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ABSTRACT

-i

The effect of residual stress on the buckling strength of

centrally loaded columns of structural steel is studied. Numerical

methods of computing the tangent modulus and the reduced modulus

column curves of non-dimensionalized stress versus non-dimensionalized

slenderness ratio are presented for pinned-end columns. The methods

can be applied to columns containing residual stress of any distri­

bution. Box, H, tee and equal leg angle cross sections are

considered.

Numerical results are obtained for two wide flange columns,

8WF31, and 27WF94, containing idealized residual stress distri­

butions of various magnitudes.
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1. INTRODUCTION

The strength of .a column may be defined by either of two

criteria; the bifurcation (or buckling) load, and the ultimate

load. The buckling load may be defined as the load at which the

theoretically straight column is indifferent to its deflected

position. The ultimate load is the maximum load a column can carry.

Although no such perfectly straight member exists in practice, the

buckling strength is the most fundamental characteristic of the

compression member on which the strength of practical compression

members is dependent, and the uncertainties such as initial out-of-

straightness are best taken care of for design purposes by the

factor of safety.(l) The buckling strength of a steel column

depends mainly on the slenderness ratio, the sectional properties

of the column, the stress-strain relation~hip of the material, the

residual stress distribution in the cross section(1)(2)(3)(4) ..

Residual stresses were introduced in the past decade as the

main factor influencing the strength of centrally loaded

1 (3)(4)(5)(6)(7)co umns .. Residual stresses are observed in almost

all structural steel members. They are formed as a result of

plastic deformations which take place during or after various

fabrication procedures. For instance, rolled sections contain

residual stress due to uneven cooling after rolling.(3)(8) There

are several other causes by which the residual stress may be formed,

such as cold straightening, shearing, flame cutting, and welding.

The residual stress formed by the welding process is usually larger
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in magnitude than that existing in rolled shapes, or those due to

shearing and flame cutting and consequently welding residual

stresses have more effect on buckling strength(3)(7) .

Since welded built-up members are being used more frequently

in steel construction due to economy and convenience, it is quite

important to have a knowledge of the strength of these members.

When a column c9ntaining residual stress is subjected to

thrust, it will behave elastically until the thrust reaches a

certain value which causes yielding in some portion of the cross

section. Under a thrust less than this value and for certain

geometrical limitations, the column may buckle elastically. The

residual stress has no effect for this elastic buckling* and thus

the buckling stress is equal to the Euler stress.

When the thrust exceeds this value, some parts of the cross

-2

section start to yield due to the presence of compressive residual

stresses. Thereafter, the cross section consists of elastic parts

and plastic parts~'~~': and the buckling under this loading is called

TTinelastic buckling TT in this report.

In the literature the computation of buckling strength has

been made mainly in the form of column curve of stress versus

slenderness ratio because of the convenience of computation.

* In general, residual stress does have some effect on the elastic
buckling of a column(9)(lO); however, in this report only the
buckling due to excessive bending in the direction parallel to a
symmetrical axis of the cross section is considered, in which
case residual stress_plays no role.

**The word plastic is used, since structural steel can be considered
as an elastic - perfectly plastic ~aterial(11)(12).
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This has been carried out by either of two methods: one is an

-3

analytical method based on the assumed or measured residual stress

distribution in the cross section and the other is an approximate

method based on the stress-strain relationship of the cross section

containing residual stresses(3)(13)(14). However, because of the

difficulty encountered in computation, the analytical method was

made only for a column with a simplified residual stress distribution

such as the triangular distribution for rolled shapes and ~he

rectangular distribution for welded shapes in the flanges; the

residual stress present in the web plate was mostly neglected.(15)

Residual stresses have been measured on a wide variety of

welded plates and on welded built-up shapes of various

steels(16)(17)(18)(19)(20). The results obtained are significantly

different compared to the- idealized patterns of residual stress

assumed for the analyses of column strength in the literature.

Further, a significant difference in the patterns of residual

stress distribution existed depending on material and on geometry

of the shapes. The analytical approach to computing column curves

seems to be quite difficult and does not cover a wide variety of

residual stress patterns. A numerical method of computation is

considered in this report, with the help of a digital computer.

This report presents a method of compute column curves by

means of a digital computer for structural steel columns containing
1

residual stress. The analysis includes the preparation of equations
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for column curves based on the tangent modulus and the reduced

modulus concepts of column buckling so that the upper and lower

limits of the ultimate strength(l) of a straight and centrally

loaded steel column are obtained over a wide range of slenderness

ratios.

-4
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2. BUCKLING STRENGTH OF COLUMNS

2.1 Assumptions

The following assumptions are the basis for the subsequent

analysis:

(1) The column is initially straight and free of imperfec-

tions. The deflection due to the moment from partial

yielding* is small so that the column is straight

before buckling even in the inelastic domain.

(2) The external load is applied to the centroid of the

cross section, causing uniform strain over the cro,ss

section, and along the whole length.

(3) The mechanical properties, and the residual stress, are

uniform along the whole length of the column for each

fiber.

(4) The cross section has at least one axis of symmetry

and does not change along the length of the column.

(5) The residual stress is constant in the thickness

direction of the wall of the cross section. The

distribution of residual stress is symmetric about

the axis of symmetry of the cross section.

*The partial yielding is due to the presence of residual stress in
the case of a c91umn with homogeneous material.
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2.2 Buckling Strength of Columns

The differential equation of equilibrium of a slightly buckled

column is well known(1)(2)(lO)(14)(21) and can be written in the

following form,

( 1)

where z is the co-ordinate along the length of a column and u

denotes the deflection. P is the axial load at which the column

is going to buckle. The bending rigidity of the column, B, is

defined by the product of modulus of elasticity, E, and moment of

inertia, I, of the cross section for an elastic column, thus

B = EI (2)

For an inelastic column, the bending rigidity is defined by either

of two theories; the tangent modulus theory or the reduced modulus

theory. The tangent modulus theory defines the rigidity by the

following expression with the tangent modulus of elasticity

B =f E y2 dA
A t

where y is the distance from the neutral axis to a fiber in the

cross section and A denotes the area. The tangent modulus of

(3)

elasticity, Et , is not a constant for a column containing residual

stress, since it is a fun'ction of strain at each fiber, which is

not uniform but it is shown by the sum of residual strain and the

strain due to loading.
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The reduced modulus theory defines the rigidity by the

following equation

-7

2
E Y dA (4 )

where Al and Au denote the area respectively, where strain is

increasing and the area where strain is decreasing. The neutral

axis is determined by the condition that no increment of axial

load occurs at the instant of buckling, thus

where Y is thecoordinate of the neutral axis.o

The expression for the buckling strength of a column is

obtained as the characteristic value of Equation 1. For the

analysis of a column with residual stress and loaded into the

(5) .

inelastic range of the material, it is not, in general, practical

to solve for the buckling load, but it is easier to solve for the

critical length under a known loading. The expression for the

buckling of a pinned-end column is(lO)(2l).

L cr = TTIf ( 6)

where L is the length of a pinned-end column which is going tocr

buckle under a loading P. Since the bending rigidity is a function

of loading and of residual stress distribution in the inelastic

range, the explicit numerical solut,ions need more consideration.
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3. NUMERICAL COMPUTATION OF COLUMN CURVES

The numerical method of computation is considered for steel

columns of box-, H-, tee-, and equal-leg angle-sections, contain-

ing residual stress. The method, by its nature, is applicable for

columns with any kind of residual stress distribution under the

given assumptions and it is suitable for computation by a digital

computer.

In addition to those in Article 2.1, an assumption that the

stress strain relationship of steel is elastic-perfectly plastic

is made for the following analyses. Because of this assumed stress

strain relationship of steel, the bending rigidity, B, at the

instant of buckling becomes simply the product of modulus of

elasticity and the effective moment of inertia, I
e

B = EIe ( 7)

The tangent modulus theory defines the effective moment of inertia

by the moment of inertia of the cross section which remains elastic,

and the reduced modulus theory defines it by that of the cross

section which consists of the elastic part in the loading region

of the cross section and the whole part in the unloading region at

the instant of buckling~

In order to compute the non-dimensionalized column curves, and

using Eq. 7, Eq. 6 may be changed to

1
IT

L. A =/Ie
r VB I

( 8)
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where, r and I are the radius of gyration and the moment of inertia

of the cross section, respectively. a cr is the buckling strength

defined by the axial load divided by the area of the cross section.

The left hand term of the above equation is the non-dimensionalized

slenderness ratio.

The analysis is made in such a way that the results are

presented in the form of column curves of stress versus slenderness

ratio. Only the analysis for box-columns, including H-columns as a

special case, is described in this article and the analyses for

other sections are given in Appendix A.

3.1 Tangent Modulus Column Curve

Since two axes of symmetry exist in a box-section, Eq. 8 holds

for flexural buckling both in the x- and y-direction. For the

buckling in the y-direction, Eq. 8 can be rewritten in the following

form with subscript x for both the moment of inertia and the radius

of gyration denoting them as values about the x-axis.

1
'rT

( 9)

Similarly for buckling in the x-direction, the following equation

is obtained

(10)

where the subscript y.denotes that the values are about the y-axis.
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On specifying a strain due to the external load which is

-10

in the cross section.

distributed uniformly in the cross section, the load which causes

the specified strain may be computed from the stress distribution

The effective moment of inertia I and Ixe ye

under the load are also determined. The slenderness ratio is a

function of the external load and the moment of inertia as seen in

Eq. 8, and consequently it is a function "of the specified strain.

A cross section of a box-column may be considered as consisting

of small segments as shown in Fig. 1, with the change of the

residual stress distribution inside each segment linear in the

tangential direction. The magnitudffiof residual stresses or

strains are assumed to be known at the boundaries of the segments.

Since the cross section has two axes of symmetry, it is enough to

consider only a quarter of it. A half of the flange consists of

n small segments of the same size. Similarly a half of the web

consists of m segments. Numbers are given, 1 to n, to the segments

for the flange part, and 1 to m for the web as shown in Fig. 1. It

,is noted that the H-shape is a special case of the box-shape when

b is e1ua1 to zero.

The strain due to external load at which the column is going

to buckle is denoted as 8 . Since the residual stresses are incr

equilibrium in the cross section, the external load may be

computed by the sum of stress at each segment

P = 4 ~ 0 ~A
TI,ffi S

(11)
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where ~A is the area of each segment and crs is the average stress

in the segment. nEm denotes the summation of segments throughout,
a quarter part of the cross section. The average stress a can be

s

computed from the residual strains at the edges of the segment and

uniform external strain €cr' The strains at the edges are

(12)

e ·1

where €r denotes the residual strain and the subscripts i and i-I

refer to the values at both edges of segment i as shown in Fig. 1.

Then the average stress in the segment can be obtained by simple

arithmetic in a form non-dimensionalized by the yield stress cry,

depending on the value of strain at the edges.

crs
1-- forcry e:.>€y E: i _l 2:E:y1-

= €i+€i-l
for

2 €i<€'Y €i-l<sy ( 13)

2
2e;.-e. 1-1

1 1-= for e1.~ey2ey (e.-e. 1)
J.. J..-

2
2 E:. 1- e .-1= J..- J..
2 ( ) for €J..·<€Y€y e;. I-e.

1- .J..

Then the critical stress non-dimensionalized by using the yield

stress can be computed as

( 14)

where A is the cross sectional area.
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The moment of inertia of the cross section about the x- and

y- axes, I and I y ' can be computed as
x

I 4 [ n~m y2 b.A + n'Em
~A

(r::,y)2 J ( 15)= 12x ,

4 [ n~m
2 tJ.A

(b.x)2J ( 16)I = x I:1A + n~m 12y

where x and yare the coordinates at the center of each segment.

~x and ~y are the dimensions of each segment in the x- and y-

directions, and 6A is its area. Figure 1 shows the detail of those

notations. The moment of inertia of the cross section which remains

elastic can be computed similarly,

2 6A
( b.ye) 2 J4 [ ~ 6A

e
I = Ye + ~ -xe -n,m e n,ffi 12

I 4 [n~m
2

b.A + E b.Ae 2 ]= xeye e TI,m U (b.X e )

( 17)

( 18)

where xe and Ye are the coordinates at the center of the elastic

part, of which the dimensions are b.x and ~y in each segment.e e

6A is the area which remains elastic in each segment.e

With notations b, b, d, t, and w for the dimensions of the

cross section as shown in Fig. 1, the following relationships hold

true for a segment in the flange

b
I1x = 2n' lJ.y = t, ( 19)
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and in the web

6x = w,
d

D.y = 2m'
dw

IJ.A = 2m

-13

(20)

With these relationships, the non-dimensionalized stress, Eq. 14,

can be written for the convenience of computation as

2 [bt n (as) dw m (CJ'X) ]_ •. ~ _ + _ •. L _
A n 1=1 cry i m 1=1 cry i

( 21)

When yielding penetrates partially into a segment, the dimensions

of the elastic part and the coordinates at the center of the part

can be obtained by the following equations:

for a flange segment

D.x . =e,l
fix,

D.X •
x . = ~x (i-I) + e,l
e,l 2

for e.>ey , €i-l<€Y (22)1-

6x . e. 1-1 6x,= 1-
e,l

€i-l-e.l

6xe,i
x · = IJ.x i -e,l 2

for €i<ey , €i-l2:€y
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and for a web segment

e.- l
6y .

1
l1y,=e,l E:i-S i - I

l1y .

Ye i = ~y (i-I) ~+ 2,

for €. >€y' €i-l<€Y1-
(23)

s. 1-1
tJ.y . 1- f:jy,=e,l €i-l-€i

D.y .

Ye i = D.y i - e,l
2,

for €i<€Y' €i-l~Y

where the subscript i shows the values at the i-th segment. Then

the moment of inertia about the x-axis can be computed as follows

in the non-dimensionalized form

I xe _ 1 {2 2 bt n D.x ·__ (3d +6dt+4t )( __) E ( e,l)
Ix - Ix 6n i=l 60

3
+(~)

24m
3

(24)

f:jy .J}e,l
6y

and similarly about the y-axis
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With a specified strain € due to external loading, and withcr

the known residual stress distribution, Eq. 21 gives the critical

stress corresponding-to the critical strain. Equation 9, together

with Eqs. 21 and 24, gives the non-dimensionalized critical slender-

ness ratio of a column which is going to buckle in the y-direction

under the action of the stress. Similarly Eq. 10, together with

Eqs. 21 and 25 gives the ratio for buckling in the x-direction.

By varying the strain, € ,from a small value to a large value atcr

a certain increment, a column curve of stress versus slenderness

ratio can be obtained.

3.2 Reduced Modulus Column Curve

The procedure followed in computing a column curve based on

the reduced modulus concept is similar to that based on the tangent

modulus concept. The difference involved is that under the reduced

modulus concept, the neutral axis does not remain at the axis 9£

symmetry of the cross section at the instant of buckling even for

the cross section with two axes of symmetry with symmetric distri-

bution of residual stress; instead the location of the neutral axis

is a function of loading. This is due to the difference of modulus

of elasticity in the loading and in the unload.ing portion of the

cross section where yielding has penetrated.

Assuming buckling in the negative y-direction, the neutral axis

is parallel to the x-axis and will be such that y is positive. The

distance between the neutral axis and the axis of symmetry is denoted

by Yo' which is shown in Fig. 2(a). The distance Yo has to be
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determined to satisfy Eq. 5, which can be written in the form of a

summation of stress at each segment,

2: ( Y- y ) 6A + t (y - Y ) t1A = 0
A 0 A e 0 e

u 1
(26)

where !: and i: denote summation of area of each segment throughout
Au A

1
.

the unloading region and the loading zone, respectively. Equation

26 may be rewritten for the box cross section considered here,

bt (d+t _ Y ) + wd m k-l

2m
E (y.-Y) + w ~ (Ye i-Yo) ~y .

2 2 0 · k 1 1 0 i=l e,l
1= + ,

(27)

- t (d~t + Yo)
n m
~ 6.x . - w 1:: (y .+Y) ~y .+Sk = 0

i=l e,l i=l e,l 0 e,l

where k is the number of a segment where the neutral axis passes

through as shown in Fig. 2(a). The last term in the left hand side

of Eq. 27, Sk' is the stress acting in the segment k. The expres-

sion of Sk depends on the penetration of yielding into the segment,

and is considered in Appendix B. Equation 27 is valid when the

resulting neutral axis is located in the web, namely under the

following condition,

y < ~
0=2

When the resulting neutral axis is located in the flange, Eq. 27

must be modified, thus,

m
6x . +w ~

e,l i=l
(y .-y )~y .

e 1 0 e 1, ,

t (d+t + Y )
2 0

n
1:

i=l

(28)
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for

-17

After the neutral axis is determined, the moment of inertia

of the cross section, which consists of all the parts in the

unloading section of the cross section and the parts remaining

elastic in the loading section, can be computed by the following

equations in the non-dimensionalized form

(29)

k-l [ Y -y 2 (I1Y _)2)( t1y _)+ L: 12 ( e 2 i 0 ) + e 21 e 21
i-I f1y 6y 6y

when

+
m
~

i=l

2

[
y -+y)

1~ ( e 2~y 0

2

( 6
Y

· ) J(1:1.Y -)~ }e,l e,l 2
+ l:1y !1y + I k

and
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when

-18

where I k is the contribution to moment of inertia of segment k, of

which the expressions are shown in Appendix B, and depending on the

penetration of yielding into the segment.

Similarly as for the tangent modulus curve, a column curve for

the buckling in the y-direction can be computed from E]. 9 sub-

stituting Eqs. 14 and either Eqs. 29 or 30.

A column curve for the buckling in the x-direction is also

obtained by a procedure similar to that for buckling in the y-

direction. The expression of the effective moment of inertia,

however, is different depending on the location of the neutral

axis, inside or outside of the web.

The equations which determine the location of the neutral axis

become the following, depending on the resulting location of the

neutral q.xis:

wd b bt n k-l
--2 ( +2

W
- x ) + 2n ~ (x.-x) + t E (x .-x )6x ·

o i=k+l l 0 i=l . e,l a e,l

Y'lhen

- w

m n

(b+w ) E /:).y • - t E ( ) ~ S 0
--2- + Xo i=l e,l i=l xe,i + Xo Xe,i+ k =

x < ~
0=2

( 31)
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d b 2 - 2 m bt n
x ) 1 ex - ~) E f:ly .+ ~ (Xi-Xo )- (- + w - - "2 2n4 2 0 0

i=l
e,l

i=k+l

k-l
(b+w

m n
+ t ~ ex .-x ) '6x

e,i - w -2- + xo) :E lJ.y .-t !: •
i=l

e,l 0
i=l

e,l
i=l

• (x · + x ) ~x · + Sk = 0e,l a e,l

when

and

-19

(32)

- m bt n k-l
W (b ~ w - x ) I: !:>.y . + -2 1:: ( x . -x ) + t ~ ( x . -x ) _

o i=l e,l n i=k+l 1 0 i=l e,l 0

- m n
.!:>.x . - w (b ; W + x ) 1:: 6.y . - t I: (x .+x ) 6.x .

e,l 0 i=l e,l i=l e,l 0 e,l

when

(33)

where X is the distance between the neutral axis and the axis of
o

symmetry.

In a manner similar for that of Eq. 29, equations by which the

effective moment of inertia of the cross section can be calculated

are derived as follows, depending on the location of the neutral

axis,
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I {[ - 2 2} ~- 2 2J m ~y~ = l d (b+W -X"' Y!- dw (b+W X) Y!- l: ( e,i)
I I W 2 oj + 12 m 2 + 0 + 12 · 1 6y

Y Y 1+

222
b

3 {n [ X. -X J k-l [ X · -X 6X.] 6X ·+ t ~ 12( 1 .0) + 1 + L. 12( e,l 0) + ( e,l) ( e,l)
4 8 3 · k 1 l:1x · 1 6x D.X I::::.xn 1= + 1=

( 34)

when

x <: b
0=2

k -1 ( X. - X 2 6X. 2J t::.X. n [ X. +X 2
+ r 1 ( e 2 1 0) + ( . e 21) (\:1) + t 12 ( e 2 1 0 )

i=l b:.x f1x i=l 6.x
(35)

dw
+ -.m

l1y. 3 {k-l [ X.-X
( e ,1) +~ !: . 12 (1 0) 2

l1y 48n3 i-I ~x

lye 1 {2d b 3 9- eX _~)3 (6.Ye ,i)
I =13 (~w-Xo ) + 3m 0 2 !: 6.y
Y Y

when

~<X <~+W
2 0 - 2
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I {( - 2 2 ] m tJ.y. [ - 2ye = l Wmd (b+
2

W _ X) ~ ~ ( e , l ) + dw (b+W X )
I y I y 0 + 12 i=l tJ.y m 2 + 0

(36)

m l1y.. 3 {n X -X 2 k-l
E ( e , l ) + ...E.-! ~ [ 1 ( i tJ.x 0

) + 1J + E r 12 •
i=l tJ.y 48n 3 1=k+1 i=l L•

2
2 }

n [ X .+X) 6X. 6X.

+ ~ 12 ( e, is X
0

+ e l ] ( . e , l)} 21

i=l
l:::.x l:::.x + k

when

b
X'2+ w <

0

A column curve can be computed, as above, from Eq. 9 substituting

E:l. 14 and one of the Eqs. 34, 35, and 36.
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4. NUMERICAL EXAMPLES

Numerical computation was carried out by a digital computer.*

Although any distribution of residual stress can be considered,

only idealized patterns of residual stress distribution in H-shapes

were used (as shown in Fig. 3) for the illustration of column

curves. The triangular distribution of Fig. 3a is close to the

patterns found in rolled shapes(3)(5)(20) and a similar pattern was

assumed to predict the strength of centrally loaded columns of
(3)(6) " . '.

rolled shapes ; the pattern of Fig. 3b resembles the pattern

in the welded shapes, among which the residual stress pattern in

welded T-I shapes is the closest(6)(18)(19)(22).

Figure 4 shows the tangent m?dulus column curves of non-

dimensionalized stress against non-dimensionalized slenderness

ratio for columns with cross sections of 8WF31 and 27WF94 containing

residual stresses of the triangular patterns. Similarly,·Fig. 5

presents the tangent modulus curves for the same columns with

welding type residual stress patterns. The curves were computed

for various values of the compressive residual stresses. The

discontinuities of the column curves for the sections with welding

type residual stress patterns are due to simultaneous yielding over

a large portion of the cross section due to the assumed residual

stress pattern. The column curves for strong axis bending are

slightly different for the two cross sec-tions, 8WF31, and 27WF94,

*The descriptionsof the programs are given in Appendix c.
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while the difference of the curves for weak axis bending is

insignificant for the two columns.

-23

For the assumed residual stress patterns of Fig. 3a, the

larger the compressive residual stress is, the greater the

reduction of strength for the entire elastic-plastic buckling.

The same is true for the assumed residual stress pattern of Fig.

3b except for columns of small slenderness ratio.

The reduced modulus column curves were computed for the same

column shapes as used for the tangent modulus curves, and the

results are shown in Figs. 6 and 7; Fig. 6 for the triangular

distribution-and Fig. 7 for the welding-type distribution. The

general shape of the column curves based on the reduced modulus

concept is similar to those found in curves based on the tangent

modulus concept. The only difference in the gene,ral pattern of

the column curves is that there is a visible difference in the

reduced modulus column curves of 8WF3l and 27WF94 for weak axis

bending as seen in Figs. 6b and 7b, while no visible difference

resulted in the corresponding tangent modul~s curves. This is due

to the relatively large contribution of the web to the moment of

inertia when strain reversal is taken into account.

Both the tangent modulus and the reduced modulus column curves

are plotted in Figs. 8 and 9 for 8WF31 columns with various residual

stress distribution. As can~be seen in the figures, the difference

between the tangent modulus load and the reduced modulus load

depends largely on slenderness ratio. Both the tangent modulus
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load and the reduced modulus load coincide with the Euler load for

a column with a large slenderness ratio. Generally, the difference

first appears between the loads at a certain slenderness ratio,

and it increases with decreasing slenderness ratio reaching the

maximum point. After the maximum point is passed, the difference

between the loads becomes small and the loads coincide again for a

column with zero slenderness ratio.

The strength of steel columns is often represented by the

tangent modulus loads taking into consideration residual

stresses(3)(6)(lO)(14). The comparison of the reduced modulus

curves and the tangent modulus curves of Figs. 8 and 9, however,

suggests that some caution has to be paid in some cases. For

example, the strength of an 8WF31 column containing residual

stress of cr = ~ cry with the distribution pattern of Fig. 3brc

cannot be more than the tangnet modulus load, because of unavoid-

able initial crookedness and eccentricity, when its non-dimension-

alized slenderness ratio is larger than 0.7, (Figure 9b). For a

shorter column, on the other hand, there is so large a difference

between the reduced modulus load and the tangent modulus load that it may

be possible that the strength exceeds the tangent modulus load.(14)

When the difference is large, as found in a case of a column with

welding type residual stresses and bent about the weak axis, an

analysis of ultimate strength of the column would be made preferably

in addition to the tangent modulus analysis(15) .
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5. SUMMARY

The report has pr~sented numerical methods of computing the

tangent modulus and the reduced modulus column curves of non­

dimensionalized stress versus non-dimensionalized ~lenderness

ratio such that the lower and the upper limits of the ultimate

strength of a straight and centrally loaded column are obtained.

These limits are defined by the tangent modulus and reduced

modulus, respectively. E'=luations were developed for the flexural

buckling of pinned-end columns of structural steel containing

residual stress of any distribution. Among the shapes considered,

H, box, tee, and equal leg angle, e'1uations for the reduced modulus

curves were developed only for H and box columns. Numerical results

were obtained by a digital computer for 8WF31 and 27WF94 columns

with idealized residual stress distribution of various magnitudes.

It was found that the difference 'between the reduced modulus load

and the tangent modulus load depends largely on the slenderness

ratio of the column and the residual stress pattern. It was found

in the numerical results that there might be a large difference

between the reduced modulus and the tangent modulus loads for a

welded built-up column of medium to small slenderness ratio so that

the ultimate strength of a practical column of this range may exceed

the tangent modulus load.
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7 • NOMENCLATURE

A

Al

A
u

B

b

b

d

E

Et

I

I e

I k

I x

I xe

I y

lye

i

k

.. LCI'

Lx

L
y

m

n

p

Se,i

Sk

area of a cross section

loading area in a cross section

unloading area in a cross section

bending rigidity

width of a flange

width between inside faces of webs of a box section

depth of a cross section

modulus of elasticity

tangent modulus of elasticity

moment of inertia

effective moment of inertia of a cross section

contribution of moment of inertia by the segment k

moment of inertia about x-axis

effective moment of inertia about x-axis

moment of inertia about y-axis

effective moment of inertia about y-axis

a number used as a subscript

the number of a segment where a neutral axis passes

critical length of a pinned-end column

critical length of a pinned-end column bent on the x-axis

critical length of a pinned-end column bent on the y-axis

number of segm~nts in a web

number of segments in a flarrge

load

distance as shown in Fig. 10

stress acting in the segment k
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t thickness of a flange plate

u displacement

w thickness of a web plate

Xo x-coordinate of a neutral axis

xe coordinate x of the center of the elastic part in a segment

y y-coordinate of a neutral axis
0

Ye coordinate y of the center of the elastic part in a segment

x,Y,z cartesian coordinate

€

~s .
e,l

fj,x
e

strain

strain a buckling load

residual strain

yield strain

buckling stress

average stress in a segment

yield stress

area of a segment

area of elastic part in a segment

length of a segment along the centerline of plates

length of the elastic part of a segment along S.

length of a segment in the x-direction

length of the elastic part of a segment in the x-direction

length of a segment in the y-direction

length of the elastic part of a segment in the y-direction

summation of all the segment in a flange and in a web
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AREA

AVE STRESS

B

BI

DA

DAA

DB

EINERTIA

ELN

ELNF

EXlNERTIA

EYINERTIA

FINALSTRAIN

IE

IK

INER

ISTRAIN

J, JA

KX, KY, KZ

-29

PROGRAM LANGUAGE

A

= PIAO'er

b

b

d, b

1/2·(d+t), 1/2·(b+w)

d, b

I Ixe' ye

6y / lJ.y, tJ.x I 6.xe e

6x 16xe

I xe

rye

the maximum strain to which a column
curve is computed

t 2 , W2

12 12

I k , name of a subprogram to compute I
k

increment of strain at which interval

critical slenderness ratios are computed

name of a subprogram to compute location
of neutral axis and the effective moment
of inertia

the minimum strain from which a column
curve is computed

sequence numbers

sequence numbers to be used in deter­
mining location of neutral
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L

LENGTH

M

NA, NB

NF

NW

RF

RW

SELN

SF

-30

d

b.x, 6y

(d/2+t)/lOOAy, b/200~x

TI, m

n

m

residual strains in a flange (€r)

residual strains in a web (~)
~r

~ (l1y . / ~y), t (flx . / 8x)
i e,l 1 e,l

n
~

i=l

SFEL
n
E
i=l

(l1x ./~x)e,l

SK

SRN

SRNA

STRAIN

STRESS

sw

Sk' name of a subprogram to compute Sk

€ •
1..

e , ecr

as' ~ as,ii

m
~ as
i=l

SWEL
m
I:
i=l

(6y ./6y)e,l

SWA, SWB, SWC, SWD

81, 82

variables for switching name of a
subprogram to compute average stress
and penetration of yielding at each
segment

variables used in determining a
neutral axis and the effective moment
of inertia
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T t

TA t, W

TB t

TLN Y /6.y, X /tJ.xe e

TLNF x /lixe

W w

XINERTIA I x

XLENGTH Lx

XMFACI'OR rrrX/,fey

XSLENDRATIO 1: ~Je
TT r Yx

YIELD STRAIN €y

YINERTIA I y

YLENGTH Ly

YMFACTOR rrry/ley

YSLENDRATIO 1 L j'-- e
TT r Yy

-31
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B. APPENDICES
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APPE:NDIX A: BUCKLING STRENGTH OF COLUMNS WITH TEE AND

EQUAL LEG ANGLE CROSS SECTIONS

The procedure for computing the column curve for tee and

equal leg angle cross sections is the same as for the Box- and H-

columns described in Chapter 3. Only the final forms of equations

for the tangent modulus column.curves are presented here, so that

the column curves are computed simply by substituting these results

into Eq. 9. The cross section c'onsidered are shown in Fig. 10

together with the dimensions, coordinate axes and numbering system

to the segments.

1. TEE-COLUMNS

'1cr = l:.f bt ~ ('18 ) + dw
cr A I n ·-1 Gy. mr ..... l- l

A = bt + dw

{A. I)

(A.2)

y =o

d2w tJ.y. s.
-2 ~ (~,l) ( ~y21)

m n m Y,
bt n ~x. d m /1y ·
_ ~ I~+..J!.. ~ ( e,l)
n i=l \ I1x / m i=l tJ.y

(A.3)

in which s ., is the distance from the junction of flange ,and webe,l

to the center of elastic part of the i-th segment.

2
,lex _ 1 \ b 2 2 n 6x. d 3w m ~y · ~ y · )

t (Y + !-) E ( e, l) + L: ,( e, l) (~
Ix - Ix l~ n 0 12 i=l b.x m3 i=l b.y . b.y .

(A .4)

. tJ. 2 J J-''''!l'+ l. ( Ye,i1
12 tJ.y)
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2 . COLUMNS OF EQUAL LEG ANGLE

cy n cr
cr _ 2 I: ( S)
cry - n i=l cry i

A = 2bt

(A.5)

(A.6)

n (68.) (')
b:E e ,l (1 - =- S )

i=l 68 b e,i
n 1:18 •

2/1 E ( e, l)
i=l 68

(A.7)

(A.8)

where 8 . is the distance from the corner to the c~nter of elastice,l

part of the i-th segment.
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APPENDIX B: SUMMARY OF STRESS AND MOMENT OF INERTIA

CONTRIBUTED BY A SEGMENT CUT BY THE NEUTRAL AXIS

The expression for the stress caused by the buckling, and

present in the segment where the neutral axis passes, depends on

the penetration of yielding into the segment. Similarly> the

contribution of the segment to the bending regidity depends on the

penetration of yielding. This appendix summarizes the expressions

for the stress and the moment of inertia.

For buckling about the x-axis:

(B.l)

(2)

(3)

2

[ Y )
2 t.y e ,k J

I k = W b.Ye k (Ye k - 0 + 12, ,

Sk = ~2 (y + ~ - y )2k 2 0

(B.2)

(B.3)

(B.4)

(B.5)

(B .6)
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(4)

(5 )

(The same a~ Case 1)

-36

(B.7)

rCYk
_ y )2 l1y2

l w 6y k 2
Sk = w tJ.y + 12 J - - (Y - y

e ,k - ~' )
'-.

0 2 0

.--
y )2

tJ. 2 l b.y k 3
I

k
= w 6y l CYk - + ~l :E (Y - Ye k - , e, ) (B.8)

0 12 J 3 0 , 2

(The same as Case 3)

Replacing Y , Y and w by X , X, and t, the equations of Sk ando 0

I k are obtained for buckling about the y-axis.
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APPENDIX C: COMPUTER PROGRAMS

Based on the analyses of Chapter 3, programs for a digital

computer were prepared with WIZ language(23) as summarized in

Table 1. A representative flow diagram is shown in Fig. 11 for

computation of the tangent modulus curves of H and Box columns.

All of the programs prepared are shown in Programs Nos. 1, 2 and 3.

The basic nomenclature used in the program is listed in

Chapter 7.

All programs prepared provided memory spaces of up to lOG for

the number o~ segments in a flange and in a web. The number is

sufficient for practical distributions of residual stress. The

location of the neutral axis has to be determined for the computation

of column curves based on the reduced modulus concept. The program

is prepared to determine the location with an accuracy of 1/100'of

a half width of a flange and a half depth of a web for the buckling

of a, box column in the x- and y-direction respectively.

The prepared programs include manual controlling instruction

such that, when the pinned-end length of columns is needed -in

addition to the non-dimensionalized slenderness ratio, it can be

obtained by pressing the console switch No. 1 of the GE 225 computer.

1. Data Input

Identical data cards can be used for computation of both the

tangent modulus and the reduced modulus curves for H and box

columns, while for computation of tee columns, only the data for
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dimensions of the cross section are different. Sign convention is

such that compressive stresses and strains are positive and tensile

stresses and strains are negative.

The sequence of data input is as follows: ~

(a) The Yield Strain

-The yield strain (in/in) has to be placed first when

console switch no. 1 is pressed by operator. Otherwise, the

data is not necessary.

EXAMPLE: For a steel with yield stress of 100 ksi and the~

modulus of 30,000 ksi, the data is

3.3333333-3

(b) Three Data on Critical Strains

The data on strains due to loading at which the column

is going to buckle must be put in. It is necessary to

compute at several strains over a wide range with certain

increments in order to draw a column curve. The data consist

of three numbers; initial strain, increment, and final strain.

All data have to be non-dimensionalized by the yield strain, €y.

EXAMPLE: Critical slenderness ratios to be computed for a

range of critical strains from 0.3 to 1.2 of the

yield strain with a interval of 0.05 will have

data as shown

.3.051.2
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(c) Two data on Number of Segments

The number of segments in half of the flange must be

put in, followed ·by ~0e number of segments in the web (for

a tee column) or a half of the web (for a H and box column).

EXAMPLE: Referring to Fig. 1 or to Fig. 10, ,if n is equal

to 4 and m is equal'to 2, the data will be,

4 2

(d) Data on Dimensions of Cross Section (5 Data for an H
and Box Column and 4 Data for a Tee Column)

Data concerning the dimensions of the cross section

must be put in as the fourth group of data. The sequence is

b, b, t, d, and w for an H and box column and b, t, d, and w

for a tee column, which refers ·to Fig. 1 and Fig. 10, respect-

ively. Although any unit can be used as long as the same unit

is used for all dimensions, a unit of one inch may be preferable.

EXAMPLE: (1) 8WF31 8. 0 .433 7.134 .144

(2) 8T 4WF15.5 8. .433 3.567 .288

NOTE: the width of the web plate for 8WF31 is not

.288- but a half of this.

(e) Data on Residual Strains

The last group of data is the amount of residual strains

present at the edge of segments. Data must be non-dimension-

alized by the yield strain of the material. The data have to

be arranged in a sequence such that the residual strain at

one edge of segment 1 in the flange is first, and then

followed by that at the edge between segments 1 and 2, that
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between segments 2 and 3 and so on, till that at the

extreme edge of the flange. The similar set-up of data

for the web follows from the segment 1 to the segment m.

Thus a total number of (n+l) data for the flange and (m+l)

data for the web are necessary, resulting in a grand total

of (n+m+2) data.

It is noted that the residual strain distribution has

to be so arranged that the residual stress is in equilibrium.

EXAMPLE: (1) No residual stress (N=4, m=2)

o a a 0 0 0 0 a

(2) Idealized Residual Stress Distribution of

Fig. 3.b, crrc/cry = 0.25 (n=5, m=5)

-1. -.375 .25 .25 .25 .25 .25 .25

.25 .25 -.375 -1.

( f) Other Sets of Data

Other sets of data arranged in the same manner as (b)

through (e) can be followed directly as many times as

necessary. A nWIZ DATAn card and an nEND OF DATATt card

followed with two empty cards are necessary at the front

and at the end of the data, respectively.
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An example of typical data set up is summarized as

follows:

WIZ DATA CARD

3.3333333-3

.3 .05 1.2

4 2

8. 0 .433 7.134 .144

o 0 a a 0 0 0 0

.75 .OS 2.

8. a .433 7.134 .144

-1. -.-375 .25 .25 .25 .25

.25 .. 25 .25 .25 -.375 -1.

END OF DATA

(Two Empty Cards)

-41

2. Output

Example of outputs are shown in Program No. 4 computed by the

program based on the tangent modulus concept with the data shown

above.

Following the title of the program, all the input data are

printed out so that any error in punching the data may be detected.

The area of the cross section and moment of inertia on the x-

axis and on the y-axis are printed, below the title "CALCULATED

RESULTS TT • The units are square inches for the and in4 forarea

the moments of inertia, provided a unit of one inch is used for the

dimensions of the cross section. Next follows th'e computed results
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for a column curve. The output consists of 6 columns, under the

headings, "STRAIN", tTAVESTRESSTT, "XSLENDRATIOTf, nYSLENDRATIO",

nXLENGTH tt , AND "YLENGTHtT. These headings mean the strain and the

stress at which column is going to buckle, the critical slenderness

ratio for the strong axis and for the weak axis bending and the

critical pinned end length of the columo for the strong axis and

for the weak axis bending, respectively. The strain, stress, and

slenderness ratios are non-dimensionalized. Plotting the average

stress against the slenderness ratio, the column curve is obtained.
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9 • TABLE, FIGURES AND COMPUTER PROGRAMS
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Table 1 LIST OF COMPUTER PROGRAMS

Program Program
No. Identifi- Cross Section Buckling Concept Bucklg. Mode

cation~'c

1 290~3-2 H and Box Tangent Modulus Flexural Bucklg.
on both prine.
axes

2 290-3-6 Tee Tang,ent Modulus Flexural Bucklg.

3 290-3-3 H and Box Reduced Modulus Flexural Bucklg.
on both Princ.
ax·es

4 -- H and Box Example of Output

* Programs are identified and stored at Fritz Laboratory,
Lehigh University.
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Fig. 3 IDEALIZED RESIDUAL STRESS PATTERNS FOR
ILLUSTRATIONS OF COLUMN CURVES
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1 - e·
68 =e~l-

J- j

S = j - ¥
(1-e.

j
)l\S

o ::l 1 - 2

:> 0

SUBPROCRAM

<....0

> 0

<0

e ... 1
j-1

READ: b; 'b, t, d, W

READ: €rf,i (i=O to Nf )
€rw i (i:sQ to ~)

A = 2(bt + wd)

I .~!6 bt(4 2 + bdt + 3d2 ) + wd3 ,
x ~ t .

1 2 - -2 3
1y -1'6 dw (4w + 6wb + 3b ) T tb j

.68 = 1
S = J - 0.5

l-e'
j
_1.68 = -_._­

Cj - €j-1

S = j-1 + ¥
(1 - €i_l)t\S

IT = 1 - 1..,..,;;;;._

2

>0

INCREMENT OF CRITICAL STRAIN

'SUBSCRIPTS FOR SEQUENCE NUMBERS

A SUBSCRIPT DENOTING PROPERTIES OF WEB

CRITICAL STRAIN

INITIAL VALUE OF CRITICAL STRAIN

FINAL VALUE OF CRITICAL STRAIN

<0

e
cr

w

~s = L6s + l1S
rs-I'S+S
Ib:slli+a

NOTATION

Nf NUMBER OF SEGMENTS IN FLANGE

N NUMBER OF SEGMENTS IN WEB
w

S DISTANCE FROM ONE OF THE PRINCIPAL AXES
TO THE CENTER OF ELASTIC PART IN'A
SEGMENT

!J. S WIDTH OF ELASTIC PART IN A SEGMENT
ALONG THE MIDDLE PLANE OF THE PlATE

f: A SUBSCRIPT DENOTING' PROPERTIES OF
FlANGE

i,j

O'w = D:r
S = r.s .
w

68 =- ~Sw

PRINT: A, Ix'" I y

I
ye

I xe

< Q

Fig. 11 FLOW DIAGRAM FOR FLEXURAL BUCKLING OF
BOX- AND H-COLUMNS CONTAINING RESIDUAL STRESS
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oo~ 20.'1.2 FUMIo NI S!-j I NC COLU"1~ f3Ur,KLING
D~C 21 6b 09 (13. r;

PAGE: 1. DEC 21 66

St:(j LA8L TYP STATFt-tENT C ZERO f\OT PLUS MINUS ELSE

au1. OOuo 290 .. 6-3 r
002. 001(j CALCULATION OF COLUMN CURVE RASEn (IN f
003. 0020 REDUCED ~ODU!LS CONCE=PT (

004. 00.50 I DEC~M8ER, 19f6 BY FUMIO NISHINO t
005. 0040 RF [100], Rio. (100), SUB.[14), IN&R.[221, C

DO?O SK. r22], I K. [1r;) , FLNF[100J, ELN[1001, C
0060 TL/IJ (10 01, TLNFf1001 r ] (

006. DOiO Sk To [1] IREAD1 (
007. OOtlQ CRDYI~LDSTRAIN I 1 [
008. n090 READ CRDISTRAIN f J {F' IN
009. 01UO CRDI~CREME~T,FINALSTRAIN [ 1 [

010. 0110 CRDNF,NW ! ] [

011. 0120 CRD8.131,T,L,W [ ] [

012. 0130 SL C.ALCULATIOt\ OF COLUMN CURVE BASED ON REDUCE~ C
0140 MCnULUS CONCEPT, FLEXURAL BUCKLING. ROX- ANn C
0150 H"COLUMNS (290-3"31 ( [

013. 0160 PL [ (
014. 0170 PL BY FU""IO NISHINO r [
015. 01btl PV r r
016. 0190 PL INPUT PARAMETERS [ [
017. 0200 PVL, NF. Nh, • B, PI, T, L, \oj [ (

01B. 0210 PVL ISTRAIN. INCHFMEi\T. FINALSTRAIN, [ [
019. 0220 PL RESIDUAL STRESSES IN THE FLANGE ( [
020. 0230 PV ( [

021. 0240 J:Q ( [
022. 0250 CRDRFrJl ( [
023. 0260 PV Sr<}p.RFrJ) [ [

024. 0270 r ... :J+11-NF' (* ( -0t:5. 028,0 PV . { (
02t>. 0290 Pl. RESIDUAL sTRFSSES IN THE WEB ( (
027. 0300 PV [ {
028. 0310 J=D ( [
029. 0320 CRDRv-[Jl ( [
030. 0330 PV SKIP,RW(J) { (
031- 0340 ( ... :J+ll-NW r- (-032. 0350 Aj:;EA=2*[B*T ... W*L) [ [

033. 03bO XINERTIA=(A*T*[4*T*T+6*L*T+3*L*L]+W*L*L*L)/o ( {
034. e370 YIN ERTIA.= [L *W* r4*"~ ... \oj +6'" W... 8 I +3*8 I ... BI ] ... T- B'" B- c

0380 8]/6 (

035. 0390 S\lT. £il (1
036. 0400 X~FACTOR=3.1415926*saRT.(XINERTIA/AREAI C

0410 YIELDSTRAINl (
037. 0420 Y~FACTOR=3.141S926*SQRT.(YINERTIA/AREAI C

0430 YIELDSTRAIN] (

038. 0440 PV (

039. 0450 PL CALCULATED RF.SULTS [

040. 0460 PVL, , AREA, XINERTIA, YINERTIA" r
041. 0470 S\\T. r1] (2
042. 0480 PL STRAIt\' AVESTRESS XSLENDRATIO C

0490 YSLENDRATIO XLENGTH C
0500 VLENGTH ( (3

043. 0510 PL STRAIN AVESTRESS XSLENORATIO C
0520 VSLENDRATIO [

044. 0530 PL [

045. 0540 STRAIN=YSTRAIN (

PAGE 2, DEC 21 66

sEa LABL TYP STATEMENT C ZERO f\OT PLUS MINUS ELSE

046. 0550 .* KX=KY=O ) ( [ (

047. 0560 STRESS=SELN=J=O ) [ [ [
048. 0570 J.A=J+1 ] [ ( (
049. 0580 Sj:;N=STRAIN+RF'{J] 1 ( ( [

050. 0590 SRNA=STRAIN+RF[JA) 1 ( [ [SUB
051. 0600 ELNF[JA]=ELN, TLNFtJA]=TLN 1 { [ [
052. 061-D (... =JA1"NF' ] [ [* (

053. 0620 SF=STRESS, SFEL=SELN ] [ [ [
0~4. 0630 STRESS=SELN=J=O 1 [ ( t
055. 0640 J.A=J+1 ) [ [ [
056. 0650 SRN=STRAIN+RW[Jl 1 [ ( t
057. 0660 SRNA=STRAJN+Rw[JAl ) ( [ ( SUB
058. 0670 ELN(JA)=ELN. TLN(JA1=TLN ) [ [ [
059. 06eo ( .. =JA)"NW ] ( (* [
060. 0690 Sk=STRESS, SWEL=SELN ) [ [ (
061. 07UO K2=KY,SWA=0, IH.=N~ • NB=NF .] { ( t
062. 0710 D.A =L, D8=8, DAA=.S*L+.5*T, TA=W, T8=T 1 ( ( [
063, 0720 16=T"T/12 •• SEl=SF'EL, LENGTH=.5*L/NW ) ( [ ( 1
0¢4. 076u M=[.5*L+TJ/LENnTH/l00. ] [ [ tINER)
065. 0740 EXINERTIA=EINERTIA/XINERTIA ] [ [ ( 1
066. 07?0 K'f=KZ 1 [ ( [ ]
067. a7bO J= NF 1 [ { ( ]

068. 0770 TLN[Jl=TLNF"(Jl. ELN[J]=ELNF(J] 1 ( [ ( 1
069. 07eo J=J"l ] [* [ ( ]
070. 0790 K2=KX, SWA=1, NA=f\F', N8=NW 1 [ [ ( )

071. 0800 DA=BI. DB=L, OAA=.5*BI+.S*W, TA=T, TR=W ] ( [ ( J
072. 0810 LEt-.JGTH=.5*8/NF J [ [ [ 1
073. 0820 IE=W*W/12 •• SEL=S\liEL, M=NF/l00. ] ( [ (I NER 1
074. 0830 E'fINERTIA=EINERTIA/YINERTIA 1 { ( [ ]

075. 0840 K~=KZ ] £ ( [ 1
076, 0850 AVESTRESS=2.*[SF*T*B/Nf+SW*W-L/NWI/AREA ] { ( [ 1
077. 0860 X~LENDRATIO=SQPT.[EXINF.RTIA/AVESTRESS] ] ( ( [ ]
078. 0870 YSLENDRATIO=SQRT.(EYINERTIA/AVESTRESSl 1 { [ [ 1
079. 08~O Sk T. (1] (4 1 ( { ( J
080. 0890 PV STRAIN.AVESTRE~S,XSLENDRATIO,YSLENDRATlo.SKrpc

0900 ,XSLENDRATIO"'X~FACTOR,YSLENDRATIO*YMFACTOR ( [ [5
Ob1. 1'1910 PV SlRAIN,AVESTRESS.XSLENDRATIO,YSLENDRATJO [ [ [ 1
01:12. 0920 (~TRAJN=ST~AIN... INCREMENT1-rINALSTRAIN-.OO01 ( [.* [READ]
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PAGf: 3. DEC 21 6f,

st:(~ L4hL TVP STATf:MFI''11 C ZF.-i1(l ~OT PLUS MINUS ELSe

oC3. 101[ su~ S~N .. l, (12 { SUB
ot-4. 10(:(' S~NA-l. (11 I SUB
Ob5. 10.j (, J=l.N=TLt\=O, 5:;1. r [14 SUB
OeL 10"1 (: 11 ~LN=l1."5R~Al/rSR~"SRNA) [ ( SUB
O~ 7. 10?( TL/IJ ::: J +1 • - • ~ *EL. ", ( [ SUB
abA. 10 b (, S:1.+[SRNA-1.]*.5*ELN [ [14 SUB
O~9 • 10 l [, 12 S~NA-l. [13 ( sua
alto. 10bG ELN=(1.·SR~l/[SRNA-5RN) [ ( SUB
O't1. 10 '-J [, TLN:::J+.5*EL~ [ ( SUB
0~2 • 11UO S=1.+[~RN~1.)*.5.ELN [ t14 SUB
OCJ3. 1110 13 El.N=1. ( ( SUB
0C:f'+. l1e: () TLNI:J+.5 ( ( SUB
09~. 11;,)(1 S=.5.(~RN+SRNA' t { SUB
OSl~. 114(J 14 STRESS:::STR~SS+S [ [ SUB
Of,7. 11:>0 SELN=S~LN+ELN [ (. SUB

098. 2010 I NER. $ DE 'r ERMIN AT1a f\' OF N. AXIS [ ( ( [ INER.
099. 20GQ ** Kl"100 (22 ( 22 { ( INER.
100. 5~T.I1ClOl r ( ( ( INER.
10i, 2030 Z=KZ*M i Loe. OF" N. AXIS [ ( ( { INER.
102, 2040 K:; tNT. [Z+1.1 ( ( ( [ INER.
103. 2050 51 I: 0 t [ [ ( INER.
104, 2060 J=NA ( [ [ [ INER.
105, 20 I 0' * S1=51~[TLN[J]·7l*ELN(J) ( { [ [ INER.
1{J6. 20bO JooK [11 [ [10 ( I NER.
lG7. 2090 SlI:S1+(J-.S .. Z) r ( ( [11 INeR.
108. 2100 10 S1=51+[TLN[JJ"71*ELN(J] ( ( ( ( INERt
109. 2110 11 J=J"1 ( (* ( [ INER.
110. 2120 K2=KZ+l [ ( [ ( INER.
111. 2130 S~B=Z*LENGTH",~*DA [ [12 ( [ INER.
112. 2140 S2=.5*D8*T8*(DAA"Z*LENGTH) [ ( ( (15 INER.
113. 2150 12 S~A [13 [ ( ( INER.
114. ?16fJ S~C::SWB",W ( [14 [ [ INER.
115. 2170 13 S'=.25*DB*[.5*DA+T8~Z*LENGTH]**2-.25*[.5*DA- C

21/:10 Z·LENG1H]**2*S~L*CB/NB ( [15 INER,
116. 2190 14 S2=TB*(DAA"Z*L~~GTHl*SEL*.5*DB/NB ( ( INER.
117. 2200 15 S2-TB*[DAA+Z*L~~GTH}*SEL*.5*DB/NB+ C

2210 TA*LI=NGTH**2*Sl+SK. (K] -1. E-6 ( (** [ I INER.
liS. 22~0 K2=KZ-l ( r ( [ INER.
119. 2230 $ DETERMINATION O~ M. OF" I. ( [ [ { INER.
120. 2240 51 =0 [ [ ( [ INER.
121. 2250 J=NA I t ( ( INER.
122. 2260 S1=S1+~12.*[TLN(Jl+Zl•• 2+ELN(J]**2l*FLN(Jl [ ( [ ( INER.
It:3. 2270 J-K (17 [ £16 ( INER.
124. 2280 Sl=S1+12.*[J-.5-Z]**2+1. ( [ [ ti7 INER.
It:5. 2290 16 51=Sl+[12.*rTLN[Jl-Zl**2+ELN(Jl**2J*ELN[JJ ( ( [ ( INER.
126. 2300 17 J=J-l [ [* [ [ INER.

PAGE 4. DEC 21 66

SEQ LABL TYP STATEMENT C ZERO ~OT PLUS MINUS ELSE

1t:7. 2310 S~8 [ (18 { INER.
128. 232{1 S2=DB*TS*[[DAA-Z*LENGTHJ**2+IBJ ( [ [21 INER.
129. 2330 18 S~A [19 ( [ INER.
130. 2340 S~C [ ( 20 ( INER.
1~1. 2350 19 S2=D8/3.*(2.*(.5*DA+TB~Z*LENGTHj**3+ C

2360 (l*LENGTH-.5*DA1**3*SEL/NB] ( (21 INER.
132. 2370 20 S2~TB*D8*([DAA-Z*LENGTHl**2+IB)*SEL/NB { [ INER.
133. 23BO 21 EINERTIA=S2+n8*TB*[(DAA+Z*LENGTHl**~+I81*SEL/C

23'10 N6+TA*LENGTH**3/6.*Sl+2*IK.[KJ ( ] ( INER.
134. '24UO 22 E[NEHTIA=O l ) [ INER.

1~5. 3010 SK K-NA [ [ 22 [ [ SK
1~6. 30~0 $ilA [14 [ [ ( sl<
137. 30~0 SRN~STRAIN+RWrK·1], SRNA=STRAIN+RW[Kl [ [ ( [15 sK
136. 3040 14 sRN::SThAIN+RF(K-ll, SRNA=STRAIN+RF[Kl [ [ r ( SK
139. 30~O 15 SfiNA-l t [ [18 [ 51(
140. 3060 SRN-i. t [ (16 { SI(
141. 30tO S~D=12 ( [ [ (12 5K
142. 3QbO 16 TLN[KJ+ELNtKJ*.5-Z ( ( l17 [ 5K
143. 30Y(i 5\010=10 t [ [ [ 10 SK
1,,4. 31uO 17 5'11 0::13 [ [ [ [13 5K
ito? 311(1 18 Si'1 ~J-l. ( [ (20 [ 51(
1i-f. ,~1:C(; TLN[Kl-ELN[K]*.5-Z ( [ C19 [ 5K
147. 313(i 5i1D=12 ( ( [ (12 5K
14 E. 3140 19 Sv.Il::11 ( [ { [11 5K
149. 31:)t! 20 SIlD::1U [ [ I [ 5K
1?O. 316n 10 S~[11=K-.? .. 7.. [ r [ [ 21 5K
1~1. 31/G 11 Srl:r1]=(TLf\I[KJ"71*ELNCKJ [ ( ( [21 5K
1::2. .31bO 12 Srl:[1]=.5*[K-Zl**2 ( ( ( (21 SK
1~3. 310;;U 13 SKr1J=K ... 5-Z-.~*[Z-TLN[K)-ELN[KJ*.5l**2 ( ( ( { 5K
1:>4. 3200 ~1 S~[lJ=~K[lJ*T~*LE~GTH**2 I ( ( (. ·5K
1:-5. ,~21t' "-:2 51< r 1 Jell [ r I ( . 5K

. ','{
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PAGE 5. DEC 21 66

SEO LA8L TVP STATEMENT C ZERO ~OT PLUS MINUS ELSE

156. 4010 IK K"NA [ {15 [SWD IK
1~7. 40i:!0 10 1~[1]=(K-t5·Z] •• 2+1./12. [ ( (14 IK
1~8. 4030 11 1~(1]=[[TLN{Kl-ZJ •• 2+ELN(KJ·.2/12.)·ELN(Kl [ [ (14 IK
1~9. 4040 12 IK(1J={K"Zl**3/3 { [ [14 IK
160. 40'0 13 I~rl1=[K... 5-ZJ**2+1./12. C

4060 -[Z·TLN[KI·.5·~LN[K)]*.3/3 [ [ IK161. 4070 14 IK[1]=IK[11*TA*lENGTH**3 t t. IK
162. 40tlQ 15 I K rll =0 r {. IK
163. 40C)G FIN PV [ { IK
164. 41f.iO PL Ef\O OF" PROGRAM [ [ IK
16,. 4110 END [ r IK

58

.*.**SVM~OL TA8LE****.
AREA
81
DAA
EXINERTIA
F"IN
IK
18
JA
KZ
LENGTH
NloJ
RF
SUB
SKIP
TLN
STRESS
S~NA

SW
TA
S
hi
SWD
XSLEND~ATIO

yMF"ACTCR

U~uSED MtMORY FHOM [OCTAL] 10034 TC [OCTAL] 14603.

/J.VE5TRESS
DA
ELNF
EINERTIA
F"INALSTRAIN
ISTRAIN

*INT
~X

K
M
NA
RW
5K
SORT
TLNF
SELN
SF
SWEL
T8
81
52
XINERTIA
VIELD5TRATN
YSLENDRATIO

B
DB
ELN
EYINERTIA
I NER
INCREMENT
J
Ky
L
NF'
NB
READ
SWT
STRAIN
T
SRN
SF'EL
SWA
SEL
SWB
SWC
XMF' ACTOR
YINERTlA
Z
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oo~ 20~2 FUMIo NISl-IINC COLUMN SUCKLING
D~C 20 66 12 36.~

PAGE 1. DEC 20 66

sEa LAbL TVP STATEMENT C ZERO t\OT PLUS MINUS ELSE

oG1. 0000 29('1-3-6 1 [ [
002. nOlO CALCULATION Or COLUMN CURVE AASEO o1N 1 [ [
oOJ. OO~O TANGeNT ~ODULLS CONCEPT 1 [ [
004. 00$0 FLEXURAL BUC~LI~G, TEE COLUMN J [ t
005. 0040 $ OECe:M8ER, 1966 BY F'UMIO NISHINO 1 t (
006." 0050 Rr [100] , Rw (10 ('I), TLN (100], ELN(1001.SUB. (14] [ 1 [ [
007. 0060 S~T.[1l (READ) ( [
006. 0070 CRDY 1ELDSTRA It\ [ [ [
009. 0080 kEAD CRDISTRAIN r [ [F" IN
010. eo<}o CRDI~CREME~T,FINALSTRAIN [ [ [
011. 0100 CRDNF ,~W [ t [
012. 0110 CRDS,T,L,W [ t [
013. 0120 SL CALCULATIO~ OF TA~GENT MODULUS COLUM~f CURVE, C

01::10 FLEXURAL 8UCKLyt\G, TEE-COLUMNS ( {
OlA. 01 40 PL ( {
015. 0150 Pl. EV FUMJO NISHINO r [
Olb. 0160 PV r (
'017. 0170 PL INPUT PARAMETERS [ (

018. 0180 PVL, NF, NW" S, T, L, ~ ( [

019. 0190 51'< T. [i) r6 t
020. 0200 PVL VI ELDsTR A11\ { [
021. 0210 PVL ISTRAIN, I NCRF!"Et\ T, FINALSTRAIN, ( [
022. 0220 PL RESIDUAL STR~SSES IN THE FLANGE [ (

023. 0230 PV [ (

024. 0240 J=O [ (
025. 0250 C~ORrtJl ( (

026. 0260 PV SKIP,RF[J) r [
027. 0270 [ .... cJ+1)-NF [* {*
028. 0280 PV , [ [
029. 0290 PL RESIPl;AL STRESSES IN THE WEe { (

030. 0300 PV ( t
031. 0310 J=O [ [
032. 0320 CRDR~rJ) [ [
03:5. 0330 PV SI<IP,RWtJl [ [
034. 0340 [", =J+1] -}lW (* [*
035. 0350 AFlEA=S*T+W*L [ (
036. 0360 YE·-.5*(L+T)*~.L/AREA [ t
03'7. 0370 XINERTIA=[8*T**3+~*L**3l/12.+8*T*YE**2+ C

0380 W*L*{.5*tL+T)+YE)**2 [
038. 0390 S\\ T. [1) (1
039. 0400 X~FACTOR=3.1415926*SQRT.[XINERTIA/.REAI C

0410 YIELDSTRAINl {

040. 0420 PV [

041. 0430 PL CALCULATED RESULTS [

042. 0440 PVL, SKIP, AREA, XINERTIA" [

043. 0450 511 T. [1l [2
044. 0460 PL STRAIN AVESTRESS C

0470 XSLENORATIO XLENGTI-I [ (3
OA5. 0480 PL STRAIN AVESTRESS C

0490 XSLENDRATIO [

046. 0500 PL (

047. 0510 SlRAIN=ISTRAJN [

048. 520 *. SlRESS=SELN=O [

'049. 0530 J=1, STWA:1 [

050. 0540 SFlN=STRAIN+RF[J-1l (

- .~~~_.'--.-.~~

PAGE 2. DEC 20 66

SEQ LABL TVP STATEMENT C ZERO t\OT PLUS MINUS ELSE

051. 0550 SRNA=STRAI~+RF(J] [ [ [ [SUB
052. 0560 [.. =J+il-NF (* [ t * (
05:5. 0570 SFcSTRESS [ ( [ [
054. 0580 SFEL=sELN [ [ [ [
055. 0590 SlRESS=SELN=STLN=SWTL=O { { [ [
056. 0600 J=1, STWA=O [ [ [ (
057. 0610 S~N=STRAIN+RW[J·11 ( [ ( (
058. 0620 S~NA=STRAIN+RWrJl [ t [ [ SUB
059. 0630 [ .... ~J+l)-NW (. t ( * [
060. 0640 S~=STRESS ( ( [ [
061. 0650 S\\EL=SELN [ [7 [ {
062. 0660 SFEL ( (7 [ {
063. 0670 XSLENDRATJO=O [ { [ [4
064. 0680 VP=-W*[L/NWJ**2*STLNI C

0690 [B*T/NF*SFEL+L*h/NW*SWE~l [
065. 0700 J=i (
066. 0710 -ShTL:ELN(Jl*[[TLN[JJ+NW/L*YPJ •• 2+ C

0720 ~LN[Jl.*2/12.l+SWTL ( [
067. 0730 [ .... IlIJ+1]-NW [* [.
068. 0740 E~INERTIA=rVP*VF+T*T/12.)*SFEL*8·T/NFI c

0750 XINERTIA+SWTL*W*tL/NWI*·3/XINERTIA [
069. 0760 AvESTRESS=SF*8*T/~F/AREA+SW*L*W/NW/AREA [
070. 0770 XSLENDRATIO:SQRT.[EXINERTIA/AVESTRESSJ (
071- 0780 S\\ T. (i] ( -4
072 •. 0790 PV SI<IPISTRAIN,AV~STRESS,XSLENDRATJO,SKIP, C

0800 XSLENDRATIO*XMrACTOR ( ( [5 I
073. 0810 PV Sl<lp,STRAIN,AV~STRE5S.XSLENORATIO [ [ [ )
07~. 0820 (STRAIN=STRAIN+INCREMENTl-FINALSTRAIN-.0001 [ {.* (READ]

075. 08,j0 SUB SRN-l. t t12 [ SUS076. 08 4 0 SRNA-l. [ [11 [ sus077. -0850 ELN=TLN=O.S=1. [ [ I14 SUB •078. 0860 11 ELN=r1.-5RI\A]/[SR~-SRNAI [ t [ SUB •079. 0870 TLN=J".S*ELN r ( [ SUB •060. 0880 S=l.+(SRNA-i.)*.B*ELN [ ( t14 SUB061. 0890 12 S~NA"l. [ (13 [ SUB062. 0900 ELN::[l.-SRNl/rSRNA-SRNl [ [ [ SUBOB3. 0910 TLN=J .. 1.+.5*ELN r [ [ SUB •Ob4. 0920 S=1.+(SRN-1.]*~5*ELN { [ [14 SUB •Ob5. ~9JO 13 E-LN::1. [ ( [ SUBOb6. 0940 TLN:J ... 5 [ ( ( SUB •Ob7. 0950 S:.5*[SRN+SRNAI [ ( ( SUBObB. n9bO 14 SlRESS=STRFSS+S [ [ ( SUBOtl9. 09/0 SELt\ :: Sl- L~J ... J: LN [ [ [ SUB •OYO. OQbO S i ~I A [. ( { SUB091. 09110 F:l \, [J] ;:··L' [ { { SUB092. 10(;0 TL !'J [ J 1;: i L " .... .., ~ T ,. Nl'< I L [ [ r SUB



SEQ LABL TVP

290.6

093.
094.
095.
096.

i010
1020
10.30
1040

STATEMENT

SlLN~STLN+ELN.TLN[Jl

F' IN PV"
PL E~D OF PROGRA~

END$ END OF PROGRA~

PAGE 3. DEC 20 66

C ZERO NOT PLUS M!NUS ELSE

[', SUB •
[ SUB •
[ SUB •
[ SUB ,

60

*•••• SYM80L TA8LE****~

AREA
ELN
FINALS1RAIN
J
NW
READ
SKIP
STRESS
SELN
SRNA
STLN
SWEL
XINERTIA
YIELDS1RAIN

UNUSED MEMORY FROM (OCTAL) 06232 TO [OCTAL] 15713.

AVE:STRESS
EXINERTIA
lSTRAIN
L
RF'
SUA
SORT
TLN
STWA
Sf
SWTL
S
XMFAOToR
VE

B
FIN
INCREMENT
Nr
RW
SWT
STRAIN
T
SRN
SFEL
SW
\oj

XSLEtiD RAT I0
yp



290.6 61

oL5 2:1 ~ 2 ~ Lt ~,1 1D i'J I SIi 1 il) ( c: () L U~ N RlJ CI( L 1 ,., G
Ott 21 6~ cl ~?~

PAGE: 1. DEC iii ,..~

S~(J LAbL TVP STATF.MEf>lT C 7H<C t\OT PLUS I':INUS

[

[

(

[

(

[

[FIN
(
[

(
[ .
[
(

[.*

0(1.
ol2.
oli3.
oL4.
0(;5.
0(,.6.
007.
aG~.
009.
010.
011.
012.
013.
014.
01~.

016.
017.
018.
019.
O~ O.
0~1.

0£2.
0£3.
0~4.

025.
0t:6.
0£7.
0~8.

029.
030.
031.
032.
033.

034.
035.
036.
037.

038.
039.
040.
041­
042.
043.
044.
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1 CALCULATICN OF COLUMN CURV~ BASEn ON
iTANG~~T ~ODULLS CONCEPT

$ AUG. 196~ p~ rUMIO NISHINQ
D XF[100J,XWfl0iJ)
CRDISTRAI~,INCREMF~T,rINALSTRAIN

SlRAU"::ISTRAI;1,J
CPDNF,NW,b,BI,T,L,h
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CRDXF(JJ

[~::J+l)-NF (*
J:: 1

CRDx\\rJ]
[~=J+l)-NW i*.

SL CALCU~ATJO~ OF COLUMN CURVE BAStP ON TANGE~T C
MCDuLUS CO~CEFT BY FU~IO NfSHINO
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Pl INPUl PARAMETERS
PVL~ NF~ NW, 8, 81, T, L, w
PVL ISTRAIN, INCRFto'FI\T, FINAL5TRAIN,
PL RESIDuAL STHESSES IN THE FLANGE
PV

J::t {
p\/ XF (J ) r

[ ... =J+1J .. NF 1*
PV r
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pv Xi'. [J '] r

[ ... =J+1]-NW [*.
A~EA=2*(B*T+W*L] 1
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YINERTIA=(L*W*[4*~*W+6*W*8I+~*HI*BI]~T*8*B* C

8]/6 !
PV (
PL CALCULATED RESULTS [
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PL STRAIN AVEsTRESS XSLENDRATIO C

YSLt~DRATIC EXINERTIA EYINFRTIA [
SF=O $SUM OF STRAINS IN FLANGE [
SCFX=O { SUM OF CCEFF OF FLANGE (
SCFV=O I SUM OF CCEFF OF FLANGE I
J=l [
FSTRAIN=XF[J)+STRAIN $ STRAIN IN FLANGE (
rSTRAIN-1 ~TEST FCR YIELD (11
FSTRAIN=1 r
cF=o $CCEFF I~ THE FLANGE r
cF =1 (
SF=Sr+FSTRAIN [
SCFX=SCFX+CF [
SCFY=SCFY+CF*(12*J*J-~2*J+4) [
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PLUSt-!OTC Z~ROSTATEMENT

PV
PL E~D OF PROGRAM
END { END OF PROG~AM

SCWV=O ! SUM or CCEFF IN WEB Y I

J=1 l
WSTRAIN=XW[J]+STRAIN $ STRAIN IN W~8 f
WSTRAIN-1 i TEST FOR YIELD [13
W:TRAIN=1 (
C~=O $ COEFF IN WEB (
C~ =1 [
S~=SW+WSTRArN (
SCWX=SCWX+CW*[12*J*J"12*J+4) r
SCWY=SCWY+CW I
( ... =J+l]-NW [**
A~ESTPtSS=2*8~T*SF/[NF*AREA)+ C
2*L*W*S~/[NW*AREA) $ AVERAGE STRESS [
EXINERTIA=8*T*(4*T*T+6*L*T+3*L*LJ*SC~X/(6*NF*C

XINERTIA1+W*L*L*L*SCWX/(24*NW*NW*Nw* C
XINERTIAl $EF"FECTIV~ ~ OF I, x [

EYINER1IA=L*W*(4*~*W+6*W*8I+3*8I*8r).sCWY/ C
[6*NW*YINERTIA)+T*B*g*B*SCFY/(24*NF*NF* C
NF*YINERTIAJ $EFFECTIVE M OF I, Y r

XSLENDRATIO=SQRT.[EXINERTIA/AVESTRESSl*3.1416C
*SQRT.l29600.0/34.5J [
YSLENDHATIO=SQRT.(EYIN~RTIA/AVESTR~SSl*3.1416C
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064.
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Af~EA
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FXINERTIA
FIN
INCREMENT
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STRAIN
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T
h
Xv.
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A,V~STRESS

CF
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ISTRAIN
L
READ
scrx
scwx
SORT
XF
t:SLFNnRAT Ir;

t.,'.:f.i Te [OCTAL) 1667l.



290.6

CALCULATION OF COLUMN CURVE BASED O~ TANGENT MODULUS CONrEPT

INPUT PARAMETERS

gy FUMIO NJS~fNO

62

2. 0000 () CdJ ... Q0 $ NF" 2. 0 ~ 00000'" 00 $ NW 8. 0000 (J {J 0+ 00 $ 8 0 , 00 n00 II [< +U 0 t· 81
1.4400liOO-Ol $ W
6,5000iJOO .. 01 $ ISTRAIN 5.ooonooO-02 $ INCREMENT 1.2:!000on+ou i FINA,LSTRAIN

RESIDUAL STReSSES I~ TH~ FLANGE

"1.S830tle,9-01
3.0000000 .. 01

RESInUAL STRESSES I~ THE WE8

-1.8830UOO-01
-1. 8830000-01

4.3300000-~1 $ T 7.1340nOO+OO $ L

CALCULATED RESULTS

8.9825 920+00 AREA 1.0799554+02 $ XINERTIA 3.6963535+01 $ YINERTIA

STRAIN AVES TRESS XSLENCRATIO YSLENDRATIO EXINERTIA EYINERTIA

6.5000000-01 6.50C0204-01 1.1413789 ... 02 1.1413789+02 1.0000000+00 1.0000000+00

7.0000000- 01 7.0000204-01 1.0998603+02 1.0998603+02 1.0000000+00 1.0000000+00

7.5000000-01 7.3072030-01 7.9130993 ... 01 3,8110954+01 5,4034361-01 1.2533617-01

8.0000000-01 7.6143856-01 7.7518395+01 3.7334297~01 5.4034361 .. 01 1.2533617-01

8.5000000-01 7.9215682-01 7.6000530+01 3.6603265+01 !;'4034361-Q1 1.253~617-01

9.0000000-01 8.22e750e-Ol 7.4568473+01 3.5913560+01 5.4034361-01 1.2533617"01

9.5000000 .. 01 8.5359334-01 7.3214432+01 3.5261428+01 5.4034361""01 1.2533617"01

1.0000000+00 8.84'31160"01 7.1931571+01 3.4643579+0t 5.4034361-01 1.2533617-01

1.0500000 ... 00 9.1502986-01 7.0713864+01 3.4057109+01 5,4034361-01 1.2533617 "01

1.1000000.00 9.4574812-01 6.9555978.01 3.3499449.01 5.4034361-01 1.2533617-01

1.1500000+00 9.76~6638-01 6.8453169+01 3.2968316.01 5.4034361-01 1.2533617-01

1.2000000.00 1.0000000+00 0.0000000.00 0.0000000.00 0.000 00 0 0+0 0 0.0000000+00

#E:ND OF" DATA# CARD READ
STATEMENT 006 WAS BEII\G EXECUTED.

DeC 21 66 21 52.9
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