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ABSTRACT

A method is here presented for a simplified approach to the
problem of determining the second order elastic-plastic load-deflection
curve, considering instability, for an unbraced, unsymmetrical multi-

story plane building frame subject to relatively large column loads.

No account is taken of the reduction in the plastic moment capacity
of the members which results>from the presence of axial force. A brief
discussion is presented at the end describing how this effect might be

considered.

Much background material is included in an effort to give an

understanding of how this method was evolved.

The actual method is really two procésses. The first covers the
solution of the problem when the frame is in the stable state. The
second process treats the frame after it becomes unstable, bﬁt only to
the extent that the point is located on the load-deflection curve where

the final hinge of the failure mechanism forms.

Finally; a sample problem using a simple portal frame is included
to show the reader an example of‘the application of the methbd. The
results of this problem show that for column loads equal to twenty (20)
times the bbeam load; the ultimate 1oad’ca1.)acity is equal to 6#% of the

simple plastic mechanism capacity.



1. INTRODUCTION

This paper starts with the premise that the reader desires to havev
before -him the elastic-plastic load-deflection curve for an unbraced,
unsymnetricalljloaded plane frame and that he desires to consider second-

; order effects and instability. Such a”frame couldbbe subject to
reiatiVely lérge column loads as might be found in the lower stories

of a multi-story building.

Conventional simple plastic theory formulates equilibrium on the
undeformed structure. This procedure is neither safe nor reasonable
where heavy vertical colunn loads exist such as in the lower stories
of a multi—étory building frame. Simply stated, the additional moment
generated because of the relative displacement of the column ends times
éhe vertical column loads-known as the "P-A" effect--becomes too large

to be ignored.

As with all problems, there are many approaches to the solution
of this problem. The methods described in Ref. (3) and (6) are
examples of how the problem may be attacked. The procedure described
in this report is an example of another approach. It is based on the
assumptions that the relationship between moment and curvature is

elastic-perfectly plastic and that residual stresses, strain reversal

and the effect on the plastic moment of the axial and shear forces can

’7ﬁaiiwbé7negleéfed (see Section 2.1 for full list of assumptions). The

method presented is really two'methods,\one deals with the structure in

the stable range, the other deals with the unstable range.



In the appendix an example problem using a fixed-ended portal
frame subject to vertical, horizontal and heavy vertical column loads
is used to illustrate the procedure and point out the importance of

considering the P-A effects.



2., BACKGROUND DISCUSSION

2.1 ASSUMPTIONS

Certain basic assumptions are necessary before any further
discussion can begin. The introduction touched on some of these in

describing what this report covered.

The following is the list of assumptions:

1. Material elastic-perfebfly plastic.

o yield
Stress ¢ ‘ o
Strain e
~(Fig. 1)
(a) Strain hardening neglected.
2, The relationship between moment and curvature elastic-
perfectly plastic.
‘ \
M yield
Moment M LN

Curvature ¢
(Fig. 2)

- (a) Spread of plastification neglected.

3. Residual stresses neglected.

4. Strain reversal assumed not to take place.
‘5. Influence of shearing and axial forces on the plastic

moment neglected.



10.

11.

12.

13.

14.

15,

First order-equilibrium formulated on the undeformed

member,

Second order-equilibrium formulated on the deformed

structure (P-4 effect).

Instability included if it occurs prior to the \

formation of mechanism.

it is considered a failure when a mechanism forms in
the structure.

Loading proportional.

Frame unbraced.

Either frame and/or ioading.unsymmetrical. _

Loads act in a single plane and biaxial bending of

columns not considered.

Lateral bracing with éimple connections prevents out-

of-plane deformation. '

All joints rigid with sufficient strength to transmit

the full plastic moment..

2.2 TFIRST ORDER ELASTIC-PLASTIC ANALYSIS

Neglecting the secondary moment and stability problems caused by

the P-4 effect, i.e., the additicnal moment created when equilibrium is

- formulated on the deformed structure, the first order eiastic—plastic

load-deflection curve is constructed by means of a step-by-step

procedure. The structure is assumed to have elastic regions which



control the deformations and localized plastic hinges. The load-
deflection behavior is linear between the formation_of successive
plastic hingés. The load-deflection curve can be constructed by
superimposing on the elastic load-deflection curve of the primary
structure portions of the elastic load-deflection curves of auxiliary
structures. The auxiliary structure is the resulting structure as

each plastic hinge is formed. The analysis requires a separate elastic
analysis after the formation of each consecutive plastic hinge. This

leads to the generalized load-deflection curve shown below.

A |
Py —_—— e — o — — . Ultimate load
Load P ' ' ‘ Hinges Form
S

Deflection A

(Fig. 3)

The procedure for construetiﬁg the first order plastic load-
deflection curve for a frame is as follows:
1. "Analyze the structure elastically and draw the moment

diagram in terms of an unknown force Pj.

- 2, Let the maximum moment equal the plastic moment Mpl and

solve for the value of Pl



With the load and the moments known, the deflection can be

calculated and the point plotted on the load-deflection diagram.

Again analyze the frame elastically and plot the moment
diagram in terms of a new unknown force P2 but with a real‘
hinge inserted in the structure at the location of the
plastic moment, Mpi’

To determine the location of the second plastic moment, Mp2
and the corresponding load'PQ, add the moment diagrams from
step (2) and (4), then solve for‘PQ. The smallest value of
P2 gives the correct location of the second plastic moment,

Mp2 (note that this value of P is the load increment, or

additional load, necessary to form the second plastic hinge).

Repeat steps (3), (4) and (5) until all of the plastic hinges

have formed, that is, until a mechanism has formed.

It is important to remember when calculating a deflection corre-

sponding to the load necessary for the formation of a plastic hinge on

the load-deflection curve at some point (AL that full continuity still

exists in the structure at this hinge location. This means that in the

deflection calculations a real hinge can not be inserted in the

structure at point (A) until the next cycle.



2.3 SECONDARY EFFECTS

Structures which are subject to relatively high axial loads, such
as the lower stories a multi-story building frame, cannot always be
analyzed correctly without considering equilibrium of the deformed

structure.

The various theorems and methods for the analysis of indeterminate
structures which are dependent for their validity upon the applicability
of the principle of superposition constitute what is known as the
elastic theory. The principle of superposition requires two conditions
before it can be applied to a structure:

1. A linear relationship must exist between stresses and

strains, that is, the material must follow Hooke's law.

2. The change in shape of the structure as loads are applied

may be neglected.

Violation of the first condition calls for a load-history analysis
such §§W”Plastic Theory". Violétion of the second condition requires
the use of "Large Deflection Theory", or, it may be referred to as
considering the '"secondary effects" caused by the change in shape of
the loaded structure. It must be noted here that both the elastic
theory and the deflection theory consider the structure to be elastic
but the latter condition requires‘that moments and forces be computed

for the final deflected position.

There are several degrees of "exactness" when formulating equilib-
riumn on the deformed structure. First, the least exact method, the

method used in this paper, is to consider the deformed structure. In a



multi-story frame building the secondary moment, or the "additional"
moment which would be calculated in the columns would come from consi-
‘dering the relative displacement of the column ends times the vertical

component of the total axial load in the columns. This is known as the

P-A effect.

Secondly, it would be necessary to consider equilibrium as formu-
lated on the deformed member as well as the structure. The third and

most exact method would be to add in the effect of axial shortening of

the members,

2.4 INSTABILITY OF EQUILIBRIUM

An unbraced unsymmetrical frame with relatively high vertical loads
on the columns, such as the lower stories of a multi-story building, may
be subject to instability before a failure mechanism is formed. Under
these conditions the second-order elagtic-plastic load-deflection curve
will actually feach the maximum load point, (zero slope), before the
last plastic hinge forming the mechanism is developed. Any increase in
deflection beyond this point must require a reduction in the load in

order to maintain equilibrium.

This phenomenon of instability can be explained by using the

following definition (Ref. 7, p. 407)

A system is said to be in a state of unstable equi-
librium if, for any possible small displacement from
the equilibrium configuration, upsetting forces will
| arise which tend to accelerate the system to depart
even further from the equilibrium configuration.
The "upsetting forces" referred to in the above definition are the
"secondary effects", specifically the P-A effect, described in .Section

~

2.3 of this paper.



If one draws a generalized picture of the load-deflection curve
as would result from applying the iterative method described in this
report to a frame structure we get the following showing the stable

and unstable range of behavior:

max -

.

|
|
[
|
i
f
!
!

Last hinge forms
(Mechanism forms)

Load P

Deflection A

Ay

,
s

Stable Range Unstable Range
(Fig. 4)

At this point it might be well to note that the value of the
maximum load is dependent on the loading sequence, however, if the
structure is not subject to strain reversal in the plastified zones,
the value of the load at the formation of the failure mechanism is
unique and independent of the path of loading (Ref. 3, p. 13.10).

" "2.5 SECOND-ORDER ELASTIC-PLASTIC ANALYSIS

The second-order elastic-plastic load-deflection curve is
constructed by means of a step-by-step procedure similar to the first-
order éurve discussed earlier. Again the load-deflection behavior is
considered as linear between the. formation of successive. plastic hinges.
The élope—deflection equatioh is used‘for solving the frame elastically.

The secondary, or P-A moment, is introduced into the solution with a

- 10 -



condition equation by sumnming moments, including the P-A moment, about
the base df one of the columns and then, by substitution, writing an
expression in terms of the lateral loads, the P-A moment and the column
end moments. This is sometimes referred to as tne "overturning

moments™" equation.

The procedure for constructing the second-order elastic-plastic
load-deflection curve using the slope-deflection method is as follows:
1. Analyze the structure elastically, including the P-A
effect, using slope-deflection equation in terms of an
unknown force Pl'
2. Let each resulting moment, M, equal the plastic moment,

M 1> and solve the quadratic equations for P The root

P 1
giving the smallest absolute value of P with a positive
deflection gives the location of the first plastic hinge
and the corresponding load Pl.
3. Draw the moment diagram.

4. Determine the deflection at the desired location and plot

the first point of the load-deflection curve.

5. With a real hinge inserted in the structure at the location
of the plastic moment, the second point on the curve will

be found.

6. To simplify the calculations, only fhe incremental change
in moments and load are dealt with after the first hinge.
The first auxiliary structure is now analyzed in a similar
manner as step (2). Note that the condition'equation, i.e.,
the sum of the moments about a column base, must deal nnly

i ll._..



with the moments caused by the additional deflection beyond

that at the first hinge.

7. To determine the location of the second plastic hinge and
the corresponding load P2, add the moment diagrams from

step (3) and step (6), then solve as in step (2).

8. Repeat steps (5), (6) and (7) until all of the plastic

hinges are developed, that is, until a mechanism has formed.

The solving of the simultaneous equations from the slope-deflection
solution gives answers in the form of a quadratic. Here we see proof
of the non-linear relationship between the elastic analysis and the

secondary effects.

Of the two solutions-obtained from the quadratic equations for the
load P, the correct solution is the one which gives the smallest

absolute value for P and-also gives a positive value for the deflection.

‘A study was made of the second root but the exact physical meaning

~ of the answer is not apparent. The following table gives the results

of a.problem, Fig. 5, solved by the slope-deflection method, that is used

latefméé compare with theupfopoéed iﬁefatiyéumethéa}*“'

<7 ey ]
! g

(Fig. 5)

- 12 -~



ROOT 1 ROOT 2
P A P

+0.14944 + -10.19
Hinge T +0.05555 + + 4.57
+0.03987% + +19.12
+0.01588 + - 6.83
Hinge II +0.11166 + - 2.95
+0.01371 + + 2.34
+0.00248% + +63.71

+0.00875 : + -15.82 |

i

Hinge IIT +0.05022 + - 3.42 |
- +0.00588% + + 3.67
Hinge IV +0.00095% + - 4,15

* Correct Answer

- 13 -



3. ITERATIVE PROCESS

3.1 GENERAL DISCUSSION

Anyone using the slope-deflection procedure for constructing the
second order elastic-plastic load-deflection curve described earlier
will soon find it an extremely time consuming and arduous task even
for the very.simpleSt of frames. In an effort to simplify the
procedure an'approach is suggested based on assuming one or more of
the unknowns and then iterating until an answer within a specified

limit of accuracy is achieved.

A brief description of the stable range iteration process is as
follows. This is the condition up to and including the point of

maximum loqd.
1. Assume a load P.

2. Find the moment diagram without considering the second

order effects,

3. Find the minimum load P required to produce the first

hinge and find the moment diagram.
4, Compute the deflection.
5. Find the moment diagram for only the P-A effect.

6. Add the moment diagrams from parts (3) and (5).

7. Repeat starting with step (3)'until convergence.

- 14 -



Two additional points should be mentioned. First, by separating the
first order and second order moment determination, the non-linear part
of the calculations.is bypassed. The second point is to consider the
general behavior of the iterative process. After adding the first and
second order moment disgrams together, a linear relationship is assumed
between the load and the moment. This tends to over compensate for any
error in the previous value of the load. The values of the load will
bounce back and forth, sometimes greater, sometimes less fhan the actual

value sought, but eventually converging to the correct value.

The iteration process for the unstable range is not nearly so

straight forward as in the stable case. As shown later, the approach
used for the stable case will not work for the unstable case. The
method adopted is a simplified version of that described in Ref. (4).
This method gives the values of the deflection and load at the
formation of the last hinge only, i.e., the formation of a mechanism.
The points on the load-deflection curve at the formation of hinges
other than the last one cannot be determined by this method. A brief

description of the method is as follows:
1. Assume a failure mechanism and last hinge location.

2. Determine Pu, the ultimate load, by first-order rigid-

plastic theory.
3. Compute the deflection.
4., Determine Pu by virtual work on the deformed structure.
5. Determine the deflection.

~— -6, Repeat starting with step (4) until Pu converges.

- 15 -



7. Checks:
(a) Plasticity condition (M < Mp)
(b) Location of the last hinge.
If checks not satisfied, repeat computations for a new

mechanism and/or last hinge location.

3.2 STABLE RANGE ITERATION

As previously discussed, the stable range iteration is used to
determine the points on the load-deflection curve up to and including
the point of maximum load. If a failure mechanism develops at this

point, the curve is complete. If the failure mechanism has not

developed, the unstable range iteration that is described later must

be used.

The steps of the solution can very neatly be set up in table form
to minimize the work as is shown in the sample problem. It has been
Hund convenient to treat the P-A effect as a horizontal force equal to
Eﬁé where H is the column height associated with the relative hori-
zontal displacement of the column ends, A,and P is the vertical column

load.

The preliminary step required before beginning the iteration for
each hinge is to determine the moment diagram of the structure for
P-A

unit loads and unit - The rest of the procedure is as follows:

First hinge:
1. Using the unit moments from the preliminary step, find the

first order load by proportion and resulting moment diagram:

- 16 -



necessary to develop the first plastic hinge. The location
of the first hinge will be at the point of maximum moment
for the unit load moment diagram. The load will also be

the minimum load necessary to develop the plastic moment.

2. Determine the horizontal deflection of the column ends, A.

3. Determine the factor X, that is, Eﬁé.

4. Using the moments from the preliminary step, find the

- resulting moment diagram for X by proportion.
5. Add the moment diagrams from step (1) and (4).

6. Find the new load for cycle two by proportion between the

load from step (1), the maximum moment from step (5) and
P2 M
_Z2 _ jo)

, =
Pl Mmax]_

the plastic moment

7. Repeat steps (2) thru (6) until the change in the value of

the load between cycles is within the desired accuracy.

Second hinge:
1. Insert a real hinge at the point of the plastic moment .as
determined for the first hinge and proceed with the prelim-

inary step for the resulting auxiliary structure.

2. Using the final moment diagram for the first hinge,
determine the amount of additdonal moment, MP—Mi at each
- critical location, i, that is, where "a plastic hinge might

form, required to form the plastic moment on the new structure.

- 17 -



3. Find the minimum incremental load necessary to form the
next hinge and draw the moment diagram similar to step (1)

for the first hinge.

4, Determine the incremental horizontal deflection of the
column ends, A.

5. Determine X, Bﬁé, for the second hinge. Since we are
WOrking with incremental moménts, loads, and deflections,
we must include the additional P-A moment produced by the
load necessary to form the first hinge being displaced
the additional incremental amount necessary to form the

second hinge.

6. Proceed as in step (4) of the first hinge determination and
find the moment diagram for X by proportion from the

preliminary step.
7. Add the moment diagrams from steps (3) and (6).

8. Proceed as in step (6) of the first hinge determination
but with the proportion based on step (2) of the second
hinge determination. This must be done at each critical
location 1. The critical location giving smallest value
of the incremental lcad change, P, is the correct location

of the next plastic hinge.
9. Repeat steps (4) thru (8) as required for accuracy.
Additional hinges:

Proceed as in the second hinge determination but using the results

obtained from the previous hinge.

- 18 =



3.3 VERIFICATION OF RESULTS AND DISCUSSION OF ACCURACY

In order to assure that this iterative method does indeed give a
correct elastic-plastic load-deflection diagram and to help establish
accuracy guide lines a test problem was solved by the slope-deflection
method. (See'section on "Second-Order Elastic-Plastic Load-Deflection

Curve"™, Fig. 5 for sketch).

The following diagrams showing the moments with the mechanism

formed give a comparison of the results:

Slope—Deflection Solution Iterative Solution

l.OOOOleO6ft.lbs.

0.04769x10°ft . 1bs. ///// 1x10%Ft . 1bs | 0.04674x10°ft . 1bs . /////

6
1x10°ft.1bs. |/ 1.00008x10°ft . 1bs .
. A
1x10°ft . 1bs.  1x10°ft. 1bs. 0.99990x10°ft.1bs. ©  0.99981x10°%Ft. 1bs.
Load P = 0.05079 x 10°1bs. Load P = 0.05079 x 10°1bs.
Defl. A = 1.95231 ft. Defl. A = 1.95306 ft.
(Fig. 6) Fig. 7

The results shown in the iterative solution were produced by
continuing the iteration until there was no change between cycles in
the last decimal place. The same problem was solved by limiting the
iteration to one cycle énd the results were quite accurate (P = 0.05073

6

x 10° 1bs., A = 1.95382 ft.).

- 19 -



The next step was to increase the loading on the column ends so
as to cause the frame to reach a condition of instability before the
formation of the failure mechanism. The treatment of this condition
will be covered in the next section in some detail but it is necessary

to mention it in connection with the discussion of the accuracy rules.

In'the‘description of the stable iferation process it was assumed
that the additional deflection produced by the P-A effect was so small
that it could be neglected. This is not necessarily correct. In
fact, there may not be any way of telling from the iteration process
that a structure has reached the unstable condition without including
this additional displacement. This was born out in the test problems
where the structure séemed to be stable until the P-A deflection was

included in the calculations.

A study was made of the two test problems described earlier and
‘the following rules were developed to give an accuracy within

approximately 1.0% for the value of the load P:

1. For the first two cycles use the standard iteration

procedure as outlined in an earlier section.

2. Check the deflection at the end of cycle two. using the
final moment diagram, i.e, the sum of the first order and
second order moments, and compare with A calculated from

the first order moments alone.

3, 1If the difference in step (2) is greater than 10.0%,
continue into cycle three using a modification of the

standard procedure.

- 20 -



4, The modification is to base the deflection calculation on
the final moment diagram of the previous cycle as in step
(2) above rather than on the first order moments of the

current cycle.

5. Continue cycling until the change in the Load P between

cycles is less than 1.0%.

6. For all hinges after the first one these percentages can
be based on the first hinge values since the largest
proportion of the load and deflection will have taken
place at the formation of the first hinge. For the first
hinge calculations the percentages are based on the

previous cycle values.

change between cycles x 100
final value of P at first hinge

percent change in P =

change between cycles x 100
final value of A4 at first hinge

percent change in A =

The modification described in step (4) simply incorporates the

- additional P-A displacemént into the iteration. The obvious question
is why not include the P-A deflection in step (4) from the beginning
instead of bypassing it for the first/two cycles. This was done in
several test examples and it was found that the number cycles
necessary for convergence increased two to three times with this.

additional complication.

- 21 -



The second cycle is used as the cut-off point in step (1) because
the results of the first cycle give a very high value of P which is

then corrected in the second cycle.

The 10.0% guide value in step (3) is highly empirical. The study
bf the test problems actﬁally showed that errors up to 5.0% in the
deflection still gave an accuracy well within the 1.0% limit for P.
Thus the 10.0% value was chosen for convenience. Certainly this area

could stand additional study and refinement.

3.4 UNSTABLE RANGE ITERATION

When using the stable range iteration, if the load P keeps gettiﬁg
smaller and smaller and seems to be headiﬁg for a limit of zero (0) and
the.deflection A is getting larger and larger, the process fails to
converge. This means the structure has reached the unstable state.

The iteration process used for the stable range will not work when the

frame is in the unstable state and a different approach must be used.

Part of the difficulty is that now that the structure has reached
unstable equilibrium, fhe only way that equilibrium can be maintained
with increasing def;ection is to decrease the load. If this was the
only problem, a simple modification of the stable iteration process
would be the soltuion. Unfortunately, if this approach is tried it

iwill soon become evident that convergence still is not going to take
place. The reason for this becomes clearer if one looks at a true plot
of the load-deflection diagrém rather than the idealized plot of
assumed straight lines used for this discussion. Usually no hinge

will form at the point of maximun load and the idealized load-

- 22 -



deflection diagram will be a straight line between the last hinge to
form in the stable state and the first hinge to form in the unstable
state. The true plot, however, will rise up to a peak value of P and

then drop off again somewhere between these two hinges.

If one is to write an equation for the incremental moment change
between the last hinge in the stable state and the first hinge in the
unstable state, one would be faced with an interesting dilemma.
XKnowing the additional moment required to develop the next hinge, an
equation can be written with P and A as the unknowns consisting of two
parts, the P-A moment and the first order moment due to a change in P.
If this equation is plotted for various values of P, one finds that at
P equal to zero, the deflection has a value. This would show up as a
straight line on the load-deflection plot and is inconsistent with the
physical nature of the problem. The only explanation for this dimemmd
is that the equation of the load-deflection plot is different on the
stable éide of the maximum load point than it is on the unstable side.
Since the iteration method used for the stable range makes use of this
type of equation, in order to use this method the formation of the
lést hinge before the frame reaches the unstable state must be at the
point of maximum load or the moment diagram must be known when P is a
maximum., Therefore, this type of solution was abandoned in favor of

an approach utilizing a second-order rigid plastic solution.

The rigid plastic' iterative process, though, is one which
restricts the user to finding the load P and the deflection A at the

formation of the last hinge only. The basic procedure is a simplified

- 23 -



version of the method described in reference (4). This method includes

the effect of axial force on the plastic moment and for this

discussion, as stated earlier, this effect is being ignored. . The

procedure is as follows:

1.

Assume a failure mechanism and last hinge location.

Determine Pu’ the ultimate load, by first-order rigid-

plastic theory. This is done by remembering the basic

ideas of applying virtual work to the "mechanism method"

of solving a structure using rigid-plastic theory:

a. If a virtual displacement is applied to a system
which is in equilibrium, the total work done is

equal to zero.

b. :Virtuél'displacement is any that is conveniént to use with
ﬁthé assumption that the line of action of the forces does
“not change.

c. Virtual distortions are usually assumed as the
distortion of a linkage system the same as the

failure mechanism with no deformation between
points of rotation and with angular changes at the

locations of possible plastic hinges.
Find the horizontal deflection of the column ends, A.

With the deflection in (3) determine the ultimate load,

Pu,lnrvirtual work on the deformed structure. The additional

consideration when using virtual work on the deformed

structure is that the virtual displacement is applied to the

structure with the mechanism already fofmed rather than the

undeformed structure used in step (2).
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Steps (3) and (4) are then repeated and a newrPu and A
are determined for each cycle until the change in Pu

between cycles is less than 1.0%.

There are two checks which must be made to determine if;
(1) the correct mechanism has been assumed; and (2) if the
correct location of the last hinge has been assumed:
a. The correct mechanism has been assumed if at no

point in the structure is the moment greater than

the plastic momant

M < M
- D

b. Once the failure mechanism is confirmed a check must
be made on the correctness of the assumed last hinge.
The general procedure is as follows (Ref. 8):

1. For a étructure with R redundents, write R
simultaneous virtual work equations to

determine the values of Gi, the concentrated

slope changes at the plastic hinges.

(a) Introduce the unit moment into the equilib-
rium structure in such a way that there is no
external work to contend with in the irtual -
work equations,

= Winternal

Wexternal
1 .
0 =2 m, ei + = BT .g.M m dx

unit internal moment on the

m, =
i
equilibriuwn structure.
Gi = plastic hinge rotation on the

actual structure.
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=
1l

moment on the actual structure.
m = moment on the equilibrium

structure.

(b) The best way to eliminate the external work is fo
put a double unit moment, (one for each slope
change), on the equilibrium structure at the
point of one of the plastic hinges and think
of it as an internal moment. Be sure that this
unit moment has the same sign as the plastic

moment.

2,.. Solve these equations R + 1 times, (equal to the
number of hinges required for a mechanism). Set each
Gi-in turn equal to zero, i.e., equal to the last

hinge with no rotation.

3, Solution in which no ei is equal to a minus value
gives the correct last hinge (see Appendix 4.2 for

sign convention).

3.5 INFLUENCE OF AXIAL FORCE ON THE PLASTIC MOMENT

In addition to causing instability, the presence of axial force
tends to reduce the magnitude of the plastic moment. The effect is
small ip the case of small axial loads, and therefore in ordinary
portal frame columns any reduction is usually ignored. However, in
the case of multi-story structures, the resisting moment of the columns
can be reduced by axial load and the evaluation of the ultimate load

could include such consideration for a more accurate result. This
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reduced moment is known as Mpc and can be derived by standard procedures

(see Ref. 2).

In the previous discussion and in the example which follows the
reduction of Mp.to Mpc has been neglected. A possible modification
in the stable iteration process to include this reduction would be to

change from Mp to M c at the end of the second cycle and repeat the

P
first two cycles. The discussion of the unstable iteration method

including Mpc is covered in reference (4).
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4, SUMMARY AND CONCLUSIONS

In summary, a method has been presented which giveé'é sim-
plified approach to the problem of determining the second-order
elastic~plastic load-deflection curve including the problem of
instablility. Ihe method 1s a two-part iterative procedure - one
part for the stable range , the other for the unstable range.

The stable range iteration separates the first order and second
order moment determination. Although mutually interdependent, the
procedure 1s to determine the firstborder moment and resulting
deflection and then add the additional second order, or P-A
moment. This process is‘repeated until convergence within & specifiled
limit.of accuracy, 1s achieved. By using this type of procedure the
time consuming non-linear part of the calculations 1s by-passed.

In order to assure that the stable iterative procedure do&s
indeed glve a correct elastic-plastic load deflection diégram;4&?
test problém was solved by the slope-deflectlion method and by the
itéfative procedure. A comparison of results shows the same ultimate
load by’either system and only very small differences 1in the”final
moment diagrams. Also, as the result of a study of these test prob-
lems; rough empirical rﬁles of accuraéy for the iteration were
deve;oped. | |
| After exploring several other approaches, the unstable range
iteration procedure is developed from a method by Vogél (see Ref. 4)
énd restricts the‘user to finding fhe values of the load and deflection
at the last hinge only,
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In conclusion, since 1t has been shown that conventional simple
plastic theory, which formulates equilibrium on the undeformed
structure, is neither safe nor reasonable where heavy vertical

‘column.loads-exist and the results of the éample problem show that .
for column loads equal to only twenty (20) times the beam'load, the
ultimate load capaclity is reduced to 64%‘of the simple plastic
mechanism capacity, it 1s necessary to find some simplified method
of including the sceond order, .or P-szoment, when dealing with the

- plastic analysis of heavily loaded columns.
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5. APPENDIX

5.1 Nomenclature

Text
E Modulus of elasticity
H 7 Column height of a story in a multi-story frame
I Moment of inertia
M Moment
Mmax Maximum moment
Mp Plastic moment
Mpc ; Reduced plastic moment
Myield Moment at yield
P Concentrated load, axial load
' Pu Ultimate load‘
'R Number of redundents
W Work
X P X A/H
A Lateral deflection'of a story in a multi-story frame
€ Strain
6 ' End slope, rotation
o | | Stress |
Gyield Stress at yield
@ Curvature
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Sample Problem

& = o™

= =R B

ADD.

= =

max .

=
o)

=
>

N X = W gﬁl lav]

>

a5 ]
O

Modulus of elasticity

Moment of inertié

Critical location i where a plastic hinge might form.
Length or height

Moment

Additional moment required to form plastic hinge
First order moment (neglecting second order effects)
Maximuﬁ moment

Plastic moment

Moment due to X

-Concentrated load, axial load

Ultimate load

Number of redundents

Work

P x AL

Plastic modulus

Horizontal deflection of frame top
Deflection

End slope, rotation

Stress at yield
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5.2 SAMPLE PROBLEM
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