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Abstract 

Continental freshwater systems have now been shown to be globally significant sources of methane, but there are still 
large uncertainties associated with freshwater methane fluxes. Studies to date have mainly focused on either ebullition 
of bubbles originating from sediments or on diffusive fluxes of dissolved methane across the air–water interface. We 
examined the potential influence of a new mode of methane emission from freshwater systems by comparing the gas 
exchange velocities derived from carbon dioxide and methane fluxes in a set of diverse systems and environmental 
conditions. In more than 90% of 260 measurements, methane exhibited higher evasion rates than strictly Fickian 
diffusive processes would suggest. The portion of flux associated with this non-Fickian diffusion, which we attribute  
to the presence of semistable microbubbles, was closely related and directly proportional to the degree of methane  
supersaturation relative to the atmosphere. On average, microbubble-mediated flux contributed about half of the  
total measured diffusive efflux from the systems and could be modeled as an additive gas piston velocity of, on average, 
2.1 m d−1. The microbubble-mediated flux is completely absent in calculations of diffusive methane fluxes derived from 
ambient pCH4, and is also not necessarily captured in current approaches used to determine ebullition rates. Our results 
suggest that methane evasion rates based only on measured partial pressures and exchange velocities characteristic of 
Fickian diffusive processes will grossly underestimate methane losses from these boreal ecosystems.
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Introduction

Lakes, impoundments, and rivers are predominantly net 
emitters of carbon gas to the atmosphere, mostly in the 
form of carbon dioxide (del Giorgio et al. 1999, Prairie  
et al. 2002, Battin et al. 2009), but also as methane 
(Bastviken et al. 2004, Walter et al. 2006). The importance 
of these aquatic systems in carbon budgets can be surpris-
ingly large given the relatively small area they occupy in 
the landscape (Christensen et al. 2007, Cole et al. 2007, 
Jonsson et al. 2007, Prairie 2008,). Recent evidence 
suggests that—integrated over time scales appropriate for 
each compartment—impoundments, lakes, and rivers may 
play a significant role both at the watershed and regional 
levels (Alin and Johnson 2007, Tranvik et al. 2009, 
Karlsson et al. 2010, Bastviken et al. 2011). Nevertheless, 

current aquatic emission estimates are uncertain, largely 
due to methodology related to the complexities of gas 
dynamics and exchange in aquatic systems. 

This uncertainty is particularly large in the case of 
freshwater methane fluxes (Bastviken et al. 2011). Most of 
the methane fluxing from freshwater systems is generated 
in anoxic sediments, although there have been recent 
reports of significant rates of methane production even in 
oxic water columns of lakes (Grossart et al. 2011), and 
methane production rates vary greatly across systems 
(Thebrath et al. 1993, Huttunen et al. 2006, Juutinen et al. 
2009). In addition, the pathways that mediate methane 
transfer to the atmosphere are complex, involving 
molecular diffusion and ebullition, water column 
oxidation, and plant-mediated translocation. The relative 
importance of these processes is primarily a function of 
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the morphometry and trophic status of the water bodies 
(Juutinen et al. 2009) and secondarily the nature of the 
surrounding landscapes (Segers 1998, Bastviken et al. 
2004). Ebullition has been recognized for decades as a 
potentially significant pathway of methane emission to the 
atmosphere in shallow bogs and wetlands (Grant and 
Roulet 2002), but recent studies have shown that bubble-
mediated fluxes, particularly point-source ebullition, may 
be the dominant source of methane emissions from arctic 
and subarctic lakes as well (Walter et al. 2006). 

Most studies of methane fluxes from lakes to date, 
however, have focused on diffusive fluxes at the air–water 
interface. Current estimates of diffusive gas emissions are 
based largely on estimates derived from point measure-
ments of gas partial pressures to which an appropriate gas 
exchange coefficient is applied (e.g., Prairie et al. 2002, 
Hanson et al. 2003, Algesten et al. 2004). These estimates 
are based on the assumption that fluxes from all gases 
essentially follow the same Fickian diffusive process at 
the air–water interface modulated by a gas exchange 
coefficient (alternatively termed exchange velocity or 
piston velocity), k600, the magnitude of which is largely 
driven by turbulence and convection (MacIntyre et al. 
2010; Vachon et al. 2010). Quantitatively, it is a rate 
equivalent to the depth of water that can regain 
equilibrium with the atmosphere per unit time. In practice, 
gas exchange velocities are seldom measured but are 
instead generally inferred from published empirical  
relationships with wind speed (Wanninkhof et al. 1985, 
Wanninkhof 1992, Cole and Caraco 1998, Vachon et al. 
2010, Vachon and Prairie, unpublished). This approach 
has been widely used, particularly for carbon dioxide 
(Prairie et al. 2002, Algesten et al. 2004, Roehm et al. 
2009), but also for methane (Bastviken et al. 2011). 

The very existence of methane ebullition is a strong 
indication that methane is fairly unique among biogenic 
gases. Bubbles of methane are easily formed because rates 
of methanogenesis are high relative to the naturally 
occurring ambient concentrations. This condition is 
readily achieved for methane because of the combination 
of its low partial pressure in the atmosphere (≈1.7 matm) 
and its low solubility in water (mole fraction solubility  
of 2.81 × 10−5 at 20 °C). Thus, even when methane 
production is small in absolute rates, it can result in rapid 
and large increases in water methane partial pressures. In 
the pore water of freshwater sediments, where methane is 
predominantly produced, the partial pressure of methane 
alone can exceed 1 atm (e.g., Carignan and Lean 1991) 
and bubbles are easily produced. 

Methane levels, however, can reach high supersatura-
tion in the water column as well. In their compilation of 
73 lakes where methane flux was measured, Bastviken  
et al. (2004) reported water column methane concentra-

tions corresponding approximately to supersaturation 
values varying from about 4 to more than 700-fold greater 
than atmospheric equilibrium (average 220-fold). No 
other gas naturally reaches such supersaturation levels. 
Although dinitrogen is the least soluble of these gases, 
rates of nitrogen (N2) production from denitrification  
are low relative to the concentrations of N2 already  
present from atmospheric equilibration, thus preventing 
substantial oversaturation. Likewise, oxygen is not very 
soluble but is also rarely oversaturated by more than 50%. 
Production rates of carbon dioxide from microbial 
respiration can be high in heterotrophic systems (del 
Giorgio et al. 1999), but because of its high solubility 
(about 200 times more soluble than oxygen), supersatura-
tion levels can reach at most 10–20-fold above 
atmospheric equilibrium (Cole et al. 1994).

The unusual combination of environmental factors and 
chemical properties that lead to high supersaturation 
levels often attained by methane in freshwater environ-
ments is unique. As a consequence, the assumption that 
methane (or other such highly supersaturated gas) follows 
the same diffusive process at the air–water interface as 
other bioactive gases such as oxygen or carbon dioxide 
needs to be tested, because it may strongly influence the 
estimate of total methane fluxes from aquatic systems. 

This study examined the validity of this assumption 
and quantified the potential significance of any 
non-Fickian diffusive behavior in the methane flux from 
boreal lakes and reservoirs. To address these questions,  
we compared k600 determined concurrently from carbon 
dioxide and methane flux measurements in a suite of 
diverse lakes and one large impoundment in the boreal 
zone of Quebec to assess whether the 2 gases follow the 
same diffusive properties. We assumed that carbon 
dioxide (CO2) follows a strictly Fickian diffusive process 
whereas methane (CH4) flux can be enhanced by other 
processes. Positive discrepancies between these paired k600 
values are then expressed as a non-Fickian flux to explore 
the determinants of its magnitude. 

Materials and methods

Study area

Samples were taken as part of a larger project evaluating 
the net impact of reservoir impoundment on the carbon 
balance of the landscape (Teodoru et al. 2012). We 
collected samples from both the newly created Eastmain-1 
hydroelectric reservoir (602 km2) and a series of nearby 
lakes, located in the boreal zone of Québec, Canada 
(52°7′N, 75°58′W). These oligo- to mesotrophic lakes 
ranged from 0.02 to 56 km2 (median = 0.5 km2) in size, 
from 4 to 18 mg L−1 in dissolved organic carbon (DOC) 
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concentration, and from 6 to 30 µg L−1 in total 
phosphorous (TP) concentration (Roehm et al. 2009) The 
samples were collected from spring to early fall (Jun–Oct) 
and spanned a moderate range in weather conditions, with 
instantaneous wind speed ranging from 0 to 7 m s−1. 

Gas concentration and gas exchange velocities
Gas exchange velocities were derived from concomitant 
measurements of gas flux and partial pressure for both 
carbon dioxide (pCO2) and methane (pCH4) following:

	 	 (1)

where Flux is expressed in mmol m−2 d−1, Kh is the  
temperature-corrected Henry’s constant appropriate for 
each gas, and ∆pGas is the difference in partial pressures 
between the air and the water phases for each gas.  
To facilitate comparison, the k-CH4 and k-CO2 were 
standardized to a Schmidt number of 600 using

	 	 (2)

where Sc is the Schmidt number of a gas at a given 
temperature (Wanninkhof 1992). We used n = 2/3 for wind 
speed <3.7 m s−1 and n = 1/2 for wind speed >3.7 m s−1 
(Guérin et al. 2007). The k600 derived from CO2 measure-
ments are assumed to adequately represent a strictly 
diffusive process because chemical enhancement due to 
the direct hydration of CO2 (g) molecules is negligible at 
the pH values we encountered in these poorly buffered 
systems (Wanninkhof and Knox 1996, Bade and Cole 
2006). 

Duplicate flux measurements were made at each 
sampling using a floating chamber (volume: 23 L; area: 
0.1 m2; water penetration: 6 cm) in which the rate of CO2 
and CH4 accumulation were measured. For CO2, the 
chamber was connected to an infrared gas analyzer 
(PPSystem, EGM-4) in a closed recirculating loop. The 
partial pressure of CO2 was recorded every minute for 10 
minutes and the rate of accumulation computed by linear 
regression. More than 95% of the chamber measurements 
had linear increases with r2 > 0.95, and no sign of deceler-
ating fluxes due to the accumulating gas were observed 
for such short chamber deployments. For CH4, syringe 
samples were taken every 2.5 minutes directly from the 
recirculating gas loop, and the rate of accumulation was 
also computed by linear regression. 

Flux measurements obtained from floating chambers 
are known to overestimate true flux, particularly in low 
turbulence conditions (Vachon et al. 2010). Because the 
present study uses gas exchange coefficients derived from 

CO2 and CH4 fluxes obtained from the same chambers, 
their comparison would nevertheless remain valid even  
if inflated in absolute magnitude; however, we used  
the function describing the degree of overestimation 
(expressed as an overestimation ratio, O.R.) developed by 
Vachon et al. (2010) who worked on the same systems 
over the same time period, expressed as

	 	 (3)

where log10εw is the base-10 logarithm of the turbulent 
kinetic energy dissipation rate (m2 s−3) estimated for lakes 
and the Eastmain-1 reservoir from the following empirical 
equations, which take into account the differential effect 
on wind of turbulence in systems of different sizes: for 
lakes, log10εw = −0.42575 + 0.1138 U10; Eastmain-1 
Reservoir, log10εw = −0.42515 + 0.2556 U10; D. Vachon, 
department of biological sciences, UQAM, pers. comm.) 
Corrected gas exchange coefficients (hereafter CO2-k600 
and CH4-k600) were thus corrected as k600/O.R.

Partial pressures of CO2 (pCO2) were determined by 
pumping surface water with a peristaltic pump through  
a gas equilibrator (membrane contactor MiniModule) 
coupled to an infrared gas analyzer (PPSystem, EGM-4) 
in a closed recirculating loop (see Cole and Prairie 2009 
for details). For CH4, water samples were taken with a 
syringe and analyzed on a Shimadzu gas chromatograph 
after headspace equilibration with vigorous shaking for  
2 minutes. Supersaturation ratios (SR) for both gases were 
calculated as the ratio of the partial pressure of the gas in 
the water to that in the air.

Results and discussion

We obtained 260 measurement pairs of CO2 and CH4 
fluxes and corresponding partial pressures over the 3 
consecutive field seasons (2006–2008). Of those, 160 
were obtained from the Eastmain-1 reservoir, a recently 
(late 2005) flooded hydroelectric impoundment suscepti
ble to sustained high CH4 production from the buried  
peat, organic soils, and vegetation. The remaining 100 
measurements were obtained from 33 different natural 
lakes sampled between 1 and 8 times. 

Carbon dioxide and methane supersaturation in 
boreal lakes

The compilations of Cole et al. (1994) and Bastviken et al. 
(2004), among others, have already shown that lakes are 
generally supersaturated in both CO2 and CH4, and aquatic 
systems of the boreal region of Québec followed the same 
trend. All the systems sampled were supersaturated in 
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CO2, and the degree of supersaturation differed between 
environments, averaging 175% for lakes and around 460% 
for the Eastmain-1 reservoir, with little overlap between 
the system types, and a threshold value of about 280%  
(or 2.8-fold) clearly distinguishing the 2 environments. In 
earlier studies we discussed the spatial and temporal 
patterns in pCO2 in this young boreal reservoir (Teodoru 
et al. 2011), and also in the lakes (Roehm et al. 2009) and 
rivers (Teodoru et al. 2009) in the region. All these 
systems were also supersaturated in CH4, and CH4 super-
saturation ratios were much more elevated and variable 
than for CO2. In lakes, CH4 supersaturation averaged 
33-fold relative to atmospheric, whereas for the reservoir, 
it averaged 60-fold (ranged from 4 to nearly 500-fold). 
There was a weak positive correlation between the super-
saturation of the 2 gases (r2 = 0.17, p < 0.01), indicating 
that rates of methanogenesis and of CO2 production are 
only loosely linked in these systems, a situation distinct 
from Finnish lakes where a much tighter coupling was 
observed (Kortelainen et al. 2006). 

In the combined lake and reservoir dataset, k600 values 
derived from CO2 measurements varied from 0.1 to 9.3 m 
d−1. The mean CO2-k600 value in lakes was significantly 
smaller than in the reservoir (average 2.1 and 3.6 m d−1, 
respectively). For lakes, our CO2-k600 values were similar 
to those predicted from the Cole and Caraco (1998) rela-
tionship at low wind speeds but were somewhat higher at 
wind speeds >3–4 m s−1, although similar to those reported 
in MacIntyre et al. (2010). In the Eastmain-1 reservoir, 
however, our CO2-k600 values were consistently greater 
than those predicted by Cole and Caraco (1998) at  
any wind speed, a conclusion identical to that reached  
by Vachon et al. (2010) based on a different set of  
measurements from the same reservoir. 

While the k600 values obtained from CH4 and CO2 
measurements were, as expected, correlated with each 
other (Fig. 1; r = 0.76, p < 0.01), those derived from CH4 
were higher than those based on CO2 in more than 90% of 
the cases (paired t-test, p < 0.0001). Expressed as a ratio 
(CH4-k600:CO2-k600), the difference was sometimes large 
(average = 2.3-fold, interquartile range: 1.4–2.9) and was 
unrelated to the magnitude of the fluxes of either gas.  
For the 27 observations (10% of the data points) where 
CH4-k600 < CO2-k600, about half showed a difference of 
<30%, likely attributable to the combined measurement 
errors in the partial pressures and fluxes of the 2 gases. 

Such a consistent discrepancy in the k600 values 
obtained from CO2 and CH4 demonstrates that the 2 gases 
behave quite differently in these systems. Methane flux 
estimates calculated strictly from partial pressure and 
wind-inferred k values would significantly underestimate 
the true CH4 flux in most of these systems. Bastviken et al. 
(2004) also observed high CH4-based gas exchange 

velocities, which they attributed to the influence of CH4 
ebullition emanating from the sediments. They used their 
minimum observed k values as a proxy for the strictly 
diffusive portion of the flux, and their results showed a 
higher inferred ebullitive flux from the shallow zone of 
lakes. 

Our analysis is related but nevertheless quite different 
conceptually. First, all our lake measurements were made 
at the deepest point of the lake, away from the littoral 
zones. Second, our floating chamber deployments were 
short in comparison (only 10 minutes instead of several 
hours), and the chambers themselves have a relatively 
smaller surface area, rendering the probability of capturing 
large CH4 bubbles induced by suddenly changing air 
pressure (Mattson and Likens 1990, Casper 2000) or 
waves unlikely (Hofmann et al. 2010). In addition, the 
vast majority of the accumulation rates in the floating 
chambers were tightly linear in time, although there were 
a few instances (<3%) when we noted an abrupt step-rise 
in CH4 within the chamber, which would point to the 
capture of macrobubbles. Because we can discount the 
influence of ebullition, we interpret the additional, 
non-Fickian diffusive component of CH4 flux as 
emanating from the liberation of semistable microbubbles, 
likely seeded out of the supersaturated waters by 
suspended particles or colloids or from the sediments. 
Natural surface waters, rich in surfactants and organic 
compounds, are known to provide suitable environments 
to produce stable “gas-in-liquid” emulsions in which  
oversaturated gases can remain in the form of microbub-
bles for extended periods (hours to days; Turner 1961, 
D’Arrigo 2003). 

Although we acknowledge the conjectural nature of 
our microbubble hypothesis, we emphasize that the quan-
titative importance of this non-Fickian diffusion 
component of the CH4 flux does not depend on it. It 
represents a new mode of CH4 evasion that needs to be 
considered in future estimates of total CH4 flux from 
aquatic systems. For simplicity, we refer hereafter to this 
non-Fickian diffusive component as a microbubble flux. 
Our conjecture is nevertheless consistent with recent work 
by Grossart et al. (2011), who showed significant 
production of CH4 in the oxic water column of a lake, 
allegedly within anoxic microenvironments surrounding 
suspended organic particles. If these microenvironments 
can be maintained anoxic in oxic waters, this implies  
that any CH4 produced therein can likely remain trapped 
sufficiently long to reach locally high CH4 partial 
pressures, thereby providing the necessary conditions for 
microbubble growth. We provide a first assessment of the 
quantitative importance of these microbubbles in boreal 
waters and propose a modeling approach to predict the 
magnitude of the associated flux. 
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A lower limit to CH4 microbubble flux

Our data suggest that microbubble evasion at the air–water 
interface does not strictly behave as a Fickian diffusion 
process such as those applicable to truly dissolved gases; 
nevertheless, microbubble flux may also respond to 
changes in surface turbulence regimes, albeit differently. 
Our measurements of dissolved CH4 from headspace equi-
libration after vigorous shaking encompasses both the 
dissolved phase and a likely important fraction of the CH4 
originally present as microbubbles. Thus, the calculated 
pCH4 from headspace equilibration represents an unknown 
overestimation of the partial pressure exerted by the truly 
dissolved gas. Applying this pCH4 in conjunction with the 
gas exchange velocity estimated concomitantly for CO2 
thus provides an upper limit to the diffusive CH4 flux and, 
by difference from the measured bulk CH4 flux, a 
minimum microbubble flux can be calculated as

	 minFMB = FCH4 – k600 – CO2
∙Kh[(pCH4)water – (pCH4)air].	(4)

Applying equation 4 to our data suggests that microbubble 
flux can represent between 0 and 90% of the total 
measured flux, with an average of about 50% (SD = 20%) 
for both lakes and the Eastmain reservoir. 

The magnitude of this minimum estimated micro
bubble flux was not randomly distributed among our 
samples. First, it was higher in the reservoir than in the 
lakes (median 285 and 98 μmole m−2 d−1, respectively), 
consistent with the exchange velocity differences measured 

(Fig. 1). Second, the magnitude of the microbubble flux 
also coincided with the degree of CH4 supersaturation 
relative to the atmosphere (r2 = 0.29, Fig. 2), a logical 
consequence of the conditions necessary for microbubble 
formation. Thus, the more supersaturated the surface 
waters are with CH4 (SRCH4

), the greater the flux from CH4 
microbubbles (FMB, in mmole m−2 d−1), a relationship well 
described (excluding the 29 observations where CO2-k600 > 
CH4-k600)) by the log-log linear regression

	 log10(FMB) = −2.19 + 0.97*log10(SRCH4
).	 (5)

The parameter estimates of this regression model 
further suggest that microbubble flux and CH4 supersatu-
ration ratio are nearly directly proportional (r2 = 0.36,  
p < 0.0001, log-log slope near, and not significantly 
different from, unity; t-test, p > 0.05). Similarly, the 
intercept indicates that, at a partial pressure corresponding 
to atmospheric equilibrium, CH4 flux as microbubbles  
is essentially negligible at about 6 nmoles m−2 d−1. For 
simplicity, equation 5 can thus be approximated as

	 FMB = 0.006*SRCH4
	 (6)

without significant loss of predictive power. Interestingly, 
the magnitude of the estimated microbubble flux was only 
marginally related to wind speed (r2 = 0.08, p < 0.05), 
suggesting that wind-generated surface water turbulence 
is not the main driver of this component of the total CH4 
flux to the atmosphere. 

Fig. 1.  The relationship between the gas exchange velocity (k600) estimated from methane (y axis) and carbon dioxide (x axis). Open and solid 
circles correspond to data from lakes and the Eastmain-1 reservoir, respectively. Dashed line represents line of equality.
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Implications for the modeling of methane flux

At the ecosystem level, the main controls over CH4 
emissions from lakes are still poorly constrained. Unlike 
those for CO2, for which clear metabolic and landscape 
patterns have emerged (Hope et al. 1996, Prairie et al. 
2002, Hanson et al. 2003, Sobek et al. 2005, Roehm et al. 
2009, Lapierre and del Giorgio 2012), CH4 emissions are 
much more difficult to predict in part because a significant 
but highly variable fraction of the CH4 produced in the 
sediments is oxidized to CO2 before reaching the surface 
(Bastviken et al. 2002, McGinnis et al. 2006, Bastviken  
et al. 2008). Clearly, our results further complicate the 
modeling of CH4 from surface waters because, at least  
in boreal systems, a quantitatively significant proportion 
of the total flux of CH4 evasion seems to be non- 
Fickian, presumably mediated by microbubbles, but this 
component is highly variable across systems. Our study 
suggests that CH4 nonebullitive flux can be modeled as 
the sum of 2 distinct processes where the total flux 
follows

	 FCH4
 = FD + FMB,	 (7)

where the subscripts D and MB represent the dissolved 
and microbubble fractions of the flux, respectively. For the 
dissolved fraction FD, the general equation for diffusive 
processes can be applied (such as equation 1) where the 
gas exchange coefficients can be estimated from wind 
speed, convection or both (Cole and Caraco 1998, 
MacIntyre et al. 2010, Read et al. 2012). For the 
non-Fickian microbubble component, our results suggest 
that the best and simplest predictor of FMB is the extent of 
CH4 supersaturation (Fig. 2). Combining the 2 components 
of CH4 flux provides further interesting insights on the 
functional form appropriate to model total CH4 flux. From 
the above, total CH4 flux can be described as

	 	 (8)

where kCO2
 is the k derived from CO2 but applied to CH4 

after adjustment for the Schmidt number for CH4, and 
1.75 (in µatm) is the average atmospheric concentration of 
CH4. After rearranging, equation 8 reduces to 

	 	 (9)

In our dataset, this equation explains 76% of the 
variability in the total CH4 flux of our sites and is unbiased 
over its entire range (Fig. 3). Furthermore, the constant 
0.006 in equation 9 represents the estimated microbubble 
flux when CH4 is in equilibrium with the atmosphere  

(SR = 1), which, as described previously, is quantitatively 
negligible. At the average temperature of our data (about 
15 °C), the term 0.0035/Kh corresponds to an additional 
quasi-gas exchange coefficient of 2.1 m d−1, on average, a 
relatively large value equivalent to the gas exchange 
velocity generated by a 5 m s−1 wind over a medium-sized 
lake (1 km2; Vachon and Prairie, unpublished). Neverthe-
less, the theoretical volume occupied by these microbub-
bles is small. Combining our estimated microbubble 
fluxes with the average gas exchange velocity associated 
with microbubbles (2.1 m d−1), we estimate that microbub-
bles need only occupy on average between 3 and 5 μL L−1 
if they only contain CH4, although other gases such as N2 
or CO2 are likely present as well (Martens et al. 1992, 
Walter et al. 2007). 

The form of equation 9 suggests that the microbubble 
flux can be modeled generally as an additive kMB term 
following

	 FCH4 = Kh · ∆pCH4 (kD + kMB),	 (10)

where the apparent bulk gas exchange velocity k estimated 
in equation 1 can be formulated as the sum (kD + kMB). Our 
study covers a large portion of the range in lake size and 
wind conditions likely to be encountered in boreal regions, 
but whether or not this CH4 microbubble flux can be 
generalized as an additive k term in all systems beyond 
this range remains to be further tested. The average kMB 
value of 2.1 m d−1 should be used with caution given that 
it may vary considerably among lakes. In a recent paper, 
Beaulieu et al. (2012) reported the same pattern of dispro-
portionately high apparent k for CH4 in a large river, and 
our own group has observed the same pattern across river 
orders in a boreal fluvial network (Campeau et al. 
unpublished), suggesting that this pathway of CH4 
emissions may also be significant in rivers. 

The dynamics of microbubbles in the water column 
may be rather independent of the ebullition of macrobub-
bles originating from the sediments. The latter process is 
considerably more difficult to quantify due to its charac-
teristic extreme spatial and temporal variability (Walter et 
al. 2006), but improved approaches (Walter et al. 2007) 
have demonstrated that these ebullition fluxes are 
significant in littoral areas of lakes (Bastviken et al. 2002), 
in certain types of reservoirs (Barros et al. 2011), and in 
shallow aquatic ecosystems in general, such as wetlands 
and beaver ponds (Roulet et al. 1997), and particularly in 
permafrost thaw lakes (Walter et al. 2007). Methane 
ebullition from shallow and deep hydrate seeps, as well as 
from anoxic lake sediments (Leifer and Patro 2002, 
McGinnis et al. 2006), has been modeled as a function of 
bubble rise velocity in conjunction with the gas exchange 
capacity of bubbles with the surrounding environment and 
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on the CH4 oxidation rate relative to the transit time within 
the water column. Similarly, changes in atmospheric 
pressure can also induce large CH4 bubbles to rise to the 
surface (Mattson and Likens 1990); however, these 
ebullition models do not adequately capture the dynamics 
of the CH4 microbubble described in this study. Our 
results thus need to be considered as complementary to 
those dealing with macrobubble ebullition, which, as 
discussed, was not effectively captured by our chamber-
based approach. 

Conclusions 

The non-strictly diffusive methane flux described in this 
paper is an unforeseen complication in the estimation of 
CH4 emissions from aquatic systems. In both the Eastmain 
reservoir and the natural boreal lakes, this new mode of 
CH4 evasion represents a surprisingly large portion of the 
total flux observed, on average 50%. We postulate that this 
non-Fickian diffusive flux is driven by microbubbles, and 
it seems to be widespread and occurring at spatial and 

Fig. 3.  Observed methane flux versus that predicted from equation 8. Open and solid circles correspond to data from lakes and the Eastmain-1 
reservoir, respectively. The line represents the least squares regression fit.

Fig. 2.  Relationship between the estimated microbubble flux (FMB, mmol m−2 d−1) and the degree of methane supersaturation (pCH4-water/
pCH4-air). Open and solid circles correspond to data from lakes and the Eastmain-1 reservoir, respectively. The line represents the least squares 
regression fit.
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Guérin F, Abril G, Serca D, Delon C, Richard S, Delmas R, Tremblay 
A, Varfalvy L. 2007. Gas transfer velocities of CO2 and CH4 in a 
tropical reservoir and its river downstream. J Mar Sys. 66:161–172.

Hanson P, Bade D, Carpenter S, Kratz T. 2003. Lake metabolism:  
Relationships with dissolved organic carbon and phosphorus. Limnol 
Oceanogr. 48:1112–1119.

Hofmann H, Federwisch L, Peeters F. 2010. Wave-induced release of 
methane: Littoral zones as a source of methane in lakes. Limnol 
Oceanogr. 55:1990–2000.

Hope D, Kratz TK, Riera JL. 1996. Relationship between pCO2 and 
dissolved organic carbon in northern Wisconsin lakes. J Environ 
Qual. 25:1442–1445.

Huttunen JT, Vaisanen TS, Hellsten SK, Martikainen PJ. 2006. Methane 
fluxes at the sediment–water interface in some boreal lakes and 
reservoirs. Boreal Environ Res. 11:27–34.

Jonsson A, Algesten G, Bergström AK, Bishop K, Sobek S, Tranvik LJ, 
Jansson M. 2007. Integrating aquatic carbon fluxes in a boreal 
catchment carbon budget. J Hydrol. 334:141–150.

Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, 
Silvola J, Martikainen PJ. 2009. Methane dynamics in different 
boreal lake types. Biogeosciences. 6:209–223.

Karlsson, J, Christensen TR, Crill P, Förster J, Hammarlund D,  
Jackowicz-Korczynski M, Kokfelt U, Roehm CL, Rosén P. 2010. 
Quantifying the relative importance of lake emissions in the carbon 
budget of a subarctic catchment. J Geophys Res. 115:G03006.

Kortelainen P, Rantakari M, Huttunen JT, Mattsson T, Alm J, Juutinen 
S, Larmola T, Silvola J, Martikainen PJ. 2006. Sediment respiration 
and lake trophic state are important predictors of large CO2 evasion 
from small boreal lakes. Glob Change Biol. 12:1554–1567.

Lapierre JF, del Giorgio PA. 2012. Geographical and environmental 
drivers of regional differences in lake pCO2 versus DOC relationship 
across northern landscapes. J. Geophys. Res. 117, G03015, 
doi:10.1029/2012JG001945.

Leifer I, Patro R. 2002. The bubble mechanism for methane transport 
from the shallow sea bed to the surface: A review and sensitivity 
study. Cont Shelf Res. 22:2409–2428.

MacIntyre S, Jonsson A, Jansson M, Aberg J, Turney DE, Miller SD. 
2010. Buoyancy flux, turbulence, and the gas transfer coefficient in a 
stratified lake. Geophys Res Lett. 37:L24604.

Martens C, Kelley C, Chanton J, Showers W. 1992. Carbon and 
hydrogen isotopic characterization of methane from wetlands and 
lakes of the Yukon-Kuskokwim Delta, Western Alaska. J Geophys 
Res. 97(D15): doi: 10.1029/91JD02885.

Mattson MD, Likens GE. 1990. Air pressure and methane fluxes. 
Nature. 347:718–719.

McGinnis D, Greinert J, Artemov Y, Beaubien S, Wüest A. 2006. Fate 
of rising methane bubbles in stratified waters: How much methane 
reaches the atmosphere. J Geophys Res. 111, C09007, doi:10.1029/ 
2005JC003183. 

Prairie YT. 2008. Carbocentric limnology: looking back, looking 
forward. Can J Fish Aquat Sci. 65:543–548.

Prairie YT, Bird DF, Cole JJ. 2002. The summer metabolic balance in 
the epilimnion of southeastern Quebec lakes. Limnol Oceanogr. 
47:316–321.

Read JS, Hamilton DP, Desai AR, Rose KR, MacIntyre S, Lenters JD, 
Smyth RL, Hanson PC, Cole JJ, Staehr PA, et al. 2012. Lake-size 
dependency of wind shear and convection as controls on gas 
exchange. Geophys Res Lett 39:5.

Roehm C, Prairie YT, del Giorgio PA. 2009. The pCO2 dynamics in 
lakes in the boreal region of northern Québec, Canada. Glob 
Biogeochem Cy. 23, GB3013, doi:10.1029/2008GB003297. 

Roulet NT, Crill PM, Comer NT, Dove A, Boubonniere RA. 1997. CO2 
and CH4 flux between a boreal beaver pond and the atmosphere.  
J Geophys Res. 102:313–319.

Segers R. 1998. Methane production and methane consumption:  
A review of processes underlying wetland methane fluxes. Biogeo-
chemistry. 41:23–51.

Sobek S, Tranvik L, Cole J. 2005. Temperature independence of carbon 
dioxide supersaturation in global lakes. Glob Biogeochem Cy. 
19:1–10.

Teodoru CR, Bastien J, Bonneville M-C, del Giorgio PA, Demarty M, 
Garneau M, Hélie J-F, Pelletier L, Prairie YT, Roulet NT, et al. 2012. 
The net carbon footprint of the boreal Eastmain-1 reservoir. Global 
Biogeochem Cycles. 26, GB2016, doi:10.1029/2011GB004187.

Teodoru C, Prairie YT, del Giorgio PA. 2009. Stream pCO2 dynamics in 
boreal Québec, and role of streams and rivers in regional CO2 
budgets. Glob Biogeochem Cy. 23, GB2012, doi:10.1029/2008GB 
003404.

Teodoru C, Pairie YT, del Giorgio PA. 2011. Spatial heterogeneity of 
surface CO2 fluxes in a newly created Eastmain-1 reservoir in 
northern Quebec, Canada. Ecosystems. 14:28–46.

Thebrath B, Rothfuss F, Whiticar MJ, Conrad R. 1993. Methane 
production in littoral sediment of Lake Constance. FEMS Microbiol 
Ecol. 102:279–289.

Tranvik L, Downing JA, Cotner J, Loiselle S, Striegl R, Ballatore T, 
Dillon P, Finlay K, Fortino K, Knoll L et al. 2009. Lakes and 



320

DOI: 10.5268/IW-3.3.542

Yves T Prairie and Paul A del Giorgio

© International Society of Limnology 2013

reservoirs as regulators of carbon cycling and climate. Limnol 
Oceanogr. 54: 2298–2314. 

Turner WR. 1961. Microbubble persistence in fresh water. J Acoust Soc 
Am. 33:1223–1233.

Vachon D, Prairie YT, Cole JJ. 2010. The relationship between  
near-surface turbulence and gas transfer velocity in freshwater 
systems and its implications for floating chamber measurements of 
gas exchange. Limnol Oceanogr. 55:1723–1732.

Walter KM, Smith LC, Chapin FS III. 2007. Methane bubbling from 
northern lakes: Present and future contributions to the global methane 
budget. Philos T R Soc A. 365:1657–1676.

Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III. 2006. 
Methane bubbling from Siberian thaw lakes as a positive feedback to 
climate warming. Nature. 443:71–75. 

Wanninkhof R. 1992. Relationship between wind speed and gas 
exchange over the ocean. J Geophys Res. 97:7373–7382.

Wanninkhof R, Knox M. 1996. Chemical enhancement of CO2 
exchange in natural waters. Limnol Oceanogr. 41:689–697.

Wanninkhof R, Ledwell J, Broecker W. 1985. Gas exchange - wind 
speed relation measured with sulfur hexafluoride on a lake. Science. 
227:1224–1226.


