Lehigh University Lehigh Preserve

Fritz Laboratory Reports

Civil and Environmental Engineering

1966

Numerical method for computing column curves, December 1966

F. Nishino

L. Tall

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports

Recommended Citation

Nishino, F. and Tall, L., "Numerical method for computing column curves, December 1966" (1966). *Fritz Laboratory Reports*. Paper 176. http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/176

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Welded and Rolled T-I Columns

NUMERICAL METHOD FOR COMPUTING COLUMN CURVES

FRITZ ENGINEERING LABORATORY LIBRARY

200 528

। G H

U

Z->=200-->

0 F

RESEARCI

by

Fumio Nishino Lambert Tall

Fritz Engineering Laboratory Report No. 290.6

Welded Built-Up and Rolled Heat Treated T-1 Steel Columns

NUMERICAL METHOD FOR COMPUTING COLUMN CURVES

by

Fumio Nishino Lambert Tall

This work has been carried out as part of an investigation sponsored by the United States Steel Corporation.

Fritz Engineering Laboratory Department of Civil Engineering Lehigh University Bethlehem, Pennsylvania

December 1966

Fritz Engineering Laboratory Report No. 290.6

ABSTRACT

The effect of residual stress on the buckling strength of centrally loaded columns of structural steel is studied. Numerical methods of computing the tangent modulus and the reduced modulus column curves of non-dimensionalized stress versus non-dimensionalized slenderness ratio are presented for pinned-end columns. The methods can be applied to columns containing residual stress of any distribution. Box, H, tee and equal leg angle cross sections are considered.

Numerical results are obtained for two wide flange columns, 8WF31, and 27WF94, containing idealized residual stress distributions of various magnitudes.

TABLE OF CONTENTS

	ABSTRACT	Page
1.	INTRODUCTION	l
2.	BUCKLING STRENGTH OF COLUMNS	5
	2.1 Assumptions	5
	2.2 Buckling Strength of Columns	6
3.	NUMERICAL COMPUTATION OF COLUMN CURVES	8
	3.1 Tangent Modulus Column Curve	9
	3.2 Ruduced Modulus Column Curve	1.5
4.	NUMERICAL EXAMPLES	22
5.	SUMMARY	25
6.	ACKNOWLEDGEMENTS	26
7.	NOMENCLATURE	27
8.	APPENDICES	32
9.	TABLE, FIGURES AND COMPUTER PROGRAMS	43
10.	REFERENCES	63

The strength of a column may be defined by either of two criteria; the bifurcation (or buckling) load, and the ultimate load. The buckling load may be defined as the load at which the theoretically straight column is indifferent to its deflected position. The ultimate load is the maximum load a column can carry. Although no such perfectly straight member exists in practice, the buckling strength is the most fundamental characteristic of the compression member on which the strength of practical compression members is dependent, and the uncertainties such as initial out-of-straightness are best taken care of for design purposes by the factor of safety.⁽¹⁾ The buckling strength of a steel column depends mainly on the slenderness ratio, the sectional properties of the column, the stress-strain relationship of the material, the residual stress distribution in the cross section⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾.

Residual stresses were introduced in the past decade as the main factor influencing the strength of centrally loaded columns. $^{(3)(4)(5)(6)(7)}$ Residual stresses are observed in almost all structural steel members. They are formed as a result of plastic deformations which take place during or after various fabrication procedures. For instance, rolled sections contain residual stress due to uneven cooling after rolling. $^{(3)(8)}$ There are several other causes by which the residual stress may be formed, such as cold straightening, shearing, flame cutting, and welding. The residual stress formed by the welding process is usually larger

1. INTRODUCTION

-2

Since welded built-up members are being used more frequently in steel construction due to economy and convenience, it is quite important to have a knowledge of the strength of these members.

When a column containing residual stress is subjected to thrust, it will behave elastically until the thrust reaches a certain value which causes yielding in some portion of the cross section. Under a thrust less than this value and for certain geometrical limitations, the column may buckle elastically. The residual stress has no effect for this elastic buckling* and thus the buckling stress is equal to the Euler stress.

When the thrust exceeds this value, some parts of the cross section start to yield due to the presence of compressive residual stresses. Thereafter, the cross section consists of elastic parts and plastic parts** and the buckling under this loading is called "inelastic buckling" in this report.

In the literature the computation of buckling strength has been made mainly in the form of column curve of stress versus slenderness ratio because of the convenience of computation.

^{*} In general, residual stress does have some effect on the elastic buckling of a column⁽⁹⁾(10); however, in this report only the buckling due to excessive bending in the direction parallel to a symmetrical axis of the cross section is considered, in which case residual stress plays no role.

^{**}The word plastic is used, since structural steel can be considered as an elastic - perfectly plastic material(11)(12).

This has been carried out by either of two methods: one is an analytical method based on the assumed or measured residual stress distribution in the cross section and the other is an approximate method based on the stress-strain relationship of the cross section containing residual stresses⁽³⁾⁽¹³⁾⁽¹⁴⁾. However, because of the difficulty encountered in computation, the analytical method was made only for a column with a simplified residual stress distribution such as the triangular distribution for rolled shapes and the rectangular distribution for welded shapes in the flanges; the residual stress present in the web plate was mostly neglected.⁽¹⁵⁾

Residual stresses have been measured on a wide variety of welded plates and on welded built-up shapes of various steels⁽¹⁶⁾⁽¹⁷⁾⁽¹⁸⁾⁽¹⁹⁾⁽²⁰⁾. The results obtained are significantly different compared to the idealized patterns of residual stress assumed for the analyses of column strength in the literature. Further, a significant difference in the patterns of residual stress distribution existed depending on material and on geometry of the shapes. The analytical approach to computing column curves seems to be quite difficult and does not cover a wide variety of residual stress patterns. A numerical method of computation is considered in this report, with the help of a digital computer.

This report presents a method of compute column curves by means of a digital computer for structural steel columns containing residual stress. The analysis includes the preparation of equations

e de la com

for column curves based on the tangent modulus and the reduced modulus concepts of column buckling so that the upper and lower limits of the ultimate strength⁽¹⁾ of a straight and centrally loaded steel column are obtained over a wide range of slenderness ratios.

2. BUCKLING STRENGTH OF COLUMNS

2.1 Assumptions

The following assumptions are the basis for the subsequent analysis:

- (1) The column is initially straight and free of imperfections. The deflection due to the moment from partial yielding* is small so that the column is straight before buckling even in the inelastic domain.
- (2) The external load is applied to the centroid of the cross section, causing uniform strain over the cross section, and along the whole length.
- (3) The mechanical properties, and the residual stress, are uniform along the whole length of the column for each fiber.
- (4) The cross section has at least one axis of symmetry and does not change along the length of the column.
- (5) The residual stress is constant in the thickness direction of the wall of the cross section. The distribution of residual stress is symmetric about the axis of symmetry of the cross section.

*The partial yielding is due to the presence of residual stress in the case of a column with homogeneous material.

290.6

2.2 Buckling Strength of Columns

The differential equation of equilibrium of a slightly buckled column is well known (1)(2)(10)(14)(21) and can be written in the following form,

$$B \frac{d^{4}u}{dz^{4}} + P \frac{d^{2}u}{dz^{2}} = 0$$
 (1)

where z is the co-ordinate along the length of a column and u denotes the deflection. P is the axial load at which the column is going to buckle. The bending rigidity of the column, B, is defined by the product of modulus of elasticity, E, and moment of inertia, I, of the cross section for an elastic column, thus

$$B = EI$$
(2)

For an inelastic column, the bending rigidity is defined by either of two theories; the tangent modulus theory or the reduced modulus theory. The tangent modulus theory defines the rigidity by the following expression with the tangent modulus of elasticity

$$B = \int_{A} E_{t} y^{2} dA$$
 (3)

where y is the distance from the neutral axis to a fiber in the cross section and A denotes the area. The tangent modulus of elasticity, E_t , is not a constant for a column containing residual stress, since it is a function of strain at each fiber, which is not uniform but it is shown by the sum of residual strain and the strain due to loading.

The reduced modulus theory defines the rigidity by the following equation

$$B = \int_{A_1} E_t y^2 dA + \int_{A_u} E y^2 dA$$
(4)

where A_1 and A_u denote the area respectively, where strain is increasing and the area where strain is decreasing. The neutral axis is determined by the condition that no increment of axial load occurs at the instant of buckling, thus

$$\int_{A_{\perp}} E_{t} (y-Y_{o}) dA + \int_{A_{u}} E (y-Y_{o}) dA = 0$$
(5)

where $Y_{\rm O}$ is the coordinate of the neutral axis.

The expression for the buckling strength of a column is obtained as the characteristic value of Equation 1. For the analysis of a column with residual stress and loaded into the inelastic range of the material, it is not, in general, practical to solve for the buckling load, but it is easier to solve for the critical length under a known loading. The expression for the buckling of a pinned-end column is (10)(21).

$$L_{cr} = \pi \sqrt{\frac{B}{P}}$$
 (6)

where L_{cr} is the length of a pinned-end column which is going to buckle under a loading P. Since the bending rigidity is a function of loading and of residual stress distribution in the inelastic range, the explicit numerical solutions need more consideration.

3. NUMERICAL COMPUTATION OF COLUMN CURVES

The numerical method of computation is considered for steel columns of box-, H-, tee-, and equal-leg angle-sections, containing residual stress. The method, by its nature, is applicable for columns with any kind of residual stress distribution under the given assumptions and it is suitable for computation by a digital computer.

In addition to those in Article 2.1, an assumption that the stress strain relationship of steel is elastic-perfectly plastic is made for the following analyses. Because of this assumed stress strain relationship of steel, the bending rigidity, B, at the instant of buckling becomes simply the product of modulus of elasticity and the effective moment of inertia, I

$$B = EI_{o}$$
(7)

The tangent modulus theory defines the effective moment of inertia by the moment of inertia of the cross section which remains elastic, and the reduced modulus theory defines it by that of the cross section which consists of the elastic part in the loading region of the cross section and the whole part in the unloading region at the instant of buckling.

In order to compute the non-dimensionalized column curves, and using Eq. 7, Eq. 6 may be changed to

$$\frac{1}{\pi} \cdot \frac{L}{r} \cdot \sqrt{\frac{\sigma_{Y}}{E}} = \sqrt{\frac{L_{e}}{I} \cdot \frac{\sigma_{Y}}{\sigma_{cr}}}$$
(8)

where, r and I are the radius of gyration and the moment of inertia of the cross section, respectively. $\sigma_{\rm cr}$ is the buckling strength defined by the axial load divided by the area of the cross section. The left hand term of the above equation is the non-dimensionalized slenderness ratio.

The analysis is made in such a way that the results are presented in the form of column curves of stress versus slenderness ratio. Only the analysis for box-columns, including H-columns as a special case, is described in this article and the analyses for other sections are given in Appendix A.

3.1 Tangent Modulus Column Curve

Since two axes of symmetry exist in a box-section, Eq. 8 holds for flexural buckling both in the x- and y-direction. For the buckling in the y-direction, Eq. 8 can be rewritten in the following form with subscript x for both the moment of inertia and the radius of gyration denoting them as values about the x-axis.

$$\frac{1}{\pi} \cdot \frac{L_{\chi}}{r_{\chi}} \cdot \sqrt{\frac{\sigma_{Y}}{E}} = \sqrt{\frac{I_{\chi e}}{I_{\chi}} \cdot \frac{\sigma_{Y}}{\sigma_{cr}}}$$
(9)

Similarly for buckling in the x-direction, the following equation is obtained

$$\frac{1}{\pi} \cdot \frac{L_y}{r_y} \cdot \sqrt{\frac{\sigma_Y}{E}} = \sqrt{\frac{I_{ye}}{I_y} \cdot \frac{\sigma_Y}{\sigma_{cr}}}$$
(10)

where the subscript y denotes that the values are about the y-axis.

On specifying a strain due to the external load which is distributed uniformly in the cross section, the load which causes the specified strain may be computed from the stress distribution in the cross section. The effective moment of inertia I_{xe} and I_{ye} under the load are also determined. The slenderness ratio is a function of the external load and the moment of inertia as seen in Eq. 8, and consequently it is a function of the specified strain.

A cross section of a box-column may be considered as consisting of small segments as shown in Fig. 1, with the change of the residual stress distribution inside each segment linear in the tangential direction. The magnitudes of residual stresses or strains are assumed to be known at the boundaries of the segments. Since the cross section has two axes of symmetry, it is enough to consider only a quarter of it. A half of the flange consists of n small segments of the same size. Similarly a half of the web consists of m segments. Numbers are given, 1 to n, to the segments for the flange part, and 1 to m for the web as shown in Fig. 1. It is noted that the H-shape is a special case of the box-shape when \overline{E} is equal to zero.

The strain due to external load at which the column is going to buckle is denoted as $\epsilon_{\rm cr}$. Since the residual stresses are in equilibrium in the cross section, the external load may be computed by the sum of stress at each segment

$$P = 4 \sum_{n \in m} \sigma_s \Delta A \tag{11}$$

where ΔA is the area of each segment and σ_s is the average stress in the segment. $\sum_{n,m} f_n$ denotes the summation of segments throughout a quarter part of the cross section. The average stress σ_s can be computed from the residual strains at the edges of the segment and uniform external strain ϵ_{cr} . The strains at the edges are

$$\varepsilon_{i} = \varepsilon_{r,i} + \varepsilon_{cr}$$
(12)
$$\varepsilon_{i} = \varepsilon_{r,i} + \varepsilon_{cr}$$

where ϵ_{r} denotes the residual strain and the subscripts i and i-l refer to the values at both edges of segment i as shown in Fig. 1. Then the average stress in the segment can be obtained by simple arithmetic in a form non-dimensionalized by the yield stress σ_{y} , depending on the value of strain at the edges.

$$\frac{\sigma_{s}}{\sigma_{Y}} = 1 \quad \text{for } \varepsilon_{i} \ge \varepsilon_{Y} \quad \varepsilon_{i-1} \ge \varepsilon_{Y} \\
= \frac{\varepsilon_{1} + \varepsilon_{i-1}}{2} \quad \text{for } \varepsilon_{i} < \varepsilon_{Y} \quad \varepsilon_{i-1} < \varepsilon_{Y} \quad (13) \\
= \frac{2\varepsilon_{i} - \varepsilon_{i-1}^{2} - 1}{2\varepsilon_{Y}(\varepsilon_{i} - \varepsilon_{i-1})} \quad \text{for } \varepsilon_{i} \ge \varepsilon_{Y} \quad \varepsilon_{i-1} < \varepsilon_{Y} \\
= \frac{2\varepsilon_{i-1} - \varepsilon_{i}^{2} - 1}{2\varepsilon_{Y}(\varepsilon_{i-1} - \varepsilon_{i})} \quad \text{for } \varepsilon_{i} < \varepsilon_{Y} \quad \varepsilon_{i-1} \ge \varepsilon_{Y}$$

Then the critical stress non-dimensionalized by using the yield stress can be computed as

$$\frac{\sigma_{\rm Cr}}{\sigma_{\rm Y}} = \frac{4}{\rm A} \sum_{\rm n,m} \left(\frac{\sigma_{\rm S}}{\sigma_{\rm Y}} \right) \cdot \Delta {\rm A}$$
(14)

where A is the cross sectional area.

-12

The moment of inertia of the cross section about the x- and y- axes, I_x and I_y , can be computed as

$$I_{X} = 4 \left[\sum_{n,m} y^{2} \Delta A + \sum_{n,m} \frac{\Delta A}{12} (\Delta y)^{2} \right]$$
(15)

$$I_{y} = 4 \left[\sum_{n,m} x^{2} \Delta A + \sum_{n,m} \frac{\Delta A}{12} (\Delta x)^{2} \right]$$
(16)

where x and y are the coordinates at the center of each segment. Δx and Δy are the dimensions of each segment in the x- and ydirections, and ΔA is its area. Figure 1 shows the detail of those notations. The moment of inertia of the cross section which remains elastic can be computed similarly,

$$I_{xe} = 4 \left[\sum_{n,m} y_e^2 \Delta A_e + \sum_{n,m} \frac{\Delta A_e}{12} (\Delta y_e)^2 \right]$$
(17)

$$I_{ye} = 4 \left[\sum_{n,m} x_e^2 \Delta A_e + \sum_{n,m} \frac{\Delta A_e}{12} (\Delta x_e)^2 \right]$$
(18)

where x_e and y_e are the coordinates at the center of the elastic part, of which the dimensions are Δx_e and Δy_e in each segment. ΔA_e is the area which remains elastic in each segment.

With notations b, \overline{b} , d, t, and w for the dimensions of the cross section as shown in Fig. 1, the following relationships hold true for a segment in the flange

$$\Delta x = \frac{b}{2n}, \quad \Delta y = t, \quad \Delta A = \frac{bt}{2n}$$
 (19)

and in the web

$$\Delta x = w, \quad \Delta y = \frac{d}{2m}, \quad \Delta A = \frac{dw}{2m}$$
 (20)

With these relationships, the non-dimensionalized stress, Eq. 14, can be written for the convenience of computation as

$$\frac{\sigma_{cr}}{\sigma_{Y}} = \frac{2}{A} \left[\frac{bt}{n} \cdot \sum_{i=1}^{n} \left(\frac{\sigma_{s}}{\sigma_{Y}} \right)_{i} + \frac{dw}{m} \cdot \sum_{i=1}^{m} \left(\frac{\sigma_{x}}{\sigma_{Y}} \right)_{i} \right]$$
(21)

When yielding penetrates partially into a segment, the dimensions of the elastic part and the coordinates at the center of the part can be obtained by the following equations:

for a flange segment

$$\Delta x_{e,i} = \frac{\epsilon_{i-1}}{\epsilon_{i}-\epsilon_{i-1}} \Delta x,$$

$$x_{e,i} = \Delta x (i-1) + \frac{\Delta x_{e,i}}{2}$$
for $\epsilon_{i} \ge \epsilon_{Y}, \quad \epsilon_{i-1} < \epsilon_{Y}$

$$\Delta x_{e,i} = \frac{\epsilon_{i-1}-1}{\epsilon_{i-1}-\epsilon_{1}} \Delta x,$$

$$x_{e,i} = \Delta x \quad i - \frac{\Delta x_{e,i}}{2}$$
for $\epsilon_{i} < \epsilon_{Y}, \quad \epsilon_{i-1} \ge \epsilon_{Y}$

$$(22)$$

and for a web segment

$$\Delta y_{e,i} = \frac{\varepsilon_{i}^{-1}}{\varepsilon_{i}^{-\varepsilon_{i-1}}} \Delta y,$$

$$y_{e,i} = \Delta y (i-1) + \frac{\Delta y_{ei}}{2}$$
for $\varepsilon_{i} \ge \varepsilon_{Y}, \quad \varepsilon_{i-1} < \varepsilon_{Y}$

$$\Delta y_{e,i} = \frac{\varepsilon_{i-1}^{-1}}{\varepsilon_{i-1}^{-\varepsilon_{i}}} \Delta y,$$

$$y_{e,i} = \Delta y i - \frac{\Delta y_{e,i}}{2}$$
for $\varepsilon_{i} < \varepsilon_{Y}, \quad \varepsilon_{i-1} \ge \varepsilon_{Y}$

$$(23)$$

where the subscript i shows the values at the i-th segment. Then the moment of inertia about the x-axis can be computed as follows in the non-dimensionalized form

$$\frac{I_{xe}}{I_{x}} = \frac{1}{I_{x}} \left\{ (3d^{2}+6dt+4t^{2})(\frac{bt}{6n}) \sum_{i=1}^{n} (\frac{\Delta x_{e,i}}{\Delta x}) + (\frac{wd^{3}}{24m^{3}}) \sum_{i=1}^{m} (\frac{\Delta y_{e,i}}{\Delta y}) \left[12 (\frac{y_{e,i}}{\Delta y})^{2} + \frac{\Delta y_{e,i}}{\Delta y} \right] \right\}$$
(24)

and similarly about the y-axis

$$\frac{I_{ye}}{I_{y}} = \frac{1}{I_{y}} \left\{ (3\overline{b}^{2} + 6\overline{b}w + 4w^{2}) \left(\frac{wd}{6m}\right) \sum_{i=1}^{m} \left(\frac{\Delta y_{e,i}}{\Delta y}\right) + \left(\frac{tb^{3}}{24n^{3}}\right) \sum_{i=1}^{n} \left(\frac{\Delta x_{e,i}}{\Delta x}\right) \left[12 \left(\frac{x_{e,i}}{\Delta x}\right)^{2} + \left(\frac{\Delta x_{e,i}}{\Delta x}\right)^{2} \right] \right\}^{(25)}$$

With a specified strain $\epsilon_{\rm cr}$ due to external loading, and with the known residual stress distribution, Eq. 21 gives the critical stress corresponding to the critical strain. Equation 9, together with Eqs. 21 and 24, gives the non-dimensionalized critical slenderness ratio of a column which is going to buckle in the y-direction under the action of the stress. Similarly Eq. 10, together with Eqs. 21 and 25 gives the ratio for buckling in the x-direction. By varying the strain, $\epsilon_{\rm cr}$, from a small value to a large value at a certain increment, a column curve of stress versus slenderness ratio can be obtained.

3.2 Reduced Modulus Column Curve

The procedure followed in computing a column curve based on the reduced modulus concept is similar to that based on the tangent modulus concept. The difference involved is that under the reduced modulus concept, the neutral axis does not remain at the axis of symmetry of the cross section at the instant of buckling even for the cross section with two axes of symmetry with symmetric distribution of residual stress; instead the location of the neutral axis is a function of loading. This is due to the difference of modulus of elasticity in the loading and in the unloading portion of the cross section where yielding has penetrated.

Assuming buckling in the negative y-direction, the neutral axis is parallel to the x-axis and will be such that y is positive. The distance between the neutral axis and the axis of symmetry is denoted by Y_0 , which is shown in Fig. 2(a). The distance Y_0 has to be

determined to satisfy Eq. 5, which can be written in the form of a summation of stress at each segment,

$$\sum_{A_{u}} (y-Y_{o}) \Delta A + \sum_{A_{l}} (y_{e} - Y_{o}) \Delta A_{e} = 0$$
(26)

where Σ and Σ denote summation of area of each segment throughout A_u A_1 the unloading region and the loading zone, respectively. Equation 26 may be rewritten for the box cross section considered here,

$$\frac{bt}{2} \left(\frac{d+t}{2} - Y_0 \right) + \frac{wd}{2m} \sum_{i=k+1}^{m} (y_i - Y_0) + w \sum_{i=1}^{k-1} (y_{e,i} - Y_0) \Delta y_{e,i}$$

$$- t \left(\frac{d+t}{2} + Y_0 \right) \sum_{i=1}^{n} \Delta x_{e,i} - w \sum_{i=1}^{m} (y_{e,i} + Y_0) \Delta y_{e,i} + S_k = 0$$
(27)

where k is the number of a segment where the neutral axis passes through as shown in Fig. 2(a). The last term in the left hand side of Eq. 27, S_k , is the stress acting in the segment k. The expression of S_k depends on the penetration of yielding into the segment, and is considered in Appendix B. Equation 27 is valid when the resulting neutral axis is located in the web, namely under the following condition,

$$Y_{o} \leq \frac{d}{2}$$

When the resulting neutral axis is located in the flange, Eq. 27 must be modified, thus,

$$\frac{b}{4} \left(\frac{d}{2} + t - Y_{0}\right)^{2} - \frac{1}{2} \left(Y_{0} - \frac{d}{2}\right)^{2} \sum_{i=1}^{n} \Delta x_{e,i} + w \sum_{i=1}^{m} \left(y_{e,i} - Y_{0}\right) \Delta y_{e,i}$$

$$(28)$$

$$- t \left(\frac{d+t}{2} + Y_{0}\right) \sum_{i=1}^{n} \Delta x_{e,i}$$

for

$$\frac{d}{2} \leq \frac{Y}{o} \leq \frac{d}{2} + t$$

After the neutral axis is determined, the moment of inertia of the cross section, which consists of all the parts in the unloading section of the cross section and the parts remaining elastic in the loading section, can be computed by the following equations in the non-dimensionalized form

$$\frac{I_{xe}}{I_{x}} = \frac{1}{I_{x}} \left\{ bt \left[\left(\frac{d+t}{2} - Y_{o} \right)^{2} + \frac{t^{2}}{12} \right] + \frac{bt}{n} \left[\left(\frac{d+t}{2} + Y_{o} \right)^{2} + \frac{t^{2}}{12} \right] \right\} \right\}$$

$$\cdot \sum_{i=1}^{n} \left(\frac{\Delta_{xe,i}}{\Delta x} \right) + \frac{d^{3}w}{48m^{3}} \left\{ \sum_{i=k+1}^{m} \left[12 \left(\frac{Y_{i} - Y_{o}}{\Delta y} \right)^{2} + 1 \right] \right\}$$

$$+ \sum_{i=1}^{k-1} \left[12 \left(\frac{Y_{e,i} - Y_{o}}{\Delta y} \right)^{2} + \left(\frac{\Delta Y_{e,i}}{\Delta y} \right)^{2} \right] \left(\frac{\Delta Y_{e,i}}{\Delta y} \right)$$

$$+ \sum_{i=1}^{m} \left[12 \left(\frac{Y_{e,i} + Y_{o}}{\Delta y} \right)^{2} + \left(\frac{\Delta Y_{e,i}}{\Delta y} \right)^{2} \right] \left(\frac{\Delta Y_{e,i}}{\Delta y} \right) + 2I_{k} \right\}$$

$$(29)$$

when

$$Y_{o} \leq \frac{d}{2}$$

and

$$\frac{I_{xe}}{I_{x}} = \frac{1}{I_{x}} \left\{ \frac{2b}{3} \left(\frac{d}{2} + t - Y \right)^{3} + \frac{b}{3n} \left(Y_{0} - \frac{d}{2} \right)^{3} \sum_{i=1}^{n} \left(\frac{\Delta x}{\Delta x} \right) + \frac{bt}{n} \right\}$$

$$\cdot \left[\left(\frac{d+t}{2} + Y_{0} \right)^{2} + \frac{t^{2}}{12} \right] \sum_{i=1}^{n} \left(\frac{\Delta x}{\Delta x} \right) + \frac{d^{3}w}{48m^{3}} \left\{ \sum_{i=k+1}^{n} \left[12 \left(\frac{y_{i} - Y_{0}}{\Delta y} \right) + 1 \right] \right\}$$

$$+ \sum_{i=1}^{k-1} \left[12 \left(\frac{y_{e,i} - Y_{0}}{\Delta y} \right)^{2} + \left(\frac{\Delta y_{e,i}}{\Delta y} \right)^{2} \right] \left(\frac{\Delta y_{e,i}}{\Delta y} \right)$$

$$+ \sum_{i=1}^{m} \left[12 \left(\frac{y_{e,i} + Y_{0}}{\Delta y} \right)^{2} + \left(\frac{\Delta y_{e,i}}{\Delta y} \right)^{2} \right] \left(\frac{\Delta y_{e,i}}{\Delta y} \right) + 2I_{k} \right]$$
(30)

when

$$\frac{d}{2} \leq Y_{0} \leq \frac{d}{2} + t$$

where I_k is the contribution to moment of inertia of segment k, of which the expressions are shown in Appendix B, and depending on the penetration of yielding into the segment.

Similarly as for the tangent modulus curve, a column curve for the buckling in the y-direction can be computed from Eq. 9 substituting Eqs. 14 and either Eqs. 29 or 30.

A column curve for the buckling in the x-direction is also obtained by a procedure similar to that for buckling in the ydirection. The expression of the effective moment of inertia, however, is different depending on the location of the neutral axis, inside or outside of the web.

The equations which determine the location of the neutral axis become the following, depending on the resulting location of the neutral axis:

$$\frac{\text{wd}}{2} \left(\frac{\overline{b} + w}{2} - x_{0} \right) + \frac{\text{bt}}{2n} \sum_{i=k+1}^{n} (x_{i} - x_{0}) + t \sum_{i=1}^{k-1} (x_{e,i} - x_{0}) \Delta x_{e,i}$$

$$- w \left(\frac{\overline{b} + w}{2} + x_{0} \right) \sum_{i=1}^{m} \Delta y_{e,i} - t \sum_{i=1}^{n} (x_{e,i} + x_{0}) \Delta x_{e,i} + S_{k} = 0$$
(31)

when

$$\frac{d}{4} \left(\frac{\overline{b}}{2} + w - x_{0}\right)^{2} - \frac{1}{2} \left(x_{0} - \frac{\overline{b}}{2}\right)^{2} \sum_{i=1}^{m} \Delta y_{e,i} + \frac{bt}{2n} \sum_{i=k+1}^{n} (x_{i} - x_{0})$$

$$+ t \sum_{i=1}^{k-1} (x_{e,i} - x_{0}) \Delta x_{e,i} - w \left(\frac{\overline{b} + w}{2} + x_{0}\right) \sum_{i=1}^{m} \Delta y_{e,i} - t \sum_{i=1}^{n} \cdot (32)$$

$$\bullet (x_{e,i} + x_{0}) \Delta x_{e,i} + S_{k} = 0$$

when

$$\overline{\frac{b}{2}} < x_{o} \leq \overline{\frac{b}{2}} + w$$

and

$$w \left(\frac{\overline{b} + w}{2} - x_{0}\right) \sum_{i=1}^{m} \Delta y_{e,i} + \frac{bt}{2n} \sum_{i=k+1}^{n} (x_{i} - x_{0}) + t \sum_{i=1}^{k-1} (x_{e,i} - x_{0}) \cdot \Delta x_{e,i} - w \left(\frac{\overline{b} + w}{2} + x_{0}\right) \sum_{i=1}^{m} \Delta y_{e,i} - t \sum_{i=1}^{n} (x_{e,i} + x_{0}) \Delta x_{e,i} + S_{k} = 0$$

$$(33)$$

when

$$\frac{\overline{b}}{2} + w < x_0 \leq \frac{b}{2}$$

where $X_{\underset{\mbox{\scriptsize O}}{}}$ is the distance between the neutral axis and the axis of symmetry.

In a manner similar for that of Eq. 29, equations by which the effective moment of inertia of the cross section can be calculated are derived as follows, depending on the location of the neutral axis,

$$\frac{I_{ye}}{I_{y}} = \frac{1}{I_{y}} \left\{ dw \left[\left(\frac{\overline{b} + w}{2} - X_{O}^{2} + \frac{w^{2}}{12} \right) + \frac{dw}{m} \left[\left(\frac{\overline{b} + w}{2} + X_{O}^{2} + \frac{w^{2}}{12} \right) + \frac{w^{2}}{12} \right] \right\} \left\{ \frac{\Delta y_{e,i}}{\Delta y} \right\} + \frac{b^{3}t}{48n^{3}} \left\{ \sum_{i=k+1}^{n} \left[12\left(\frac{X_{i} - X_{O}}{\Delta x} \right)^{2} + 1 \right] + \sum_{i=1}^{k-1} \left[12\left(\frac{X_{e,i} - X_{O}}{\Delta x} \right)^{2} + \left(\frac{\Delta X_{e,i}}{\Delta x} \right)^{2} \right] \left(\frac{\Delta X_{e,i}}{\Delta x} \right) \right\} + \frac{n}{12} \left[12\left(\frac{X_{e,i} + X_{O}}{\Delta x} \right)^{2} + \left(\frac{\Delta X_{e,i}}{\Delta x} \right)^{2} \right] \left(\frac{\Delta X_{e,i}}{\Delta x} \right) \right\} + 2I_{k} \right\}$$

$$(34)$$

when

$$\begin{split} & \overset{X}{\circ} \leq \frac{\overline{b}}{2} \\ & \frac{1}{Y_{y}} = \frac{1}{T_{y}} \left\{ \frac{2d}{3} \left(\frac{\overline{b}}{2} + w - X_{o} \right)^{3} + \frac{d}{3m} \left(X_{o} - \frac{\overline{b}}{2} \right)^{3} \Sigma \left(\frac{\Delta y_{e,i}}{\Delta y} \right) + \frac{dw}{m} \bullet \right. \\ & \cdot \left[\left(\frac{\overline{b} + w}{2} + X_{o} \right)^{2} + \frac{w^{2}}{12} \right] \sum_{i=1}^{m} \left(\frac{\Delta y_{e,i}}{\Delta y} \right) + \frac{b^{3}t}{48n^{3}} \left\{ \sum_{i=1}^{k-1} \left[12 \left(\frac{X_{i} - X_{o}}{\Delta x} \right)^{2} + 1 \right] \right) \\ & + \sum_{i=1}^{k-1} \left[12 \left(\frac{X_{e,i} - X_{o}}{\Delta x} \right)^{2} + \left(\frac{\Delta X_{e,i}}{\Delta x} \right)^{2} \right] \left(\frac{\Delta X_{e,i}}{\Delta x} \right) + \sum_{i=1}^{n} \left[12 \left(\frac{X_{e,i} + X_{o}}{\Delta x} \right)^{2} \right) \\ & + \left(\frac{\Delta X_{e,i}}{\Delta x} \right)^{2} \right] \left(\frac{\Delta X_{e,i}}{\Delta x} \right) \right\} + 2 I_{k} \end{split}$$

$$(35)$$

when

$$\frac{\overline{b}}{2} < \chi_{0} \leq \frac{\overline{b}}{2} + w$$

$$\frac{\mathbf{I}_{ye}}{\mathbf{I}_{y}} = \frac{1}{\mathbf{I}_{y}} \left\{ \begin{array}{c} \frac{wd}{m} \left[\left(\frac{\overline{b}+w}{2} - \chi_{o} \right)^{2} + \frac{w^{2}}{12} \right] \sum_{i=1}^{m} \left(\frac{\Delta y_{e,i}}{\Delta y} \right) + \frac{dw}{m} \left[\left(\frac{\overline{b}+w}{2} + \chi_{o}^{2} + \frac{w^{2}}{12} \right) \right] \right] \right\} \\ \cdot \sum_{i=1}^{m} \left(\frac{\Delta y_{e,i}}{\Delta y} \right) + \frac{b^{3}t}{48n^{3}} \left\{ \sum_{l=k+1}^{n} \left[12 \left(\frac{\chi_{i}-\chi_{o}}{\Delta x} \right)^{2} + 1 \right] + \sum_{i=1}^{k-1} \left[12 \cdot \left(\frac{\chi_{e,i}-\chi_{o}}{\Delta x} \right)^{2} + \left(\frac{\Delta \chi_{e,i}}{\Delta x} \right)^{2} \right] \left(\frac{\Delta \chi_{e,i}}{\Delta x} \right) \\ + \sum_{i=1}^{n} \left[12 \left(\frac{\chi_{e,i}+\chi_{o}}{\Delta x} \right)^{2} + \left(\frac{\Delta \chi_{e,i}}{\Delta x} \right)^{2} \right] \left(\frac{\Delta \chi_{e,i}}{\Delta x} \right) \right\} + 2\mathbf{I}_{k} \right\}$$
when
$$\frac{\overline{b}}{2} + w < \chi_{o}$$

A column curve can be computed, as above, from Eq. 9 substituting Eq. 14 and one of the Eqs. 34, 35, and 36.

4. NUMERICAL EXAMPLES

Numerical computation was carried out by a digital computer.* Although any distribution of residual stress can be considered, only idealized patterns of residual stress distribution in H-shapes were used (as shown in Fig. 3) for the illustration of column curves. The triangular distribution of Fig. 3a is close to the patterns found in rolled shapes (3)(5)(20) and a similar pattern was assumed to predict the strength of centrally loaded columns of rolled shapes (3)(6); the pattern of Fig. 3b resembles the pattern in the welded shapes, among which the residual stress pattern in welded T-l shapes is the closest(6)(18)(19)(22).

Figure 4 shows the tangent modulus column curves of nondimensionalized stress against non-dimensionalized slenderness ratio for columns with cross sections of 8WF31 and 27WF94 containing residual stresses of the triangular patterns. Similarly, Fig. 5 presents the tangent modulus curves for the same columns with welding type residual stress patterns. The curves were computed for various values of the compressive residual stresses. The discontinuities of the column curves for the sections with welding type residual stress patterns are due to simultaneous yielding over a large portion of the cross section due to the assumed residual stress pattern. The column curves for strong axis bending are slightly different for the two cross sections, 8WF31, and 27WF94,

"The descriptions of the programs are given in Appendix C.

while the difference of the curves for weak axis bending is insignificant for the two columns.

For the assumed residual stress patterns of Fig. 3a, the larger the compressive residual stress is, the greater the reduction of strength for the entire elastic-plastic buckling. The same is true for the assumed residual stress pattern of Fig. 3b except for columns of small slenderness ratio.

The reduced modulus column curves were computed for the same column shapes as used for the tangent modulus curves, and the results are shown in Figs. 6 and 7; Fig. 6 for the triangular distribution and Fig. 7 for the welding-type distribution. The general shape of the column curves based on the reduced modulus concept is similar to those found in curves based on the tangent modulus concept. The only difference in the general pattern of the column curves is that there is a visible difference in the reduced modulus column curves of 8WF31 and 27WF94 for weak axis bending as seen in Figs. 6b and 7b, while no visible difference resulted in the corresponding tangent modulus curves. This is due to the relatively large contribution of the web to the moment of inertia when strain reversal is taken into account.

Both the tangent modulus and the reduced modulus column curves are plotted in Figs. 8 and 9 for 8WF31 columns with various residual stress distribution. As can be seen in the figures, the difference between the tangent modulus load and the reduced modulus load depends largely on slenderness ratio. Both the tangent modulus

load and the reduced modulus load coincide with the Euler load for a column with a large slenderness ratio. Generally, the difference first appears between the loads at a certain slenderness ratio, and it increases with decreasing slenderness ratio reaching the maximum point. After the maximum point is passed, the difference between the loads becomes small and the loads coincide again for a column with zero slenderness ratio.

The strength of steel columns is often represented by the tangent modulus loads taking into consideration residual stresses⁽³⁾⁽⁶⁾⁽¹⁰⁾⁽¹⁴⁾. The comparison of the reduced modulus curves and the tangent modulus curves of Figs. 8 and 9, however, suggests that some caution has to be paid in some cases. For example, the strength of an 8WF31 column containing residual stress of $\sigma_{nc} = \frac{1}{4} \sigma_{v}$ with the distribution pattern of Fig. 3b cannot be more than the tangnet modulus load, because of unavoidable initial crookedness and eccentricity, when its non-dimensionalized slenderness ratio is larger than 0.7. (Figure 9b). For a shorter column, on the other hand, there is so large a difference between the reduced modulus load and the tangent modulus load that it may be possible that the strength exceeds the tangent modulus load. (14) When the difference is large, as found in a case of a column with welding type residual stresses and bent about the weak axis, an analysis of ultimate strength of the column would be made preferably in addition to the tangent modulus analysis⁽¹⁵⁾.

5. SUMMARY

The report has presented numerical methods of computing the tangent modulus and the reduced modulus column curves of nondimensionalized stress versus non-dimensionalized slenderness ratio such that the lower and the upper limits of the ultimate strength of a straight and centrally loaded column are obtained. These limits are defined by the tangent modulus and reduced modulus, respectively. Equations were developed for the flexural buckling of pinned-end columns of structural steel containing residual stress of any distribution. Among the shapes considered, H, box, tee, and equal leg angle, equations for the reduced modulus curves were developed only for H and box columns. Numerical results were obtained by a digital computer for 8WF31 and 27WF94 columns with idealized residual stress distribution of various magnitudes. It was found that the difference between the reduced modulus load and the tangent modulus load depends largely on the slenderness ratio of the column and the residual stress pattern. It was found in the numerical results that there might be a large difference between the reduced modulus and the tangent modulus loads for a welded built-up column of medium to small slenderness ratio so that the ultimate strength of a practical column of this range may exceed the tangent modulus load.

6. ACKNOWLEDGEMENTS

This study has been carried out as a part of the research project on "Welded Built-Up and Rolled Heat-Treated T-1 Steel Columns" being conducted at Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University.

The project is sponsored by the United States Steel Corporation. Charles G. Schilling of United States Steel made many valuable comments, both in the course of the program, and in the preparation of this report. Task Group 1 of the Column Research Council of the Engineering Foundation acted in an advisory capacity under the chairmanship of John A. Gilligan.

7. NOMENCLATURE

A	area of a cross section
Al	loading area in a cross section
Au	unloading area in a cross section
В	bending rigidity
Ъ	width of a flange
b	width between inside faces of webs of a box section
d	depth of a cross section
Е	modulus of elasticity
E _t	tangent modulus of elasticity
I	moment of inertia
I _e	effective moment of inertia of a cross section
I _k	contribution of moment of inertia by the segment k
I _x	moment of inertia about x-axis
I _{xe}	effective moment of inertia about x-axis
Iy	moment of inertia about y-axis
Iye	effective moment of inertia about y-axis
i	a number used as a subscript
k	the number of a segment where a neutral axis passes
L _{cr}	critical length of a pinned-end column
L _X	critical length of a pinned-end column bent on the x-axis
Ly	critical length of a pinned-end column bent on the y-axis
m	number of segments in a web
n	number of segments in a flange
р	load
S _{e,i}	distance as shown in Fig. 10
Sk	stress acting in the segment k

- ?7

t thickness of a flange plate

u displacement

w thickness of a web plate

 X_{0} x-coordinate of a neutral axis

 x_{e} coordinate x of the center of the elastic part in a segment

 Y_{0} y-coordinate of a neutral axis

ye coordinate y of the center of the elastic part in a segment

x,y,z cartesian coordinate

€ strain

er strain a buckling load

 ϵ_r residual strain

 ϵ_v yield strain

 $\sigma_{\rm cr}$ buckling stress

 σ_{s} average stress in a segment

 σ_v yield stress

A area of a segment

A_e area of elastic part in a segment

 ΔS length of a segment along the centerline of plates

 $\Delta S_{P,i}$ length of the elastic part of a segment along S.

 Δx length of a segment in the x-direction

 Δx_{a} length of the elastic part of a segment in the x-direction

Δy length of a segment in the y-direction

 Δy_{Δ} length of the elastic part of a segment in the y-direction

 $\Sigma_{n,m}$ summation of all the segment in a flange and in a web

PROGRAM LANGUAGE

AREA

В

ΒI

DA

DAA

DB

ELN

ELNF

ΙB

IΚ

INER

J, JA

Α $\sigma_{\rm CT} = P/A$ AVESTRESS Ъ b d, b $1/2 \cdot (d+t), 1/2 \cdot (\overline{b}+w)$ d, b I_{xe}, I_{ye} EINERTIA $\Delta y_e / \Delta y$, $\Delta x_e / \Delta x$ $\Delta x_{e} / \Delta x$ EXINERTIA I_{xe} I_{ye} EYINERTIA the maximum strain to which a column FINALSTRAIN curve is computed $\frac{t^2}{12}$, $\frac{W^2}{12}$ I_k , name of a subprogram to compute I_k increment of strain at which interval critical slenderness ratios are computed name of a subprogram to compute location of neutral axis and the effective moment of inertia the minimum strain from which a column ISTRAIN curve is computed sequence numbers KX, KY, KZ sequence numbers to be used in determining location of neutral

 \mathbf{L}

L	d
LENGTH	Δχ, Δγ
Μ	(d/2+t)/100Δy, b/200Δx
NA, NB	n, m
NF	n
NW	m
RF	residual strains in a flange ($\mathfrak{e}_{r}^{}$)
RW	residual strains in a web (ϵ_r)
SELN	Σ_{i} ($\Delta y_{e,i}/\Delta y$), Σ_{i} ($\Delta x_{e,i}/\Delta x$)
SF	$ \begin{array}{c} n \\ \Sigma & \sigma_{s} \\ i=1 \end{array} $
SFEL	$\sum_{i=1}^{n} (\Delta x_{e,i} / \Delta x)$
SK	S_k , name of a subprogram to compute S_k
SRN	€i-l
SRNA	€i
STRAIN	e, e _{cr}
STRESS	σ _s , Σ _i σ _{s,i}
SW	$\sum_{i=1}^{m} \sigma_{s}$
SWEL	$\sum_{i=1}^{m} (\Delta y_{e,i}/\Delta y)$
SWA, SWB, SWC, SWD	variables for switching name of a subprogram to compute average stress and penetration of yielding at each segment
S1, S2	variables used in determining a neutral axis and the effective moment of inertia

TtTAt, wTBtTLN $Y_e/\Delta y$, $X_e/\Delta x$ TLNF $x_e/\Delta x$ Ww

 I_{x}

 L_{χ}

ε_Y

ı, y

 $\pi r_{\chi}/\epsilon_{Y}$

 $\frac{1}{\pi} \frac{L}{r_{\chi}} \sqrt{\epsilon_{Y}}$

 $\frac{L_{y}}{\pi r_{y}} / \sqrt{\epsilon_{Y}}$ $\frac{1}{\pi} \frac{L}{r_{y}} \sqrt{\epsilon_{Y}}$

 χ_{LENGTH}

XMFACTOR

XSLENDRATIO

YIELD STRAIN YINERTIA YLENGTH YMFACTOR YSLENDRATIO

and the second second

APPENDIX A: <u>BUCKLING STRENGTH OF COLUMNS WITH TEE AND</u> EQUAL LEG ANGLE CROSS SECTIONS

The procedure for computing the column curve for tee and equal leg angle cross sections is the same as for the Box- and Hcolumns described in Chapter 3. Only the final forms of equations for the tangent modulus column curves are presented here, so that the column curves are computed simply by substituting these results into Eq. 9. The cross section considered are shown in Fig. 10 together with the dimensions, coordinate axes and numbering system to the segments.

1. TEE-COLUMNS

$$\frac{\sigma_{cr}}{\sigma_{r}} = \frac{1}{A} \left[\frac{bt}{n} \sum_{i=1}^{n} \left(\frac{\sigma_{s}}{\sigma_{Y}} \right)_{i} + \frac{dw}{m} \sum_{i=1}^{m} \left(\frac{\sigma_{s}}{\sigma_{Y}} \right)_{i} \right]$$
(A.1)

$$A = bt + dw$$
 (A.2)

$$Y_{O} = -\frac{\frac{d^{2}w}{m^{2}} \sum_{\substack{n,m \ i=1}} \left(\frac{\Delta y_{e,i}}{\Delta y}\right) \left(\frac{s_{e,i}}{\Delta y}\right)}{\frac{bt}{n} \sum_{\substack{i=1 \ i=1}}^{n} \left(\frac{\Delta x_{e,i}}{\Delta x}\right) + \frac{dw}{m} \sum_{\substack{i=1 \ i=1}}^{m} \left(\frac{\Delta y_{e,i}}{\Delta y}\right)}$$
(A.3)

in which s e,i, is the distance from the junction of flange and web to the center of elastic part of the i-th segment.

$$\frac{I_{ex}}{I_{x}} = \frac{1}{I_{x}} \left\{ \frac{bt}{n} \left(Y_{0}^{2} + \frac{t2}{12}\right) \sum_{i=1}^{n} \left(\frac{\Delta x_{e,i}}{\Delta x}\right) + \frac{d^{3}w}{m^{3}} \sum_{i=1}^{m} \left(\frac{\Delta y_{e,i}}{\Delta y}\right) \left[\left(\frac{y_{e,i}}{\Delta y}\right)^{2} + \frac{1}{12} \cdot \left(\frac{\Delta y_{e,i}}{\Delta y}\right)^{2} \right] \right\}$$
(A.4)

2. COLUMNS OF EQUAL LEG ANGLE

$$\frac{\sigma_{\rm cr}}{\sigma_{\rm Y}} = \frac{2}{n} \sum_{i=1}^{n} \left(\frac{\sigma_{\rm s}}{\sigma_{\rm Y}} \right)_{i}$$
(A.5)

$$A = 2bt$$
 (A.6)

$$Y_{o} = \frac{b}{2\sqrt{2}} + \frac{b \sum_{i=1}^{n} \left(\frac{\Delta S_{e,i}}{\Delta S}\right) \left(1 - \frac{2}{b} S_{e,i}\right)}{2\sqrt{2} \sum_{i=1}^{n} \left(\frac{\Delta S_{e,i}}{\Delta S}\right)}$$
(A.7)

$$\frac{I_{xe}}{I_{x}} = \frac{1}{I_{x}} \frac{b t}{n^{3}} \sum_{i=1}^{n} \left(\frac{\Delta S_{e,i}}{\Delta S}\right) \left(\frac{S_{e,i}}{\Delta S}\right)^{2}$$
(A.8)

where $S_{e,i}$ is the distance from the corner to the center of elastic part of the i-th segment.

APPENDIX B: <u>SUMMARY OF STRESS AND MOMENT OF INERTIA</u> CONTRIBUTED BY A SEGMENT CUT BY THE NEUTRAL AXIS

The expression for the stress caused by the buckling, and present in the segment where the neutral axis passes, depends on the penetration of yielding into the segment. Similarly, the contribution of the segment to the bending regidity depends on the penetration of yielding. This appendix summarizes the expressions for the stress and the moment of inertia.

For buckling about the x-axis:

(1)
$$\epsilon_k < \epsilon_Y, \epsilon_{k-1} < \epsilon_Y$$

 $S_k = w (y_k - Y_0) \Delta y$
(B.1)

$$I_{k} = w \left\{ (y_{k} - Y_{0})^{2} + \frac{\Delta y^{2}}{12} \right\} \Delta y$$
 (B.2)

(2)
$$\mathbf{e}_{k} < \mathbf{e}_{Y}, \ \mathbf{e}_{k-1} \ge \mathbf{e}_{Y}, \ \mathbf{y}_{e,k} - \frac{\Delta \mathbf{y}_{e,k}}{2} - \mathbf{Y}_{o} < 0$$

 $\mathbf{S}_{k} = \mathbf{w} (\mathbf{y}_{e,k} - \mathbf{Y}_{o}) \ \Delta \mathbf{y}_{e,k}$ (B.3)
 $\mathbf{I}_{k} = \mathbf{w} \ \Delta \mathbf{y}_{e,k} \left[(\mathbf{y}_{e,k} - \mathbf{Y}_{o})^{2} + \frac{\Delta \mathbf{y}_{e,k}^{2}}{12} \right]$ (B.4)

(3)
$$\epsilon_{k} < \epsilon_{Y}, \ \epsilon_{k-1} \ge \epsilon_{Y}, \ y_{e,k} - \frac{\Delta y_{e,k}}{2} - Y_{o} \ge 0$$

 $S_{k} = \frac{W}{2} \left(y_{k} + \frac{\Delta y}{2} - Y_{o} \right)^{2}$
(B.5)

$$I_{k} = \frac{W}{3} \left(y_{k} + \frac{\Delta y}{2} - Y_{0} \right)^{3}$$
 (B.6)

(4)
$$\varepsilon_{k} \ge \varepsilon_{Y}, \ \varepsilon_{k-1} < \varepsilon_{Y}, \ y_{e,k} + \frac{\Delta y_{e,k}}{2} - Y_{o} \ge 0$$

(The same as Case 1)
(5) $\varepsilon_{k} \ge \varepsilon_{Y}, \ \varepsilon_{k-1} < \varepsilon_{Y}, \ y_{e,k} + \frac{\Delta y_{e,k}}{2} - Y_{o} < 0$ (B.7)
 $S_{k} = w \ \Delta y \left[(y_{k} - Y_{o})^{2} + \frac{\Delta y^{2}}{12} \right] - \frac{w}{2} (Y_{o} - Y_{e,k} - \frac{\Delta y_{e,k}}{2})^{2}$

$$I_{k} = w \Delta y \left[(y_{k} - Y_{0})^{2} + \frac{\Delta y^{2}}{12} \right] - \frac{w}{3} (Y_{0} - y_{e,k} - \frac{\Delta y_{e,k}}{2})^{3} (B.8)$$

(6)
$$\mathbf{e}_{k} \geq \mathbf{e}_{Y}, \ \mathbf{e}_{k-1} \geq \mathbf{e}_{Y}$$

(The same as Case 3)

Replacing $\rm Y_{_O},~Y$ and w by $\rm X_{_O},~X,$ and t, the equations of $\rm S_k$ and $\rm I_k$ are obtained for buckling about the y-axis.

APPENDIX C: COMPUTER PROGRAMS

Based on the analyses of Chapter 3, programs for a digital computer were prepared with WIZ language⁽²³⁾ as summarized in Table 1. A representative flow diagram is shown in Fig. 11 for computation of the tangent modulus curves of H and Box columns. All of the programs prepared are shown in Programs Nos. 1, 2 and 3.

The basic nomenclature used in the program is listed in Chapter 7.

All programs prepared provided memory spaces of up to 100 for the number of segments in a flange and in a web. The number is sufficient for practical distributions of residual stress. The location of the neutral axis has to be determined for the computation of column curves based on the reduced modulus concept. The program is prepared to determine the location with an accuracy of 1/100 of a half width of a flange and a half depth of a web for the buckling of a box column in the x- and y-direction respectively.

The prepared programs include manual controlling instruction such that, when the pinned-end length of columns is needed in addition to the non-dimensionalized slenderness ratio, it can be obtained by pressing the console switch No. 1 of the GE 225 computer.

1. Data Input

Identical data cards can be used for computation of both the tangent modulus and the reduced modulus curves for H and box columns, while for computation of tee columns, only the data for dimensions of the cross section are different. Sign convention is such that compressive stresses and strains are positive and tensile stresses and strains are negative.

The sequence of data input is as follows:

(a) The Yield Strain

The yield strain (in/in) has to be placed first when console switch no. 1 is pressed by operator. Otherwise, the data is not necessary.

EXAMPLE: For a steel with yield stress of 100 ksi and the modulus of 30,000 ksi, the data is

3.3333333-3

(b) Three Data on Critical Strains

The data on strains due to loading at which the column is going to buckle must be put in. It is necessary to compute at several strains over a wide range with certain increments in order to draw a column curve. The data consist of three numbers; initial strain, increment, and final strain. All data have to be non-dimensionalized by the yield strain, e_{γ} . EXAMPLE: Critical slenderness ratios to be computed for a range of critical strains from 0.3 to 1.2 of the yield strain with a interval of 0.05 will have data as shown

.3 .05 1.2

(c) Two data on Number of Segments

The number of segments in half of the flange must be put in, followed by the number of segments in the web (for a tee column) or a half of the web (for a H and box column). EXAMPLE: Referring to Fig. 1 or to Fig. 10, if n is equal

> to 4 and m is equal to 2, the data will be, 4 2

(d) Data on Dimensions of Cross Section (5 Data for an H and Box Column and 4 Data for a Tee Column)

Data concerning the dimensions of the cross section must be put in as the fourth group of data. The sequence is b, \overline{b} , t, d, and w for an H and box column and b, t, d, and w for a tee column, which refers to Fig. 1 and Fig. 10, respectively. Although any unit can be used as long as the same unit is used for all dimensions, a unit of one inch may be preferable. EXAMPLE: (1) 8WF31 8. 0 .433 7.134 .144

(2) ST 4WF15.5 8. .433 3.567 .288

NOTE: the width of the web plate for 8WF31 is not .288 but a half of this.

(e) Data on Residual Strains

The last group of data is the amount of residual strains present at the edge of segments. Data must be non-dimensionalized by the yield strain of the material. The data have to be arranged in a sequence such that the residual strain at one edge of segment 1 in the flange is first, and then followed by that at the edge between segments 1 and 2, that between segments 2 and 3 and so on, till that at the extreme edge of the flange. The similar set-up of data for the web follows from the segment 1 to the segment m. Thus a total number of (n+1) data for the flange and (m+1) data for the web are necessary, resulting in a grand total of (n+m+2) data.

It is noted that the residual strain distribution has to be so arranged that the residual stress is in equilibrium. EXAMPLE: (1) No residual stress (N=4, m=2)

0 0 0 0 0 0 0 0

(2) Idealized Residual Stress Distribution of

Fig. 3.b, $\sigma_{rc}/\sigma_y = 0.25$ (n=5, m=5) -1. -.375 .25 .25 .25 .25 .25 .25 .25 .25 -.375 -1.

(f) Other Sets of Data

Other sets of data arranged in the same manner as (b) through (e) can be followed directly as many times as necessary. A "WIZ DATA" card and an "END OF DATA" card followed with two empty cards are necessary at the front and at the end of the data, respectively.

An example of typical data set up is summarized as follows:

WIZ DATA CARD 3.3333333-3 .3 .05 l.2 4 2 8. 0 .433 7.134 .144 0 0 0 0 0 0 0 0 0 .75 .05 2. 8. 0 .433 7.134 .144 -1. -.375 .25 .25 .25 .25 .25 .25 .25 .25 -.375 -1. END OF DATA (Two Empty Cards)

2. Output

Example of outputs are shown in Program No. 4 computed by the program based on the tangent modulus concept with the data shown above.

Following the title of the program, all the input data are printed out so that any error in punching the data may be detected.

The area of the cross section and moment of inertia on the xaxis and on the y-axis are printed, below the title "CALCULATED RESULTS". The units are square inches for the area and in⁴ for the moments of inertia, provided a unit of one inch is used for the dimensions of the cross section. Next follows the computed results

for a column curve. The output consists of 6 columns, under the headings, "STRAIN", "AVESTRESS", "XSLENDRATIO", "YSLENDRATIO", "XLENGTH", AND "YLENGTH". These headings mean the strain and the stress at which column is going to buckle, the critical slenderness ratio for the strong axis and for the weak axis bending and the critical pinned end length of the column for the strong axis and for the weak axis bending, respectively. The strain, stress, and slenderness ratios are non-dimensionalized. Plotting the average stress against the slenderness ratio, the column curve is obtained.

9. TABLE, FIGURES AND COMPUTER PROGRAMS

Table 1 LIST OF COMPUTER PROGRAMS

Program No.	Program Identifi- cation*	Cross Section	Buckling Concept	Bucklg. Mode
l	290 - 3-2	H and Box	Tangent Modulus	Flexural Bucklg. on both princ. axes
2	290-3-6	Тее	Tangent Modulus	Flexural Bucklg.
3	290 - 3-3	H and Box	Reduced Modulus	Flexural Bucklg. on both Princ. axes
4		H and Box	Example of Outpu	t

* Programs are identified and stored at Fritz Laboratory, Lehigh University.

45

Fig. 2 LOCATION OF NEUTRAL AXIS

(a) Cooling Patterns

(b) Welding Patterns

Fig. 3 IDEALIZED RESIDUAL STRESS PATTERNS FOR ILLUSTRATIONS OF COLUMN CURVES

(b) Weak Axis Bending

Fig. 4 TANGNET MODULUS CURVES OF ROLLED COLUMNS (WITH RESIDUAL STRESS OF FIG. 3(a))

48

Fig. 5 TANGENT MODULUS CURVES OF WELDED COLUMNS (WITH RESIDUAL STRESS OF FIG. 3(b))

in the first of the set of the test sector is the set of the set of the sector is the set of the set of the set

50

Fig. 7 REDUCED MODULUS CURVES OF WELDED COLUMNS (WITH RESIDUAL STRESS OF FIG. 3(b))

290.6

g. 8 COLUMN CURVES OF ROLLED 8WF31 (WITH RESIDUAL STRESS OF FIG. 3(a))

Fig. 9 COLUMN CURVES OF WELDED 8WF31 (WITH RESIDUAL STRESS OF FIG. 3(b))

- Δ S : WIDTH OF ELASTIC PART IN A SEGMENT ALONG THE MIDDLE PLANE OF THE PLATE
- f : A SUBSCRIPT DENOTING PROPERTIES OF FLANGE
- i,j : SUBSCRIPTS FOR SEQUENCE NUMBERS
- W : A SUBSCRIPT DENOTING PROPERTIES OF WEB ecr: CRITICAL STRAIN
- $\boldsymbol{\varepsilon}_{1}$: INITIAL VALUE OF CRITICAL STRAIN
- $\boldsymbol{\varepsilon}_{\mathbf{f}}$: FINAL VALUE OF CRITICAL STRAIN δε : INCREMENT OF CRITICAL STRAIN

Fig. 11 FLOW DIAGRAM FOR FLEXURAL BUCKLING OF BOX- AND H-COLUMNS CONTAINING RESIDUAL STRESS

005 2082 FUMIO NISHINC COLUMN BUCKLING DEC 21 66 09 03.9

								P	AGE 1	•	DE	C 21	66	
Ħ	S⊨O	LARL	TYP STATEMENT	c	z	ER0	NOT	0	PLU	S	MINUS	3	ELS	E
001.	0000		\$ 290-3-3		ſ	1	t	1	r	1	1 .	1	r	1
002.	0010		& CALCULATION OF COLUMN CURVE BA	SED ON	i	í	i	i	ì	i	i	i	ř	÷
063.	0020		\$ REDUCED MODULES CONCEPT		i	i	i	i	ì	i	÷	i		í
004.	0030		T DECEMBER, 1966 BY FUMIO NIS	HIND	í	i	i	i	ř	i	ì	i	i	í
005.	0040		D RF(100], RW(100), SUB.(14), INEF	.[22], C	2		•	•	•	•	•	•	•	,
•	0050		SK.[22], IK.[15], FLNF[100], ELN	(100), C	2									
•	0060		TLN(100), TLNF(100)		Ŧ	1	1	1	[1	t	}	(1
006.	00/0		SWT.[1]		1 R	EAD1	ſ	1	C I	1	t	1	(]
007.	0080		CRDYIELDSTRAIN		1	1	t	1	t	1	t	1	ł	1
008.	0090	READ	CRDISTRAIN		t	3	(1	t I	1	(FIN	1	t)
009.	0100		CRDINCREMENT, FINALSTRAIN		t	1	(1	C	1	[1	1	1
010.	0110		CRDNF, NW		ſ	1	1	1	C	1	[}	(1
011.	0120		CRDB, BI, T, L, W		1	1	t	1	ĩ.	1	()	(1
012.	0100		SL CALCULATION OF COLUMN CURVE BASE	D ON REDUCED C	2									
•	0140		MUDULUS CONCEPT, FLEXURAL BUCKLI	NG, BOX- AND C	Ξ.									
017	0120		H-CULUMNS (290-3-3)		i,	1	L L	1	ļ	-	ļ	1	[1
010.	0100				ļ	1		1	i,	1	ļ	i		1
015	0170		PL BT FOFID NISHIND		-	1	ļ	-	Ļ	-	ļ	1	Ļ	1
016	0100				i.	1	ľ	1	+	1	1 r	;	÷	1
017.	0200		PVI. NE. NE. B. BI. T. L. W		÷	1	;	i	r r	i	i	1	ł	4
018.	0210		PVL ISTRAIN. INCREMENT. FINALSTRAIN		í.	í	ł	í	ř	í	ì	í	i	1
019.	0220		PL RESIDUAL STRESSES IN THE FLANG	F	ř	í	i	i	ŝ	i	ì	í	ì	i
020.	0230		PV	-	ř	í	ì	i	ì	i	i	í	ì	i
021.	0240				č	i	i	i	i	i	i	í	ì	í
022.	0250	*	CRDRF (J1		ť	ĵ	i	i	i	i	i	i	i	í
023.	0260		PV SKIP, RF(J)		ſ	1	t	1	ĺ.)	t	1	t	1
024.	0270		(.=J+1)-NF		[*	1	1	1	í)	[+	1	t	ł
025.	028.0		PV,		ł	1	L	1	(1	L	1	t	1
026.	0290		PL RESIDUAL STRESSES IN THE WEB		t	1	C	1	[1	(1	L	1
027.	0300		PV		l	1	t	1	t	1	(1	t i	1
028.	0310		0=0		ĺ,	j	1	;	(1	ļ	1	t.	1
029.	0320	. •			Ļ	1	ļ	1	ļ	1	ţ	1	ļ)
034	6740				1		÷	-	ļ	-	÷.	-	ļ	1
032	6350		VECV-0+10+170+1 }		1.	1	-	÷	ľ	-	1*	1	i r	1
033.	6360		YINEPTIA=(D+T+(d+T+T+K+)+T+3+)+	1+#+1+1176	ř	1	2	í	i i	i	ł	1	ì	1
034.	8370		YINERTIA=[1 +W+[4+W+W+6+W+B]+3+B]	*BI)+T*8*8* C	1		•	•	•	•		'	1	1
	0380		B1/6		ſ	1	t	1	T .	3	r	1	r	1
035.	0390		SHT.[1]		Ē1	i	i	i	r i	i	i	i	i	i
036.	0400		XMFACTOR=3.1415926+SORT. (XINERT)	A/AREA/ C	; _	•	•		•	•	•		•	
	0410		YIELDSTRAINI		t	1	t	1	t	1	t	1	t	1
037.	0420		YMFACTOR=3.1415926+SQRT.LYINERTI	A/AREA/ C	;									
	0430		YIELDSTRAIN]		L	1	ſ	1	l	1	1	1	(1
038.	0440	1	PV ,,		L	1	ŧ	1	ſ	1	[1	t	1
039.	0450		PL CALCULATED RESULTS		ſ	1	[1	1	1	[1	t	1
040.	0460		PVL,, AREA, XINERTIA, YINERTIA,,		t	1	Ľ	1	1	1	C	1	ť	1
041.	0470		SkT. (1)		〔2	1	l I	1	[1	t	1	[1
042.	0480		PL STRAIN AVESTRESS	XSLENDRATIO C	2									
•	0470		TSLENDRATIO	XLENGTH C	;	,		,		,				
043	0000 8510	2		VELENBRITIC A	۱ ۲	1	ι	1	ι	1	ı	1	ι3	3
0.00	0510	د	VSIENDATIO	ASLENURATIU C	· .	1	1	1	,	1	1	1	r	1
044.	0520	3	DI		r	1	1	i	i	1	ř	;	r	1
045.	0540	-	STRAIN=ISTRAIN		í	i	ì	i	ř	í	ì	5	i	1

										PAGE	2,	D	EC	21	66	
ħ	sE0	LABL	TYI	STATEMENT	C Z	ERO		NOT	0	₽I	US	MINU	s		ELSE	
046.	0550	**		KX=KY=0	t	1		t	1	τ.	1	ſ	1	c	: 1	
047.	0560			STRESS=SELN=J=0	t	1		r i	1	r	1	t	i	, i	1	
048.	0570	*			t	1		î.	1	ŕ	j	ĩ	i	, i	1	
049.	0580			SEN=STRAIN+RF[J]	i	j		i	i	i	i	i	í	ì	i i	
050.	8590			SENA=STRAIN+REIJA1	i.	1		i i	1	i	1	i	1	i	SUB 1	
051.	0600			ELNETJA1=ELN# TENETJA1#TEN	i	i		i	i	i	i	i	i	i	1	
052.	0610			[u≖JA]∽NF	ī	i		i	i	i	i	i.	i	î	i í	
053.	0620			SF=STRESS, SFEL=SELN	Ť	i		i.	i	ī	i	i	i	i	i	
054.	0630			STRESS=SELN=J=0	Ē	i		i i	ī	i	i	i	i	i	i	
055.	0640	*		JA=J+1	ť	i		i	i	i	i	i	i	i	i	
056.	0650			SRN=STRAIN+RW[J]	t	j		i i	i	i	i	i	i	ŕ	i i	
057.	0660			SRNA=STRAIN+RW[JA]	ť	1		ř	j	i	ī	i	i	i	SUB 1	
058.	0670			ELN(JA]=ELN, TLN(JA]=TLN	Ċ	ī		i	j	i	j	i	i	i	1	
059.	0680			[u=JA)+NW	i	i		i	i	i	i	í.	i	i	i i	
060.	0690			SH=STRESS, SWEL=SELN	i	i		i.	Ĵ	i	j	i	j	i	ii	
061,	0700			KZ=KY,SWA=D, NA=NW, NB=NF	Ĺ	1		i	- j	í	i	ť	j	i	i	
062.	0710			DA=L, DB=B, DAA=.5+L+.5+T, TA=W, TB=T	Ĺ	j		i	j	ī	i	i	i	i	i	
063.	0720			IE=T*T/12., SEL=SFEL, LENGTH=.5*L/NW	t	j		i.)	t	i	i	3	ī	i	
064.	0730			M=[.5+L+T]/LENGTH/100.	ſ	j		t	1	i	j	i	j	i	INERI	
065.	0740			EXINERTIA=EINERTIA/XINERTIA	t	1		t	1	i.	j	Ċ	j		1	
066.	0750			KY=KZ	(1		Ċ.	1	1	1	t	1	i	i	
067.	0760			J=NF	ſ	İ		(1	t	j	i	j.	i	i i	
068.	0770	*		TLN[J]=TLNF[J], ELN[J]=ELNF[J]	(1		t	1	t	1	t	i	i i	i	
069.	0780			J=J-1 .	1	j		i	1	[*]	i	i	i	i	ii	
070.	0790			KZ=KX, SWA=1, NA=NF, NB=NW	1	j		i i	- i	ż	i	i	i	i	i i	
071.	0800			DA¤BI, DB=L, DAA=,5*BI+,5*W, TA=T, TR=W	ſ	J		t)	i	1	Í.	j	i	i i	
072.	0810			LENGTH=.5+B/NF	t	j		t	- i	i i	i	i	j	i	i i	
073.	0820			IE=W+W/12., SEL=SWEL, M=NF/100.	t	i		ť.	3	ť	j	i	j	i	INERI	
074.	0830			EYINERTIA=EINERTIA/YINERTIA	(1		t	1	£)	t	j	i	1	
075.	0840			K×=KZ	ſ	1		t	1	ť	j	ť	1	i	1	
076.	0850			AVESTRESS=2.*[SF*T*B/NF+SW*W*L/NW]/AREA	ſ	j		ŧ.	- i	i	j	i	i	i	i i	
077.	0860			XELENDRATIC=SQPT.[EXINERTIA/AVESTRESS]	t	j		i	- i	i	i	i	ī	i	i i	
078.	0870			YSLENDRATIO=SQRT. (EYINERTIA/AVESTRESS)	t	I		i.	- î	i	i	t	í	i	i	
079.	0880			SKT. [1]	14	i j		t	j	i	í	t	í	i	i i	
080.	0890		P٧	STRAIN, AVESTRESS, XSLENDRATIO, YSLENDRATIO, SKI	PC			-		-	-					
	59 00			,XSLENDRATIO*XMFACTOR,YSLENDRATIO*YMFACTOR	1	1		1	3	t	1	1)	1	15 1	
081.	0910	4	P٧	SIRAIN, AVESTRESS, XSLENDRATIO, YSLENDRATIO	I	j	Ι.	t -	3	Ì	1	t	i	i	i i	
082.	0920	5		[STRAIN=STRAIN+INCREMENT]=FINALSTRAIN-,0001	I	j	L İ	1)	Ċ)	[**	j	i	READI	

								PAGE	3.	Ľ	DEC	21 66			
Ŀ	SEQ	L48L ТҮ	P STATEMENT	C ZF	÷80	NOT	0	٩L	บร	MINU	IS	ELS	i E		
083.	1010	SUB .	S N-1.	1	1	t	1	t	1	(12	1	(۱	SUB	
014.	1021		SFNA-1.	i.	1	1)	()	(11	1	1	}	SUB	
065.	1036		FLN=TLN=0, S=1.	Ł	1	t	1	1	1	1)	[14	1	SUB	ι.
Obć.	1046	11	ELN=[1SRNA]/[SRN-SRNA]	1	1	ſ)	()	ſ	1	(J	SUB	
٥٤7.	105(TuN=J+15★ELN	(1	t	1	ł	1	(}	t	j	SUB	
068.	1060		S=1.+[SRNA=1.]+.5+ELN	(1	t	}	ſ	1	1)	[14	1	SUB	۱.
029.	1070	12	SFNA-1.	í)	()	t)	[13	1	t	1	SUB	
090.	1080		ELN=[1.+SRN]/[SRNA-SRN]	(1	t	1	t)	t I	1	t	1	SUB	3.
091.	1090		TLN=J+.5+ELN	1	1	t)	1	1	ſ	1	t	1	SUB).
092.	1100		S=1.+(SAN-1.]*,5*ELN	ť.	1	(1	(1	ſ	1	(14)	SUB	
093.	1110	13	ELN=1.	t	1	(1	()	ſ	1	(}	SUB	ι.
094.	1120		TLN=J+.5	(1	t	1	t	1	t	1	t	3	SUB	ι.
095.	1130		S=.5+(SRN+SRNA)	()	t	1	(1	()	(1	ŞUB	ι.
096.	1140	14	STRESS=STRESS+S	(1	t	1	í	1	ſ	1	t	1	SUB	3.
097.	1150		SELN≓SELN+ELN	l.	1	(1	t	1	1	1	ι.	1	SUB	

098. 2010 INER. % DETERMINATION OF N. AXIS [] [] [] [] [] [] [] [] [] []	INER. INER. INER. INER. INER.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	INER. INER. INER. INER. INER.
100. SHT.(100) []	INER. INER. INER. INER.
101. 2030 Z=KZ*M \$ LCC. OF N. AXIS [] [] [] [] [] [] [] 102. 2040 K=INT.[Z+1.] [] [] [] [] [] [] [] [] 103. 2050 S1=0 [] [] [] [] [] [] [] [] [] 104. 2060 J=NA [] [] [] [] [] [] [] [] []	INER. INER. INER.
102. 2040 K=INT.(Z+1.) () () () () () 103. 2050 S1=0 () () () () () 104. 2060 J=NA () () () () () ()	INER.
103, 2050 S1=0 [] [] [] [] [] [] [] [] [] [INER.
104. 2040 J=NA L L L L L L L L L L L L L L L L L L L	
	INER.
105. 20/0' * S1=S1=LTLN[.]]+7]*ELN[.]) (] [] [] [] [] [] [] [] [] [] [] [] [] []	INFR.
	INER.
107. 2090 S1=S1+(J5-Z) [] [] [] [] [] [] [] [] [] [INER.
108. 2100 10 S1=S1+(TLN(J)-7)*ELN(J) () () () () () ()	INER.
109. 2110 11 J=J=1	INER.
110. 2120 KZ=KZ+1 I I I I I I I I I I I I I I I I I I I	INFR.
111. 2130 SNB#7+LENGTH5+DA [] [] [] [] [] [] [] [] [] [] [] [] []	INER.
112. 2140 S2m.5+DB+TB+(DAA-7+) FNGTH) () () () () () (15)	INER.
	INER.
	INFR.
115. 2170 13 S2=.25*D8+1.5*D8+T8-7+LENGTH1**2=.25*1.5*D8- C	1
. 2180 7*1ENGTH1**2*SEL*08/NB	INER.
116. 2190 14 S2=TR+(DAA-7*(ENGTH)*SE)*.5*DR/NR []] [] [] [] [] [] [] [] [] [] [] [] [INGR.
117. 2200 15 S2-TB+(DAA+7*)(ENGTH)*SEL*.5*DB/NB+ C	1.000
. 2210 TA*/ENGTH**2*S1*SK.(K)-1.E-6 [] [] [] [**] [] []	INER.
116. 2220 KZ=KZ=1	INER.
119. 2230 S DETERMINATION OF M. OF L.	INFR.
	INER.
	INER.
122. 2260 * S1=S1+(12,*(TLN(J)+7)**2+ELN(J)**2)*ELN(J) [] [] [] [] [] [] [] [] [] [] [] [] []	INER.
	INER.
124. 2280 S1=S1+12.*[.]=.5=7]+*2+1.	INER.
125. 2290 16 S1=S1+[12.+(T[N]]+7]+*2+ELN[J]**2]*ELN[J] () [] [] [] [] [] [] [] [] [] [INER.

								F	PAGE 4	••		DEC 2	21 66		
SEQ	LABL	TYP	STATEMENT	с	ZER	0	NOT	0	PLU	IS	MIN	US	ELS	E	
2310		SNB		ſ)	t	1	[18	1	{	3	ť	1	INER.
2320		S2=DB+T8	3*[[DAA+Z*LENGTH]**2+18]	t		1	t	1	1	1	ī	1	121	i	INER.
2330	18	SWA		t	19	j	i i	j	ì	i	i	i	1	i	INER.
2340		SHC		f		1	i.	1	(20	1	ī	1	i	i	INER.
2350	19	S2=D8/3	*(2.*[.5*DA+TB-Z*LENGTH]**3+	С			-				•	-	•	•	•••••
2360		[2+LENG	TH=.5+DA]++3+SEL/NB]	1		1	L	3	t	1	1	1	[21	1	INER.
2370	20	52=TB+D	3*([DAA-Z*LENGTH]**2+IB]*SEL/NB	ſ		1	Ċ)	1 .	- i -	i	j	[i	INER.
2380	21	EINERTI	A=S2+D8+T8+[[DAA+Z*LENGTH]**2+I81*'	SEL/C							•	-	•		
2390		NË+TA+LE	ENGTH**3/6.*51+2*IK.[K]	(1	t	1	t	1	ſ	1.	ſ.	1	INER.
24Ü0	22	EINERTIA	A = 0	ŧ		3	i	j	ĩ	i	i	j	i i	í	INER.
	SEQ 2310 2320 2330 2340 2350 2350 2350 2380 2380 2380 2390 2390 2400	SEG LABL 2310 2320 2330 18 2340 2350 19 2350 19 2370 20 2370 20 2380 21 2390 2400 22	SEG LABL TYP 2310 SkB 2320 S2=DB+TE 2330 IB 2340 SkA 2350 19 2350 19 2360 [Å+LENG' 2370 20 2386 21 2386 21 2390 NE+TA+LE 2400 22	SEG LABL TYP STATEMENT 2310 SkB 2320 S2=DB*TB*[[DAA-Z*LENGTH]**2+1B] 2330 18 SkA 2340 SkC 2350 19 S2=DB/3.*[2.*[.5*DA+TB-Z*LENGTH]**3+ 2360 [2+ENGTH5*DA]**3*SEL/NB] 2370 20 S2=TB*DB*([DAA-Z*LENGTH]**2+1B]*SEL/NB 2380 21 EINERTIA=S2+DB*TB([DAA+Z*LENGTH]**2+IB]* 2390 NE+TA*LENGTH**3/6.*S1+2*IK.[K] 2400 22 EINERTIA=0	SEG LABL TYP STATEMENT C 2310 SWR [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []	SEG LABL TYP STATEMENT C ZER 2310 SWR [2320 S2=DB+TB*([DAA-Z*LENGTH]**2+IB) [[2340 [19 2340 [[2350 19 S2=DB/3.*[2.*[.5*DA+TB-Z*LENGTH]**3+ [[2350 [[2350 [2350 [[2360 [[[2360 [[[2370 [[2370 [[2370 [[2370 [[2370 [[2370 [[2370 [[2386 21 EINERTIA=S2*DB*TB*([DAA-Z*LENGTH]**2+IB]*SEL/NB [2380 [2400 NE+TA*LENGTH**3/6.*S1+2*IK.(K) [24400 [24400 [24400 [2 [[2 [2 [[2 [[2] [2] [2 </td <td>SEG LABL TYP STATEMENT C ZERO 2310 SkB []] []] []] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB]) []] []] 2330 IS SkA []] []] 2340 SkC []] []] []] 2350 19 S2=DB/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ []] []] 2360 [] 21±LENGTH5*DA]**3*SEL/NB] []] []] 2370 20 S2=TB+DB*([DAA-Z*LENGTH])**2+IB]*SEL/NB []] []] 2386 21 EINERTIA=S2+DB*TB*(IDAA-Z*LENGTH]**2+IE]*SEL/NC []] 2390 NE*TA*LENGTH**3/6.*S1+2*IK.[K] []] []] 2400 22 EINERTIA=0 []]</td> <td>SEG LABL TYP STATEMENT C ZERO NOT 2310 SkB [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] <t< td=""><td>SEG LABL TYP STATEMENT C ZERO NOT 0 2310 SkB [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+10) [] [] [] [] 2330 18 SkA [] [] [] [] 2340 SkA [] [] [] [] 2350 19 S2=D0/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ C 2360 [] 24U0AA-Z*LENGTH]**3*SEL/NB [] [] 2370 20 S2=TB+DB*([DAA-Z*LENGTH]**2+ID]*SEL/NB [] [] 2386 21 EINERTIA=S2+DB*TB*([DAA+Z*LENGTH]**2+ID]*SEL/NB [] [] 2390 NE*TA*LENGTH**3/6.*S1+2*IK.[K] [] [] [] 2400 22 EINERTIA=0 [] [] []</td><td>PAGE 4 SEG LABL TYP STATEMENT C ZER0 NOT 0 PLL 2310 SkB [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB) [] [] [] [] [] 2330 IS SkA [] [] [] [] [] [] 2340 SkA [] [] [] [] [] [] [] [] 2350 19 S2=DB/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ C [] [] [] [] [] [] 2350 19 S2=DB/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ C [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []</td><td>PAGE 4. SEG LABL TYP STATEMENT C ZERO NOT 0 PLUS 2310 SkB [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB) [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB) [] [] [] [] [] 2330 18 SkA [] [] [] [] [] 2340 SkA [] [] [] [] [] [] 2350 19 S2=DB/3.*(2.*(.5*DA+TB-Z*LENGTH)**3+ C [] [] [] [] 2350 19 S2=DB/3.*(2.*(.5*DA+TB-Z*LENGTH)**2+IB)*SEL/NB [] [] [] [] 2370 20 S2=TB+0B*(IDAA-Z*LENGTH)**2+IB)*SEL/NB [] [] [] [] 2360 21 EINERTIA=S2+DB*TB*(IDAA+Z*LENGTH)**2+IB]*SEL/NB [] [] [] [] 2360 21 EINERTIA=S2+DB*TB*(IDAA+Z*LENGTH)**2+IB]*SEL/NB [] [] [] [] 2370 22 EINERTIA=0 [] [] [] [] []</td><td>PAGE 4. SEG LABL TYP STATEMENT C ZER0 NOT 0 PLUS MIN 2310 SkB [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []<</td><td>PAGE 4. DEC 2 SEG LABL TYP STATEMENT C ZERO NOT 0 PLUS MINUS 2310 SkB [] [] [] [] [] [] 2320 S2=DB+TB+[[DAA-Z*LENGTH]**2*IB] [] [] [] [] [] 2320 S2=DB+TB+[[DAA-Z*LENGTH]**2*IB] [] [] [] [] [] 2330 18 SkA [] [] [] [] [] 2340 SkA [] [] [] [] [] [] 2350 19 S2=DB/3.*(2.*(.5*DA+TB-Z*LENGTH)**3* C </td><td>PAGE 4. DEC 21 66 SEQ LABL TYP STATEMENT C ZERO NOT 0 PLUS MINUS ELS 2310 SkB [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []</td><td>PAGE 4. DEC 21 66 SEQ LABL TYP STATEMENT C ZER0 NOT 0 PLUS MINUS ELSE 2310 SkB [] [] [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z+LENGTH]**2+IB) [] [] [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z+LENGTH]**2+IB) [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []</td></t<></td>	SEG LABL TYP STATEMENT C ZERO 2310 SkB []] []] []] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB]) []] []] 2330 IS SkA []] []] 2340 SkC []] []] []] 2350 19 S2=DB/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ []] []] 2360 [] 21±LENGTH5*DA]**3*SEL/NB] []] []] 2370 20 S2=TB+DB*([DAA-Z*LENGTH])**2+IB]*SEL/NB []] []] 2386 21 EINERTIA=S2+DB*TB*(IDAA-Z*LENGTH]**2+IE]*SEL/NC []] 2390 NE*TA*LENGTH**3/6.*S1+2*IK.[K] []] []] 2400 22 EINERTIA=0 []]	SEG LABL TYP STATEMENT C ZERO NOT 2310 SkB [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] <t< td=""><td>SEG LABL TYP STATEMENT C ZERO NOT 0 2310 SkB [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+10) [] [] [] [] 2330 18 SkA [] [] [] [] 2340 SkA [] [] [] [] 2350 19 S2=D0/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ C 2360 [] 24U0AA-Z*LENGTH]**3*SEL/NB [] [] 2370 20 S2=TB+DB*([DAA-Z*LENGTH]**2+ID]*SEL/NB [] [] 2386 21 EINERTIA=S2+DB*TB*([DAA+Z*LENGTH]**2+ID]*SEL/NB [] [] 2390 NE*TA*LENGTH**3/6.*S1+2*IK.[K] [] [] [] 2400 22 EINERTIA=0 [] [] []</td><td>PAGE 4 SEG LABL TYP STATEMENT C ZER0 NOT 0 PLL 2310 SkB [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB) [] [] [] [] [] 2330 IS SkA [] [] [] [] [] [] 2340 SkA [] [] [] [] [] [] [] [] 2350 19 S2=DB/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ C [] [] [] [] [] [] 2350 19 S2=DB/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ C [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []</td><td>PAGE 4. SEG LABL TYP STATEMENT C ZERO NOT 0 PLUS 2310 SkB [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB) [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB) [] [] [] [] [] 2330 18 SkA [] [] [] [] [] 2340 SkA [] [] [] [] [] [] 2350 19 S2=DB/3.*(2.*(.5*DA+TB-Z*LENGTH)**3+ C [] [] [] [] 2350 19 S2=DB/3.*(2.*(.5*DA+TB-Z*LENGTH)**2+IB)*SEL/NB [] [] [] [] 2370 20 S2=TB+0B*(IDAA-Z*LENGTH)**2+IB)*SEL/NB [] [] [] [] 2360 21 EINERTIA=S2+DB*TB*(IDAA+Z*LENGTH)**2+IB]*SEL/NB [] [] [] [] 2360 21 EINERTIA=S2+DB*TB*(IDAA+Z*LENGTH)**2+IB]*SEL/NB [] [] [] [] 2370 22 EINERTIA=0 [] [] [] [] []</td><td>PAGE 4. SEG LABL TYP STATEMENT C ZER0 NOT 0 PLUS MIN 2310 SkB [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []<</td><td>PAGE 4. DEC 2 SEG LABL TYP STATEMENT C ZERO NOT 0 PLUS MINUS 2310 SkB [] [] [] [] [] [] 2320 S2=DB+TB+[[DAA-Z*LENGTH]**2*IB] [] [] [] [] [] 2320 S2=DB+TB+[[DAA-Z*LENGTH]**2*IB] [] [] [] [] [] 2330 18 SkA [] [] [] [] [] 2340 SkA [] [] [] [] [] [] 2350 19 S2=DB/3.*(2.*(.5*DA+TB-Z*LENGTH)**3* C </td><td>PAGE 4. DEC 21 66 SEQ LABL TYP STATEMENT C ZERO NOT 0 PLUS MINUS ELS 2310 SkB [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []</td><td>PAGE 4. DEC 21 66 SEQ LABL TYP STATEMENT C ZER0 NOT 0 PLUS MINUS ELSE 2310 SkB [] [] [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z+LENGTH]**2+IB) [] [] [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z+LENGTH]**2+IB) [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []</td></t<>	SEG LABL TYP STATEMENT C ZERO NOT 0 2310 SkB [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+10) [] [] [] [] 2330 18 SkA [] [] [] [] 2340 SkA [] [] [] [] 2350 19 S2=D0/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ C 2360 [] 24U0AA-Z*LENGTH]**3*SEL/NB [] [] 2370 20 S2=TB+DB*([DAA-Z*LENGTH]**2+ID]*SEL/NB [] [] 2386 21 EINERTIA=S2+DB*TB*([DAA+Z*LENGTH]**2+ID]*SEL/NB [] [] 2390 NE*TA*LENGTH**3/6.*S1+2*IK.[K] [] [] [] 2400 22 EINERTIA=0 [] [] []	PAGE 4 SEG LABL TYP STATEMENT C ZER0 NOT 0 PLL 2310 SkB [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB) [] [] [] [] [] 2330 IS SkA [] [] [] [] [] [] 2340 SkA [] [] [] [] [] [] [] [] 2350 19 S2=DB/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ C [] [] [] [] [] [] 2350 19 S2=DB/3.*[2.*(.5*DA+TB-Z*LENGTH]**3+ C [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []	PAGE 4. SEG LABL TYP STATEMENT C ZERO NOT 0 PLUS 2310 SkB [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB) [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z*LENGTH]**2+IB) [] [] [] [] [] 2330 18 SkA [] [] [] [] [] 2340 SkA [] [] [] [] [] [] 2350 19 S2=DB/3.*(2.*(.5*DA+TB-Z*LENGTH)**3+ C [] [] [] [] 2350 19 S2=DB/3.*(2.*(.5*DA+TB-Z*LENGTH)**2+IB)*SEL/NB [] [] [] [] 2370 20 S2=TB+0B*(IDAA-Z*LENGTH)**2+IB)*SEL/NB [] [] [] [] 2360 21 EINERTIA=S2+DB*TB*(IDAA+Z*LENGTH)**2+IB]*SEL/NB [] [] [] [] 2360 21 EINERTIA=S2+DB*TB*(IDAA+Z*LENGTH)**2+IB]*SEL/NB [] [] [] [] 2370 22 EINERTIA=0 [] [] [] [] []	PAGE 4. SEG LABL TYP STATEMENT C ZER0 NOT 0 PLUS MIN 2310 SkB [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []<	PAGE 4. DEC 2 SEG LABL TYP STATEMENT C ZERO NOT 0 PLUS MINUS 2310 SkB [] [] [] [] [] [] 2320 S2=DB+TB+[[DAA-Z*LENGTH]**2*IB] [] [] [] [] [] 2320 S2=DB+TB+[[DAA-Z*LENGTH]**2*IB] [] [] [] [] [] 2330 18 SkA [] [] [] [] [] 2340 SkA [] [] [] [] [] [] 2350 19 S2=DB/3.*(2.*(.5*DA+TB-Z*LENGTH)**3* C	PAGE 4. DEC 21 66 SEQ LABL TYP STATEMENT C ZERO NOT 0 PLUS MINUS ELS 2310 SkB [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []	PAGE 4. DEC 21 66 SEQ LABL TYP STATEMENT C ZER0 NOT 0 PLUS MINUS ELSE 2310 SkB [] [] [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z+LENGTH]**2+IB) [] [] [] [] [] [] [] [] 2320 S2=DB+TB+([DAA-Z+LENGTH]**2+IB) [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []

135.	3010	SK	K-NA	[}	1	1	(22	1	1	1	r	1	SK	
136.	3020		SHA	ſ)	114	1	1	i	ŕ	i	ř	i	SK	
137.	3030		SEN=STRAIN+RW(K-1], SRNA=STRAIN+RW(K)	i i	j	i	i	i	i	i	i	ř15	i	SK	
138.	3040	14	SEN=STRAIN+RF[K=1], SRNA=STRAIN+RF[K]	i i	1	i	i	ř	i	ř	í	1	í	ČK.	
139.	3050	15	SRNA-1	i	i	i	i	ŕ	i	611	i	ì	í	SK	
140.	3060		SRN-1.	1	i	ř	i	i	i	[16	i	i	i	SK.	÷
141.	3070		S+D=12	(ĩ	ŕ	i	ř	i	1	í	112	i	SK	•
142.	3080	16	TLN(K)+ELN(K)*.5-2	ĺ.	í	i	i	ĩ	i	117	i	I III	i	SK	•
143.	3090		S+D=10	1	i	i	i	ì	i	T I	i	ř 1 0	i	SK	
144.	3100	17	S+D=13	ī	i	i	i	i	i	i	i	113	î	SK	
145.	3110	18	SHN-1.	[j	i	i	i	i	120	i	1	í	SK	
146.	3120		TLN(K)-ELN(K)*.5-2	t	i	i	i	i	i	(19	i	i	i	SK	
147.	3130		S+D=12	1	1	i	j	í	1	i î î	i	112	i	SK	
148.	3140	19	SkD=11	Į.	i	i	i	ŕ	i	i	i	111	i	SK.	:
149.	3150	20	S+D=10	ſ	1	i	i	i	i	i	í	1	1	CK.	•
150.	3160	10	SK[1]=K5-7	ŕ	í	i	i	í	i	ř	3	101	1	CK.	•
151.	31/6	11	SK[1]=[T N[K]+7]+E N[K]	í	í	ŕ	i	ř	i	ì	í	121	i	CK SI	•
152.	3180	12	SK[1]=.5+[K=7]++2	i	î	÷	i	ř	i	ì	í	121	1	C K	•
153.	3190	13	SK(1)=K=.5-75*(2-TIN(K)=ELN(K)*.5)+*2	i	í	ì	i	ì	1	7	÷	1	1	64	•
154.	3200	21	S4[1]=5K[1]*TA+1 ENGTH++2	ĩ	í	i	i	ř	í	ì	i	;	÷		•
155.	3210	22	SALLIEU	r	1	÷	í	-	÷	i	1		-	20	•
			0.1111.											~ ~	

57

								1	PAGE 5	· ·		DEC 2	21 66			
#	SEO	LABL	ΤΥF	STATEMENT	CZE	ERQ	NOT	0	PLU	IS	MIN	US	ELS			
156.	4010	Iκ	•	K-NA	t	1	ť	1	(15	1	t	1	(SWD	1	IΚ	
157.	4020	10		IK(1)=(K5-Z)**2+1./12.	ſ	1	t	1	t	1	ſ	1	(14	1	īк	
158.	4030	11 -		IK(1)=((TLN(K)+Z)**2+ELN(K)**2/12,)*ELN(K)	()	1	1	t	1	Ĺ.)	(14	i	īκ	
159.	4040	12		1K[1]=[K-Z]**3/3	(1	i.	1	i	j	i	j	[14	i	TK.	
160.	4050	13]K[1]=[K5-Z]++2+1./12.	С										• • •	•
	4060			-[Z-TLN[K]-,5*&LN[K]]**3/3	Ì (1	t	1	ł	1	C	1	t	1	IΚ	
161.	4070	14		[K[1]=[K[1]+TA*LENGTH**3	ſ	1	ſ	3	t	1	t	j	t.	i i	ĨΚ	
162.	4080	15		IK[1]=0	ſ	1	t	3	C	1	1	1	٤.	1	iκ	
163.	4096	FIN	ΡV	, , , , , , , , , , , , , , , , , , , ,	{)	t	1	ſ)	t	1	i	j.	īκ	
164.	4100		ΡL	END OF PROGRAM	t)	t	1	ſ	1	t)	1	i i	iκ	
165.	4110		END		t	1	t	1	ſ	1	C	1	(1	ĬΚ	•

DFC 5	0 66	1	2 36.4			9465 4	D50 00 0	
#	sEQ	Libl	TYP STATEMENT	C ZERO	NOT O	PAGE 1. PLUS	MINUS E	ELSE
001. 002. 003. 004. 005. 006. 007. 008. 009. 010. 011. 012.	0000 0020 0030 0040 0050 0060 0070 0080 0070 0080 0090 0100 0120	READ	<pre>\$ 290-3-6 \$ CALCULATION OF COLUMN CURVE RASED 0 \$ TANGENT MODULUS CONCEPT \$ FLEXURAL BUCKLING, TEE COLUMN \$ DECEMBER, 1966 BY FUMIO NISHINO D RF[100], RW(100], TLN(100], ELN(100], SNT.(1) CRDIJELDSTRAIN CRDISTRAIN CRDISTRAIN CRDISTRAIN CRDINCREMENT,FINALSTRAIN CRDNT,L.W CRDMLATION OF TANGENT WORLD S COLUMN</pre>	[] N [] (] SUB.(14] [] [READ] [] [] [] [] [] []			L 3 (L 1 () () () () () () () () () () () () ()	
014. 015. 016. 017. 018. 019. 020.	0130 0140 0150 0160 0170 0180 0190 0200		FLEXURAL BUCKLING, TEE-COLUMNS PL PL FL EY FUMIO NISHINO PV PL INPUT PARAMETERS PVL, NF, NW,, BIT,L,M SNT.[1] PVLYIELDSTRAIN	[] [] [] [] [] [] [] []) []]) []]) []]] []]] []]] []]] []]] []	
021. 022. 023. 024. 025. 026. 027. 028. 029.	0210 0220 0230 0240 0250 0260 0260 0270 0280 0280	*	PVL ISTRAIN, INCREMENT, FINALSTRAIN, PL RESIDUAL STRESSES IN THE FLANGE PV J=0 CRDRF(J) [v=J+1]-NF PV, PL RESIDUAL STRESSES IN THE WED	() () () () () () () () () ()		[] [] [] [] [] [] [] []		
030. 031. 032. 033. 034. 035. 036. 037.	0300 0310 0320 0330 0340 0350 0350 0350 0370 0380	*	PV J=0 CRDR+[J] PV SK1P, RW[J] [v=J+1]=NM AFEA=B*T+W+L YE=5*(L+T)+W+L/AREA XINERTIA=[B+T+*3+W+L**3]/12.+B*T*YE*+ U=1*[5+1+T]+YE++3]/12.+B*T*YE*+ U=1*[5+1+T]+YE++3]/12.+B*T*YE*+	() () () () () () 2+ C				
038. 039. 040. 041. 042. 043. 044.	0390 0400 0410 0420 0430 0440 0450 0460	1	SkT. 11) XKFACTOR=3.1415926+SORT.IXINERTIA/ARE YIELDSTRAIN) PV., PL. CALCULATED RESULTS PVL, SKIP, AREA, XINERTIA,, SkT.(1) PL STRAIN AVEST	(1) (1) (1) (1) (1) (1) (1) (1)))))]
045. 046. 047. 048. 049.	0480 0490 0500 0510 520 0530	2 3 **	ADEMORATIO ADEMORATIO PL STRAIN AVEST PL SIRAIN=ISTRAIN SIRESS=SELN=0 J=1, STMAI STMAIA	RESS C)]]
050.	6540	*	SAN=STRAIN+RF[J-1]		1 1	i i	i i i	1
050.	0540	•	SFN=STRAIN+RF[J-1]	i i		PAGE 2.	t i i] }
050, # 051, 052, 054, 054, 054, 056, 056, 056,	0540 SEQ 0550 0560 0570 0580 0580 0600 0600 0610 0620	* LABL	SRN=STRAIN+RF[J=1] TYP STATEMENT SRNa=STRAIN+RF[J] [.=J+1]-NF SF=STRESS SFEL=SELN STRESS=SELN=STLN=SWTL=0 J=1, STWA=0 SRNa=STRAIN+RW[J] SRNa=STRAIN+RW[J]	C ZERO C ZERO C J C J C J C J C J C J C J C J	NOT 0 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3	PAGE 2. PLUS [] [] [] [] [] [] [] [] [] []	DEC 20 (MINUS E () (() ()) 56 SUB) 1 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5
050. # 051. 053. 054. 055. 055. 055. 056. 0661. 0663. 0664. 065. 0664. 065. 066. 065. 066. 065. 066. 065. 066.	\$540 SEQ \$550 \$550 \$550 \$570 \$580 \$590 \$640 \$650 \$660 \$6670 \$6670 \$6670 \$6670 \$6670 \$6690 \$6670 \$6690 \$6700 \$6590 \$720	* LABL * 7	SFN=STRAIN+RF[J=1] TYP STATEMENT SFN=STRAIN+RF[J] [J=J+1]-NF SF=STRESS SFEL=SELN STRESS=SELN=STLN=SWTL=0 J=1, STWA=0 SFN=STRAIN+RW(J=1) SFN=STRAIN+RW(J=1) SFN=STRAIN+RW(J=1) SFN=STRESS SKEL=SELN SFEL SFEL SLENDKATIO=0 YF=-W+[L/NW]+*2*STLN/ [B*T/NF+SFEL+*k/NW+SWEL] J=1 -SKTL=ELN[J]+[[TLN[J]+NW/L*YP]+*2+ ELN[J]+*2/2.3+SWTL	C ZERO C ZERO C J C J C J C J C J C J C J C J	NOT 0 () () () () () () () ()	PAGE 2. PLUS [] [] [] [] [] [] [] []	DEC 20 (MINUS E L 3 (t L 3 (t) L 3 (t)) 56 ELSE SUB))) SUB)))))))))))))))))))
050. * 051. 052. 054. 055. 055. 055. 055. 055. 060. 064. 064. 064. 064. 064. 064. 064	\$540 SEQ \$550 \$550 \$550 \$550 \$590 \$610 \$6590 \$640 \$640 \$640 \$640 \$640 \$640 \$640 \$64	• LABL * 7 *	SFN=STRAIN+RF[J=1] TYP STATEMENT SFN=STRAIN+RF[J] [.=J+1]+NP SF=STRESS SFEL=SELN STRESS=SELN=STLN=SWTL=0 J=1, STW=D SFN=STRAIN+RW[J] [.=J+1]+NW Sk=STRAIN+RW[J] [.=J+1]+NW Sk=STRESS Sk=L=SELN SFEL XSLENDRATIO=0 YF=+W+(L/NW)+*2*STLN/ [B+T/NF*SFEL+L*k/NW+SWEL] J=1 SKTL=ELN[J]+![TLN[J]+NW/L*YP]+*2+ ELN[J]+*2/12,]*SFEL+B+T/NF, XINERTIA=(YP*YF+T+T/12,)*SFEL+B+T/NF, XINERTIA=(YP*YF+T+T/12,)*SFEL+B+T/NF, XINERTIA=(YP*YF+T+T/12,)*SFEL+B+T/NF, XINERTIA=(YP*YF+T+T/12,)*SFEL+B+T/NF, XINERTIA=(YP*YF+T+T/12,)*SFEL+B+T/NF, XINERTIA=(YP*YF+T+T/12,)*SFEL+B+T/NF, XINERTIA=(YP*YF+T+T/12,)*SFEL+B+T/NF, XINERTIA=(YP*YF+T+T/12,)*SFEL+B+T/NF, XINERTIA=(YP*YF+T-T/12,)*SFEL+B+T/NF, XINERTA=(YP*YF+T-T/12,)*SFEL+B+T/NF, XINERTA=(YP*YF+T-T/12,)*SFEL+B+T/NF, XINERTA=(YP*YF+T-T/12,)*SFEL+B+T/NF, XINERTA=(YP*YF+T-T/12,)*SFEL+B+T/NF, XINERTA=(YP*YF+T-T/12,)*SFEL+B+T/NF, XINERTA=(YP*YF+T-T/12,)*SFEL+B+T/NF, XINERTA=(YP*YF+T-T/12,)*SFEL+B+T/NF, XINERTA=(YP*YF+T-T/12,)*SFEL+B+T/NF, XINERTA=(YP*YF+T-T/12,)*SFEL+B+T	C ZERO C ZERO C J C J C J C J C J C J C J C J	NOT 0 () () () () () () () ()	PAGE 2. PLUS [] [] [] [] [] [] [] []	DEC 20 4 MINUS E L 3 1 L 1 1) 56 ELSE SUB) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0550. # 051. 052. 054. 055. 055. 055. 055. 055. 065. 065. 064. 065. 064. 065. 064. 065. 064. 065. 077. 076. 077. 076. 077. 076. 077. 076. 066. 065. 077. 076. 077. 076. 066. 066. 077. 076. 077. 076. 066. 066. 077. 076. 077. 076. 066. 077. 076. 077. 076. 066. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 076. 077. 077. 077. 077. 077. 077. 077. 077. 076. 066. 067. 076. 066. 066. 067. 077. 077. 077. 077. 076. 066. 066. 077. 077. 077. 077. 076. 066. 066. 077. 077. 076. 077. 076. 066. 066. 066. 077. 077. 076. 066. 066. 066. 077. 076. 077. 076. 066. 066. 066. 066. 077. 077. 076. 066. 07	6540 SEQ 0550 0550 0550 0550 0590 06590 0640 0640 0640 0640 0640 0640 0640 06	• LABL * 7 * * 5 SUB 11 12	<pre>SFN=STRAIN+RF(J=1) TYP STATEMENT SFN=STRAIN+RF(J) (.=J+1)-NF SF=STRESS SFEL=SELN STRESS SFEL=SELN STRESS SFL=J]-NN Sh=STRAIN+RW(J=1) SFN=STRAIN+RW(J=1) SFN=STRAIN+RW(J=1) SFN=STRESS SKEL=SELN SFEL XSLENDRATIO=0 YF=-W*(L/NW)+*2+STLN/ (B+T/NF+SFEL+L+K/NW+SWEL] J=1 ShTL=ELN(J)+2+212.)+SWTL (.=J+1)-NW EXINERTIA=(YP+YF+T+T)2.)+SFEL+8+T/NF, XINERTIA+SWTL=U/NW)+*3/XINERTIA AVESTRESS=SF*8+T/NF/AREA+SW+L=W/NW/ARI XSLENDRATIO=SQT.(EXINERTIA/AVESTRESS SKT.11) PV SKIP.STRAIN.AVESTRESS,XSLENDRATIO,SKII XSLENDRATIO=SQT.(EXINERTIA/AVESTRESS SKT.11) PV SKIP.STRAIN.AVESTRESS,XSLENDRATIO,SKII XSLENDRATIO=SQT.(EXINERTIA/AVESTRESS SKT.11, SFN=1. SFN=1</pre>	C ZERO C ZERO C J C J C J C J C J C J C J C J	NOT 0 I 3 <td< td=""><td>PAGE 2. PLUS [] [] [] [] [] [] [] []</td><td>L J DEC 20 (d) MINUS L J</td><td>) 56 51 52 52 53 54 54 55 54 55 55 55 55 55 55</td></td<>	PAGE 2. PLUS [] [] [] [] [] [] [] []	L J DEC 20 (d) MINUS L J) 56 51 52 52 53 54 54 55 54 55 55 55 55 55 55
050. # 051. 052. 054. 055. 055. 055. 055. 066. 066. 066. 066. 066. 077. 074. 077. 066. 066. 066. 077. 077. 077. 077. 077. 077. 077. 006. 006. 006. 006. 007. 077. 006. 006. 006. 006. 006. 006. 006. 007. 007. 007. 007. 007. 007. 007. 007. 007. 007. 007. 007. 007. 007. 007. 007. 006. 006. 006. 006. 006. 006. 006. 006. 007. 007. 007. 007. 007. 007. 007. 007. 006. 006. 006. 009. 000	0540 SEQ 0550 0550 0550 0550 0590 0640 0730 0740 0770 0780 0810 0820 0820 0890 0890 09910 09920 0940 0940 0940 0940 0940 0940 0940 0940 0940 0940 0940 <	* CABL * 7 * 5 SUB 11 12 13 14	<pre>SFN=STRAIN+RF(J=1) TYP STATEMENT SFN=STRAIN+RF(J) [.=J+1]-NF SF=STRESS SFEL=SELN SIRESS=SFLN=STLN=SWTL=0 J=1, STWA=0 SFN=STRAIN+RW(J=1) SFN=STRAIN+RW(J=1) SFN=STRAIN+RW(J] [.=J+1]-NW Sk=STRESS Sk=L=SLN SFEL XSLENDRATIO=0 YF=-+k=(L/NW)+*2*STLN/ [B*T/NF*SFEL+L*k/NW*SWEL] J=1 SKTL=ELN(J)*(1TLN(J)+NW/L*YP)**2+ ELN(J)**2/12.)*SWTL [.=J+1]-NW EXINERTIA=(YP*YF+T/12.)*SFEL*B*T/NF, XINERTIA=(YP*YF+T/12.)*SFEL*B*T/NF, XINERTIA=(YP*YF+T/12.)*SFEL*B*T/NF, XINERTIA=(YP*YF+T/12.)*SFEL*B*T/NF, XIENDRATIO=SQRT.(EXINERTIA/AVESTRESS SkT.(1) PV SKIP.STRAIN.AVESTRESS.XSLENDRATIO.SKII XSLENDRATIO=SQRT.(EXINERTIA/AVESTRESS SkT.(1) PV SKIP.STRAIN.AVESTRESS,XSLENDRATIO,SKII XSLENDRATIO=SQRT.(EXINERTIA/AVESTRESS,XSLENDRATIO,SKII XSLENDRATIO=SRAI/(SRN-SRNA) TLN=JS*ELN SFN=1. ELN=1. ELN=1. ELN=1. TLN=0.S=1. ELN=0</pre>	C ZERO C ZERO C J C J C J C J C J C J C J C J	NOT 0 () <td< td=""><td>PAGE 2. PLUS [] [] [] [] [] [] [] []</td><td>L J DEC 20 4 MINUS L J</td><td>) 56 52 52 52 53 53 54 5 54 5 54 5 54 5 5 5 5 5 5 5 5</td></td<>	PAGE 2. PLUS [] [] [] [] [] [] [] []	L J DEC 20 4 MINUS L J) 56 52 52 52 53 53 54 5 54 5 54 5 54 5 5 5 5 5 5 5 5

									1	PAGE	3.		DEC	20 66			
# SE(LABL	TYP	STATEMENT	CZE		RO	NOT 0		PLUS		MINUS		EL	ELSE		
093.	1010		STLN¤STLN+ELN*TLN	(J)		£	1	t	1	ſ	1	t	1	۲.	1	SUB	
094.	1020	FIN	PV			1	j	i	j	i	i	i	i	- i `	i	SUB	
095.	1030		PL END OF PROGRAM			(j	i	Ĵ.	i	i	i	i	i	i	SUB	
096.	1040		ENDS END OF PROGRAM			1	1	t	1	t	j	i	j	i	j	SUB	

****SYMBOL TABLE****		
AREA	AVESTRESS	B
ELN	EXINERTIA	FIN
FINALSTRAIN	ISTRAIN	INCREMENT
j	L	NF
NW	RF	RW
READ	SUA	SWT
SKIP	SQRT	STRAIN
STRESS	TLN	T
SELN	STWA	SRN
SRNA	SF	SFEL
STLN	SWTL	SW
SWEL	S	W
XINERTIA	XMFACTOR	XSLENDRATIO
YIELDSTRAIN	YE	YP

UNUSED MEMORY FROM (OCTAL) 06232 TO (OCTAL) 15713.

290,6

0(5	2082 FUM10	NISHINC	COLUMN	RUCKLING
DFC	21 60	21 52.2		

					1	PAGE 1.	DEC 2	1 64
4	sEn	(A B I	TYP STATEMENT	C 7680	NOT D	PLUS	MINUS	EI SE
"	3-0	CAUL	51042-E01	0 7240	NOT 0	. 203	1.1403	F1.3%
0(1.	0011		\$ 290-3-2	ı 1	()	1 1	t 1	()
0(2.	0011		E CALCULATION OF COLUMN CURVE BASED ON	' 1	()	()	(1	()
063.	0020		TANGENT MODULUS CONCEPT	•)	(1	; 1	()	t 1
064,	0030		\$ AUG. 1966 PY FUMIO NISHINO	1 1	()	(1	[]	()
005.	0040		D XF(100),XW(100)	1 1	()	(1	[]]	ł ·
066.	0050	READ	CPDISTRAIN, INCREMENT, FINALSTRAIN	1 1	1	()	[]	(I
DÚ7.	0066		STRAIN=ISTRAIN	1	[]	1 1	(FIN]	()
QC8.	00/ü		CRDNF, NW, B, BI, T, L, W	1 1	[]	1	()	E 1
009.	008(J≈1	ı)	1	{]	[]]	f i
010.	0070	*	CRDXF(J)	·)	[]	í I	()	T I
011.	0100		(_=J+1)-NF	(*)	[]	[]	(*)	[
012.	0110		J=1)	()	[]	()	E 1
013.	0120	**	CRDXW[J]	()	[]	[]	()	1
014.	0130		[u=J+1]=NW	1** 1	[]	()	[**]	(i
015.	0148		SE CALCULATION OF COLUMN CURVE BASED ON TANG	ENFC				
····	9120		MCDULUS CONCEPT BY FUMIU NISHINO			1		
017	0100		PV //				1 1	
010	01/0		PL INFUL FARAMELERS	1 1				+ ;
010	0196		DV) ISTRAIN, INCREMENT, CINALSTRAIN,	i i	1 1	i i	i i	7 1
020.	0200		PL RESIDUAL STRESSES IN THE FLANGE	i i	i i	i i	i i	i i
021.	0210		PV .	i 1	i i	ii	ii	i i
022.	0220		J=1	i i	i i	i i	i i	i i
023.	0231	*	PV XF(J)	(1	t i	1	[]	()
024.	0240		[,=J+1]~NF	[±]	[]	1 1	[*]	t I
025.	0250		PV ,	()	()	[]]	(I	E 1
026.	0200		PL RESIDUAL STRESSES IN THE WEB	(1	()	()	()	1 1
027.	0270		PV,	1 1	()	()	()	[]]
028.	0280		J=1 .	[]	()	- (()	[]
029.	0290	**	PV Xk[J]	()	()	(]	()	[]
030.	0300		(_=J+1]=NW	[++]	I I	()	[**]	[]
031.	0310		AHEA=2*(B*T+W*L]		I I	(]		[]
032.	0320		XINERTIA=[8*1*[4*1*T+6*L*1+3*L*L]+W*1*L*L	176 L J	t i	()	L J	L I
033.	0300		YINEKIIA=(L*W*(4*W*W+6*W*01+0*B1*B11+1*B*	8* 6	, ,	, 1	<i>(</i>)	
034	0350		8170			1		
035	0360			r i	1 1	- i - i	i i	r i
036.	0320		PVI AREA. VINERTIA. VINERTIA	i i	i i	i i	i i	r i
037.	0380		PL STRAIN AVESTRESS XSLENDRAT	10 C	• •		• •	•
	0390		YSLENDRATIC EXINERTIA EYINERTIA	i 1	()	()	t 1	t 1
038.	0400	20	SF=0 \$SUM OF STRAINS IN FLANGE	1 1	()	()	[]	£)
039.	0410		SCFX=0 % SUM OF CCEFF OF FLANGE X	(I	[]	()	[]	[]
040.	0420		SCFY≓O \$ SUM OF CCEFF OF FLANGE Y]	()	[]]	()	[]
041.	0430		J=1	[]	()	E 3	()	t I
042.	0440	*	FSTRAIN=XF[J]+STRAIN \$ STRAIN IN FLANGE	[]	(i	[]	(1	()
043.	0420		FSTRAIN-1 TTEST FOR YIELD	(11)		- <u>-</u>	[11]]	()
044.	0400		FEIRAINEL GERA BUCEEC IN THE ELINGE					
045.	0470	1.4	GF=0 SUCEFF IN THE FLANGE					(12)
047	0400	12				1 1		
047.	0420	+2	of Ex-of Exide	L 1			1 1	
040	0510		SUF A = SUF A = SUF SUF V = SUF V = SUF (1 S = .) = 1 = 1 = 2 = . (+4)	ι J Γ 1	r i	r j	1 1	r i
050.	0520		f. = 1+1]=NC	Гњ 1	1	r 1	i+ i	r i
051.	0530		SHED & SUM OF STRAINS IN WEB	(1	r i	r i	, <u>,</u>	r i
n52.	0540		SCWY=0 \$SUM OF COEFF IN WEB X	f 1	ii	i i	i i	
** 1	55.0		cent a rodu al dorit la uno h					
						PAGE 2.	DEC 2	1 66

#	sEo	LABL	TYP		STATEMENT		C ZEF	1 0	NOT	0	PL	US	MINU	s	ELS	Ê
053.	0550		SCWY=0	S SUM OF C	CEFF IN WEB	,	l.	1	ť	1	ť	3	T	1	t	3
054,	0560		J=1				t	1	ſ	3	1	1	L	1	(Т
055.	0570	**	WSTRAI	N=XW(J]+STR	AIN & STRAIN	IN WEB	1	1	t	3	ł.	1	I.	j	Ċ	I.
056.	0580		WSTRAI	N-1 § TEST	FOR YIELD		113	j	t	1	i	1	113	ì	ŕ	1
057	0590		WSTRAT	N = 1			ſ.	1	i i	1	Ť	j	1	1	ř	1
058.	0600		C k = 0 \$	COEFF IN W	ER		Ĺ	j	i	i	i	i	t	i	r 1 4	-i
059.	0610	13	C k = 1				t	j	i	j	i	j	i	j	1	í
060.	0620	14	SN=SW+1	WSTRAIN			L	1	i	1	£	j	t	j	i	1
061.	0630		SCWX=S	CWX+CW*[12*	J*J-12*J+4]		1	1	ť	1	Î.	j	i i	j	i	÷
062.	0640		SCWY=S	CWY+CW			1	1	ť	1	T.	j	i	j	i	1
063.	0650		[.=.]+1] - NW			1**	1	i	1	r	1		i	i i	- i
064.	0660		AVESTRI	ESS=2+8+T+S	F/INF*AREA]+		C	-	•			-	-		•	'
	0670		2*L+W+	SW/ INW*AREA	1 & AVERAGE	STRESS	E	1	t	1	f	1	1)	1	1
065.	0680		EXINER	1 [A=R*T*[4*	T+T+6+1.+T+3+1	*L]*SCFX/(6*NF	*C		•			-			•	
	0690		XINE	RTIA1+W*I *I	*L +SCWX/[24+]	W*NW*NW*	Ċ									
	0700		XINE	RTIAL SEFE	CTIVE M DE L	X	ĩ	1	r	1	ſ	1	r	1	r	1
n 6 6 .	0710		EYINER	114=1 + W+14+	W+W+6+W+81+31	BI*BI1+SCWY/	c .		•			•		•	•	
	0720		[6±N]	WAYTNERTIAL	+T+B+B+B+SCF	/ (24+NF+NF+	č									
	0730		NF+Y	INFRIIAL SE	FFECTIVE M OF	1. Y	Ŭ,	1	r	1	r	1	1	1	r	1
067.	0740		X51 END	RATIO=SORT.	(EXINERTIA/A)	ESTRESS1+3.141	60 [°]	•	•		•	•		1	·	
	0741		+SOPT.	120600.0/34	.51		Г	1	1	1	r	1	r	1	r	1
068.	1750		YSI ENDI	RATIO=SORT.	(EYINERTIA/A)	ESTRESS1+3.141	60 [°]	•	· ·		,	•	•		· ·	
	0751		+SORT.	[29600.0/34	.51		- - (1	r	1	1	1	t	ł	r	1
069.	0766		PV STRAT	N.AVESTRESS	XSLENDRATIO	YSLENDRATIO	c`		·	•		•		•	•	'
	0761		EXIN	FRITA, FYIN	FRIIA	TOLLIOUATTO	й ,	1	7	1	t	1	r	1	r	1
a7n.	0790		ISTRATI	N=STRAIN+IN	CREMENT1+FINA	U STRAIN 0001	i	í	÷	i	ì	í	່າວາ	í	1 DEA	n i
071.	0.000	FTN	PV				i	í	î	í	ř	í	1	í	1	1
072.	0810		PL END OF	FROGRAM			i	i	i	i	i	i	ř	i	i	÷
073.	0820		END 4 END	OF PROGRAM			i i	i	ř	i	ŕ	i	ŕ	i	ì	i
• • • •			200 1 200	••••••••			-	•	•	•		•	•	•		

AREA	AVESTRESS	B
BI	CF	Č.
FXINERTIA	EYINERTIA	EINAL STRAIN
FIN	FSTRAIN	ISTRAIN
INCREMENT	J	L
NF	NW	READ
STRAIN	SF	SCEY
SCFY	5 W	SCUY
Т	SCWY	SORT
W	WSTRAIN	XF
Χw	XINERTIA	YSI ENDRATIO
YIME FOR	YSI ENDRATIO	NOEL MARKETS

UNUSED REMURY FROM (1. 4145 TO LOCTAL) 16677.

CALCULATION OF COLUMN CURVE BASED ON TANGENT MODULUS CONCEPT BY FUMIO NISHING

INPUT PARAMETERS

2.0000000000 \$ NF 2.000000000000 \$ NW 8.000000000 \$ B 0.000000000 \$ BI 4.3300000-01 \$ T 7.1340000+00 \$ L 1.4400000-01 \$ W 6.5000000-01 \$ ISTRAIN 5.0000000-02 \$ INCREMENT 1.2000000+00 \$ FINALSTRAIN PESIDUAL STRESSES IN THE FLANGE

-1.8830889-01 3.0000000-01

RESIDUAL STRESSES IN THE WEB

-1.8830000-01

CALCULATED RESULTS

8.9825920+00 \$ AREA 1.0799554+02 \$ XINERTIA 3.6963535+01 \$ YINERTIA

STRAIN	AVESTRESS	XSLENDRATIO	YSLENDRATIO	EXINERTIA	EYINERTIA
6.5000000-01	6.5000204-01	1.1413789+02	1.1413789+02	1.0000000+00	1.0000000+00
7.0000000-01	7.0000204-01	1.0998603+02	1.0998603+02	1.0000000+00	1,0000000+00
7.5000000-01	7,3072030-01	7.9130993+01	3.8110954+01	5.4034361-01	1.2533617-01
8.0000000-01	7.6143856-01	7.7518395+01	3,7334297+01	5.4034361-01	1.2533617-01
8.5000000-01	7.9215682-01	7.6000530+01	3,6603265+01	5.4034361-01	1.2533617-01
9.0000000-01	8.2287508-01	7.4568473+01	3.5913560+01	5.4034361-01	1.2533617-01
9.5000000-01	8.5359334-01	7.3214432+01	3.5261428+01	5.4034361-01	1.2533617-01
1.0000000+00	8.8431160-01	7.1931571+01	3.4643579+01	5.4034361-01	1.2533617-01
1.0500000+00	9,1502986-01	7.0713864+01	3.4057109+01	5.4034361-01	1.2533617-01
1.1000000+00	9.4574812-01	6.9555978+01	3,3499449+01	5.4034361-01	1.2533617-01
1.1500000+00	9.7646638-01	6.8453169+01	3,2968316+01	5.4034361-01	1.2533617-01

1.2000000+00 1.0000000+00 0.000000+00 0.000000+00 0.0000000+00 0.0000000+00

#END OF DATA# CARD READ STATEMENT 006 WAS BEING EXECUTED.

DEC 21 66 21 52.9

l.

11.

Bleich, F.

10. REFERENCES

BUCKLING STRENGTH OF METAL STRUCTURES, McGraw-Hill,

- New York, 1952 2. Timoshenko, S., and Gere, J. M. THEORY OF ELASTIC STABILITY, 2nd Ed., McGraw-Hill, New York, 1961 3. Beedle, L. S. and Tall, L. BASIC COLUMN STRENGTH, ASCE Proc. Paper 2555, Vol. 86, ST7, July 1960 4. Johnston, B. G. BUCKLING BEHAVIOR ABOVE THE TANGENT MODULUS LOAD, Trans. ASCE, Vol. 128, Part 1 (1963) 5. Yang, C. H., Beedle, L. S. and Johnston, B. G. RESIDUAL STRESS AND THE YIELD STRENGTH OF STEEL BEAMS, The Welding Journal, Research Supplement, Vol. 31. April 1952 6. Huber, A. W. and Beedle, L. S. RESIDUAL STRESS AND THE COMPRESSIVE STRENGTH OF STEEL, The Welding Journal, Research Supplement, Vol. 33, No. 12, December 1954 7. Estuar, F. R., and Tall, L. EXPERIMENTAL INVESTIGATION OF WELDED BUILT-UP COLUMNS, Welding Journal, Vol. 42, April 1963 8. Huber, A. W. THE INFLUENCE OF RESIDUAL STRESS ON THE INSTABILITY OF COLUMNS, Ph. D. Dissertation, Lehigh University, 1956
- 9. Fujita, Y. INFLUENCE OF RESIDUAL STRESSES ON THEI NSTABILITY PROBLEMS, Jour. Zosen Kyokai, Japan, Vol. 107, July 1960. (Japanese with English Abstract)
- 10. Nishino, F. BUCKLING STRENGTH OF COLUMNS AND THEIR COMPONENT PLATES, Ph.D. Dissertation, Lehigh University, 1964
 - Nadai, A. THEORY OF FLOW AND FRACTURE OF SOLIDS, Vol. 1, 2nd Ed., McGraw-Hill, New York, 1950

14.

- 12. Beedle, L. S. PLASTIC DESIGN OF STEEL FRAMES, John Wiley and Sons, Inc., New York, 1958
- 13. Feder, D. K. and Lee, G. C. RESIDUAL STRESSES IN HIGH-STRENGTH STEEL, Fritz Laboratory Report 269.2, Lehigh University, 1959

Tall, L., Huber, A. W. and Beedle, L. S. RESIDUAL STRESS AND THE INSTABILITY OF AXIALLY LOADED COLUMNS, Lehigh University, Fritz Laboratory Report No. 220A.35, Feb., 1960 (See also, Int. Inst. Welding Colloquium, Liege, Belgium, June, 1960, Commission X Document).

- 15. Tall, L. THE STRENGTH OF WELDED BUILT-UP COLUMNS, Ph.D. Dissertation, Lehigh University, Bethlehem, Pa., 1961
- 16. Nagaraja Rao, N. R., Lohrmann, M. and Tall, L. RESIDUAL STRESSES IN WELDED PLATES, The Welding Journal, Vol. 40, October 1961
- 17. Nagaraja Rao, N. R., Lohrmann, M. and Tall, L. RESIDUAL STRESS IN AUTOMATICALLY WELDED PLATES, Fritz Laboratory Report 249. , Lehigh University. In preparation.
- 18. Nagaraja Rao, N. R., Estuar, F. R. and Tall, L. RESIDUAL STRESSES IN WELDED SHAPES, The Welding Journal, Vol. 43, July 1964
- 19. Odar, E., Nishino, F. and Tall, L. RESIDUAL STRESSES IN T-1 CONSTRUCTIONAL ALLOY STEEL PLATES, Fritz Laboratory Report 290.4, Lehigh University, 1965
- 20. Odar, E., Nishino, F. and Tall, L. RESIDUAL STRESSES IN ROLLED HEAT-TREATED T-1 STFEL SHAPES, Fritz Laboratory Report No. 290.5, Lehigh University, 1965
- 21. Osgood, W. R. THE EFFECT OF RESIDUAL STRESS ON COLUMN STRENGTH, Proc. First Nat. Cong. Appl. Mech., 1951
- 22. Odar, E., Nishino, F., and Tall, L. RESIDUAL STRESSES IN WELDED BUILT-UP T-1 SHAPES, Fritz Laboratory Report 290.8, Lehigh University, 1965
- 23. General Electric Company GE225 WIZ SYSTEM, Computer Department, Phoenix, Arizona