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Abstract 

Microbial biofilm nutrient uptake kinetics can provide insight into assimilative mechanisms that regulate stream 
primary productivity. While kinetic experiments are often performed, little work has estimated uptake in connection 
with disturbance (removal) or detailed the effects that common scour events may have on benthic microbes; therefore, 
the goal of this study was to evaluate physical disturbances on benthic stream biofilms to determine effects on 
phosphorus (P) uptake rate, physiological capability, and abiotic sorption. Artificial substrata were collected from 2 
reaches along a temperate stream; resident biofilms were either removed via abrasion (disturbed) or left intact. A series 
of short-term radiotracer (H3

33PO4) experiments were then conducted to measure P uptake. In vivo autofluorescence 
was measured as a proxy of algal physiological condition. The experiments showed no difference in P-uptake rates 
(μgP/μgChl/d) between disturbed (x̄ = 0.77 ± 0.11 [SE] μgP/μgChl/d) and intact (x̄ = 0.91 ± 0.17 μgP/μgChl/d) biofilms 
(t = 0.69, p = 0.492, df = 33). Further, microbial physiology was not depressed by physical disturbance. While killed 
samples yielded significantly lower uptake compared to live biota (F = 17.51, p = 0.001), abiotic sorption still accounted 
for a moderate fraction (range = 0.021–0.038 μgP/μgChl/d) of total uptake and thus warrants estimation in metabolic 
studies. Overall, these findings lend credence to numerous experiments that investigate benthic microbial physiologic 
responses post-disturbance and highlight the importance of uptake following common physical disturbances that occur 
in turbulent environments. In addition, our work measured several kinetic constants across both disturbance and 
temporal gradients, and we discuss their significance within a physiological framework. 
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Introduction

Streams are dynamic features of the landscape, in part 
because they serve as sediment and nutrient transport 
avenues (Hall et al. 2002); specifically, small streams 
(width ≤10 m) represent up to 85% of total stream length 
in most watersheds, provide a crucial link between 
terrestrial and aquatic environs, and are key elements in 
nutrient transformation and downstream transport 
(Peterson et al. 2001, Sweeney et al. 2004). Benthic 
stream biofilms are capable of assimilating and effectively 

retaining nutrients (via deposition and burial) that would 
otherwise be transported downstream (Dodds 2003), 
although mineralization can exceed uptake in some 
systems (O’Brien and Dodds 2008). As such, biofilms are 
critical in the removal (at least temporarily) of dissolved 
phosphorus (P) from stream water and are major 
components in stream self-purification (Sabater et al. 
2002, Covich et al. 2004) through their conversion of 
inorganic nutrients into particulate form. This reduces bio-
availability and buffers downstream ecosystems from high 
soluble reactive nutrient deliveries (Svendsen et al. 1995, 
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Aldridge et al. 2010). Microbial P-uptake capacity, 
however, is regulated to some extent by internal P pool 
concentrations (i.e., polyphosphates; Rai and Sharma 
2006). Polyphosphates (poly-P) can form from biotic 
luxury consumption during periods of high nutrient avail-
ability (Powell et al. 2008). Such availability likely differs 
according to cell position in the complex biofilm matrix 
(Burkholder et al. 1990). 

As a result of this intricate structure, some biofilm 
components may be more susceptible to physical 
disturbance and removal (i.e., top layer of biofilm matrix); 
periodic sloughing and storm spates can act to remove 
portions of the biofilm and transport them downstream 
(Peterson and Stevenson 1990, Biggs 1996). While 
physical disturbance and removal of the biofilm is a 
natural occurrence and previous physiological assays have 
employed physical abrasion or disturbance as a biofilm 
extraction method (e.g., Tank and Webster 1998, 
Thompson and Sinsabaugh 2000, Miranda et al. 2007), the 
effect that such disruption has on cell viability and nutrient 
assimilation is largely unknown. Additionally, in uptake 
experiments, some researchers have inferred rates from 
direct incorporation of radiolabel into microbes (e.g., 
Hwang et al. 1998, Scinto and Reddy 2003) while others 
have used the loss of activity from the overlying water 
(e.g., Odum et al. 1958, Steinman and Mulholland 2006), 
the selection of technique depending on the microbial 
group analyzed (e.g., planktonic vs. benthic). Both 
techniques are applicable to examining the effects of 
disturbance on biofilms relative to uptake, however, owing 
to the more planktonic form assumed by biofilms 
subsequent abrasion.

Nutrient retention in aquatic systems is hence a 
consequence of this active biological uptake but also 
abiotic sorption (Haggard et al. 1999), which can be a 
considerable, if not the dominant, process under some 
conditions (Rejmánková and Komárková 2000, Aldridge 
et al. 2010). Few studies routinely test for abiotic sorption 
(e.g., Steinman and Mulholland 2006), however, or 
provide measured abiotic sorption fractions in uptake 
experiments, and quantitative reports on abiotic sorption 
rates are varied. For example, Klotz (1985) found that the 
contribution to P cycling by abiotic processes was much 
greater in comparison to biotic processes; however, 
Mulholland et al. (1983) and Scinto and Reddy (2003) 
found that abiotic process accounted for a much smaller 
proportion of P uptake (10.3 and <15%, respectively).

Michaelis-Menten (M-M) kinetics have been used to 
describe nutrient uptake into biofilms (Reuter et al. 1986), 
facilitating estimations of the maximum uptake rate (Vmax) 
and half-saturation constant (Km), although there are many 
instances where this model is not supported (e.g., 
Tarapchak and Herche 1986). Similarly, nutrient uptake 

by higher plants typically follows M-M saturation kinetics 
and is described by the parameters Vmax, Km, and Cmin, the 
minimum nutrient concentration required for uptake to 
occur (Nielsen and Schjørring 1983, Akhtar et al. 2007). 
The Cmin or “threshold” value has not been widely 
estimated before in the aquatic phycology literature 
(Aubriot et al. 2000, Wagner and Falkner 2001) but may 
be an important factor in uptake models.

The objective of this study was therefore to examine 
the effect of physical disturbance on P-uptake rates; spe-
cifically we sought to estimate (1) uptake rates in 
physically abraded (disturbed) and intact biofilms through 
single endpoint techniques (Collos 1983), and (2) M-M 
kinetic parameters (Vmax, Km, and Cmin) in disturbed and 
intact biofilms along varying time-courses. In addition, 
cell viability and poly-P concentration following 
increasing disturbance treatments and abiotic sorption 
were also investigated.

Methods

P-uptake rates of intact vs. disturbed biofilms 
(single time point)

A set of 6 unglazed ceramic tiles (surface area = 8.42 cm2) 
was secured to cement blocks and established in 
an  upstream (40°46′42.96″N; 77°46′10.56″W) and 
downstream (40°49′19.92″N; 77°50′12.84″W) reach in a 
third-order stream (Spring Creek) located in a mixed 
land-use watershed in Pennsylvania (USA). Site locations 
are located in close proximity to those examined by 
Godwin and Carrick (2008); briefly, PO4

− concentrations 
were below detection (<0.005) and 0.012 mg/L in the 
upstream and downstream reach respectively, reflecting the 
variation in land use and land cover between the sites (see 
Godwin and Carrick 2008 for further biogeochemical site 
descriptions). 

Unglazed tiles have been used extensively as standard-
ized substrate for biofilm colonization and development to 
reduce sample variability (Lamberti and Resh 1985). The 
tiles were incubated in each stream reach for 30 days to 
allow the development of mature biofilm assemblages 
(Biggs 1988). During retrieval, the tiles were removed 
from the cement blocks, placed into 60 mL translucent 
polypropylene (Nalgene) incubation jars filled with site-
specific water, and returned to the laboratory. Three tiles 
retrieved from each site were abraded with a stiff bristled 
brush, representing the disturbed treatment, and 3 tiles 
were left intact, representing the undisturbed treatment. 
One milliliter of carrier-free H3

33PO4 (PerkinElmer) was 
injected into each processed incubation jar containing 
biofilm and 50 mL ambient water (activity of 33P = 10 μCi/
mL). For the abraded (disturbed) treatment, 1 mL of 
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abraded biofilm material with water (slurry) was removed 
from each replicate incubation jar using a sterile repeat 
pipette 10 minutes after tracer (H3

33PO4) injection. This 
slurry was then injected into a 12-place Millipore filter 
manifold fitted with 0.20 μm Versapor filters and 15 mL 
glass water collection tubes. Vacuum filters (containing 
labeled biofilm material >0.20 µm) and filtered water were 
separately placed into labeled 20 mL scintillation vials 
filled with 5 mL Ecolume scintillation cocktail (ICN Phar-
maceuticals, Costa Mesa, CA, USA) and read for activity 
using liquid scintillation counting (LSC; model LS 6000 
IC; Beckman-Coulter, Fullerton, CA). For the intact 
(undisturbed) treatment, 1 mL of water (overlying biofilms) 
was removed from each replicate incubation jar using a 
sterile pipette, again 10 minutes after tracer injection. 

No obvious signs of seston were present in these jars; 
however, filtration was still performed on removed water 
using a 5 cc BD Luer-lock syringe with interchangeable 
filters (Acrodisc 13 mm syringe filter with 0.2 µm Supor 
membrane; Pall Corp., Ann Arbor, MI, USA). Water and 
syringe filters were again separately placed into labeled 20 
mL scintillation vials filled with Ecolume and read for 
activity using LSC. In disturbed treatments, uptake was 
therefore estimated through direct incorporation of tracer 
into microbes (on filter), while in undisturbed treatments 
uptake was inferred through tracer loss from overlying 
water. 

These experiments differ from kinetic experiments in 
that only a single time point was sampled (limiting the 
ability to estimate kinetic parameters); rather, the goal of 
these experiments was to validate single time point 
estimates (e.g., Collos 1983) of P uptake between disturbed 
and intact benthic biofilms. These experiments were 
performed in triplicate and conducted on 17 October 2008, 
3 June 2009, and 11 June 2009. Chlorophyll a (Chl) con-
centrations were determined following standard fluoromet-
ric methods using a Turner 10-AU fluorometer (Carrick et 
al. 1993) and converted to areal estimates (mg/m2).

M-M parameters along distinct time-courses and 
short-term flux estimations

Similar to the single time point estimation experiments, an 
additional set of 20 unglazed ceramic tiles were secured to 
cement blocks and established in the upstream 
(40°46′42.96″N; 77°46′10.56″W) reach as before (Spring 
Creek). Again, tiles supporting intact biofilms were placed 
into incubation jars after 30 days of residence in the 
stream. Once tiles were returned to the laboratory, intact 
biofilms were physically removed (as above) from 10 of 
the collected tiles while the other 10 tiles were left with 
intact biofilms. Next, all 20 experimental containers were 
amended with increasing concentrations of KH2PO4 

(0–500 µgP/L). This concentration range was used in a 
conservative attempt to capture subsaturated through 
saturated regions of the hyperbolic M-M uptake curve 
based on Borchardt (1996), who reported half-saturation 
constants for periphyton between 0.62 and 1271 µgP/L. 

Duplicate experimental jars were amended with 5 P 
concentrations [P]: 0 (control), 10, 20, 200, and 500 µgP/L 
(n = 10). For the abraded (disturbed) treatments, 1 mL of 
abraded biofilm material with water (slurry) was removed 
from each replicate jar using a sterile repeat pipette 5, 12, 
18, 30, and 60 minutes after tracer (H3

33PO4) injection. As 
before, samples were injected into a filter manifold and 
subsequently placed into labeled 20 mL scintillation vials 
filled with scintillation cocktail and read for activity using 
LSC. For the intact (undisturbed) treatments, 1 mL of 
water (overlying biofilms) was removed from each 
replicate jar using a sterile pipette, again 5, 12, 18, 30, and 
60 minutes after tracer injection. Seston uptake was 
measured in a previous experiment and determined to be a 
negligible component; however, filtration was still 
performed prior to removing water. The radioactivity in 
these samples was determined again by LSC.

P storage across growth form and cell viability

The effect of increasing levels of disturbance on biofilm 
growth form recovery, poly-P concentration, and cell 
physiology was examined by using 3 different physical 
abrasion treatments with a stiff-bristled brush (3 rocks per 
treatment): 1 pass (low disturbance), 2 passes (medium 
disturbance), and multiple passes (high disturbance). Note 
that these are more qualitative treatments because we did 
not directly quantify the level of disturbance (see 
discussion). For identification of soft algae, 20 mL from 
each disturbance treatment (n = 9) was preserved with 1% 
formalin, and cells were identified to genus under 100× 
and 400× magnifications using a Leica light microscope 
(Carrick and Steinman 2001). Large (≈300 µm) cells were 
identified to genus first under 100× magnification using a 
Palmer-Maloney counting chamber (394 mm2 in area, 0.1 
mL volume). Remaining cells were counted at 400× mag-
nification (random fields) to a minimum of 200 cells until 
400 cells total were reached under both 100× and 400×. 
Cells were then grouped by growth form (filamentous, 
stalked/erect, and prostrate/adnate). Physiognomic 
(growth form) classifications of microbial genera followed 
Graham and Vinebrooke (1998), Wellnitz and Ward 
(2000), and Passy (2007). 

Samples from experiments were filtered (Whatman 
EPM 2000 glass fiber) for poly-P via hot-water extraction 
and analyzed using spectrophotometry following standard 
methods (Fitzgerald and Nelson 1966, Eixler et al. 2005). 
The percent poly-P contained in each growth form’s cells 
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was calculated by multiplying the total mean poly-P in 
each disturbance treatment by the mean percent growth 
form in the treatment, assuming all cells equally 
distributed the total poly-P. These samples were also 
analyzed for Chl content using a Turner 10-AU 
fluorometer (Carrick et al. 1993).

Autofluorescence was measured (via fluorometry) as a 
proxy of algal physiological condition (n = 9, 3 rocks/
disturbance treatment). Sample was poured into a cuvette 
and read in vivo on a fluorometer. Cuvettes were then 
placed in dark conditions for 1 minute and 0.1 mL of 
3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU, a pho-
tosynthetic inhibitor) stock (10−3 M) was added to each 
sample (final concentration = 10−5 M), which blocks 
electron transport from photosystem II to photosystem I 
resulting in maximum fluorescence (Prézelin 1981). 
Cellular fluorescence capacity (CFC; proportion of 
absorbed light being used in photosynthesis) was 
calculated as

	 (Fa – Fb)/ Fa,	 (1)

where Fa is in vivo fluorescence post DCMU addition, 
and Fb is in vivo fluorescence (Vincent 1980, Vyhnalek et 
al. 1993). CFC should vary directly with photosynthetic 
activity (physiological condition) and inversely with 
negative effects on photosynthetic activity (e.g., physical 
disturbance; Vincent 1981, Thompson 1997).

Abiotic sorption

The nonbiological (abiotic) sorption of P by stream 
benthic biofilms was also investigated using natural rock 
substrates collected from the same upstream and 
downstream reaches (Spring Creek). On 17 June 2009, 
biofilms were physically removed from rock substrates in 
the field, washed into labeled containers, and returned to 
the laboratory. Slurries from each site (n = 16) were 
incubated with the following agents: (1) 10% formalde-
hyde, (2) 3% glutaraldehyde (Wolfstein et al. 2002), and 
(3) control (no inhibitory agents). 

Sixty minutes after agents were injected into 
incubation jars, 0.50 mL of carrier-free H3

33PO4 radiotracer 
was injected into each sample. After 10 minutes, slurry 
was removed from each incubation jar and filtered. Filters 
were thoroughly rinsed of any nonspecific 33P binding, 
placed into scintillation vials filled with 5 mL Ecolume 
scintillation cocktail, and activities estimated via LSC. 
Note that this was a first-order estimation because the 
effect of formaldehyde or glutaraldehyde fixation on the 
possible sorption of P is unknown. Further, no measure-
ments were made of metabolism prior to tracer addition, 
and while the use of formaldehyde and glutaraldehyde to 

estimate abiotic uptake is well published in the aquatic 
phycology literature, we have no absolute assurance that 
biotic uptake was arrested and therefore note that our 
abiotic adsorption rates may be overestimates.

Statistical analyses

A mixed-model 3-way analysis of variance (ANOVA) was 
performed to evaluate variation in P-uptake rate (μgP/
μgChl/d) between disturbance treatment (abraded and 
intact biofilms), site location (up and downstream), and 
experiment time (sampling dates: 17 October 2008, 3 June 
2009, and 11 June 2009). Site was treated as a random 
effect here because there were no a priori predictions 
regarding differences among particular stream locations; 
therefore, a mixed-model ANOVA approach was most 
applicable (McKone and Lively 1993). Uptake rates were 
calculated as ln [P0/(P0-X)] over time, where P0 is the total 
activity in 1 mL of radiolabelled sample and X is the radi-
oactivity on the filter (biota), following Hwang et al. 
(1998). For statistical comparisons, we determined the 
uptake into the biota from the intact samples by subtracting 
the activity measured in the water and activity on the filter 
(seston) from the total activity. ANOVA was also used to 
analyze the differences between controls and poisoning 
agents in estimating biotic versus abiotic uptake. 

All descriptive statistics and ANOVA analyses were 
performed using SPSS software version 19.0 (SPSS Inc., 
Chicago, IL, USA). M-M parameters (Vmax and Km) were 
estimated using an iterative “nls” function (nonlinear 
least-squares regression) in the statistical package R 
(R  Development Core Team 2006, Marino et al. 2010). 
Data were fitted by nonlinear regression according to the 
M-M equation using GraphPad Prism 5 (GraphPad Prism 
Software Inc., San Diego, CA, USA). Observations with 
difference in fit standardized (DFFITS )values >2√(k/n), 
where k is the number of predictors (including constant), 
were removed from regression analyses, following 
Belsley et al. (1980). To estimate Cmin, or the threshold [P] 
at which net incorporation of P by the biofilm ceases due 
to insufficient available energy (Aubriot et al. 2000), a 
plot of the uptake rate versus the logarithm of the external 
P concentration (Thellier plot; Thellier 1970) was made; 
the intercept on the log [P] axis corresponds to the 
logarithmic P threshold concentration (i.e., Cmin; Wagner 
et al. 1995).

Results

In general, no overall difference in biomass specific 
P-uptake rate (μgP/μgChl/d) estimates was detected 
between the 2 methods, disturbed versus intact biofilms 
(t = 0.69, p = 0.492, df = 33); area specific P-uptake rates 
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(μgP/m2/d) also showed no difference (t = 0.96, p = 0.342, 
df = 31), averaging 29 923 ± 30 664 (SD) and 42 435 ± 
49 272 for disturbed and intact assemblages, respectively. 
The disturbance process yielded a relatively lower 
coefficient of variation (x̄ = 18.1%) among P-uptake 
estimates by the biofilms, while the P uptake by intact 
biofilms yielded a comparably higher coefficient of 
variation (x̄ = 25.4%).

Because P uptake was measured for both intact and 
disturbed assemblages across spatial and temporal scales, 
we evaluated these influences on the resulting rates (Table 
1). As above, abrasion was found to have no effect on 
P-uptakes rates, and thus no treatment effect (intact, 
disturbed) was observed. There was a significant temporal 
component to the variation (F2, 28 = 22.38, p = 0.043), such 
that uptake by biofilms during the fall experiment on 
17 October 2008 (x̄ = 1.03 ± 0.57 [SD] μgP/μgChl/d) was 
greater compared with uptake by biofilms sampled from 
both the first (x̄ = 0.75 ± 0.77 μgP/μgChl/d) and second 
(x̄  = 0.68 ± 0.58 μgP/μgChl/d) spring experiments on 
3 and 11 June 2009, respectively. 

Physical disturbance (abrasion) did not seem to 
negatively affect cellular function as expressed through 
function of the photosystems; ANOVA results showed no 
significant differences in CFC values among disturbance 
intensities (F2, 6 = 2.73, p = 0.144). The various physical 
disturbance treatments segregated organisms within the 
biofilm (possessing specific internal P storage capacities). 
Biologically bound P (poly-P) varied significantly among 
treatments (F2, 6 = 11.34, p = 0.009); specifically, the low 
treatment averaged 0.133 ± 0.028 (SD), the medium 
averaged 0.051 ± 0.003, and the high averaged 0.080 ± 
0.024 mgP/mgChl. The higher poly-P content in the low 
disturbance treatment was likely linked to the higher 
presence of filamentous taxa in the upper strata of the 
biofilm (Fig. 1). 

Killed controls showed that abiotic sorption yielded 

significantly lower uptake compared to biotic uptake 
(F2,9  = 17.51, p = 0.001); specifically P-uptake rates 
averaged 0.068 ± 0.017 (SD), 0.029 ± 0.01, and 0.025 ± 
0.00 μgP/μgChl/d by control, formaldehyde, and glutaral-
dehyde treatments, respectively. Average abiotic sorption 
(glutaraldehyde and formaldehyde) across both sites 
sampled accounted for approximately 40% of total P 
uptake relative to control treatments.

The nonlinear (weighted) least-squares analysis of the 
M-M model for the disturbed assemblages yielded a Vmax 
of 2.25 ± 0.77 (SE) µgP/µgChl/d and Km of 231.36 ± 
140.92 μgP/L (r2 = 0.99); intact assemblages yielded a 
Vmax of 2.33 ± 0.63 µgP/µgChl/d and Km of 293.87 ± 
173.95 µgP/L (r2 = 0.98). A one-way ANOVA of P-uptake 
rate (μgP/μgChl/d) versus treatment showed that there 
was no difference (F = 0.72, p = 0.408) in uptake rates 
between disturbed and intact assemblages over the 
60  minute period. We then tested re-estimated uptake 
constants (k) by splitting samples between short time 
periods (i.e., 5–12 min) and long time periods (i.e., 
30–60 min) to estimate the effect of experiment duration 
on the uptake constant and M-M parameters. 

For short time periods the disturbed assemblages 
yielded a Vmax of 16.64 ± 1.40 (SE) µgP/µgChl/d and Km 
of 1457.10 ± 139.35 µgP/L (r2 = 0.99); intact assemblages 
yielded a Vmax of 2.31 ± 4.70 µgP/µgChl/d and Km of 
23.44 ± 85.59 µgP/L (r2 = 0.65). For long time periods the 
disturbed assemblages yielded a Vmax of 8.42 ± 16.61 µgP/
µgChl/d and Km of 1236.55 ± 2831.18 µgP/L (r2 = 0.99); 
intact assemblages yielded a Vmax of 1.11 ± 1.25 µgP/
µgChl/d and Km of 653.45 ± 960.90 µgP/L (r2 = 0.99). Ad-
ditionally, we tested the soil nutrient uptake formulation 
of Barber (1995) for benthic biofilms by estimating Cmin, 
the minimum [P] required for uptake to transpire. The 
Thellier plots used to estimate Cmin yielded a [P] of 6.80 
and 9.95 µg/L for the disturbed and intact biofilm 
treatments, respectively (Fig. 2).

Source DF Sequential sums of squares Adjusted mean square F p
Site 1 10.7368 10.6698 42.83 0.683
Treatment 1 0.2018 0.2493 0.36 0.657
Experiment 2 0.9915 0.4958 22.38 0.043
Site * Treatment 1 0.7827 0.6970 1.48 0.347
Site * Experiment 2 0.0443 0.0222 0.05 0.955
Treatment * Experiment 2 1.4666 0.7333 1.55 0.393
Site * Treatment * Experiment 2 0.9476 0.4738 14.49 0.000
Error 28 0.9158 0.0327
Total 39 16.0873

Table 1. Three-way mixed-model ANOVA testing the main fixed effects of treatment (n = 2) and experiment (n = 3) and random effect of site 
(n = 2) on P-uptake rates (μgP/μgChl/d) for intact vs. disturbed stream biofilms. Note: DF = degrees of freedom, F = F-test statistic, and 
p = p-value.
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Discussion

Measurements made between benthic biofilms subject to 
physical disturbance (abrasion) and undisturbed intact 
biofilms showed that single time point estimates of 
P uptake did not vary significantly between the treatments. 
These findings indicate that disturbance does not 
negatively affect the ability of biofilms to assimilate 
P during brief (≤30 min) single time-course experiments. 
While previous research has shown that metabolic 
responses differ depending on the units of normalization 
(e.g., Rosemond et al. 1993), we found here that both Chl 
and area-specific P-uptake rates were similar between the 
disturbance treatments, indicating robustness of our data. 
Moreover, our use of standardized substrates in an effort to 
remove variability in areal estimates and reduce sampling 
variability was likely effective (Lamberti and Resh 1985). 

While uptake was estimated through direct incorpora-
tion of tracer into abraded biofilm microbes (on filter) in 

disturbed treatments and inferred through tracer loss from 
water overlying intact biofilms in undisturbed treatments, 
both methods seemed to be practical and comparable 
during this experimental period. A meta-analysis on 
P uptake in aquatic microbes supports this finding because 
experiments that derive uptake from water were 
comparable with those that derive uptake from direct 
analyses (Price and Carrick 2011). Further, our data here 
lend credence to the numerous experiments that 
investigate benthic microbial physiologic responses post-
disturbance (e.g., Bothwell 1985, Reuter et al. 1986, 
Scinto and Reddy 2003). 

The M-M parameter estimates did show relative 
differences when split by short and long time samplings, 
with the shorter yielding higher Vmax; this finding 
corresponds to earlier research and likely indicates initial 
transport versus assimilation kinetics (Flynn 1998, Price 
and Carrick 2011). In fact, the rapid uptake revealed 
during our short time period (i.e., 5–12 min) is directly in 

Fig. 2. Thellier plots showing uptake velocity (μgP/μgChl/d) versus log [P] (μgP/L) used to estimate Cmin for disturbed (left) and intact (right) 
biofilm assemblages. The fitted linear regression intercepts the log [P] axis at the logarithmic threshold concentration (Aubriot et al. 2000).

Fig. 1. Stacked column chart of benthic poly-P (mgP/mgChl) vs. disruption treatment according to growth form. Estimates were made  
by multiplying mean poly-P concentration for each disturbance treatment by the mean percent growth form from each physiognomic  
classification.
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line with Taft et al. (1975), who found that initial rapid 
P uptake (attributed to membrane transport) declined after 
15–60 min in phytoplankton in the Chesapeake Bay 
estuary. Our Km estimates were similar to those reported 
for freshwater periphyton (508 µgP/L; Scinto and Reddy 
2003). The rather large variations that we reported in 
abraded and intact assemblage P uptake was not 
surprising. Dodds (2003) compiled a range of P uptake 
rates for periphyton from natural and constructed systems 
and found variation more than 5 orders of magnitude. 
However, low replication of our individual experiments 
precluded more definitive statistical analysis.

While our disturbance design was more qualitative in 
nature, we did attempt to quantify relationships between 
our applied treatments and hydraulic disturbance. We 
estimated the percentage of biomass (as Chl) lost in each 
disturbance treatment by comparing biomass removed to 
average ambient biomass. These values were then 
compared to the percentage of biomass lost over various 
levels of shear stress following Biggs and Thomsen (1995) 
to approximate a relationship between our disturbance 
treatments and hydraulic shear magnitudes. Similar to 
Biggs and Thomsen (1995), Melosira varians was a 
dominant taxon in all of our applied disturbance 
treatments, and the estimated velocity at our site (0.43 
m/s), approximated from water flow (0.60 m3/s) and 
stream area (1.39 m2) was within the ambient velocity 
range they cite. 

Comparable inherent properties between the studies 
facilitate inferences. That said, our low, medium, and high 
disturbance treatments corresponded to mean shear 
stresses of 5.42 ± 1.90 (SD), 41.71 ± 24.82, and 67.36 ± 
55.39 N/m2, respectively. Despite this gradient of shear 
stress among the treatments, no level of imposed 
disturbance caused physiological changes in the microbes 
removed from the biofilms (as estimated by CFC). This 
indicates that, during brief incubation periods, there are no 
obvious deleterious effects arresting or impairing the rate 
of electron flow between photosystem II and photosystem 
I and, by extension, the ability of the disturbed biofilms to 
assimilate P (e.g., Rueter and Ades 1987). Viable cells 
sloughing from periphyton (benthic biofilms) have been 
observed before through microscopic examination 
(Naiman and Sibert 1978), and as stream benthic 
microbial biofilms are continually subject to the abrasive 
effects of suspended solids and bed sediments and conse-
quently periodic sloughing losses (Biggs and Close 1989), 
it seems reasonable that they have adapted mechanisms to 
remain viable during such processes.

Our growth form recovery results from the increasing 
levels of disturbance study support those found elsewhere; 
specifically, nonfilamentous taxa in the biofilms showed 
the most resistance to the applied disturbance while 

filamentous taxa showed the least (Biggs and Thomsen 
1995). For instance, organisms that grow prostrate to a 
substrate (e.g., Achnanthes) are naturally more resistant to 
dislodgment by shear and were, as expected, recovered 
only in high disturbance treatments. Such differential 
disturbance effects on microbial growth forms have impli-
cations for niche partitioning, and as a result, nutrient 
uptake and storage capacity (Cardinale 2011). 

The quantity of biologically stored P (poly-P) varied 
among layers (growth form) within the biofilm with the 
highest concentration found in top (filamentous forms; 
64%) and lower for both middle (stalked forms; 16%) and 
bottom (prostrate forms; 20%). Cells can store a large 
amount of P in poly-P granules (Jacobson and Halman 
1982), and immediate accumulation in microbes has been 
observed during P surplus (Casadevall et al. 1985, Zeng 
and Wang 2009). Higher poly-P concentrations in the low 
disturbance treatment suggest that surplus P is available to 
filamentous forms in the biofilm. This was expected 
because filamentous microbes in a biofilm generally have 
greater biomass exposed to overlying waters where 
nutrients may be more bioavailable and further supports 
work showing that access to phosphate supplies from the 
water depends on the position of microbial cells in the 
biofilm (see Burkholder et al. 1990). 

While our experiment somewhat suffered from 
imprecision in segregating the biofilm matrix (distinct 
growth forms intersected across disturbance treatments), 
our approach nonetheless allowed us to quantitatively 
estimate where P is stored. Because there is little direct 
data on nutritional content relative to spatial arrangement 
in a biofilm (Murdock et al. 2010), our research here thus 
forwards valuable, albeit coarse, data on poly-P according 
to successional growth forms in the complex matrix. 
Because poly-P can affect uptake and incorporation of P 
into aquatic microbes (Cotner and Wetzel 1992), under-
standing nutrient storage in varying strata of growing 
biofilms could help direct models predicting uptake 
capacity and downstream particulate P transports in 
sloughed material.

While we found that biofilms subject to both formalde-
hyde and glutaraldehyde treatments showed significantly 
reduced uptake rates compared to controls, the data 
suggest that abiotic uptake of P could be important in 
streams like the one studied here. These estimates for the 
abiotic fraction of uptake did show considerable P sorption 
(40% of total) and were comparable to previous literature. 
For example, Aldridge et al. (2010) found that abiotic in-
terception accounted for more than 70% of the total 
P  uptake by epilithic communities across a gradient of 
unmodified and modified streams. Our abiotic sorption 
estimate may be artificially elevated due to the absence of 
flow in our experiments. That is, a key mechanism of 
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