
Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1964

Load-deformation relationships for simple frames,
December 1964
P. F. Adams

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact
preserve@lehigh.edu.

Recommended Citation
Adams, P. F., "Load-deformation relationships for simple frames, December 1964" (1964). Fritz Laboratory Reports. Paper 100.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/100

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228622522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/100?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


E

il\i.DEXED

by
Peter F. dams

11

L1BRJ\RY

Ef

Fritz Engin-eering Laboratory Report No@ 273.21

aided onf:inuous Frames and Their Components



Welded Continuous Frames and Their Components

LOAD-DEFLECTION RELATIONSHIPS

FOR SIMPLE FRAMES

by

Peter F. Adams

This work has been carried out as part of an
investigation sponsored jointly by the Welding
Research ,Council and the Department of the
Navy with funds furnished by the following:

American :Institute of Steel Construction
American Iron and Steel Institute
Institute of Research, L~high University
Column Research. Council (Advisory)
Bureau of Ships (Contract ~o. Nabs 90041)
Bureau of Yards and Docks (Contract No. NBY 53160)
Welding ;Research Council

Reproduction of this report in whole or in part is
permitted for any purpose of the United. States
Government.

Fritz Engineering Laboratory
Lehigh University

Bethlehem, Pennsylvania

December 1964

Fritz Engineering Laboratory Report No. 273.21

I



273.21

SYNOPSIS

i

A method is presented for the determination of the load­

deflection relati.onship for simple frames. The principles of equilibrium

and compatibility, as expreseed by the Moment-Curvature~Thrustr.elation­

ship, are used directly in the analysis. The procedure is used to

determine the relationship between horizontal load and deflection for

a frame subjected to constant vertical loads. ,Inelastic frame buckling

and the analysis of frames subjected to proportional loads are also

discussed.
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INTRODUCTION

-1-

An increased understanding of the inelastic beam-column problem

coupled with the developm~t of rapid methods for its soiution(I,2) has

made possible the prediction of the ultimate strength of structures

loaded into the plastic range. The present investigation is concerned

with the behavior of a pinned base, single story, single bay, frame, as

shown in Fig. I. The frame is subjected to a vertical uniformly

distributed load, w, along the beam, concentrated vertical load~, F,

at each column top and a concentrated lateral load, V, at the beam-to-

column joint. It is reasonable to first investigate the behavior of

such relatively simple structures with the hope that the knowledge gained

will provide some insight into the behavior of multi-stor,y frames.

In attempting to assess the load-deformation behavior several

(3)
concepts are relevant. Consider the graph of the uniform load, w,

versus the sway angle, JP ' shown in Fig. 2. In this figure the

concentrated loads are assumed to be proportional to the uniform load'" w.

At low values. of w, before the stress reaches the yield point,the load-

deformation relationship may be obtained by conventional elastic analysis

- procedures(4) (first order elastic curve)-. If the reduction in stiffness

due to axial load is considered along with the secondary moments due to

the sway of the structure(S), the second-order elastic curve is obtained.

This curve is asymptotic to the value of w which represents the buckling

load of the frame. To obtain this buckling load, wb ' the horizontal

force, V(w) is removed and the vertical loads" are increaEj'ed until the

(5) (6)
frame buckles in a sidesway mode.
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If the frame is considered from the point of view of ultimate

strength analysis-, the simple plas tic th,eory (panel mechanism) would

predict a load of wspo Under the assumptions implicit in this type of

( 7)
analysis the load is independent of the sway angle. If the reduction

in plastic moment capacity due to axial load is considered, the ultimate

load drops to a value of w 0 However, if now the work done 'by thep

vertical load as the frame sways in a panel mechanism is also considered,

a relationship between the sway angle and the load may be obtainedo(3)

This is denoted in the figure as the second-order plastic mechanisffio

The true deformation path of the structure must initially

follow second-order elastic theory and finally the second-order plastic

mechanismo The problem to be solved then is the determination of the

transition curve between the tWOQ

This curve is denoted in Figo 2 as the true load-deformation

behavior 0 It should be noted that at some point the deformations
(8).

involved would lead to local buckling of the members (see dashed curve) ~

The method to be described here is not intended for routine

design, but it is believed that some application may be found in the

following areas:

(i) The determination of the complete load-deflection diagram

is of importance as the area under this curve is used in some cases as a

measure of the energy absorbed by a structure during deformation(9),

This is of particular significance in earthquake analysi~.
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(ii) The frame buckling problem in the inelastic range is at

present analyzed by first determining the stiffness of the fram~ as it

deforms in a symmetrical mode, then analyzing an equival~nt elastic

structure for sidesway buckling(lO). An alternative method would be to

subject the structure to an initial set of vertical loads, then to

calculate the load-deflection relationship for the structure as a

horizontal load is appliedo If this horizontal load is in the same

direction as the sway, the structure is stableo If not, the frame has

buckled at a vertical load less than that originally assume~ in the

analysis 0

(iii) The exact load-deformation curve will yield the true

ultimate load for the frame~ Presently used assumptions and design

methods, particularly those involved in simple plastic the~ry, may then

be checked o

(iv) The prq,;;1edures used in the analysis of the simple

frames considered herein may point toward '8 possible procedure for the

analysis of more complex structures.
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EQUILIBRIUM AND COMPATIBILITY

The principles of equilibrium and compatibility are basic

to the analysis of structures. In most cases the stress-strain diagram

obtained from the tensile coupon test is used as the connecting link

between the two. However, in the inelastic range the use of 'th~

relationship between the moment and the curvature for a pa~ticular axial

. (11)
thrust (the M-0-P relationship) has proven conven1ent.

The principles of equilibrium and compatibility have been

used directly to analyze the behavio~ of beam-columns re~trained by

(12)
framing members attached at the ends. By combining the moment

rotation response of the beam with that of the column, the response

for the entire assemblage can be estimated. Experimental results(12)

show excellent agreement with this theory.

The situation in a simple braced frame is slightly different.(13)

Consider the frame shown in Figo 3. Equilibrium requires that at the

joints the beam moment, MBC ' must be equal and opposite to the column

mo~ent, MBA. Compatibilfty requires that the rotation, eB, of the beam

and column at each joint 'be the same in magnitude and di~ect'ionq These

conditions are illustrated in Fig. 3. Here, P
A

represents the axial force

in the column and VA the .column shear corresponding to MBA' M~ represents

the beam moment acting at mid span, The solution obtained assu~es that the

frame is braced so that no sway occurs and therefore the deflected shape is

symmetrical about the mid-span of the beam,



When sway is involved the situation becomes more complex.

Except in special cases, advantage cannot be taken of symmetry~ One

special case that has been solved is that of the pinned-base fr&me

without beam loading. (14) (15) This situation is shown in Fig. 4 (a).

In this figure VA' PA' V
E

and PE represent the axial loads and shears

present in the left and right hand columns.

If the horizontal load is assumed to be significantly less

th9-n the vertical loads the axial force in the colunm can qe; assumed

equal to the vertical load, F. This assumption also neglects the

component of the axial load due to the sway of the frame. Under these

conditions the problem reduces to that of the restrained beam~co1umn

shown in Fig. 4 (b).

This problem has been solved by the methods of Refe]j~nce 14

with the additional assumption that the beam was completely el~stic

throughout the loading range. Reference 15 also assumed an elastic

beam but did consider the variation in axial load in the columnso

~5-

The equilibrium and compatibility conditions in the ·'restrained

beam-column subject to sway are illustrated with,reference to Figs. 4 (b)

and 4 (c) Q Equilibrium at the beam-to-"co~umn connection requires that

the beam moment, M
BD

, be equal and opposite to the column moment, MBA.

For compatibility to be satisfied the rotation of the column top from

its chord, 8 B*, is given by:

8B* = p - e.J B



where 8
B

is the beam rotation at the joint.

-6-

The column shear, viz, can be computed from equilibrium of the

column as a whole and the horizontal load~ V, is then the sum of the two

column shears. In Reference 15 the more general problem shown in Fig. 1

has also been treated. However, because of the assumption of a

completely elastic beam, only very small distributed loads can be

treated.·

The method to be presented in the. present report uses the

principles of equilibrium and compatibility essentially as shown in

Fig. 4 (c). However, these are modified so that the more general

problem shown in Fig. 1 may be treated, The computation~l proc~ss

used is similar to that described elsewhere(lS) but the method has

been extended to allow treatment of the more practical problem where

both the beam' and columns are in the inelastic range.
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ASSUMPTIONS

In the method used in this report the following assumptions

are necessary:

l~ The deflections involved are small so that the relations

of small deflection theory are valid.

2. The frame is braced to prevent out-of plane behavior.

3. The material has a stress-strain diagram si~ilar to

that of ASTM-A7 structural steel(7).

4. The generally accepted form of the M-0-P relationsbip,

derived from the stress-strain curve is valid(ll) (l6) • This neglects
I

\
strain-hardening, but includes the influence of residual strBss~s.

-7-

5. Local buckling of the plate elements of the cross-section

i
does not oecur-~ It should be noted in this connection, that if: the

· £1 f · h d · h db' 1 d d' th l' (17)1n uenee 0 stra1n- ar eU1ng a een 1UC u e 1n . e ana y818 ' ,

it would be a relatively simple matter to determine the onset of local

buckling using methods sug~ested in Reference 18.

Wi thin" the' above assumptions the method to be presented is

general. It may be modified to deal with unsynunetrical frames and frames

having non-prismatic members. The method is approximate in that it uses

a numerical process to determine the deflected shape of the frame; however,

it does consider the gradual plastification of the cross-section, the

secondary moments produced by the sway of the frame and the variation of

axial load in the columns.



DEVELOPMENT OF THE METHOD

The procedure will be illustrated with reference to Fig. 2.

To initiate the process- a second order elastic analysis and a

second order plastic analysis are performed for the frame and loading

considered o This is done to provide an envelope within which the

~more exact analysis must lie and to provide the basis for the

estimates which are involved.

Next the sway angle for which the analysis is to be

-8-

performed is selected and an estimate made of the corresponding loadso~

For the proportional loading case shown in Fig. 2, this would mean that

the value of w must be estimated that corresponds to a particular value

of () on the true load-deformation curve 0

""~

The axial loads in t4e. colu~p may then be determined and the

(16)
M-¢-P data ~~bulated for these loads. \ In actual practice upper and

lower limits are· estimated for the axial load in each column and the

M-¢-P data tabulated for these. The M-0-P data for any intermeqiate
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axial load is then determined by linear interpolationo It should be

noted that the M-¢-P data-is calculated for the actual cross section

usedo The M~0 data for the beam is also computed assuming no axial

load,as the axial load in the beam was found to be negligible, for the

cases consideredo

Values of jthe moments at the two beam-to-column joints are

then assumed us'ing the elastic analysis as a guideo These moments are

then applied to the beam and the end rotations are determined by a

· l' · "1 h dId (19) , ,numer1ca process S1ffi1 ar to t at eve ope by Newmark ,: ..

relationship for the beam is used in this procedure to determine

curvature values in the inelastic rangeo

These same moments are then" ,applied to the corresponding column

tops along with the axial loads and corresponding shears 0 The end

rotations from the beam integration program are used as ~nitial guesses

in programs which integrate numerically to find the column end rotations

compatible with the applied forceso This process will be described in

detail in the following sectiono

In general the joint rotations as found by the column programs

are not those given by the beam programo In order to enforce compatibility

at each joint the assumed end-moments are adju$ted and the beam and

column programs repeated until the joint rotations given by the beam

program match those given by the column programs o In this process of

adjustment the rotations as given by the beam and column programs are
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plotted against the values of the end moments. The end moment

corresponding to the smallest rotation difference is held constant

while the other is adjusted until reasonable agreement is obtained

for the rotations at.that joint. The other end moment i~ th~n

adjusted in the same manner. This second adjustment nec~ssarily

disturbs compatibility at the first joint considered. Tpe two

joints are again balanced using the graphs of rotation versus end

moment· as a guide. In the example discussed later convergence ~as

achieved fairly easily. Part of the process for this example is

shown in Fig. 9, From a knowledge of the end moments, ,the sway,

and the axial loads; the horizontal force on the frame may be

computed from equilibrium. This value must correspond to that

estimated at the start of the program, otherwise the original assumed

load level must be changed and the complete process repeated.

Usually the need for this step can be recognized at some intermediate

point in the analysis and the load level adjusted accordingly.

The satisfaction of so many estimated conditions seems at

first to be an impossible task and, in fact, it would be without the

aid of the digital computer. However, several satisfactory guides

are available. The second order elastic analysis provides an ideal

starting place for the more exact analysiso Then, as the gradual shape

of the load-deflection curve takes form, each preceeding point serves as

a guide for the one to follow. All calculations were performed on the

Lehigh University GE 225 computer 0
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COLUMN INTEGRATION PROCEDURE

The column integration procedure is shown in Fig. 5. The

column height, h, the sway angle, ~ , the axial load, P, the end

moment, M, and the assumed slope, e are given. The slope e ,
o 0

measured with respect to the column chord, is calculated from the

compatible beam rotation as described in the preceeding section

(8 = 0 ~ e ) The shear, V, is calculated from the equilibriumo J} beam ·

of the deflected column.

The angles and deflections are assumed to be small so that

distances along the chord length are equal to their vertical projectionsi'

The slopes and deflections are measured using the chord as a base. The

column is divided into increments,~., which are arbi trarily chosen to

be equal to twice the major radius of gyration of the cross-section, tX.

The procedure starts at the top of the column and works to find

a point of zero deflection. The moment is first calculated at the center

. (2)
of an l.ncrement.

The terms in this equation are defined in Fig. 5. The curvatur'e, ¢>~i' A ,

"2
is next computed. The M-¢ data is fed into the program in tabulated form

for the expected upper and lower limi ts of P, For a given moment ,l\1x...~ ,
"2

the corresponding curvatures are determined for these limiting axial loads,

Then a linear interpolation is used to estimate the curvature corresponding
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to the actual value of P. In the performance of the calculations given

in this report the maximum and minimum values of P used in this step were

within 15% of one another so that the linear interpolation was not

assumed to introduce any significant erroro

Once the curvature, ¢~& ) has been computed it is assumed
J 2.

that this is constant over the increment length, ~ Moment area

principles are then used to calculate 19.:x::+b. and 'If.x.-tA as:

e~+ tJ. - e)(. ¢.x.i'! A-

'l.r.x+A .. 1J~ + ¢~t. h.2.
Z 2

When the calculated deflec tion, cr , becomes neg~tive the

integration stops and the length of the column is calculated. [f this

is ~ot equal to the actual column length, h, the value of e is revised
o

a~d the process repeatedo

If the curvature at any point along the column length exceeds

that associated with the plastic moment of the column, M , the program
pc

stops and a hinge is assumed to have formed.

It is po~sible to choose a value of e that leads to an
o

inflection point in the colurnno

chosen and the process repeatedo

In this case a smaller value of e is
I 0
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In the column procedures, as well as in the beam proc~dure, the

computer output can be directed to give values of the moments, curvatures,

slopes and deflections for all node points" along the length of the frame 0
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LOAD-DEFLECTION RELATIONSHIP FOR FRAME WITH CONSTANT VERTICAL LOAD
, i

As an example of the method the load-deflection curve for the

frame shown in Fig. 6 will be computed. The frame is loa'ded by. vertical

column loads which remain constant at 0.3 Py ' (P
y

signifies the area of

the column cross section multiplied by the yield stress level, ~ (J~).

This loading condition would be similar to that of the lower ~tory of a

(9)
multi-story frame acted upon by the lateral forces due to an earthquake.

To ~implify the .procedure for this example ·and to pr~vide a check

on the work of Reference 14, it is assumed that the bearn·remains elastic

and that the axial load in each column remains constant at 0.3 P. Thus
y

the influence of unloading need not be considered. Further, the beam

rotations can be related to the end moments through the elastic slope-

deflection equations. The analysis is then reduced to that of the restrained

beam-column shown in Figo 4(b).

The dimensions and sections for this example have been chosen SQ,

that the results 'of Reference 14 could be used as a checko ,The yield stress

is 33 ksi and the modulus of elasticity 30,000 ksi. ,The M-0-P relationships

used for this example are based on a residual stress patter~ which has a

maximum value of O.~~compressionat the flange tips. (16) The results of

the analysis are given as the curve of applied horizontal force, V, versus

the sway angle, JP ,shown in Fig. 7. The maximum value obtained for V

was 2602 kips 0 The: !an-aly~~s per.fornie.d'. in Reference 14'· -produced a'., value <o:f:~

29 kips.,.' Both analyses show this maximum -to occur at 'a sway: angle of '0002

radians. It should be noted that for this particular example the
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assumptions used are the same as those in Reference 14. In the present

method the deflected shape of the column was obtained by 'numerical

integration.

In Reference 14 this shape was taken as a portion of a Column

Deflection Curve(2) and an algebraic expression was fitted to the

resulting moment-rotation curveQ The load-qeflection relationship for

the restrained beam-column was then expressed in closed form and the

maximum value of V obtained. A further check on the validity of the present

method is provided by the fact that the true V -1' curve is tangent

to the second order elastic curve for low values of J? and to the second

order plas tic curve once a hing,e has formed at the column tops. This

coincides with the point at which the computer' program cannot find a

curvature at the column top which is compatible with the'moment and

sway angleQ The analysis could of course be extended by determining

the M-¢-P relationship in the strain hardening ,range and using this to

elastic-perfectly plastic material.

It should be noted that for the ,particular example chosen, with

a maximum compressive residual stress in the beam of 0.3a~ , the beam
y

would begin to plastify at a sway angle which lies between 0,0175 and

000200 as shown in Figo 7. The axial load in the left column decreased

from ,0 . 30 Pat zero hori zon t·al load to O. 27 Pat the sway correspondingy y

to the maximum horizontal load. The load in the 'right column increased
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correspondingly. The change in axial load 1s 10%. Thus, unloading of

the left hand column does not seriously influence the results of the

analysis.
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INELASTIC FRAME BUCKLING

Two different approaches are available to deal with 'buckling

,problems~ The first is to seek the two infinitely close equilibrium

positions which the structure may assume at the point of neutral

equilibrium. Associated with this approach is the eigenvalue type of

solution.

The second method~ assumes some initial imperfection and then

solves the resulting second order instability problemo As the assumed

initial imperfection approaches zero, the bifurcation load of the first

method is approachedo

Lu(lO) has used the first approach to determine the inelastic

buckling load for the structure pictured in Fig. 8 (a), The approach

selected was to first assume a value of w in the stable range, Then, by

assuming a symmetrical deflection -confi~uration such as that shown in

Fig. 8 (b), the moments and resulting stiffnesses throughout the frame

could be computed. (13) Using the stiffnesses so obtained and assuming

the total vertical loads concentrated on the column tops an elastic

analysis was performed. This determined the load at which the frame

would buckle into the sidesway configuration shown in Fig, 8 (c)~ If

this load coincided with the assumed load the correct inelastic buckling

load had been reached. For the frame shown in Fig, 8 (a), wb was found

to be 2028 kips/ft. The maximum load for a similar braced frame was
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found to he 2038kips/fto by the methods of Reference 130

In applying the second approach to the inelastic frame

buckling ,problem it is realized that for a frame which is stable under

vertical loads it will be ·possible to subject it to an arbitrary (small)

sway and to calculate the resulting .horizontal load, Vo This horizontal

load is in the same direction as the swayo At the vertical load

corresponding to the limit of stability, the horizontal load corresponding

to an arbitrary sway will be equal to zero o

The frame shown in Figo 8 (a) was subjected to a vertical

uniformly distributed load of w = 1080 kips/fto and column top loads, F,

The total axial load in each :column was 00190 P 0 An
~ 'Y

analysis was carried out in the unswayed condition to determine the

extent of plastification, the joint rotations and moments 0 At this

stage the top portions of both columns had partially yielded as well as

the center and ends of the heamo The moment was 9~300 iuo kips at the

corners and 11,640 iuo kips at the 'center of the bearno

A sway angle of 0001 radians was then selected as the arbitrary

sway and the frame analy~ed to determine the correspondihg ,horizontal load, Vo

In this swayed position the moment at the left corner dropped to 5340 ina kips

and that at the right corner increased to 12,750 ino kips. In this conditi0n

the axial load in the left column dropped to 00187 p while that in the
y

right column had a corresponding increase to 00193 P 0 ~e right end and
y

center portions of the beam were yielded as well as the top half of the
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right column 0 The left column was completely elastico The horizontal

load, V, was computed to be 4059 kips in the direction of the swayo

The load w was then increased to 2.22 kips/ft. and la procedure

similar to that outlined above performed. In the zero sway condition the

moments at the corners were 11,500 in. kips and the axial load in each

column ,was 0.234 P 0 At a sway of 0.01 radians the moment at the left
y

corner was 8~950 in. kips while that at the right l3~500 in. kips. Due

to the low value of the horizontal load the change in the axial column

load was negligible. The compatible horizontal load was 0.11 kips,

opposing the swayo

The above analyses were performed using the procedure outlined

earlier in the reporto The beam -rotations were determined by a numerical

pr0cess that considered the gradual yielding when the beam was ~ubjected

to the distributed load and end moments. The numerical procedure for

determining the deflected column shape considered the change in axial

load induced by the horizontal load on the frame as well as that due to

To enforce compatibility at the beam-to-column connections it was
I

necessary to change the assumed values of the joint moments until the

rotations as given by the beam process were equal (within 3%) to those

given by the column process. For each value of w approximately eight

trials were necessary in the swayed position.
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The first and last steps of the trial and error process for

w =1080 kips/fto are illustrated in Fig. 9. Here assumed values of the

moment at the left beam-to-column joint, M , are plotted against the
,L

resulting rotations, 8
L

, as determined by the beam and left column

integrations 0 This particular plot is for w = 1.80 kips per foot and

f = 0001 radians 0 The initial estimate of ~, the moment at the right

hand beam-to-column joint was 11,200 in. kips.

The points for ~ = 11,200 in kips were joined by the lines

shown. The 'value of ML corresponding to zero error, ,in this case

5,700 ino kips, was used to begin a second series of trials to obtain a

closer estimate of~. This process was repeated eight times to obtain

convergence. The final stage ~n the process, trial 8, is also shown in

:Fig~ 9. At this point ~ = 12,750 in kips and 8
R

has been determined

as 0.0100 radians. These values have been.obtained by assuming 'ML =

5,340 in. kips and were taken as final values.: From, Fig . 9 the average

value ,of e is 0.0170 radians and the difference between the rotation
L

g~,,.en' .by: the beam program and that given by thecolunm prog,ramis 2%0

For each set of values of ML and ~ there is a ,corresponding

value of V, the horizontal load on the frame. As the trial and error

procedure described above 'progresses, the value of V could be estimated

closely and the axial loads in the co1unms adjusted accordinglyo Thus,

the axial loads at the final stage were close to their required values and

no further adjustment was made.
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The -resul ts of the computations are shown, in :Fig" 10. This

figure presents the relationship between w and V, the hqri?ontal load

obtained for a sway angle of 0.01 radians. It can, be seen that at

w = 1080 kips/ft the frame is stable and that at w ~2022 kips/fto it

is unstableo Thus, the critical load is bounded by these values, The

(10) .
value obtained ,by Lu for th1s same frame was 2.28 kips/fto A

linear interpolation as shown by Fig, 10 would give a critical value

of w = 2021 kips/fto

It should be noted that as the frame moves from the unswayed

to the swayed position the left hand column and adjacent beam 'portions

unload o This unloading has not been considered in the analysis and at

present there is no way to evaluate its influence,

In future, the influence of unloading will have ~to :be

accounted foro .This could be done by first neglecting that unloading

caused by a decrease in axial load, This is justified because the cha~ge

in axial load comes about primarily due to an ,increase in the horizontal

load on the frame, This horizontal load is usually significantly smaller

than the vertical loads. In addition, for a partially yielded section,

the change in curvature due to a change in axial load is small compared

to that for a corresponding change in moment.

If only the unloading due to a change in moment is to be

considered the computer program could be easily altered so that it

would compare the moment at a given station with the moment at the same

station for the previous load increment; then calcula,t-e the curvature, either



by using the M-¢-P relationship for loading stations, or by using

elastic principles for unloading,stations.
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PROPORTIONAL LOADING

In simple plastic theory(7) failure is assumed to occur

through the development of sufficient "plastic hinges 11 at points of

maximum moment so that a mechanism is formed. No recognition is

given to the secondary moments produced by the loads on the structure

acting through the displacements of their points of application. In

reality, this so called P~ effect, plus the spreading of the zones of

partial plastification, serve to reduce the ultimate load of a frame

below the value given by simple plastic theory.

Some estimate ,of this reduction may, be 'gainedb:y computing

the point of intersection 'of the second order elastic and plastic

analyses on a load~deformation diagram. This is given as pointE in

! Fig. 2. However" an addi tional reduction wi 11 also occur, and the

methods of this report may be utilized to determine the magnitude of

this reduction. It may be found that the reduction in strength from

that value given by simpl'e 'plastic theory will be significant only ·for

very slender structures or for structures under high axial loads.

The 'method used for the analysis of this proportional loading

case will be essentially that outlined in :previous sections. In fact

the value of V = 4c. 59 kips obtained, in the previo\.Js example forw = 1.80 kips 1ft 0

and ~ = 0.01 radians is essentially one point on the load-deflection

curve for the same frame under proportional loading conditions with V = 0.04 who
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The limits of the axial load .in the columns would change significantly

with each new value of p chosen, so that new limiting sets of M-0-P

data would have to be inserted for each run of the programo
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EXTENSION TO OTHER CASES

In theory, these same basic principles of equilibrium and

compat.ibility that have been applied to the analysis of the simple

pinned base frame could be applied to more complex structures 0 In

application, however, this would involve so many 'initial assumptions

that the iteration processes involved would render the analysis

impractical 0 Thus, extension of the procedure outlined in this report

to other more complex cases does not appear to be warranted.

However, some of the ideas that are incorporated in this study

may ,find a pla<;.e in the analysis of m~lti-story frames if a suitable

procedure can be found for their utilization. The 'column integration

process in particular may find a place in the analysis of more

-complex structres.



, SUMMARY AND RECOMMENDATIONS

The pertinent results of the work described in the previous

sections may "be ,summ,arized briefly as follows:
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10 A method has been presented which allows the determination

of the load-deformation curve for a simple pinned-base frame. The

method uses directly the principle-s of equilibrium and compatibility as

expressed by the M~~-P relationship.

2. The method accounts for the partial yielding along the

length of the members, the secondary moments caused by the sway of the

frame,and the changes in axial load in the columns..

3. The method was used to analyze the restrained beam-column

subj eo ted to sway., The resul ts coincide almos t exac tly ,wi th :those

. (14)
obtained in a prev10us report.

4. The inelastic buckling load for a frame subjected to the

loads shown in ,Fig. 8 (a) was bounded between 1 0 80 kips/fto and 2 0 22 kips/fto

with the expected value close to the latter. The load as previously

(10)
determined was 2.• 28 kips/fto

59 A procedure has been outlined for the analysis of the

proportional loading case.

Pr'inciples for the analysis of simple frames have been

presented; however, few frames hav~ been analyzedo Some of the obvious

extensions that might be considered are:

lao The strain-hardening ,portion of the stress strain curve

could be easily included in the analysis.
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20 The influence of unloading ,could be determined.

30 ,The determination of the sideswaybuckling "load for

inelastic frames is tedious and it has been suggested that approximate

methods should be developed which would eliminate the 'need for such a

calculation. The procedure presented herein could be utilized to

determine the critical loads for a number of frames under vertical

loading and also the load-deflection relationships for -these same

frames under combined lateral and vertical loadso Using these

results as a basis, an approximate method of analysis for the frame

under an equivalent combined loading ,would be sought which would

replace the frame buckling analysis.

40 Computer analysis of frames subject to proportional

loading could be initiated to fully evaluate simple plastic theory

as it is now applied.

50 ,Thought could be given to the modification of the

procedures outlined in this report for use -in muiti-story'fr~me

analysisG
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w

, :F

static yield stress

maximum ,compressive residual stress

uniformly distributed vertical load on 'beam

concentrated vertical load at column top. F (w)

indicates that this load is a function of w.

V concentrated horizontal load at beam-to-column joint

A area of cross-section

L length of beam

',h column height

lB, moment of inertia of beam about major axis

Ie moment of inertia of column about major axis

r x radius of gyration about major axis

P total axial load

M bending moment

~~ bending moment at mid-span of beam



M
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d

curvature
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dE

rotation
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where, d, represents the depth ,of the section and,

I,its moment 6f inertia about the major axis~

where, E, is the modulus of elast'icity

,8
o

A

rotation at top of column, measured with:respect to the 'chord

rotation measured with respect to chord at a distance ~

from top of column

increment of c'olumn length

deflection a,t a distance X from ,top ·of column~

from, chord

1.T is measured
-X

Wb the value of w at which a frame buckles into a sidesway modeo

WSP ,the value of w given by simple plastic theory

Wp the value of w given by simple-plastic theory and modified to

account for the reduction in moment capacity due to ,the presence

of axial load.

the angle between the column chord and the vertical after sway

has occurred
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