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Abstract

The proliferation of freshwater cyanobacteria is a serious environmental problem that often reduces water quality. In
this study, we observed the possible influence of the Indian Ocean Dipole (IOD), represented by the Dipole Mode
Index (DMI), on the dynamics of cyanobacterial blooms in a river system (the lower Nakdong River). Korean monsoon
rainfall (KMR) was preceded by 5-month moving average DMI of ~1.5 years, and the KMR and DMI were negatively
associated (72 = 0.53, n = 15, p < 0.01). In turn, a decrease in KMR was responsible for a decrease in total dam
discharge (2 =0.64, n =15, p <0.01), resulting in an abrupt increase in cyanobacterial cell density at the study site (7> =
0.94, n =15, p <0.01). We found a strong and significant positive correlation between cyanobacterial density of the
Nakdong River and a 5-month moving average DMI (2 = 0.95, n = 15, p < 0.01). These correlations suggest that a
positive DMI decreased KMR and therefore water discharge, resulting in an excessive proliferation of the cyanobacte-
rial density during the monsoon period. Despite a variety of uncertainties, the presence of the IOD is believed to play a
role in triggering freshwater cyanobacterial proliferation through a signal propagation pathway during summer drought
occurrence in the monsoon period.
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Introduction

Cyanobacterial proliferation has increased in frequency,
leading to reduced water quality in eutrophic freshwater
ecosystems (Paerl et al. 2001, Paerl and Paul 2012). Many
studies have attempted to find a causal relationship between
the local environmental characteristics and cyanobacterial
blooms, and intensive examinations have revealed several
factors, such as high water temperature, excessive nutrient
loading, and water stagnancy, that lead to serious prolifera-
tion (Kohl and Lampert 1991, Hitzfeld et al. 2000, Elliott
2012, Paerl and Paul 2012). Furthermore, accelerated
eutrophication increases cyanobacterial growth, which
further deteriorates water quality and ecosystem health.

In addition to local environmental factors, recent studies
have revealed relationships between climate variations and
cyanobacterial blooms, increasing interest in local cyano-

bacterial dynamics. Paerl and Paul (2012) emphasize that
climatic changes (e.g., global warming, hydrologic changes,
increased frequencies and intensities of tropical cyclones,
and more intense and persistent droughts) strongly affected
cyanobacterial growth and bloom potential in not only
marine ecosystems, but also in freshwaters. Many studies
revealed the impact of increased temperatures and light
intensity, related to global climate variations, on prolonging
the season of cyanobacteria dominance and increasing
biomass (Wagner and Adrian 2009, Markensten et al. 2010,
O’Neil et al. 2012, Hense et al. 2013). Studies have also in-
vestigated the relationship between the sudden discharge of
water and the reduction of cyanobacteria through flushing
and/or dilution of algal cell density (Webster et al. 2000,
Maier et al. 2001, Hong et al. 2014). This hydrological
pattern is especially important in the East Asian region,
where the major water source is summer monsoons.
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Several hypotheses explain the relationship between
East Asian summer rainfall (mostly represented by East
Asian summer monsoon) and global climate variations.
Wang et al. (2001) emphasized that weak East Asian
summer monsoon and enervation of Indian summer
monsoon (ISM) was related to the decay of El Nifo-
Southern Oscillation (ENSO). A Ding and Wang (2005)
study of ISM revealed a potential link between ENSO and
other regions through circumglobal teleconnection.
Despite its importance, however, the process of EASM
development is still unknown owing to the large
uncertainty surrounding circumglobal teleconnection and
ENSO (Ha et al. 2005).

Another example of the relationship between ocean—
atmosphere interactions and local meteorology can be
found in the Indian Ocean Dipole (IOD), a convection
movement over the Indian Ocean linked to anomalies in
sea surface temperatures (SST; Saji et al. 1999).
Researchers discovered a dipole mode (Fig. 1) with
anomalously low SST near Sumatra and high SST in the
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Fig. 1. The relationship between local meteorology and Indian
Ocean Dipole, modified from Japan Agency for Marine-Earth
Science and Technology (http://www.jamstec.go.jp/frcgc/research/
dl/iod/e/iod/about_iod.html). Numbers in each panel indicate the
sequence of cascading effect of ocean—atmosphere interactions: (a)
positive IOD pattern; (b) negative IOD pattern.

western Indian Ocean. This anomaly is called a “positive
IOD” when warm SST develop enormous moist air
masses over the sea surface, and convection from the
western Indian Ocean region transfers the moisture to
adjacent regions, often resulting in strong rainfall in
Eastern Africa and serious drought in the Asian and
Australian regions (Fig. la). During a “negative 10D”
(Fig. 1b), the opposite distribution of SST occurs (i.e., low
SST in East Africa and high SST in the western Indian
Ocean region), overturning moisture convection direction
and leading to strong summer monsoon rainfall over the
China—Korea—Japan belt and Australia. During a negative
IOD, a 10-month delay usually occurs between the
development of the negative IOD and the onset of the East
Asian summer rainfall (Kripalani et al. 2010).

We speculate that summer cyanobacterial prolifera-
tions in South Korea are related to the IOD pattern,
especially positive IOD, that causes drought. South Korea
is located between China and Japan and experiences con-
centrated summer rainfall, known as the Korean monsoon
rainfall (KMR), around mid-June to mid-July and several
typhoon events around late July to early September. Lack
of summer rainfall often (1) decreases river flow (although
upriver impoundment somewhat mitigates the problem),
(2) increases water temperature (reduced cloudiness
enhances irradiation), and (3) concentrates nutrients in the
waterbody. In a series of cyanobacterial studies in a
regulated river system (the Nakdong River), a clear link
was found between cyanobacterial growth and summer
rainfall and river flow (Joo and Jeong 2005, Jeong et al.
2010, 2011). Unexpected drought in the summer monsoon
period often resulted in an excessive proliferation of cy-
anobacteria in the river and vice versa (Jeong et al. 2001,
2003, 2007, Kim et al. 2007). Regulation of river flow is a
growing strategy for the mitigation and control of cyano-
bacterial proliferation (Maier et al. 2004, Jeong et al.
2007, Paerl et al. 2011); therefore, a significant relation-
ship between cyanobacteria and 10D will allow prediction
of changes in cyanobacterial proliferation by understand-
ing the projected climate variations.

In this study, we investigated the pattern of cyanobac-
terial changes in relation to IOD. Long-term cyanobacte-
rial density data from the Nakdong River, South Korea
(1994-2008; weekly basis), were compared with the
Dipole Mode Index (DMI, a representative quantified
index for IOD pattern). We first examined interannual
variations of DMI and annual KMR over the Nakdong
River basin. The response pattern of dam discharge to
rainfall during the Korean Monsoon (KM) period was
then examined, and cyanobacterial proliferation patterns
were related to dam discharge. Finally, we directly
compared cyanobacterial density during the KM with
DMI and evaluated this sequential relationship.
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Study site

The Nakdong River basin (35-37°N, 127-179°E; Fig. 2),
located in the southeastern part of South Korea, is ~520
km long (catchment area 23800 km?). More than 10
million basin residents rely on the water from the river;
thus, quantity and quality of the river water is crucial.
Nutrient loading from point-source and nonpoint sources
has gradually caused the river to become eutrophic,
resulting in recurrent summer cyanobacterial prolifera-
tions since 1992 (Joo et al. 1997).

The basin experiences heavy rainfall in summer
(average annual rainfall 1250 mm; >60% in Jun—Sep),
mainly owing to the KM season (~late Jun to mid-Jul;
Supplementary Table S1) and several typhoons. Jeong et
al. (2007) reported that 30—90% of summer concentrated
rainfall was from the KMR. Although the KMR
percentage fluctuates interannually, in most cases it is the
first concentrated rainfall event of the year (Ha et al. 2005)
and causes the first flooding (Park et al. 2002). In a normal
year after the summer rainy season (usually Sep), a dry
period persists from winter to the following spring
(~5-20% of annual rainfall; Jeong et al. 2011). In early
June, before the onset of the KMR, water temperatures
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gradually increase, with the first summer cyanobacterial
proliferation occurring in this month. After the onset of
the KMR, flooding caused by the rainfall begins to disrupt
the summer cyanobacterial proliferations (Park et al.
2002). Because of this KMR impact, relating the changing
pattern of KMR to the IOD may allow us to better
understand cyanobacterial proliferations.

In addition to rainfall seasonality, a strong heterogene-
ity of spatial rainfall distribution occurs, with less rainfall
upriver and more rainfall downriver (Chang and Kwon
2007, Park et al. 2011). Owing to the spatial and temporal
heterogeneity of the rainfall, as well as an increasing
dependence on water from the river, intensive regulation
of the river flow has become necessary. Consequently, 4
major multipurpose dams and an estuarine barrage control
water flow and impoundment.

The study site (Mulgum), located 27 km upstream
from the estuarine barrage (Fig. 2), is situated near a water
intake facility (35°18'31"N, 128°58'44"E; maximum
depth ~10 m; mean depth 4-5 m; river width 250-350 m).
At this site, persistent mixing occurs throughout the water
column (Ha et al. 1998), and the site is highly eutrophic
(Ha et al. 2002, Jeong et al. 2011, Kim et al. 2011).
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Fig. 2. Study site: (a) the Asian continent and the location of the Korean Peninsula (red rectangle); (b) stream distribution in South Korea and
the approximate region of the Nakdong River system (red rectangle); (c) the Nakdong River basin. I indicates multipurpose dams controlling
river flow in the basin (abbreviations correspond to dams in Table S1), g is the estuarine barrage at the river mouth, and e is the location of the
study site (Mulgum; 27 km upstream from the barrage). Data were cited from (a) ESRI ArcMap 10.0 and (b and ¢) WAMIS geospatial dataset.
ADD = Andong Dam; IHD = Imha Dam; HCD = Hapchon Dam; NGD = Namgang Dam.
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Materials and methods

Meteorological data collection and pre-
processing

We obtained 3 datasets from relevant administrations.
First, the monthly DMI was obtained from the Japan
Agency for Marine-Earth Science and Technology
(http://www.jamstec.go.jp/). The DMI is the anomalous
SST gradient between the western equatorial Indian Ocean
(50-70°E and 10°S—10°N) and the southeastern equatorial
Indian Ocean (90-110°E and 10°S—0°N).

Two types of data related to basin rainfall were
supplied by the Korean Meteorological Administration
(http://www.kma.go.kr/): the KM period for southern
Korea (Supplementary Table S1) and daily rainfall (mm)
recorded at 21 stations within the river basin. One
objective of this study was to investigate the relationship
between the DMI and KMR; therefore, for each year
from 1994 to 2008, we determined the duration of the
KM by simply calculating KM retreat date — KM onset
date + 1 (d). We then calculated the daily basin rainfall
(mm) by averaging the rainfall data from the 21 recording
stations. Finally, for each year, we summed the daily
basin rainfall data to get the total KMR (mm) and divided
by the corresponding KM duration to obtain the average
KMR (mm d™).

Daily dam discharge data from 4 multipurpose dams
were obtained from the Water Management Information
System (http://www.wamis.go.kr/) of South Korea. First,
we considered water travel time from each of the multi-
purpose dams to the study site, accounting for (1)
seasonal differences in flow rates (longer in dry period
and shorter in rainy season), and (2) different distances
between the study site and each of the multipurpose dams
(Supplementary Table S2). Because we focused on the
cyanobacterial proliferation during the KM period
(typically accompanied by flooding), we consulted
several hydrological reports to find water travel time
information when flooding occurred: 70-72 h for Andong
Dam and Imha Dam, and 40-48 h for Hapchon Dam and
Namgang Dam (Lee et al. 2006, Choo et al. 2012). We
obtained daily dam discharge data from the 4 multipur-
pose dams for each KM period and compared the
discharge dates to our river monitoring dates. For Andong
and Imha discharges, we selected data recorded on the
date 3 days prior to every sampling date and 2 days prior
for Hapchon and Namgang discharges. Those selected
discharge data from the 4 multipurpose dams were
summed to calculate the daily total dam discharge (TDD).
Finally, for every KM period, we averaged the TDD data
to calculate the TDD for the KM period (hereafter, TDD
refers to this annual data).

Cyanobacterial data collection

We used water samples collected for 15 years (1994-2008)
from the study site, Mulgum station at the lower Nakdong
River (Fig. 2), one of the Long-Term Ecological Research
sites in the Nakdong River system. Weekly water samples
were obtained at a depth of 0.5 m using a 4 L polyethylene
bottle. Subsamples for phytoplankton enumeration were
prepared in 100 mL polyethylene bottles and immediately
preserved with Lugol’s solution. Cyanobacteria cell
density (cells mL™") was enumerated using an inverted
microscope (ZEISS, 400x) by the Utermohl sedimentation
method (Utermdhl 1958).

Data analysis

Data analysis was performed to determine (1) average
KMR response to the DMI and (2) relationship among
cyanobacteria density, DMI, average KMR, and TDD.
KMR response was assessed based on correlation coeffi-
cients for the 5-month moving average of the DMI and
average KMR from 1994 to 2008. For example, April
through August (AMJJA) DMI indicates averaged DMI of
5 months, and we calculated the averages for every year
from 1994 to 2008 to obtain 15 AMJJA DMI. Because
cyanobacteria abruptly increase in June, we started our
comparisons using the 5-month moving average of the
DMI with June as the center month (i.e., AMJJA). Next,
we shifted the moving average window 1 month earlier
(i.e., MAMJJ) and continued until we obtained six
5-month moving averages of the DMI from the current
year (year,). We continued to calculate the moving
averages of the DMI until the third “center January” of 2
previous years (i.e., NDJFM of year,,) was included. In
total, we obtained thirty 5-month moving averages of the
DMI for the 15 years (1994-2008) and compared each
15-year DMI series with the average KMR using
correlation analysis. This approach allowed us to
determine any delayed influence of the DMI on the
average KMR. Once the strongest correlation was
determined, we applied regression analysis to investigate
the relationship between the DMI and average KMR. The
same protocol was applied to the comparison among the
DMI, TDD, and cyanobacterial density.

Results

We determined the annual changes of the DMI, basin
rainfall, TDD, and cyanobacterial density (Fig. 3). For
1994-1997, we observed 2 distinct positive DMI peaks;
however, in the following years the range of the DMI
variation was relatively steady around zero, although
small positive or negative peaks repeatedly appeared (Fig.
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Fig. 3. Changes in (a) Dipole Mode Index (DMI), (b) basin rainfall (black bars) and total dam discharge (TDD; gray line), (c) and
cyanobacterial density.
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3a). In years with strong positive DMI peaks, the amount
of basin rainfall and the TDD were relatively lower than
the following years (Fig. 3b). Among the cyanobacterial
density data (n = 784; Fig. 3c), high cyanobacterial
density was associated with strong positive DMI peaks,
scarce basin rainfall, and low TDD (i.e., 1994-1997).
During the 15 years, the highest cyanobacteria densities
were in 1994, 1997, and 2008.

Strong negative correlations were found between the
5-month moving average DMI and the average KMR as
well as the cyanobacterial density during the KM period
(Fig. 4), and an even stronger correlation between them ~1
year earlier. The strongest correlation was observed
between JFMAM DMI in year,, and the average KMR
(r=-0.73,n =15, p <0.01; Fig. 4a). Similar to the average
KMR, TDD was also significantly correlated with the
JFMAM DMI in year,, (r = —0.59, n = 15, p < 0.05; Fig.
4b), but the correlation coefficient was slightly lower than
that of the DMI compared to the average KMR. A
significant relationship was also found between the DMI
and cyanobacteria density during the monsoon period (Fig.
4a), but the pattern was in contrast to the average KMR
and TDD. The highest correlation coefficient was found
with the AMJJA DMI in year,, (r=0.61,n =15, p <0.01),
3 months later then the JFIMAM DMI in year, .

The clear relationship between DMI versus average
KMR and DMI versus cyanobacterial density (Fig. 4b—d)
illustrates that the average KMR was reduced as JFMAM
DMI in year, , became positive, a finding that also applied
to the TDD changes. Cyanobacterial density was well
explained by the DMI variation when we applied an
exponential fitting curve. Further comparisons among
average KMR, TDD, and cyanobacterial density in year,
(Fig. 4e—g) show a linear relationship from the average
KMR and TDD as increased rainfall increased dam
discharge. Furthermore, as rainfall increased, cyanobacte-
rial density decreased. An increase in TDD was negatively
associated with cyanobacterial density.

Discussion

The ocean—atmosphere interaction factor (IOD) is assumed
to affect summer cyanobacterial density changes through a
sequential process, the climate—local meteorology—
hydrology—ecosystem response. In particular, a positive
IOD that results in drought over the Nakdong River was
significantly related with summer cyanobacterial prolifera-
tion. Since Saji et al. (1999) discovered the pattern of IOD
and its impact on regional rainfall distribution, many
studies have focused on the role of IOD in Asian rainfall
patterns (Kim et al. 2002, Kripalani and Kumar 2004, Yuan
et al. 2008, Kripalani et al. 2010, Pillai and Mohankumar
2010, Tamura et al. 2011). Their common conclusion is

that a negative relationship exists between IOD and Asian
rainfall. Mostly they emphasized transportation of
accumulated moisture (via the teleconnection process)
over the eastern part of the Indian Ocean toward the East
Asian region. Yoon (2015) concluded that a negative IOD
pattern was responsible for the increase in summer concen-
trated rainfall over the Korean Peninsula, which in turn
increased river flow; however, Guan and Yamagata (2003)
emphasized that a strong positive 10D pattern was
responsible for a serious drought occurrence in 1994. Our
findings also suggest that a strong positive 10D pattern
causes drought conditions (i.e., reduced rainfall and low
dam discharges), and this in turn results in the proliferation
of cyanobacteria. Based on these findings, we concluded
that positive IOD patterns (leading to drought) should be
the focus to explain cyanobacterial proliferation in the
Nakdong River.

We observed that an increase in cyanobacteria density
responded sensitively to strong positive IOD peaks.
Furthermore, cyanobacterial proliferation intensified if
drought occurred more than 1 year consecutively. Lack of
KMR due to positive IOD will decrease impoundment in
upriver dams, leading to higher probability of TDD
decrease. Increase of water resource demand in the
following dry seasons (i.e., winter to the following spring)
also causes TDD decrease (Jeong et al. 2011). Insufficient
summer rainfall for several consecutive years (e.g.,
1994-1997) caused serious water resource deficiency, and
upriver dam storage gradually decreased (Jeong et al.
2007), leading to decrease TDD. By comparison, the first
year of the consecutive dry years would not be strongly
affected unless the summer of previous year was dry
(Jeong et al. 2007, 2011). We can therefore summarize that
positive IOD for >1 year would increase the probability of
cyanobacterial proliferation in the river system.

A slight difference was observed in the response
pattern of average KMR and TDD of the Nakdong River
to DMI changes. Although both were negatively
associated with DMI changes, TDD did not increase
instantly when DMI became more negative because of the
conversion process from rainfall to discharge. Considering
that cyanobacterial density would respond more readily to
TDD than KMR, IOD-TDD-cyanobacteria relationships
should be further examined. Here, we must consider the
TDD management strategy in response to the IOD and
KMR pattern. In the Nakdong River, Ha et al. (1998)
reported that cyanobacteria did not proliferate in 1993
because of higher summer rainfall; however, increased
dam water in summer 1993 should be discharged in spring
1994 to impound the next summer rainfall. Thus, the
decreasing rate of upriver dam storage and dam discharge
rate in that season was greater than that during other years
(see Jeong et al. 2007). Because of the positive IOD effect,
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summer 1994 was exceptionally dry across the Asian
(Guan and Yamagata 2003) and Australian (Cai et al.
2009, Ummenhofer et al. 2009) regions, and average
KMR of 1994 was also low, resulting in cyanobacterial
proliferation. Furthermore, the average KMR in 1995 was
the lowest throughout the study period, exacerbating water
resource management problems. We therefore surmise
that consecutive positive IOD patterns are responsible for
summer cyanobacterial proliferation in Asian region.

A noteworthy finding was a strongly positive
exponential growth pattern of cyanobacteria under DMI in
previous years. Although a linear relationship between
DMI and KMR was observed, cyanobacterial density was
not linearly related with DMI and hydrological character-
istics because of the growth pattern of cyanobacteria
(Reynolds 2006). Cyanobacterial density explosively
increased when a stable water environment persisted in
the river (Jeong et al. 2003, Kim et al. 2007). Lack of
KMR was related with positive IOD, and low flow rates
helped cyanobacteria increase abruptly, thus explaining
the higher sensitivity of cyanobacteria to positive IOD.

The clear relationship between IOD and cyanobacte-
rial density may provide useful information for developing
a forecasting model for cyanobacterial proliferations. In
many previous studies regarding cyanobacterial prolifera-
tion and basin rainfall (Maier et al. 1998, Webster et al.
2000, Jeong et al. 2006), a dilution or flushing effect
caused by highly increased flow rate (i.e., flooding) was
emphasized. Despite this significance, when we consider
higher sensitivity of cyanobacterial density to dry
conditions (i.e., smaller average KMR and TDD; Fig. 4),
inhibition of proliferation by disturbing the stable impact
of drought is more important for control or mitigation of
cyanobacteria. In addition to the adoption of rainfall and
its derivatives into the modeling process, drought-related
parameters provided useful information for understanding
phytoplankton dynamics (Hong et al. 2014). Although
enormous uncertainty surrounds the teleconnection
mechanism, the strong significant correlation between
IOD, drought, and cyanobacterial proliferation may
encourage others to consider this relationship.

Monsoon rainfall is a natural driver of the structure
and functions in ecosystems (Silva and Davis 1987,
Svensson and Berndtsson 1996, Brewin et al. 2000, Kim
et al. 2000, An and Park 2002, Dudgeon 2002, Park et al.
2002, Azami et al. 2004, Madhu et al. 2007). Thus, under-
standing climate—hydrology—ecosystem behavior via the
monsoon pattern will help develop more efficient summer
water quality and quantity management strategies. Recent
advances in remote sensing and computational infrastruc-
ture will improve the accuracy of predictions and connect
climatology and hydroecology to produce short-term
predictions (e.g., 1 year) that support decision-making.

Adaptation to global climate change and local environ-
mental management will be possible by understanding this
climate—ecosystem connectivity.

Conclusion

A statistically significant correlation was found for the
15-year interannual variation of cyanobacterial density in
the monsoon period compared with the IOD pattern. The
average KMR, TDD, and cyanobacterial density in the
KM period was largely related to the DMI, with a positive
DMI inducing a decrease in the average KMR and TDD
and an explosive increase in cyanobacteria density. Based
on this relationship, we assume that the IOD pattern is
largely responsible for the proliferation of cyanobacteria.
Despite various uncertainties, the development of the IOD
is believed to play a role in regulating freshwater phyto-
plankton assemblage through a signal propagation
pathway.
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