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ABSTRACT

This report considers the theoretical development of a minimum

'weight design procedure for unbraced multi-story frames which are sub-

jected to combined gravity and wind loads.

The lateral load versus sway deflection of unbraced frames which

are designed by the moment balancing ,method are discussed first. Then

the load-deflection ,behavior of a 3-bay lO-story frame which was

designed by the moment balancing method is analyzed using the sway

, 1,2
subassem~lage method and a second-order elastic-plastic method of

analysis~3 The behavior of this unbraced frame under working load

values of the combined loads is then discussed. It is shown that the

sway deflection of the frame under· the working loads is somewhat

larger than usually considered practical. Furthermore, it is shown
.

that unbraced multi-story frames designed by the moment balancing method

may not in general achieve acceptable sway deflections at working load.

The minimum weight design method using sway subassemblage. theory

is then described. This method determines the minimum weight of beams

and columns in an unbraced multi-story frame considering the following

design cort~traints.

1. A specified maximum sway deflection of a story under combined

worki~g loads.

2. No plastic hinges at the working load level of the combined

loads.
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Once the minimum weight design of the frame has been achieved, the sway

subassemblage method of analysis is t~en used to determine if the frame

has the required capacity und~r factor~d combined loads. A compu~er

program written in Fortran IV for .the minimum weight design of an

unbraced frame subject to the above constraints is used in the

analyses of the example frame.
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1. INTRODUCTION

An unbraced multi-story frame should be designed to meet

the following five conditions:

1. Frame buckling does not occur b~fore' attainment of the

factored gravity load,

2. Frame, instability does not occur before attainment

of the 'factored combined gravity and wind loads,

3. No plastic hinges occur under either the working

gravity loads or the working combined wind' and

l)' gravity loads,

4. The sway deflection of each story of the frame under

the ~orking combined loads should be restricted to

a"'~maximum value, and

5. A minimum weight design with respect to the beams and

columns should be achieved.

In general, an unbraced multi-story frame can be "designed by trial
, 4

and error procedures which involves the following three' steps; "

1. The preliminary design; the selection of tentative

beam and column sizes.

2. The analysis; the determination of the adequacy of

me~bers selected in step (1) based on strength and

stiffness.

3. '" The revision; the revision of one or more members

~ased on the results of ,the ana~ysis or on other

factors such as minimum weight or economy.
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For the preliminary desig.n, the moment balancing method of

analysis can be used. However only an estimate of the p-~ effects

is included at this point. The sway subassemhlage method of anaiys·is

has been developed to check the adequacy of the preliminary design

based on frame strength and stiffness. 1 ,2 The p-~ effect can be

d ·df h 1.
6

d b d hheterm1ne rom sue an ,ana yS1s an can e compare wit t at

assumed in the preliminary design by moment balancing method. Based

on the results of the analysis, a revision of the preliminary. design

can be made. A subsequent analysis is then required.

However, there has been no rational basis developed to

date on which to make the required revision of the preliminary design

and at the same time meet all the previous design conditions.

This report presents a method of designing unbraced multi-

story frames for the combined gravity and wind load condition which

will meet these design conditions. It utilizes both the moment

. . 1 5
balancing and the sway subassemb lage me thods previous 1y cleve loped. "

In addition it develops a minimum weight design procedure which is

1based on the basic assumptions of the sway subassemblage method.

The nature of problem of designing frames for minimum

. - 7
weight has been clarified considerably by the work of J. Foulkes.

Th · k h b d d b f h· ..' 8,91S wor as een exten e yurt er 1nvest1gat10ns. It was

assumed in Ref 7 that;

1. The full plastic, moments of the members ar€ unaffected

,by shear force and axial thrust,·

2. An infinite range of sections is available, and
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3. The curve which represents the relation between the

weight per unit length and the full plastic moment of

the section can be replaced by a straight line.

M M h F R b · · d J h K · 10 d'essrs. os e • u lnste~n an 0 n aragoz1an 1SC~SS

the preliminary design of an unbraced frame on a minimum weight

basis using the following assumptions:

1. Plastic hinges form only in the beams.

2. A linear variation of member sizes with story height

is assumed.

3. The contributions of the beams and columns to the

flexibility. of a building frame are separated and a

conservative ratio between those contributions is

established.

They conclude that" it is more efficient to provide increased stiffness

of the beams in the exterior bays of an unbraced frame.

T. M. Murray also t~eats the optimum design of unbraced

frames. However, this work does not consider either the effect of

P-6 moments .or, the sway limitation at the working loads.

In the minimum weight method of design to be developed in

this report, the following conditions are assumed for the frame

and loading (in addition to the assumptions on which the sway sub-

assemblage metho.d of analysis are based).

1. The full plastic moments of the. members are reduced

-by the axial thrusts,
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2. Only those shapes listed in the AISC Manual of Steel

Construction
12

are available,

3. The effect of p-~ moments in the behavior of the frame

are considered,

4. The members selected are adequate for the factored

gravity load condition,

5. A working load sway limitation under the combined loads

is considered,

6. No plastic hinges occur under the working loads, and

7. A minimum weight design of the frame at the working

~ombined loads is achieved.

Since the minimum weight design procedure does not consider

·frame strength and stiffness under the factored combined gravity and

wind loads~ t~e minimum weight design is then checked using the sway

subassemblage method of analysis. If the frame does not achieve

the.required capacity under the factored combined loads, another

minimum weight design can be performed. To achieve increased .factored

load capacity of the story under co'mbined loads, the minimum weight

design can be repeated using either of the following criterion:

1. A smaller'working load sway limitation~ is specified, or

2. Th~ same working load sway 'limitatiqn is retained but

the formation of plastic hinges is delayed to a specified

l~vel of loads greater than the working load level.

To illustrate the design procedure developed in this report,

Frame B of Ref. 6, will be used.

--I
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2. PRELIMINARY DESIGN OF FRAME B
BY MOMENT BALANCING }1ETHOD

The load deflection behavior of Frame B as designed in·Ref.

6 will be examined under both working and design ultimate combined
Q

loads using the sway subassemblage method of analysis. The dimensions

and loading for Frame B are shown in Fig. 1. The member sizes

determined by the moment balancing method are shown in Fig. 2.
6

The

axial thrusts in the columns under working and design ultimate combined

loads must be estimated before calculating the load deflection behavior

of a st~ry. In the sway subassemblage method of analysis, these

axial thrusts can be assumed to remain constant during application

of the wind load. Axial thrusts due to gravity loads can be based

on the tributary column area.
13

Axial thrusts due to the wind·load

however can also be estimated under the" desired load level. Several
..

methods for estimating the axial thrusts in the columns either at

the working or the design ultimate level. of the wind load will be

discussed in this report.

Approximate methods of analysis are aVailable for elastic

frames, such as the cantilever method.
14

A modified elastic solution

for the frame will be used in this report to determine the approximate

value of the axial thrusts in the columns under working wind loads.

Using the assumptions of the sway subassemblage methods

·of analysis, a one-story assemblage at level n'is isolated from an

unbraced multi-story frame as shown in ,Fig. 3 .. The axial thrusts
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in the columns can be determined by the slope-deflection method of

analysis under the following assumptions.

1. The total horizontal shear forces in the columns above

and below level n are the same, and

2. The sway deflections for each column are the same.

Table 1 shows the axial thrusts in the columns due to

working wind load as de termined by this me thad. Figure 4 shows the'

lateral load versus sway-deflection behavior at working loads for

levels 4, 6, 8 and 10 in Frame B using the sway subassemblage computer

15
progr~m. The vertical axis shows the applied lateral shear force

non-dimensionalized by the working index ~/h of the story where 6

is the s~,ay deflection and h is story height.

Under the design ultimate load level, the axial thrusts

in the columns can be determined by assuming the following distribution

of bending moments in a one-story assemblage.

1. The bending moments at the leeward ends of the beams

are at the full plastic moment,

2. The bending moments at the windward ends of the beams

or within the spans, whichever is applicable (this.

depends on the magnitude of beam loading) are at

the full plastic momen.t, and

3. At ea~h joint the sum of the bending moments in the

beams is equal to or less than EM for the columns.. pc

Table 2 shows the axial thrusts in columns due to the design ultimate

wind loads by this method. Figure 5 shows the lateral-load versus
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sway-deflection behavior of levels 4, 6, 8 and 10 of Frame B for the

design ultimate combined loads.

The f.ollowing observations can be made from Figs •. 4 and 5.

1. The swa·y deflections under the working combined loads

are probably too large for practical designs.

2. Plastic hinges form considerably before the attainment

of working loads in levels 4 and 6.

3. The strengths of levels 4 and 6 are considerably

below the desired design ultimate load level of the

combined loads (L.F. = 1.3).

In Figs. 6 and 7, curve 1 shows the lateral-load versus
;,

sway-deflection behavior for constant gravity load (L.F. = 1.3)

as calculated by the sway subassemblage method of analysis. Curve

2 shows the same behavior for proportionally increasing gravity load

with the lateral load calculated in a step-by-step ffi.€thod for 'gradually

increasing gravity load using the sway subassemblage method of

analysis. Curve 3 was obtained by an "exact" second-order elastic-

1 · 1· 3p ast1c ana yS1S. For level 6 the degree of approximation using

the. sway subassemblage me thod is not too large. There fore, the

'strength of level 6 under the constant gravity· load CL.F. = 1.3)

as shown by curve 1 should be fairly accurate. It'· can be seen that

considerably lower ~trength was obtained at ,level 6 when gravity

loads were held constant at their design ultimate values.

A similar comparison was made for level 8 as shown in Fig.

7.. In, ,this case curves 2 and 3 indicate. close agreement between the

"exact" and the sway·subassemblage methods. For level 8, then,

"'



-10

curve 1 which was obtained for a constant gravity load (L.F. = 1.3)

should be very accurate. However, considerably larger strengt4 under

non-proportional load is available at level 8. It can be noted however

from Fig. 7 that under the design ultimate values of combined gravity

and lateral loads, all three curves are· in close -agreement.
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3. MINIMUM WEIGHT DESIGN OF FRAtES

3.1 Shear' Distribution Factors for a Sway Subassemblage

Fig. 3 shows the loading condition for a one story assemblage

isolated from an unbraced multi-story frame. The axial forces in the

columns are determined as discussed in Chapter 2. The total shear

force due to lateral loading can be calculated from the loading

condition. However, the distribution of s.hear force to each column

must be determined. The one story assemblage shown in Fig. 3 can be

1
divided into four sway subassemblages as shown in Fig. 8. Figure

9 shows a typical interior sway subassemblage. The restraining

coefficients K. 1 . and K~. in Fig. 9 can be approximately expressed'
1- ,1 J ~

by Eqs. 54 and 56 in Ref. 1.

The relationship between the horizontal shear force, Al Qn

and aeflettion index p = ~/h i~ Fig. 9 can be expressed by

(1. 1· I ..
) ( EI. )

I.
~- ,1

S. 1 +~ Si+l 4 h~ Ui - Pih - U. 1.

L. 1 · ~- L .. 1 Pih h
Al Qn

= 1-,,1 1J .
P(I. 1· I .. I. )1- ,1

S.· 1 +~ Si+l
+2.U h

L 4 1 · 1- L .. h i (1)1- ,l. 1.J

where

u.,
1.

=
3 - K. 1 ·1-,1.

4 - K. 1 ·1- , 1.

3 - K ..
J1.

4 - K •.
J1

'1 , 2
C (C.

. 1
1.



c.
~

s.
1

c.
1
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c.
1

=
2 2

c. - S.
1 1

S.
1

=
2 2

C. - s.
l. .l.

1
(1 f/J coth 0)= -

02

1 rtJ 1)s. = (sin1 02 f/J -

= hJ:l"2 Eli

The derivation of Eq. 1 is given .in Appendix I.

The sway deflections of each sway subassemblage under the applied

horizontal shear force Q are assumed to be equal. Also the sum of the
n

column shears for each sway subassemblage is equal to the total applied

shear force Q. Using these relations, the horizontal shear" distribution
n

factor A. can be determined as follows:
1

(1. 1· I..) ( EI, I.
. 1- , 1. S. + .2:.J. S. 4_1. U, - p.0 u. 1

Pih hL. l. 1-1 L.. 1+1 h 1 l. ~1- ,1 1.]

(I. 1' I, , l,

ui )
1.- ,1 .2:.J. 1·

h
Si-l + L" Si+l +-

L. 1 ' h
A. = 1- ,.1 1J (2) .

1 (I. 1· I..) ~ EI. ) I~
1- ,1 S. +.2:.J. S. . 4 h~Ui-Pih

1-u. Pih 11n L. l' 1-1 L.. 1+ 1 1.

~
1- ,1. 1. J

i+l (I, 1· I.. 1.)1.- ,1- .2:.J. 1 h
L, 1 ' Si-1 .~ L.. Si+l + 11 Ui

1- l. 1J- ,

3.2 The Relationship·BetWeen Moment Inertia of Beam and Column for
a Constant Sway

Based on Eq. 1, the compatibility condition for the interior

sway subassemblage ~hown in Fig. 9 ~or the given horizontal shear
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force and restricted working load sway p is as follows:

- (I. 1·A.. 1- ,~

1. L. 1 ·1- ,1

I ..
S + 2J.
i-I L ..

1J

I. )~ +2 U
';)i+l" h i (

I. 1 . I. · )
h Q = . 1.- ,1. S. + 2J. g. "

n L. 1. 1.-1 L.. 1+1
1- ,1. 1.J

~ EI. p~0
I.

4_l. U. - u. P.h
1.

(3).x - p Ph 1. 1. l. H

Expressing Eq. 2 in terms of the moment of inertia of column I.
1.

which is required for maintaining constant sway P ,gives

I.
I.

h

( A.h Q + P P.h)(~~-~'~ Si-l + ~~~ Si+l)= 1. n 1. 1.-,1 1J

(
I. 1 · I. · )

4EU.PL~- l~ S;. 1 + Ll. J S.+l - U~P.h P-A. D.h Q
1 . 1. 1.- •• 1 1 1. 1. 1 n. 1- ,1 1J

(4)

where I. 1 . I. .
1- ,1. S. + 2J.

L. I" • 1-1 L ..
1- ,1 1J

Also expressing E"q. 2 in terms of the moment of inertia of the beams

which is required for maintaining constant sway P gives

EI. I. 1 · I. 1 . I.

I
4 h

1
U.p L

1
- ,1. S. 1- (A.h Q + P.hp) L1.- ,1. S. l-(P.P+A Q -) U

1
.h h

1

• . ·1. 1. 1. - 1. 1. • 1. 1. - 1." n-!.J. = __~ 1.-_..o.-'1. 1_---....:;..,_1. _

Lij (Aih Qn + Pih P - 4 Eli Ui p) Si+l

~ (5)

where
I.

1.

h
.1>-

4EU .p
1.

(A. Q + p. p) h
1. n 1.

If the moment of inertia of either the beam or the column in the

sway subassemblage shown in Fig. 9 is known, the moment" of inertia

of the other member which maintains the constant sway condition can be

found from Eqs. 4 or 5.

3.3 The Minimum Weight Design,Process

The three-step design-process for an unbraced multi-story frame

has been described previously in Chapter 1. In this article, the f01-
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lowing optimum design procedure will be described in accordance with

those steps.

1. A frame which is designed by the moment balancing·

method is taken as the preliminary design.
6

2. The axial thrusts in the columns due to the working

loads are calculated using the method described in

Chapter 2.

3. The bending moments in the beams and columns are then

calculated under the working combined loads.

4. The distribution factors A. are calculated by Eq. 1
~

for each column.

5. Each one-story assemblage is then divided into sway

subassemblages.

6. The beam and the column for the windward sway subassem-

blage is first optimized with respect to weight usirig

Eqs. 4 and 5.

7. The plastic moment condition for the beam and column

determined in step (6) is then checked using the bending

moments calculated in step (3).

8. The combination of beam and column which gives a minimum

weight and satisfies the plastic moment condition is

then selected as the first trial members for the wind-

ward sway subassemblage.

9. For the f~rst interior sway subassembl~ge, the column

and leeward beam are then optimized with respect to

weight. The windward beam which was previously chosen

in step (8) is held constant.

-I
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10. All' interior sway subassemblages are optimized in the

same way preceeding from the windward to the leeward

side of the one story assemblage.

11. The column in the leeward sway subassemblage remains.

This column is determined by Eq. 4 and the plastic

moment condition.

After all members of a one story assemblage are determined, the cal~

culation must be repeated from step (3) to (11) using new value of

A
l

until convergence is obtained. The previous procedure is carried

out for wind from both directions such that all members chosen satisfy

the 4 conditions listed in Chapter I for the minimum weight design

of the frame. The final members obtained are then used when the

story is checked for its capacity under the design ultimate value of

the combined loads.
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4. DESIGN EXAMPLE AND RESULTS.

Using a computer program based on the work described in

Chapter 3, the minimum weight design of Frame B was obtained for

assumed working load sway limitations of PL = ~L/h = 0.001, 0.0015,

0.002, 0.0025, 0.003 an~ 0.004. The resulting designs of Frame B

for P
L

= 0.002, 0.0025, 0.003 and 0.004 are shown in Figs. 10 -to

13. The weights of the one-story assemblages at levels 2, 4, 6,

8 and 10 for each sway limitation are plotted in Fig. 14.

As shown in Fig. 14 the weights of one-story assemblages

"

at levels· 2 and 4 do not change appreciably for the ranges of sway

limitation P
L

= 0.0015 to 0.004 and 0.0025 to 0.004, respectively.

This means that the member sizes at levels 2 and 4 are likely con-

trolled by the plastic moment condition under the design ultimate

gravlty loads alone. At levels 6, 8 and 10, the weight of each

one-story assemblage increases gradually as the working load sway

limitat{on decreases from 0.004 to 0.0025 and then increases sharply

for. sway limitations less than about 0.0025. Figure 14 also shows

'that for the same working load sway limitation, the minimum weight

frame at levels 6, 8 and 10 is up to 5.0 percent lighter than the

frame obtained by the moment balancing method (Fig. 2) •. For a sway

limitation of about 0.002 at working loads, however, the minimum

weight frame is somewhat heavier than the fr'ame designed by

moment balancing as would be expected.
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Although Fig. 14 indicates that the gravity load condition

controls the design of levels 2 and 4, the sway subassemblage method

is not expected to yield accurate solutions 'in the upper stories of

6
a frame. Therefore, the minimum weight solutions at levels 2 and

4 are somewhat questionable.

The actual deflection indexes (~/h) of each level under the

working load must prove to be equal to the given sway limitation of

each level for a minimum weight frame. Figure 15 shows the lateral-

load versus sway-deflection behavior at level 8 of the minimum we~ght

frames under the working loads. The deflection indexes for P
L

= 0.001

to P
L

= 0.003 are very close to those specified. The deflection

index forPL = 0.004 is much less than the specified working load

sway limitation because the member sizes of this one-story assemblage

were determined by the plastic moment condition and not by sway

limitations. Figure 15 also shows that in this case a plastic hinge

form§ just after the attainment of the working load level of the

lateral load. Figures 16 and 17 show the lateral-load versus sway-

deflection behavior under the design ultimate combined loads for

levels 6 and '8 of three minimum weight frames. In levels 6 and 8,

,all one-story assemblages corresponding to sway limitations of 0.001

to 0.003 have sufficient strength under the design ultimate combined

loads. However, the ~trengthsof levels 6 and 8 for a sway limitation

PL ~ 0.004 are less than the design ultimate load level (L.F. = 1.3).

From the view point of strengt~ and economy, the sway

limitation of 0.0025 ~ 0.003 is available as far as Frame B is

concerned.
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5. CONCLUSIONS

A design method and an associated computer program has been

developed for the minimum weight design of unbraced multi-story

frames. The theoretical basis of the method is the sway subassemblage

method of analysis. The computer program is limited to rigid plane~

frames of up to thirty stories and five bays. Uniformly distributed

beam loads and equal story heights are assumed.

The calcuJation results were compared to Frame B from

the Lehigh Summer Conference notes for we igh t, stre'ngth and stiffness.

The weights of one-story assemblages in levels 8 and 10

decrease 3.5% and 5% against Frame B, respectively, for a deflection

. index at working load of about 0.003.

Further improvements of the program would be: 1) to use

mixed yield~:stress levels for beams and columns; 2) to restrict

member sizes for the convenience of construction; and' 3) to extend

the' program to apply to any arbitrary gravity loads on the beams

~s well as to uniformly distributed loads.

The frame designed by this computer program must be checked

with ~respect to strength and stiffness using either th~ sway sub

assemblage method of analysis or any other second-order elastic~

plastic method of analysis.
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6 • NOMENCLATURE

Modulus of elasticity;

story he-ight;

moment of ·inertia;

restraint coefficient;

span length;

axial force;

lateral load;

working level of lateral load;

shear distribution factor;

sway deflection of one story assemblage;

working load sway limitations;

6/h (deflection index);

bL / h •

-19
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71J# APPENDIX I

DERIVATION OF THE REIATIONSHIP BETWEEN THE
. HORIZONTAL SHEAR FORCE AND SWAY DEFLECTION (Eq. 3. 1)

Reference will be made to Fig. ~9 throughout the derivation of

Equation 1.

Using the slope deflection equations, equilibrium of mo~ents

at joint i is given by

I. 1 ·4E 1- ,1

L. 1 ·1- ,~

I ..
S. 1- + 2..l

1- L ..
1.J

I.
~ +.2:.U
';)i+l h i e.

1.

I.
4E .2:.h P U. = 0

~

3 - K. 1 ·
where S. 1 = 1- ,1

1.- 4 - K. 1 ·1- ,1.

3 - K..

Si+1
= 1J

4 - K..
1J

U.
1.

C.
1.

S.
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given by

The equilibrium shear force in the sway subassemblage is
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!!. AQ + 1:. P6. =
2 n 2

2E (8. - P)
1.

Eliminating 8., Eq. 1 is obtained.
1.
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TABLE 1

Axial Forces in Columns due to the Working Wind Loads

(kips)
Level A B C D

1 -0.31 0.18 -0. 07 0.20

2 -2.20 1.22 -0.33 1.31

3 -4.82 1.95 -0.46 3.33

4 -8.50 2.97 -0.65 6.17

5 -12.49 3.08 -0.84 10.25

6 -17 .38' 3.22 -1.08 15.24

7 -23.16 3.35 -1.27 21.08

8 -28.34 1.07 -1.46 28.73

9 -34.18 -1.44 -1.96 37.58

10 -40.76 -4.27 -2.54 -47.57
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TABLE 2

Axial Forces in Columns due to the Design Ultimate Wind Loads

(kips)
Level A B C D

1 -8.92 6.61 0 2.31

2 -17.75 9.93 0 7.82

3 -26.64 12.66 0 13.98

4 -35.53 15.39 0 20.14

5 -48.17 13.95 0 34.22

6 -60.86 12.51 0 48.30

7 -73.45 11.07 0 62.38
Jy

8 -89.74 -1.62 0 91.36

9 -110.42 -13. 90 0 124.31

10 -131.09 -20.18 ·0 157.26
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