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Abstract 

Predictions of chlorophyll a (Chl-a) in lentic waterbodies (lakes and reservoirs) are valuable to researchers and resource 
managers alike but have been rarely conducted at the global scale. With the development of remote sensing technolo-
gies, it is now feasible to gather large amounts of data across the world, including understudied and remote regions. To 
determine which factors were most important in explaining the variation of Chl-a in waterbodies at global and regional 
scales, we first developed a database of 227 globally distributed waterbodies and watersheds with corresponding Chl-a, 
nutrient, hydrogeomorphic, and climate data. Then we used a generalized additive modeling approach and selected 
models that most parsimoniously related Chl-a to predictor variables for all 227 waterbodies and for a subset of 51 
within the Laurentian Great Lakes region. Our best global model contained 3 hydrogeomorphic variables (waterbody 
area, shoreline development index, and watershed to waterbody area ratio) and a climate variable (mean temperature in 
the warmest quarter) that explained about 30% of variation in Chl-a. Our regional model contained one hydrogeomor-
phic variable (watershed area), the same climate variable, and a nutrient variable (percent of watershed area cover by 
waterbodies) that explained 58% of variation in Chl-a. Our results indicate that a regional approach to watershed 
modeling may be more informative to predicting Chl-a than a global approach and that nearly a third of global variation 
in Chl-a may be explained using hydrogeomorphic and climate variables.
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Introduction

Freshwater lentic waterbodies (i.e., lakes and reservoirs; 
hereafter, waterbodies) provide multiple ecosystem services 
including transportation, food production, and drinking 
water (Postel and Carpenter 2012). Many of these services 
are dependent on the level of primary production. Increases 
in primary production may lead to increases in the 

production of lower trophic levels (i.e., zooplankton and 
benthic invertebrates) and ultimately result in desirable 
increases in fisheries harvests (Oksanen et al. 1981). 
Excessive primary production, however, may result in 
hypoxia, shifts in thermal and light regimes, and other 
water quality problems that negatively influence wildlife 
habitat and human drinking water quality (Smith 2003, 
Smith and Schindler 2009). A growing body of literature in 
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landscape limnology seeks to understand the extent to 
which watershed characteristics influence primary 
production (e.g., D’Arcy and Carignan 1997, Knoll et al. 
2003, Nõges 2009, Miranda et al. 2014). Although internal 
processes such as nutrient cycling or the composition and 
abundance of the herbivore community (e.g., Vanni 2002, 
Gruner et al. 2008) undoubtedly influence primary 
production, watershed characteristics such as land cover 
may be more easily manipulated by managers than internal 
influences. In building models to elucidate landscape-level 
effects on primary production, many scientists use 
chlorophyll a (Chl-a) as a surrogate (e.g., Cottingham and 
Carpenter 1998) because it is easier to measure. Although 
Chl-a is a measure of phytoplankton biomass rather than 
primary production, meta-analyses reveal Chl-a to be 
generally positively correlated with primary production 
(Brylinsky and Mann 1973, Morin et al. 1999), although 
some variation remains unexplained. Models that can 
predict Chl-a from remotely measured aspects of the 
watershed or climate would be particularly useful in 
situations where the number of waterbodies exceeds the 
capacity of scientists and managers to conduct direct meas-
urements.

With few exceptions (e.g., Brylinsky and Mann 1973, 
Meeuwig and Peters 1996), most studies that have sought 
to link watershed characteristics to production of 
downstream waterbodies have been limited to specific 
regions at relatively small spatial scales. A majority of 
these regional studies have revealed the importance of 
watershed land cover to Chl-a in waterbodies (e.g., Chen 
and Lei 2001, Knoll et al. 2003, 2015, Jones et al. 2004, 
Miranda et al. 2014, Huo et al. 2015). Often, the percent of 
watershed area dominated by agriculture has the strongest 
positive correlation to Chl-a (Carpenter et al. 1998, Jones 
et al. 2004), but this finding is not universal, with many 
studies finding that other types of land cover, such as urban 
or forest, better explain Chl-a in different regions (Liu et 
al. 2011, Huo et al. 2015, Knoll et al. 2015) or that land 
cover fails to explain the variation in Chl-a (Burford et al. 
2007, Carneiro et al 2014). In addition, a more globally 
distributed study by Meeuwig and Peters (1996) showed 
that forest cover and human population in the watershed 
were important predictor variables to explain Chl-a 
variation among 63 lakes.

Hydrogeomorphic (HGM) characteristics of the 
watershed or waterbody also can be important predictors of 
Chl-a in regional studies. For example, catchment slope 
and area accounted for up to 60% of the variation in Chl-a 
in 32 Canadian Shield lakes (D’Arcy and Carignan 1997), 
whereas Liu et al. (2011) and Martin et al. (2011) found 
that mean depth was a more important predictor of Chl-a 
in 150 Michigan lakes and 19 lakes in the Yunnan plateau 
and lower Yangtze floodplain in China, respectively. Other 

studies found that the ratio of watershed to waterbody area 
best predicted physicochemical parameters related to 
Chl-a, for example in Swedish lakes and Ohio reservoirs 
(Knoll et al. 2003, Håkanson 2005, Bremigan et al. 2008). 
Additionally, in a study including 1337 lakes across 
Europe, Nõges (2009) reported depth to be inversely 
correlated with Chl-a, and that the only watershed charac-
teristics that revealed a significant positive correlation 
were watershed area and the ratio of watershed area to 
waterbody depth. In the global study by Brylinsky and 
Mann (1973), however, only ~2% variation of phytoplank-
ton production was explained by watershed area in 
regression models. Hence, our literature review indicates 
that no single watershed characteristic consistently serves 
as the best predictor of Chl-a within waterbodies at either 
global or regional scales.

With the development of remote sensing and 
geographic information systems (GIS), evaluating which 
watershed characteristics influence Chl-a in waterbodies at 
a broad spatial scale is now possible. New technology 
using satellite imagery allows scientists to estimate Chl-a 
at global scales (e.g., Sayers et al. 2015). Additionally, 
global datasets for variables that potentially influence 
Chl-a in waterbodies are now available for land cover 
(Arino et al. 2012), phosphorus application (Potter et al. 
2011), and climate (Hijmans et al. 2005), and most HGM 
variables such as watershed area and total stream length 
can now feasibly be calculated using GIS (Turcotte et al. 
2001). More important, these technological advances allow 
us to gather information in remote and understudied 
regions where in situ data are lacking; however, utilizing 
remote sensed data to characterize watershed characteris-
tics is still limited by the need to delineate watershed and 
shoreline boundaries in GIS data layers.

In this study, we delineated watersheds and shorelines 
for 227 waterbodies distributed across 5 continents and 
compiled available data to evaluate the hypothesis that 
watershed characteristics could be used to predict Chl-a in 
downstream waterbodies at the global scale. We built a 
conceptual model (elaborated later) in which we 
considered how characteristics of the watershed and 
waterbody may influence Chl-a. Note that our model was 
limited to select variables that we could acquire for all 
waterbodies at the global scale. We then developed a 
statistical model to determine which of our remotely 
sensed factors most parsimoniously explained variation in 
Chl-a in waterbodies. To explore whether the variation of 
Chl-a can be better explained at the regional scale, we 
grouped the waterbodies based on the Freshwater 
Ecoregions of the World (FEOW; Abell et al. 2008) and 
applied the same statistical modeling approach to the 
FEOW with the largest sample size, the Laurentian Great 
Lakes region. 
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Methods

Conceptual model

We identified 27 variables (Table 1) of watershed and 
waterbody characteristics that can be estimated remotely 
and influence the availability of nutrients and, conse-
quently, Chl-a. We categorized variables into 5 types: (a) 
nutrient condition of the watershed, (b) HGM characteris-
tics of the watershed, (c) HGM characteristics of the 
waterbody, (d) regional climate influences in the 

watershed, and (e) regional climate influences in the 
waterbody. Then we built a conceptual model to describe 
how these variables may influence the Chl-a of a 
waterbody (Fig. 1).

The nutrient condition of a watershed strongly 
influences the nutrient availability to the receiving 
waterbody. We collected data on types of land cover 
(Table 1, No. 1–5) and phosphorus application (Table 1, 
No. 6) within the watershed, both of which have been 
linked to the trophic state of the waterbody (Allen and 
Kramer 1972, Carpenter et al. 1998, Knoll et al. 2003, 

Table 1. Description of variables used in this study and information for data sources.
No. Variable Unit Source

Chlorophyll a in waterbody (Chllake) µg L−1 Sayers et al. (2015)
Nutrient condition

1 Urban land cover (%urb) % Arino et al. (2012)
2 Agricultural land cover (%ag) % Arino et al. (2012)
3 Undeveloped land cover (%undev) % Arino et al. (2012)
4 Snow land cover (%snow) % Arino et al. (2012)
5 Water land cover (%water) % Arino et al. (2012)
6 Total phosphorus applied (TPa) kg km−2 Potter et al. (2011)
7 Human population (Pop) human km−2 CIESIN (2004)

Hydrogeomorphic (HGM) characteristics

8 Waterbody area (Alake) km2 This study
9 Shoreline development index (SDI) This study
10 Hydrological residence time index (HRT) cells km−2 This study
11 Watershed area (Ashed) km2 This study
12 Watershed area to waterbody area ratio (Ashed:Alake) This study
13 Watershed compactness coefficient (WCC) This study
14 Total stream length (Lstr) km This study

Regional climate 

15 Annual precipitation (Pmean) mm Hijmans et al. (2005)
16 Precipitation of wettest quarter (Pwet) mm Hijmans et al. (2005)
17 Precipitation of driest quarter (Pdry) mm Hijmans et al. (2005)
18 Precipitation seasonality (coefficient of variation, Pseason) % Hijmans et al. (2005)
19 Mean annual temperature (Tmean) °C Hijmans et al. (2005)
20 Mean temperature of the warmest quarter (Thot) °C Hijmans et al. (2005)
21 Mean temperature of the coldest quarter (Tcold) °C Hijmans et al. (2005)
22 Temperature seasonality (standard deviation, Tseason) °C Hijmans et al. (2005)
23 Annual mean insolation (Insol) kWh m−2 d−1 NASA (2008)
24 Precipitation of the warmest quarter (Phot) mm Hijmans et al. (2005)
25 Precipitation of the coldest quarter (Pcold) mm Hijmans et al. (2005)
26 Mean temperature of the wettest quarter (Twet) °C Hijmans et al. (2005)
27 Mean temperature of the driest quarter (Tdry) °C Hijmans et al. (2005)



382

DOI: 10.5268/IW-6.3.964

Woelmer et al

© International Society of Limnology 2016

Bremigan et al. 2008). Note that “snow” and “water” 
among land cover types (Table 1) represented percentages 
of watershed area covered by snow (and ice) and 
waterbodies that generally generate no nutrient input to 
the receiving waterbody, respectively (Arino et al. 2012). 
We also included human population (Table 1, No. 7) in 
this analysis, which is positively related to nutrient availa-
bility to the waterbody (Weibel 1969, Cole et al. 1993).

HGM characteristics of a watershed can influence 
Chl-a in a downstream waterbody by determining the 
quantity and delivery rate of nutrients. These characteris-
tics include watershed area, the ratio of watershed to 
waterbody area, the shape of the watershed, and total 
stream length within the watershed (Table 1, No. 11–14). 
Watershed area and the ratio of watershed to waterbody 
area are both positively related to the quantity of nutrients 
available to the waterbody (Black 1972, Knoll et al. 2003, 
Bremigan et al. 2008). The shape of the watershed in this 
study was indicated by the watershed compactness 
coefficient (WCC; Black 1972). A lower WCC indicates a 
more circular watershed with shorter traveling distances 
for nutrients to reach the waterbody. Total stream length in 
a watershed is an indicator of hydrologic connectivity, 
which is positively related to nutrient inputs to the 
waterbody (Gordon et al. 1992).

Once nutrients reach a waterbody, its own HGM char-
acteristics also influence Chl-a. Our analysis included area 
(Table 1, No. 8); shape, measured as the shoreline 
development index (SDI, Table 1, No. 9; Wetzel 2001); 
and an index of hydrological residence time (Table 1, No. 
10). Waterbodies with longer hydrological residence time 

may have lower Chl-a because of lower nutrient replen-
ishing rates (Wetzel 2001). Area is generally positively 
correlated to volume and thus the hydrological residence 
time (defined later; Nõges 2009). Waterbodies with higher 
SDI generally have a greater percentage of littoral (higher 
productivity) than open water (lower productivity) area. 
Thus, waterbodies with larger areas and lower SDI values 
may have lower Chl-a (Wetzel 2001). 

Aquatic systems are also subject to climatic controls 
on Chl-a that occur in the watershed. We included several 
measures of precipitation (Table 1, No. 15–18) that can 
influence Chl-a through different ways. Increases in pre-
cipitation may lead to increases in nutrient inputs and 
episodic increases in Chl-a in a waterbody (Soranno et al. 
1996, 1997, Chambers et al. 2006). By contrast, increases 
in precipitation may also lead to higher water levels, 
resulting in a dilution of the nutrient concentration and 
subsequent reductions in Chl-a (Markensten 2006, Sass et 
al. 2008). 

Regional climate conditions also influence Chl-a 
within the waterbody. Climate influences on Chl-a can be 
measured via temperature (Table 1, No. 19–22) and 
insolation (Table 1, No. 23), both of which influence phy-
toplankton growth directly and indirectly (Wetzel 2001). 
Variables indicating interactions between precipitation 
and temperature may also be important (Table 1, 24–27). 
For example, changes in spring temperatures, when rain 
events are most common in temperate regions, can have a 
disproportionally large influence on phytoplankton 
growth within the growing season (Weyhenmeyer 2001, 
Sass et al. 2008).

Fig. 1. Conceptual model describing how watershed (a and b), waterbody (c), and climate (d and e) characteristics may positively (+) or 
negatively (−) influence chlorophyll a in the waterbody.



DOI: 10.5268/IW-6.3.964

383Assessing chlorophyll a in waterbodies at global and regional scales

Inland Waters (2016) 6, pp.379-392 

Delineation of global watersheds and 
waterbodies

We used the procedure outlined in Merwade (2012) and 
Maidment (2002) to delineate watersheds of 227 
waterbodies (Fig. 2). Watersheds were delineated based 
on National Aeronautics and Space Administration’s 
(NASA) Advanced Spaceborne Thermal Emission and 
Reflection Radiometer Global digital elevation model 
version 2 (ASTER GDEM 2, available at http://asterweb.
jpl.nasa.gov/gdem.asp) and the HydroSHEDS stream 
network layer (Lehner et al. 2008). For large watersheds 
of Lake Winnipeg and Lake Nasser that were beyond our 
computational capacity, we obtained data from Agriculture 
and Agri-Food Canada and the Transboundary Waters 
Assessment Programme, respectively. Geospatial 
shoreline data on these 227 waterbodies were obtained 
from the Global Lakes and Wetlands Database Level 2 
(GLWD-2; Lehner and Doll 2004) or manually delineated 
from high-resolution imagery in a GIS software ArcGIS 
(http://www.esri.com/software/arcgis/).

Our global dataset included watersheds and waterbodies 
across North America (n = 180; n = 51 within the Laurentian 
Great lakes region, according to FEOW), South America (n 
= 8), Asia (n = 3), Australia (n = 2), Europe (n = 24), and 
Africa (n = 10), ranging from ~65°N to 35°S. Waterbodies 
in the dataset ranged from 4 × 10−3 km2 to 2.1 × 1011 km2 
in area, from 27.7 km2 to 9.8 × 1014 km2 in watershed area, 
and from 0.9 µg L−1 to 66.9 µg L−1 in growing season 
Chl-a. 

Chl-a in waterbodies

Chl-a data included both remotely sensed estimates (n = 
221) and in situ measurements (n = 6). Remotely sensed 
Chl-a estimates were taken from Sayers et al. (2015), rep-
resenting averages in the 2011 growing season (August in 
Northern Hemisphere, February in Southern Hemisphere). 
For waterbodies without remotely sensed estimates, we 
used available in situ Chl-a measurements in the growing 
season of a year closest to 2011 from literature or the US 
Environmental Protection Agency (EPA) STORET 
database (http://www.epa.gov/storet/).

Nutrient condition of the watershed 

To derive variables of nutrient conditions (Table 1, No. 
1–7), we used the package “rgdal” (Keitt et al. 2010) in R 
(R Core Team 2015) or ArcGIS to extract data for the 
extent of each watershed from GIS data layers. For land 
cover variables, we classified 23 land cover types in the 
European Space Agency’s GLOBCover dataset (Arino et 
al. 2012) into 5 general categories and calculated the 
proportion of watershed area covered by each category 
(Table 1, No. 1–5). We used the most recent 2000 
population data (CIESEN 2005) from NASA’s Socioeco-
nomic Data and Applications Center (SEDAC) to 
calculate human population density (Pop). Although these 
data were collected considerably earlier than our Chl-a 
data, this dataset is the most recent and reliable to our 
knowledge. Phosphorus application data were from 

Fig. 2. Geographic distribution of 227 waterbodies in this study.
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estimated phosphorus contents of recorded manure and 
fertilizer applications between 1994 and 2000 (Potter et al. 
2010, 2011). We calculated the total phosphorus applied 
(TPa) as the total amount of phosphorus in manure 
production and fertilizer application per unit area.

HGM characteristics

We calculated several HGM variables (Table 1, No. 8–14) 
based on the shoreline and watershed GIS data layer 
developed in this study. We used the XTools Package 11.1 
in ArcGIS (Data East, LLC) to calculate waterbody area 
(Alake) and watershed area (Ashed). We calculated SDI and 
the WCC as (Wetzel 2001): 

	 SDI = 0.5 × Slake / (π × Alake)0.5 and	 (1)

	 WCC = 0.5 × Sshed / (π × Ashed)0.5,	 (2)

where Slake and Sshed are the perimeters of the waterbody 
and the watershed, respectively. We used a hydrological 
residence time index (HRT) as a proxy for hydrological 
residence time, defined as flow accumulation cells (a 
proxy of discharge) divided by Alake (a proxy of waterbody 
volume). Flow accumulation cells were calculated as the 
total number of ASTER GDEM 2 digital elevation model 
raster cells in the watershed that flow into the waterbody 
pour point. We extracted total stream length in each 
watershed (LStr) from HydroSHEDS stream network layer.

Regional climate

Regional climate variables (Table 1, No. 15–27) were 
derived using the WorldClim Global Climate dataset for 
1950–2000 (Hijmans et al. 2005) and data from NASA’s 
Surface Meteorological and Solar Energy web portal 
(https://eosweb.larc.nasa.gov/sse/). We extracted data for 
the extent of a watershed using the package “rgdal” in R 
or ArcGIS.

Statistical analysis

We used a regression approach to relate Chl-a in global 
waterbodies (Chllake) to variables representing watershed, 
waterbody, and regional climate characteristics (Table 1). 
Our initial analyses involved examining the scatterplot 
between Chllake, the response variable, and each potential 
predictor variable. We found that relationships between 
Chllake and most predictor variables were nonlinear, 
suggesting that the generalized additive model (GAM; 
Hastie and Tibshirani 1990) is an appropriate tool because 
predictor variables can be incorporated as nonlinear 
smooth functions in the model. We also found that the dis-

tributions of 6 variables (Alake, Ashed, Ashed:Alake, Pop, HRT, 
and Lstr) were highly skewed, so they were log-trans-
formed before the GAM analysis.

The general form of a GAM can be expressed as:

	 g[E(Chllake)] = β0 + Σi si(xi, dfi), 	 (3)

where g[E(Chllake)] is a link function that relates the 
expected value of Chllake to predictor variables xi; β0 is the 
intercept; and si(xi, dfi) is the “additive predictor,” a 
nonlinear smoothing function of the predictor variable xi 

with dfi degrees of freedom. The selection of link function 
depends on the probability distribution used in GAMs. In 
our initial analyses, we found that the spread of Chllake 

increased disproportionally with changes in most of 
potential predictor variables, suggesting a gamma distri-
bution was appropriate. The 3 commonly used link 
functions for gamma GAMs are reciprocal, log, and 
identity links. We used the log-link function to ensure that 
modeled Chllake values were always positive.

We used a forward model selection approach to 
identify the variables that best explained the variation of 
Chllake among global waterbodies (n = 227) and the 
package “mgcv” (Wood 2015) in R to perform the GAM 
analysis. We estimated smoothing functions nonparamet-
rically using penalized regression spline methods, in 
which the degrees of freedom of each smoothing function 
are objectively estimated based on the fit to empirical 
data. We used cubic regression splines and the restricted 
maximum likelihood (REML) estimation for fitting GAMs 
(Wood 2015), a robust method for variable selection 
(Marra and Wood 2011).

To find the most parsimonious model of global 
waterbodies, we used Akaike information criterion 
(Akaike 1974) with a correction for finite sample sizes 
(AICc; Burnham and Anderson 2002). In each step to add 
an additive predictor, we calculated ΔAICc for every 
potential model as the difference between its AICc and the 
minimum AICc among models up to this step. We filtered 
out models with ΔAICc >2 because they were unlikely to 
fit the data better than the model with minimum AICc 

(Burnham and Anderson 2002). After the selection of a 
predictor variable, we removed highly correlated predictor 
variables (|r| > 0.7) from the potential variable pool before 
entering next step. We repeated this forward-selection step 
until adding an additive predictor to a selected model 
failed to reduce AICc by >2.

We used the same model selection method to find the 
most parsimonious Great Lakes regional model (n = 51). 
To further explore the benefit of developing regional 
models, we also compared the most parsimonious global 
model with a Great Lakes regional model created with the 
same selected variables as in the global model. 
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Results

Global model

Our final selected GAM for global waterbodies explained 
30.9% of the deviance (Table 2) and included 4 additive 
predictors: Alake, mean temperature of the warmest quarter 
(Thot), SDI, and Ashed:Alake. Another model that could be 
equally predictive (ΔAICc = 1.8) included 3 of 4 additive 
predictors in the final selected model (Alake, Thot, and SDI) 
and explained 28.4% of deviance (Table 2). Relationships 
between Chllake and each of Alake, Thot, and SDI in these 2 
GAMs were similar.

In the final selected GAM for global waterbodies, 
Chllake was nonlinearly related to all 4 predictor variables 
(Fig. 3). Chllake decreased with increases in Alake, as 
predicted in the conceptual model (Fig. 2), when Alake was 

less than ~103 km2; however, Chllake increased with Alake 

when Alake was less than ~10 km2 and was almost 
unchanged with Alake when Alake was between ~10 and 103 

km2. Chllake increased with Thot, as predicted in the 
conceptual model, but asymptotically. Further increases 
in Thot above 22 °C led to almost no change in Chllake. The 
relationship between Chllake and SDI was polynomial-
like, with the coefficient varying nonlinearly around zero 
over most of the SDI gradient. The most unambiguous 
aspect of the relationship occurred when SDI was less 
than ~3, where Chllake decreased with SDI, opposite to the 
prediction in the conceptual model. The effect of 
Ashed:Alake seemed to be driven by waterbodies at the 
extreme ends of the gradient. When Ashed:Alake was 
relatively small (less than ~30), an increase in the ratio 
tended to produce higher estimates of Chllake, as predicted 
in the conceptual model; however, the response in Chllake 
reversed as the Ashed:Alake ratio continued to increase.

Model Deviance explained ΔAICc Note
Chllake ~ Alake + Thot + SDI + Ashed:Alake 30.9% 0.0 Best model
Chllake ~ Alake + Thot + SDI 28.4% 1.8 Best 3-variable model
Chllake ~ Alake + Thot + HRT 27.2% 3.1 Log-transformed HRT is highly correlated to 

log-transformed Ashed:Alake (r = 0.97).
Chllake ~ Alake + Thot + Ashed:Alake 27.0% 3.4
Chllake ~ Alake + Thot 24.4% 5.4 Best 2-variable model
Chllake ~ Alake 17.0% 17.9 Best 1-variable model

Table 2. Selected results for forward generalized additive model selection for the global model of chlorophyll a in 
waterbodies (Chllake). Refer to Table 1 for variable abbreviations.

Fig. 3. The relationship between each predictor variable and chlorophyll a in 227 global waterbodies in the generalized additive model selected 
based on Akaike information criterion (Table 2). The solid line represents the estimated nonlinear smooth function of a predictor variable. 
Dotted lines represent the ~95% confidence interval. Dashes above the horizontal axis represent the distribution of data points.
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Fig. 4. The relationship between each predictor variable and chlorophyll a in 51 waterbodies of the Laurentian Great Lakes region in the 
generalized additive model selected based on Akaike information criterion (Table 3). The solid line represents the estimated nonlinear smooth 
function of a predictor variable. Dotted lines represent the ~95% confidence interval. Dashes above the horizontal axis represent the distribution 
of data points.

Fig. 5. The relationship between each predictor variable selected in the global model (Fig. 3) and chlorophyll a in 51 waterbodies of the 
Laurentian Great Lakes region based on the generalized additive model. The solid line represents the nonlinear smooth function of a predictor 
variable. Dotted lines represent the ~95% confidence interval. Dashes above the horizontal axis represent the distribution of data points.
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Laurentian Great Lakes regional model

Our final selected GAM for waterbodies in the Great 
Lakes region explained 58.4% of deviance (Table 3) and 
included Ashed, Thot, and water land cover (%water). Thot 

was the only common variable selected between the 
global and regional models; however, Ashed (selected in 
regional model) and Alake (selected in global model) were 
highly correlated after log-transformation within either 
global (r = 0.78) or regional (r = 0.87) waterbodies.

In the final selected GAM for waterbodies in the Great 
Lakes region, Chllake was nonlinearly related to Ashed and 
Thot but decreased linearly with %water (Fig. 4). Chllake 

increased slightly with Ashed when Ashed was less than ~104 

km2, as predicted by the conceptual model (Fig. 2), but 
decreased sharply with Ashed when Ashed was less than ~104, 
which was influenced by extremely large watersheds (i.e., 
the Laurentian Great Lakes). Similar to the global model, 
Chllake increased asymptotically with Thot but only up to 
~17 °C (compared to ~22 °C in the global model). At 
warmer temperatures, however, Chllake decreased with 
increasing temperatures but with wider confidence 
intervals.

The Great Lakes regional GAM created with the same 
selected variables as in the final selected global model 
explained 49.5% of the deviance but had an ΔAICc of 12.6 
(Table 3). The shape of the relationships between the 
selected variables and Chllake in the global (Fig. 3) and 
regional (Fig. 5) models were largely similar, with the 
exception of SDI. In the regional model, Chllake increased 
linearly with SDI, consistent with the prediction in the 
conceptual model.

Discussion

Our results showed that ~30% of Chl-a variation across 
global waterbodies could be explained by 3 HGM charac-
teristics (Alake, SDI, and Ashed:Alake) and a climate variable 
(Thot). Predicting phytoplankton production and Chl-a at 

the global scale is uncommon; we are aware of only 2 
other studies. First, Brylinsky and Mann (1973) found that 
mean annual air temperature had the strongest effects on 
phytoplankton production across 55 global waterbodies, 
whereas nutrient and morphological variables were less 
important. Our model also showed the importance of 
temperature to Chl-a. In addition, the variable mean Thot in 
our global model was highly correlated with mean annual 
temperature (r = 0.82). Mean annual air temperature 
alone, however, could explain 59% of variation in 
Brylinsky and Mann’s (1973) model, which is much 
higher than variation explained by our model. Second, 
Meeuwig and Peters (1996) studied 63 global lakes and 
developed an empirical land-use model that included 
residence time, human population in the watershed, 
forested land cover, and mean waterbody depth and were 
able to explain 55–72% of the variance in Chl-a. In a 
relatively large-scale regional study of 1337 European 
lakes, Nõges (2009) reported the ratio of watershed area to 
waterbody depth to have the strongest correlation with 
Chl-a (r ~ 0.3), similar to the variance explained by our 
model. Together, these studies suggest that improved 
waterbody-specific information, such as depth and hydro-
logical residence time, should be included in future Chl-a 
modeling efforts at global scales.

Our global model revealed a largely negative relation-
ship between Alake and Chl-a. We were unable to obtain 
depth and volume information for all waterbodies, which 
have been commonly used to explain variation of Chl-a in 
lakes since Vollenweider’s (1975) phosphorus-loading–
Chl-a model. Both depth and volume, however, generally 
increase with Alake (Håkanson 2005). Thus our results are 
consistent with previous studies that found lake trophic 
status to decline with increasing depth (Meeuwig and 
Peters 1996, Bremigan et al. 2008, Liu et al. 2011). 
Notably, the dataset from Meeuwig and Peters (1996) was 
dominated by large lakes (mean Alake = 1.8 × 103 km2), 
which is approximately where our model begins to show a 
downward trend in the relationship between Chl-a and 

Model Deviance explained ΔAICc Note
Chllake ~ Ashed + Thot + %water 58.4% 0.0 Best model
Chllake ~ Ashed + Thot 56.1% 2.7 Best 2-variable model
Chllake ~ Alake 37.4% 7.4 Best 1-variable model

Alake, Ashed, and Lstr are highly correlated after 
log-transformation (r > 0.87).

Chllake ~ Ashed 37.8% 7.7
Chllake ~ Lstr 37.6% 7.8
Chllake ~ Alake + Thot + SDI + Ashed:Alake 49.5% 12.9 Best global model

Table 3. Selected results for forward generalized additive model selection for the Laurentian Great Lakes regional model 
of Chlorophyll a in waterbodies (Chllake). Refer to Table 1 for variable abbreviations.
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Alake (Fig. 3). Overall, these findings indicate that 
waterbody area may serve as a proxy for depth or volume 
when this information is not available, but that the 
inclusion of depth or volume data may improve the model.

In both the global and the Great Lakes regional 
models, Thot was selected as an important predictor and 
showed a similar relationship with Chl-a regionally and 
globally. Thot describes basic growing conditions for Chl-a 
and is commonly cited as a strong control on phytoplank-
ton in waterbodies (Weyhenmeyer 2001, Markensten 
2006, Blenckner et al. 2007). Further, our model indicated 
a threshold beyond which increases in Thot do not result in 
clear increases in Chl-a, although such thresholds can 
differ by region. The asymptotic relationship between Thot 
and Chl-a suggested that temperature was not likely 
limiting Chl-a production at higher Thot levels, but 
production could be limited by other factors such as 
nutrient availability or euphotic depth (e.g., Jones et al. 
2011). This result suggests that Chl-a is more sensitive to 
changes in Thot when Thot is relatively cool. Further, 
because Thot was negatively correlated with latitude (r = 
−0.68 in our global dataset), our results also imply that 
temperate waterbodies may be more sensitive to a 
warming climate than tropical waterbodies. 

Although the SDI was included in the final models at 
the global scale, the relationship with Chl-a is not easy to 
interpret and could be the result of nonlinear overfitting. 
The region with the tightest confidence intervals suggests 
that Chl-a declines with increasing SDI up to SDI values 
of ~3 (Fig. 3), values that include waterbodies with 
relatively little shoreline length for a given area or a more 
circular shape. This pattern is opposite from our prediction 
that waterbodies with more littoral habitat would be more 
productive. This positive (and linear) relationship between 
SDI and Chl-a was revealed when SDI was included as a 
predictor variable with only data from the Laurentian 
Great Lakes region. These conflicting relationships 
suggest the pattern derived in the global model is spurious, 
and future work will be required to determine whether 
SDI can be a useful predictor for Chl-a at broad spatial 
scales.

The last selected variable in our global model, 
Ashed:Alake, unexpectedly exhibited a negative nonlinear re-
lationship with Chl-a. Our conceptual model proposed 
that an increasing ratio would lead to higher Chl-a, 
developed from previous studies (Håkanson 2005, 
Bremigan et al. 2008), albeit with waterbodies that were 
generally smaller than those included in our dataset. One 
potential explanation is that as Ashed:Alake increases, 
connected upstream waterbodies and wetlands are more 
likely to be present within the watershed and may 
intercept nutrients before they reach downstream (see 
Soranno et al. 1999, 2015). Additionally, an increase in 

wetland area within a watershed may also result in 
declining Chl-a, as seen in previous work showing an 
inverse relationship between the nutrient status of a 
waterbody and wetland area within the watershed 
(Detenbeck et al. 1993, Weller et al. 1996, Reed and 
Carpenter 2002). Greater wetland area could also limit 
production by contributing colored compounds to the 
waterbody (Martin et al. 2011), decreasing water clarity 
and causing light limitation for phytoplankton.

Our Laurentian Great Lakes regional model explained 
substantially more Chl-a variation across waterbodies 
(58%) than the global model (31%). In contrast to our 
global model, the regional model included Ashed as an 
HGM variable. The modeled relationship between Chl-a 
and Ashed was weakly positive for a large number of small 
watersheds, consistent with the prediction from our 
conceptual model. One possible explanation for this weak 
relationship is that positive influences of increasing Ashed 

on Chl-a might be offset by negative influences of 
increasing Alake in our dataset because they were highly 
positively correlated after log-transformation (r = 0.87). 
The modeled relationship between Chl-a and Ashed was 
strongly negative for a small number of large watersheds, 
including watersheds of the 5 Great Lakes and Lake St. 
Clair, opposite from the prediction of the conceptual 
model. Because we calculated the watershed of each 
waterbody as containing watersheds of all upstream 
waterbodies, the calculated Ashed for some large 
waterbodies may not be indicative of their true nutrient 
availability. A large proportion of nutrients flushed into 
these would not be transported to the other waterbodies 
because they may have retention times >50 years (USEPA 
and EC 1995). For example, Lake Ontario, the most 
downstream Great Lake, has the largest watershed because 
it contains the entire Great Lakes basin in our analysis; 
however, the bulk of available nutrients from the Lake 
Ontario watershed are likely utilized in upstream 
waterbodies before reaching the lake.

The last selected variable in the Great Lakes regional 
model, the percent of water area in the watershed (%water), 
was negatively related to Chl-a, consistent with the 
prediction from our conceptual model. Because watershed 
area covered by waterbodies generally would not generate 
nutrient input to the receiving waterbody, a higher value 
of %water may indicate a lower nutrient condition of the 
watershed. Adding this variable to the model with Alake and 
Thot, however, could explain only ~2% more variation in 
Chl-a across waterbodies in the Great Lakes region (Table 
3), indicating that traditional nutrient indicators of the 
watershed (land cover, phosphorus application, and 
human population) were not informative to predicting 
Chl-a in either our global or regional datasets. Brylinsky 
and Mann (1973) also found that nutrient concentration 
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variables (e.g., TP and total nitrogen) were relatively less 
important to phytoplankton production in waterbodies at a 
global scale, but the importance of nutrient concentration 
variables increased for a subset of lakes between 39°N 
and 55°N.

We believe our results differ from many studies that 
highlighted the importance of land cover because of issues 
associated with the limited land cover gradients in our 
dataset. For example, many of the watersheds had a low 
percentage of agricultural land cover (mean %ag = 8.5%), 
possibly due to the geographical distribution of our 
waterbodies. Even so, we are not the first study to find no 
linkage between Chl-a and %Ag (see Knoll et al. 2003, 
Burford et al. 2007, Carneiro et al. 2014). Knoll et al. 
(2003) noted that land cover is not a reliable indicator of 
nutrient loading because of variation in actual nutrient 
export rates. Although we attempted to include other 
proxies of nutrient loading (TPa and Pop), they also failed 
to explain variation in Chl-a. Our model may benefit from 
including more waterbodies that cover a larger gradient of 
percent agricultural land cover in watersheds, or even 
improved estimates of land cover or phosphorus 
application not currently feasible at the global scale. 
Similarly, future models that incorporate nitrogen inputs 
also could be helpful given that nitrogen can also be 
limiting for primary production in inland lakes (Elser et al. 
2007). Incorporating nutrients in broad-scale Chl-a 
models should consider the spatial extent of watersheds 
and land use within them, lake connectivity, and region 
effects (Sorrano et al. 2015). Abell et al. (2012) warned 
that the ability to predict Chl-a based on nutrient measures 
is less reliable in tropical and polar lakes, which further 
suggests the importance of considering region for 
large-scale evaluations.

One additional possible reason for the relatively low 
explanatory power of our global model was our inability 
to account for biological processes occurring within 
waterbodies. For example, our model did not account 
for food-web constraints on phytoplankton. Inclusion of 
herbivory rates may offer improved insight into Chl-a 
dynamics, as has been shown in various studies (e.g., 
Vanni et al. 2005, Gorman et al. 2014). Further, 
food-web constraints on phytoplankton might be more 
consistent at a regional scale but not at the global scale. 
For example, in the Laurentian Great Lakes region, 
invasive dreissenid mussels are known to be extremely 
effective at filtering Chl-a (Guidford et al. 2013) and se-
questering nutrients, thereby changing the nutrient 
profile (Hecky et al. 2004).

Another limitation of our study was our reliance on 
data that were not temporally coincident with our Chl-a 
dataset. First, our climate indices derive from long-term 
averages, whereas our Chl-a data are month-long 

snapshots from a single year, leaving room for a mismatch 
between climate signals and Chl-a estimates in our 
dataset. Second, in eutrophic waterbodies (Chllake > 14.3 
µg L−1; Wetzel 2001), which describes many of ours (n = 
159), the timing of weather events can be more important 
than long-term climate metrics to certain kinds of 
epilimnetic phytoplankton (Soranno et al. 1997). Third, 
whereas our Chl-a data were from 2011, our population 
data represented conditions in 2000 and our phosphorus 
data represented conditions in 1994–2001. These data are 
possibly no longer representative of the conditions in our 
waterbodies when the Chl-a data were extracted. 
Depending on changes in agricultural land cover, this may 
or may not accurately characterize contemporary 
conditions.

Issues with data integrity or consistency can be 
mitigated by pursuing a regional rather than a global 
approach, which our results have shown explain more 
variance when predicting Chl-a. Data for variables not 
included in our analysis are also more likely to be 
available at the regional scale and may add important 
information to predicting Chl-a. Although we included 
proxies for variables such as waterbody depth, volume, 
discharge, and hydrological residence time, our model 
would likely be improved if direct empirical data could be 
obtained for these variables because they are crucial to 
basic limnological models estimating nutrient concentra-
tions (Dillon and Rigler 1974, Vollenweider 1975). 
Regional geology has also been shown to be important to 
Chl-a in waterbodies because it controls the ambient 
nutrients available for transport (Dillon and Kirchner 
1975, Jones and Bachmann 1977, Canfield and Hoyer 
1988). Future models could consider underlying geology 
within the watershed, in addition to land cover, as another 
predictor variable. Finally, although a majority of studies 
categorize land cover variables into the groups we used, 
more nuanced land-cover categories might be more 
helpful. Parsing out details such as the proportion of 
wetland cover in the watershed (Devito et al. 2000, Martin 
et al. 2011), the type of agricultural land use (Knoll et al. 
2003), and metrics assessing the cohesion of land cover 
categories (Gemesi et al. 2011) have all been shown to be 
important to different water quality measures. 

Overall, our results indicate that a regional approach to 
watershed management can best predict Chl-a in 
waterbodies. In regions of the world where a regional 
approach is not feasible, our global model could still rely 
on remotely sensed information to make predictions about 
Chl-a, but the confidence intervals around that prediction 
would be relatively wide. Based on our synthesis of many 
regional studies, there are also regional differences in the 
variables that best explain variation in Chl-a. Our results 
failed to identify major watershed influences, and most of 
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the key predictor variables (surface area, temperature, and 
watershed size), cannot be manipulated by managers. The 
variables that managers can most easily influence are agri-
cultural and urban land covers and nutrient application 
within the watershed, and neither of these were important 
predictors for our global and regional models. The lack of 
direct watershed influences may be due to a lack of high-
quality nutrient indicator data or the limited gradient for 
nutrient inputs that occurred in our dataset. In conclusion, 
our results provided a global model to coarsely predict 
Chl-a in waterbodies where only remotely sensed data can 
be easily acquired and suggest that more accurate models 
can be developed at regional scales that would better 
inform management and policy decisions.
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