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Abstract 

European shallow, alkaline, saline lakes are potential indicators of climate change. Diatoms have often been reported as 
valuable proxies for different kinds of anthropogenic activities. Diatom assemblages and 14 environmental variables 
from shallow, alkaline lakes from 2 different regions of the Carpathian basin (Europe) were investigated for 3 years to 
(1) elucidate the physical and chemical parameters and diatom assemblages of these lakes, (2) select the principle 
variables affecting the diatom communities, and (3) show the relevance of diatoms as ecological bioindicators. Water 
chemical characteristics of the lakes in the 2 regions differ significantly in anion concentrations (HCO3

−, SO4
2−, and 

Cl−), platinum (Pt) units (colour), and oxygen saturation. Dominance by the stress-tolerant, motile diatom ecological 
guild, represented mainly by Nitzschia and Navicula species, was characteristic in these saline, turbid environments. 
Indicator species of the 2 regions were found to be different. Diatom assemblage composition was chiefly determined 
by conductivity and HCO3

− and SO4
2−concentrations. Nutrient loads, extreme weather events, and consequences of 

habitat maintenance management were unequivocally identifiable by variations in the benthic diatom assemblage 
composition. Diatoms are valuable indicators for assessment of ecological status of these saline, alkaline lakes. 
Including these organisms in ecological status assessments of inland saline lakes may improve the effectiveness of 
directives for conservation management and might be useful in preserving these pristine habitats that depend on natural 
hydrological processes. 
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Introduction

Endorheic, saline lakes are typically small (<50 ha) and 
shallow (<1 m). Their total area on the globe is large 
(0.006% of the total global water; Williams 1986), and 
their volume is not markedly different from that of inland 
freshwaters (0.007%; Shiklomanov 1990, Williams 1993). 
Most are found in arid and semiarid regions (Williams 
2002). Their physical and chemical features depend on the 
local geomorphology, basin characteristics (Dargám 

1995), geochemistry (Simon et al. 2011), and evaporation 
and precipitation (Langbein 1961). Lakes are relatively 
closed systems compared to running waters or terrestrial 
habitats and are therefore excellent sensors of environ-
mental changes (Gottschalk and Kahlert 2012). Saline 
lakes are sensitive to unpredictable weather and climate 
changes (e.g., rainfall, UV radiation). Even relatively 
small variations cause large, even irreversible changes in 
the natural character of salt lakes (Hammer 1990). The 
ephemeral nature of these lakes results in a wide range of 
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salinity and a reduction in diversity (Moss 1994). Saline 
lakes have largely been neglected in recent limnological 
and hydrobiological research (Moss 1994). 

Despite the economic and noneconomic value of these 
lakes, only a few are subjected to active conservation 
(Williams 1993). Climate change and catchment activities 
such as water course diversion, dredging, or excessive 
pumping of surface freshwater or ground water threaten 
their “good” ecological status (Williams 2002). In the 
Carpathian Basin, 90% of these waterbodies are found in 
protected areas (national parks); additionally, each 
alkaline, saline lake is under ex lege protection (by law). 
Pannonic saline steppes and marshes (Natura 2000 areas) 
are especially threatened by the lowering water table due 
to groundwater withdrawal, loss of periodic spring floods, 
and excessive drainage of the surrounding areas (VGT 
2009). In the last few decades, the number of these 
distinctive, alkaline habitats has decreased in Hungary and 
Austria and are now restricted to only 2 regions: the Dan-
ube-Tisza Interfluve and the Fertő-Hanság regions (Boros 
1999). A similar phenomenon was observed in Mexico 
and Spain (Alcocer and Escobar 1990). According to 
predictions, the extent of these seasonally filled saline 
lakes will further decrease by 2025 due to human-induced 
climate change (Williams 2002). 

Diatoms commonly occur in saline and alkaline saline 
lakes (De Deckker 1988). Benthic diatoms can be found in 
considerable quantities in East African saline lakes (Gasse 
1986a) where they are not light limited (Tuite 1981). In 
this type of lake in Bolivia, the algal biomass is dominated 
by diatoms (Servant-Vildary 1984). In a Romanian study 
on anthroposaline lakes (Ionescou et al. 1998), half of the 
identified algal taxa were diatoms. Despite their 
importance, there have been few studies on the ecology of 
these organisms. In contrast with the United States, South 
America, Africa, and Australia (Williams 1986), only 
sporadic or unpublished data are available on diatoms of 
saline lakes in Eurasia. Recognition of diatoms as useful 
indicator species of environmental changes initiated 
intensive research in the 1980s and 1990s (e.g., Hammer 
et al. 1983, Bradbury et al. 1989, Blinn 1990). Most of 
these published diatom studies on saline lakes were pale-
olimnological reconstructions (e.g., Gasse et al. 1997, 
Reed 1998), however, because preserved diatoms as 
proxies are applicable to reconstructing changes in 
salinity, ice cover, and water level (Spaulding and 
McKnight 1999, Fritz et al. 2010). Early publications on 
diatoms of inland saline lakes were mainly floristic 
(Hustedt 1959, Grunow 1862), and such works continued 
to appear (e.g., Grimes and Rushforth 1982, Sabbe et al. 
2003). Ecological investigations of recent benthic/
planktonic diatom assemblages are sporadic, not only in 
Europe (Padisák and Dokulil 1991, 1994, Buczkó and Ács 

1996–1997, Nagy et al. 2008), but also on other continents 
(Sze and Kingsbury 1972, Blinn 1993). 

Based on theory (Bhattacharyya and Volcani 1980), 
salinity may have only an indirect effect on diatom distri-
bution by affecting thickness of the silica wall (Tuchmann 
et al. 1984) and pore size (Leterme et al. 2013). Specific 
surface area and pore size decrease with salinity (Vrieling 
et al. 2007, Leterme et al. 2010), influencing nutrient 
transport across the cell membrane and other physiologi-
cal processes (Fritz et al. 2010). Salinity significantly 
affects the valve morphology of diatoms (Trobajo et al. 
2011), and these morphological features may indicate 
changes of environmental drivers (Trobajo et al. 2004). 
Morphological plasticity of diatoms might also explain 
their ecological success in extreme environments (Leterme 
et al. 2013). Some species are associated with a given 
anion (e.g., Cymbella pusilla to bicarbonate because of its 
higher carbon requirement, or Chaetoceros elmorei to 
sulphate; Saros and Fritz 2002). Physiological or physio-
chemical processes determine these specializations 
because high salinity physioecologically excludes a 
number of species without osmoregulatory mechanisms 
and, consequently, their related traits (De Deckker 1988). 
The ionic concentration-dependent distributions have not 
been well studied (Saros and Fritz 2000). Accordingly, 
one of the recent goals of diatom research is to understand 
the diatom–salinity relationship using quantitative 
analyses of diatom distribution (Potapova 2011). 

In Hungary, most diatom studies have focused on the 3 
biggest, shallow, saline lakes: Lake Velencei (surface area 
2600 ha, mean water depth 1.5 m), Lake Fertő/Neusiedler-
see (surface area 30 900 ha, mean depth 0.7–1.5 m), and 
Lake Szelidi (surface area 360 ha, mean depth 3.5 m; 
Pantocsek 1912, Donászy et al. 1959, Szemes 1959, 
Buczkó 1986, Ács et al. 1991). Several algological studies 
(mostly of phytoplankton) of these soda pans were 
published (e.g., Kiss 1976, Padisák 1999, Fehér and 
Schmidt 2003, Fehér 2010), and some studies addressed 
the diatom floras, or at least included some records of 
diatom species (Grunow 1860, 1863, Cholnoky 1929, 
Uherkovich 1965, 1969, 1970, Kiss 1971, 1974, 1975, 
1978, Schmidt and Fehér 1996). With the recognition of 
the scientific and conservation values of these alkaline 
lakes, a number of studies have recently been initiated to 
understand the hydrogeology (Simon et al. 2011), water 
chemistry (Boros 1999), bacterial communities (Rusznyák 
et al. 2011, Borsodi et al. 2013), picoplankton (Somogyi et 
al. 2011a, 2011b, 2012, Kürthy et al. 2012, Pálffy et al. 
2013), zooplankton (Horváth et al. 2013a), macroinverte-
brates (Horváth et al. 2013b), and waterfowl (Boros et al. 
2008). Information on their benthic diatom communities 
and their ecology has remained scarce, however. Water 
chemical and biological characteristics of alkaline, saline 
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lakes would provide the ecological basis for their 
management, and the use of benthic diatoms as bioindica-
tors to assess their ecological status and the impact of 
climate change is promising.

The aim of this study was to determine (1) physical 
and chemical characteristics and (2) diatom assemblages 
of shallow, saline, alkaline lakes located in 2 different 
regions (Fertő-Hanság and Danube-Tisza Interfluve) in the 
Carpathian basin (Europe); (3) to determine the principle 
variables that significantly affect the diatom communities 
in these special environments; and (4) to provide 
directives for ecological and conservation management.

Methods and materials

Samples for water chemistry and analysis of benthic 
diatoms were collected from 31 small, shallow, alkaline, 
saline lakes from 2 different parts of the “Hungarian 
lowlands” ecoregion (the 11th ecoregion of European lakes 
and rivers): (1) Fertő-Hanság (FH; distributed in Austria 

and Hungary) and (2) Danube-Tisza Interfluve (DT; in 
Hungary; Fig. 1; Table 1) in 3 different years (2006, 2008, 
and 2012). Following the recommendations for sampling 
littoral diatoms in lakes (King et al. 2006), 96 diatom 
samples were collected from macrophytes and mud, which 
represent the natural substrate type in these lakes. In 2006, 
sampling was conducted only in spring, the season when 
these lakes reach their maximum water volume. In 2008, 
sampling was extended to autumn, and in some cases in 
2012, we could sample even in winter (Table 1). 

Diatoms were removed from macrophytes with a 
toothbrush, and mud surface was sampled with a pipette. 
For analyses of siliceous algae, samples were prepared 
using standard digestion procedures (CEN 2003), then 
valves were embedded in Zrax. To determine the relative 
abundance of the species and diatom ecological guilds, a 
minimum of 400 valves per slide was counted using a 
Zeiss Axio Imager A1 with Planapochromat DIC lense at 
1000× magnification. Small, difficult taxa were investi-
gated with a Hitachi S-2600 N scanning electron 

Fig. 1. Saline, alkaline lakes sampled from the 2 regions (lake numbers in Table 1).
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microscope. Sorting species into high-profile, low-profile, 
and motile guilds followed the description by Cox (1996), 
Passy (2007), Rimet and Bouchez (2011), and Stenger-
Kovács et al. (2013).

Dissolved oxygen, oxygen saturation, conductivity, pH, 
and temperature were measured in situ with an HQ40d Hach 
Lange multimeter at the sampling site. In laboratory 
analyses, concentrations of nitrogen and phosphorus forms 
were measured: nitrate (NO3

−) by the UV spectrophotomet-

ric screening method; ammonium (NH4
+) by the phenate 

method; soluble reactive phosphorus (SRP) and total 
phosphorus (TP) by the colorimetric method (APHA 1998); 
soluble reactive silica (SRSi) by the spectrophotometric 
method (Wetzel and Likens 2000); and chemical oxygen 
demand (COD) by the closed refluxe, titrimetric method 
(APHA 1998). The intensity of the brown colour in platinum 
(Pt) units used to assess the amount of humic substances was 
determined according to Cuthbert and del Giorgio (1992).

Saline Lakes Country Region GPS coordinates Samples Year Season
1. Albersee Austria FH 47° 46.449 N 16° 46.177 E 2 2008 S
2. Bába-szék Hungary DT 46° 44.431 N 19° 09.019 E 5 2006, 2008 S, A
3. Bíbic-tó Hungary DT 46° 28.105 N 19° 58. 487 E 1 2006 S
4. Borsodi-dűlő Hungary FH 47° 40.891 N 16° 50.401 E 13 2008, 2012 S, A, W
5. Böddi-szék Hungary DT 46° 45.389 N 19° 08.373 E 4 2006, 2008 S, SU
6. Büdös-szék Hungary DT 46ͦ° 51.577 N 19° 10.943 E 1 2006 S
7. Büdös-szék Pusztaszer Hungary DT 46° 32.465 N 20° 15.815 E 1 2006 S
8. Cikes Hungary FH 47° 41.763 N 16° 50.459 E 3 2008 S
9. Csárda-szék Hungary DT 46° 45.326 N 19° 27.394 E 1 2006 S
10. Fehér-szék Hungary DT 46° 48.284 N 19° 11.159 E 1 2006 S
11. Fülöp-szék Hungary DT 46° 55.447 N 19° 99.420 E 1 2006 S
12. Hattyús-szék Hungary DT 46° 52.522 N 19° 26.350 E 1 2006 S
13. Herrnsee Hungary FH 47° 44.609 N 16° 46.210 E 3 2008 S
14. kardoskúti Fehértó Hungary DT 46° 28.245 N 20° 37.819 E 4 2006, 2008 S, SU
15. Kelemen-szék Hungary DT 46° 47.504 N 19° 10.591 E 4 2006, 2008 S
16. Kirchsee Hungary FH 47° 45.443 N 16° 47.299 E 3 2008 S
17. Kisréti-tó Hungary DT 46° 86.790 N 19° 19.360 E 1 2006 S
18. Kondor-tó Hungary DT 46° 53.471 N 19° 25.068 E 1 2006 S
19. Legény-tó Hungary FH 47° 39.793 N 16° 48.802 E 12 2008, 2012 S, A, W
20. Neubruch Austria FH 47° 47.162 N 16° 50.655 E 3 2008 S
21. Nyéki-szállás Hungary FH 47° 40.623 N 16° 49.970 E 7 2006, 2008 S, SU, A
22. Ősze-szék Hungary DT 46° 24.612 N 19° 59.418 E 1 2006 S
23. Paprét Hungary FH 47° 39.943 N 16° 49.597 E 6 2008, 2012 S, A
24. pirtói Nagy-tó Hungary DT 46° 31.623 N 19° 28.189 E 1 2006 S
25. Sárkány-tó Hungary DT 46° 44.481 N 19° 23.216 E 1 2006 S
26. Szappan-szék Hungary DT 46° 53.471 N 19° 25.068 E 1 2006 S
27. Szarvas-tó Hungary DT 46° 32.774 N 19° 29.012 E 1 2006 S
28. Szívós-szék Hungary DT 46° 52.751 N 19° 26.467 E 1 2006 S
29. Untersee Austria FH 47° 48.096 N 16° 47.051 E 3 2008 S
30. Zab-szék Hungary DT 46° 50.150 N 19° 10.112 E 6 2008 A
31. Zicklacke Austria FH 47° 46.075 N 16° 46.870 E 3 2008 S
Σ 31 Σ 2 Σ 2   Σ 96 Σ 3 Σ 4

Table 1. The investigated saline, alkaline lakes, their country, region (FH = Fertő- Hanság, DT = Danube- Tisza Interfluve), GPS coordinates, 
number of samples, and sampling year and season (S = spring, SU = summer, A = autumn, W = winter).
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The t-test for unequal variances (Welch-probe) was used 
(1) to examine whether the lakes in the 2 regions (FH and 
DT) had different water chemistry and (2) to categorize the 
assemblages by guilds and identify the most characteristic 
diatom ecological guilds in all of the samples and in the 2 
regions, separately. The Indicator Species Analysis (IndVal; 
Dufrêne and Legendre 1997) based on abundance values 
and relative frequency of occurrence (Legendre and 
Legendre 1998) was applied to identify species that can be 
used to separate FH and DT. For model building, a forward 
selection procedure of the redundancy analyses (RDA; 
Blanchet et al. 2008) was applied to identify master 
variables having the most significant effect on the diatom 
community composition and to reduce the number of the 
explanatory parameters. The stepping order of the environ-
mental parameters to the model was based on the Akaike 
information criterion (AIC) with p-values (<0.05). The  
significance of all terms was assessed by ANOVA 
permutation test (permutations = 199, p < 0.05). Before the 
RDA analyses, species abundance data were Hellinger-
transformed (Legendre and Legendre 1998) to reduce the 
significance of the most abundant species, a suggested 
method for multivariate approaches of compositional data 
containing a number of zero values (Legendre and 
Gallagher 2001). Rare species (occurrence <3 sampling 
sites) or species with small relative abundance (<5% in  
the total dataset) were excluded from the ordination 
analyses. Environmental variables were also transformed 
(see Table 2) to reach the normal distribution of the data; 
the best transformation of the individual variables was 
selected. All statistical analyses were performed in R 
computing environment (R 2.11.0; R Development Core 
Team 2010); model building was conducted using the 
package “Vegan” (Oksanen et al. 2012).

Results

The average conductivity of the lakes was >4000 µS cm−1, 
with a maximum conductivity of 17 600 µS cm−1. All lakes 
were alkaline, with an average pH of 8.9. The most 
abundant anion was bicarbonate (HCO3

−, average concen-
tration 941 mg L−1), followed by sulfate (SO4

2−, average 
735 mg L−1), and chloride (Cl−, average 226 mg L−1). 
Nutrient (N and P forms) concentrations, especially those 
for TP were high (average 1989 µg L−1). Water tempera-
tures varied between 5.3 and 36 °C, depending on the 
seasonal and daily variance of the air temperature. The 
water was usually oversaturated with oxygen (average 
112%); the average COD was 43 mg L−1 (Table 2). 
Comparison of the chemical and physical features of the 
lakes in the 2 regions (Welch-test) identified several 
significant differences: HCO3

− (p < 0.001), Cl− p = 0.009) 
ions, Pt colour (p = 0.025), and COD (p = 0.013) were 

higher in the lakes of the DT (Table 2). In the FH, SO4
2− 

concentration (p < 0.001) and oxygen saturation (135%, 
p = 0.010; Table 2) were higher than in DT.

The dominant diatom species were the members of the 
genera Nitzschia and Navicula of the motile diatom 
ecological guild. Of the 174 identified species, 107 were 
motile, 37 high profile, and 30 low profile. In the FH 
region, 120 species were found (81 motile, 21 low profile, 
and 18 high profile), similar to the DT, where 112 species 
were identified (68 motile, 13 low profile, and 31 high 
profile; Fig. 2). Based on the absolute numbers (Fig. 2a) 
and relative abundances (Fig. 2b) of species in the 
different ecological guilds, statistically significant 
differences were found between the high-profile and 
motile guilds (p < 0.001) and between low-profile and 
motile guilds (p < 0.001) on both the regional and whole 
sample sets (Fig. 2). No significant differences were found 
between the high- and low-profile guilds.

Fig. 2. Boxplots of the different diatomic ecological guilds based on 
(a) the number and (b) relative abundance of the species (high = 
high-profile guild, low = low-profile guild, motile = motile guild) in 
all lakes.
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The indicator species analysis identified 5 indicator 
species with significant indicator values for the DT region 
(Table 3); Nitzschia fonticola (Grunow) Grunow and 
Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot 
had the highest indicator values (IndVal = 25.90 and 
20.70, respectively). Of the 16 indicator species in the FH 
region, Navicymbula pusilla (Grunow) Krammer, 
Anomoeoneis sphaerophora Pfitzer, Nitzschia solita 
Hustedt, and Rhoicosphenia abbreviata (C.Agardh) 
Lange-Bertalot had the highest indicator values (IndVal = 
46.30, 41.20, 33.30 and 33.30, respectively; Table 3).

According to the RDA, separation of the 2 regions 
was most strongly determined by (Fig. 3a and 3c) HCO3

−, 
SO4

2−, COD, and NO3
− along Axis 1 (10.3%; Fig. 3b). 

Along Axis 2 (9.8%), samples were grouped based 
mainly by Cl− and TP concentrations (Fig. 3b). In the DT, 
one of the groups (DT1) included samples with higher 
NO3

− and Cl− concentrations (Fig. 3c), in contrast to the 
second group (DT2), which was characterized by higher 
conductivity, SRP, TP, NH4

+ concentrations, pH, and 
temperature (Fig. 3b). In group DT1, Nitzschia supral-
itorea Lange-Bertalot and Craticula halophila (Grunow) 
D.G. Mann dominated, while in group DT2 Nitzschia 
austriaca Hustedt and N. etoshensis Cholnoky were char-
acteristic (Fig. 3d). In the FH region, 2 groups were also 
distinguished. Group 1 (FH1) was characterized by high 
Cl− and SRSi concentrations (Fig. 3b) with the following 
species (Fig. 3d): Entomoneis paludosa var. subsalina 
(Cleve) Krammer, Nitzschia palea (Kützing) W. Smith, 
N. paleaceae (Grunow in Cleve & Grunow) Grunow in 

Van Heurck, N. constricta (Gregory) Grunow, and 
Achnanthidium minutissimum (Kützing) Czarnecki. 
Group 2 (FH2) was characterized by higher SO4

2− con-
centrations and oxygen saturation (Fig. 3b), with 
assemblages dominated by Nitzschia aurariae Cholnoky, 
N. frustulum (Kützing) Grunow in Cleve & Grunow, and 
Fallacia pygmaea (Kützing) A.J. Stickle & D.G. Mann 
Fig. 3d). After the performance of the forward selection 
procedure in the reduced RDA model, 12 of the 13 envi-
ronmental variables that had a significant effect on the 
diatom composition remained; only SRP was eliminated. 
The significance of the variables in descending order was: 
conductivity, HCO3

−, SO4
2−, temperature, COD, TP, pH, 

oxygen saturation, NH4
+, SRSi, NO3

−, and Cl−.

Discussion

Water chemistry

The conductivity values (maximum 17 600 µS cm−1) 
recorded in these saline alkaline lakes did not reach the 
previously reported maximum values (>30 000 µS cm−1; 
Schmidt 2003). Total ionic concentrations calculated from 
conductivity values according to Boros and Vörös (2010) 
varied between 416 (corresponding to freshwater; 
Hammer 1986) and 14 080 mg L−1 (average 3606 mg L−1), 
which falls into the hyposaline category (Hammer 1986). 
In contrast to seawaters, ionic composition was dominated 
by HCO3

−, SO4
2−, and Cl−. Their concentration changed 

significantly with the precipitation of salts during the 

   Danube-Tisza Interfluve (n = 34) Fertő-Hanság (n = 25) Welch-test
variables units transformations mean SD min max mean SD min max p-value
conductivity µs cm−1 x' = ln(x+1) 4697 3808 520 17 600 4318 2716 1765 13650 ns
pH — 8.9 0.4 8.1 9.7 8.9 0.4 8.3 9.4 ns
SO4

2− mg L−1 x' = ln(x+1) 118.9 140.0 0.0 731.0 616.4 593.8 91.9 2433.0 <0.001
HCO3

− mg L−1 x' = ln(x+1) 1182.4 508.4 435.0 2092.0 700.3 326.5 291.3 1866.6 <0.001
Cl− mg L−1 x' = ln(x+1) 325.9 374.5 0.9 1568.9 125.5 181.4 3.4 819.4 0.009
colour mg L−1 Pt - 525.0 276.2 243.1 926.9 96.6 72.7 40.9 352.2 0.025
NH4

+ mg L−1 x' = arcsin(x0.5) 2.5 6.8 0.0 32.7 2.5 5.4 0.0 25.9 ns
NO3

− mg L−1 x’ = (x/100)0,5 1.8 2.0 0.3 9.9 1.0 1.7 0.0 7.6 ns
SRP µg L−1 x' = ln(x+1) 661.9 831.6 10.0 2985.0 354.8 449.9 6.3 1530.0 ns
TP µg L−1 x' = ln(x+1) 2064.9 3954.4 50.0 21 760.0 1913.1 3249.4 43.9 14 720.0 ns
SRSi mg L−1 x' = ln(x+1) 5.4 5.5 0.1 29.6 4.1 2.8 0.2 12.2 ns
temperature °C — 18.6 6.4 5.3 36.0 21.7 9.2 7.4 35.4 ns
O2 saturation % — 89.8 44.4 1.2 184.2 135.0 71.8 18.1 293.9 0.010
COD mg L−1 O2 x' = ln(x+1) 59.6 71.4 6.0 423.0 26.4 18.3 0.0 72.0 0.013

Table 2. Physical and chemical parameters and their differences based on Welch-test of the saline, alkaline lakes in the 2 regions, the Danube-
Tisza Interfluve and the Fertő-Hanság.
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evaporative concentration, as also observed by Eugster 
and Jones (1979). According to Simon et al. (2011), ionic 
composition of individual saline, alkaline lakes is related 
to the chemistry of groundwater. The composition of the 
groundwater of the catchment area is more important in 
saline than in freshwater lakes, which collect their water 
from surface flow (Comín et al. 1999). In the DT, the 
bicarbonate ion was dominant; most of these lakes are of  
a sodium bicarbonate (Na+-HCO3

−) type (Boros and Vörös 
2010), in contrast to the FH region, which is characterized 
by the dominance of the SO4

2− anion. COD and Pt colour 
were consistently higher in the DT region. Allochtonous 
organic substances are derived from decomposition of 
macrophytes and droppings (V.-Balogh et al. 2009, 2010). 
The lakes were oversaturated with oxygen due to photo-
synthetic activity of the algae because of the daytime 
sampling, but oxygen saturation is known to be low (16%) 
at night (Vörös and Boros 2010), and significant fluctua-

tions of saturated and unsaturated conditions may occur 
on a daily basis in these highly productive lakes (Wetzel 
1983). Oversaturation was higher in the FH region 
(maximum 294%), although it did not reach the highest 
recorded maximum of 499% in Kelemen-szék in the DT 
region (Vörös and Boros 2010). 

Diatom assemblages 

Nitzschia and Navicula species were the most frequent in 
the saline lakes of the 2 regions in the Carpathian basin. 
At the generic level, they are dominant and characteristic 
in nonmarine (athalassic) saline lakes (Gasse 1986a, 
1986b, Servant-Vildery and Roux 1990, Blinn 1993, 
Tibby et al. 2007, Blanco et al. 2013). These genera and 
other representatives of the motile ecological guild were 
significantly more abundant than those from the other 2 
guilds. The reason for their abundance is that species in 

Regions Species Author Mean 
abundance

Observed 
indicator 
value (IndVal)

p

Danube-Tisza Fistulifera saprophila (Lange-Bertalot & Bonik) 
Lange-Bertalot

0.39 9.50 0.030

Fragilaria famelica (Kützing) Lange-Bertalot 0.07 13.00 0.015
Mayamaea atomus var. permitis (Kützing) Lange-Bertalot 0.67 20.70 0.015
Nitzschia communis Rabenhorst 0.16 18.40 0.020

 Nitzschia fonticola (Grunow) Grunow 0.37 25.90 0.005
Fertő-Hanság Amphora libyca Ehrenberg 0.12 16.70 0.005

Anomoeoneis sphaerophora (Ehrenberg) Pfitzer 0.58 41.20 0.005
Cocconeis placentula var. lineata (Ehrenberg) van Heurck 0.02 11.10 0.050
Cyclotella meneghiniana Kützing 0.60 16.70 0.005
Cymbella cymbiformis C.Agardh 0.05 11.10 0.055
Gyrosigma sp. Hassal 0.29 20.40 0.010
Hippodonta capitata (Ehrenberg) Lange-Bertalot, 

Metzeltin and Witkowski
0.06 12.30 0.050

Hippodonta hungarica (Grunow) Lange-Bertalot, 
Metzeltin and Witkowski

0.17 14.80 0.025

Navicula salinarum Grunow 0.24 22.20 0.005
Navicymbula pusilla (Grunow) K.Krammer 0.51 46.30 0.005
Nitzschia elegantula Grunow 0.28 22.20 0.005
Nitzschia salinarum Grunow 0.03 11.10 0.050
Nitzschia solita Hustedt 0.34 33.30 0.005
Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot 0.86 33.30 0.005
Stauroneis wislouchii V.S. Poretzky & Anisimova 0.09 16.70 0.010

 Surirella peisonis Pantocsek 0.08 18.80 0.020

Table 3. Most significant indicator species based on the Indicator Species Analyses (IndVal) using species abundance data for the Danube-
Tisza Interfluve and for the Fertő-Hanság regions.
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tolerant taxa; the photoadaptational parameter (Ik) of 
Nitzschia species is low (Padisák 2003). In addition, the 
motile guild largely prefers eutrophic and/or organically 
polluted waters and proliferates in nutrient-rich habitats 
(Passy 2007) such as the saline lakes in this study.

Indicator species of the regions were satisfactorily 
defined based on the IndVal analyses; suitable examples are 
Nitzschia communis for the DT region and Anomoeoneis 
sphaerophora for the FH region. A. sphaerophora indicated 
the saline type of lakes in the FH region by exhibiting a 
positive response to high pH and bicarbonate content (Blinn 
1993). Cyclotella meneghiniana (indicator species of the 
FH region) is a suitable and well-known example of species 
that are physioecologically adapted to high salinity  

soda pans must survive, either temporarily or permanently, 
and adapt to special conditions (Oren 1999) such as high 
salinity, high turbidity (Secchi-transparency of only a few 
centimeters; Horváth et al. 2013a), high nutrient concen-
trations, high daily temperature fluctuations (Vörös and 
Boros 2010), and ephemeral features (Cognetti and 
Maltagliati 2000). Under these conditions, the motile 
ecological guild has a competitive advantage over either 
the low- or the high-profile guilds. Parallel with increasing 
turbulence rates (Alvial et al. 2008) and decreasing 
underwater low irradiance levels, their contribution to the 
assemblages rises significantly (Stenger-Kovács et al. 
2013) because of their ability to actively select the most 
suitable habitat (Passy 2007). Moreover, they are shade-

Fig. 3. Redundancy analyses (RDA) based on the water chemical and species abundance data emphasized (a) regions (Fertő-Hanság = FH; 
Danube-Tisza Interfluve = DT); (b) explanatory variables (chlor = chloride ion, bicarb = bicarbonate, ammon = ammonium, temp = 
temperature, conduct = conductivity, sulph = sulphate, sat = saturation); (c) samples (first 3 letters = beginning of lake name; number = year of 
sampling; next letter is season of sampling [S = spring, SU = summer, A = autumn, W = winter]; last letter is substrate type [P = macrophyte, 
M = mud]); and (d) dominant species. ADMI = Achnanthidium minutissimum, CHAL = Craticula halophila, EPSU = Entomoneis paludosa 
var. subsalina, FPYG = Fallacia pygmaea, NAUR = Nitzschia aurariae, NAUS = Nitzschia austriaca, NZCO = N. constricta, NIET =  
N. etoshensis, NFRU = N. frustulum, NPAL = Nitzschia palea, NPAE = N. paleaceae, NSUP = Nitzschia supralitorea.
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(De Deckker 1988) because they are able to synthetise os-
moregulators (like proline). As salinity increases, proline 
synthesis rates and nitrogen demand also increase (Schobert 
1974). In East African alkaline, saline lakes the most 
common species was Anomoeoneis sphaerophora, 
accompanied by Centrales and Navicula species (Tuite 
1981). Nitzschia communis (indicator of DT region) was 
present in 63% of the saline lake habitats of western North 
America and had the highest specific conductance index 
values and tolerated the highest ionic strength (Blinn 1993). 

In general, indicator species of the 2 regions marked not 
only high conductivity (e.g., Nitzschia fonticola for DT and 
Nitzschia salinarum for FH) but also eutrophic conditions 
(e.g., Fistulifera saprophila for DT, Hippodonta capitata 
for FH). The high nutrient availability of these lakes is not 
necessarily the consequence of anthropogenic pollution; 
however, most are surrounded by agricultural areas and 
tilled down to their shorelines. Even so, because of the tens 
of thousands of birds that populate these lakes during 
migration (Harper et al. 2003, Boros et al. 2006, Horváth et 
al. 2013c) and the active maintenance of endemic beef 
cattle (Bos primigenius) and buffalo (Bubalus bubalis) 
farms in the regions, mammal and bird populations sub-
stantially increase plant nutrient levels through their 
droppings (Oduor and Schagerl 2007). The average TP con-
centration is 8 times higher (1989 µg L−1) compared to the 
freshwater lakes (~225 µg L−1) of the ecoregion, whereas 
the average NO3

− concentrations (1.4 mg L−1) exceed twice 
that of freshwater concentrations (based on the database of 
the University of Pannonia, unpublished data). Accordingly, 
resource availability prevails, with minimal competition for 
nutrients among the species (Oduor and Schagerl 2007).

Main drivers of the diatom composition

Using RDA, lakes were separated into 2 subgroups in 
each of the 2 regions based on HCO3

− concentration. 
Subgroup DT2 inside the DT region is characterized by 
pristine saline lakes (Kardoskúti-Fehértó, Böddi-szék, 
Bába-szék, Kelemen-szék), which are turbid soda ponds 
with high levels of suspended inorganic solids (Boros 
1999, Váradi and Fehér 2010). Their conductivity, pH, 
and nutrient concentrations (NH4

+, SRP, and TP) are the 
highest of all the investigated lakes. Their ecological 
status is the highest because their conditions are the 
closest to the status considered as natural. In this group, 
Nitzschia austriaca and Nitzschia etoshensis were 
dominant. Subgroup DT1 (e.g., Fülöp-szék, Büdös-szék, 
Csárda-szék, Ősze-szék) is characterized by higher con-
centrations of Cl− and NO3

− and includes only samples 
collected in 2006, which was a meteorologically 
exceptional year. High precipitation and flooding occurred 
in spring 2006; therefore, conductivity was lower and 

NO3
− concentration was higher than usual due to runoff 

from the surrounding agricultural areas. The lakes 
preserved their saline character, however; halophilic 
species like Nitzschia supralitorea and Craticula halophila 
were dominant. Nevertheless, changes in the ionic 
composition and in the dominant taxa clearly indicated the 
extreme weather conditions. The lakes in the DT area have 
a smaller surface area (e.g., Szappan-szék, Büdös-szék 
Pusztaszer) compared to those in other regions, which 
results in fewer waterfowl and lower TP. 

Lakes in the FH region are characterized by lower 
bicarbonate content and can also be divided into 2 
subgroups. Lakes in subgroup FH2 (e.g., Cikes, Pap-rét, 
Nyéki-szállás, Herrnsee, Albersee) are characterized by 
higher conductivity and dominated by SO4

2−, with the 
diatom assemblages dominated by halophilic species like 
Nitzschia frustulum and N. aurariae. In addition to SO4

2−, 
subgroup FH1 (Borsodi-dűlő, Legény-tó) is dominated by 
Cl− and has a higher SRSi content; the conductivity and 
TP concentration in these lakes were lower. Subgroup 
FH1 mostly includes samples from Borsodi-dűlő, which is 
located in the active reconstruction area of the national 
park. The water level is highly regulated, and therefore the 
characteristics of the water are modified and highly 
dependent on the management activities and conservation 
measures such as (1) flooding the area to supply water for 
the migratory birds and/or (2) draining the water through 
the established channel system of the FH to guarantee an 
adequate area for grazing of beef cattle and buffalo. 
Another example from this group is Legény-tó, which is 
in constant connection with a drainage system that 
maintains its permanent water level but considerably 
modifies its saline character. The lower TP concentration 
of the FH1 group is because most sampling occurred in 
winter when the water level was especially high and 
migratory waterfowl populations were reduced.

In the reduced RDA model, the explanatory variables 
determined by the composition of the diatom assemblage 
were, in descending order, conductivity, HCO3

−, SO4
2−, 

temperature, COD, TP, pH, saturation, NH4
+, SRSi, NO3

−, 
and Cl−. In Turkish saline lakes, temperature, carbonate, 
conductivity, pH, silica, alkalinity, and SRP were the main 
environmental factors that explained variation in the 
diatom composition and the dominance of the assemblage 
by cosmopolitan species with high alkalinity tolerances 
(Koçer and Şen 2012). Except for SRP, this RDA model 
did not considerably reduce the number of the master 
variables. The statistically most significant factors were 
salinity (HCO3

− or SO4
2−) and temperature. According to 

Williams (2002), conductivity and ionic composition 
determine the composition of biota, and these variables 
satisfactorily explained the differences in diatom 
assemblages of some Canadian lakes (Wilson et al. 1994). 
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Temperature is a key factor that determines the 
existence of saline lakes (Williams 2002) as well as the 
diatom assemblages identified in this study. For Central 
Europe, climate scenarios predict a substantial (6 °C) 
increase in temperature (Szépszó 2008) with modified 
precipitation patterns and increasing incidence of extreme 
weather events (high floods, heat waves, and droughts; 
Moss et al. 2009). The predicted effect of temperature 
increases or permanently higher summer water tempera-
tures on diatom communities is not well understood. 
Some studies found that at temperatures >34.2 °C, 
diatoms are replaced by green algae as the dominant 
algae (Patrick 1969, Hickman 1982), or that the summer-
dominant epipelic diatom species required higher temper-
atures for rapid cell division than the species that are 
dominant during the cold seasons (Eloranta 1982, 
Admiraal et al. 1984).

Because high pH (8.1–9.4) is a characteristic feature of 
these lakes, its effect on the diatom assemblages cannot be 
neglected. Although diatoms are more sensitive to pH 
changes in acid-neutral than in alkaline lakes (Blinn 
1993), response of the diatom community to pH in these 
lakes was pronounced. Both pH and oxygen concentration 
influence the nutrient availability of algae in hypereu-
trophic lakes (Sondergaard et al. 1990). Nutrient levels are 
less important in the studied lakes than in the lakes of the 
Kenyan Rift Valley, where importance order of the key 
variables was nitrate, conductivity, phosphorous, and light 
supply (Oduor and Schagerl 2007). 

In summary, diatoms of these saline lakes proved to be 
good indicators of climate-driven variables such as 
salinity, ionic composition (Saros and Fritz 2002), and 
temperature, as well as anthropogenic activities, including 
when these activities serve nature conservation purposes.

Management

Before water regulation, floods of the River Danube and 
River Tisza supplied the small saline lakes of the DT. At 
present, solely precipitation and groundwater provide their 
water supply. The scarcity of water in the DT has long 
been evident (VGT 2009) due to climate change and 
anthropogenic interventions (watercourse regulation, 
excessive drainage, and overpumping of groundwaters). 
Today the situation is critical. The area of lakes has 
decreased, some lakes have completely or partly dried out 
(e.g., Szappan-szék), and both abundance and diversity of 
biota have decreased.

There is an urgent need to assess lake values, to char-
acterize threats, and to suggest management and conserva-
tion measures (Williams 2002). The lakes of the DT and 
FH regions are registered by the Ramsar convention and 
as Natura 2000 sites; however, lakes in these regions were 

not appointed and selected as waterbodies according to 
Water Framework Directive (EC 2000) because their 
surface areas rarely exceed the 50 ha threshold. Neverthe-
less, their significance cannot be measured by their size.

Changing agricultural methods, abandoning reduction 
of potential supply waters, and retaining water on the area 
can ensure the existence of these habitats (VGT 2009) and 
preserve the natural hydroperiod. Man-made (fresh) water 
supply as a replacement for natural groundwater sources 
would destroy the wildlife of these saline lakes. 

Recent management of the saline lakes in the FH 
region was implemented for habitat restoration with a 
focus on the conservation of waterfowl (Comín et al. 
1999) and beef cattle to maintain their populations 
(Korner 2012), which could result in losing the special 
saline character of the lakes of this group. Because this 
characteristic could be maintained by applying a different 
kind of conservation treatment, management efforts must 
consider the natural water coverage with simulation of 
natural water level fluctuations (Williams 2002) both 
seasonally and interannually (Talling 2001). Lack of 
natural salinization processes can lead to a number of 
floristic and faunistic changes in closed-basin lakes (Fritz 
et al. 2010). The typical saline diatom species are 
completely missing from lakes in FH1, and only one 
dominant species (Entomoneis paludosa var. subsalina) 
indicates the original or theoretically potential status. The 
presence of another species, Nitzschia palea, in the FH1 
group is also reassuring because this species is defined as 
a characteristic species of saline lakes (Blinn 1993), 
although it is also common in freshwaters (Lange-Bertalot 
2013). The dominant Achnanthidium minutissimum, 
however, is associated with electrolyte-poor environments 
at different pH (van Dam et al. 1994, Kovács et al. 2006) 
and trophic levels (Lange-Bertalot 2013). 

Two saline lakes (Neubruch and Zicklacke in Austria) 
in the area were outliers from their own FH region, and 
they more closely resembled samples from the DT region 
because their bicarbonate content and COD were higher 
than characteristic in the FH region. Status assessment and 
evaluation of these 2 lakes may follow the method used in 
the DT region. 

Threats to and impacts on saline lakes from anthropo-
genic activities involve special requirements for 
sustainable management. Development of management 
guidelines is difficult because experiences are scarce 
compared to freshwater lakes (De Bernardi et al. 1996). 
Both local and international management and conserva-
tion are needed to protect the natural character of these 
alkaline, saline lakes. Differences in hydrological patterns 
strongly determine the seasonal and long-term changes in 
salinity (Williams 2002), which should be considered 
during their maintenance.
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