617-01
1,1000000400 9,4574812-01  6,9555978+01  3,3499449.01  5,4034361-01  1,2533617-01

1.1500000400 9.7646638-01 6.,8453169+01 3,2968316+01 5.4034361~-04 1.2533617~01

1.2000000400 1,0000000+00 0,0000000+00 0,0000000+00 0.000000C+00 0,0000000+00

H#END OF DATA# CARD READ
STATEMENT 006 WAS BEING EXECUTED.
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