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ABSTRACT

A method' is here presented for a simplified approach to the

problem of determining the second order elastic-plastic_ load-deflection

curve, considering instability, for an unbraced, unsymmetrical multi- ~

story plane building fr~me subject to relatively large column loads.

No account is taken of the reduction in the plastic moment capacity

of the members which results from the presence of axial force. A brief

discussion is presented at the end describing how this effect might be

considered.

Much background material is included in an effort to give an

understanding of how this method was evolved.

The actual method is really two processes. T~e first covers the

solution of the problem when the frame is in the stable state. The

second process treats the frame after it becomes unstable, but only to

the extent that the point is located on the load-deflection curve where

the final hinge of the failure mechanism forms,

Finally, a sample problem using a simple portal frame is included

to show the reader an example of the application of the method. The

results of this problem show that for column loads equal to twenty (20)

times the beam load, the ultimate load capacity is equal to 6~%' of the

simple plastic mechanism'capacity.
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1. INTRODUCTION

This pape~ starts with the premise that the reader desires to have

before'.:.him the elastic-plastic load-deflection curve for an unbraced,

unsymmetrical~loadedplane frame and that he desires to consider second­

order effects and instability. Such a frame could be subject to

relatively large column loads as might be found in the lower stories

of a multi-story 'building.

Conventional simple plastic theory formulates equilibrium on the

undeformed structure. This procedure is neither safe nor reasonable

where heavy vertical column loads exist such as in the lower stories

of a mUlt~-story building frame. Simply stated, the additional moment

generated because of the relative displacement of the column ends times

the vertical column loads-known as the ttP_L\tT effect--becomes too large

to be ignored.

As with all problems, there are many approaches to the solution

of this probleme The methods described in Refe (3) and (6) are

examples of how the problem may be attackede The procedure described·

in this report is an example of another approache It is based on the

assumptions that the relationship between moment and curvature is

elastic-perfectly plastid and that residual stresses, strain reversal

and the' effect' on the plastic moment of the axial and shear forces can

a-f"j~--be neglected (see Section 2.1 for full list of ;assumptions) e The

method presented is really two -methods,~ one deals. ~ithth~_ strlJ.q.tll~e.. in

the stable range, the other deals with the unstable range.

- 2 -



In the appendix an example problem using a fixed-ended portal

frame subject to vertical, horizontal and heavy vertical column loads

is used to il~u8trate the procedure and point out the importance of

considering the P-6 effects.

- 3 -



2. BACKGROUND DISCUSSION

2.1 ASSUMPTIONS

Certain basic assumptions are necessary before any further

discussion can begin. The introduction touched on some of these in

describing .what this report covered.

The following is the list of assumptions:

1. Material e lastic-perfe'ctly plastic.

cr yield'

Stress cr

M yield

Moment M

Strain €

CFig. 1)

Ca) Strain hardening neglected.

2. The relationship between moment and curvature elastic-

perfectly plastic.

Curvature ~

(Fig. 2)

Ca) Spread of plastification neglected.

3. Residual stresseS neglected.

4. Strain reversal assumed not, to take place. ,

5. Influence of shearing and axial forces on the plastic

moment neglected.

- 4 -



6. First order-equilibrium formulated on the 'lindeformed

member.

7. Seoond order-equilibrium formulated on the deformed

structure (P-~ effect).

8 . Instability inc,luded if it occurs prior to the

formation of mechanism~

9. It is considered a failure when a mechanism forms in

the structure.

10. Loading proportional.

11. Frame unbraced.

12. Either frame and/or loading unsymmetrical.

13. Loads act in a single plane and biaxial bending of

columns not considered.

14. Lateral bracing with simple connections prevents Qut­

of-plane deformation.

15. All joints rigid with sufficient strength to transmit

the full plastic moment;,

2,2 FIRST ORDER ELASTIC-PLASTIC ANALYSIS

Neglecting the secondary moment and stability problems caused by

the P-/1 effect, i.e., t1ne additional moment cr,eated l"l'Jrten equilibrium is

, formulated on the deformed structure, the first order elastic-plastic

load-deflection curve is constructed by means of a step-by-step

procedure, The structure is as'sumed to have elastic regions which

- 5 -



control the deformations and localized plastic hinges. The load­

deflection behavior is linear between the formation of successive

plastic hinges. The load-deflection curve can be constructed by

superimposing on the elastic load-deflection curve of the primary

structure portions of the elastic load-deflection curves of auxiliary

structures. The auxiliary structure is the resulting structure as

each plastic hinge is formed. The analysis requires a separate elastic

analysis after the formation of eac~ consecutive plastic hinge. This

leads to the generalized load-deflection curve shown below.

Load P

Ultimate load

Deflection 11

(Fig. 3)

The procedure for constructing the first order plastic load­

deflection curve for a frame is as follows:

1. 'Analyze the structure elastically and draw the moment

diagram in terms of an unknown force 'PIe

2. Let the maximum moment equal the plastic moment Mpl and

solve for the value of Pl~

- 6 -



3. With the load and the moments known, the deflection can be

calculated and the point plotted on the load-deflection diagram.

4. Again analyze the frame elastically and plot the moment

diagram in terms of a new unknown force P2 but with a real

hinge inserted in the structure at the location of the

plastic moment, Mpl '

5. To determine the location of the second plastic moment, M 2
. P

and the corresponding load'P2' add the moment diagrams from

step (2) and (4), then solve for P2. The smallest value of

P2 gives the correct location of the second plastic moment,

Mp2 (note that this value of P is the load increment, or

additional load, necessary to form the second plastic hinge).

6. Repeat steps (3), (4) and (5) until all of the plastic hinges

have formed, that is, until a mechanism has formed.

r't is important to remember when calculating a deflection corre­

sponding to the' load necessary for the formation of a plastic hinge on

the load-deflection curve at some point (A~ that full continuity still

exists in the structure at this hinge location. This means that in, the

deflection calculations a real hinge can not be inserted in the

structure at point (A) until the next cycle.

- 7 -



2.3 SECONDARY EFFECTS

Structures which are subject to relatively high axial l~ads, such

as the lower stories a mUlti-story building frame, cannot always be

analyzed correctly without considering equilibrium of the deformed

structure.

The various theorems and methods for the analysis of indeterminate

structures which are dependent for their validity upon the applicability

of the principle of superposition constitute what is known as the

elastic theory. The principle of superposition requires two conditions

before it can be applied to a structure:

1. A linear relationship must exist betvleen stresses and

strains, that is, the material must follow HookeTs law.

2. The change in shape of the structure as loads are applied

may be neglected.

Violation of the first condition calls for a load-history analysis

such as nPlasticTheorytt$ Violation of the second condition requires

the use of ttLarge Deflection Theoryn, or, it may be referred to as

considering the nsecondary effects TT caused by th'e change in shape of

the loaded structure. It must be noted here that both the elastic

theory and the deflectiqn theory consider the structure to be elastic

but the latter condition requires that moments and forces be computed

for the final deflected position.

There are several degrees of "exactness Tt when formulating equilib­

rium on the deformed structure. First, the least exact method, the

method used in this paper, is to consider the deformed structure. In a

- 8 -



multi-story frame building the secondary moment, or the 1t additional1t

moment which would be calculated in the columns would come from consi­

"dering the relative displacement of the column ends times the vertical

component of the total axial load in the columns \ This is known as the

p-~ effect.

Secondly, it would be necessary to consider equilibrium as formu­

lated on the deformed member as well as the structure. The third and

most exact method would be to add in the effect of axial shortening of

the members.

2.4 INSTABILITY OF EQUILIBRIUM

An unbraced unsymmetrical frame with relatively high vertical loads

on the columns, such as the lower stories of a multi-story building, may

be subject to instability before a' failure mechanism is formed. Under

these conditions' the second-order elastic-plastic load-deflection curve

will actually reach the maximum load point, (zero slope), before the

last plastic hinge forming the mechanism is developed. Any'increase in

deflection beyond this point must require a reduction 'in the load in

order to maintain equilibrium.

This phenomenon of instability can be explained by using the

following definition (Ref. 7, p. 407):

A system is said to be in a state of unstable equi-

librium if, for any possible small displacement from

the equilibrium configuration, upsetting forces will

arise which tend to accelerate the system to depart

even further from the equilibrium configuration.

The ttupsetting forces" referred to in the above definition are the

Ttsecondary effects n , specifically the p-~ effec,t, described in .Section

2.3 of this pa~er.

- 9 -



If one draws a generalized picture of the load-deflection curve

as would result from applying the iterative method described in this
!

report to a frame structure we get the following showing the stable

and unstable range of behavior:

Pmax

Last hinge forms
(Mechanism forms)

Load P

>Deflection 6
-----L-------/:::?r!

Unstable Range
~

Stable Range

(Fig. 4')

At this point it might be well to note that the value of the

maximum load is dependent on the loading sequence, however, if the

structure is not subj ect to, strain reversal in the plastified zones,

the value of the load at the formation. of the failure mechanism is

unique and independent of .the path of loading (Ref. 3, p. 13.10).

-

2.5 SECOND-ORDER ELASTIC-PLASTIC ANALYSIS

The second-order elastic-plastic load-deflection curve is

constructed'by means of a step-by-step procedure similar to the" first-

order curve discussed earlier. Again the load-deflection behavior is

considered as linear between the. formation of successive. plastic hingesu

The slope-deflection equation is used for solving the frame elastically.

The secondary, or p-~ moment, is introduced into the solution with a

- 10 -



condition equation by summing moments, including the p-~ moment, about

the base of one of the columns and then, by substitution, writing an

expression in terms of the lateral loads, the P-6 moment and the column

end moments. This is sometimes referred to as the Ttoverturning

moments Tt equation.

The prQcedure for constructing the second-order elastic-plastic

load-deflection curve using the slope-deflection method is as follows:

1. -Analyze the structure elast"ically, including the P-l1

effect, using slope-deflection equation in terms of an

unknown force Pl~

2. Let each resulting moment, M, equal the plastic moment,

~l' and solve the q~dratic equations for Pl , The root

giving the smallest absolute value of. P with a positive

deflection gives the location of the first plastic hinge

and the corresponding load Pl~

3. Draw the moment diagram.

4. Determine the deflection at the desired location and plot

the first point of the load-deflection curve g

5. With a real hinge inserted in the structure at the location

of the plastic moment, the second point on the curve will

be found ~

6. To simplify the calculations, only the incremental change

in moments and load are dealt with after the first hingeg

The first auxiliary' structure is now analyzed in a similar

manner as step (2). Note that the condition equation, i.e~,

the sum of the moments about a colUmn base, must deal only

- 11 - ·



with the moments caused by the additional deflection beyond

that at the first hinge.

7. To determine the location of the second plastic hinge and

the corresponding load P2' add the moment diagrams from

step (3) and step (6), then solve as in step (2).

8. Repeat steps (5), (6) and (7) until all of the plastic

hinges are developed, that is, until a mechanism has formed.

The solving of the simultaneous equations from the slope-deflection

solution gives answers in the form of a quadratic. Here we see'proof

of the non-linear relationship between the elastic analysis and the

s.econdary effects.

Of the two solutions·obtained from the quadratic equations for the

load P, the correct solution is the one which gives the smallest

absolute value for P and 'also gives a positive value for the deflection.

-A study was made of the second root but the exact physical meaning

~<:),~ ~~~ an,swer i.s. !!ot apparent 0 The __f?llow_~~g table gives the results

of a problem, Figo 5, solved by the slope-deflection method, that is .used
--~ .... .' - -_ .._, .. ---""--_ .....~ .....-....-

later to compare with the proposed iterative method:

p

L

L ,P Lr ... ~l)"~~\1

~

(Fig. _5)
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ROOT 1 ROOT'2
P I ·~""--I- ~"---------.;... ----'6

-------+--------~---+_:-t-------+-------~o.---._.

+ -10.19 -

+ + 4.57 +

+ +19.12 I -
~

I'
I
I

+0.14944

+0.05555

+0 .03987-1(

+0.01588

+0.11166

+0 .01371

+0 .00248"it

(

+0.00875

+0.05022

+0.00588"i'C

+0.0009S oJ(

Hinge I

Hinge II

Hinge III

Hinge IV

+ - 6.83 I -
+ - 2.95 i -

+ I + 2 .34 1.-
I + ! +63 · 71 .! -

--......-----~--------........:ti-----t~'---·-· ---:r---.~ ..........-~.-"---
~ 1 . ~

.I + I -15 . 82 1

! + I II - 3. 42 I
I + I + 3. 67 I

-"------i---------r--o-----f---+------+----.----

I I II + I - 4.15 !

-Ie Correct Answer
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3 . ITERATIVE PROCESS

3.1 GENERAL DISCUSSION

Anyone using the slope-deflection procedure for constructing the

second order elastic~plastic load-deflection curve described earlier

will soon find it an extre~ely time consuming and arduous task even

for the very simplest of frames. In an effort to simplify the

procedure an approach is suggested based on assuming one or more of

the unknowns and then iterating until an answer within a specified

limit of accuracy is achievede

A brief description of the stable range iteration process is as

follows. This is the condition up to and including the point of

maximum load.

1. Assume a load P.

2. Find the moment diagram without considering the second

order effects.

3. Find the minimum load P required to produce the first

hinge and find the moment diagram.

4. Compute the deflection.

5. Find the mom~nt diagram for only the p-~ effect.

6. Add the momerit diagrams from parts (3) and (5)0

7. Repeat starting with step (3) until convergence.

- 14 -



Two additional points should be mentioned. First, by separating the

first order and second order moment determination, the non-linear part

of the calculations is bypassed. The second point is to consider the

general behavior of the iterative process. Af~er adding the first and

second order moment disgrams together, a linear relationship is assumed

between the load and the moment .. This tends to over compensate for any

error in the previous value of the load, The values of the load will

bounce bac:k and forth, sometimes greater, sometimes' less than the actual

value sought, but eventually converging to the correct value,

The iteration process for the unstable range is not. nearly so

straight forward as in the stable case. As shown later, the approach

used for the stable case will not work for the unstable case. The

method adopted is a simplified version of that described in Ref. (4).

This method gives the values of the deflection and load at the

formation of the last hinge only, i.e., the formation of a mechanism.

The points on the load-deflection curve at the formation of hinges

other than the last one cannot be determined by this method. A brief

description of the method is as follows:

1. Assume a failure mechanism 'and last hinge location.

2. Determine Pu, the ultimate load, by first-order rigid-

plastic, theory.

3, Compute the deflection.

4. Determine, Pu by virtual work on the deformed structure.

S. Determine the deflection.

--~ --.- ----··---6-.-~ Repeat starting with step (4) until Pu converges.

- 15 -



7. Checks:

Ca)

(b)

Plasticity condition (M < M )
- p

Location of the last hinge.

If checks not satisfied, repeat computations for a new

mechanism and/or last hinge location.

3.2 STABLE RANGE ITERATION

As previously discussed, the stable range iteration is used to

determine the points on the load-defl~ction curve up to and including

the point of maximum load. If a failure mechanism develops at this

point, the curve is complete. If the failure mechanism has not

developed, the unstable range iteration that is described later must

be used.

The steps of the solution can very neatly be set up in table form

to minimize the work as is shown in the sample problem. It has been

bund convenient to treat the p~~ effect as a horizontal force equal to

P~6 where His the column height associated with the relative hori­

zontal displacement of the column ends, ~,and P .is the vertical column

load.

The preliminary step required before beginning the iteration for

each hipge is to determine the moment diagram of the structure for

unit loads and unit P~6. The rest of the procedure is as follows:

First hinge:

1. ,Using the unit moments from the prelimlnary step, find the

first order load by proportion and reSUlting moment diag~am'

- 16 -



2 •

3 ."

4 .

necessary to develop the first plastic hinge. The location

of the first hinge will be at the point of maximum moment

for the unit load moment diagram. The load will also be

the minimum load necessary to develop the plastic moment.

Determine the horizontal deflection of the column ends, 6.

. p-~
Determine the factor X, that lS, ~.

Using the moments from the preliminary step, find the

. resulting moment d~agram for X by proportion.

5. Add the moment diagrams from step (1) and (4).

6. Find the new load for cycle two by proportion between the

load from step (1), the maximum moment from step (5) and
P2 M

the plastic moment, -- = P
PI Mmax 1

7. Repeat steps (2) thru (6) until the change in the value of

the load between cycles is within the desired accuracy.

Second. hinge:

l~ Insert a real hinge at the point 6f the plastic moment .as

determined for the first hinge and proceed with the prelim-

inary step for the resulting auxi:liary structure.

2. Using the final moment diagram for the first hinge,

determine the amount of additional" moment, M -M. at each
--~,-- p 1

critical location, i, that is, where~a plastic hinge might

form, required to form the plastic moment on the new structure .

- 17 -



3. Find the minimum incremental load necessary to form the

next hinge and draw the moment diagram similar to step (1)

for the first hinge.

4. Determine the incremental horizontal deflection of the

column ends, 6.

Since we are5.
P-6Determine X, ~, for the second hinge.

working with incremental moments, loads, and deflections,

we must include the additional P-6 moment produced by the

load necessary· to form the first hinge being displaced

the additional incremental amount necessary to form the

second hinge.

6. Proceed as in step (4) of the fi~st hinge determination and,

find the moment diagram for X by proportion from the

preliminary step.

7. Add the moment diagrams from steps (3) and (6).

8.. Proceed as in step (6) of the first hinge determination

but with the proportion based on step (2) of the seconq

hinge determination. This must be done at each critical

location i. The critical location giving smallest value

of the incremental Ired change, P, is the correct location

of the next plastic hinge.

9 .' Repeat steps ('4)' trhru (8') as required for accuracy.

Additional hinges:

Proceed as in the second hinge determination but using the results

obtained from the previous hinge.

- 18 -



3.3 VERIFICATION OF RESULTS AND DISCUSSION OF ACCURACY

In order to assure that this iterative method does indeed give a

correct elastic-plastic load-deflection diagram and to help establish

accuracy guide lines a test, problem was solved by the slope-deflection

method. (See section on "Second-Order Elastic-Plastic Load-Deflection

Curve!T, Fig. 5 for sketch).

The follo~'ling diagrarns shO\£IJL.71g the moments \'lith the mecharlism

formed give a comparison of the results:

Slope-Deflection Solution Iterative Solution

61.00005xlO ft.lbs.

~

I
I !

6O.99981xlO ft.lbs.

= 0.05079 x l061bs .

= 1.95306 ft,~

Load P

Defl. fj.

J 6
Jl.00008xlO ft.Ibs.
j

i j
! !

I ' j
; 6I O.~9990xlO ft.Ibs.

I
I

6
lxlO ft. Ibs .

/

6
lxlO ft .Ibs .

Load P = 0.05079 x 10 61b8.

Defl. ~ = 1.95231 ft.

o .047_6M9__X_IO_,6_f_t_._1_b_S_.~~~~I_X~106ft.lbSI 0 .04674X_IO_6_f_t_._1_b_S_.~~~~~~~

(Fig. 6) (F~g. 7)

The results shown in the iterative solution were produced by

continuing the iteration until there was no ch'ange between cycles in

the last decimal place. The same problem was solved by limiting the

iteration to one cycle and the results were quite accurate (P = 0.05073

6· .x 10 Ibs., ~ = 1.95382 ft.).

- 19 -



The next step was to increase the loading on the column ends so

as to cause the frame to reach a condition of inst~bility before the

formation of the failure mechanism. The treatment of this condition

will be covered in t~2 next section in some detail but it is necessary

to mention it in connection with the discussion of the accuracy rules.

In' the description of the stable iteration process it was assumed

that the additional deflection produced by the B-~ effect was so small

that it could be neglected. This is 'not necessari~y correct. In

fact, there may not be any way of telling from the iteration process

that a structure has reached the unstable condition without including

this additional displacement. This was born out in the test pro~lems

where the structure' seemed to be stable unti~ the P-6 deflection was

included in the calculations.

A study was made 'of the two test problems described earlier and

,the following rules were developed to give an accuracy within

approximately 1.0% for the value of the load P:

1. For the first two cycles use the standard iteration

procedure as outlined in an earlier section.

2. Check the deflection at the end of cycle two, using the

final moment diagram, i.e,'the sum of the first order and

second order moments, and compare with ~ calculated from

the first order moments alone.

3. If t~e difference in step (2) is greater than 10.0%,

continue into cycle three using a modification of the

standard procedure.

- 20 -



4. The modification is to base the deflection calculation on

the final"moment diagram of the previous cycle as in step

(2) above rather than on the first order moments of the

current cycle.

5. Continue cycling until the change in the Load P between

cycles is less than 1.0%.

6. For all hinges after the first one these percentages can

be based on the first hinge 'values since the largest

proportion of the load and deflection will have taken

place at the format"ion of the first hinge. For -the first

hinge calculations the percentages are based on the

previous cycle values.

percent change in P

percent change in ~

= change between cycles x 100
final value of P at first hinge

= change between cycles x 100
final value of n at first hinge

The modification described in step (4) simply incorporates the

additional p-~ displacement into the iteration. The obvious question

is why not include the P-ll deflection in step (4) from the beginn~ng

instead of bypassing it for the first two cycles~ This was done in

several test examples and it was found that the number ,cycles

necessary for convergence increased two to three times with this.

additional complication~

- 21 -



The second cycle is used as the cut-off point in step (1) because

the results of the first cycle give a very high value of P which is

then corrected in the second cycle.

The 10.0% guide value in step (3) is highly ·empirical. The study

of the test problems actually showed that errors up to 5.0% in the

deflection still gave an accuracy well within the 1.0% limit for P.

Thus the 10.0% value was chosen for convenience. Certainly this area

could stand additional study and refinement.

3 .4 UNSTABLE RANGE ITERATION.'

vmen using the stable range iteration, if the load P keeps getting

smaller and smaller and seems to be heading for a limit of zero (0) and

the deflection ~ is getting larger and larger, the process fails to

converge. This means ,the structure has reached the unstable state.

The iteration process used for the stable range will not work when the

frame is in the unstable state and a different approach must be used.

Part of the difficulty is that now that the structure has reached

unstable equilibrium, the only way that equilibrium can be maintained

with increasing deflection is to decrease the load. If this was the

only problem, a simple modification of ,the stable iteration process

would be the soltuion. Unfortunately, if this approach is tried it

will soon become evident that convergence still is not going to take

place. The reason for this becomes clearer if one looks at a true plot

of the load-deflection diagram rather than the idealized plot of

assumed straight lines used for this discussion. Usually no hinge

will form at the point of maximum load and the idealized load-
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deflection diagram will be a straight line between the last hinge to

form in the stable state and the first hinge to form in the unstable

state. The true plot, however, will rise up to a peak value of P and

then drop off again somewhere between these two h·inges.

I~ one is to write an equation for the incremental moment change

between the last hing~ in the stable state and the first hinge in the

unstable state, one would be faced with an interesting dilemma.

Knowing the additional moment required to develop the next hinge, an

equation can be written with P and ~ as the unknowns consisting of two

parts, the p-~ m~ment an¢ the first order moment due to a change in P.

If this equation is plotted for various values of P, one finds that at

P equal to zero, the deflection has a value. This would show up as a

straight line on the load-deflection plot and is inconsistent with the

physical ~ature of the problem. The on~y explanation for this dimemma

is that the equation of the ,load ....deflection plot is different on the

stable side of the maximum load point than it is on the unstable -side.

'since the iteration method used for the stable range makes use of this

type of equation, in order to use this method the formation of the

last hinge before the frame reaches the unstable state must be at the

point of maximum load or the moment diagram must be known when P is a

maximum. Therefore, this type of solution was abandoned in favor of

an approach utilizing a second-order rigid plastic solution~

The rigid plastic' iterative process, though, is one 'which

restricts the user to finding the load P and the deflection ~ at the

form'ation of the last hinge only. The basic procedure is a s'implified
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version of the method described in reference (4). This method includes

the effect of axial force on the plastic moment and for this

discussion, as stated earlier, this effect is being ignored. The

p,rocedure is as follows:

1. Assume a failure mechanism and last hinge location.

2. Determine P , the ultimate load, by first-order rigid­u

plastic theory. This is done by remembering the basic

ideas of applying. virtual wo'rk to the tTmechanism method TT

of solving a structure using rigid-plastic theory:

a. If a virtual displacement is applied to a system'

which is in equilibrium, the total work done is

equal to zero.

b. 'Yirtual'displ~cementis any;that is convenient to use with

:the assumption that the line of action of the forces does

"-:not change.

c. Virtual distortions are usually assumed as the

distortion of a linkage system the same as the

failure mechanism with no deformation between

points of rotation and with angular changes at the

locations of possible plastic hinges.

3. Find the horizontal deflection of the column ends, ~.

4. With the defl~ction in (3) determine the ultimate load,

p ,hy~virtual work on the ~eformed structure. The additional
u

consideration when using virtual work on the deformed

structure is that the virtual displacement is applied to the

structure with the mechanism already formed rather than the

,undeformed structure used in step (2).
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5. Steps (3) and (4) are then repeated and a new~ Pu and ~

are' determined for each cycle until the change in P
u

between cycles is less than 1.0%.

6. There are two checks which must be made to determine if;

(1) the correct mechanism has been assumed; and (2) if the

correct location of the last hinge has been assumed:

a. The correct mechanism has been assumed if at no

point in the structure is the moment greater than

the plastic moment

M<M
P

b. Once the failure mechanism is confirmed a check must

be made on the correctness of the assumed last hinge~

The general procedure is as follows (Ref. 8):

1. For a structure with R redundents, write R

simultaneous virtual work equations to

determine the values of 8., the concentrated
1

slope changes at the plastic hinges.

(a) Introduce the unit moment, into the equilib-

rium structure in such a way that there is no

external work to contend with in the irtual'

work equations.

Wexternal = Winternal

o = ~ mi 8 i + ~ ~ SM m dx

m. = unit' internal moment on the
1

equilibrium structure.

8. = plastic hinge rotation on the
1

actual structure.
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M = moment on the actual structure.

m = moment on the equilibrium

structure.

(b) The best way to eliminate the external work is to

put a double unit moment, (one for each slope

change) , on the equilibrium structure at the,

point of one of the plastic hinges and think

of it as an internal moment. Be sure that this

unit moment has the same sign as the plastic

moment.

2., . Solve these equations R + 1 times, (equal to the

number of hing~s required for a mechanism) . Set each

8. -in turn equal to zero, i. e. , equal to the last
l

hinge with no rotation.

3. Solution in which no 8. is equal to a minus value
l

give,S the correct last hinge (see Appendix 4-~2 for

sign convention).

3.5 INFLUENCE OF AXIAL FORCE ON THE PLASTIC MOMENT

In addition to causing instability, the presence of axial force

tends to reduce the magnitude of the plastic moment. The effect is

small in the case of small axial loads, and therefore in ordinary

portal frame columns any reduction is usually ignored. However, in

the case of multi-story structures, the resisting moment of the columns

can be reduced by axial load and the evaluation of the ultimate load

could include sueD consideration for a more accurate result. This
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reduced moment is known as M and can be derived by standard procedurespc

(see Ref. 2).

In the previous discussion and in the example which follows the

·reduction of M to M has been neglected. A possible modification
p pc

in the stable iteration process to include this reduction would be to·

change from Mp to M at the end of the second cycle and repeat thepc

first two cycles. The discussion of the unstable iteration method

including M is covered in reference (4).pc
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4. SUMMARY AND OONOLUSIONS

In summary, a method has been presented which gives a sim­

plified approach to the problem of determining the second-order

elast1c~plastic l~~d-deflection curve including the problem of

instability. The method is a two-part iterative procedure - one

part for the s~able range 1 the other for the unstable range.

The stable range iteration separates the first order and sepond

order moment determination. Although mutually interdependent, the

procedure ,~s ,to determine the first order moment and resulting

defleciion an~ then'add the additional second order, or P-A

moment. This process is repeated until convergenoe within a specified

limit of accuracy.. is ,achieved G . By' ''using this type of procedur~, the
--

time consuming non-linear part of the calculation~ is by-passe4.

In order to assure that the stable iterative procedure dO~$':

indeed give a correct, elastic-plastic load deflec·t~ion diagram, .0.::

tes,t problem was S,9lved by the s,lo.p:~-deflect1onmethod and b,y the

~terative proceduree A comparis,on of results shows the same'I'Ul:t:imate

load by' eit'her system ~nd only very small differences in the ·'··'final

moment diagrams. Also, as -'Ghe 'result of a .s'tudy of these test prob­

lems, rough empirical rules of accuracy for the iteration were

developed •
• - ; ~ I

After exploring several other approaches, the unstable range

it~ration procedure is developed from 2 method ~y Vog~l (see Refo 4)

and restricts the user to finding the values of the load and d~flection

at the last hinge onl~
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In oonolu~1on, sinoe it has been shown that conventional s1mpl~

plastic theory, wh1c'q formulates ~qu111brlum on the undeformed

structure, is neither safe nor reasonable where heavy vertioal

column. loads ·exist and the results of the sample problem show that

for oolumn loads equal to only twenty (20) times the beam load, the

ultimate load capaoity is reduced to b4-% 'of the simple 'plastio

meohanism oapaoity, ~t is necessary ~o find some simplified method

of inoluding the soeond ,order:,,:,or P-A moment, wh.en dealing w1t~ the

plastio analysis' o£'.' heavily loaded oolumns.
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5.1 Nomenclature

Text

E

H

I

M

Mmax

Mp

Mpc '

Myie'ld

P

Pu

R

W

X

11

€

8

cr'

cryield

~

s. APPENDIX

Modulus of elasticity

Column height of a story in a multi-story frame

Moment of inertia

Moment

Maximum moment

Plastic moment

Reduced plastic moment

Moment at- yield

Concentrated 'load,. axial load

Ultimate load

Number of redundents

Work

Lateral deflection of a story in a mUlti-~tory frame

Strain

End slope, rotation

Stress

Stress at yield

Curvature
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Sample Problem

E

I

CD
L

M

MADD .

MP.O.

M
max"

Mp

MX
-p

Pu

R

W

X

Z

6

cf'
8

cry

Modulus of elasticity

Moment of inertia

Critical location i where a plastic hinge might form.

Length or height

Moment

Additional moment required to form plastic hinge

First order moment (neglecting second order effects)

Maximum moment

Plastic moment

Moment due to X

Concentrated load; axial load

Ultimate load

. Number of redundents

Work

P x 6/L

Plastic' modulus

Horizontal deflection of frame top

Deflection

End slope, rotation

Stress at yield
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