The Big-Dot Product: An Altered Dot Product

John Wrobel

Plymouth State Mathematics Department

Introduction

The dot product is a common vector operation used to find vector projections and perpendicular vectors. Given \vec{u} and \vec{v} with angle θ between them, $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\theta)$. We alter the definition to get the big-dot product by replacing the $\cos(\theta)$ with a $\sin(\theta)$.

Definition: The Big-Dot Product

Given \vec{u} and \vec{v} with angle θ between them the big-dot product of \vec{u} and \vec{v} is $\vec{u} \bigcirc \vec{v} = |\vec{u}| |\vec{v}| \sin(\theta)$.

Derivation of the Component-Form

Let \vec{u} and \vec{v} be vectors with θ being the angle between them. Also, θ_u is the angle between \vec{u} and x = 0, and θ_v is the angle between \vec{v} and x = 0. Then,

$$\vec{u} \bigcirc \vec{v} = |\vec{u}| |\vec{v}| \sin(\theta_u - \theta_v)$$

$$= |\vec{u}| |\vec{v}| (\sin(\theta_u) \cos(\theta_v) - \cos(\theta_u) \sin(\theta_v))$$

$$= |\vec{u}| \sin(\theta_u) |\vec{v}| \cos(\theta_v) - |\vec{u}| \cos(\theta_u) |\vec{v}| \sin(\theta_v)$$

$$= u_y v_x - u_x v_y.$$

Properties

There are several properties that can be applied to the dot product and big-dot product. Given \vec{u} , \vec{v} , \vec{w} , and constants c and d the following properties are true.

- 1. $\vec{u} \bigcirc (\vec{v} + \vec{w}) = \vec{u} \bigcirc \vec{v} + \vec{u} \bigcirc \vec{w}$
- 2. $(\vec{u} + \vec{v}) \bigcirc \vec{w} = \vec{u} \bigcirc \vec{w} + \vec{v} \bigcirc \vec{w}$
- $3. \vec{0} \bigcirc \vec{u} = 0$
- 4. $c\vec{u} \bigcirc d\vec{v} = cd(\vec{u} \bigcirc \vec{v})$

Not every property of the dot product is true for the big-dot product. The following are properties unique to the big-dot product.

- 5. $\vec{u} \bigcirc \vec{v} = -(\vec{v} \bigcirc \vec{u})$
- 6. $\vec{u} \bigcirc \vec{u} = 0$.
- 7. Every vector is nilpotent.

Given \vec{u} and \vec{v} where \vec{v} is a scalar multiple of \vec{u} , then $\vec{u} \bigcirc \vec{v} = 0$ by properties 4 and 6.

Areas

The big-dot product can result in the areas between the given vectors. Given \vec{u} and \vec{v} with angle θ between them,

- $|\vec{u} \bigcirc \vec{v}|$ is the area of the parallelogram with a pair of sides with lengths equal to $|\vec{u}|$ and the other pair with lengths equal to $|\vec{v}|$.
- $\frac{|\vec{u} \bigcirc \vec{v}|}{2}$ is the area of the triangle with vectors as two of the sides and the third side as the connection of the heads of the two vectors.

Parallelogram Example

Suppose $\vec{u} = \langle 5, 2 \rangle$ and $\vec{v} = \langle -3, 4 \rangle$. Then, $\vec{u} \bigcirc \vec{v} = 26$. This is the area of the parallelogram below. A base of the parallelogram, $|\vec{u}|$, is $\sqrt{29}$. Then, the height is $\frac{26}{\sqrt{29}}$. Then, the area is base multiplied by height which gives us 26.

Triangle Example

Suppose $\vec{u} = \langle 3, 5 \rangle$ and $\vec{v} = \langle 7, 2 \rangle$. Notice, $\vec{u} \bigcirc \vec{v} = 29$. Taking $\sqrt{53}$ as the base of the triangle, the height is $\frac{29}{\sqrt{53}}$. The area of the triangle is 14.5.

Relationship Between the Dot Product and the Big-Dot Product

Given
$$\vec{u}$$
 and \vec{v} , $|\vec{u} \cdot \vec{v}| = \sqrt{|\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \bigcirc \vec{v})^2}$.

Perpendicular Vectors

- If \vec{u} and \vec{v} are perpendicular vectors, then $\vec{u} \cdot \vec{v} = 0$.
- Using the relationship above, if \vec{u} and \vec{v} are perpendicular vectors, then

$$\sqrt{|\vec{u}|^2|\vec{v}|^2 - (\vec{u} \bigcirc \vec{v})^2} = 0.$$

- Also as a result of the definition when $\theta = \frac{\pi}{2}$, $|\vec{u} \bigcirc \vec{v}| = |\vec{u}||\vec{v}|$.
- This result leads to a couple of cases for more specific vectors.
- Alternatively, if $|\vec{u} \bigcirc \vec{v}| = 0$, then \vec{u} and \vec{v} are scalar multiples of one another.

Vector Projections

Given \vec{u} and \vec{v} , the vector projection of \vec{u} onto \vec{v} is $\frac{\vec{u} \cdot \vec{v}}{|\vec{x}|^2} \vec{v}.$

Using the conversion, the projection results in the proper magnitude, but not direction.

Perpendicular Vectors of the Same Magnitude

Given $\vec{u} = \langle u_x, u_y \rangle$ and $\vec{v} = \langle v_x, v_y \rangle$ where $|\vec{u}| = |\vec{v}|$ and \vec{u} is perpendicular to \vec{v} ,

$$|\vec{v} \bigcirc \vec{u}| = v_x^2 + v_y^2 = u_x^2 + u_y^2.$$

Perpendicular Unit Vectors

If \vec{u} and \vec{v} are perpendicular, then

$$\left| \frac{\vec{u}}{|\vec{u}|} \bigcirc \frac{\vec{v}}{|\vec{v}|} \right| = \frac{1}{|\vec{u}||\vec{v}|} |\vec{u} \bigcirc \vec{v}|$$

$$= \frac{1}{|\vec{u}||\vec{v}|} (|\vec{u}||\vec{v}|)$$

$$= 1.$$

Determinant of a Matrix

Notice, given vectors $\vec{u} = \langle u_x, u_y \rangle$ and $\vec{v} = \langle v_x, v_y \rangle$,

$$\det \begin{bmatrix} v_x & u_x \\ v_y & u_y \end{bmatrix} = v_x u_y - u_x v_y = \vec{u} \bigcirc \vec{v}.$$

Conclusion

Comparing the dot product and big-dot product many of the properties are the same with a few changing. Finding areas involving vectors is a strength of the big-dot product, while currently it falls short with vector projections.

Further Research

- For the results that are not consistent, why do they change? What do they actually represent?
- When the dot product is directly replaced with the big-dot product, what does the vector projection become?
- Considering the conversion, is it possible to derive it without having an absolute value in the end result. If not are there patterns to know the direction of the result?
- Knowing the the big-dot product results in areas, is there a visual representation of the dot-product that can be useful in understanding it?

References

- Kosmala, Witold A. J. A Friendly Introduction to Analysis: Single and Multivariable. 2nd ed., Pearson Prentice Hall, 2004.
- Weisstein, Eric W."Dot Product." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/DotProduct.html

Contact Information

- Web: http://www.plymouth.edu
- Email: jjw1020@plymouth.edu
- Phone: +1 (603) 233 5473

