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Abstract 

Gross primary production (GPP) and community respiration (R) are increasingly calculated from high-frequency 
measurements of dissolved oxygen (DO) by fitting dynamic metabolic models to the observed DO time series. Because 
different combinations of metabolic components result in nearly the same DO time series, theoretical problems burden 
this inverse modeling approach. Bayesian parameter inference could improve identification of processes by including 
independent knowledge in the estimation procedure. This method, however, requires model development because 
parameters of existing metabolic models are too abstract to achieve a significant improvement. Because algal biomass 
is a key determinant of GPP and R, and high-frequency data on phytoplankton biomass are increasingly available, 
coupling DO and biomass time series within a Bayesian framework has a high potential to support identification of 
individual metabolic components. We demonstrate this potential in 3 lakes. Phytoplankton data were simulated via a 
sequential Bayesian learning procedure coupled with an error model that accounted for systematic errors caused by 
structural deficiencies of the metabolic model. This method provided ecologically coherent, and therefore presumably 
robust, estimates for biomass-specific metabolic rates and contributes to a better understanding of metabolic responses 
to natural and anthropogenic disturbances.

Key words: Bayesian parameter inference, dynamic model, net primary production, photosynthesis, respiration, 
sequential learning

Introduction

Several recent studies have concluded that lakes and 
reservoirs actively contribute to the global carbon 
cycle, and their carbon budgets should be taken into 
account at both regional and global scales (Einsele et 
al. 2001, Cole et al. 2007, Tranvik et al. 2009). Despite 
its importance, representative rates of carbon 
metabolism are extremely difficult to obtain at the 

ecosystem scale. Dissolved carbon dioxide is difficult 
to measure and interpret because of its reactivity in 
water (Hanson et al. 2003). Diurnal dynamics of 
dissolved oxygen (DO) concentration have been 
considered the most useful and easily measurable 
proxy of aquatic ecosystem productivity since the 
pioneering work of Odum (1956). The increasing use 
of automated high-frequency optical DO sensors 
during the last decade has made it easy to obtain long, 
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high-resolution, precise time series of DO. This 
development has been perceived as an opportunity to 
conduct research into lake metabolism by applying 
previously developed data analysis techniques on high-
frequency DO data (Staehr et al. 2010).

Diurnal changes of DO in the water column are 
influenced by many processes, such as gross primary 
production (GPP), community respiration (R), 
atmospheric gas exchange (X), horizontal and vertical 
transport fluxes (T), and others (O) usually assumed to 
be less important (e.g., nitrification, precipitation, 
groundwater). Consequently, the change in DO can be 
a weak proxy for metabolism; the biological oxygen 
balance (net ecosystem production [NEP] = GPP − R) 
covers only a part of the diel DO variability (Rose et al. 
2014). The task of deriving metabolic rates from DO 
data is therefore challenging; the rates should be 
extracted from an aggregate of weakly known 
components. This task is thus a classical mathematical 
identification problem with 5 unknowns in a single 
equation, solved in practice by reducing the degrees of 
freedom at the cost of simplifying assumptions. Thus, 
T and O are typically neglected, X is calculated by 
empirical formulae, and R is assumed to be constant 
during a day and is estimated from night data when 
GPP is zero. These assumptions are, however, crude 
approximations and not always supported by other 
studies. For example, respiration rates can vary 
significantly over the day due to photorespiration of 
autotrophs (García-Camacho et al. 2012), changing 
physiological status of organisms (Markager et al. 
1992), and changing biomass of both autotrophic and 
heterotrophic organisms (Solomon et al. 2013, Sadro et 
al. 2014). Empirical models of gas transfer coefficients 
are strongly site- and case-specific (Cole and Caraco 

1998, Crusius and Wanninkhof 2003, MacIntyre et al. 
2010) and hence induce major uncertainty when 
applied elsewhere (see also, Dugan et al. 2016). 
Horizontal and/or vertical transport would be 
negligible only in homogeneous, completely mixed 
waterbodies, but ecosystems exhibit horizontal and 
vertical density gradients.

High-frequency DO time-series reveal that DO 
dynamics in lakes seldom follow a smooth, almost 
sinusoidal path predicted by simple metabolic models 
(Hanson et al. 2008). The interplay of ecological and 
physical processes typically produces a periodic yet 
rough curve, with irregular oscillations on the top of 
the daily period (e.g., figures 4 and 7 in Hanson et al. 
2008; Fig. 1). Some of the systematic deviations 
between the smooth modeled curves and reality can be 
associated with non-modeled phenomena, whereas 
others remain unexplained even when all available 
supplementary data are considered (Rose et al. 2014).

Systematic deviations of observed data from 
existing models violate the statistical assumption of 
independent model residuals, the basis of traditional 
measures of error such as sum of squared deviations or 
root mean square error. To avoid introducing a strong 
bias to the calibrated parameter values and  
simultaneously underestimating parameter uncertainty 
(Reichert and Schuwirth 2012), one has to account for 
the strong autocorrelation between model residuals 
(Van de Bogert et al. 2007, Hanson et al. 2008, 
Solomon et al. 2013). Autoregressive error models can 
be thought of as Bayesian descriptions of model 
structural uncertainty (Bayarri et al. 2007, Reichert 
and Schuwirth 2012). They eliminate erroneous under-
estimation of the parameter and prediction uncertain-
ties that common fit measures would commit in the 
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Fig. 1. The parameter identification problem and the underestimated uncertainty using the nonlinear metabolic model of Holtgrieve et al. 
(2010) on a daily DO curve from Lake Balaton, Hungary (28 Apr 2013). (a) Observed and modeled DO; (b) correlation between high-probabil-
ity values of maximal daily rate of photosynthesis (Pmax) and temperature-corrected daily heterotrophic respiration rate (r20); (c) estimated daily 
sum of NEP, GPP, and R with independent normal (dashed lines) and autoregressive error models (shaded areas).
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presence of systematic deviations. Consequently, 
confidence intervals for parameters will widen when 
structural uncertainty is handled properly (Fig. 1c). 
The elevated uncertainty reveals that even the simplest 
linear metabolic models can suffer from serious 
parameter identification issues (Hanson et al. 2008). 
Although several studies have made progress reducing 
the uncertainty of ecosystem metabolism by constraining 
and improving estimates of X (e.g., Cole et al. 2010, 
Dugan et al. 2016), rates of GPP and R are uncertain 
and strongly correlated in both model  
calculations (Fig. 1b) and reality. This issue makes it 
difficult to identify parameters of photosynthesis and 
respiration when the ratio of these 2 processes varies.

Parameter identification can be improved using 
Bayesian calibration (parameter inference), during 
which independent external knowledge and/or data are 
introduced via prior parameter distributions. This 
procedure restricts parameter variability and thus 
reduces correlations between parameters. The main 
output from Bayesian calibration is the posterior 
parameter distribution, a formal statistical compromise 
between prior knowledge or expectations about 
parameter values and the fit to observed data, the latter 
being expressed by the likelihood. The price of this 
compromise in terms of fit quality is usually minor 
because difficult parameter identification means the 
model has enough degrees of freedom to adapt to prior 
expectations without essentially changing the 
simulated DO dynamics. 

Bayesian calibration has been tested on DO data with 
both independent (Holtgrieve et al. 2010) and autore-
gressive (Reichert and Schuwirth 2012) error models in 
flowing waters. Each of these proof-of-concept studies 
covered only a few consecutive days of data, however, 
and therefore the models were not confronted with 
significant changes in the metabolic parameters over 
time. Here, we extend this modeling framework to 
lakes and apply the framework to estimate ecosystem 
metabolism in 3 lakes over the period of several 
months of measurements. 

The benefit of a Bayesian parameter inference 
depends strongly on the information content of the 
priors. The posterior distribution is the product of the 
data-independent prior distribution and the  
data-dependent likelihood. Narrow prior distributions 
reflect confident knowledge about parameters, and, 
being dominant over the likelihood, they effectively 
concentrate the posterior, hence reducing posterior 
uncertainty. Vague or high entropy priors, however, do 
not impose much restriction on parameter values, and 
the procedure converges to the classical statistical 
parameter inference because prior probability becomes 

almost invariant to the parameters, and therefore the 
likelihood will determine the shape of the posterior. A 
fundamental obstacle to obtaining informative priors 
for metabolic parameters is that parameters of most 
models are so abstract that estimating them from  
measurements is impossible. For example, the 
commonly used efficiency of photosynthesis in terms 
of surface photosynthetically active radiation (α in 
Holtgrieve et al. 2010; IP in Hanson et al. 2008; P in 
Reichert and Schuwirth 2012; ι in Solomon et al. 2013) 
depends on the composition and biomass of phyto-
plankton as well as on the vertical diffuse light 
attenuation coefficient. Consequently, this parameter 
can vary several orders of magnitude in and between 
systems. This shortcoming has limited the use of 
Bayesian parameter inference in studies of lake 
metabolism. 

In addition to the increasing use of high frequency 
DO sensors, technologies for monitoring phytoplankton 
have rapidly improved. Various fluorescence-based 
sensors produce estimates of phytoplankton biomass, 
and some can also measure the photosynthetic 
properties of algae. Although fluorescence sensors are 
widespread in automatic lake monitoring, to our 
knowledge their data have never been used in 
connection with metabolic studies. The lack of a bridge 
between metabolic studies and data on primary 
producers represents a key missing link between 
studies of ecosystem metabolism and phytoplankton 
because GPP and NEP should be closely related to 
changes in autotrophic biomass. Based on the link 
between fluorescence and metabolism, fluorescence 
data could either be used to validate estimates of GPP 
and NEP or to strengthen prior knowledge about 
primary producers during parameter inference.

The aim of this study was to (1) develop an 
improved Bayesian parameter inference procedure that 
utilizes high frequency chlorophyll fluorescence data 
to obtain estimates of lake metabolism that are 
coherent with the observed dynamics of phytoplankton 
as estimated from high frequency chlorophyll  
fluorescence; (2) compare the results of this novel 
approach to metabolic components calculated by the 
commonly used classical statistical approach that does 
not use fluorescence data; and (3) test whether the new 
approach is applicable in various types of lakes with 
different high frequency monitoring configurations.
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Methods

Model structure

We present the structure of the metabolic model in the 
matrix format proposed by Rauch et al. (1998; Table 1–3). 
The same model equations are presented in a full textual 
form in the Supplemental Material. The backbone of the 
model is the nonlinear photosynthesis–light relationship of 
Jassby and Platt (1976). Respiration is split into autotrophic 
and heterotrophic components (Ra and Rh, respectively), 
both of which are adjusted to water temperature using the 
van’t Hoff–Arrhenius equation following Holtgrieve et al. 

(2010) and Obrador et al. (2014). To link metabolism to 
autotrophic biomass (Ba) as closely as possible, we include 
feedback between metabolism and biomass. Photosynthesis 
and autotrophic respiration are both products of biomass 
and biomass-specific daily metabolic rates; they increase 
and decrease Ba, respectively (Table 1). Unlike primary 
production, daily heterotrophic respiration could not be 
made biomass-specific because of the lack of information 
on the biomass of major groups of heterotrophs. 

Maximal rate of biomass-specific photosynthesis (PB
max) 

is a dynamic state variable in our model to mimic the 
well-known diurnal changes in photosynthetic properties of 
algae (Henley 1993, Istvánovics et al. 2005, Honti and 

Process State variables Rate
DO (O2) Ba (Chl) PB

max

[mg L−1] [µg L−1] [mg O2 (µg Chl d)−1]
atmospheric 
gas exchange  1 kX/zmix (DOsat − DO)

photosynthesis  1  1/cob cpo /Ba Batanh(αBI / PB
max)

autotrophic 
respiration −1 −1/cob 0.05 Ba PB

max θ(T–20)

heterotrophic 
respiration 1 r20 θ(T–20)

decline of 
productivity −1 kP (PB

max − PB
max,base)

Table. 1. Process rates, stoichiometric factors, and affected state variables of the metabolic model.

Table. 2. Stoichiometric constants in the metabolic model.

Name Unit Converts between
cob mg O2 L−1 (µg Chl L−1)−1 oxygen production and biomass
cof

† mg O2 L−1 fluorescence−1 oxygen production and fluorescence 
cpo d−1 increase in productivity and 

photosynthesis
† cof is used to convert prior estimates for PB

max and αB from their original fluorescence units to oxygen
Table. 3. Parameters of the metabolic model.

Symbol Unit Description
kX

† m d−1 O2 exchange coefficient between water and atmosphere
zmix

† m mixing depth
DOsat

† mg O2 L-1 saturating O2 concentration
αB mg O2 ([µmol m−2 s−1] [µg Chl] d)−1 Biomass-specific light utilization efficiency
PB

max,base mg O2 (µg Chl d)−1 Base value for biomass-specific maximum rate of 
photosynthesis (PB

max)
θ – Temperature correction factor for respiration (set to 1.07)
r20 mg O2 L−1 d−1 Heterotrophic respiration rate at 20˚C
kP d−1 first-order decline rate of biomass-specific maximum 

productivity (PB
max) toward its base value

† calculated instead of calibrated
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Istvánovics 2011). The dynamic photosynthesis module 
allows algae to attain the daily maximum rate of photosyn-
thesis gradually; PB

max can increase from its base value 
(PB

max,base) by photosynthesis and decay back to PB
max,base 

during darkness, proportionally to the distance from 
PB

max,base.
We used established empirical formulae (Schmidt 

number: Wanninkhof 1992; piston velocity: Cole and Caraco 
1998; exchange coefficient: Jähne et al. 1987) to estimate the 
physical parameters of gas exchange (Supplemental Material). 

Calibration and uncertainty assessment 

We applied a sequential Bayesian learning procedure to 
estimate parameters within a several months-long 
measurement season. We defined a model day to last from 
one sunrise to the next. Calibration progressed in units 
defined by a sliding window covering 3 model days. For 
each calibration unit, a Bayesian parameter inference and 
uncertainty analysis was performed. Structural errors of the 
metabolic model were described in a Bayesian manner 
using a first-order autoregressive error model for DO 
(Reichert and Schuwirth 2012). In parallel with fitting the 
model to DO measurements, we calibrated daily mean 
biomass of algae by incorporating both of these components 
into a single likelihood function. 

Prior parameter distributions were obtained in 2 ways. 
For parameters that could directly be derived from high 
frequency data (daily mean PB

max ≈ PB
max,base,  

daily mean αB), measured daily mean values with a 
prescribed coefficient of variation of 20% were taken as 
priors in each calibration unit. For nonmeasured parameters 
(r20 and kP), posterior distributions obtained in the preceding 
day represented prior distributions in the actual day. This 
procedure is the essence of sequential learning that can also 
be thought of as a prior expectation about gradually 
changing matter and energy fluxes at an ecosystem level. 
Sequential learning does not eliminate all sudden shifts in 
lake metabolism parameters, however; optimal posterior 
parameter values can be far from the high prior probability 
regions when data provide strong evidence about the inap-
propriateness of the prior expectations.

The posterior distribution of parameters was sampled 
for each calibration unit with Markov chain Monte Carlo 
sampling using the traditional Metropolis algorithm 
(Gamerman 1997). The covariance matrix of the jump dis-
tribution was tuned during the burn-in period so that the 
average acceptance rate was within the optimal range 
between 15 and 40% afterward (Gelman et al. 1996). The 
differential equations of the metabolic model were solved 
with the LSODA solver (Hindmarsh 1983, Petzold 1983), 
which automatically selected between stiff and nonstiff 
solution methods according to the behavior of the system.

To evaluate the importance of priors and sequential 
learning, we also performed the calibration and uncertainty 
assessment without parameter priors except for restricting 
some parameters (such as r20 > 0, Ba > 0) to the positive 
domain. This procedure was equivalent to a classical 
statistical calibration approach. In the absence of priors, 
calibration units (3 model days in a sliding window) were 
completely independent of each other. 

Study sites

The model was tested on high frequency data from 3 lakes: 
Balaton (Hungary), Buresø (Lake Bure, Denmark), and 
Taihu (Lake Tai, China). These lakes are substantially 
different in their hydromorphological properties and trophic 
status (Table 4). All sites are members of the Global Lake 
Ecological Observatory Network (GLEON; gleon.org).

At Lake Balaton, depth varied between 1.4 and 1.7 m at 
the monitoring site. There, wind, global radiation, water 
temperature, DO, and turbidity were recorded every minute 
using a meteorology station (Mettech, Hungary), 2 LDO 
optical sensors (Hach, USA), 5 thermometers, and 5 light 
scattering sensors (WetLabs, USA). A delayed fluorescence 
spectroscope (TETT Ltd., Hungary) measured the biomass 
and the photosynthesis–irradiance relationship of  
phytoplankton every 20 min in the middle of the water 
column. Delayed fluorescence (DF) was converted to 
chlorophyll with a conversion factor derived from regressing 
weekly fluorometric chlorophyll data (Turner Designs 
TD-700, Canada; EPA Method 445.0) with the corresponding 
delayed fluorescence signal (Istvánovics et al. 2005; regression 
for 2013 was Chl [µg L−1] = 1.06 DF – 1.221;  
n = 25; R2 = 0.86). In deep Buresø, a winch moved a YSI 
6600 v2 multisonde (Yellow Springs Instruments, USA) 
through the 9 m-deep water column twice per hour. The 
multisonde measured DO, temperature, and direct 
chlorophyll fluorescence. The buoy was also equipped with 
a self-cleaning rack of light sensors. In shallow Taihu, the 
buoy measured DO (D-Opto optical sensor, Zebra-tech, 
New Zealand), water temperature (TempHion T-2 sensor, 
Geotech, USA), turbidity, and direct chlorophyll  
fluorescence (Seapoint Sensors Inc., USA) every 10 min, 1 m 
above the sediment–water interface in Meiliang Bay, the most 
hypertrophic area of the lake. The Taihu station was also 
equipped with a WXT510 weather station (Vaisala, Finland).

In Balaton, water quality variables were averaged over 
the entire shallow water column, whereas in Buresø 
averages of the mixed layer were calculated. Mixing depth 
was determined by the Lake Analyzer (Read et al. 2011). In 
Balaton, 10 min averages of vertically averaged variables 
were taken (Table 1) because of the high computing 
requirement of calibrating the model with 1 min data. The 
metabolic model was fitted to the averaged data. 
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Results

The metabolism model frequently fit the DO data well 
with both the classical statistical and the Bayesian 
calibration approaches, albeit with important similarities 
and differences in the outcomes. The correlation 
coefficient between observed and simulated DO curves 
showed a considerable overlap using the 2 calibration 
methods. The classical approach produced the best 
possible fit, with a mean correlation coefficient of 0.88 
(range 0.48–0.99); the values were 0.83 (0.24–0.99) for 
Bayesian parameter inference. Thus, fit to the observed 
DO time-series was usually not compromised noticeably 
by including prior knowledge. A further similarity was 
that both approaches benefited from restricting the domain 
of parameter values. Because of the parameter identifica-
tion problems, the classical statistical procedure without 
any restrictions would have resulted in values obviously 
in conflict with the meaning attributed to the parameters 
(such as r20 < 0, Ba < 0) despite a good fit to the DO data. 

These parameters were therefore constrained to the 
positive domain. Finally, the magnitude of GPP, NEP, and 
R did not vary much between the classical and Bayesian 
calibration (Fig. 2) because of a stronger connection of 
GPP, NEP, and R to DO data relative to the indirect 
connection of DO to single metabolic parameters. Data 
were sometimes poorly representative of the true, high 
phytoplankton biomass in Taihu because of the difficulties 
of sampling large, heterogeneously distributed Microcystis 
colonies. In this case, the model fit was often poor, and 
hence the correspondence between the 2 calibration 
approaches became weak for derived metabolic 
components.

The essential difference between the classical 
statistical and Bayesian approaches was observed in the 
internal coherence of metabolic parameters. The Bayesian 
procedure delivered gradually changing metabolic 
parameters (exemplified by the daily temperature-corrected 
rate of heterotrophic respiration in Fig. 3) and reasonably 
followed the observed dynamics of phytoplankton 

Table. 4. Lakes and data used in this study.

Balaton Buresø Taihu

Lake shape and the location 
of the monitoring buoy/
station (grey dot)

 
 
Area [km2] 596 0.761 2238
Mean depth [m] 3.2 6.7 1.9
Mixing regime polymictic seasonally stratified polymictic
Catchment area [km2] 5181 2.6 36 900
WRT† [years] 5 11 <1
Altitude [m a.s.l.] ‡ 104 26 3
Latitude 46° 55°50′ 3 1°
Trophic state meso-eutrophic mesotrophic hyper-eutrophic
Dominant summer algae Ceratium hirundinella, 

Cylindrospermopsis 
raciborskii, 

diatoms

Ceratium spp., 
Chrysochromulina spp., 

Rhodomonas spp., 
Volvocales

Microcystis spp.

Fetch at station [km] 0.1–25 0.2–0.9 0.1–55
Data timespan 23 Apr–23 Oct 2013 30 Mar–2 Dec 2012 18 May–4 July 2014
Number of modelled days 114 240 43
Algal parameters Ba, PB

max, αB Ba Ba

Time resolution* [min] 10 30 10
* Time resolution of the DO series used for modeling; †WRT: water residence time; ‡ m.a.s.l.: metres above sea level
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biomass (Fig. 4). This finding suggested that the Bayesian 
solution was more credible from an ecological 
perspective and therefore might yield more robust 
predictions under changing boundary conditions.

Despite the generally good model fit, there were cases 
in each lake when the structure of the applied metabolic 
model was obviously inappropriate to describe the 
observed data (Fig. 5). Our model was defined to simulate 
DO dynamics in a closed, fully mixed mass of water, and 
it was unable to treat cases when non-simulated processes 
significantly influenced DO concentrations.

As expected, a strong linear correlation existed 
between daily GPP and R (Fig. 6) in our lakes. The 
intercept constant of the linear models roughly equaled 
the mean annual value of r20 in each lake. NEP was 
nearly zero over the measuring period in both Balaton 

and Buresø and decreased steadily in Taihu because of 
the high heterotrophic respiration. In Balaton, the ratio 
of heterotrophic to autotrophic respiration fluctuated 
~50–60% during the first half of the measurement 
period, followed by a gradual increase after the collapse 
of the late summer phytoplankton bloom (Fig. 7). Both 
the decreasing autotrophic respiration and enhanced  
heterotrophic respiration contributed to this increase. 
Although Rh/Ra ratios were as low in Taihu as in Balaton, 
they never dropped below 100% in Buresø despite a 
steady decrease throughout the season. In Buresø, heter-
otrophic respiration decreased sharply after the autumn 
overturn.

−5 0 5 10

GPP
[mg O2 L−1 d−1]

−5
0

5
10

[m
g 

O
2 L

−1
 d

−1
]

B
al
at
on

r2 = 0.89

p = 1.8 × 10−46

−5 0 5 10

R
[mg O2 L−1 d−1]

r2 = 0.84

p = 1.5 × 10−38

−5 0 5 10

NEP
[mg O2 L−1 d−1]

−5
0

5
10

C
la
ss
ic
al

[m
g 

O
2 L

−1
 d

−1
]

r2 = 0.85

p = 5.9 × 10−40

−5
0

5
10

[m
g 

O
2 L

−1
 d

−1
]

Ta
ih
u

r2 = 0.66

p = 2.8 × 10−10

r2 = 0.29

p = 4.5 × 10−4

−5
0

5
10

C
la
ss
ic
al

[m
g 

O
2 L

−1
 d

−1
]

r2 = 0.85

p = 3.1 × 10−17

−5 0 5 10

Bayesian

[mg O2 L−1 d−1]

−5
0

5
10

[m
g 

O
2 L

−1
 d

−1
]

B
ur
es
o

r2 = 0.76

p = 3.6 × 10−44

−5 0 5 10

Bayesian

[mg O2 L−1 d−1]

r2 = 0.61

p = 1.4 × 10−29

−5 0 5 10

Bayesian

[mg O2 L−1 d−1]

−5
0

5
10

C
la
ss
ic
al

[m
g 

O
2 L

−1
 d

−1
]

r2 = 0.91

p = 1.6 × 10−73

Fig. 2. Daily rates of total GPP, NEP, and R in lakes Balaton, Taihu, and Buresø with the classical statistical model fitting procedure (Classical) 
vs. the proposed Bayesian approach using priors and sequential learning (Bayesian). Open circles: data pairs; line: linear regression on data 
pairs; shading: 95% confidence interval of regression.
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Fig. 3. Daily posterior means and 95% confidence intervals of heterotrophic respiration rate 
(r20, left panels) and total daily respiration (R, right panels) with the classical statistical model 
fitting procedure (Classical - mean: cross; confidence interval: open box) vs. the proposed 
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Fig. 4. Modeled posterior distributions of daily mean 
autotrophic biomass vs. observed chlorophyll fluo-
rescence used to set up prior distributions for Ba in 
lakes Balaton, Taihu, and Buresø.
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Discussion

Goodness of fit

In general, our metabolic model could reasonably be 
fitted to the observed DO series (Fig. 5). Bayesian 
parameter inference decreased the goodness of fit slightly 
compared to the best possible fit of our model to the data 
obtained by the classical statistical calibration. Despite 
the slightly worse fit to the data, parameters estimated in 
the Bayesian approach displayed features more likely to 
be ecologically realistic. For example, the slow and 
consistent change in parameter values over the course of 
several days is likely to be more realistic than the sudden 
and large changes observed using a classical approach 
(e.g., Solomon et al. 2013). Therefore, despite the 
tradeoffs in model fit, using a Bayesian approach 
represents a means to derive an ecologically more 
coherent set of metabolic parameters (Fig. 3 and 4).

Because our model was defined to simulate DO 
dynamics in a closed, fully mixed mass of water, model fit 
was poor on certain days (Fig. 5). Considering that 
transport may significantly influence metabolism estimates 
in some systems (Antenucci et al. 2013), plausible  
explanations could be temporary stratification of shallow 

water columns in Balaton and Taihu, mixing with 
DO-poor hypolimnetic water in Buresø, and lateral 
transport of water masses containing different concentra-
tions of DO in each of the 3 lakes. Our recent online 
velocity measurements at the monitoring site in Balaton 
(Honti and Istvánovics, unpubl. data), however, cast doubt 
on advection having a predominant role in modifying DO 
series measured at a single site. Horizontal flow velocities 
are typically in the range of a few mm s−1 and increase to 
1.5–5 cm s−1 only during large storms. These values 
indicate that the radius of the area from where water can 
travel to our site in a day is typically from 200 m to a 
maximum of 1–4 km. Low wind speeds promote spatial 
differentiation of water masses and biota, but the action 
radius of advection seems to be too low to transport water 
with substantially different DO content to the monitoring 
site. By contrast, high winds efficiently homogenize water 
masses and planktonic communities.

The empirical functions used to describe atmospheric 
gas transfer might also represent a major source of model 
structural error and large systematic deviations of modeled 
DO from measurements, just by the sheer volume of gas 
exchange in shallow waters. The present consensus seems 
to be that oxygen exchange rates obtained with various 
empirical functions were unequivocally too low to signifi-
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and Buresø.



DOI: 10.5268/IW-6.4.877

617Estimating lake metabolism using dissolved oxygen and chlorophyll fluorescence data in a Bayesian framework

Inland Waters (2016) 6, pp.608–621 

cantly influence simulated GPP and R (Antenucci et al. 
2013, Rose et al. 2014). Other studies, however, noted 
distinct phase transitions in gas exchange with increasing 
wave height, and breaking waves may result in sudden 
multiplication of gas transfer rate in large lakes 
(Livingstone and Imboden 1993). 

Linking metabolism to biomass

Although NEP should be generally related to the changes 
in autotrophic biomass, most metabolic models do not 
use autotrophic or heterotrophic biomass and instead 
employ abstract parameters of daily photosynthesis and 
community respiration rates. Reluctance to include 
biomass into metabolic models is a pragmatic modeling 
solution to the problem that changes in biomass may be 
decoupled from the actual balance of photosynthesis and 
respiration at the timescale of days. Abrupt changes in 
algal biomass may be triggered by factors outside the 
scope of metabolic models, such as the sudden collapse 
of an algal bloom due to viral infection (Bratbak et al. 
1993), a large storm that causes damage to filamentous 
cyanobacteria (Padisák et al. 1990), termination of a 
diatom bloom by silica limitation, and/or onset of stable 
thermal stratification in late spring/early summer (Huber 
et al. 2008). Under these types of transitions, metabolic 
models cannot provide a precise estimate of metabolizing 
biomass. 

A novelty of our approach is the decomposition of 
photosynthesis and autotrophic respiration into products 
of a changing algal biomass and biomass-specific rates 
such that ecological coherence of calibrated parameters 
could be tested. Although this decomposition makes our 
metabolic model more complicated compared to some 
published models (e.g., Hanson et al. 2008, Solomon et 
al. 2013), it is a prerequisite to increase the predictive 
power of modeling. When GPP, NEP, and R are 
adjustable model parameters, metabolic fluxes will be 
system- and case-specific. They cannot be used for 
making predictions under different boundary conditions 
(changing boundary conditions being the essence of 
modeling carbon cycling of lakes under a changing 
climate), metabolic shifts upon successful biotic 
invasions, or altered nutrient loads. Although these 
fluxes tended to be similar using the classical statistical 
and the Bayesian calibration (Fig. 2), a simple model 
fitting procedure would not suffice for predictive 
purposes. Biomass-specific metabolic rates are more 
general than fluxes; they are more likely to be applicable 
under different boundary conditions. 

It seems unlikely that biomass-specific rates could be 
estimated in an ecologically coherent way from DO time 
series alone. Therefore, the decomposition is achieved 

by using high frequency chlorophyll fluorescence data in 
the calibration of a metabolic model, which has a 
dynamic biomass compartment directly linked to 
metabolism. Linking the metabolic model to high 
frequency fluorescence data required several technical 
improvements. First, it was necessary to establish 
feedback between metabolism and biomass. GPP 
increased with Ba and decreased with Ra (Table 1–3; 
Supplemental Material), complementing the wide-open 
material balance of common metabolic models. Second, 
linking the metabolic model to high frequency 
chlorophyll fluorescence required a specialized solution. 
Fluorescence is a weak proxy for active algal biomass 
because both direct and delayed fluorescence depend on 
diurnally changing photosynthetic properties of cells in 
addition to biomass (Falkowski and Raven 1997, 
Istvánovics et al. 2005). Therefore, algal biomass was 
estimated from daily mean fluorescence data, and 80% 
of the fluorescence-based estimate of Ba was applied as 
prior distribution of the initial biomass in the beginning 
of each calibration unit. Third, biomass-specific 
parameters allowed us to tune GPP and Ra in accordance 
with the intra-day changes of biomass; however, 
simulating diurnal biomass changes in single-day units 
caused simulated Ba to shift dramatically on the 
boundaries between subsequent model days. These shifts 
were most probably caused by the strong internal 
memory of the metabolic model, due to which calibration 
did not try to eliminate errors in the final few hours of 
the calibration window as opposed to initial or midday 
errors. Because errors in simulated DO typically had a few 
hours collateral forward effect, errors committed in the 
terminal stage were statistically preferable. To avoid jumps 
of simulated Ba between calibration windows, we used a 
3-day moving window to estimate parameters assigned to 
the middle day, which helped filter out parameter combina-
tions that resulted in a close fit during the middle day but 
performed poorly in the neighboring days.

Multiday calibration windows seem to be inevitable for 
ensuring the continuity of Ba, but the span of such windows 
is strongly limited by the nonpredictability of biomass 
dynamics on the longer run. Notably, most metabolic 
models estimate model parameters for short periods (1–4 
days; Hanson et al. 2008, Staehr et al. 2012, Solomon et al. 
2013, Obrador et al. 2014), indicating that the properties of 
biotic communities may evolve over time, and assuming 
parameter stability for longer intervals would be incorrect. 
Splitting the measurement period in parts, however, disen-
tangles links between neighboring calibration units, and 
thus no kind of connection is guaranteed between the 
parameter values of subsequent calibration windows. The 
moving window and sequential learning applied in our 
study solved this discrepancy.
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Because total heterotrophic biomass was not measured 
in any of our test systems, the daily rate of heterotrophic 
respiration could not be decomposed into biomass and a 
biomass-specific rate. The sequential Bayesian learning 
procedure resulted in a slow gradual change in this 
parameter and a less smooth but still gradual change in 
total respiration (Fig. 3), in sharp contrast with the results 
of other studies that demonstrated substantial day-to-day 
variation in respiration (Cole et al. 2000, Staehr and 
Sand-Jensen 2007, Coloso et al. 2011). Solomon et al. 
(2013) fitted a simple metabolic model to high frequency 
DO series and used bootstrap analysis to estimate 
uncertainty of GPP and R. They concluded that a 
significant part of daily variability in R was due to real 
ecological variability with somewhat higher impact of 
model uncertainty in spatially more heterogeneous large 
than in small lakes; however, neither Solomon et al. 
(2013) nor other studies discussed therein could provide a 
plausible and generally valid explanation for large daily 
fluctuations in R. As we demonstrated, this variability was 
most probably dependent on the technique of model 
calibration (Fig. 3). We argue that confined day-to-day 
variability in both r20 and R is ecologically more credible 
than large fluctuations. Smooth seasonal variation reflects 
resilience of the ecosystem, with sudden shifts in lake 
metabolism being rare events (Batt et al. 2013). Moreover, 
the application of sequential learning does not exclude the 
occurrence of abrupt changes in the time-series of 
calibrated parameters. When measured data provide 
strong evidence about the inappropriateness of the prior 
parameters for a given calibration unit, the likelihood term 
will dominate the posterior probability, and significant 
departure from the prior distributions can take place. In 
the absence of such strong indication, however, gradual 
adjustments are preferred in line with the characteristics 
of a resilient system. We found only a single case (after 
model day 90 in Buresø; Fig. 3) when the continuity of r20 
had to be interrupted to maintain model fit. 

Evaluation of the error model

Formal statistical calibration methods require that the 
statistical assumptions about model residuals (in our case 
the differences between modeled and observed DO) are 
validated. If the assumptions are violated, simulation 
results should be rejected because the model parameters 
may be heavily biased and model uncertainty may be 
significantly overestimated or underestimated. Because 
each metabolic model is an extremely simplified represen-
tation of the ecosystem, structural uncertainty of the 
model would obviously dominate measurement 
uncertainty of DO. The first-order autoregressive error 
model (Van de Bogert et al. 2007, Hanson et al. 2008) 

could be considered a proper Bayesian representation of 
structural errors (Bayarri et al. 2007, Reichert and 
Schuwirth 2012) and was therefore used during 
calibration. The calibrated error parameters underpinned 
our assumption about the strong autocorrelation of errors. 
The correlation half-life of errors, that is the time required 
to reduce the correlation to 0.5, ranged between 1 and 9 h, 
suggesting that studies using a noncorrelated error model 
underestimated the uncertainty of both predictions and 
parameters and therefore produced statistically unaccepta-
ble results.

Interpretation of model parameters

Although Bayesian calibration and uncertainty analysis 
helps to deal with models that have more degrees of 
freedom than the actual information content of the dataset 
used for calibration, it is important to make a clear 
distinction between the uncertainties of the modeled time 
series and those of the parameters obtained during such a 
calibration or uncertainty analysis.

Bayesian parameter inference guarantees proper 
uncertainty intervals for the predicted time series (in this 
case DO) when statistical assumptions behind the applied 
error model are not violated by model residuals (Mantovan 
and Todini 2006). The properness of these uncertainty 
intervals is meant in a statistical sense (e.g., the number of 
outliers, correlations between realizations). The autore-
gressive error model ensured that the essential statistical 
properties of the model residuals were properly reflected 
in the error model, and therefore the estimated uncertainty 
intervals of DO, and most likely those of underlying 
processes (GPP, R), could be considered robust. 

Model parameters, however, are not in the same 
quality category as uncertainty intervals of modeled time 
series. In a mathematical sense, the only task of 
parameters is to tune the model’s outcome to match obser-
vations as closely as possible; their attributed meaning 
does not play any role during calibration (Mantovan and 
Todini 2006). Parameters will become inevitably biased to 
a certain degree because they compensate for deficiencies 
of the model structure, for errors in input data, and for 
errors in the observed DO time series. As noted earlier, in 
our case, structural model uncertainty was the dominant 
source of error. Examples of this included boosting 
respiration rates and slowing down production to describe 
the mixing of DO-depleted hypolimnetic water into the 
epilimnion in Buresø and adjusting production rates to 
follow oscillations caused by temporary stratification and 
mixing events in Balaton. As a consequence, calibrated 
parameters partly or fully lose their original meaning as 
physical/chemical/ecological characteristics (Doherty and 
Christensen 2011), a drawback that applies to any 
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calibration procedure, including non-Bayesian 
approaches. In addition to this dependence on data, model 
structure, and the error model, posterior parameter values 
are also conditional on priors, the essential subjective 
component of Bayesian methods. Improperly defined 
priors (for example based on nonrepresentative data, as in 
Taihu) may prevent statistically optimal model fits and 
hence introduce a strong bias in posterior parameters. 
These issues prevent the in-depth interpretation of 
calibrated parameter values and also require serious 
precaution if a model is used outside the boundary 
conditions for which it was calibrated. Calibrated 
metabolic rates can best be used for cross-system 
comparison or regional modeling when calibration was 
successful in terms of a good fit to observations and no 
obvious structural deficiencies could compromise the 
theoretical meaning of the calibrated parameters.  

Comparison of metabolism in the test lakes

Daily R was tightly coupled to daily GPP in mesotrophic 
Balaton and Buresø, whereas the coupling was weak in 
hypertrophic Taihu (Fig. 6), a pattern in agreement with 
that observed in a wide selection of lakes (Solomon et al. 
2013). The intercept of linear relationships of GPP versus 
R roughly equaled mean heterotrophic respiration. R was 
an order of magnitude higher in Taihu than in our 
mesotrophic lakes. Mean GPP that compensated for mean 
total R and ensured an NEP of zero increased with the 
trophic status of the 3 lakes, with O2 values of 0.6 mg L−1 
d−1 in Buresø, 3.1 mg L−1 d−1 in Balaton, and 7.7 mg L−1 
d−1 in Taihu. Thus, likely because it receives substantial 
amounts of allochthonous organic matter from both 
agriculture and aquaculture (Jinglu et al. 2007, Zeng et al. 
2007), Taihu was frequently net heterotrophic, whereas 
Buresø was nearly always autotrophic. The slope of the 
GPP versus R relation was somewhat lower in both 
Balaton and Taihu (0.72 and 0.40, respectively) than that 
obtained by Solomon et al. (2013) in these 2 lakes (0.85 
and 0.55, respectively). 

NEP cumulated over the season was small compared to 
the magnitude of seasonal GPP and R in each lake. This 
difference explains the well-known difficulties estimating 
GPP and R and suggests that the sign of the overall seasonal 
metabolic balance of a lake may easily change under 
slightly different boundary conditions. Of the 3 lakes, only 
Buresø closed the measurement period with a slightly 
autotrophic overall balance. Balaton was slightly hetero-
trophic at the end, probably because the measurements did 
not cover the highly productive early spring period. The 
similar magnitude of GPP and R does not apply for Taihu, 
where R surpassed GPP during the entire period covered by 
data, and heterotrophy at the measurement site was obvious. 

The ratio of heterotrophic to autotrophic respiration 
was surprisingly different in our lakes (Fig. 7). In Buresø, 
Rh significantly exceeded Ra during the stratified period, 
and Rh/Ra ratios approached 1 only after complete autumn 
mixing. By contrast, the Rh/Ra ratios were low in the 2 
shallow lakes. This pattern did not match the trophic 
character of the test lakes; both Balaton and Buresø were 
nearly balanced in terms of autotrophy and heterotrophy, 
whereas Taihu was net heterotrophic. We propose that Rh/Ra 
ratios might reflect overall ecological efficiency in lakes. 
Low ratios in Balaton were in line with the low efficiency 
of energy transfer from primary producers to fish 
(0.04–0.1%; Bíró and Vörös 1990). Enhanced hetero-
trophic respiration after the collapse of the summer phyto-
plankton bloom (Fig. 7) might be attributed to rapid 
growth of chironomid larvae that reach their biomass 
maxima in late autumn–early spring (Specziár and Vörös 
2001). Although the limnology of Buresø is poorly known, 
its trophic status and dominant algal species (Table 4) 
make a high overall ecological efficiency likely. In Taihu, 
low Rh/Ra ratios might arise from a particularly low energy 
transfer efficiency between trophic levels (Li et al. 2009) 
caused by Microcystis dominance. 

Conclusions

Because of the complexity of metabolic models and the 
associated parameter identification problems, we 
recommend a Bayesian approach for the calibration of these 
models so that additional knowledge about parameters can 
be incorporated. Expressing metabolic rates in a biomass-
specific form may enhance the credibility of model 
parameters. Linking metabolism and biomass increases the 
ecological usefulness of these models. Although decompo-
sition into biomass-specific rates and biomass further 
increases model complexity and worsens the parameter 
identification problem, the potential gain in ecological 
coherence compensates for these adverse effects. 

Ecologically coherent, and therefore presumably 
robust, estimates for biomass-specific metabolic rates will 
increase the predictive power of metabolic models under 
different boundary conditions. Ecological knowledge 
suggests that abrupt shifts in biomass and metabolic rates 
occur rarely. To ensure the general time-continuity of 
these model parameters, we propose a sequential Bayesian 
parameter learning procedure.

The sometimes obvious structural deficiencies of our 
model suggest that an enhanced parameter estimation 
technique alone is not sufficient to derive generally valid 
metabolic rates from high frequency DO data. There is 
still substantial potential in measuring underlying 
processes of DO metabolism and improving metabolic 
models with these observations. 
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