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Welcome

Thank you for considering this text.

Licensing

This work is licensed under a Creative Commons Attribution-NonCommercial

4.0 International License by Emma Norbrothen Wright. Chapters 2 - 9 are a

derivative of “Elementary Abstract Algebra” by W. Edwin Clark, and used

under a CC BY-NC license.

Please adapt this text to your needs. Dr. Wright asks that if you choose to

use the text, please do the following.

1. Email Dr. Wright to inform her of your choice, and she will pass the

message on to Dr. Clark. They both will be very pleased to learn that

the text has helped others.

2. Encourage your students to donate a few dollars to a charity as a ges-

ture of gratitude, and remind them that they are more fortunate than

iii

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
http://shell.cas.usf.edu/~wclark/#ELEMENTARY_ABSTRACT_ALGEBRA
http://shell.cas.usf.edu/~wclark/
mailto:emwright@plymouth.edu


iv WELCOME

most. Listed below are a few of Dr. Wright’s favorite charities, and

she encourages you to provide more.

• Children’s Hospital at Dartmouth: This is New Hampshire’s only

full-service children’s hospital. (Donate.)

• Big Cat Rescue: This organization provides a sanctuary for abused

big cats, education to help the future of big cats, and exposure to

current laws and bills that affect big cats. (Donate.)

Letter to the Instructor

In the academic year of 2015-2016, I became interested in the O.E.R. move-

ment. Luckily, I found Dr. W. Edwin Clark’s “Elementary Abstract Algebra”

while searching through O.E.R. repositories. His book provided me the most

critical piece: a starting point. Of course, it provided so much more, and

you will see influences of the original text throughout this text.

In the springs of 2016 and 2018, I taught Abstract Algebra while using and

modifying Clark’s text. Knowing that I would inadvertently leave gaps as

I wrote, and having a malleable text, I required my students to contribute

to the text. Pay it forward. Make the text better, more complete, is what

I told my students. Thus, as part of the semester grade, each student had

to complete work that could be contributed to the text. Of course, their

work is their own, thus the assignment was to create potential contributions.

Whether or not they gave me permission to use their contribution did not

affect their grade. Please note that all student work is included by permission.

tudent contributions are marked with a s symbol. I sincerely hope your

students find my students’ contributions helpful.

If you use this text, I highly recommend having your students contribute

http://www.chadkids.org/
http://www.chadkids.org/dv/make_a_gift.html
http://www.bigcatrescue.org?
http://bigcatrescue.org/donate/
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to it. My students reported that contributing to it forced them to reread,

to think more deeply, and to think about more types of problems. Many

reported that their contributions were about topics they struggled with and

used their contributions to solicit more personalized feedback. Suggestions

are listed below.

1. Found Typo

2. Always/Sometimes/Never

3. Short/Long Example/Non-Example

4. Theoretical Exercise Hint

5. Exercise and Solution

6. Create Your Own

By contributing to the text, students can make positive change where they

would otherwise complain. For example, a student might conjecture about

a property while working on an exercise, and wonder whether or not their

conjecture is a result they can use. With contributions as a requirement, I can

respond, “No, but it should be! That’s a great idea, and you should consider

making that one of your contributions.” Such a response compliments the

student while reminding the student about the assignment.

Additionally, when students contribute to the text, writing becomes a group

project, not just the instructor’s responsibility. Each person is in charge

of formally writing their own unique ideas. This helps promote student

authorship.

As this is an OER text, I have adapted the text to meet the needs of my

students. In particular, the first exercise on every test I give is an “Al-

ways/Someimes/Never” exercise. Students reported that these exercises are
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stressful, thus to ease their stress, I wrote these exercises into the text. Thus,

the first exercise in every section is (or will be) an Always/Sometimes/Never

exercise, which ask, “Is the following statement always true, sometimes true,

or never true?” Below is an explanation of these three options.

• Always: This statement is always true, in every situation. No matter

what values are substituted into the variables, this statement will be

true.

• Sometimes: This statement is sometimes true, and it depends of the

values of the variables. I can find at least one case that breaks this

statement, and I can find at least one case in which this statement

holds.

• Never: This statement is never true in any situation. No matter what

values are substituted into the variables, this statement will be false.

This exercise is a quick way to check for understanding. The instructions also

have the student justify their claim because sometimes the wording may lead

to multiple interpretations. Moreover, you or your students may interpret

these instructions differently.

This text is still under construction. I suppose that’s part of the point of

O.E.R. For example, the writing tapers off near the end. Future editions of

this text will one day include the following.

• More about polynomials.

• More connections with linear algebra.

• A Chapter 0 about which results we will automatically assume through-

out the text.
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• A pairing with WeBWorK exercises.

• Future student work... hopefully videos!

Please feel free to use this text, contribute to it, modify it, and redistribute

it. Feel free to contribute those topics to the text, or take it in an entirely

different direction.

I sincerely hope you find this text helpful. Please feel free to use it, and if

you do, please let me know. I would love to have a conversation with you

about your O.E.R. experience.

Cheers,

Emma

Student Authors

Students have contributed to this text in many ways. They’ve written def-

initions, exercises, hints, solutions, theorems, proofs, examples, and non-

examples. They’ve found typos and suggested edits. Classroom discussions

have been written into the text. In short, students have invested themselves

in this text.

With permission, student work is included in the text. Anything contributed

by a student is denoted with a s. Below is a list of student authors.

• 2016: Dan Astbury, Alec Bastian, Samantha Bergeron, Sarah Cote,

Tyler DeCosta, Nick Latvis, James McCormack, Dennis Murphy, Colton

Piper, Katie Sylvia, Jess Wentworth

• 2018: Stefanie Coffman, Dean Dustin, Naomi Kramer, Sean Rainville,

Andrew Shepard, Taylor Shrode, Collin Sullivan, Noah Wood
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Appreciation

The O.E.R. movement is, in part, about working together within a com-

munity to further education. Thus, I have many people to thank for their

guidance, suggestions, and patience. In particular, I would like to acknowl-

edge the following people for their help.

• Dr. W. Edwin Clark (University of South Florida), for his original text

and insight

• My 2016 and 2018 Abstract Algebra classes (Plymouth State Univer-

sity), for their contributions, openness, and patience

• Christin Wixson (Plymouth State University) and Robin DeRosa (Ply-
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O.E.R. movement
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Chapter 1

Dihedral Groups

Simple can be harder than complex.

Steve Jobs

Welcome to abstract algebra, perhaps the pinnacle of your undergraduate

mathematical career. To begin our transformative journey, we start by asking

a simple question.

How can we move a square?

1.1 Introduction to Dihedral Groups

Imagine that you have a square and a trace of that square on the surface

before you. You may pick up the square and move it in any way you wish,

though ultimately you must put that square down in its trace. You may not

rip, stretch, or alter the square. This is a rigid square, meaning that it holds

its form.

1
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?

It may seem like there is an infinite number of ways to do this. Ever the

diligent mathematician, you know you must simplify. Thus, what are the

simplest, yet distinct, ways to pick up a square and put it down in its trace?

Spoiler alert! Imagine numbering the vertices of our square, and let’s put

the number one in the upper-right corner. There are two orientations of

the square: either the numbers can increase as we proceed clockwise, or the

numbers can increase as we proceed counterclockwise, as shown below.

1

23

4 1

43

2

Each corner can be mapped to another corner. In total, each corner can go

to one of four corners in one of two orientations. Thus, there must be eight

mappings. What are they?

The mappings will involve the number one being in each of the four corners

with each orientation. We list them below, along with a name for each

different mapping.
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Symbol Description Mapping

R0

Rotation of 0◦

counterclockwise

1

23

4
R0

1

23

4

R90 Rotation of 90◦

1

23

4
R90

2

34

1

R180 Rotation of 180◦

1

23

4
R180

3

41

2

R270 Rotation of 270◦

1

23

4
R270

4

12

3

H
Reflection about the

horizontal axis

1

23

4
H

2

14

3

V
Reflection about the

vertical axis

1

23

4
V

4

32

1

DL

Reflection about the left

diagonal

1

23

4
DL

3

21

4

DR

Reflection about the right

diagonal

1

23

4
DR

1

43

2

These must be the eight mappings of the rigid square. What happens if we

compose them? Will we get a ninth mapping or a repeat mapping?
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Example 1.1.1. Suppose we took our square, �, reflected it about the

vertical axis, and then rotated it 270◦. What would we get?

1

23

4
V

4

32

1
R270

1

43

2

We see that, ultimately, we performed the same mapping asDR, the reflection

about the right diagonal. We could write this relation symbolically as

R270(V (�)) = DR(�).

3

Think of each of map as a function acting on the square. Thus, when we

perform a series of mappings, we are performing a series of applications of

functions, which is function composition.

Notation. Whenever we compose movements of a rigid n-gon, we write them

in order from right to left, as we do with function composition. For example,

h(g(f(x))) notates that our variable is x, and we will perform function f ,

function g, and function h, respectively, on x. Recall that we often leave off

the x when we want to describe just the function composition. For example,

we could write h ◦ g ◦ f , or simply hgf . Similarly, it is common to leave off

the shape in function composition of a rigid n-gon. For example, we could

write R270 ◦ V , or simply R270V .

Just as we composed V and R270 in Example 1.1.1, we can compose any

two mappings and simplify. The result of all possible compositions of two

mappings is charted in the example below. For each row header a and each

column header b, the corresponding entry is ab. When working with function

composition, this means b is performed first and a is performed second.
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Example 1.1.2. Below are all of the possible compositions of two move-

ments of a rigid square. Recall that in Example 1.1.1, we determined that

R270V = DR. Similarly, notice that in the R270 row and V column, we have

the mapping DR.

D4 R0 R90 R180 R270 H V DL DR

R0 R0 R90 R180 R270 H V DL DR

R90 R90 R180 R270 R0 DR DL H V

R180 R180 R270 R0 R90 V H DR DL

R270 R270 R0 R90 R180 DL DR V H

H H DL V DR R0 R180 R90 R270

V V DR H DL R180 R0 R270 R90

DL DL V DR H R270 R90 R0 R180

DR DR H DL V R90 R270 R180 R0

3

There are many properties to observe in the table above! We will spend a

considerable amount of time analyzing these properties. For now, study the

table, observe some properties, and make some conjectures.
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Definition 1.1.3. In abstract algebra, an operation table is called a Cayley table.

The table above is the Cayley table of the set of symmetries of a rigid square.

As you might have guessed, we could have analyzed the movements of any

rigid n-gon, not just a square. We generalize this idea in the definition below.

Definition 1.1.4. For any natural number n ≥ 3, the dihedral group of order

2n is the set of all movements of a rigid n-gon, and is denoted Dn.

In this section, we have created D4, the set of movements of a rigid square.

Notice that we call this the dihedral group of order eight because |D4| = 8.

EXERCISES

Exercise 1.1.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a. For n ≥ 3 in N, Dn has n reflections.

b. For n ≥ 3 in N, Dn has n rotations.

c. D3 ⊆ D4

d. Dn ⊆ Dn+1, for n ≥ 3 in N
e. R0 = R360

f. A reflection composed with a rotation creates a reflection.

Exercise 1.1.2. Create a Cayley table for D3.

Exercise 1.1.3. Create a Cayley table for D5.

Exercise 1.1.4. Create a Cayley table for D6.
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Exercise 1.1.5. Observe the Cayley table of D4. Make two conjectures

about patterns you discover. These conjectures should also hold in D3, D5,

and D6.

Exercise 1.1.6. For each of the following equations, find all x ∈ D4 such

that the equation holds. If no such x exists, explain why not.

a. x2 = R0

b. x2 = R90

c. x2 = R180

d. x2 = DL

e. x3 = R0

f. x3 = R90

g. x3 = DL

Exercise 1.1.7. Let n ≥ 3 be a natural number and consider Dn for each

of the following n. For each element in x ∈ Dn, find the smallest m ∈ N
such that xm = R0. Make a chart showcasing your findings.

a. n = 3

b. n = 4

c. n = 5

d. n = 6

Make a conjecture that relates m to |Dn|.
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Chapter 2

Binary Operations

Excellence is achieved by mastery of the fundamentals.

Vince Lombardi

Abstract algebra exposes depth to everything you have taken for granted

in mathematics. Everything. Before we can appreciate the magnitude and

scope of abstract algebra, we must zoom in and start with its fundamentals.

Like any other upper level undergraduate text, we start with something you

think you understand and examine it so closely that it will soon become

abstract.

2.1 Introduction to Binary Operations

Our first definition is of fundamental importance, though it may seem trivial.

Definition 2.1.1. A binary operation ∗ on a set S is a function from S×S
to S, that is, ∗ : S × S → S.

9
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Many binary operations are already familiar.

Example 2.1.2. Consider the set R. The operation of addition is a binary

operation because any real number added to any real number produces a

real number. Similarly, the operation of multiplication is a binary operation

because any real number multiplied by any real number produces a real

number. 3

Notice that a binary operation ∗ on a set S is closed on the set S, meaning

that ∗ combines two elements in S and produces an element in S.

Notation. Let (a, b) ∈ S × S. Instead of writing ∗((a, b)) to indicate the

image of the element (a, b) under the function ∗, we often write a ∗ b.

Example 2.1.3. Addition is a binary operation on the reals, that is, addi-

tion combines two real numbers and produces a real number. Thus, we could

write + : R × R → R. For example, when we add 2π to 5π, we could write

this as +((2π, 5π)) = 7π, because + is a function on R× R. In practice, we

write 2π + 5π instead of +((2π, 5π)). 3

Non-Example 2.1.4. Consider the set N. Like in the reals, addition and

multiplication are binary operations on N. The operation of subtraction,

however, is not a binary operation because for a, b ∈ N, a−b is not necessarily

in N. For example, 5− 105 6∈ N. 3

Example 2.1.5. In Dn, function composition is a binary operation. Revisit

our Cayley tables for 3 ≤ n ≤ 6 and notice that every composition is already

an element in Dn. 3

A set may have several binary operations on it. For example, the operations

of addition, subtraction, and multiplication are binary operations on R.

Notation. To indicate which binary operation to use, we may write “R under

addition,” which is denoted symbolically as the pair (R,+). Similarly, we
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write (R,−) and (R, ·) to indicate the set R with the binary operations of

subtraction and multiplication, respectively.

There are many binary operations, and many symbols associated with these

binary operations. Some common symbols you may have seen before are

+, ·, ∗,×, ◦,⊗,⊕,∨,∧,∪, and ∩ .

Notation. The symbol ∗ is the generic symbol for a binary operation. Typi-

cally, it is used when the exact operation does not matter or is unknown.

Example 2.1.6. Suppose ∗ is a binary operation on Z such that 3∗7 = −2.

In this case, we do not have enough information to determine the behavior

of the operation ∗. 3

It is more common to write a ∗ b instead of ∗(a, b), and in practice, we

abbreviate even more. Just as we use ab instead of a ·b or a×b in high school

algebra, we will often use ab instead of a ∗ b for a generic binary operation.

Similarly, a ∗ a can be generically written as a2. Do not assume that the

binary operation is multiplication! Unless you already know the operation is

multiplication, all you may assume is that ab is just the lazy way of writing

a ∗ b. (If you are a math major and not a bit lazy, you may be the first.)

The following lemma details some implications of the definition of a binary

operation.

Lemma 2.1.7. A binary operation ∗ on a set S satisfies the following con-

ditions.

1. Substitution: For all a1, b1, a2, b2 ∈ S, if a1 = a2 and b1 = b2 then

a1 ∗ b1 = a2 ∗ b2.

2. Right composition: For all a1, a2, b ∈ S, if a1 = a2 then a1 ∗ b = a2 ∗ b.
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3. Left composition: For all a, b1, b2 ∈ S, if b1 = b2 then a ∗ b1 = a ∗ b2.

Proof. We prove this lemma in parts. Let ∗ be a binary operation on a set

S.

1. Assume a1, b1, a2, b2 ∈ S such that a1 = a2 and b1 = b2. Therefore,

(a1, b1) = (a2, b2). By the definition of binary operation, ∗ : S×S → S

is a function. By the definition of function, if (a1, b1) = (a2, b2) ∈ S×S,

then ∗((a1, b1)) = ∗((a2, b2)). Hence, a1 ∗ b1 = a2 ∗ b2.

2. Assume a1 = a2. By reflexivity of equality, we know that b = b for all

b ∈ S. By substitution, a1 ∗ b = a2 ∗ b, as desired.

3. This proof is similar to the proof of right composition.

Notice that the second and third parts Lemma 2.1.7 are about composition.

The converse of composition is cancellation, which is noticeably not included

in this lemma, because it does not always hold, as the non-example below

demonstrates. We are not yet ready to study when cancellation does hold.

Non-Example 2.1.8. Consider the set N under the binary operation max.

That is, if a, b ∈ N, then let a ∗ b = max(a, b). Then 100 ∗ 2 = max(100, 2) =

100 and 100 ∗ 70 = max(100, 70) = 100. Thus 100 ∗ 2 = 100 ∗ 70 even though

2 6= 70. Ergo, just because 100 ∗ 2 = 100 ∗ 70, we cannot cancel the 100. 3

Notice that in Lemma 2.1.7, we distinguish between left and right compo-

sition. Order matters! Left and right composition are not necessarily the

same. Let ∗ be a binary operation on set S, and consider a, b ∈ S. The order

of a and b in the operation is very important. We do not assume that a ∗ b
is the same as b ∗ a. Although sometimes it may be true that a ∗ b = b ∗ a,
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it is not part of the definition of binary operation, and nor should you ever

assume it.

Definition 2.1.9. Assume that ∗ is a binary operation on the set S. We

say that ∗ is commutative if

x ∗ y = y ∗ x

for all x, y ∈ S. If a binary operation is not commutative, we say it is

noncommutative.

Example 2.1.10. Addition and multiplication on C are commutative. 3

If the operation on a set is established, we may simply say that the set is

commutative, rather than saying the operation on the set is commutative.

It may seem that many binary operations are commutative, thus it is impor-

tant to have some examples of noncommutative operations.

Example 2.1.11. Subtraction is a binary operation on R. Consider 4.8, π ∈
R. Note that 4.8 ∗ π 6= π ∗ 4.8 because 4.8− π 6= π − 4.8. Thus, subtraction

is noncommutative. 3

Example 2.1.12. We have already seen that D4 is not commutative. For

example, notice that R270H = DL and HR270 = DR. 3

Example 2.1.13. Let M2(R) be the set of all 2 × 2 matrices with real

entries. Matrix multiplication is a binary operation on this set because

1. addition and multiplication of real numbers are binary operations, and

2. a 2× 2 matrix multiplied by a 2× 2 matrix produces a 2× 2 matrix.
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Matrix multiplication is noncommutative on M2(R). For example,[
1 7

−1 1

]
,

[
2 1

4 −1

]
∈M2(R).

Notice that [
1 7

−1 1

]
·

[
2 1

4 −1

]
=

[
9 11

−1 −3

]
,[

2 1

4 −1

]
·

[
1 7

−1 1

]
=

[
1 15

5 27

]

and [
9 11

−1 −3

]
6=

[
1 15

5 27

]
,

thus matrix multiplication is noncommutative on M2(R). 3

The first part of Lemma 2.1.7, says that if a1 = a2 and b1 = b2, we can

substitute a2 for a1 and b2 for b1 in the expression a ∗ b and obtain the

expression a2 ∗ b2 which is equal to a1 ∗ b1. One might not think that such a

natural statement is necessary. To see the need for it, see Exercise 2.1.9.

Now that we have some basic properties of a binary operation, we give more

examples and non-examples. Throughout the examples, consider how the

properties detailed in Lemma 2.1.7 hold.

Example 2.1.14. Let R[x] be the set of polynomials in x with real coeffi-

cients, that is,

R[x] = {a0 + a1x+ a2x
2 + · · ·+ anx

n | ai ∈ R, n ∈ N}.

Then addition and multiplication are binary operations on R[x]. That is,

if f(x), g(x) ∈ R[x], then f(x) + g(x), f(x) · g(x) ∈ R[x]. Notice that the
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coefficients of the polynomials f(x) + g(x) and f(x) · g(x) are real numbers

because addition and multiplication are binary operations on the reals. 3

Example 2.1.15. Consider P(Z), the powerset of the integers. The oper-

ations of ∪ and ∩, set union and set intersection, are binary operations on

P(Z). 3

Non-Example 2.1.16. The operation of division is not a binary operation

on the sets C, R, Q, Z, and N. This is because for any element a ∈ C, a ∗ 0

is undefined, hence a ∗ 0 /∈ C. 3

As we will see, the number zero can be pesky when working under the oper-

ations of multiplication and division. Thus, we have the following notation.

Notation. For a set of numbers S that includes the element 0, let S∗ be the

set S − {0}. For example, R∗ = R− {0}.

Example 2.1.17. Consider the operation of division. On Q∗ and R∗, divi-

sion is a binary operation. Note that division is still not a binary operation

on N∗ and Z∗ since, for example, 1
2
/∈ N and 1

2
/∈ Z. 3

Abstract algebra is rich with examples. The following definitions will provide

examples throughout the text.

Definition 2.1.18. For each integer n ≥ 2, define the set

Zn = {0, 1, 2, . . . , n− 1},

which is called the set of integers modulo n. For a, b ∈ Zn, the operation

a+ b mod n
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is called addition modulo n, and the operation

a · b mod n

is called multiplication modulo n. For short, these operations are also called

modular addition and modular multiplication.

Example 2.1.19. Let n = 10. Then Z10 = {0, 1, 2, . . . , 9}. For example,

because 8 + 7 ≡ 5 mod 10 in modular arithmetic, in Z10 we write 8 + 7 = 5.

Similarly, because 8 · 7 ≡ 6 mod 10, in Z10 we have 8 · 7 = 6. 3

Example 2.1.20. For each n ≥ 2, addition modulo n and multiplication

modulo n are binary operations on the set Zn. 3

In Examples 2.1.19 and 2.1.20, it would be more precise to use the notations

a+n b and a ·n b for addition and multiplication in Zn, but in the interest of

keeping the notation simple we omit the subscript n. Of course, this means

that in any given situation, we must be very clear about the value of n. Note

also that this is really an infinite class of examples, as n ≥ 2.

Example 2.1.21. Let K denote any one of the following: Z,Q,R,Zn. Let

M2(K) be the set of all 2× 2 matrices[
a b

c d

]

where a, b, c, d are any elements of K. Matrix addition and multiplication
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are defined by the following rules:[
a b

c d

]
+

[
a′ b′

c′ d′

]
=

[
a+ a′ b+ b′

c+ c′ d+ d′

]
[
a b

c d

]
·

[
a′ b′

c′ d′

]
=

[
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

]

for all a, b, c, d, a′, b′, c′, d′ ∈ K. Note that it is implied to use the forms

of addition and multiplication associated with each set K. That is, use

“regular” addition and multiplication if K = Z and modular addition and

multiplication if K = Zn. 3

Example 2.1.22. Addition of vectors in Rn, n ∈ N, is a binary operation.

More precisely, for

Rn = {(x1, x2, . . . , xn) | xi ∈ R for all 1 ≤ i ≤ n}.

addition is defined by the rule

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

where xi + yi denotes the addition of the real numbers xi and yi. 3

Example 2.1.23. The cross product u × v of vectors u and v in R3 is a

binary operation. Recall that given 2× 2 matrix[
a b

c d

]
,

the determinant is ∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad− bc.

For vectors u = (u1, u2, u3) and v = (v1, v2, v3), u × v is defined by the
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formula

u× v =

(∣∣∣∣∣u2 u3

v2 v3

∣∣∣∣∣ ,−
∣∣∣∣∣u1 u3

v1 v3

∣∣∣∣∣ ,
∣∣∣∣∣u1 u2

v1 v2

∣∣∣∣∣
)
.

Notice that u × v ∈ R3 because multiplication and subtraction are binary

operations on the reals. 3

The following property will become important to us, though not all binary

operations have it.

Definition 2.1.24. Assume that ∗ is a binary operation on the set S. We

say that ∗ is associative if

x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ S.

If a binary operation is not associative, we say it is nonassociative.

If the operation is known, we may simply say that the set is associative,

rather than saying the operation on the set is associative.

Example 2.1.25. On the set R, addition and multiplication are associa-

tive. For x, y, z ∈ R, we know that

x+ (y + z) = (x+ y) + z

and

x · (y · z) = (x · y) · z.

Subtraction is not associative. For example,

100− (99− 98) 6= (100− 99)− 98.



2.1. INTRODUCTION TO BINARY OPERATIONS 19

3

Non-Example 2.1.26. On R∗, division is not associative. For example,

24÷ (6÷ 2) 6= (24÷ 6)÷ 2.

3

Notice that the definition of associativity only applies to three elements. In

practice, we may need to apply associativity to more than three elements.

To do so, we need the theorem below.

Theorem 2.1.27 (The Generalized Associative Law). Let ∗ be an associative

binary operation on a set S. If a1, a2, . . . , an is a sequence of n ≥ 3 elements

of S, then the product

a1 ∗ a2 ∗ · · · ∗ an

is unambiguous; that is, the same element will be obtained regardless of how

parentheses are inserted in the product.

As this theorem’s statement contains an ellipsis, the proof of this theorem

requires induction. The base case, when n = 3, is the associative law it-

self. Some of the cases when n = 4 are addressed in Exercise 2.1.12. The

remainder of this proof is omitted.

EXERCISES

Exercise 2.1.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a. Division is a binary operation on R.

b. Division is a binary operation on M2(R).
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c. The symbol ∗ denotes multiplication.

d. Matrix multiplication is noncommutative.

e. A binary operation is associative.

Exercise 2.1.2. Consider the set Zn. For each n given below, find −3,

−28, 4− 16, and 15− 33 in Zn.

a. n = 2

b. n = 10

c. n = 7

Exercise 2.1.3. For each of the following, determine if the set is closed

under addition modulo n. If it is closed, construct a Cayley table. If it is

not closed, give a counterexample.

a. {0, 1, 2, 3} when n = 4

b. {1, 2, 3} when n = 4

c. {0, 3, 6, 9} when n = 10

d. {0, 3, 6, 9} when n = 12

Exercise 2.1.4. For each of the following, determine if the set is closed

under multiplication modulo n. If it is closed, construct a Cayley table. If

it is not closed, give a counterexample.

a. {1, 2, 3} when n = 4

b. {1, 2, 3} when n = 5

c. {1, 3, 5, 7} when n = 8

d. {0, 2, 4, 6, 8} when n = 10

Exercise 2.1.5. Consider the matrices

A =

[
3 7

8 −1

]
and B =

[
9 5

6 2

]
.

a. Find A+B, AB, and BA if A,B ∈M2(Z).
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b. Find A+B, AB, and BA if A,B ∈M2(Z10).

Exercise 2.1.6. Is D3 commutative? Is D5 commutative? Is D6 commuta-

tive? Justify your claims.

Exercise 2.1.7. A set S with a binary operation ∗ is not commutative if

there exists a pair of elements a, b ∈ S such that a ∗ b 6= b ∗ a. That does not

mean a ∗ b 6= b ∗ a for all a, b,∈ S. That is, there may be some pairs a, b ∈ S
such that a ∗ b = b ∗ a. Find all such pairs in D4. What patterns do you

notice?

Exercise 2.1.8. Let D2(R) be the set of 2× 2 diagonal matrices with real

entries. Answer each of the following and prove your claims.

a. Is matrix addition commutative?

b. Is matrix multiplication commutative?

Exercise 2.1.9. Here we give an example of a rule that appears to define

a binary operation, but does not, because substitution does not hold. Let

a, b, c, d be integers with b 6= 0 and d 6= 0. Then

a

b
∈ Q and

c

d
∈ Q.

Define ∗ on Q by
a

b
∗ c
d

=
a+ c

b2 + d2
.

a. Prove that ∗ is a closed on Q.

b. Show by specific example that this rule does not permit substitution.

Exercise 2.1.10. Find a set S with a binary operation ∗ that is not as-

sociative. Prove it by giving three specific elements a, b, c ∈ S such that

a ∗ (b ∗ c) 6= (a ∗ b) ∗ c.

Exercise 2.1.11. Consider matrix multiplication over M2(C). Prove that

this binary operation is associative.
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Exercise 2.1.12. Let ∗ be an associative binary operation on the set S

and let a, b, c, d ∈ S. Prove the following statements.

a. (a ∗ b) ∗ (c ∗ d) = ((a ∗ b) ∗ c) ∗ d.

b. (a ∗ b) ∗ (c ∗ d) = a ∗ (b ∗ (c ∗ d)).

Exercise 2.1.13. Consider the set R[x] and the operation of function

composition.

a. Is function composition a binary operation? If so, why? If not, give a

counterexample.

b. Is function composition associative? If so, why? If not, give a

counterexample.

c. Is function composition commutative? If so, why? If not, give a

counterexample.

2.2 Some Important Elements

This section consists of definitions that are fancy words for elements you have

probably already recognized as being interesting in some way. We mathe-

maticians have a particular proclivity for sophisticated vocabulary... so you

should learn them wicked well.

Definition 2.2.1. We say that an element e in S is an identity with respect

to ∗ if

x ∗ e = x and e ∗ x = x for all x in S.

Example 2.2.2. In D4, R0 is an identity element because for all x ∈ D4,

R0x = xR0 = x. 3
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Example 2.2.3. Consider the set Z. Under addition, 0 ∈ Z is the identity

because for every x ∈ Z, x + 0 = 0 + x = x. Similarly, consider the set

Z∗. Under multiplication, 1 ∈ Z∗ is the identity because for every x ∈ Z∗,
x · 1 = 1 ·x = x. Notice that for multiplication, we must consider Z∗ and not

Z. 3

The previous example may seem obvious, but it demonstrates an important

point. An identity depends on both the set and the binary operation. Fur-

ther, not all binary operations have an identity, though we have to be slightly

more creative to find an example.

Non-Example 2.2.4. Consider the set N under the binary operation min.

That is, if a, b ∈ N, then let a ∗ b = min(a, b). Then there is no identity. 3

An identity is necessary in the next definition.

Definition 2.2.5. Assume that ∗ is a binary operation on the set S. Let

e ∈ S be an identity with respect to ∗. Given x ∈ S we say that an element

y ∈ S is an inverse of x if both

x ∗ y = e and y ∗ x = e.

Example 2.2.6. Consider the set R under addition. First, note that 0 is

the identity in this situation, thus for any x ∈ R, we are looking for some

y ∈ R such that x + y = y + x = 0. For 7 ∈ R, we see that −7 ∈ R is an

inverse of 7 because 7 + (−7) = (−7) + 7 = 0.

Consider the set R∗ under multiplication. First, note that 1 is the identity in

this situation, thus for any x ∈ R∗, we are looking for some y ∈ R∗ such that

x · y = y · x = 1. For 7 ∈ R∗, we see that 1
7
∈ R∗ is an inverse of 7 because
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7 · (1
7
) = (1

7
) · 7 = 1. 3

Notice that in the definition of inverse assumes an identity exists. Whenever

we calculate an inverse, we must first determine an identity!

Non-Example 2.2.7. Revisit Example 2.2.4 and let ∗ be the operation

min. Consider the element 8 ∈ N. We cannot find an inverse of 8 because, in

order to do so, we would need to find some y ∈ N such that 8 ∗ y = min(8, y)

equals an identity, which does not exist. Therefore, 8 ∈ N does not have an

inverse under the operation min. 3

Just because a set has an identity does not mean that every element must

have an inverse. Consider the following example.

Non-Example 2.2.8. Matrix multiplication is a binary operation the set

M2(R), and an identity element is

I =

[
1 0

0 1

]

because for any [
a b

c d

]
∈M2(R),

we have that [
1 0

0 1

]
·

[
a b

c d

]
=

[
a b

c d

]
·

[
1 0

0 1

]
=

[
a b

c d

]
.

The matrix

A =

[
0 0

0 0

]
does not have an inverse. Why not? Suppose, by way of contradiction, that
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there exists some

X =

[
w x

y z

]
such that AX = XA = I. Then, for starters,[

0 0

0 0

]
·

[
w x

y z

]
=

[
1 0

0 1

]
.

This creates a system of four equations, one of which is 0w + 0y = 1. In the

reals, no such w and y exist. Therefore, X does not exist, which means that

A has no inverse. 3

In the integers modulo n, finding an inverse element can be tricky. Consider

the example below.

Example 2.2.9. Consider Z12 under addition. Recall that

Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

First, an identity is 0 because for all x ∈ Z12, it is true that x+ 0 = 0 + x ≡
x mod 12. To find an inverse of 2 ∈ Z12, we need to find some y ∈ Z12 such

that 2 + y = y + 2 = 0. Recall that in modular 12 arithmetic

· · · ≡ −24 ≡ −12 ≡ 0 ≡ 12 ≡ 24 ≡ · · ·

thus, we are looking for some y ∈ Z12 such that 2 + y = y + 2 is equal to

−24, or −12, or 0, or 12, or 24, etc.

In the set Z with no modulus, an inverse of 2 is −2, however, −2 6∈ Z12, thus

we must keep searching. For 10 ∈ Z12, we see that 2+10 = 10+2 = 12. Thus,

10 ∈ Z12 is an inverse of 2. Notice that −2 ≡ 10 in modular 12 arithmetic.

Similarly, an inverse of 7 ∈ Z12 is 5 ∈ Z12 because 7 + 5 = 5 + 7 = 12. 3
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Non-Example 2.2.10. Consider the set Z6 under multiplication. In this

situation, 1 is an identity element. Notice that 0, 2, 4 ∈ Z6 do not have

inverses. 3

Recall from Section 2.1 that we sometimes get lazy and write our binary

operation as multiplication. In Example 2.2.9, using the multiplicative nota-

tion, we could write 2−1 = 10 and 7−1 = 5. This may look strange and seem

unnecessary, but it can also be very helpful. This leads us to the following

notation.

Notation. Given an element with exactly one inverse, the symbol −1 denotes

the inverse, and can be useful in symbolic writing. Thus, think of −1 as the

inverse symbol, and not necessarily as the multiplicative inverse symbol.

In Example 2.2.9, we understand that the binary operation in Z12 is addition.

Thus, we know that the symbol −1 means inverse under addition. Therefore,

2−1 = 10 in Z12. You may be used to thinking that 2−1 = 1
2
, but in Z12, this

does not make sense because 1
2
6∈ Z12.

Further, notice in Example 2.2.9, that 0 + 0 = 0. Thus, 0 is its own inverse.

This means that we can write 0−1 = 0. If you do indeed write this, it must

be clear that the operation is addition!

Definition 2.2.11. We say that an element a ∈ S is idempotent with

respect to ∗ if

a ∗ a = a.

Example 2.2.12. Consider the set Z∗10 under multiplication modulo 10.
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Then 1, 5, 6 ∈ Z∗10 are idempotent because

1 · 1 ≡ 1 mod 10

5 · 5 = 25 ≡ 5 mod 10

6 · 6 = 36 ≡ 6 mod 10

Notice that 7 ∈ Z∗10 is not idempotent because 7 · 7 6≡ 7 mod 10. 3

The following definition applies strictly when the operation is multiplication,

including modular multiplication.

Definition 2.2.13. Let S be a set under the binary operation of multipli-

cation. Then x ∈ S is a unit if x has a multiplicative inverse.

Note that in order to determine if an element is a unit, we first need to

determine a multiplicative identity.

Example 2.2.14. Consider Z∗10. Then 1 is a multiplicative identity. For

3 ∈ Z∗10, 3 · 7 = 1, thus both 3 and 7 are units. The element 4 ∈ Z∗10 is not a

unit because there does not exist an x ∈ Z∗10 such that 4x = 1. 3

Non-Example 2.2.15. In (R,+), 0 is an identity and 2 has inverse −2.

Notice that 2 is not a unit because, though it has an inverse, the operation

is addition. 3

When a set has multiple binary operations on it, it is important to distinguish

between different types of inverses.
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Example 2.2.16. The element 6 ∈ R has additive inverse −6 and multi-

plicative inverse 1
6
. 3

EXERCISES

Exercise 2.2.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a. If a set has an identity under a binary operation, then every element

in the set has an inverse.

b. 3−1 = 1
3

c. An identity is an idempotent.

d. An identity is a unit.

e. An inverse of an identity is an identity.

f. An inverse of a unit is a unit.

Exercise 2.2.2. Refer back to Example 2.2.3.

a. We claim 0 ∈ Z is an identity under addition. Is 0 ∈ Z an identity

under multiplication? Why or why not?

b. We claim 1 ∈ Z∗ is an identity under multiplication. Is 1 ∈ Z an

identity under addition? Why or why not?

Exercise 2.2.3. Refer back to Example 2.2.4. For each of the following,

determine if there is an identity. If so, what is it? If not, why not? Also, if

there is an identity, does the element 8 have an inverse? Why or why not?

a. Consider the set N under the binary operation max.

b. Consider the set Z under the binary operation min.

c. Consider the set Z under the binary operation max.

Exercise 2.2.4. Consider the set Zn. For each n given below, find 2−1 and

7−1. In each case, how many inverses does 2 have? How many inverses does

7 have?
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a. n = 9

b. n = 11

c. n = 14

d. n = 20

Exercise 2.2.5. Consider the set Z∗n under multiplication modulo n. For

each n given below, make a Cayley table for Z∗n. What is an identity? For

each element, what are its inverse(s), if any exist?

a. n = 4

b. n = 7

c. n = 10

Exercise 2.2.6. Consider the set Z∗n under multiplication modulo n. For

each n given below, make a table that lists every element and its inverse(s),

if any exist.

a. n = 5

b. n = 8

c. n = 15

Exercise 2.2.7. Make a Cayley table for the set {3, 6, 9, 12} under multipli-

cation modulo 15. Is there an identity element? If so, find it, and determine

the inverses of each element, if any exist.

Exercise 2.2.8. For each of the following, determine which examples have

identities. If there is an identity, determine the elements which do not have

inverses.

a. {1, 2, 3} under multiplication modulo 4

b. {1, 3, 5, 7} under multiplication modulo 8

c. {0, 2, 4, 6} under multiplication modulo 8

d. {1, 3, 5, 7, 9, 11, 13} under multiplication modulo 15

e. {1, 7, 9, 11, 13} under multiplication modulo 15
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Exercise 2.2.9. Consider (R, ·), (R,+), and (M2(R), ·). Determine which

pairs have identities. If there is an identity, determine the elements which do

not have inverses.

Exercise 2.2.10. Let X be a set. Consider (P(X),∪) and (P(X),∩). De-

termine which pairs have identities. If there is an identity, determine the

elements which do not have inverses. If there is no identity, explain why not.

Exercise 2.2.11. Find all idempotents in Z∗12. Find all idempotents in Z∗20.

Exercise 2.2.12. Let e ∈ S be an identity under the operation ∗. Prove

that e is an idempotent.

Exercise 2.2.13. For each of the following n ∈ N, find all of the units in

Z∗n. Then, conjecture which elements in Zn∗ will be units and which will

not be units.

a. n = 6

b. n = 7

c. n = 8

d. n = 9

e. n = 12

Exercise 2.2.14. Let e ∈ S be an identity under multiplication. Prove that

e is a unit.



Chapter 3

Groups

We cannot solve our problems with the same thinking we used

when we created them.

Albert Einstein

At this point, you may be wondering how the dihedral groups relate to binary

operations and why any of this is considered “abstract.” The dihedral groups

are examples of a type of algebraic structure, a structure called a group.

In this chapter, we generalize the dihedral groups to include many of the

examples we saw in Chapter 2.

3.1 Introduction to Groups

Below we define a group, which is a major building block of abstract algebra.

Definition 3.1.1. A group G is a set with a binary operation such that

the following properties are satisfied.

31
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1. Associativity: For all x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z.

2. Identity: There exists e ∈ G such that e ∗ x = x ∗ e = x for all x in G.

3. Inverses: For every element x ∈ G, there exists y ∈ G such that x∗y =

y ∗ x = e.

We have already seen many examples of groups in the previous chapters.

Some examples are reiterated below.

Example 3.1.2. The dihedral groups Dn are indeed groups. We will focus

on D4. We know that

D4 = {R0, R90, R180, R270, H, V,DL, DR}

and function composition is a binary operation on this set. Now, we must

verify the three properties.

1. Associativity: Though it is cumbersome, we could check every possible

triple x, y, z ∈ D4 to see that x ∗ (y ∗ z) = (x ∗ y) ∗ z.

2. Identity: The element R0 ∈ D4 is an identity element.

3. Inverses: Every element does indeed have an inverse. We see that R0,

R180, H, V , DL, and DR are self-inverses. The elements R90 and R270

are inverses of each other.

To verify the claims about associativity and inverses, refer back to the Cayley

table of D4 in Chapter 1. 3

Before we more rigorously analyze how to prove a set with a binary operation

is a group, we give more examples of groups, and leave many of these proofs
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to the reader.

Example 3.1.3. The set Z under addition is a group with identity 0 ∈ Z.

The inverse of x ∈ Z is −x ∈ Z because x+ (−x) = 0. 3

Example 3.1.4. The set R∗ under multiplication is a group with identity

1 ∈ R∗. The inverse of x ∈ R∗ is 1
x
∈ R∗ because x · 1

x
= 1. Notice that it is

essential that x ∈ R∗ because 1
x

does not exist when x = 0. 3

Non-Example 3.1.5. The set Z under multiplication is not a group. No-

tice that there is no identity in Z. Initially, we may guess that 1 ∈ Z could

be an identity, though it is not, because for 0 ∈ Z, 0 · 1 = 1 · 0 6= 1.

The set Z∗ under multiplication is not a group. Notice that 1 ∈ Z∗ is an

identity, but it is not true that every element has an inverse. The elements

1,−1 ∈ Z∗ have inverses, but no other elements have inverses. For example,

37 ∈ Z∗ does not have an inverse. 3

Non-Example 3.1.6. The set N is not a group under addition. Notice

that it does not have an identity, because 0 6∈ N. Further, it does not have

inverses, because for x ∈ N, −x 6∈ N. 3

Note that a group has both a set and a binary operation on the set. For this

reason, we have the alternate notation given below.

Notation. A group G may be expressed as the pair (G, ∗), where G is the set

and ∗ is the binary operation on the set.

Often, the binary operation on the set is inherent, thus the notation of simply

G is sufficient. If the operation is unknown, unusual, or must be emphasized,

the notation (G, ∗) might be better.

Example 3.1.7. The set Z∗7 = {1, 2, 3, 4, 5, 6} is a group under multiplica-

tion modulo 7. Its identity is 1. Notice that 2 and 4 are inverses because
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2 · 4 ≡ 1 mod 7. Similarly, 3 and 5 are inverses because 3 · 5 ≡ 1 mod 7.

The elements 1 and 6 are self-inverses because 1 · 1 ≡ 1 mod 7 and 6 · 6 ≡
1 mod 7. 3

Non-Example 3.1.8. The set Z∗8 = {1, 2, 3, 4, 5, 6, 7} is not a group under

multiplication modulo 8. This set has identity 1, but not all elements have

inverses. For example, there is no element x ∈ Z∗8 such that 2x = 1 because

2 · 1 = 2 · 5 = 2, 2 · 2 = 2 · 6 = 4, and 2 · 3 = 2 · 7 = 6. 3

Example 3.1.7 and Non-Example 3.1.8 show us that not every Z∗n is a group

under multiplication modulo n. To remedy this, we begin with the definitions

below.

Definition 3.1.9. Integers a and b are relatively prime if their greatest

common divisor is 1, that is, gcd(a, b) = 1.

Example 3.1.10. The integers 4 and 9 are relatively prime because gcd(4, 9) =

1. Notice that 4 and 9 are relatively prime in relation to each other, even

though neither is a prime itself. 3

Non-Example 3.1.11. The integers 4 and 14 are not relatively prime

because gcd(4, 14) = 2. 3

Notice that the term relatively prime describes how two integers relate to

each other, as opposed to the term prime, which describes one integer by

itself. The relatively prime relationship is useful in the following definition.

Definition 3.1.12. Let n ≥ 2 be a natural number. Define U(n) to be the

set of all natural numbers that are less than n and relatively prime to n, that
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is,

U(n) = {x ∈ N | 1 ≤ x < n, gcd(x, n) = 1}

under the operation of multiplication modulo n. This group is called the

group of units modulo n.

Example 3.1.13. Consider U(8) = {x ∈ N | 1 ≤ x < 8, gcd(x, 8) = 1}.
We see that

U(8) = {1, 3, 5, 7}

and indeed this is a group, as justified below.

0. Multiplication modulo 8 is a binary operation on this set because for

the product of any two numbers in U(8) will also be in U(8).

1. The binary operation is associative because all multiplication modulo

n is associative.

2. The element 1 ∈ U(8) is a multiplicative identity.

3. Every element has an inverse, in fact, every element is its own inverse.

Thus, we see that U(8) is indeed a group. 3

Example 3.1.14.s Consider U(22) = {x ∈ N|1 ≤ x < 22, gcd(x, 22) =

1}.

a) Construct a Cayley table for U(22). Below is a Cayley table for U(22).
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U(22) 1 3 5 7 9 13 15 17 19 21

1 1 3 5 7 9 13 15 17 19 21

3 3 9 15 21 5 17 1 7 13 19

5 5 15 3 13 1 21 9 19 7 17

7 7 21 13 5 19 3 17 9 1 15

9 9 5 1 19 15 7 3 21 17 13

13 13 17 21 3 7 15 19 1 5 9

15 15 1 9 17 3 19 5 13 21 7

17 17 7 19 9 21 1 13 3 15 5

19 19 13 7 1 17 5 19 15 9 3

21 21 19 17 15 13 9 7 5 3 1

b) Find the inverse of each element of U(22). Using the Cayley table,

we find inverses by seeing where two numbers are multiplied using

multiplication mod 22 to make 1, which is the identity of U(22). Below

is a list of the inverse of each element of U(22).

1−1 = 1,

3−1 = 15,

5−1 = 9,

7−1 = 19,

9−1 = 5,

13−1 = 17,

15−1 = 3,

17−1 = 13,

19−1 = 7,

21−1 = 21.
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c) Prove U(22) is a group. We see that multiplication modulo 22 is a

binary operation on this set. Notice from the Cayley table for U(22),

we see that for every x, y ∈ U(22), xy ∈ U(22). Therefore, U(22)

has closure. We know that any multiplication modulo n is associative.

Therefore, U(22) multiplication modulo 22 is associative. Notice 1 ∈
U(22) and is the multiplicative identity. We see that inverses exist in

U(n). Hence, U(22) is a group.

3

Note that even though the name of U(n) includes the word group, we still

must prove U(n) is a group. We need a few more tools for this proof, thus it

comes later in the chapter. Below is our first example of how to prove a set

with an operation is a group, and it is an important one. We will reference

this result many times.

Theorem 3.1.15. The set C is a group under addition.

Proof. We already know addition is a binary operation on C. Thus, to prove

that C is a group under addition, we must prove that the binary operation

is associative, the set has an identity, and each element has an inverse.

1. Let x = ax + bxi, y = ay + byi, z = az + bzi ∈ C. Then, because addition

is a binary operation on the reals,

x+ (y + z) = ax + bxi+ (ay + byi+ az + bzi)

= ax + bxi+ [(ay + az) + (by + bz)i]

= (ax + ay + az) + (bx + by + bz)i

= (ax + ay) + (bx + by)i+ az + bzi

= (x+ y) + z.
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Thus, addition is associative over the complex numbers.

2. We see that 0 ∈ C because 0 = 0 + 0i. For any a+ bi ∈ C,

(a+ bi) + 0 = 0 + (a+ bi) = a+ bi.

Similarly, 0 + (a+ bi) = a+ bi. Thus, we have an identity element.

3. Recall that 0 ∈ C is an identity and consider a + bi ∈ C. By the

definition of C, a, b ∈ R. Further −a,−b ∈ R, thus (−a) + (−b)i ∈ C.

Then

(a+ bi) + [(−a) + (−b)i] = [a+ (−a)] + [b+ (−b)]i = 0 + 0i = 0.

Similarly, [(−a) + (−b)i] + (a + bi) = 0. Thus, each complex number

has an additive inverse.

Thus, C under addition is a group.

Compare the different proof styles of Example 3.1.2 and Theorem 3.1.15.

In Example 3.1.2, we prove D4 is a group by verifying the properties on

the individual elements. In Theorem 3.1.15, we prove C is a group not by

studying individual elements, but instead by verifying the properties using

the generic form of complex numbers. When asked to prove a small, finite

set is a group, consider verifying the properties on the individual elements.

When asked to prove either an infinite set or set given in set-builder notation,

consider using the generic form of the elements in the set.

Theorem 3.1.15 will be very useful in the future because N ⊆ Z ⊆ R ⊆ C.

For similar reasons, the next results are also useful, and the proofs are left

to the reader.

Theorem 3.1.16. The set C∗ under multiplication is a group.
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Theorem 3.1.17. The set Zn is a group under addition modulo n.

The following notation gives us infinitely more examples of groups.

Notation. Let n ∈ N. Then the set nZ is defined to be

nZ = {nz | z ∈ Z}

which is the set of multiples of n.

Theorem 3.1.18. Given n ∈ Z, nZ is a group under addition.

The proof of this is left as a homework exercise.

EXERCISES

Exercise 3.1.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a. A group has closure.

b. The empty set is a group.

c. Given an element g in group G, g−1 is also in G.

d. Group G has an idemptotent.

e. For n ≥ 2, Z∗n is a group.

f. For n ≥ 2, 1 ∈ U(n).

g. For n ≥ 2, 2 ∈ U(n).

h. For n ≥ 2, the elements in U(n) are units.

i. For n ≥ 2, U(n) ≤ U(n+ 1).

j. For n ≥ 2, U(n) ≤ U(2n).

Exercise 3.1.2. For each of the following, give a reason why the set and

operation do not form a group.
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a. Z under subtraction

b. The odd integers under addition

c. The odd integers under multiplication

d. The even integers under multiplication

e. Q under multiplication

Exercise 3.1.3. Construct a Cayley table for U(10). Find the inverse(s) of

each element.

Exercise 3.1.4. Construct a Cayley table for U(12). Find the inverse(s) of

each element.

Exercise 3.1.5. Prove that {1,−1, i,−i} is a group under multiplication.

Exercise 3.1.6. Prove that 3Z = {3x |x ∈ Z} is a group under addition.

Exercise 3.1.7. For each of the following n, determine if Z∗n is a group. If

it is a group, state the identity and each element’s inverse(s). If it is not a

group, explain why not.

a. n = 2

b. n = 3

c. n = 4

d. n = 5

e. n = 6

Make a conjecture about what restrictions need to be put on n ∈ N to make

Z∗n a group.

Exercise 3.1.8. Prove Theorem 3.1.16.

Exercise 3.1.9. Prove Theorem 3.1.17.
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3.2 Basic Properties of Groups

Now that we have established what a group is and some examples of groups,

we study some properties common to all groups. Thus, we adopt a generic

notation. From now on, unless otherwise stated, G will denote a group, the

identity of G will be denoted by e, and the inverse of a ∈ G will be denoted

by a−1. Notice that this assumes a multiplicative notation for the binary

operation.

In the previous chapters, you may have noticed the language an identity or

an inverse. Yet, if you did your homework, you also noticed that there was

never more than one identity and each element had at most one inverse. We

prove these observations below. Also notice that we begin to drop the generic

∗ notation for the binary operation.

Theorem 3.2.1. In a group G, the identity is unique.

Proof. First, we are given that G is a group. By the definition of group, G

has an identity, which we will call e.

Second, assume e′ ∈ G is also an identity. By definition of identity, we know

that for all g ∈ G,

eg = ge = g (3.1)

and

e′g = ge′ = g. (3.2)

These equalities are true for every g ∈ G, thus consider when g = e′. From

Equation 3.1, we see that ee′ = e′e = e′. Similarly, when g = e, we see from
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Equation 3.2 that e′e = ee′ = e. By transitivity of equality,

e′ = ee′ = e.

Thus, there is no second identity. In conclusion, the identity of G is unique.

For this reason, we will refer to the identity of a group, not an identity of a

group.

To prove that inverses are unique, we need the following lemma. If this

lemma seems trivial, revisit Non-Example 2.1.8.

Lemma 3.2.2 (Cancellation Laws). In a group G, left and right cancellation

laws hold. That is, for a, b, c ∈ G,

1. if ab = ac, then b = c, and

2. if ba = ca, then b = c.

Proof. Let a, b, and c be elements in group G such that ab = ac. By the

definition of a group, we know that a has an inverse, say a−1. Composing

a−1 on the left, we get

a−1(ab) = a−1(ac). (3.3)

By the definition of a group, we know the operation is associative, thus we

can rewrite Equation 3.3 as

(a−1a)b = (a−1a)c. (3.4)

By the definition of inverse, we know that a−1a = e, where e is the identity
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of G, thus Equation 3.4 becomes

eb = ec. (3.5)

Finally, by the definition of the identity, we see that b = c.

The proof is similar for right cancellation and is therefore left to the reader

in Exercise 3.2.2.

Notice that in the proof of Lemma 3.2.2, we used every piece of the definition

of a group. We use associativity to create Equation 3.4, we used the existence

and the definition of the identity in Equation 3.5 and the final result, and we

used the existence of inverses in Equation 3.3. Cancellation allows us to get

the following result, whose proof is left to the reader in Exercise 3.2.3.

Another interesting note about this proof is the level of detail. For example,

once we know a−1(ab) = a−1(ac), we do not immediately conclude b = c.

Instead, we use the properties of groups to explain every step in between. In

this chapter, your proofs should go into a similar level of detail.

Theorem 3.2.3. In a group, inverses are unique. That is, for element g ∈
G, there is exactly one element h ∈ G such that gh = hg = e, where e ∈ G
is the identity.

Thus, we may now refer to the inverse of a given element, not an inverse of

the given element. Also, when writing the inverse of element a generically,

we will often write a−1. If the operation is known to be addition, for exam-

ple, we know the inverse of a is the element −a. Remember, never assume

the operation is multiplication just because the notation simply looks like

multiplicative notation.

Note that any element to the zeroth power is equal to the identity, as the

example below demonstrates.
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Example 3.2.4.s Consider R90 ∈ D4. In this case, (R90)
0 indicates that

the square will be rotated 90◦ zero times and thus, no rotation has occurred.

This holds for all rotations. Similarly, H0 = V 0 = D0
L = D0

R = e. 3

Recall the Generalized Associative Law. Now that we know inverses are

unique, we can define the notation an for n ∈ Z.

Notation. Let G be a group with identity e. Let a be any element of G. For

n ∈ N, we define integral powers an as follows:

a0 = e

a1 = a

an = a · · · a (n copies of a)

a−n = (a−1)|n|.

This notation helps us establish the following theorem.

Theorem 3.2.5 (Laws of Exponents for Groups). Let G be a group with

identity e. Then for all a ∈ G and for all n,m ∈ Z we have

1. an ∗ am = an+m

2. (an)m = anm.

Once again, we see that any element to the zeroth power is the identity.

Example 3.2.6.s For generic element a, a1a−1 = a0 = e. For example,

in D4 when a = R90, a
1a−1 = R90R270 = R0 = e. 3

Below is another important property of groups. This shows us how the binary

operation and inverses relate.
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Theorem 3.2.7 (Socks-and-Shoes Property). Let a and b be elements of

group G. Then

(ab)−1 = b−1a−1.

Proof. We know that for element ab ∈ G, by the definition of inverse,

(ab)−1(ab) = e. Multiplying both sides by b−1 on the right, we get

[(ab)−1(ab)]b−1 = (ab)−1[(ab)b−1]

= (ab)−1[a(bb−1)]

= (ab)−1[a(e)]

= (ab)−1a

by associativity and the definitions of the identity and inverses. Thus,

(ab)−1a = b−1. Multiplying both sides on the right by a−1, we get

[(ab)−1a]a−1 = (ab)−1[aa−1]

= (ab)−1[e]

= (ab)−1

by associativity and the definitions of the identity and inverses. Ergo, (ab)−1 =

b−1a−1, as desired.

In the above proof, notice that we are careful to “multiply on the right.”

Unless we know the elements commute, we must specify on which side we

multiply. Also, notice that by “multiply,” we really mean “perform the op-

eration.”

Many of the groups we have seen thus far have the following property.

Definition 3.2.8. A group G is said to be Abelian if x ∗ y = y ∗ x for all
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x, y ∈ G. A group is said to be non-Abelian if it is not Abelian.

Notice that the definition of Abelian and the definition of commutative are

almost identical. In practice, if a group is commutative, we call it Abelian.

If another type of structure is commutative, we call it commutative.

Example 3.2.9. The groups C under addition, C∗ under multiplication,

Z7 under addition, and Z∗7 under multiplication are all Abelian because all

of their elements commute. 3

Non-Example 3.2.10. The group D4 is non-Abelian because not all of its

elements commute. For example, HDL = R90 whereas DLH = R270. 3

The definitions below give us some useful examples of more non-Abelian

groups.

Definition 3.2.11. Let K be Q, R, C, or Zp for p a prime. Then the

general linear group of 2×2 matrices is the set of 2×2 matrices with entries

in K and nonzero determinant under matrix multiplication, that is,

GL2(K) = {A ∈M2(K) | det(A) 6= 0}.

Similarly, the special linear group of 2×2 matrices is the set of 2×2 matrices

with entries in K and a determinant of one under matrix multiplication, that

is,

SL2(K) = {A ∈M2(K) | det(A) = 1}.

Notation. Another common notation for sets of 2 × 2 matrices with entries

in K, instead of M2(K), is M(2, K). Similarly, the general linear group may
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be represented as GL(2, K) and the special linear group may be represented

as SL(2, K).

Theorem 3.2.12. The general linear group of 2× 2 matrices is a group for

any K that is Q, R, C, or Zp for p a prime.

The proof of this theorem is left as an exercise.

Example 3.2.13. The general linear group is a non-Abelian group. The

identity of GL(2, K) is the identity matrix[
1 0

0 1

]
.

Consider element

A =

[
a b

c d

]
∈ GL(2, K).

By definition of GL(2, K), we know that det(A) = ad − bc 6= 0. The inverse

of element A is the element

A−1 = (ad− bc)−1
[
d −b
−c a

]
∈ GL(2, K).

Notice that it is critical that ad− bc 6= 0 because we need ad− bc to have a

multiplicative inverse.

Not all 2× 2 matrices commute, thus GL(2, K) is non-Abelian. For example,

taking K = C, we see that[
−1 2

3 7

]
·

[
π e

0 i

]
=

[
−π 2i− e
3π 7i+ 3e

]
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and [
π e

0 i

]
·

[
−1 2

3 7

]
=

[
3e− π 7e+ 2π

3i 7i

]
.

3

Note that in the inverse element, we specifically write (ad− bc)−1 instead of
1

ad−bc to emphasize the multiplicative inverse of element ad− bc ∈ K.

Theorem 3.2.14. The special linear group of 2× 2 matrices is a group for

any K that is Q, R, C, or Zp for p a prime.

Some of the homework exercises in the previous chapters asked you to de-

termine, given some group element g, how many copies of g were necessary

under the binary operation before creating the identity. Now we begin to

develop the machinery to analyze the patterns you may have noticed.

Definition 3.2.15. Let G be a group. The order of G is the cardinality of

the set G, denoted |G|.

Example 3.2.16. As we saw in Chapter 1, |D3| = 6, |D4| = 8, |D5| = 10,

and |D6| = 12. For natural numbers n > 2, |Dn| = 2n because there will be

n rotations and n reflections. 3

Example 3.2.17. Groups can also have infinite order. For example, C, R,

Q, and Z have infinite order. 3

Example 3.2.18. For natural numbers n ≥ 2, Zn = {0, 1, . . . , n− 1}, thus

|Zn| = n. 3
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Definition 3.2.19. Let G be a group and consider g ∈ G. We define the

order of the element g to be the smallest n ∈ N such that gn = e, and we

denote this as |g| = n. If no such n exists, then g has infinite order.

Notice that this definition relies on the existence of the identity in the group.

Thus, to determine the order of a given element, we must first determine the

identity of the group.

Example 3.2.20. In Z6, the operation is addition modulo 6, thus the iden-

tity is 0. We have the following orders of elements.

• In Z6, |0| = 1 because one copy of 0 is needed to add to 0.

• In Z6, |1| = 6 because 1 + 1 + 1 + 1 + 1 + 1 = 0 and no fewer copies of

1 will add to 0.

• In Z6, |2| = 3 because 2 + 2 + 2 = 0 and no fewer copies of 2 will add

to 0.

• In Z6, |3| = 2 because 3 + 3 = 0 and no fewer copies of 3 will add to 0.

• In Z6, |4| = 3 because 4 + 4 + 4 = 0 and no fewer copies of 4 will add

to 0.

• In Z6, |5| = 6 because 5 + 5 + 5 + 5 + 5 + 5 = 0 and no fewer copies of

5 will add to 0.

3

Example 3.2.21. In Z, the operation is addition, thus the identity is 0.

Every element other than 0 itself has infinite order. For example, 3 ∈ Z has

infinite order because 3 added to itself will never sum to 0, no matter how

many copies of 3 we add together. That is, 3 + 3 + 3 + · · ·+ 3 6= 0. 3
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The following example demonstrates an important point about the definition

of the order of a group element.

Non-Example 3.2.22. In D4, |R180| = 2. Notice that (R180)
4 = R0, but

that does not necessarily mean that R180 has order four. The order of element

is the smallest number of copies needed to create the identity, if any such

number exists. 3

Lastly, we are now ready to prove that U(n) is indeed a group. To prove

that its elements have inverses, we will use Bézout’s Lemma and the Division

Algorithm, given below. The proofs of these theorems can be found in an

introductory book about Number Theory.

Lemma 3.2.23 (Bézout’s Lemma ). Let a, b ∈ Z∗ and d = gcd(a, b). Then

there exist x, y ∈ Z such that

ax+ by = d.

Example 3.2.24. Take a = 6 and b = 15. Then d = gcd(6, 15) = 3.

Bézout’s Lemma states that we can find two integers x and y such that

6x + 15y = 3. We see that when x = 3 and y = −1, 6(3) + 15(−1) = 3, as

desired. Similarly, the pair x = −2 and y = 1 also satisfies 6x+ 15y = 3. 3

Example 3.2.25. Take a = 14 and b = 32, thus d = gcd(14, 32) = 2. We

want to find x, y ∈ Z such that 14x + 32y = 2. We see that when x = 7

and y = −3, 14(7) + 32(−3) = 2. Similarly, the pair x = −9 and y = 4 also

satisfies 14x+ 32y = 2. 3

Before we prove that U(n) is a group, we also need the following theorem.

Theorem 3.2.26 (Division Algorithm). Let a, b ∈ Z such that b 6= 0. Then

there exist q, r ∈ Z such that a = bq + r and 0 ≤ r < b.
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Example 3.2.27. Let a = 139 and b = 8. By the Division Algorithm,

there exist q, r ∈ Z such that 139 = 8q + r and 1 ≤ r < 8. We see that

q = 17 and r = 3, 139 = 8(17) + 3, as desired. 3

When using the Division Algorithm, it may be helpful to think of r as the

remainder of a when divided by b.

Recall that U(n) = {x ∈ N | 1 ≤ x < n, gcd(x, n) = 1}. As promised,

the proof is slightly more complicated than the proof of Theorem 3.1.15.

Typically, to prove a set with an operation is a group, we first verify that

the operation is binary, and then we prove the three properties of a group:

associativity, identity, and inverses. The proof that U(n) is a group does

not directly follow this path because proving that the operation is binary is

nontrivial. Even though multiplication modulo n is a binary operation on

Zn, we can not assume it is a binary operation on U(n). This is because U(n)

is a proper subset of Zn, thus we must verify that the operation is indeed

closed on the smaller set, that is, we must verify that two elements in U(n),

when multiplied together, create an element in U(n) and not Z∗ − U(n).

Example 3.2.28. Let n = 8, then U(8) = {1, 3, 5, 7}. To show that U(8)

is closed, we need to know that for every combination of a, b ∈ U(8), ab is an

odd number less than n = 8. Create the Cayley table of U(8) to verify that

this is indeed true. 3

Example 3.2.29. Let n = 10 and consider 9, 13 ∈ Z. Notice that gcd(9, 10) =

gcd(13, 10) = 1. Further, gcd(9 · 13, 10) = gcd(32 · 13, 10) = 1. 3

Below is a lemma that generalizes Example 3.2.29. This will help us prove

the closure of U(n).

Lemma 3.2.30. Suppose a, b, n ∈ N such that gcd(a, n) = gcd(b, n) = 1.

Then gcd(ab, n) = 1.
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Proof. Let a, b, n ∈ N such that gcd(a, n) = gcd(b, n) = 1. Suppose that

gcd(ab, n) = d ∈ N. Thus, d divides both n and ab. By assumption, 1 ∈ N
is the largest natural number that divides both a and n, thus d must divide

b. Similarly, 1 ∈ N is the largest natural number that divides both b and n,

thus d = 1.

Theorem 3.2.31. For every natural number n ≥ 2, U(n) is a group.

Proof. To prove that U(n) is a group, we will first verify that the set of

units under multiplication modulo n is associative, has an identity, and has

inverses.

1. Multiplication modulo n is associative because multiplication over the

integers is associative.

2. The natural number 1 will always be an element of U(n) because for

any natural n ≥ 2, gcd(1, n) = 1. Moreover, 1 is the identity because

for any a ∈ U(n), 1 · a = a · 1 = a.

3. Let a ∈ U(n), thus gcd(a, n) = 1. We want to find some element b

such that ab ≡ 1 mod n and 1 ≤ b < n. By Bézout’s Lemma, there

exist x, y ∈ Z such that ax + ny = 1, or ax = 1 − ny. In modular n

arithmetic, this means that

ax ≡ 1 mod n. (3.6)

Thus, if 1 ≤ x < n, then x is the inverse of a.

If it is not already true that 1 ≤ x < n, then by the Division Algorithm,

we can find q, r ∈ Z such that x = qn + r and 1 ≤ r < n. Thus

x ≡ qn+ r ≡ r mod n. Further, ax ≡ a(qn+ r) ≡ ar ≡ 1 by Equation

3.6. Thus, r is the inverse of a.
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Last, we will show that the set of units multiplication modulo n is closed.

Take a, b ∈ U(n). By definition, gcd(a, n) = gcd(b, n) = 1 and 1 ≤ a, b < n.

By Lemma 3.2.30, gcd(ab, n) = 1. If it is not already true that 1 ≤ ab < n,

then, using the same argument as above, the Division Algorithm guarantees

we can reduce ab to some r such that ab ≡ r mod n.

EXERCISES

Exercise 3.2.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let G be a group with identity e and elements a, b, c.

a. Left cancellation and right cancellation are equivalent properties.

b. If ab = e and ac = e, then b = c.

c. If a8 = e, then |a| = 8.

d. ab = ba

e. (ab)−1 = a−1b−1

f. For n ∈ N, (ab)n = anbn.

g. Group G has an element of finite order.

h. Group G has an element of infinite order.

i. If set A is a proper subset of set B, and B has binary operation ∗,
then ∗ is also binary on A.

Exercise 3.2.2. Prove that right cancellation holds.

Exercise 3.2.3. Prove Theorem 3.2.3.

Exercise 3.2.4. Prove that the inverse of an inverse is the original element.

That is, if h ∈ G is the inverse of g ∈ G, prove that g is the inverse of h.

Exercise 3.2.5. Prove Theorem 3.2.12.
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Exercise 3.2.6. Prove Theorem 3.2.14.

Exercise 3.2.7. Let G be a group and a ∈ G. For n ∈ N, show that

a−n = (an)−1.

Exercise 3.2.8. Write the Socks-and-Shoes Property in additive notation.

Exercise 3.2.9. Refer back to the Socks-and-Shoes Property.

a. In your own words, how does the property relate to “socks and

shoes?”

b. Give a specific example of a group G and two specific elements

a, b ∈ G in the group such that (a ∗ b)−1 6= a−1 ∗ b−1.
c. Prove that G is Abelian if and only if (a ∗ b)−1 = a−1 ∗ b−1.

Exercise 3.2.10. Consider the Socks-and-Shoes Property and the

Generalized Associative Law. Let n ≥ 3 be a natural number and

a1, a2, . . . , an are elements of a group G.

a. Show that (a1 ∗ a2 ∗ a3)−1 = a−13 ∗ a−12 ∗ a−11 .

b. Show that (a1 ∗ a2 ∗ · · · ∗ an)−1 = a−1n ∗ · · · ∗ a−12 ∗ a−11 . (Hint: Use

induction.)

Exercise 3.2.11. Let G be a group and a, b ∈ G.

a. Give an example of a group and two elements such that (ab)2 6= a2b2.

b. Prove that if ab = ba, then abn = bna. (Hint: Use induction.)

c. Prove that if ab = ba, then (ab)n = anbn. (Hint: Use induction.)

d. Why is the above assumption that ab = ba weaker than

commutativity? That is, what is the difference between assuming

ab = ba and assuming G is commutative?

Exercise 3.2.12. For n ∈ N, prove that nZ is an Abelian group.

Exercise 3.2.13. Consider the group GL2(Z7).

a. Find A,B ∈ GL(2,Z7) such that AB 6= BA.
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b. Find the inverse of

[
1 6

5 3

]
∈ GL2(Z7).

c. Find the inverse of

[
2 5

3 6

]
∈ GL2(Z7).

d. Give a nonzero example of C ∈M2(Z7) that does not have an inverse.

Exercise 3.2.14. Translate Definition 3.2.19 into additive notation.

Exercise 3.2.15. Find the order of each of the following groups. In each

group, determine how many elements have finite order.

a. Z10

b. U(10)

c. 10Z

Exercise 3.2.16. Find an example of an element a ∈ Z12 such that a6 = e

but |a| 6= 6.

Exercise 3.2.17. Suppose G is a group and a ∈ G such that a12 = e. What

are all the possibilities of |a|? Justify your answer.

Exercise 3.2.18. For each of the following groups, find the order of the

group and the order of each element. How do the orders of the elements

relate to the order of the group?

a. D5

b. Z8

c. U(20)

Exercise 3.2.19. Find all the elements in the group GL2(Z2), and find their

orders.

Exercise 3.2.20. Find a group of order one and prove your set is indeed a

group.
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Exercise 3.2.21. Let g ∈ G. Prove that |g| = 1 if and only if g is the

identity.

Exercise 3.2.22. In a group G, prove that an element and its inverse have

the same order.

3.3 Subgroups

Now that we have some familiarity with groups, we begin to develop some

useful tools that will help us prove some of the patterns we have begun to

observe.

Definition 3.3.1. Let G be a group. A subgroup of G is a subset H ⊆ G

which is also a group under the same operation as G. This relationship is

denoted as H ≤ G.

This means that H is closed under the operation of G, has associativity, has

the same identity as G, and has inverses. Notice that by referring to H as a

subgroup, we must establish the parent group G.

Example 3.3.2. In Theorem 3.1.15, we proved that C is a group under

addition. As Z ⊆ Q ⊆ R ⊆ C and all of these sets are themselves groups

under addition, Z, Q, R, and C are all subgroups of C. In fact, Z ≤ Q ≤
R ≤ C. 3

Example 3.3.3. The group 4Z is a subgroup of 2Z. By Theorem 3.1.18,

both 4Z and 2Z are groups under the operation of addition. The multiples of

four form a subset of the multiples of two, thus 4Z ⊂ 2Z. Thus, 4Z ≤ 2Z. 3
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Definition 3.3.4. Given a group G with identity e, the group {e} is the

trivial subgroup ofG. A subgroupH ofG is called nontrivial if {e} < H ≤ G;

further, it is a proper subgroup of G if {e} < H < G.

Throughout the text, we will use the notation H ≤ G to imply that H is a

subgroup of group G. When we wish to refer to the sets H and G, and not

the algebraic structure implied by the word “group,” we may write H ⊆ G

for emphasis.

The definition of subgroup has two important pieces to it: the set must be

a subset of a group and the operation must be the same. These distinctions

are illustrated in the non-example below.

Non-Example 3.3.5. Consider Z5 and Z. While it is true that

{0, 1, 2, 3, 4} ⊆ Z,

Z5 6≤ Z because the two groups have different operations. The group Z5

has the operation of addition modulo 5 and Z has the operation of addition.

Thus, Z5 is not a subgroup of Z. 3

Non-Example 3.3.6. Consider U(5) and Z5. It is true that {1, 2, 3, 4} ⊆
{0, 1, 2, 3, 4}, though U(5) 6≤ Z5 because the two groups have different op-

erations. The operation of U(5) is multiplication modulo 5, whereas the

operation of Z5 is addition modulo 5. 3

Non-Example 3.3.7. The group D4 is not a subgroup of D5. Although

function composition is the operation of both groups, neither set is a subset

of the other. 3

Example 3.3.8. Consider the group D8, which is the group of rigid move-

ments of a regular octagon. The rotations in this group will be increments of
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45◦. The reflections in this group will be along the lines of symmetry, which

occur in increments of 45◦. As function composition is the operation of all

dihedral groups, D4 ≤ D8. 3

It is often easier to prove a set H is a subgroup of a known group than

to prove H is a group by itself. As you may have noticed, proving that a

group satisfies closure and associativity can be cumbersome. The One-Step

Subgroup Test and Two-Step Subgroup Test are tools that allow us to bypass

the definition of a group and prove a set H is a subgroup, and hence a group,

of a parent group G. As we will see, proofs using the subgroup tests can be

much shorter.

Theorem 3.3.9 (Two-Step Subgroup Test). Let G be a group and let H ⊆ G

be nonempty. Assume G and H are under the same operation. For a, b ∈ H,

if

1. ab ∈ H, and

2. a−1 ∈ H

then H is a subgroup of G.

Proof. To prove that H is a subgroup of G, we must show that it is a group,

thus we must show that the operation is closed and associative, there is an

identity, and every element has an inverse.

1. We are given that for all a, b ∈ H, ab ∈ H, thus H is closed.

2. We are given that G is a group under its operation, thus the operation

is associative.

3. We are given that for all a, b ∈ H, ab, a−1 ∈ H. Taking b = a−1, we see

that aa−1 = e ∈ H.



3.3. SUBGROUPS 59

4. We are given that for all a ∈ H, a−1 ∈ H.

Thus, the subsetH is a group under the operation ofG, makingH a subgroup

of G.

The Two-Step Subgroup Test shows that, in order to prove H is a subgroup

of G, it is sufficient to prove that H is closed and contains inverses, hence the

name Two-Step. There is a hidden zeroth step in the Two-Step Subgroup

Test: the test assumes H is nonempty. Thus, in order to apply the Two-Step

Subgroup Test, we must always first prove that the subset H has an element

in it. This is usually done by example. As every group must have an identity,

it is often easiest to prove that the identity of the parent group is indeed in

the subset. We give an example of this below.

Recall that if a set is given in set-builder notation, it is often prudent to prove

it is a group using the defining qualities of the set. This is also demonstrated

in the example below. Lastly, notice that the Two-Step Subgroup Test as-

sumes multiplicative notation. The groups in the example below have the

binary operation of addition, thus the Two-Step Subgroup Test is translated

into additive notation.

Example 3.3.10. In Example 3.3.3, we prove that the group 4Z is a sub-

group of 2Z. For emphasis, we will now use the Two-Step Subgroup Test to

achieve this same result.

We know that 4Z is nonempty because 0 = 4 · 0 where 0 ∈ Z, thus 0 ∈ 4Z.

Now that 4Z is nonempty, we can consider 4z ∈ 4Z. Notice that 4z = 2(2z) ∈
2Z. Thus 4Z ⊂ 2Z. We may now apply the Two-Step Subgroup Test.

Take 4x, 4y ∈ 4Z. Then 4x + 4y = 4(x + y) by distributivity, and because

x + y ∈ Z, 4(x + y) ∈ 4Z. Thus, 4Z is closed. Further, −4x = 4(−x) ∈ 4Z
because −x ∈ Z, and 4x + (−4x) = 0. Thus, elements in 4Z have inverses.
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By the Two-Step Subgroup Test, 4Z is a subgroup of 2Z. 3

The One-Step Subgroup Test also shows that it is sufficient to prove that

H is closed and contains inverses; it just does this in one step instead of

two. Like the Two-Step Subgroup Test, the One-Step Subgroup Test also

assumes the subset H is nonempty. To prove it, we use our new favorite tool,

the Two-Step Subgroup Test.

Theorem 3.3.11 (One-Step Subgroup Test). Let G be a group and let H ⊆
G be nonempty. Assume G and H are under the same binary operation. For

a, b ∈ H, if

1. ab−1 ∈ H

then H is a subgroup of G.

Proof. By assumption, H is nonempty, thus we may take some x ∈ H. We

are also given that for all a, b ∈ H, ab−1 ∈ H, thus taking a = b = x, we see

that xx−1 = e ∈ H. Now we proceed using the Two-Step Subgroup Test.

1. Taking a = a and b = e, we see that ab−1 = a ∈ H. Now we have that

a, e ∈ H, thus by the given, ea−1 = a−1 ∈ H.

2. Now that we have shown that H contains inverses, we may assume that

for all a, b ∈ H, we have ab−1, a−1, b−1 ∈ H. Thus, a(b−1)−1 = ab ∈ H.

Therefore, by the Two-Step Subgroup Test, H is a subgroup of G.

Below is an example of how to use the One-Step Subgroup Test.
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Example 3.3.12. In Examples 3.3.3 and 3.3.10, we showed that 4Z is a

subgroup of 2Z. Once again, we prove this result, only this time we do so

using the One-Step Subgroup Test.

We know that 4Z is a subset of 2Z and the group 2Z has identity 0. Moreover,

0 ∈ 4Z because 0 = 4 · 0 and 0 ∈ Z. Thus, 4Z is nonempty and we may

apply the One-Step Subgroup Test. Take 4x, 4y ∈ 4Z. By definition of 4Z,

x, y ∈ Z, thus −y ∈ Z. Then 4x−4y = 4(x−y) by distributivity, and because

x− y ∈ Z, 4(x− y) ∈ 4Z. By the One-Step Subgroup Test, 4Z ≤ 2Z. 3

Let G be a group and H a set. As Examples 3.3.10 and 3.3.12 demonstrate,

sometimes it is necessary to also address that H is indeed a subset of G

before employing the Two-Step or One-Step Subgroup Test. This depends

on the definition of H.

• If H is not defined to consist of elements of G, then we do need to

address that H ⊆ G. For example, when G = 2Z and

H = 4Z = {4z | z ∈ Z},

it is not necessarily evident from the definition of H that every element

of H will also be in G.

• If H is defined to consist of elements of G, then we do not need to

address that H ⊆ G. For example, if

H = {g ∈ G | g has whatever property},

then all elements of H come from G by the definition of H.

The theorem below will be a useful one, and its proof is another example of

the One-Step Subgroup Test.
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Theorem 3.3.13. Let n ≥ 3 be a natural number. The set of all rotations

in Dn is a subgroup of Dn.

Proof. We know that R0 is a rotation in every Dn, thus the set of all rotations

is nonempty and we may now apply the One-Step Subgroup Test. Consider

two arbitrary rotations Ra, Rb ∈ Dn. Each rotation will be some multiple of

360/n degrees. Thus,

a = a′
(

360

n

)
and b = b′

(
360

n

)
for some a′, b′ ∈ {0, 1, . . . n− 1}. Then Ra(Rb)

−1 is a rotation by −b degrees

followed by a rotation of a degrees. This simplifies into a rotation by

−b+ a = −b′
(

360

n

)
+ a′

(
360

n

)
= (−b′ + a′)

(
360

n

)
degrees. Notice that because {0, 1, . . . n − 1} = Zn is a group, −b′ + a ∈
{0, 1, . . . n}. Thus, Ra(Rb)

−1 is also a rotation in Dn.

Now that we have these tools, proving a set under an operation is a group is

less cumbersome, as long as we have a parent group.

We give one last example below. Notice that the operation is addition, thus

when we employ the One-Step Subgroup Test, we use the additive notation.

Theorem 3.3.14. The integers are a group under addition.

Proof. In Theorem 3.1.15, we proved that C is a group. Thus, to show that

Z is a group, we will show that Z is a subgroup of C. We proceed using the

One-Step Subgroup Test. Let a, b ∈ Z. Then a− b ∈ Z, thus Z is a subgroup

of C.
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That is one cute proof.

EXERCISES

Exercise 3.3.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a. Q ≤ C
b. For n ∈ N, Dn ≤ Dn+1.

c. For n ∈ N, Dn ≤ Dn+2.

d. For n ∈ N, Dn ≤ D2n.

e. For n ∈ N, Zn ≤ Zn+1.

f. For n ∈ N, Zn ≤ Z2n.

g. For G a group, G ≤ G.

h. A group G has at least two subgroups.

i. The intersection of two subgroups is a subgroup.

j. The union of two subgroups is a subgroup.

k. A group of infinite order has a subgroup of infinite order.

l. A group of infinite order has a subgroup of finite order.

Exercise 3.3.2. Determine which of the following subsets of Z12 are

subgroups of Z12. If the set is not a group, explain why not.

a. A = {0, 3, 6, 9}
b. B = {0, 6}
c. C = {1, 3, 5, 7, 9, 11}

Exercise 3.3.3. For each of the following, G is a group and S is a subset

of G. If S is a subgroup of G, prove it. If S is not a subgroup, explain why

not.

a. G = U(16), S = U(8)
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b. G = D5, S = {x ∈ D5 |x is a reflection}
c. G = D4, S = {R0, R180}
d. G, S = ∅

Exercise 3.3.4. Let G be a group with identity e.

a. Prove that {e} is a subgroup of G.

b. Prove that G is a subgroup of G.

Exercise 3.3.5. Refer back to Theorems 3.3.9 and 3.3.11.

a. Translate the Two-Step Subgroup Test into additive notation.

b. Translate the One-Step Subgroup Test into additive notation.

Exercise 3.3.6. Prove that 12Z is a subgroup of 3Z.

Exercise 3.3.7. Let G be a group. Suppose H is a subgroup of G and K is

a subgroup of H. Prove that K is a subgroup of G.

Exercise 3.3.8. Let G be a group and let H and K be subgroups of G.

For each of the following statements, if the statement is true, prove it, and

if the statement is false, find a counterexample.

a. H ∪K ≤ G

b. H ∩K ≤ G

Exercise 3.3.9. Let G be an Abelian group with identity e and fix n ∈ N.

Prove that

H = {g ∈ G | gn = e}

is a subgroup of G.

Exercise 3.3.10. Let G be an Abelian group and fix n ∈ N. Define the set

Gn as

Gn = {gn | g ∈ G}

a. Pick you favorite Abelian group and your favorite small n ∈ N to

create an example Gn. Create the Cayley table for your example.
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b. Prove that Gn is a subgroup.

c. Does this result hold when G is non-Abelian? Why or why not?
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Chapter 4

Permutation Groups

Quote

Person

In the next chapter, we will study subgroups common to all groups. To

understand some important subtleties of certain subgroups, we will be bet-

ter served by analyzing subgroups of non-Abelian groups. In this chapter,

we introduce a very important type of non-Abelian groups, the groups of

permutations.

4.1 Bijections

Once again, we begin with a definition you have probably seen before. As it

is the basis for many important definitions throughout the rest of this book,

we state it below.

Definition 4.1.1. Let A and B be sets. A function f is a relation from A

67
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to B such that for each a ∈ A, there is exactly one (a, b) ∈ A×B.

Frequently, we think of a function f as a map, denoted f : A→ B, from the

set of inputs A to the set of possible outputs B. To emphasize this input-

output interpretation, we often write (a, b) ∈ f as f(a) = b. Further, what

distinguishes a function from a generic map is that a function sends each

input to exactly one output.

Example 4.1.2. Let A = {�,♦,♥} and B = {α, β, γ}. Below, the map-

pings f and g are functions.

f
�

♦

♥

α

β

γ

g
�

♦

♥

α

β

γ

Below, the mapping j is not a function because � does not map to anything

in B. The mapping k is not a function because � maps to two elements of

B.

j
�

♦

♥

α

β

γ

k
�

♦

♥

α

β

γ

3

Example 4.1.3. Let A be the set of students in your Abstract Algebra
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class and let B be the set of months in the year. Then f : A→ B defined by

f(student) = student’s birth month

is a function because each student has exactly one birth month. If we define

g : B → A as

f(month) = students born in that month,

then g is not necessarily a function because several students might be born

in the same month. 3

Throughout this text, we will study functions. A function maps each input

to exactly one output. This means that several input can go to the same

output. It also means that there may be some b ∈ B that are not actually

output. The next few definitions eliminate these possibilities.

Definition 4.1.4. Let f be a function on a set D. Then f is one-to-one,

or injective, if for every a, b ∈ D,

f(a) = f(b) implies a = b.

A function that is not injective is called non-injective.

A function is one-to-one if for every output, there is exactly one input. In

the definition above, we start with one output represented two different ways

as f(a) and f(b). In this notation, it appears as if there are two inputs, a

and b. A one-to-one function guarantees us that the two inputs are actually

equal, that is, a = b, and thus there is actually just one input.
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Example 4.1.5. Functions f and h are injective. Function g is not injective

because both � and ♦ map to β. With respect to the notation in the

definition, g is not injective because g(�) = g(♦) yet � 6= ♦.

f
�

♦

♥

α

β

γ

g
�

♦

♥

α

β

γ

h

♦

♥

α

β

γ

3

We have seen plenty of examples of injective and non-injective functions in

calculus.

Example 4.1.6. Take f(x) = x in R[x]. Then f(x) is one-to-one because,

for a, b ∈ R, if f(a) = f(b), then by the definition of f(x), a = b. Thus,

we conclude that if we start with one output, that output came from one

input. 3

Example 4.1.7. Take f(x) = x3 − 2 in R[x]. Then f(x) is one-to-one

because, for a, b ∈ R, if f(a) = f(b), then by the definition of f(x),

a3 − 2 = b3 − 2

a3 = b3

a = b.

Thus, we see that one output, f(a) = f(b), came from one input a = b. 3

Non-Example 4.1.8. Take f(x) = x2 in R[x]. Then f(x) is not one-to-

one. For example, if f(a) = f(b) = 4, then a = 2 and b = −2 could both

produce this output. Thus, we see that two different inputs created one
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output. 3

Below are some more examples of functions on a finite set. Throughout this

chapter, we will study functions much like the ones below.

Example 4.1.9. Define σ : Z5 → Z5 as σ(0) = 4, σ(1) = 3, σ(2) = 2,

σ(3) = 0, and σ(4) = 1. We can see that σ is one-to-one because every

output is created by only one input. 3

Non-Example 4.1.10. Define η : Z5 → Z5 as η(0) = 0, η(1) = 3, η(2) = 2,

η(3) = 0, and η(4) = 1. We can see that η is not one-to-one because the

output 0 is created by the inputs 0 and 3. Note that η can not be described

as n-to-one for n = 1, 2, or any integer because there is a mix of the number

of inputs yielding one output. 3

The next definition measures the “niceness” of functions in a different way.

One-to-one means that every output came from exactly one input. This next

definition means that everything in the codomain is indeed an output of the

function, that is, that the codomain and the range are equal.

Definition 4.1.11. Let f be a function from set D to set C. Then f is

onto, or surjective, if

∀ c ∈ C, ∃ a ∈ D such that f(a) = c.

A function that is not surjective is called non-surjective.

A surjective function is a function whose codomain equals its range. Col-

loquially, this means that everything that could be an output is indeed an
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output.

Example 4.1.12. Below, functions f and g are surjective. The function h

is not surjective because nothing maps to α.

f
�

♦

♥

α

β

γ

g
�

♦

♥

β

γ

h

♦

♥

α

β

γ

3

A function is onto if everything in the codomain gets mapped to by at least

one element in the domain.

Example 4.1.13. Define f : R → R as f(x) = x + 1 and take c ∈ R to

be an element of the codomain R. To show that f(x) is onto, we need to

find an element a in the domain R that maps to c. That is, we need to solve

f(a) = c for a. Notice that

f(a) = c

a+ 1 = c

a = c− 1.

Thus, take the element a = c− 1 in the domain R. We see that

f(a) = f(c− 1) = (c− 1) + 1 = c.

Hence, c, our generic element in the codomain, gets mapped to by the element

c− 1 in the domain. Therefore f(x) is onto. 3

Example 4.1.14. The function f(x) = x2 is not onto if we define f(x) to
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map from R to R. This is because none of the negative reals are in the range

of f(x).

The function f(x) = x2 is onto if we define f(x) to map from R to [0,∞). 3

The function in Example 4.1.9 is also onto, whereas the function in Non-

Example 4.1.10 is not onto. Functions that are both one-to-one and onto

have a special name.

Definition 4.1.15. A function that is both injective and surjective is called

bijective.

Example 4.1.16. Let fi : Z→ Z be a function.

1. The function f1(x) = 2x is injective but not surjective. It is injective

because for every even integer, there is a unique input. It is non-

surjective because not all of Z is mapped to by f , specifically, f does

not produce any odd integers.

2. The function

f2(x) =

x− 1 x ∈ N

x x ∈ Z− N

is surjective but not injective. It is non-injective because f(x) = 0

when x = 1 and when x = 0. It is surjective because every integer will

be produced.

3. The function f3(x) = x + 5 is both injective and surjective. It is

injective because every integer gets produced uniquely from the integer

five integers before it.
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4. The function f4(x) = |x| is neither injective nor surjective. It is non-

injective because every positive integer can be produced from either

itself or its negative. It is non-surjective because no negative integers

are produced.

3

In the example above, we could have defined f4 as f4 : Z→ N∪{0}. With this

definition, f4 is surjective, because f4 only produces non-negative integers,

which is exactly its codomain.

In the next section, we will begin to study some groups of bijections. As

a group has an identity element and each element has an inverse, we now

address the concepts of identity and inverse functions.

Definition 4.1.17. Let A be a set. The relation id : A → A defined by

id(a) = a is an identity relation.

Theorem 4.1.18. Let A be a set. The relation id : A → A is a bijective

function. Further, id : A→ A is unique on set A.

Thus, we may now refer to the identity function on A, as opposed to an

identity relation.

Definition 4.1.19. For sets A and B, let f : A → B be a function. The

relation f−1 : B → A given by

(b, a) ∈ f−1 iff (a, b) ∈ f
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is an inverse of f .

An inverse relation is not necessarily a function itself, as the example below

demonstrates.

Example 4.1.20. Below, f , g, and h are functions. The relation f−1 is a

function.

f
�

♦

♥

α

β

γ

g
�

♦

♥

α

β

γ

The relations g−1 and k−1 are not functions because β maps to two distinct

elements. The relation j−1 is not a function because α is not mapped at all.

j

♦

♥

α

β

γ

k
�

♦

♥

β

γ

3

In the example above, j is an injective function that is not surjective, and j−1

is not a function. Similarly, k−1 is a surjective function that is not injective,

and k−1 is not a function. Notice that f is both injective and surjective, and

f−1 is a relation. We generalize this concept in the theorem below.

Theorem 4.1.21. For sets A and B, let f : A → B be a function. Then f

is bijective if and only if f−1 : B → A is a function.
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EXERCISES

Exercise 4.1.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a. In a function, an input has an output.

b. In a function, an output has an input.

c. An injective function is surjective.

d. A surjective function is injective.

e. A bijective function is surjective.

f. A bijective function is injective.

Exercise 4.1.2. Let A = {♥,♦} and B = {α, β}.

a. Determine all of the functions f : A→ B.

b. Which of these functions are injective? If no such function exists, why

not?

c. Which of these functions are surjective? If no such function exists,

why not?

Exercise 4.1.3. Let A = {�,♥,♦} and B = {α, β}.

a. Determine all of the functions f : A→ B.

b. Which of these functions are injective? If no such function exists, why

not?

c. Which of these functions are surjective? If no such function exists,

why not?

Exercise 4.1.4. Let A = {♥,♦} and B = {α, β, γ}.

a. Determine all of the functions f : A→ B.

b. Which of these functions are injective? If no such function exists, why

not?
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c. Which of these functions are surjective? If no such function exists,

why not?

Exercise 4.1.5. Let f : Z5 → Z5 be defined as f(x) = mx, where m ∈ Z5.

a. For which values of m is f injective? Why?

b. For which values of m is f surjective? Why?

c. For which values of m is f bijective? Why?

Exercise 4.1.6. Let f : Z6 → Z6 be defined as f(x) = mx, where m ∈ Z6.

a. For which values of m is f injective? Why?

b. For which values of m is f surjective? Why?

c. For which values of m is f bijective? Why?

Exercise 4.1.7. Review definitions 4.1.4 and 4.1.11. For each of the

following, choose m,n ∈ Z to create a function f : Zm → Zn, and specify

how the function the f maps the elements in Zm, to satisfy the given

condition.

a. f is one-to-one but not onto,

b. f is onto but not one-to-one,

c. f is both one-to-one and onto,

d. f is neither one-to-one nor onto.

Exercise 4.1.8. Let f : Z→ Z be defined as f(x) = 3x+ 1.

a. Is f injective? If so, prove it. If not, why not?

b. Is f surjective? If so, prove it. If not, why not?

Exercise 4.1.9. Let f : Z× Z→ Z× Z be defined as

f(x, y) = (3x+ y, x− y).

a. Is f injective? If so, prove it. If not, why not?

b. Is f surjective? If so, prove it. If not, why not?

Exercise 4.1.10. Let φ : 2Z→ 5Z be defined as φ(x) =
5

2
x.
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a. Is f injective? If so, prove it. If not, why not?

b. Is f surjective? If so, prove it. If not, why not?

Exercise 4.1.11. Let φ : Z → Z be defined as φ(x) = −x. Prove that φ is

a bijection.

Exercise 4.1.12. Let φ : Z→ 2Z be defined as φ(x) = 2x. Prove that φ is

a bijection.

Exercise 4.1.13. Let A be a finite set. Prove that a function f : A→ A is

injective if and only if it is surjective.

Exercise 4.1.14. Prove Theorem 4.1.18.

Exercise 4.1.15. Prove Theorem 4.1.21.

Exercise 4.1.16. Let A and B be sets. Let f : A→ B be a bijection.

a. Prove that f−1 ◦ f is the identity function on A.

b. Prove that f ◦ f−1 is the identity function on B.

4.2 Permutation Groups

Now that we have an understanding of injectivity, surjectivity, and bijectivity,

we are ready to begin to study an important class of groups.

Definition 4.2.1. A permutation of a set D is a function from D to D

that is both one-to-one and onto. A permutation group of a set D is a set of

permutations of D that is a group under function composition.

While this definition allows for the set D to be finite or infinite, we will

mainly focus on permutations of finite sets. The function in Example 4.1.9
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is a permutation of Z5 because it is a bijection that acts on Z5. It is common

to label permutations with lowercase Greek letters.

Example 4.2.2. Let n = 6, D = {1, 2, 3, 4, 5, 6}, and define σ : D → D

as σ(1) = 2, σ(2) = 1, σ(3) = 5, σ(4) = 4, σ(5) = 6, and σ(6) = 3. Then

σ ∈ S6. 3

A permutation group is a group of permutations. There are two main groups

that we will study in this section. As we mentioned earlier, once we study

subgroups more in Section 5.1, we will see more constructions of groups of

permutations.

Definition 4.2.3. Take a natural number n ≥ 2 and letD = {1, 2, 3, . . . , n}.
The set of all permutations of D is the symmetric group of degree n and is

denoted Sn.

Note that Sn is a group of functions, like Dn is a group of functions.

Example 4.2.4. Below is S3, the group of all permutations of three objects.

Thus there are 3! functions in total.

Function Image of 1 Image of 2 Image of 3

σ1 1 2 3

σ2 1 3 2

σ3 2 1 3

σ4 2 3 1

σ5 3 1 2

σ6 3 2 1

We can see that function σ1 is the identity element of S3. 3
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Of course, we must prove Sn is a group. We are not proving it is a subgroup

of something else, thus our proof technique will be to show that the definition

of Sn satisfies the definition of a group.

Theorem 4.2.5. The symmetric group Sn, where n ≥ 2 is a natural number,

is a group.

Proof. The set of permutations is closed because any composition of per-

mutations of n items will result in a permutation of those n times. It is

associative because function composition is associative. The identity, e, is

the permutation that sends each number to itself. Thus, e ∈ Sn for all

n ≥ 2. If σ ∈ Sn, then σ−1 is also a permutation of n objects, and hence

σ−1 ∈ Sn.

As you can see in Example 4.2.2, it can be a bit cumbersome to define

the exact mapping of a permutation. We will study two different notations

for permutations of finite order. The first notation is matrix notation, and

though it is initially more intuitive, we will see the other notation is more

fluid.

Notation. We can represent permutations using matrix notation. The per-

mutation σ ∈ Sn has form

σ =

[
1 2 · · · n

σ(1) σ(2) · · · σ(n)

]
.

In this matrix, the top row contains all of the n natural numbers that will

be permuted. The second row contains the image of each number.

Example 4.2.6. The permutation in Example 4.2.2 can be represented in

matrix notation as

σ =

[
1 2 3 4 5 6

2 1 5 4 6 3

]
.
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3

Example 4.2.7. Let’s reconsider Example 4.2.4. These functions are listed

in matrix notation below:

σ1 =

[
1 2 3

1 2 3

]
, σ2 =

[
1 2 3

1 3 2

]
, σ3 =

[
1 2 3

2 1 3

]
,

σ4 =

[
1 2 3

2 3 1

]
, σ5 =

[
1 2 3

3 1 2

]
, σ6 =

[
1 2 3

3 2 1

]
.

3

When we refer to a permutation on a finite set or cardinality n, we typically

declare that the function permutes n objects ; we do not necessarily specify

that the function permutes n numbers. In the past examples, we’ve chosen

these objects to be numbers, though truly all these numbers represent is the

objects being permuted. We do not need or care about the numerical value

associated with these symbols.

Example 4.2.8.s Consider S4, the group of permutation of four objects.

Traditionally we work with the objects as numbers, but they do not neces-

sarily have to be numbers. Let these four objects be ♥, ♦, ♠, ♣. Observe

the identity element in S4 in matrix notation is[
♥ ♦ ♠ ♣
♥ ♦ ♠ ♣

]
.

Since we have four objects, we know that there are 4! = 24 different cycles

we can generate in S4.

Consider the permutation which maps ♥ 7→ ♠, ♦ 7→ ♣, ♠ 7→ ♦, and ♠ 7→ ♥.

This permutation is written in matrix notation as
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♥ ♦ ♠ ♣
♠ ♣ ♦ ♥

]
.

3

The symmetric groups and the dihedral groups are closely related, though

they are not the same. Consider the numbering of the vertices of the regular

n-gon. Before any movements act on the n-gon, the vertices are presented in

numerical order. After a movement acts on the n-gon, the vertices may be

relabeled, though the numbers 1, 2, . . . , n still appear on the n-gon. Thus,

an element in Dn permutes the numbers 1, 2, . . . , n.

Example 4.2.9. Consider the groups S5 and D5. The element FSE ∈ D5

can be represented as

α =

[
1 2 3 4 5

3 2 1 5 4

]
.

Let β ∈ S5 be the permutation

β =

[
1 2 3 4 5

3 4 5 1 2

]
.

We see that β represents R144 ∈ D5. Now let γ ∈ S5 be the permutation

γ =

[
1 2 3 4 5

2 1 3 4 5

]
.

We see that though γ is indeed a permutation of the numbers 1 through 5,

it does not represent any elements in D5. This is because it is impossible to

switch the vertices labeled 1 and 2 while holding the vertices labeled 3, 4,

and 5 fixed (without ripping our precious pentagon). 3

In Example 4.2.7, you may have noticed how redundant it was to list the first
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row in the permutations because the first row for all three was always [1 2 3].

Similarly, in Example, 4.2.9, the first row in the permutations α, β, and γ

was [1 2 3 4 5], because as α, β, γ ∈ S5. The next notation for permutations

avoids this redundancy. We introduce this notation with an example, and

then formalize it.

Example 4.2.10. Consider the permutations α, β, γ ∈ S5 as in Example

4.2.9. We see that in α

1 7→ 3 7→ 1

2 7→ 2

4 7→ 5 7→ 4.

In this sense, α represents the permutation of these three cycles. We can

thus represent α in terms of its cycles as

α = (13)(45),

and notice that we’ve left off the cycle (2) because 2 maps to itself. Similarly,

in terms of their cycles, we see that in β,

1 7→ 3 7→ 5 7→ 2 7→ 4 7→ 1.

Thus, β = (13524). In γ,

1 7→ 2 7→ 1

3 7→ 3

4 7→ 4

5 7→ 4,

thus γ = (12). 3
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In Example 4.2.10, β has the cycle

1 7→ 3 7→ 5 7→ 2 7→ 4 7→ 1.

Of course, this is a cycle, and it repeats indefinitely. We could continue to

write the cycle as

1 7→ 3 7→ 5 7→ 2 7→ 4 7→ 1 7→ 3 7→ 5 7→ 2 7→ 4 7→ · · · .

This is a bit redundant. To be as succinct as possible, we want to list every

number in the cycle in the order in which it appears, and no more. Thus, we

represent β as (13524). The last number in this cycle is 4, which is a clue

that 4 is the end of the first unique cycle. Thus, in order to start the cycle

again, 4 must go back to the first number in the cycle, which in this case is

1.

Below we formalize this notation. Given that we are mathematicians, this

will be the preferred notation as it is more succinct, though it is perfectly

fine to use matrix notation as you familiarize yourself with permutations.

Notation. We can represent permutations using cycle notation. Each cycle is

written in parentheses, and the permutation is written as a string of cycles.

When writing a permutation in cycle notation, there are a few customs to

notice.

1. When the cycle repeats, rather than rewriting the first number in listed

in the cycle, we just close the cycle.

2. Cycles of just one number are not written.

3. We begin each new cycle with the smallest number that has not yet

been included in a cycle. That is why, for example, in Example 4.2.10,

α has the cycle (13) written first and the cycle (45) written second.
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4. If n ≥ 10, it is acceptable to use commas to punctuate the cycles.

Below is some vocabulary to help us describe cycles.

Definition 4.2.11. Given a permutation σ ∈ Sn, an m-cycle is a cycle of

length m. Two cycles are disjoint if they share no common symbols.

Example 4.2.12. In Example 4.2.10, α has two 2-cycles, β is one 5-cycle,

and γ is one 2-cycle. 3

Permutations are functions and the group operation in Sn is function com-

position. Below are some examples of how to compose permutations. Re-

member, function composition is read right to left.

Example 4.2.13. Let α, β ∈ S7 be

α =

[
1 2 3 4 5 6 7

2 3 1 4 5 7 6

]
and β =

[
1 2 3 4 5 6 7

6 5 2 1 4 7 3

]
.

Then to determine αβ, we see that

[
1 2 3 4 5 6 7

6 5 2 1 4 7 3

]

[
1 2 3 4 5 6 7

2 3 1 4 5 7 6

]
,

which creates the maps listed below.
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Original β α

↓ ↓ ↓
1 7→ 6 7→ 7

2 7→ 5 7→ 5

3 7→ 2 7→ 3

4 7→ 1 7→ 2

5 7→ 4 7→ 4

6 7→ 7 7→ 6

7 7→ 3 7→ 1

Ergo, αβ is the permutation

αβ =

[
1 2 3 4 5 6 7

7 5 3 2 4 6 1

]
.

Similarly, to determine βα, we see that[
1 2 3 4 5 6 7

2 3 1 4 5 7 6

]

[
1 2 3 4 5 6 7

6 5 2 1 4 7 3

]
,

thus βα is the permutation[
1 2 3 4 5 6 7

5 2 6 1 4 3 7

]
.

3

Again, matrix notation is cumbersome and redundant. Below we rework the
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compositions in Example 4.2.13 using cycle notation.

Example 4.2.14. Consider α and β in Example 4.2.13. In cycle notation,

we see that

α = (123)(67) and β = (1673254).

The composition αβ is

αβ = (123)(67)(1673254).

For ease of the example, let’s label the cycles σ3 = (123), σ2 = (67), and

σ1 = (1673254), though this labeling is nontraditional. Remember that we

read function composition right to left, thus we start reading on the right

and scan left. We will determine how each cycle affects each number.

Adhering to convention, we first focus on how αβ permutes the symbol 1. In

σ1, we see that 1 7→ 6. Thus, as we continue reading right to left, we now

must determine where 6 is sent. In σ2, we see that 6 7→ 7. As we continue,

we now must determine where 7 gets sent. In σ3, 7 does not appear, meaning

that 7 is fixed. Thus, in total, 1 7→ 6 7→ 7, meaning that 1 ultimately mapped

to 7. This means we begin the cycle notation of αβ with the symbols (17.

In cycle notation, the symbol that follows in the cycle (17 is the symbol to

which 7 maps. Thus, we now repeat this process, only this time, we focus

on how αβ permutes the symbol 7. In σ1, we see that 7 7→ 3. Thus, as we

continue reading right to left, we now must determine where 3 is sent. In σ2,

we see that 3 does not appear, meaning that 3 is fixed. In σ3, we see that

3 7→ 1. Thus, in total, 7 7→ 3 7→ 1, meaning that 7 ultimately mapped to 1.

As we began our cycle (17 with 1, we now may close the cycle. Thus, the

first cycle in αβ is (17). Of course, we are not necessarily finished; we must

determine how αβ affects the remaining numbers.

Next, we find the smallest number not in any of the previous cycles, in this
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case 2, and follow it through αβ. We see that 2 7→ 5 in σ1, and because 5

does not appear in σ2 or σ3, we know that 5 7→ 5 ultimately. Thus, our next

cycle in αβ begins with (25. We now follow 5 through its mapping in αβ:

5 7→ 4 7→ 4 7→ 4. Next, we follow 4: 4 7→ 1 7→ 2, which is the first symbol in

our cycle. Thus, we can complete this cycle as (254).

The next smallest number not in any of the previous cycles is 3. In αβ,

3 7→ 2 7→ 2 7→ 3. Thus, 3 maps to itself, and, as customary, we omit this

1-cycle. Last, we follow 6: 6 7→ 7 7→ 6 7→ 6, thus we omit 6 when writing αβ.

Therefore, αβ = (17)(254). Similarly, βα = (154)(36). 3

Example 4.2.15.s Consider S4, the set of permutation of four objects.

Traditionally we work with the objects as numbers, but they do not neces-

sarily have to be numbers. Let these four objects be ♥, ♦, ♠, ♣. Consider

the permutations

α =

[
♥ ♦ ♠ ♣
♦ ♣ ♥ ♠

]
and β =

[
♥ ♦ ♠ ♣
♠ ♦ ♥ ♣

]
.

In cycle notation these elements are written α = (♥♦♣♠) and β = (♥♠).

The compositions of these elements gives us the following permutations.

αβ = (♥♦♣♠)(♥♠) = (♥)(♦♣♠) = (♦♣♠)

βα = (♥♠)(♥♦♣♠) = (♥♦♣)(♠) = (♥♦♣)

3

Both matrix and cycle notation make the inverse of a permutation easy to

see. The example below explains the patterns.

Example 4.2.16.s Given a permutation with three or more objects of
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the form α = (a, b, ..., g, h), then α−1 = (a, h, g, ..., b). To find the inverse

of a permutation, we start with the first object. Note, by definition, the

last object in the permutation maps back to the first. In α−1, we invert the

mappings. We see in α that h 7→ a, and in α−1 we have a 7→ h. This process

continues. Further, in α, g 7→ h, and in α−1, h 7→ g. The process of inverting

the mappings will thus result with the second object in the permutation

being the last object in the inverse.

For example, let β = (13254). Then, by the above explanation, β−1 =

(14523). Note, in matrix from,

β =

[
1 2 3 4 5

3 5 2 1 4

]

Going through the mapping process, but mapping from the bottom row to

the top row, starting with our first object 1, we get (14523), which indeed is

β−1.

Further, let’s see what happens when we compose ββ−1. We see that ββ−1 =

(13254)(14523). When going through the mapping process, we see that 1 7→
1. Also, note that 2 7→ 2. Continuing the process, we see that 3 7→ 3, 4 7→ 4,

and 5 7→ 5. Thus, ββ−1 = e. 3

EXERCISES

Exercise 4.2.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Assume n ≥ 2.

a. (12) ∈ Sn

b. (13) ∈ Sn

c. {e} ≤ Sn
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d. Sn ≤ Sn+1

e. For n ≥ 3, an element in Dn can be represented as an element in Sn.

f. For n ≥ 3, an element in Sn represents as an element in Dn.

Exercise 4.2.2. Consider D3 and S3.

a. Represent each element of D3 as a permutation written in matrix

notation.

b. Represent each element of D3 as a permutation written in cycle

notation.

c. Which elements of S3 do not represent any elements in D3?

Exercise 4.2.3. Let α, β, γ ∈ S8 be given as

α =

[
1 2 3 4 5 6 7 8

4 6 5 1 8 7 2 3

]
,

β =

[
1 2 3 4 5 6 7 8

3 4 1 2 6 7 8 5

]
,

γ =

[
1 2 3 4 5 6 7 8

5 2 8 1 7 3 4 6

]
.

a. Write α, β, γ ∈ S8 in cycle notation.

b. Find αβ, βα, αγ, γβ, and γ2.

c. Find the orders of α, β, γ ∈ S8.

d. Find α−1, β−1, γ−1 ∈ S8

Exercise 4.2.4. Write (193)(2734)(15)(38) ∈ S9 in matrix notation.

Exercise 4.2.5. For each of the following, find the inverse of the

permutation. For each inverse, begin the cycle with the number 1. What

pattern do you notice?

a. (123)

b. (1234)
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c. (12345)

d. (123456)

Exercise 4.2.6. Let H = {α ∈ S5 |α(1) = 1 and α(5) = 5}. Prove that H

is a subgroup of S5. Find |H|.

Exercise 4.2.7. Find all of the permutations in S4 that commute with

(12)(34). Does this subset form a subgroup?

Exercise 4.2.8. Find all of the permutations in S6 that commute with

(12)(34). Does this subset form a subgroup?

Exercise 4.2.9. Let σ be a permutation that performs the following map-

ping:

σ(1) = 5, σ(2) = 3, σ(3) = 4, σ(4) = 1, σ(5) = 2.

a. Suppose σ ∈ S5. Represent σ in matrix notation. Represent σ in cycle

notation.

b. Suppose σ ∈ S9. Represent σ in matrix notation. Represent σ in cycle

notation.

Exercise 4.2.10. Consider D4 and S4.

a. Represent each element of D4 as a permutation written in matrix

notation.

b. Represent each element of D4 as a permutation written in cycle

notation.

c. Which elements of S4 do not represent any elements in D4?

4.3 Properties of Permutations and Cycles

Now that we have some basic familiarity with permutations, we study some

properties of permutations. Though it may be initially uncomfortable, cycle
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notation is a very powerful way to represent permutations of finite sets. One

of the benefits of cycle notation is that it provides a visualization of the order

of the permutation. Consider the example below.

Example 4.3.1. Let α, β ∈ S6 be α = (12345) and β = (123456). To

determine the order of a permutation, we need to determine how many times

the permutation must be composed with itself in order to create the identity

permutation e = (1)(2)(3)(4)(5)(6) ∈ S6. We perform these computations

below:

α = (12345)

α2 = (12345)(12345) = (13524)

α3 = α2α = (13524)(12345) = (14253)

α4 = α3α = (14253)(12345) = (15432)

α5 = α4α = (15432)(12345) = e

and

β = (123456)

β2 = (123456)(123456) = (135)(246)

β3 = β2β = (135)(246)(123456)

β4 = β3β = (45)(123)(45) = (123)

β5 = β4β = (123)(123)(45) = (132)(45)

β6 = β5β = (132)(45)(123)(45) = e.

Thus, we see that α is a 5-cycle and |α| = 5. Similarly, β is a 6-cycle and its

order is 6. 3

We will generalize this observation in the lemma that follows. In order to do
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so, the following notation is helpful.

Notation. Let σ ∈ Sn be a permutation of the objects in D = {1, 2, 3, . . . , n}.
For each ai ∈ Dn, the notation σ(ai) denotes the image of ai under σ.

When a permutation is represented in cycle notation, we can clearly see the

image of every object in the notation. This notation helps us specify the

image of just one object.

Example 4.3.2. Consider the permutation σ = (176)(24) ∈ S7. Notice

that σ sends 1 to 7. Thus, to emphasize the σ is a function that sends 1 to

7, we can write σ(1) = 7. To determine σ2(1), notice that

σ2(1) = σ(σ(1)) = σ(7) = 6.

3

Now we are ready to prove the following theorem relating a cycle’s length to

its order.

Lemma 4.3.3. Let n ≥ 2 be a natural number, let m ≤ n be a natural

number, and let σ ∈ Sn be an m-cycle. Then |σ| = m.

Proof. Let D = {1, 2, . . . , n} and let σ ∈ Sn be a cycle of length m ≤ n.

When m = 1, σ = e, and thus |σ| = 1. Now assume m ≥ 2.

First, note that σm = e, thus |σ| ≤ m. Now consider σk for some 1 < k < m.

For each ai ∈ D, σk(ai) = ai+k mod m. Under modulo m arithmetic, i+ k ≡ i

when k is a multiple of m. As 1 < k < m, k can not be a multiple of m, and

thus i+k 6≡ i mod m. Therefore, σk(ai) 6= ai for any k such that 1 < k < m.

Therefore, |σ| = m.

Of course, not all permutations can be written as just one cycle. For example,

(12)(34) ∈ Sn for all n ≥ 4. Now that we have some understanding of single
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cycles, we can begin to study permutations composed of several cycles. It is

common to refer to a permutation as a “product” of cycles, though we know

the operation is function composition. The following theorem allows us to

simplify the representation of permutations in cycle notation.

Theorem 4.3.4. Every permutation of a finite set can be written as a product

of disjoint cycles.

Proof. Take natural number n ≥ 2. Let σ be a permutation on the set

D = {1, 2, . . . , n}. We will first build the cycle in σ containing 1 ∈ D. Let

a1 = 1 be the first number in the first cycle of σ, and continue to making the

following assignments

a2 = σ(1)

a3 = σ(a2) = σ2(1)

until 1 = σi(1) for some i ≤ n. Note that a power of σ will eventually map 1

back to 1 because permutations are bijective functions and we are operating

on finite set D. Thus, we have built the cycle

σ = (1, a2, a3, . . . , ai).

Let A = {1, a2, a3, . . . , ai} ⊆ D. If D − A 6= ∅, let B = D − A. Take

the smallest natural b1 ∈ B, and begin the process of building the cycle

containing b1.

We can continue this process of building cycles until we have included every

element of D in some cycle. Further, we know every element will be included

in some cycles and we know this process will terminate because σ is a bijective

function on a finite set.
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Example 4.3.5. Let α = (123), β = (34), γ = (45) ∈ S5. Observe that

αβ = (123)(34) = (1234) and βα = (34)(123) = (1243).

Thus, we see that α and β do not commute. Observe that

αγ = (123)(45) and γα = (45)(123) = (123)(45).

Thus, we see that α and γ do indeed commute. Why is this? 3

The following definition will be helpful in the proof of the following theorem,

which explains the example above.

Definition 4.3.6. Let S1 and S2 be sets. If S1 ∩ S2 = ∅, then the union

of S1 and S2 is called a disjoint union, denoted S1 t S2.

Theorem 4.3.7. Disjoint cycles commute.

Proof. Take natural number n ≥ 2. Let α and β be disjoint cycles on the set

D = {1, 2, . . . , n}. We are given that α and β are disjoint, thus we can write

D = {1, 2, . . . , n} = A tB t C

= {a1, . . . , ai, b1, . . . , bj, c1, . . . , ck},

where A = {a1, . . . , ai} is the set of numbers appearing in α, B = {b1, . . . , bj}
is the set of numbers appearing in β, and C = {c1, . . . , ck} is the set of

numbers appearing in neither α nor β.

We must show that αβ(d) = βα(d) for every d ∈ D. We proceed by cases.
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First let d ∈ A and assume d is the `th number in α. Then

αβ(d) = αβ(a`) = α(a`) = a`+1

because β leaves a` fixed. Further,

βα(d) = βα(a`) = β(a`+1) = a`+1

because β leaves a`+1 fixed. Hence, αβ(d) = βα(d) for every d ∈ A. Without

loss of generality, αβ(d) = βα(d) for every d ∈ B.

Now let d ∈ C. Then αβ(d) = α(d) = d because both α and β leave d fixed.

Similarly, βα(d) = β(d) = d. Therefore, αβ(d) = βα(d) for every d ∈ D.

Now that we know we can write permutations as products of disjoint cycles,

consider the following example.

Example 4.3.8. Let α, β ∈ S6 be α = (123)(456) and β = (123)(45).

Notice that |(123)| = 3, |(456)| = 3, and |(45)| = 2. Further,

α = (123)(456),

α2 = (123)(456)(123)(456) = (132)(465),

α3 = α2α = (132)(465)(123)(456) = e,
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and

β = (123)(45),

β2 = (123)(45)(123)(45) = (132),

β3 = β2β = (132)(123)(45) = (45),

β4 = β3β = (45)(123)(45) = (123),

β5 = β4β = (123)(123)(45) = (132)(45),

β6 = β5β = (132)(45)(123)(45) = e.

Thus, we see that |α| = 3 and |β| = 6. Why is this? 3

We generalize this example in the theorem below. In order to prove the

theorem below, we first give a lemma, which is a generalization of Exercise

3.2.17. Note that the lemma is about any group element a, and therefore

applies to more than just permutations.

Lemma 4.3.9. Let G be a group with identity e, and take a ∈ G of order

m. Suppose an = e for some n ∈ N. Then m divides n.

Proof. By the Division Algorithm, n = qm + r for some q ∈ Z and r such

that 0 ≤ r < m. By way of contradiction, suppose m 6 |n. Thus, 0 < r < m.

We are given that an = e, thus

an = aqm+r = aqmar = (am)qar = eqar = ar = e.

This is a contradiction, because m is the the order of a yet r < m. Therefore,

m divides n.

This leads us to a very useful result.

Theorem 4.3.10. The order of a permutation is the least common multiple

of the lengths of its disjoint cycles.
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Proof. Let σ ∈ Sn for n ≥ 2 in N. By Theorem 4.3.4, we can write σ as a

product of disjoint cycles. By Theorem 4.3.3, each cycle has order equal to

its length. Let |σ| = m. We proceed by induction on the number of disjoint

cycles in σ.

For the base case, assume σ is one cycle. Then |σ| = m.

For a more illuminating base case, assume σ is a product of two disjoint

cycles, say σ = α1α2. Let ` = lcm(|α1|, |α2|), and note that we want to show

m = `. Then, by Theorem 4.3.7 and Exercise 3.2.11,

σ` = (α1α2)
` = α`

1α
`
2.

Thus, by Lemma 4.3.9, |σ| = m divides `. By a similar argument, σm =

(α1α2)
m = αm

1 α
m
2 = e, thus αm

1 = α−m2 . We are given that α1 and α2 are

disjoint, thus αm
1 = α−m2 = e. Similarly, αm

2 = α−m1 = e. Therefore, by

Lemma 4.3.9, both |α1| and |α2| divide m. Further, ` = lcm(|α1|, |α2|) must

also divide m. We see that m|` and `|m, thus m = `.

The rest of the proof is left as an Exercise.

EXERCISES

Exercise 4.3.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Assume n ≥ 2 and σ, α ∈ Sn.

a. If σ5 = e, then |σ| = 5.

b. If |σ| = 5, then σ is a 5-cycle.

c. If |σ| = 6, then σ is a 6-cycle.

d. If σ ∈ Sn has order 2, then σ ∈ Sn+1 has order 2.

e. If σ ∈ S3, then σ(12) = (12)σ.

f. If σ ∈ S4, then σ(12) = (12)σ.
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g. If α and σ are disjoint, then σα = ασ.

h. If σα = ασ, then α and σ are disjoint.

Exercise 4.3.2. Find the order of each of the following permutations

a. (62715)

b. (62)(715)

c. (62)(715)(125)

Exercise 4.3.3. Finish the proof of Theorem 4.3.10.

Exercise 4.3.4. Find all the possible orders of elements in S7. (Hint: Do

not find all elements in S7.)

Exercise 4.3.5. Suppose σ = (1624)(15263). Determine σ100.

Exercise 4.3.6. Suppose σ = (123456789). Determine σ98. (Hint: Perform

no more than two computations.)

Exercise 4.3.7. Take σ = (1, 2, 3, 4, 5)(6, 7)(8, 9, 10) ∈ S10 and suppose σk

is a 5-cycle. What can you conclude about k?

Exercise 4.3.8. Show that in S4, the equation x2 = (1234) has no solutions

and the equation x3 = (1234) has a solution.

Exercise 4.3.9. Suppose σ ∈ Sn and σ4 = (1234567).

a. Find σ if n = 7.

b. Find σ if n = 9.

Exercise 4.3.10. Let α, β ∈ Sn for n ≥ 2.

a. For r ∈ N, prove that (αβα−1)r = αβrα−1. (Hint: Use induction.)

b. Prove that if |β| = m, then |αβα−1| = m.

Exercise 4.3.11. Let α ∈ Sn for n ≥ 2. Prove that if α is a cycle of odd

length, then α2 is a cycle.
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4.4 Alternating Groups

Surprise! There is yet another useful way to express permutations. We

seldom use it in computations, as it is cumbersome. What is most useful

about this notation is the fact that it exists. Below, we begin to introduce

this new notation.

Definition 4.4.1. A transposition is a 2-cycle.

Example 4.4.2. The permutation (123456) can also be written as a prod-

uct of transpositions. In particular, we see

(123456) = (16)(15)(14)(13)(12)

= (23)(34)(45)(56)(16).

3

Theorem 4.4.3. Every permutation can be written as a product of transpo-

sitions.

The proof is left to the reader, and the summary below may be helpful.

Notation. Every permutation can be written as a product of transpositions.

For permutation σ = (s1, s2, s3, . . . , sm−1, sm), we can write

σ = (s1sm)(s1sm−1) · · · (s1s3)(s1s2).

While it may seem unwieldy to write a permutation as a product of trans-

positions, there is a major advantage: transpositions provide yet another

means of “measuring” permutations. Previously, we measured a permuta-
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tion by its order. Now, we can also measure a permutation by the number

of its transpositions. Consider the examples below.

Example 4.4.4. The following permutations in S5 have been written as a

product of transpositions. There are many ways to express a single permuta-

tion as a product of transpositions, as demonstrated below. Notice that the

transpositions are not written in numerically ascending order for the sake of

demonstrating different expressions of the same permutation.

(12) = (12)

(123) = (13)(12)

= (312) = (32)(31)

= (231) = (21)(23)

(1234) = (14)(13)(12)

= (4123) = (43)(42)(41)

= (3412) = (32)(31)(34)

= (2341) = (21)(24)(23)

(12345) = (15)(14)(13)(12)

= (51234) = (54)(53)(52)(51)

= (45123) = (43)(42)(41)(45)

= (34512) = (32)(31)(35)(34)

= (23451) = (21)(25)(24)(23)

Notice that the 3-cycle can be written as three different products of two

transpositions. Similarly, the 4-cycle can be written as four different products

of three transpositions. 3

Example 4.4.5. The identity permutation can be written as a product of
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transpositions in many different ways. In S2,

e = (12)(12).

In S3,

e = (12)(12) = (13)(13) = (23)(23).

In S4

e = (12)(12) = (13)(13) = (14)(14) = (23)(23) = (24)(24) = (34)(34)

= (12)(34)(12)(34) = (13)(24)(13)(24) = (14)(23)(14)(23)

and there are many more ways to express e. 3

This example is generalized below.

Lemma 4.4.6. When written as a product of transpositions, the identity is

always a product of an even number of transpositions.

Proof. Let e = τ1τ2 · · · τm, where each τ is a transposition. Notice that

m 6= 1, because a single transposition can not be the identity. If m = 2,

then we are done. We proceed by induction on m. Assume that e can be

rewritten as a product of m transpositions for every even m < k for some k.

Suppose m = k and hence e = τ1τ2 · · · τk. The transposition τk = (ab) for

some a, b ∈ N such that a 6= b. Now consider the product of transpositions

τk−1τk, the two transpositions furthest right. These two transpositions have
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one of the following forms, where a, b, c, d ∈ N are all distinct:

(ab)(ab) = e (4.1)

(ac)(ab) = (abc) = (bca) = (ab)(bc)

(bc)(ab) = (acb) = (cba) = (ac)(cb)

(cd)(ab) = (ab)(cd).

If Equation 4.1 is true, then we may reduce e to e = τ1τ2 · · · τk−2. If this is

true, then k − 2, and hence k is even, thus we are done.

If any of the other three cases is true, we may rewrite the form of τk−1τk on

the left as the form on the right. This allows us to rewrite τk−1τk so that a

is the transposition that is second from the right.

Now consider the product of transpositions τk−2τk−1, and apply the same

rewriting process. Once again, either Equation 4.1 is true, or we can shift a

one transposition left. Repeating this process as needed, we will eventually

shift a far enough left to obtain Equation 4.1, because the product of these

transpositions is the identity. Thus, we have rewritten e as the product of

k− 2 transpositions. By hypothesis, k− 2 is even, and hence k is even, thus

we are done.

Examples 4.4.4 and 4.4.5 are generalized below.

Theorem 4.4.7. If a permutation can be expressed as a product of an odd

number of transpositions, then every transposition decomposition of the per-

mutation contains an odd number of transpositions. Similarly, if a permu-

tation can be expressed as a product of an even number of transpositions,

then every transposition decomposition of the permutation contains an even

number of transpositions.

Proof. Take σ ∈ Sn and rewrite it as two different transposition decomposi-
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tions:

α1α2 · · ·αi = β1β2 · · · βj.

Then

e = α1α2 · · ·αi(β1)
−1(β2)

−1 · · · (βj)−1

= α1α2 · · ·αiβ1β2 · · · βj

because a transposition is its own inverse. By Lemma 4.4.6, i + j is even.

Thus, i and j are either both even or both odd.

This leads to the following descriptors of permutations.

Definition 4.4.8. A permutation is odd if it can be decomposed into an

odd number of transpositions. A permutation is even if it can be decomposed

into an even number of transpositions.

Example 4.4.9. In each of the following cycles, notice the relationship

between number of distinct numbers and the number of transpositions.

• The permutation (12) is odd. It has two distinct numbers in its cycle,

but it has one transposition.

• The permutation (123) = (13)(12) is even. It has three distinct num-

bers in its cycle, but it has two transpositions.

• The permutation (1234) = (14)(13)(12) is odd.

• The permutation (12345) = (15)(14)(13)(12) is even.

3
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This leads us to a rich bank of examples of subgroups.

Definition 4.4.10. The set of even permutations of n objects, denoted An,

is the alternating group of degree n.

Theorem 4.4.11. For natural number n ≥ 2, An is a subgroup of Sn.

Example 4.4.12. We will determine A3. We know

S3 = {e, (12), (13), (23), (123), (132)}.

The identity is even, thus e ∈ A3. The cycles (12), (13), and (23) are single

transpositions, thus, (12), (13), (23) 6∈ A3. The 3-cycles (123) and (132) can

each be decomposed into two transpositions, thus (123), (132) ∈ A3. In

conclusion,

A3 = {e, (123), (132)}.

3

The proof of Theorem 4.4.11 and the proof of the theorem below are left to

the reader.

Theorem 4.4.13. For natural number n ≥ 2, |Sn| = n! and |An| = n!/2.

EXERCISES

Exercise 4.4.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Assume n ≥ 2 and let σ be a permutation in Sn.

a. If |σ| = 5, then σ ∈ An for n ≥ 5.

b. If |σ| = 6, then σ ∈ An for n ≥ 6.
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c. (12) ∈ An

d. (123) ∈ An

e. The set of odd permutations in Sn is a subgroup of Sn.

f. If σ ∈ An, then σ−1 ∈ An.

g. An ≤ Sn

h. An ≤ Sn+1

Exercise 4.4.2. For each of the following permutations in S5, find two

different ways to express the permutation as a product of transpositions.

a. (13542)

b. (142)(35)

c. (2453)

Exercise 4.4.3. Prove Theorem 4.4.3.

Exercise 4.4.4. What is the maximum order of an element in A10? Justify

your answer. (Hint: Do not find all elements in A10.)

Exercise 4.4.5. Given σ ∈ Sn, prove that σ and σ−1 have the same parity.

Exercise 4.4.6. Let α and β be transpositions. What are the possibilities

for |αβ|? Justify your answer.

Exercise 4.4.7. Prove Theorem 4.4.11.

Exercise 4.4.8. Prove Theorem 4.4.13.

Exercise 4.4.9. Prove that Sn is non-Abelian for all n ≥ 3. Prove that An

is non-Abelian for all n ≥ 4.

Exercise 4.4.10. Consider Sn for n ≥ 2.

a. Find all subgroups of S3.

b. Find at least four subgroups of S4, each of which has a different order

from the other three examples.
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c. Let H ≤ Sn. Prove that either half of the elements in H are even or

all of the elements in H are even. (Hint: Create a bijection that maps

odd permutations to even permutations.)
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Chapter 5

Subgroups

Quote

Person

After studying examples of groups, we studied properties common to all

groups. In order to apply our ideas to all groups, we adopted the generic

group notation. Similarly, now that we have studied some basic properties of

subgroups, we turn to subgroups common to all groups, and we do so using

the generic group notation.

5.1 Some Important Subgroups

As we have noticed in previous homework problems, even in non-Abelian

groups, there can be elements that commute with all elements. For example,

if e is the identity of group G and g ∈ G, eg = ge, thus we see that the

identity is an element that commutes with all elements in its group. We take

this idea further in the definition below.

109
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Definition 5.1.1. Let G be a group. The center of group G, denoted Z(G),

is the subgroup of all elements that commute with all elements, that is,

Z(G) = {g ∈ G | gx = xg ∀x ∈ G}.

Example 5.1.2. The center of D4 is the subgroup of all elements that

commute with all of the elements in D4. Consulting the Cayley table of D4,

we see that

Z(D4) = {R0, R180}.

3

Example 5.1.3. Let G be an Abelian group, thus every element commutes

with every element. In this case, Z(G) = G. 3

Below, we prove that the center is a subgroup. For variety, we employ the

Two-Step Subgroup Test. Recall that to prove a subset is a subgroup, we may

prove the subset meets the subgroup definition or use either of the subgroup

tests.

Theorem 5.1.4. The center of group G is a subgroup of G.

Proof. Let G be a group and e its identity. By the definition of Z(G), Z(G)

is a subset of G. By definition of the identity, eg = ge for all g ∈ G.

Thus, e ∈ Z(G), and Z(G) is nonempty. We may now apply the Two-Step

Subgroup Test. Consider a, b ∈ Z(G). By the definition of Z(G), for all

g ∈ G, we have the following:

ax = xa (5.1)

bx = xb. (5.2)
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1. By Equation 5.1, Equation 5.2, and associativity, we see that

(ab)x = a(bx) = a(xb) = (ax)b = x(ab)

for all x ∈ G. Thus, ab ∈ Z(G).

2. By the definition of a group, we know that a−1 exists. Multiplying

Equation 5.1 on the left by a−1, we see that

a−1(ax) = a−1(xa)

x = a−1(xa)

by associativity and the definitions of inverse and identity. Continuing,

we multiply on the right by a−1:

xa−1 = a−1(xa)a−1

= a−1x.

This is true for all x ∈ G, thus a−1 ∈ Z(G).

Therefore, by the Two-Step Subgroup Test, Z(G) is a subgroup of G.

The center of a group is every element that commutes with every element.

Compare this to the definition below.

Definition 5.1.5. Let G be a group and take a ∈ G. The centralizer of a

in G, denoted CG(a), is the set of elements in G that commute with a. That

is,

CG(a) = {x ∈ G | ax = xa}.
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Notice that we need two pieces of information in order to define the central-

izer. First, we need a parent group, G. Second, we need the element, a ∈ G,

whose ability to commute we shall analyze. If the parent group is clear, you

guessed it, we get lazy and just write C(a).

Example 5.1.6. Consider the permutation (12), which is an element in

Sn for all n ≥ 2. Several of its centralizers, with respect to several different

permutation groups, are listed below.

CS3((12)) = {e, (12)}

CS4((12)) = {e, (12), (34), (12)(34)}

CS5((12)) = {e, (12), (34), (35), (45), (12)(34), (12)(35), (12)(45),

(345), (354), (12)(345), (12)(354)}

3

Example 5.1.7. Consider D4. The centralizers of each element are listed

below.

C(R0) = D4 = C(R180)

C(R90) = {R0, R90, R180, R270} = C(R270)

C(H) = {R0, R180, H, V } = C(V )

C(D) = {R0, R180, D,D
′} = C(D′)

3

Theorem 5.1.8. Let G be a group and take a ∈ G. Then CG(a) is a subgroup

of G.

The proof of Theorem 5.1.8 is left to the reader as an exercise.

Theorem 5.1.9. Let H be a subgroup of group G. Then the centralizer of
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H

CG(H) = {g ∈ G | gh = hg ∀h ∈ H}

is a subgroup of G.

Again, the proof is left to the reader because it is yet another fantastic

opportunity to practice using the subgroup tests. Below is an example of the

centralizer of a subgroup.

Example 5.1.10. Consider the subgroup H = {e, (123), (132)} of the

groups S4 and S5. Below we find the centralizers of H in each of these

parent groups.

When G = S4,

CG(H) = {g ∈ S4 | gh = hg ∀h ∈ H}

= {e, (123), (132)}.

When G = S5,

CG(H) = {g ∈ S5 | gh = hg ∀h ∈ H}

= {e, (45), (123), (132), (123)(45), (132)(45)}.

3

These examples have all drawn on non-Abelian groups because the center,

centralizer of an element, and centralizer of a subgroup are all subgroups

constructed from elements that commute with various other elements. In

Abelian groups, these subgroups are all equal to the parent group, and thus

the examples are rather unilluminating. The examples of the definition below

will also draw from non-Abelian groups for the same reason.
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Definition 5.1.11. Let G be a group and H a subgroup of G. Take x ∈ G.

Then

xHx−1 = {xhx−1 |h ∈ H}

is called the conjugate of H by x in G.

Example 5.1.12. Let G = S3 and H = {e, (12)}. Take (123) ∈ G. Then

(123)H(123)−1 = {(123)e(123)−1, (123)(12)(123)−1}

= {(123)e(132), (123)(12)(132)}

= {e, (23)}

is also a subgroup of G. 3

Example 5.1.13. Let G = S4 and consider the subgroup

H = {e, (1234), (13)(24), (1432)}.

The element (123), whose inverse is (132), conjugates H in the following way.

(123)H(123)−1 = {(123)e(132), (123)(1234)(132),

(123)(13)(24)(132), (123)(1432)(132)}

= {e, (1423), (12)(34), (1324)}

Notice that by conjugating H by (123), we essentially mapped 2 7→ 3 and

3 7→ 2 inside H.

The element (34) is self-inversing and conjugates H in the following way.

(34)H(34)−1 = {(34)e(34), (34)(1234)(34), (34)(13)(24)(34), (34)(1432)(34)}

= {e, (1243), (14)(23), (1342)}



5.1. SOME IMPORTANT SUBGROUPS 115

Notice that by conjugating H by (34), we essentially mapped 3 7→ 4 and

4 7→ 3 inside H.

3

Conjugating a subgroup maps subgroup H to a similar subgroup, that is, a

subgroup essentially the same properties. In the Chapter 6, we will study

functions that map groups to other groups and what properties are preserved

under these functions. In the meantime, below is a theorem summarizing the

past few examples.

Theorem 5.1.14. Let G be a group and H a subgroup of G. Then for every

x ∈ G, xHx−1 is a subgroup of G.

Proof. Let x ∈ G. We are given that H is a subgroup, thus e ∈ H. Further,

xex−1 = e ∈ xHx−1, thus xHx−1 is nonempty. We proceed using the One-

Step Subgroup Test. The elements a, b ∈ xHx−1 have form a = xcx−1 and

b = xdx−1 for some c, d ∈ H. Then, using the Socks-and-Shoes property, we

see that

ab−1 = xcx−1(xdx−1)−1

= xcx−1(x−1)−1(d)−1(x)−1

= xcx−1xd−1x−1

= xcd−1x−1.

Further, because H is a subgroup, cd−1 ∈ H. Therefore, ab−1 ∈ xHx−1, and

xHx−1 is a subgroup of G.

As we saw in Example 5.1.12, a conjugate of a subgroup is not always equal

to the original subgroup. Many nice properties arise when a conjugate and

its original subgroup are equal, as we will see in Chapter 7. For now, we
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study a subgroup arising from this property; the proof that it is indeed a

subgroup is left to the reader.

Definition 5.1.15. Let H be a subgroup of group G. The normalizer of H

in G is the set

N(H) = {x ∈ G |xHx−1 = H}.

Example 5.1.16. Let G = S5 and H = {e, (123), (132)}. Then

N(H) = {σ ∈ G |σHσ−1 = H}

= {σ ∈ G |σeσ−1 ∈ H, σ(123)σ−1 ∈ H, σ(132)σ−1 ∈ H}

= {e, (123), (132), (45), (123)(45), (132)(45)}.

3

Theorem 5.1.17. Let H be subgroup of group G. Then N(H) is a subgroup

of G.

Example 5.1.18.s Let G = D3 and H = {R0, R120, R240}. We will first

itemize the conjugates for each element in H < D3. Then we will determine

the normalizer of the subgroup H. The following table gives the conjugates

in H for each x ∈ G.

x ∈ G xR0x
−1 xR120x

−1 xR240x
−1 xHx−1

R0 R0 R120 R240 {R0, R120, R240} = H
R120 R0 R120 R240 {R0, R120, R240} = H
R240 R0 R120 R240 {R0, R120, R240} = H
V R0 R240 R120 {R0, R120, R240} = H
L R0 R240 R120 {R0, R120, R240} = H
R R0 R240 R120 {R0, R120, R240} = H
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Since we have xHx−1 = H for all x ∈ G, we have that N(H) = G. 3

Recall from Section 4.2 that permutations are functions that act on the

elements Dn = {1, 2, . . . , n}. Whenever we have a group of functions acting

on objects, like permutations acting on numbers, or movements acting on

shapes, we can create subgroups based on how the functions act on those

objects.

Definition 5.1.19. Let G be a group of permutations on the set D. Take

d ∈ D. Then the stabilizer of d in G is

stabG(d) = {σ ∈ G |σ(d) = d},

which is the set of all permutations that leave d fixed.

Example 5.1.20.s Find stabG(3) where G = S4. By definition, stabG(3)

has all the elements in S4 where 3 7→ 3. We can see that

stabG(3) = {e, (12), (14), (24), (124), (142)}.

Due to laziness we usually do not write cycles of order 1 like (3), which is why

the digit 3 does not appear in the any of the permutations of stabG(3). 3

In the above definition, notice that our only restriction on G is that it is a

permutation group, and not any particular permutation group.

Example 5.1.21.s Find stabG(1) for each G = S3, S4, A4, A5. We know

that stabG(1) = {σ ∈ G|σ(1) = 1}, which is the set of all permutations in G

that leave 1 fixed.
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a) Let G = S3. The permutations that stabilize 1 in G = S3 are listed in

the subgroup below.

stabS3(1) = {e, (23)}

b) Let G = S4. The permutations that stabilize 1 in G = S4 are listed in

the subgroup below.

stabS4(1) = {e, (23), (24), (34), (234), (243)}

c) Let G = A4. The permutations that stabilize 1 in G = A4 are listed in

the subgroup below.

stabA4(1) = {e, (234), (243)}

d) Let G = A5. The permutations that stabilize 1 in G = A5 are listed in

the subgroup below.

stabA5(1) ={e, (234), (243), (235), (253), (245), (254),

(345), (354), (23)(45), (24)(35), (34)(25)}

3

Theorem 5.1.22. Let G be a group of permutations on the set D and take

d ∈ D. Then stabG(d) is a subgroup of G.

The proof is left to the reader as an exercise.

EXERCISES

Exercise 5.1.1. For each of the following, determine if the statement is
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always true, sometimes true, or never true. In a sentence or two, justify

your response. Let G be a group and H ≤ G.

a. A group has an Abelian subgroup.

b. Z(G) 6= ∅

c. For a ∈ G, C(a) 6= ∅.

d. For a ∈ G, C(a) = C(a−1).

e. For a ∈ G, C(a) is Abelian.

f. For a ∈ G, Z(G) ⊆ C(a).

g. For x ∈ G, xHx−1 = H.

Exercise 5.1.2. Find Z(S4). Find Z(A4).

Exercise 5.1.3. Find Z(Dn) for n = 3, 4, 5, 6.

Exercise 5.1.4. Let H be a subgroup of group G. Define HZ(G) as

HZ(G) = {hz |h ∈ H, z ∈ Z(G)}.

a. Pick your favorite non-Abelian group and your favorite nontrivial

subgroup of it. Create an example of HZ(G).

b. Prove HZ(G) is a subgroup of G.

c. Is it necessary for H to be a subgroup of G in order for HZ(G) to be

a subgroup? Why or why not?

Exercise 5.1.5. Find all of the centralizers in S4.

Exercise 5.1.6.s Find N(SL2(Z2)) where G = GL2(Z2)).

Exercise 5.1.7. Consider the permutation σ = (12)(34)(56). For each of

the following G, find CG(σ).

a. G = S6

b. G = S8
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Exercise 5.1.8. Prove Theorem 5.1.8.

Exercise 5.1.9. Let G be a group and a, b ∈ G. Prove that if b ∈ CG(a),

then a ∈ CG(b).

Exercise 5.1.10. Let G be a group.

a. Prove that Z(G) is a subgroup of CG(a) for all a ∈ G.

b. Prove that

Z(G) =
⋂
a∈G

CG(a).

Exercise 5.1.11. Prove Theorem 5.1.9.

Exercise 5.1.12. Prove or disprove the following claim.

Claim. Let G be a group with subgroup H. For any h ∈ H, hHh−1 = H.

Exercise 5.1.13. Let G = Sn and H = {e, (12), (34), (12)(34)}.

a. Find N(H) if n = 4.

b. Find N(H) if n = 6.

c. Find N(H) if n = 7.

Exercise 5.1.14. Prove Theorem 5.1.17.

Exercise 5.1.15.s Let G be a group and H be a subgroup of G with

H ⊆ Z(G). Prove that N(H) = G.

Exercise 5.1.16. Let G = S4. Find stabG(i) for your favorite i ∈ {1, 2, 3, 4}.

Exercise 5.1.17. LetG = A5. Find stabG(i) for your favorite i ∈ {1, 2, 3, 4, 5}.

Exercise 5.1.18. Prove Theorem 5.1.22.
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5.2 Cyclic Groups and Subgroups

In the previous section, we studied a few structures that will always cre-

ate subgroups of parent groups. In this section, we begin to learn how to

construct a subgroup. Sometimes this construction will result in the entire

parent group, not just a proper subgroup.

We begin with a single element.

Definition 5.2.1. Let a be an element of the group G. Define

〈a〉 = {ai | i ∈ Z}.

We call 〈a〉 the cyclic subgroup of G generated by a.

In a sense, the subgroup generated by element a ∈ G is the set of everything

a creates with itself, and we will prove it is indeed a subgroup of G.

Example 5.2.2. Consider 2 ∈ R∗. The group operation is multiplication,

thus

〈2〉 = {2i | i ∈ Z}

= {. . . , 2−2, 2−1, 20, 21, 22, . . .}

=

{
. . . ,

1

4
,
1

2
, 1, 2, 4, . . .

}
is a subgroup of R∗. Notice that 1 ∈ R∗, and for 2n ∈ R∗, we will find

2−n ∈ R∗. 3
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Example 5.2.3. Consider 2 ∈ Z12. The group operation is addition, thus

〈2〉 = {2, 4, 6, 8, 10, 0}.

Notice that these are all the elements of 〈2〉. For example, if we wanted to

find 217, we would sum 17 copies of 2, which creates 217 = 34 = 10. Thus,

though the definition of 〈2〉 includes infinite powers of 2, because we are in

a finite group, the elements created begin to repeat. 3

Example 5.2.4. Consider 2 ∈ U(15) = {1, 2, 4, 7, 8, 11, 13, 14}, and note

that the operation is multiplication modulo 15. Note that U(15) is finite,

thus 〈2〉 will be finite, too, as it is a subgroup. Thus, for the sake of ease, we

begin calculating the positive powers of 2. For the sake of demonstration, we

first present these calculations.

21 = 2

22 = 2 · 2 = 4

23 = 22 · 2 = 4 · 2 = 8

24 = 23 · 2 = 8 · 2 = 1

25 = 24 · 2 = 1 · 2 = 2

... =
...

Thus, we can see 2 will generate four elements, giving us

〈2〉 = {1, 2, 4, 8}.

3

Example 5.2.5. Let G be a group and e its identity. Then 〈e〉 = {e}. 3

Below we prove that a cyclic subgroup is indeed a subgroup, and we go one
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step further.

Theorem 5.2.6. For each a ∈ G, 〈a〉 is a subgroup of G. Furthermore, 〈a〉
is the smallest subgroup of G that contains a.

Proof. First, we see that a ∈ 〈a〉, thus 〈a〉 is nonempty and we may apply the

One-Step Subgroup Test. Let x, y ∈ 〈a〉. Then, by the definition of 〈a〉, these

elements have the form x = am and y = an for some m,n ∈ Z. Furthermore,

xy−1 = am(an)−1 = ama−n = am−n.

By the definition of 〈a〉, am−n ∈ 〈a〉 because m − n ∈ Z. Therefore, by the

One-Step Subgroup Test, 〈a〉 ≤ G.

Suppose H is another subgroup of G that contains a. By the definition of

subgroup, H is closed, thus an ∈ H for all n ∈ Z. Thus, 〈a〉 ⊆ H, which

implies that 〈a〉 is the smallest subgroup of G that contains a.

Example 5.2.7.s Consider 〈2〉.We will find |〈2〉| for U(3), U(7), U(9), U(21),

and U(63). Note for unit groups, 1 is the identity under multiplication.

• We calculate the powers of 2 in U(3), obtaining the following.

22 = 4 mod 3 = 1

Hence, 〈2〉 = {1, 2} ≤ U(3).

• The powers of 2 in U(7) follow.

22 = 4 mod 7 = 4

23 = 8 mod 7 = 1

Hence, 〈2〉 = {1, 2, 4} ≤ U(7).
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• The powers of 2 in U(9) follow,

22 = 4 mod 9 = 4

23 = 8 mod 9 = 8

24 = 16 mod 9 = 7

25 = 32 mod 9 = 5

26 = 64 mod 9 = 1

Hence, 〈2〉 = {1, 2, 4, 5, 7, 8} ≤ U(9).

• The powers of 2 in U(21) follow.

22 = 4 mod 21 = 4

23 = 8 mod 21 = 8

24 = 16 mod 21 = 16

25 = 32 mod 21 = 11

26 = 64 mod 21 = 1

Hence, 〈2〉 = {1, 2, 4, 8, 11, 16} ≤ U(21).

• The powers of 2 in U(63) follow.

22 = 4 mod 63 = 4

23 = 8 mod 63 = 8

24 = 16 mod 63 = 16

25 = 32 mod 63 = 32

26 = 64 mod 63 = 1

Hence, 〈2〉 = {1, 2, 4, 8, 16, 32} ≤ U(63).

3
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As we saw in the previous example, 〈2〉 = U(9). This shows that sometimes

groups themselves can be cyclic.

Definition 5.2.8. A group G is cyclic if there exists a ∈ G such that

G = 〈a〉, and the element a is called a generator of G.

We have already seen many example of cyclic groups, both finite and infinite.

Example 5.2.9. The group Z8 is cyclic and has generators 1, 3, 5, and 7.

Notice

〈1〉 = {1, 2, 3, 4, 5, 6, 7, 0}

〈3〉 = {3, 6, 1, 4, 7, 2, 5, 0}

〈5〉 = {5, 2, 7, 4, 1, 6, 3, 0}

〈7〉 = {7, 6, 5, 4, 3, 2, 1, 0}.

Of course, order doesn’t matter in a set, thus 〈1〉 = 〈3〉 = 〈5〉 = 〈7〉 = Z8. 3

Example 5.2.10. The group U(10) = {1, 3, 7, 9} is cyclic because 3 gener-

ates U(10).

31 = 3

32 = 3 · 3 = 9

33 = 32 · 3 = 9 · 3 = 7

34 = 33 · 3 = 7 · 3 = 1
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We also find that 7 generates U(10).

71 = 7

72 = 7 · 7 = 9

73 = 72 · 7 = 9 · 7 = 3

74 = 73 · 7 = 3 · 7 = 1

Notice that 3 and 7 are inverses of each other, and they both are generators.

3

Non-Example 5.2.11. The group U(8) = {1, 3, 5, 7} is not cyclic. Notice

that no element generates all of U(8).

〈1〉 = {1}

〈3〉 = {3, 1}

〈5〉 = {5, 1}

〈7〉 = {7, 1}

3

Example 5.2.12. The group of the integers under addition is cyclic. The

elements 1 and −1 generate the integers, that is,

Z = 〈1〉 = 〈−1〉 = {. . . ,−2,−1, 0, 1, 2, . . .}.

3

Non-Example 5.2.13. The group of the real numbers under addition is

not cyclic. There is no a ∈ R that, when added to itself as many as infinitely

times, will create every real number. 3
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In a cyclic group, there may be some elements that do not generate the entire

group. For example, as long as the group is nontrivial, the identity will not

generate the entire group. Notice that in a non-cyclic group, none of the

elements generate the entire group.

Cyclic groups are so named because, in a sense, they are cycles of elements.

The lemma below gives us a tool to measure when two seemingly different

elements are really the same element in a cycle.

Lemma 5.2.14. Let G be a group with identity e, take a ∈ G, and let

i, j ∈ N.

• If |a| is infinite, then ai = aj if and only if i = j.

• If |a| = n, then ai = aj if and only if i ≡ j mod n. Further, 〈a〉 =

{e, a, a2, . . . , an−1}.

Proof. First, assume |a| is infinite. Then the only power of a that generates

the identity is zero, that is, a0 = e. If ai = aj, then ai−j = e. Thus, i− j = 0

and i = j.

Second, assume |a| = n for some n ∈ N. Let ak ∈ 〈a〉 for some k ∈ Z. By

the Division Algorithm, we know that k = qn+ r for some q, r ∈ Z such that

0 ≤ r < n. Thus,

ak = aqn+r = aqnar = (an)qar = ear = ar.

Therefore, for every k ∈ Z

ak ∈ {ar | 0 ≤ r < n} = {a0, a1, a2, . . . , an−1} = {e, a, a2, . . . , an−1}.

Suppose ai = aj for some i, j ∈ N. Then ai−j = e = a0. By the Division

Algorithm, we know that i−j = qn+r for some q, r ∈ Z such that 0 ≤ r < n.
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Hence, e = ai−j = ar. We assumed |a| = n, and the Division Algorithm gave

us 0 ≤ r < n, thus r = 0. Therefore, i− j = qn, or i ≡ j mod n.

Previously, you may have found it strange that we used the term “order” in

two different ways.

1. The order of an element is the number of copies needed to create the

identity,

2. The order of a group is the number of elements in the group.

The corollary below provides the link between the two meanings.

Corollary 5.2.15. For any group element a, |a| = |〈a〉|.

Corollary 5.2.16. Suppose a group has identity e and let a be an element

with order n. If ak = e, then n divides k.

We have already seen many examples of these corollaries, though we did not

study them in this light. Below is another example.

Example 5.2.17. Consider the element (12345) ∈ S8. We know that

|(12345)| = 5. Thus, if we also know that (12345)k = e, we may conclude

that k is a multiple of 5.

Conversely, suppose we have some σ ∈ S8 such that σ6 = e. Then |σ| must

divide 6, that is |σ| = 1, 2, 3, or 6. 3

There are many examples we could create to demonstrate properties of cyclic

groups. As we began to see in Example 5.2.9, for n ∈ N, Zn is a cyclic group.

Similarly, as we saw in Example 5.2.12, Z is a cyclic group. Thus, we will

often demonstrate properties of cyclic groups with Zn and Z, because, if

nothing else, these groups are fairly familiar already.
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There are many, many patterns to observe about cyclic groups. Read the ex-

ample below, and conjecture about when two distinct group elements create

the same cyclic group.

Example 5.2.18. Consider the group Z12. We know that 1 is a generator.

Are there any other generators?

The element 1 generates every element in Z12. Thus, we can view every

element as a power of 1. For example, 2 = 12 because 2 = 1 + 1. Similarly,

3 = 13, 4 = 14, and so on. Let’s observe what each element generates.

〈10〉 = 〈0〉 = {0}

〈11〉 = 〈1〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0} = Z12

〈12〉 = 〈2〉 = {2, 4, 6, 8, 10, 0}

〈13〉 = 〈3〉 = {3, 6, 9, 0}

〈14〉 = 〈4〉 = {4, 8, 0}

〈15〉 = 〈5〉 = {5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 0} = Z12

〈16〉 = 〈6〉 = {6, 0}

〈17〉 = 〈7〉 = {7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0} = Z12

〈18〉 = 〈8〉 = {8, 4, 0} = 〈4〉

〈19〉 = 〈9〉 = {9, 6, 3, 0} = 〈3〉

〈110〉 = 〈10〉 = {10, 8, 6, 4, 2, 0} = 〈2〉

〈111〉 = 〈11〉 = {11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0} = Z12
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We see that

〈1〉 = 〈5〉 = 〈7〉 = 〈11〉

〈2〉 = 〈10〉

〈3〉 = 〈9〉

〈4〉 = 〈8〉

How do 1, 5, 7, and 11 relate to 12? Notice that

gcd(1, 12) = gcd(5, 12) = gcd(7, 12) = gcd(11, 12) = 1.

Further, notice that |1| = |5| = |7| = |11| = 12 because 1, 5, 7, and 11 are

relatively prime to 12. How do 2 and 10 relate to 12? Notice that

gcd(2, 12) = gcd(10, 12) = 2.

Further, notice that |2| = |10| = 6 = 12/ gcd(2, 12). How do 3 and 9 relate

to 12? Notice that

gcd(3, 12) = gcd(9, 12) = 3.

Further, notice that |3| = |9| = 4 = 12/ gcd(3, 12). How do 4 and 8 relate to

12? Notice that

gcd(4, 12) = gcd(8, 12) = 4.

Further, notice that |4| = |8| = 3 = 12/ gcd(4, 12). 3

The previous example is generalized in the theorem below.

Theorem 5.2.19. Let a be an element of order n and let k ∈ N. Then

〈ak〉 = 〈agcd(n,k)〉
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and

|ak| = n

gcd(n, k)
.

Proof. To make the calculations less cumbersome, it is common to call a

greatest common divisor d. Thus, let d = gcd(n, k). Thus, d is a divisor of

k, hence 〈ak〉 ⊆ 〈ad〉. By Bézout’s Lemma, there exist x, y ∈ Z such that

d = nx+ ky. Therefore,

ad = anx+ky = (an)x(ak)y = (ak)y ∈ 〈ak〉

by the definition of 〈ak〉. By closure, 〈ad〉 ⊆ 〈ak〉. Ergo, 〈ad〉 = 〈ak〉.

Now let d be any divisor of n. We are given that |a| = n, thus (ad)n/d = e,

which shows that |ad| divides n/d. If i ∈ N is less than n/d, then i ·d < i ·n/d
and because

(ad)n/d = an = e,

we know that (ad)i 6= e. Therefore, no such i exists, meaning that |ad| can

not be smaller than n/d. Therefore, |ad| = n/d. When d = gcd(n, k),

|ak| = |〈ak〉| = |〈agcd(n,k)〉| = n

gcd(n, k)
.

This theorem tells us when two cyclic subgroups are equal. Thus, when

considering 〈ak〉, we can instead consider 〈agcd(n,k)〉. This may yield a much

more convenient calculation, as gcd(n, k) ≤ k.

Example 5.2.20. To find 〈27〉 in Z48, we could start adding copies of 27

to itself, but only the rare math student thinks that sounds like fun. Instead,

we use Theorem 5.2.19 to reduce our workload.

We know that 1 generates Z48 and |1| = 48. Thus, 27 is generated by 1. We
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see that 27 = 127, so 〈27〉 = 〈127〉. By Theorem 5.2.19, 〈127〉 = 〈1gcd(|1|,27)〉
and notice that

gcd(|1|, 27) = gcd(48, 27) = 3.

Therefore,

〈27〉 = 〈127〉

= 〈1gcd(48,27)〉 = 〈13〉 = 〈3〉

= {3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 0}.

We could use Theorem 5.2.19 once again to also conclude that

|27| = |127| = |1|
gcd(|1|, 27)

=
48

gcd(48, 27)
=

48

3
= 16.

Of course, notice that |〈27〉| = 16. 3

Theorem 5.2.19 provides a powerful tool when working with cyclic groups.

Corollary 5.2.21. In a finite cyclic group, the order of an element divides

the order of the group.

The following corollaries help us determine when two cyclic groups are equal.

Corollary 5.2.22. Let a be an element of order n. Let i, j ∈ N. The

following are equivalent.

1. 〈ai〉 = 〈aj〉

2. gcd(n, i) = gcd(n, j)

3. |ai| = |aj|

Proof. To show that these statements are equivalent, we will show that (1)

implies (2), (2) implies (3), and (3) implies (1).
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For the first implication we must show, assume 〈ai〉 = 〈aj〉. By Corollary

5.2.15, |ai| = |〈ai〉| = |〈aj〉| = |aj|. By Theorem 5.2.19,

|ai| = n

gcd(n, i)
=

n

gcd(n, j)
= |aj|.

Therefore, gcd(n, i) = gcd(n, j).

For the second implication we must show, assume gcd(n, i) = gcd(n, j). By

Theorem 5.2.19,

|ai| = n

gcd(n, i)
and |aj| = n

gcd(n, j)
.

We are assuming gcd(n, i) = gcd(n, j), thus |ai| = |aj|.

For the third implication we must show, assume |ai| = |aj|. By Theorem

5.2.19,

|ai| = n

gcd(n, i)
= |aj| = n

gcd(n, j)
,

hence gcd(n, i) = gcd(n, j). Using Theorem 5.2.19 again, we see that

〈ai〉 = 〈agcd(n,i)〉 = 〈agcd(n,j)〉 = 〈aj〉.

Corollary 5.2.23. Let a be an element of order n and take i ∈ N. Then

〈a〉 = 〈ai〉 if and only if gcd(n, i) = 1.

A special case of Corollary 5.2.23 is when a is a generator of a group, that is

G = 〈a〉. In this case, |G| = n. Corollary 5.2.23 tells us that 〈a〉 = G = 〈ai〉
if and only if gcd(n, i). Thus, to find other generators of G, we need to find

elements ai whose orders are relatively prime to the order of the group.

Example 5.2.24. Consider the group U(18) = {1, 5, 7, 11, 13, 17} which is

cyclic because it can be generated by 5. Notice that |U(18)| = |5| = 6. By
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Corollary 5.2.23, for any i ∈ N such that gcd(6, i) = 1, 5i will also generate

U(18). In this case, 55 = 11 is also a generator. 3

By now, you have probably passed your calculus courses, and know that the

various Fundamental Theorems of Calculus were, surprisingly, important.

Similarly, when you encounter a “Fundamental Theorem” in algebra, you

know it will be important.

Theorem 5.2.25 (Fundamental Theorem of Cyclic Groups). Every subgroup

of a cyclic group is cyclic. Further, if the group has order n, then

1. the order of each subgroup divides n, and

2. for each positive divisor k of n, there exists exactly one subgroup of

order k, the subgroup 〈an/k〉.

Proof. Let H be a subgroup of G, and assume G is generated by a. If

H = {e}, where e is the identity of G, then H is cyclic. Now assume there

exists another element of G in H, say aj 6= e ∈ H. By the definition of

cyclic, either j is positive or −j is positive, and by closure, a−j ∈ H. Thus,

we may assume H has at least one element that is a positive power of a.

Let ai ∈ H be the element with the smallest positive power of a in H. By

closure, 〈ai〉 ⊂ H. We wish to show 〈ai〉 = H.

Let b ∈ H; we wish to show b is generated by ai. We are given that H ≤ G,

thus b is generated by a. Assume b = a` for some ` ∈ Z. By the Division

Algorithm, there exist q, r ∈ Z such that ` = qi+ r and 0 ≤ r < i. Hence,

a` = aqi+r = aqiar

ar = a`a−qi.

By closure, a−qi ∈ H. Further, b = a` ∈ H. Thus, by closure, ar ∈ H. Recall
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that 0 ≤ r < i and i is the smallest positive power of a in H, thus r = 0.

Therefore, b = a` = aqi ∈ 〈ai〉. Ergo, H ⊆ 〈ai〉 and H = 〈ai〉.

Next, we will show that, when the order of the group is finite, the order of

the subgroup divides the order of the group. Suppose |G| = n and let H be

any subgroup of G. By the previous work, we know that H = 〈ai〉 for some

i ∈ N. Applying the above work to the special case when b = e = an, we see

that

b = e = an = aqi = (ai)q.

Recall that i is the smallest positive power of a in H. Thus, |H| = q, which

divides n.

Last, we will show that, for k a divisor of n, 〈an/k〉 is the unique subgroup of

order k. By Theorem 5.2.19,

|an/k| = n

gcd(n, n/k)
=

n

n/k
= k.

To show that 〈an/k〉 is the unique subgroup of order k, let H be a subgroup of

G of order k. We wish to show H = 〈an/k〉. By the above work, we know that

H = 〈ai〉 and i is a divisor of n. Notice that i = gcd(n, i). By construction

and the previous corollaries,

k = |H| = |〈ai〉| = |〈agcd(n,i)〉| = n

gcd(n, i)
=
n

i
.

Thus, i = n/k and therefore H = 〈ai〉 = 〈an/k〉.

Notice that Theorem 5.2.25 tells us exactly how many subgroups of a cyclic

group there are, that they are all cyclic, and how to generate them. This is

the first tool we have developed that allows us to categorize all subgroups of

a given group, which is kind of a big deal.
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Example 5.2.26. We can use Theorem 5.2.25 to find all of the subgroups

of Z24. We know that Z24 is generated by 1 and |Z24| = 24. Thus for each

positive divisor k of 24, we can find the subgroup of order k, namely, 〈124/k〉.
Below is a table of all divisors, the subgroups 〈124/k〉, and their orders.

Divisor Subgroup Order

1 〈124〉 = 〈0〉 = {0} 1

2 〈124/2〉 = 〈12〉 = {0, 12} 2

3 〈124/3〉 = 〈8〉 = {0, 8, 16} 3

4 〈124/4〉 = 〈6〉 = {0, 6, 12, 18} 4

6 〈124/6〉 = 〈4〉 = {0, 4, 8, 12, 16, 20} 6

8 〈124/8〉 = 〈3〉 = {0, 3, 6, 9, 12, 15, 18, 21} 8

12 〈124/12〉 = 〈2〉 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22} 12

24 〈124/24〉 = 〈1〉 = Z24 24

3

As Theorem 5.2.19, its corollaries, and Theorem 5.2.25 indicate, when a cyclic

group has finite order, the divisors of the order play a big role in subgroup

computations. This may lead you to wondering how many elements can

create the various subgroups.

Definition 5.2.27. Given a natural n > 1, the Euler Phi Function, de-

noted φ(n), is the number of natural numbers relatively prime to n. When

n = 1, φ(1) = 1.

Example 5.2.28. Consider U(12) = {1, 5, 7, 11}. We know that this group

consists of the natural numbers that are relatively prime to 12 and less than

12. Thus, by the definition of U(12) and φ(12), |U(12)| = φ(12). In fact, for

all natural numbers n > 2, |U(n)| = φ(n). 3
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The Euler Phi Function is a very useful function, both in abstract algebra

and in number theory (and life, of course). Below is a table of the first few

values of the Euler Phi Function.

n 1 2 3 4 5 6 7 8 9 10 11 12

φ(n) 1 1 2 2 4 2 6 4 6 4 10 4

The theorem below gives a classification of the value of the Euler Phi Function

in certain cases. These cases are not comprehensive, but common enough

that you may find these formulas useful. The proofs of these formulas can

be found in an introductory book on number theory.

Theorem 5.2.29. Let n > 2 be a natural number and φ(n) the Euler Phi

Function.

1. If n = pk where p is prime, then φ(pk) = pk − pk−1.

2. If n = rs where r, s ∈ N and gcd(r, s) = 1, then φ(rs) = φ(r)φ(s).

Example 5.2.30. Consider n = 80. We know that 80 is not a power of a

prime, thus in order to compute φ(80), we need to find two relatively prime

factors of 80. Thus,

φ(80) = φ(5 · 16) = φ(5)φ(16)

= φ(51)φ(24) = (51 − 50)(24 − 23) = (4)(8) = 32.

3

The theorem below gives a formula for computing φ(n) for any natural num-

ber n > 2.
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Theorem 5.2.31. Let n > 2 be a natural number and φ(n) the Euler Phi

Function. Let p1, p2, . . . , pk ∈ N be the distinct primes that divide n. Then

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
.

Example 5.2.32. Let’s consider φ(80) again, only this time we will com-

pute it using the formula in Theorem 5.2.31. Notice that 2 and 5 are the

distinct primes that divide 80. Thus,

φ(80) = 80

(
1− 1

2

)(
1− 1

5

)
= 80

(
1

2

)(
4

5

)
= 32.

3

While you surely enjoyed that brief foray into number theory, you may be

wondering how the Euler Phi Function relates to cyclic groups. This is

addressed below.

Theorem 5.2.33. Let G be a cyclic group of order n and d a divisor of n.

Then the number of elements of order d in G is φ(d).

Proof. Let G be a cyclic group of order n, and let d be a divisor of n. By

the Fundamental Theorem of Cyclic Groups, G has exactly one subgroup of

order d, say 〈b〉 for some b ∈ G. By Corollary 5.2.22, every other element of

order d also generates 〈b〉. Let c ∈ G be another element of order d. Then

〈b〉 = 〈c〉. Moreover, we can write b as a power of c and vice versa.

Suppose c = bi for some i ∈ Z. By Corollay 5.2.22, 〈b〉 = 〈bi〉 if and only if

gcd(|b|, i) = gcd(d, i) = 1, that is, d and i are relatively prime. The number

of elements of the form bi that meet this quality is exactly φ(d).

Example 5.2.34. We saw in Example 5.2.26 that Z24 will have eight cyclic

subgroups, one for each divisor of 24. Notice that 6 and 18 generate the same
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subgroup, and though 12 ∈ 〈6〉 = 〈18〉, 12 does not generate this subgroup.

This is because |6| = |18| in Z24, and |12| 6= |6| in Z24.

We could use Theorem 5.2.33 to predict this result. Notice that 6 is a divisor

of 24 and |6| = 4. Thus, to apply the theorem, let d = |6| = 4 and n = 24.

Then the number of elements in Z24 of order 4 is φ(4) = 2. This tells us that

6 and one other element have order 4. By Corollary 5.2.22, we know this

other element will create a the same cyclic subgroup as 6. 3

Example 5.2.35. Consider Z50. Certainly 〈5〉 is a subgroup of Z50. We

know by Corollary 5.2.15 that |5| = |〈5〉|, and in this case, |5| = |〈5〉| = 10.

By the Fundamental Theorem of Cyclic Groups, we know that 〈5〉 is the

unique cyclic subgroup of order 10. What else generates this subgroup? How

many elements are we even searching for? The Euler Phi Function helps us

answer this question.

We are searching for elements of the same order as 5 because those elements

will create 〈5〉. Thus, using Theorem 5.2.33, let d = |5| = 10 and n = 50.

Then the number of elements in Z50 of order 10 is φ(10) = 4. This tells us

that 5 and three other elements have order 10.

Now we know we are searching for three more elements in Z50 that have order

10. By Corollary 5.2.22, each will be some i such that gcd(50, 5) = gcd(50, i).

Thus, we need numbers whose greatest common divisor with 50 is 5. We see

that those numbers are 15, 35, and 45. Hence

〈5〉 = 〈15〉 = 〈35〉 = 〈45〉.

3

Notice that the corollary below applies to finite groups, not just finite cyclic

groups. This is a big step!
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Corollary 5.2.36. In a finite group, the number of elements of order d is a

multiple of φ(d).

Proof. Let G be a finite group, d ∈ N, and m the number of elements of

order d. If there are no elements of order d, that is, if m = 0, then m is a

multiple of d.

Now assume that m ≥ 1, that is, at least one element in G has order d. Let

a ∈ G is an element of order d. Note that d dividies |〈a〉| = |a| = d. Applying

Theorem 5.2.33 to the group 〈a〉, we see that 〈a〉 will have φ(d) elements of

order d in it, including a.

We proceed by induction on the number of distinct cyclic subgroups in G of

order d. The case of 1 distinct cyclic subgroup of order d we just discussed.

Now, for another base case, assume b 6∈ 〈a〉 is another element of G of order

d. By a similar argument, 〈b〉 has φ(d) elements of order d, including b.

Moreover, 〈a〉 and 〈b〉 have no common elements of order d. To see this,

assume by contradiction that c ∈ 〈a〉 ∩ 〈b〉 is an element of order d. Then

〈c〉 ⊆ 〈a〉, and because |a| = |c| = d, 〈a〉 = 〈c〉. By a similar argument,

〈b〉 = 〈c〉. Thus, 〈a〉 = 〈b〉 and b ∈ 〈a〉, which contradicts our choice of b.

Therefore, 〈a〉 and 〈b〉 contribute a total of 2φ(d) elements of order d.

The completion of the proof by induction is left to the reader as an exercise.

Example 5.2.37. Consider the finite and noncyclic group S7. Below are a

few examples of how Corollary 5.2.36 applies.

• A permutation in the form of a 5-cycle composed with a 2-cycle will

have order 10, and that is the only way to create an element of order 10

in S7. The number of elements of order 10 is a multiple of φ(10) = 4.
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• A permutation in the form of a 4-cycle composed with a 3-cycle will

have order 12, and that is the only way to create an element of order 12

in S7. The number of elements of order 12 is a multiple of φ(12) = 4.

3

EXERCISES

Exercise 5.2.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a. A cyclic group has at least two generators.

b. A cyclic group is Abelian.

c. For n ∈ N, Zn is cyclic.

d. For n ∈ N, U(n) is cyclic.

e. For n ∈ N, nZ is cyclic.

f. A subgroup of a cyclic group is cyclic.

g. A cyclic group has at least one finite cyclic subgroup.

h. In Z, for n ∈ N, 〈n〉 ⊆ 〈2n〉.
i. For group element a, 〈a2〉 ⊆ 〈a4〉.

Exercise 5.2.2. For each group listed below, find every cyclic subgroup.

a. Z8

b. Z∗5
c. U(20)

d. S4

Exercise 5.2.3. Prove Corollary 5.2.15.

Exercise 5.2.4. Prove Corollary 5.2.16.
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Exercise 5.2.5. Consider the group Z60. Find the following subgroups and

their orders.

a. 〈5〉
b. 〈35〉
c. 〈48〉
d. 〈57〉

Exercise 5.2.6. Consider the group Dn for n ≥ 2. Find the following

subgroups and their orders.

a. 〈R135〉 when n = 8

b. 〈R270〉 when n = 8

c. 〈R252〉 when n = 10

d. 〈R288〉 when n = 10

Exercise 5.2.7. Suppose G = 〈a〉. Find all of the generators of G for each

of the following cases.

a. |a| = 4

b. |a| = 10

c. |a| = 20

Exercise 5.2.8.s Consider the group Z90. Find 〈54〉 and |〈54〉|.

Exercise 5.2.9. Let G = 〈a〉 be a group and |a| = 20. For each of the

following, first, find the order of the element, and then find all of the other

elements of that order.

a. a2

b. a8

c. a15

Exercise 5.2.10.s Using Theorem 5.2.31, which defines the Euler Phi

Function as
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φ(n) = n
(

1− 1

p1

)(
1− 1

p2

)
...
(

1− 1

pk

)
,

find φ(210).

Exercise 5.2.11. Let a be an element of a group. Prove that 〈a〉 = 〈a−1〉.

Exercise 5.2.12. Prove Corollary 5.2.21.

Exercise 5.2.13. Prove Corollary 5.2.23.

Exercise 5.2.14. Consider Z60.

a. Find all generators of the subgroup 〈42〉 ∩ 〈18〉.
b. Find all generators of the subgroup 〈14〉 ∩ 〈15〉.
c. Find all generators of the subgroup 〈35〉 ∩ 〈57〉.

Exercise 5.2.15. a. Find all subgroups of Z30.

b. Find all subgroups of G = 〈a〉 where |a| = 30.

Exercise 5.2.16. Let G be a cyclic group with exactly three subgroups: {e},
G, and H where |H| = 5. Find |G|.

Exercise 5.2.17. Let G be a group with element a. Prove that 〈a〉 is a

subgroup of CG(a).

Exercise 5.2.18. Consider the set {8, 16, 24, 32} under multiplication mod-

ulo 40. Create a Cayley table for this set to justify that it is indeed a group.

What is the identity? Is it cyclic? If so, find its generators. If not, explain

why not.

Exercise 5.2.19. Find all elements of order 12 in Z120,000. Justify that your

list is complete.

Exercise 5.2.20. For each of the following n, give an example of a cyclic

group G with exactly n subgroups, including {e} and G.
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a. n = 3

b. n = 4

c. n = 5

Exercise 5.2.21. Consider the group Z300 and its cyclic subgroups. Find

the largest chain

〈a1〉 ⊂ 〈a2〉 ⊂ · · · ⊂ 〈an〉

in Z300, that is, find the highest number of nested cyclic subgroups in Z300.

Justify why the n you found is maximal.

Exercise 5.2.22. Let a and b be elements of group G such that |a| and |b|
are relatively prime. Prove that 〈a〉 ∩ 〈b〉 = {e}.

Exercise 5.2.23. Compute φ(n) for each of the following n.

a. n = 27

b. n = 125

c. n = 40

d. n = 120

e. n = 23 · 3 · 52 · 7

Exercise 5.2.24. Let p be an odd prime and k ∈ N. Prove that |U(pk)| =

|U(2pk)|.

Exercise 5.2.25. Consider Z250. First, find all of the orders of the

subgroups. Then, for each order d, find the following.

a. The number of elements that will generate the subgroup of order d

b. The subgroup of order d

Exercise 5.2.26. Let H be a group of order three and G a group of order

four.

a. Prove that H is cyclic.

b. Prove that G can not have a subgroup of order three.
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Exercise 5.2.27.s Consider the group G = Z12. Let H ⊆ G.

a. For each of the following find the minimum amount of elements that

need to be included in H in order for H to be a subgroup of G. Then,

rewrite H with those new elements.

i. H ⊇ 〈3〉 ∪ {2}

ii. H ⊇ 〈4〉 ∪ {2}

iii. H ⊇ 〈9〉 ∪ {8}

b. What do you notice about H in each part?

c. Notice that G is cyclic. What can we conclude about subgroups of

cyclic groups?

Exercise 5.2.28. Complete the proof of Corollary 5.2.36.

Exercise 5.2.29.s Let a ∈ U(n) and m ∈ N with 1 ≤ m ≤ n.

a. Show that if |〈a〉| = m, then n | (am − 1).

b. Show that if n | am − 1 and n > ak for all k that divide m, then

|〈a〉| = m.
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Chapter 6

Functions on Groups

One can state, without exaggeration, that

the observation of and the search for similarities and differences

are the basis of all human knowledge.

Alfred Nobel

By now we have seen many examples of many different types of groups. Some

groups are quite different from each other. Hopefully, you noticed that some

groups are quite similar, though you may not have the precise vocabulary

to describe what “similar” even means. In this chapter, we study functions

that map from one group to another. By understanding these functions,

we will better understand the groups themselves. These functions will also

provide some structure that will allow us to determine when two groups are

“similar.”

147
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6.1 Homomorphisms

How do we create functions between groups? Can we create any function

at all? Before we begin to study “nice” mappings, let’s study some poorly

behaved mappings.

Non-Example 6.1.1. Let f : Z4 → Z4 be defined as f(x) = x + 1 for all

x ∈ Z4. First, we consider f(2 + 3), in which the group operation is done

before applying the function to the group elements. Second, we consider

f(2)+f(3), in which the group operation is done after applying the function

to the group elements.

f(2 + 3) = f(1) = 2

f(2) + f(3) = 3 + 0 = 3

Notice that f(2 + 3) 6= f(2) + f(3). 3

Non-Example 6.1.2. Let f : D3 → S3 be defined as

f(R0) = (123)

f(R120) = (132)

f(R240) = (12)

f(V ) = (13)

f(L) = (23)

f(R) = e.

Again, we will compose two elements two different ways: before applying the

function and after applying the function. For the sake of emphasis, we write
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∗ as each group’s operation. Consider R120, V ∈ D3.

f(R120 ∗ V ) = f(R) = e

f(R120) ∗ f(V ) = (132) ∗ (13) = (12)

Once again, we see that f(R120 ∗ V ) 6= f(R120) ∗ f(V ). 3

Non-Example 6.1.3. Let f : S3 → Z6 be defined as

f( e ) = 0

f( (12) ) = 1

f( (13) ) = 2

f( (23) ) = 3

f( (123) ) = 4

f( (132) ) = 5

Again, we will compose two elements two different ways: before applying

the function and after applying the function. Notice that these two groups

have different operations. Thus, when we compose two elements before the

applying the function, we are composing elements of S3 under function com-

position. When we compose two elements after applying the function, we are

composing elements of Z6 under addition modulo 6.

f( (132) ∗ (123) ) = f(e) = 0

f( (132) ) ∗ f( (123) ) = 5 ∗ 4 = 3

Once again, we see that f( (132) ∗ (123) ) 6= f( (132) ) ∗ f( (123) ). 3

Below is the definition of the type of function that does not allow for this
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type of misbehavior.

Definition 6.1.4. A homomorphism φ is a mapping from a group G to a

group G′ that preserves the group operation, that is,

φ(xy) = φ(x)φ(y)

for all x, y ∈ G and for all φ(x), φ(y) ∈ G′.

Non-Examples 6.1.1, 6.1.2, and 6.1.3 are examples of mappings that are not

homomorphisms because they do not preserve the group operation. Below

is an example of a homomorphism, with many more following the next def-

inition. There are many, many properties to observe. As you work through

these examples, perhaps make a conjecture about the patterns you see.

Example 6.1.5. The function g : Z4 → Z4 defined by f(x) = x for all

x ∈ Z4 is a homomorphism. 3

Non-Example 6.1.6.s Let φ : M2(K) → M2(P ), where K = Z and

P = Z, be defined as φ(x) = x

[
1 2

0 1

]
. Notice that the group operation

is matrix multiplication. We will compose two arbitrary elements of M2(K)

before applying the function φ. Then we will compose those two elements

after applying the function, thus we will compose elements of M2(P ). This

will let us know if φ is a homomorphism.
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Let a, b, c, d, h, k,m, n ∈ Z. Then,

φ

([
a b

c d

]
·

[
h k

m n

])
= φ

([
ah+ bm ak + bn

ch+ dm ck + dn

])

=

[
ah+ bm 2(ah+ bm) + (ak + bn)

ch+ dm 2(ch+ dm) + (ck + dn)

]
.

Further,

φ

([
a b

c d

])
φ

([
h k

m n

])
=

[
a 2a+ b

c 2c+ d

]
·

[
h 2h+ k

m 2m+ n

]

=

[
ah+m(2a+ b) a(2h+ k) + (2a+ b)(2m+ n)

ch+m(2c+ d) c(2h+ k) + (2c+ d)(2m+ n)

]
.

Thus, φ

([
a b

c d

]
·

[
h k

m n

])
6= φ

([
a b

c d

])
φ

([
h k

m n

])
.

Therefore, φ is not a homomorphism. 3

A homomophism φ preserves the group operation, that is, for group elements

x and y,

φ(xy) = φ(x)φ(y).

Do not assume φ(x)φ(y) = φ(y)φ(x). Order matters.

Example 6.1.7.s We use the following examples to show that the order

of a homomorphism is important. Example 1 considers a function that is

not a homomorphism and demonstrates a case when φ(x)φ(y) 6= φ(y)φ(x).

Example 2 considers a function that is a homomorphism and demonstrates a

case when φ(x)φ(y) = φ(y)φ(x). Example 3 considers a function that is not

a homomorphism but φ(x)φ(y) = φ(y)φ(x). These examples demonstrate
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the importance of preserving order of the composition of elements x and y,

even when a function is by definition a homomorphism.

1. This is an example when φ(x) is not a homomorphism and φ(x)φ(y) 6=

φ(y)φ(x). Let φ : GL2(Z) → GL2(Z) be defined as φ(x) = x

[
1 0

1 2

]
.

Let a, b, c, d, f, g, h, k ∈ Z. Then,

φ

([
a b

c d

]
·

[
f g

h k

])
= φ

([
af + bh ag + bk

cf + dh cg + dk

])

=

[
(af + bh) + (ag + bk) 2(ag + bk)

(cf + dh) + (cg + bk) 2(cg + dk)

]
.

Further,

φ

([
a b

c d

])
φ

([
f g

h k

])
=

[
a+ b 2b

c+ d 2d

]
·

[
f + g 2g

h+ k 2k

]

=

[
(a+ b)(f + g) + 2b(h+ k) (a+ b)2g + (2b)(2k)

(c+ d)(f + g) + 2d(h+ k) (c+ d)2g + (2d)(2k)

]
.

Alternatively,

φ

([
f g

h k

])
φ

([
a b

c d

])
=

[
f + g 2g

h+ k 2k

][
a+ b 2b

c+ d 2d

]

=

[
(f + g)(a+ b) + 2g(c+ d) (f + g)2b+ (2g)(2d)

(h+ k)(a+ b) + 2k(c+ d) (h+ k)2b+ (2k)(2d)

]
.

Therefore, φ(x) is not a homomorphism because φ(xy) 6= φ(x)φ(y).

Also notice that φ(x)φ(y) 6= φ(y)φ(x).

2. This example demonstrates a case where φ(x) is a homomorphism and

φ(x)φ(y) = φ(y)φ(x). Let φ : Z15 → Z10 be defined by φ(x) = 2x mod
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10. Note that the operation is addition. Let x, y ∈ Z15. Then,

φ(x+ y) = 2(x+ y)

= 2x+ 2y

= φ(x) + φ(y).

Alternatively,

φ(x) + φ(y) = 2x+ 2y

= 2y + 2x

= φ(y) + φ(x).

Therefore, φ(x) is a homomorphism and φ(x)φ(y) = φ(y)φ(x).

3. We use this example to show that φ(x) is not a homomorphism but

φ(x)φ(y) = φ(y)φ(x). Let φ : Z∗15 → Z∗10 be defined by φ(x) = 2x + 3

mod 10. Note that the operation is multiplication. Let x, y ∈ Z∗15.
Then,

φ(xy) = 2(xy) + 3

and

φ(x)φ(y) = (2x+ 3)(2y + 3).
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Thus, φ(xy) 6= φ(x)φ(y). Notice,

φ(x)φ(y) = (2x+ 3)(2y + 3)

= 4xy + 6x+ 6y + 9

= (2y + 3)(2x+ 3)

= φ(y)φ(x).

Therefore, φ(x) is not a homomorphism, but φ(x)φ(y) = φ(y)φ(x).

3

One of the reasons why f in Non-Example 6.1.1 was not a homomorphism

was because the identity did not get to the identity. In Example 6.1.5, the

identity gets sent to itself. In fact, the set of elements that get sent to the

identity plays an important role in analyzing homomorphisms.

Definition 6.1.8. Let φ : G → G′ be a homomorphism from group G to

group G′ with identity e′. The kernel of φ is the set of all elements that get

sent to the identity, that is,

ker(φ) = {g ∈ G |φ(g) = e′}.

Example 6.1.9. The map φ : R∗ → R∗ given by φ(x) = |x| is a homo-

morphism. Note that the operation on R∗ is multiplication. To prove φ is

a homomorphism, we need to show that for x, y ∈ R∗, φ(xy) = φ(x)φ(y).

Notice,

φ(xy) = |xy| = |x||y| = φ(x)φ(y),

thus the operation is preserved.
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The identity of R∗ is 1. The kernel of φ is

ker(φ) = {x ∈ R∗ |φ(x) = 1}

= {x ∈ R∗ | |x| = 1}

= {1,−1}.

3

Example 6.1.10. The map φ : Z20 → Z4 defined by φ(x) = x mod 4 is a

homomorphism. Note that the operation on Z20 is addition modulo 20; the

operation on Z4 is addition modulo 4. To prove φ is a homomorphism, we

see that for x, y ∈ Z20,

φ(x+ y) = (x+ y) mod 4 = (x mod 4) + (y mod 4) = φ(x) + φ(y).

The identity of Z4 is 0. The kernel of φ is

ker(φ) = {x ∈ Z20 |φ(x) = 0}

= {x ∈ Z20 |x mod 4 = 0}

= {0, 4, 8, 12, 16}.

3

Example 6.1.11. The map φ : Z4 → Z20 defined by φ(x) = 5x is a

homomorphism. Note that the operation on Z4 is addition modulo 4; the

operation on Z20 is addition modulo 20. To prove φ is a homomorphism, we

see that for x, y ∈ Z4,

φ(x+ y) = 5(x+ y) = 5x+ 5y = φ(x) + φ(y).
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The identity of Z20 is 0. The kernel of φ is

ker(φ) = {x ∈ Z4 |φ(x) = 0}

= {x ∈ Z4 | 5x = 0}

= {0}.

3

Example 6.1.12. The map φ : R → R2 defined by φ(x) = (x, 0) is a

homomorphism. Note that the operation on R is addition; the operation on

R2 is coordinate addition. To prove φ is a homomorphism, we see that for

x, y ∈ R,

φ(x+ y) = (x+ y, 0) = (x, 0) + (y, 0) = φ(x) + φ(y).

The identity of R2 is (0, 0). The kernel of φ is

ker(φ) = {x ∈ R |φ(x) = (0, 0)}

= {x ∈ R | (x, 0) = (0, 0)}

= {0}.

3

Example 6.1.13. Consider R[x] under addition, not function composition.

The map φ : R[x] → R[x] defined by φ(f(x)) = f ′(x) is a homomorphism.

To prove φ is a homomorphism, we see that for f(x), g(x) ∈ R[x],

φ(f(x) + g(x)) = (f(x) + g(x))′ = f ′(x) + g′(x) = φ(f(x)) + φ(g(x)).
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The identity of R[x] under addition is 0. The kernel of φ is

ker(φ) = {f(x) ∈ R[x] |φ(f(x)) = 0}

= {f(x) ∈ R[x] | f ′(x) = 0}

= {f(x) = c | c ∈ R},

which is the set of all constant functions. 3

Example 6.1.14. The map φ : S7 → S7 defined by φ(x) = e is a homo-

morphism. Note that the operation on S7 is function composition. To prove

φ is a homomorphism, we see that for α, β ∈ S7,

φ(α ◦ β) = e = e ◦ e = φ(α) ◦ φ(β).

The identity of S7 is e. The kernel of φ is

ker(φ) = {σ ∈ S7 |φ(σ) = e} = S7

because, by the definition of φ, every permutation gets mapped to the iden-

tity. 3

As always, order matters. A homomophism φ preserves the group operation,

that is, for group elements x and y,

φ(xy) = φ(x)φ(y).

Do not assume φ(x)φ(y) = φ(y)φ(x). Order matters.

Notice that the kernels in Examples 6.1.5 through 6.1.14 were indeed sub-

groups. Further, in Non-Examples 6.1.1 and 6.1.2, notice that the elements

that get mapped to the identity do not form a subgroup.

Below are some properties of elements under homomorphisms.
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Theorem 6.1.15. Let φ : G→ G′ be a homomorphism, and let g ∈ G. Let

e ∈ G be the identity of G; let e′ ∈ G′ be the identity of G′.

1. The identity maps to the identity, that is, φ(e) = e′.

2. For n ∈ Z, φ(gn) = [φ(g)]n.

3. If |g| is finite, then |φ(g)| divides |g|.

Proof. For the first part, notice that e = ee. Applying φ to both sides, we

see that

φ(e) = φ(ee) = φ(e)φ(e) (6.1)

because φ is a homomorphism and thus operation preserving. Also note that

by the definition of the identity e′ ∈ G′,

φ(e) = e′φ(e). (6.2)

Hence, by Equations 6.1 and 6.2, we see that

φ(e)φ(e) = e′φ(e).

By cancelling φ(e) on right, we see that φ(e) = e′.

The second part may be proved for n ∈ N by induction. When n = 0, we

have the claim φ(e) = e′, which we just proved to be true. Now consider

when n is a negative integer. Thus, −n is a positive integer, and we may

assume the result holds for −n. Using this assumption and the first part of
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this theorem, we see that

e′ = φ(e)

= φ(gng−n)

= φ(gn)φ(g−n) (6.3)

= φ(gn)[φ(g)]−n (6.4)

Note that we get line 6.3 because a homomorphism preserves the group opera-

tion. Next, line 6.4 is true by assumption because −n is positive. Multiplying

both sides by [φ(g)]n, we get that

[φ(g)]n = φ(gn)

for negative integers n. Thus, φ(gn) = [φ(g)]n for all integers n.

For the third part of the theorem, assume |g| = n for some n ∈ N, thus

gn = e. By the first two results, we see that

e = gn

φ(e) = φ(gn)

e′ = [φ(g)]n.

Thus, |φ(g)| divides n = |g|.

Below are two examples to demonstrate these properties.

Example 6.1.16. Let φ : Z5 → Z10 be given by φ(x) = 2x. Then φ is a

homomorphism because for x, y ∈ Z5,

φ(x+ y) = 2(x+ y) = 2x+ 2y = φ(x) + φ(y).

We create some examples to observe the properties in Theorem 6.1.15 below.
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Note that the group operations are addition.

1. For 0 ∈ Z5, φ(0) = 0 ∈ Z10.

2. Take 2 ∈ Z5. When n = 2, we see that

φ(22) = φ(2 + 2) = φ(4) = 8

[φ(2)]2 = 42 = 4 + 4 = 8,

thus φ(22) = [φ(2)]2. When n = 3, we see that

φ(23) = φ(2 + 2 + 2) = φ(1) = 2

[φ(2)]3 = 43 = 4 + 4 + 4 = 2,

thus φ(23) = [φ(2)]3.

3. Take 2 ∈ Z5, then |2| = 5. Notice that |φ(2)| = |4| = 5 divides |2|.

3

Example 6.1.17. Let φ : Z30 → Z3 be given by φ(x) = x mod 3. Then φ

is a homomorphism because for x, y ∈ Z30,

φ(x+ y) = (x+ y) mod 3 = x mod 3 + y mod 3 = φ(x) + φ(y).

We create some examples to observe the properties in Theorem 6.1.15 below.

Note that the group operations are addition.

1. For 0 ∈ Z30, φ(0) = 0 ∈ Z3.
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2. Take 17 ∈ Z30. When n = 2, we see that

φ(172) = φ(17 + 17) = φ(4) = 1

[φ(17)]2 = 22 = 2 + 2 = 1,

thus φ(172) = [φ(17)]2. When n = 3, we see that

φ(173) = φ(17 + 17 + 17) = φ(21) = 0

[φ(17)]3 = 23 = 2 + 2 + 2 = 0,

thus φ(173) = [φ(17)]3.

3. Take 17 ∈ Z30, then |17| = 30. Notice that |φ(17)| = |2| = 3 divides 30.

Take 28 ∈ Z30, then |28| = 15. Notice that |φ(28)| = |1| = 3 divides

15.

3

Note that in Examples 6.1.5 through 6.1.14, the identity of the first group is

in the kernel of the homomorphism, that is, the identity of the first group is

always sent to the identity of the second group. This leads us to the following

theorem, the proof of which is an exercise.

Theorem 6.1.18. Let φ : G → G′ be a homomorphism. Then ker(φ) is a

subgroup of G.

Look back at the previous examples of homomorphisms to see some examples

of the kernel being a subgroup.

The following theorem describes how subgroups behave under homomor-

phisms.

Theorem 6.1.19. Let φ : G → G′ be a homomorphism, and let H be a

subgroup of G.
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1. The set φ(H) = {φ(h) |h ∈ H} is a subgroup of G′.

2. If H is cyclic, then φ(H) is cyclic.

3. If H is Abelian, then φ(H) is Abelian.

4. If H ′ is a subgroup of G′, then φ−1(H ′) = {h ∈ G |φ(h) ∈ H ′} is a

subgroup of G.

The proofs of these claims are left to the reader as exercises. Below are some

examples demonstrating these claims.

Example 6.1.20. Consider the group D3 and its subgroup H = 〈R120〉 =

{R0, R120, R240}. Let φ : D3 → S3 be defined as

φ(R0) = e

φ(V ) = (23)

φ(L) = (12)

φ(R) = (13)

φ(R120) = (132)

φ(R240) = (123).

Examples of the properties of Theorem 6.1.19 are given below.

1. The image of H under the homomorphism φ is

φ(H) = {φ(h) |h ∈ H}

= {φ(R0), φ(R120, φ(R240)}

= {e, (132), (123)},

which is a subgroup of S3.
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2. The subgroup H is cyclic because it is generated by R120 and R240. The

subgroup φ(H) is cyclic because it is generated by (123) and (132).

3. Cyclic groups are Abelian, thus both H and φ(H) are Abelian.

4. Consider the subgroup K ′ = {e, (12)} in S3. Its inverse image is the

set

φ−1(K ′) = {k ∈ G |φ(k) ∈ K ′}

= {k ∈ G |φ(k) = e or φ(k) = (12)}

= {R0, L},

which is a subgroup of D3.

3

Theorem 6.1.19 shows that the image of a homomorphism is a subgroup. For

groups G and G′ and φ : G → G′ a homomorphism, it is important to note

that φ(G) is not always equal to G′. Consider the example below.

Non-Example 6.1.21.s If φ : Z→ Z is given by φ(x) = 2x, then φ(Z) 6=
Z since φ(Z) = 2Z. Similarly, if ψ : R → R is given by ψ(x) = x2, ψ(R) =

R+ ∪ {0} 6= R.

Depending on which groups are denoted as the domain and codomain of the

homomorphism, it is possible that φ(G) = G′. For instance, if φ : Z→ 2Z is

given by φ(x) = 2x, then φ(Z) = 2Z. 3

In many of these examples of homomorphisms, |G| and |G′| are different.

In Example 6.1.16, a homomorphism mapped Z5 into Z10, a bigger group.

In Example 6.1.17, a homomorphism mapped Z30 onto Z3, a smaller group.

Especially when considering homomorphisms of the form φ : |Zn → Zm, for
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m,n ∈ N, there are plenty of patterns to observe. Consider the example

below.

Example 6.1.22.s Let φ : Z12 → Z6 be a homomorphism such that

φ(x) = x mod 6. The kernel of φ here is defined to be

kerφ = {x ∈ Z12 | φ(x) = 0}

because the identity in addition modulo 6 is 0. There are two elements in

Z12 that satisfy the conditions to be in the kernel of φ. Thus we see that

kerφ = {0, 6} = 〈6〉.

Also, note that | kerφ| = 12
6

= 2. 3

The theorem below generalizes this example.

Theorem 6.1.23. Consider Zn and Zm such that m divides n. Let φ : Zn →
Zm be a homomorphism defined by φ(x) = x mod m. Then 〈m〉 is the kernel

of φ. Further, |kerφ| = n
m

.

Proof. Let φ : Zn → Zm be a homomorphism such that m divides n and

φ(x) = x mod m.

Using the definition of divides, we know for k ∈ Z, mk = n. Thus the

definition of divides tells us that there are k multiples of m in between m

and n, including m. Thus we know that |kerφ| = k.
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Now, by definition of kernel, we have

kerφ = {x ∈ Zn | φ(x) = e′ ∈ Zm}

= {x ∈ Zn | φ(x) = 0} (6.5)

= {x ∈ Zn | x mod m = 0}

= {0,m, 2m. . . , n−m} (6.6)

= {mi | i ∈ Zn} (6.7)

= 〈m〉. (6.8)

Step (6.5) is true because the operation in Zm is addition modulo m, thus the

identity is 0. We define the kernel in (6.6) using the multiples of m between

0 and n−m because, in addition modulo n, n = 0. The definition of a cyclic

subgroup generated by m allows us to jump to step (6.7), and we go to (6.8)

by using the definition of a cyclic group generated by m.

Below is another example to verify this Theorem 6.1.23.

Example 6.1.24.s Let φ : Z40 → Z8 be a homomorphism such that

φ(x) = x mod 8. The kernel of φ here is defined to be

kerφ = {x ∈ Z40 | φ(x) = 0}.

There are five elements in Z40 that satisfy the conditions to be in the kernel

of φ. Thus we see that

kerφ = {0, 8, 16, 24, 32} = 〈8〉.

Note that | kerφ| = 5, which is consistent with the theorem because 40
8

=

5. 3

EXERCISES
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Exercise 6.1.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let φ : G→ G′ be a homomorphism from group G to group

G′.

a. |φ(g)| = |g|

b. φ(G) = G′

c. A homomorphism is injective.

d. A homomorphism is surjective.

e. A homomorphism is bijective.

f. For m,n ∈ N, there is a homomorphism from Zm to Zn.

g. For m,n ∈ N, there is a surjective homomorphism from Zm to Zn.

Exercise 6.1.2. Revisit Examples 6.1.5 through 6.1.14. Which homomor-

phisms are one-to-one and onto? Which are only one-to-one? Which are only

onto? Which are neither one-to-one nor onto?

Exercise 6.1.3. Suppose φ : R→ R2 and ψ : R2 → R. For each of the

following, determine if the map is a homomorphism. If so, prove that the

map is a homomorphism and find its kernel. If not, give a reason why not.

a. φ(x) = (0, x)

b. φ(x) = (x, 1)

c. φ(x) = (x, x)

d. ψ((x, y)) = x

e. ψ((x, y)) = x+ y

f. ψ((x, y)) = bx+ yc

Exercise 6.1.4. Consider R[x] under function composition. Define the map

φ : R[x]→ R[x] as φ(f(x)) = f ′(x). Is φ a homomorphism? If so, prove that

the map is a homomorphism and find its kernel. If not, give a reason why

not.
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Exercise 6.1.5. Let n ≥ 2 be a natural number. For each of the following,

prove that φ is a homomorphism and find ker(φ).

a. The map φ : Z7n → Zn, defined by φ(x) = x mod n.

b. The map φ : Zn → Z7n, defined by φ(x) = 7x.

c. The map φ : Z→ Zn, defined by φ(x) = x mod n.

Exercise 6.1.6.s The map φ : Z18 → Z378 defined by φ(x) = 21x is a

homomorphism. When x = 15 ∈ Z18, show that [φ(x)]n = φ(xn) for n = 3

and n = 20.

Exercise 6.1.7. Let G be a permutation group. For each σ ∈ G, define

sgn(σ) =

+1 σ is even

−1 σ is odd.

Prove that sgn is a homomorphism from G to the group {1,−1} under mul-

tiplication. Find its kernel.

Exercise 6.1.8. Let G, H, and K be groups. Suppose φ : G → H and

ψ : H → K are homomorphisms. Is ψφ : G → K a homomorphism? If so,

prove it and find its kernel. If not, find a counterexample.

Exercise 6.1.9. Revisit Theorem 6.1.15. Prove that for n ∈ N, φ(gn) =

[φ(g)]n.

Exercise 6.1.10. Prove Theorem 6.1.18.

Exercise 6.1.11. Revisit Theorem 6.1.19. Let φ : G → G′ be a homomor-

phism, and let H be a subgroup of G. Prove that φ(H) is a subgroup of

G′.

Exercise 6.1.12. How many homomorphisms are there from Z45 to Z18?

How many of these homomorphisms are onto?
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Exercise 6.1.13. Revisit Theorem 6.1.19. Prove that if H is cyclic, then

φ(H) is cyclic.

Exercise 6.1.14. Revisit Theorem 6.1.19. Prove that if H is Abelian, then

φ(H) is Abelian.

Exercise 6.1.15. Revisit Theorem 6.1.19. Prove that if H ′ is a subgroup of

G′, then φ−1(H ′) = {h ∈ G |φ(h) ∈ H ′} is a subgroup of G.

6.2 Isomorphisms

As we saw, a homomorphism can embed a smaller group into a larger group,

as, for example, φ : Z4 → Z20 does. Conversely, a homomorphism can

collapse a larger group onto a smaller group, as, for example, ψ : Z20 → Z4

does. Of course, a homomorphism can go between equally sized groups. Now

we study a special type of a homomorphism, one that requires equally sized

groups.

Definition 6.2.1. An isomorphism φ from a group G to a group G′ is a

bijective homomorphism.

We have already seen some examples of isomorphisms; nonetheless, we give

a few more.

Example 6.2.2. The map φ : Z → Z given by φ(x) = −x is an isomor-

phism, as we prove below. To show a function is an isomorphism, we must

show it is operation preserving, one-to-one, and onto.
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1. Operation preserving: For x, y ∈ Z, we see that

φ(x+ y) = −(x+ y) = −x− y = φ(x) + φ(y).

2. One-to-one: Assume φ(x) = φ(y). By the definition of φ, this means

that −x = −y. By cancellation, x = y.

3. Onto: Take y ∈ φ(Z), thus y is also an integer. We want to find some

x ∈ Z such that φ(x) = y. This means that we want to find some x ∈ Z
such that −x = y, thus x = −y. Hence, for y in the image of φ, we can

find −y ∈ Z such that φ(−y) = −(−y) = y.

3

Example 6.2.3. Define φ : Z4 → U(10) by

0 7→ 1

1 7→ 3

2 7→ 9

3 7→ 7.

Then φ is an isomorphism. Compare the Cayley tables of Z4 and U(10), as

shown below. Notice that because 9 is mapped to by 2, we list 9 in the same

row and column headers as 2 in the Cayley table of Z4.

Z4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

U(10) 1 3 9 7

1 1 3 9 7

3 3 9 7 1

9 9 7 1 3

7 7 1 3 9

3
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Example 6.2.4. The map ψ : U(10)→ Z4 given by

1 7→ 0

3 7→ 1

7 7→ 3

9 7→ 2.

is also an isomorphism. 3

Examples 6.2.3 and 6.2.4 lead us to the lemma and definition below.

Lemma 6.2.5. If φ : G→ G′ is an isomorphism from group G to group G′,

then φ−1 : G′ → G is also an isomorphism.

Proof. Let φ : G → G′ is an isomorphism from group G to group G′. To

prove that φ−1 : G′ → G is an isomorphism, we need to prove that φ−1 is

operation preserving, one-to-one, and onto.

1. Operation preserving: For x′, y′ ∈ G′,

φ−1(x′) = x and φ−1(y′) = y (6.9)

for some x, y ∈ G. Then φ−1(x′)φ−1(y′) = xy. Applying φ to both

sides, we see that

φ(φ−1(x′)φ−1(y′)) = φ(xy) = φ(x)φ(y)

because φ is an isomorphism and thus preserves the operation. By

Equations 6.9,

φ(x)φ(y) = x′y′

and thus φ(φ−1(x′)φ−1(y′)) = x′y′. Applying φ−1 to both sides, we see
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that

φ−1(φ(φ−1(x′)φ−1(y′))) = φ−1(x′y′)

φ−1(x′)φ−1(y′) = φ−1(x′y′)

which shows that φ−1 is operation preserving.

2. One-to-one: With φ−1 : G′ → G, we want to show that if φ−1(x′) =

φ−1(y′) ∈ G, then x′ = y′ ∈ G′. Assume φ−1(x′) = φ−1(y′). Applying

φ to both sides, we get φ(φ−1(x′)) = φ(φ−1(y′)) and thus x′ = y′.

3. Onto: Suppose x ∈ G. We want to find an element of G′ that φ−1 maps

to x. By construction, φ(x) ∈ G′, thus φ−1(φ(x)) = x. Therefore, φ−1

is onto.

Thus, if there exists an isomorphism from group G to group G′, there also

exists an isomorphism from G′ to G. In this sense, we can think of there

existing an isomorphism between groups G and G′.

Definition 6.2.6. If there exists an isomorphism between groups G and

G′, then we say G and G′ are isomorphic and we write G ≈ G′.

Thus, in Example 6.2.2, Z ≈ Z, and in Example 6.2.3, Z4 ≈ U(10). Example

6.2.2 is just one example of the lemma below, whose proof is left as an

exercise.

Lemma 6.2.7. Let G be a group. Then G ≈ G.
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In Example 6.2.4, you may have wondered we knew the mapping given would

be an isomorphism, or perhaps you initially saw a different mapping. The ex-

ample below demonstrates how we can determine mappings in finite groups.

Example 6.2.8.s Consider the groups Z4 and U(10). The table below

shows the orders of the elements in Z4.

x ∈ Z4 0 1 2 3

|x| 1 4 2 4

The table below shows the orders of the elements in U(10).

x ∈ U(10) 1 3 7 9

|x| 1 4 4 2

Define φ : U(10)→ Z4 by

1 7→ 0

3 7→ 1

7 7→ 3

9 7→ 2.

Compare the Cayley tables of U(10) and Z4. Notice that 3 maps to 1, so we

place 3 and 1 in corresponding rows and columns in the two Cayley tables.

Similarly, 7 maps to 3, so we place 7 and 3 in corresponding rows and columns

in the two Cayley tables.

U(10) 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

Z4 0 1 3 2

0 0 1 3 2

1 1 2 0 3

3 3 0 2 1

2 2 3 1 0
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Notice that within the Cayley tables 3∗7 = 1, which is the identity in U(10),

and 1 ∗ 3 = 1, which is the identity in Z4. From the Cayley tables we can see

that φ is an isomorphism and Z4 is isomorphic to U(10).

Next, define ψ : U(10)→ Z4 by

1 7→ 0

3 7→ 3

7 7→ 1

9 7→ 2.

Compare the Cayley tables of U(10) and Z4. Notice that 3 maps to 3, so we

place 3 and 3 in corresponding rows and columns in the two Cayley tables.

Similarly, 7 maps to 1, so we place 7 and 1 in corresponding rows and columns

in the two Cayley tables.

U(10) 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

Z4 0 3 1 2

0 0 3 1 2

3 3 2 0 1

1 1 0 2 3

2 2 1 3 0

Notice that in Z4, 1 and 3 have order 4. Similarly, in U(10), 3 and 7 have

order 4. We see that isomorphic groups can have more than one mapping. 3

We take Example 6.2.3 further below.

Example 6.2.9. Refer back to Example 6.2.3. Below are the Cayley tables

of Z4 and U(10).
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Z4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

U(10) 1 3 9 7

1 1 3 9 7

3 3 9 7 1

9 9 7 1 3

7 7 1 3 9

We can see from the Cayley tables that Z4 ≈ U(10). Now consider group

G = {#,A,,,☼} under operation ∗ with the Cayley table below.

G # A , ☼

# # A , ☼

A A , ☼ #

, , ☼ # A

☼ ☼ # A ,

We can see from all three Cayley tables that Z4 ≈ U(10) ≈ G. 3

This leads us to the lemma below, whose proof is left as an exercise.

Lemma 6.2.10. Let G, H, and K be groups such that G ≈ H and H ≈ K.

Then G ≈ K.

Notice that Lemma 6.2.7 states that the relation “is isomorphic to” is re-

flexive. Lemma 6.2.5 states that “is isomorphic to” is symmetric. Lastly,

Lemma 6.2.10 shows that “is isomorphic to” is a transitive relation. These

lemmas prove the very, extremely, super duper useful theorem below.

Theorem 6.2.11. The relation “is isomorphic to” is an equivalence relation.

For this reason, for groups G and G′, we can also notate G ≈ G′ as G ≡ G′.

Theorem 6.2.11 means that isomorphic groups are equivalent groups. Let’s

take a moment to reflect on the depth of this relationship. Consider the



6.2. ISOMORPHISMS 175

following example. In modulo 37 arithmetic, 521 ≡ 3 mod 37. Thus, if you

were required to evaluate 5213, you could instead evaluate 33. This is because,

in modulo 37 arithmetic, 521 and 3 are equivalent. This type of “reduction

calculation” is also possible between groups because isomorphic groups are

equivalent. If you need to work within some group G, but find G to be too

cumbersome, you can instead work with a group G′ that is isomorphic to

G. In a sense, isomorphisms give us a way to move relatively freely between

groups.

We demonstrate these ideas with the example below. Note that to prove two

groups are isomorphic, we must find an isomorphism between them.

Example 6.2.12. Consider the set

C =

{[
a −b
b a

] ∣∣∣∣ a, b ∈ R

}
.

We will prove that C∗ ≈ C∗ under multiplication. To do this, we must first

find a function between C∗ and C∗, and then show our function is indeed an

isomorphism. On a hunch, we let φ : C∗ → C∗ be given by

φ(a+ bi) =

[
a −b
b a

]
.

First, we show that φ is an isomorphism.
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1. Operation preserving: Let a+ bi, c+ di ∈ C∗. Then

φ((a+ bi) · (c+ di)) = φ((ac− bd) + (ad+ bc)i)

=

[
ac− bd −(ad+ bc)

ad+ bc ac− bd

]

φ(a+ bi) · φ(c+ di) =

[
a −b
b a

]
·

[
c −d
d c

]

=

[
ac− bd −(ad+ bc)

ad+ bc ac− bd

]
.

2. One-to-one: Suppose φ(a+ bi) = φ(c+ di) for some a+ bi, c+ di ∈ C∗.
Then [

a −b
b a

]
=

[
c −d
d c

]
.

Thus, a = c and b = d, which implies that a+ bi = c+ di.

3. Onto: Let

A =

[
a −b
b a

]
∈ C∗.

We see φ(a+ bi) = A.

Therefore, C∗ ≈ C∗, meaning that these two groups are equivalent. Notice

how we use this relationship to reduce the difficulty of our calculations.

• Typically, matrices do not commute under multiplication, which can

make matrix calculations hard. The group C∗ is Abelian, which tells

us that C∗ must also be Abelian. This will make our calculations in

C∗ easier.
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• Suppose we needed to calculate([
4 −3

3 4

]
·

[
6 2

−2 6

])2

.

Instead of multiplying these matrices, we know that under φ,[
4 −3

3 4

]
≈ 4 + 3i and

[
6 2

−2 6

]
≈ 6− 2i,

thus we can instead perform the calculation below:

((4 + 3i)(2− 6i))2 = (4 + 3i)2(6− 2i)2

= (7 + 24i)(32− 24i)

= 7 · 32− 7 · 24i+ 32 · 24i− 242i2

= 800− 600i.

This tells us that([
4 −3

3 4

]
·

[
6 2

−2 6

])2

=

[
800 −600

600 800

]

and we never performed any matrix multiplication.

• We know that C∗ is not cyclic, that is, there is no complex number

that generates all of the nonzero complex numbers. Therefore, we also

know that there is no matrix that will generate all of C∗.

3

The idea that isomorphisms can be used to show group equivalence can

help us discover some rather counter-intuitive results. Consider the example

below.



178 CHAPTER 6. FUNCTIONS ON GROUPS

Example 6.2.13. Let η : Z → 2Z be given by η(x) = 2x. Then η is an

isomorphism, as we show below.

1. Operation preserving: Take x, y ∈ Z. Then

η(x+ y) = 2(x+ y) = 2x+ 2y = η(x) + η(y).

2. One-to-one: Assume η(x) = η(y) for some x, y ∈ Z. Then 2x = 2y,

thus x = y.

3. Onto: The element 2x ∈ 2Z is mapped to by x ∈ Z because η(x) = 2x.

Thus, Z ≈ 2Z. In a sense, this means that the set of integers and the set of

even integers are equivalent. One might find this counterintuitive, because

it may seem as if 2Z should be half the size of Z. 3

Like with homomorphisms, we will study how isomorphisms act on group

elements. As we see from the theorem below, these properties are much

“nicer” than the properties of homomorphisms. A few of these properties we

began to see in Example 6.2.12. Also, notice that any statement given as

an implication is actually a biconditional, because inverse isomorphisms are

also isomorphisms.

Theorem 6.2.14. Suppose φ : G→ G′ is an isomorphism from group G to

group G′, and let g, h ∈ G. Let e ∈ G be the identity of G; let e′ ∈ G′ be the

identity of G′.

1. The identity maps to the identity, that is, φ(e) = e′.

2. For n ∈ Z, φ(gn) = [φ(g)]n.

3. Order is preserved, that is, |g| = |φ(g)|.
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4. If g is a generator of G, then φ(g) is a generator of G′.

5. If gh = hg, then φ(g)φ(h) = φ(h)φ(g).

6. For k ∈ Z and variable x, the equations xk = g and xk = φ(g) have the

same number of solutions.

7. If G is finite, then G and G′ have the same number of elements of each

order.

Proof. The proof of the first two properties is the same as the proof of these

properties in Theorem 6.1.15.

For the third part of this theorem, we first assume |g| is infinite, and by way

of contradiction, we assume |φ(g)| = n is finite. Then e′ = φ(g)n = φ(gn)

because φ preserves the operation. Further, if φ(gn) = e′, then gn = e by the

first property. This implies that |g| ≤ n, which is a contradiction.

Now assume that |g| = m and |φ(g)| = n for some m,n ∈ N. By the

argument above, |g| = m ≤ n. By similar logic, e = gm, thus e′ = φ(e) =

φ(gm) = [φ(g)]m. Thus, |φ(g)| = n ≤ m. Therefore, |g| = |φ(g)|.

For the fourth part of this theorem, assume g is a generator of G, thus

G = 〈g〉. By closure 〈φ(g)〉 ⊆ G′. Further, because φ is onto, for any element

h′ ∈ G, there exists h ∈ G such that φ(h) = h′. By our assumption, we know

that h = gk for some k ∈ Z, thus h′ = φ(gk) = [φ(h)]k because φ preserves

the operation. Thus, we have shown that a random element in G′ can be

generated by φ(g). Ergo, G = 〈φ(g)〉.

We assume gh = hg to begin our proof of the fifth property. By operation

preservation, φ(gh) = φ(g)φ(h) and φ(hg) = φ(h)φ(g). Thus, φ(g)φ(h) =

φ(h)φ(g).

For the sixth property, assume xk = g. Then φ(xk) = φ(x)k = φ(g), and
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because x, and hence φ(x), is a random variable, we may write φ(x)k = φ(g)

as xk = φ(g). Assume a is a solution to xk = g. Then, because φ is one-to-

one, φ(a) is a solution to xk = φ(g). This means that there are at least as

many solutions to xk = φ(g) as there are to xk = g. Assume b′ is a solution

to xk = φ(g), thus (b′)k = φ(g). Then, because φ is onto, there is a b ∈ G
such that φ(b) = b′. By substitution, φ(g) = (b′)k = [φ(b)]k = φ(bk) and thus

g = bk. This shows that for every solution to xk = φ(g), we have a solution

to xk = g. Ergo, the two equations have the same number of solutions.

The seventh property is left as an exercise.

We will use these properties in two main ways.

1. When two groups are isomorphic, we may study the properties of one

group to better understand the other.

2. We will use these properties in proofs that two groups are not isomor-

phic.

Property 6, in particular, can be useful in showing that two groups are not

isomorphic.

Example 6.2.15. Consider the equation x2 = −1. In R∗, there are no

solutions to this equation. In C∗, there are two solutions to this equation.

Thus, by Property 6 of Theorem 6.2.14, R∗ 6≈ C∗. 3

By the definition of isomorphic, if two groups G and G′ are not isomorphic,

that means that there does not exist an isomorphism between G and G′.

Note that this is a much stronger statement than simply saying that some

function f : G → G′ is not an isomorphism. To prove G and G′ are not

isomorphic, we must prove that it is impossible to construct an isomorphism

between them. The strategy to prove that no such isomorphism exists is to
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assume, by way of contradiction, that an isomorphism does exist. Then use

that assumption to contradict a known property of isomorphisms.

Non-Example 6.2.16. Consider the function f : Z→ Z defined by f(x) =

x2 + 1. Then f is not an isomorphism. The identity does not map to the

identity, as f(0) = 1 6= 0. Further, f is not onto, as the image contains only

positive integers, that is, f(Z) ⊆ N.

If we were attempting to show that Z ≈ Z, this f does not prove that Z 6≈ Z.

We know this idea to be absurd, as well have already shown Z ≈ Z and,

moreover, a group is isomorphic to itself. Thus, if we were attempting to

show Z ≈ Z, all we have shown is that f is not an isomorphism, and that we

must keep searching for an isomorphism. 3

Now that we know some properties of how isomorphisms act on elements, we

study how isomorphisms act on groups. Again, notice that any statement

given as an implication is actually a biconditional, because inverse isomor-

phisms are also isomorphisms.

Theorem 6.2.17. Suppose φ : G→ G′ is an isomorphism from group G to

group G′.

1. If G is Abelian, then G′ is Abelian.

2. If G is cyclic, then G′ is cyclic.

3. If H is a subgroup of G, then φ(H) is a subgroup of G′.

4. The center maps to the center, that is, φ(Z(G)) = Z(G′).

The proofs of these properties are left as exercises.

As we know from Lemma 6.2.7, a group is isomorphic to itself. In Example

6.2.2, we saw that φ(x) = −x is an isomorphism on Z. Further, ψ(x) = x
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is also an isomorphism on Z. Thus, we can already see that there may be

several isomorphisms from a group to itself. This leads us to the definition

and theorem below.

Definition 6.2.18. An isomorphism from a group to itself is an automorphism.

Theorem 6.2.19. The set of automorphisms of a group, denoted Aut(G), is

a group.

How meta. We just defined a group based on isomorphisms acting on some

other group.

Example 6.2.20. We will determine Aut(Z12). We know Z12 is cyclic,

thus it has a generator. By property 3 of Theorem 6.2.14, we know that

isomorphisms preserve order, thus we must map generators to generators.

By Corollary 5.2.23, we know that the generators of Z12 are exactly the

numbers in U(12), thus Z12 has generators 1, 5, 7, and 11. Therefore, our

isomoprhism should map the generator 1 to 1, 5, 7, or 11. Now we analyze

each of these possibilities.

Let φi be the function with mapping φi(1) = i. The mapping φ1 is the

identity mapping φ(x) = x. This is an isomorphism. The mapping φ5 is the

mapping φ5(x) = 5x. It is operation preserving because

φ5(x+ y) = 5(x+ y) = 5x+ 5y = φ5(x) + φ5(y).

Suppose φ5(x) = φ5(y) for some x, y ∈ Z12. Then 5x = 5y, and because

5−1 = 5 in Z12, by multiplying on the left by 5, we see that x = y. Thus,

φ5 is one-to-one. Lastly, consider x ∈ Z12. Again, because 5−1 = 5 and

5x mod 12 ∈ Z12, we see that φ5(5x) = 5 · 5x = x. Thus, φ5 is onto. In
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conclusion, φ5 ∈ Aut(Z12). Without loss of generality, φ7, φ11 ∈ Aut(Z12). 3

This example may lead you to the conclusion below, whose proof is left as

an exercise.

Theorem 6.2.21. For every n ∈ N such that n ≥ 2, Aut(Zn) ≈ U(n).

How meta. We just said a group of isomorphisms is isomorphic to another

group. Mind. Blown.

EXERCISES

Exercise 6.2.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let φ : G→ G′ be an isomorphism from group G to group

G′.

a. φ(Z(G)) = Z(G′)

b. |G| = |G′|
c. | ker(φ)| = 1

Exercise 6.2.2. Consider the dihedral groups and the symmetric groups.

For each of the following, determine if the two groups given are isomorphic.

If so, prove it. If not, explain why not.

a. D3 and S3.

b. D4 and S4.

c. D12 and S4.

Exercise 6.2.3. Consider the following groups of units.

a. Show that U(8) and U(10) are not isomorphic.

b. Show that U(8) and U(12) are isomorphic.

c. To which of these group(s) is U(5) isomorphic? Justify your response.
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Exercise 6.2.4. Let H = {α ∈ S4 |α(1) = 1} and K = {α ∈ S4 |α(2) = 2}.

a. Find an isomorphism between H and K. Justify your isomorphism by

creating symmetric Cayley tables for H and K.

b. To which familiar group are H and K isomorphic?

Exercise 6.2.5. Prove Lemma 6.2.7, that is, for any group G, G ≈ G.

Exercise 6.2.6. Prove Lemma 6.2.10, that is, if G, H, and K are groups

such that G ≈ H and H ≈ K, then G ≈ K.

Exercise 6.2.7. Revisit Example 6.2.12. Prove that C ≈ C.

Exercise 6.2.8. Let R+ be the group of positive real numbers under

multiplication.

a. Prove that φ : R+ → R defined by φ(x) = ln(x) is an isomorphism.

b. Prove that ψ : R→ R+ defined by ψ(x) = ex is an isomorphism.

c. This shows that R+ ≡ R. In a sentence or two, why is this a

somewhat counter-intuitive result?

(Hint: Lemma 6.2.5 should cut your work in half.)

Exercise 6.2.9. Revisit Example 6.2.13. Prove that Z has infinitely many

subgroups to which it is isomorphic.

Exercise 6.2.10. Let φ : G → G′ be an isomorphism, and assume G is

finite. Prove that G and G′ have the same number of elements of each order.

Exercise 6.2.11. Suppose φ : G→ G′ is an isomorphism from group G to

group G′. Prove the following.

a. If H is a subgroup of G, then φ(H) is a subgroup of G′.

b. If H ′ is a subgroup of G′, then φ−1(H ′) is a subgroup of G.

(Hint: Lemma 6.2.5 should cut your work in half.)

Exercise 6.2.12. Suppose φ : G→ G′ is an isomorphism from group G to

group G′. Prove the following.
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a. If G is Abelian, then G′ is Abelian.

b. If G is cyclic, then G′ is cyclic.

Exercise 6.2.13. Suppose φ : G → G′ is an isomorphism from group G to

group G′. Prove that φ(Z(G)) = Z(G′).

Exercise 6.2.14. Prove that Z 6≈ Q.

Exercise 6.2.15. Let G be a group. Prove that φ(x) = x−1 is an automor-

phism if and only if G is Abelian.

Exercise 6.2.16. Find Aut(Z). Justify your answer.

Exercise 6.2.17. Find two groups G and H such that G 6≈ H and Aut(G) ≈
Aut(H).

Exercise 6.2.18. Let φ be an automorphism of group G. Prove that

H = {g ∈ G |φ(g) = g}

is a subgroup of G.

Exercise 6.2.19. Suppose φ is an automorphism of Z24 such that φ(6) = 6.

Find all the possibilities of φ(x). Justify your answer.

Exercise 6.2.20. Prove Theorem 6.2.19.

Exercise 6.2.21. Prove Theorem 6.2.21.
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Chapter 7

Lagrange’s Theorem

Lagrange, in one of the later years of his life,

imagined that he had overcome the difficulty [of the parallel axiom].

He went so far as to write a paper, which he took with him to the Institute,

and began to read it. But in the first paragraph

something struck him that he had not observed.

He muttered, “Il faut que j’y songe encore,” and put the paper in his pocket.

[I must think about it again.]

Augustus De Morgan

Lagrange’s Theorem is, perhaps, the most important theorem in group the-

ory. To say it is a fundamental theorem would be an understatement. Like

some of the most beautiful pieces of mathematics, it is a seemingly simple

theorem, one you can appreciate immediately. Of course, it is not so simple,

because it has taken us several chapters to be ready to understand its proof.

We are not quite ready, as we need a few more definitions.

187
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7.1 Cosets

Cosets provide powerful tools in group theory. Before we define them, we

give an example of cosets, which should help us parse the definitions that

follow.

Example 7.1.1. Consider the group S3 and its subgroup H = {e, (23)}.
We multiply H by each element in S3, one at a time, that is, for all σ ∈ S3,

we determine σH = {σh |h ∈ H}.

eH = {ee, e(23)} = {e, (23)}

(12)H = {(12)e, (12)(23)} = {(12), (123)}

(13)H = {(13)e, (13)(23)} = {(13), (132)}

(23)H = {(23)e, (23)(23)} = {(23), e}

(123)H = {(123)e, (123)(23)} = {(123), (12)}

(132)H = {(132)e, (132)(23)} = {(132), (13)}

Notice that H = eH = (23)H because e and (23) are the elements of

H. Thus, when we compute eH and (23)H, we get H back. Also notice

that (12)H = (123)H and, moreover, (123) ∈ (12)H and (12)H. Similarly,

(13)H = (132)H, (132) ∈ (13)H, and (13) ∈ (132)H. Thus, this action of

multiplying H on the left by σ ∈ S3 has created three distinct sets.

eH = {e, (23)} = (23)H

(12)H = {(12), (123)} = (123)H

(13)H = {(13), (132)} = (132)H

Notice that every element of S3 is in exactly one of these sets, that is, these

sets partition S3. Further, notice that each set is the same size.

Of course, S3 is non-Abelian, thus multiplying on the left is potentially differ-
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ent than multiplying on the right. Below we perform similar computations,

only this time, for all σ ∈ S3, we determine Hσ = {hσ |h ∈ H}.

He = {ee, (23)e} = {e, (23)}

H(12) = {e(12), (23)(12)} = {(12), (132)}

H(13) = {e(13), (23)(13)} = {(13), (123)}

H(23) = {e(23), (23)(23)} = {(23), e}

H(123) = {e(123), (23)(123)} = {(123), (13)}

H(132) = {e(132), (23)(132)} = {(132), (12)}

Again, we see that multiplying by the elements of H recreates H, that is,

H = He = H(23). Again, we have some repeat sets: H(12) = H(132) and

H(13) = H(123). Again, these sets partition S3 and all have the same size.

There are some important differences between σH and Hσ, though. For

example, notice that when we multiply H on the left by (12), we get (12)H =

(123)H, and when we multiply H on the right by (12), we get H(12) =

H(132). Thus, we see that σH is not always equal to Hσ.

Food for thought: for which elements σ ∈ S3 is it true that σH = Hσ? 3

The example above demonstrates both left and right cosets. The definitions

of these objects, and related definitions, are given below.

Definition 7.1.2. Let G be a group and H a subgroup of G. For a ∈ G,

the set

aH = {ah |h ∈ H}

is a left coset in G, in particular, it is the left coset in G containing a. Simi-
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larly, for a ∈ G, the set

Ha = {ha |h ∈ H}

is a right coset in G, in particular, it is the right coset in G containing a. In

both situations, the element a is called a coset representative because it is

the element used to create the coset.

Note that, in these definitions, the notation of the group operation is dropped.

For emphasis, we could write left cosets as a ∗H = {a ∗ h |h ∈ H} and right

cosets as H ∗ a = {h ∗ a |h ∈ H}.

As we saw in Example 7.1.1, left and right cosets are not always equal. Below

is another example of cosets in a non-Abelian group.

Example 7.1.3. Consider the group D4 and its subgroup K = {R0, V }.
Below are the left cosets of K in D4.

R0K = {R0R0, R0V } = V K

R90K = {R90R0, R90V } = DLK

R180K = {R180R0, R180V } = HK

R270K = {R270R0, R270V } = DRK

Once again, notice that for coset representatives not in K itself, the left

cosets do not equal the right cosets, shown below.

KR0 = {R0R0, V R0} = KV

KR90 = {R0R90, V R90} = KDR

KR180 = {R0R180, V R180} = KH

KR270 = {R0R270, V R270} = KDR
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3

When a group is Abelian, the left cosets are equal to the right cosets. Below

are some examples of cosets in Abelian groups.

Example 7.1.4. Consider the group Z and its subgroup 5Z. Below are the

cosets of 5Z in Z, and note that the cosets are written in additive notation

because the operation on Z is addition.

0 + 5Z = {. . . ,−20,−15,−10,−5, 0, 5, 10, 15, . . .} = 5Z + 0 = 5Z

1 + 5Z = {. . . ,−19,−14,−9,−4, 1, 6, 11, 16, . . .} = 5Z + 1

2 + 5Z = {. . . ,−18,−13,−8,−3, 2, 7, 12, 17, . . .} = 5Z + 2

3 + 5Z = {. . . ,−17,−12,−7,−2, 3, 8, 13, 18, . . .} = 5Z + 3

4 + 5Z = {. . . ,−16,−11,−6,−1, 4, 9, 14, 19, . . .} = 5Z + 4

Notice that coset representatives are not unique. For example, the following

are just different representations of the coset 1 + 5Z.

−9 + 5Z = {. . . ,−24,−19,−14,−9,−4,1, 6, 11, . . .}

−4 + 5Z = {. . . ,−19,−14,−9,−4,1, 6, 11, 16, . . .}

1 + 5Z = {. . . ,−19,−14,−9,−4,1, 6, 11, 16, . . .}

6 + 5Z = {. . . ,−14,−9,−4,1, 6, 11, 16, 21, . . .}

11 + 5Z = {. . . ,−9,−4,1, 6, 11, 16, 21, 26 . . .}

3

As the above example illustrates, there are many ways to represents a single

coset. Further, even in an infinite group, there may be a finite number of

cosets. This leads us to the definition below.
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Definition 7.1.5. Let G be a group and H a subgroup of G. The number

of left (or right) cosets of H in G is the index of H in G, denoted |G : H|.

In Example 7.1.1, |G : H| = 3; in Example 7.1.3, |G : H| = 4; and in

Example 7.1.4, |G : H| = 5.

Cosets form many patterns, as you may have begun to observe. Below are

some properties of cosets that describe those patterns. Theorem 7.1.6 is

written about left cosets, and analogous results hold for right cosets.

Theorem 7.1.6. Let G be a group, H a subgroup of G, and a, b ∈ G.

1. The coset representative is in the coset, that is, a ∈ aH.

2. The coset aH = H if and only if a ∈ H.

3. Associativity holds, that is, (ab)H = a(bH).

4. The coset aH = bH if and only if a ∈ bH.

5. Cosets partition the group, that is, every element is in a coset and

either aH = bH or aH ∩ bH = ∅.

6. The coset aH = bH if and only if a−1b ∈ H.

7. The coset aH is a subgroup if and only if a ∈ H.

8. All cosets have equal cardinality, that is, |aH| = |bH|.

Proof. Let G be a group, H a subgroup of G, and a, b ∈ G.

1. By definition of a subgroup e ∈ H and therefore ae = a ∈ aH.
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2. First, assume aH = H. By the first property, a ∈ aH, thus a ∈ H.

Next, assume a ∈ H. By closure, ah ∈ H for all h ∈ H, thus aH ⊆ H.

To show H ⊆ aH, notice that for all h ∈ H, a−1h ∈ H. Thus

h = eh = (aa−1)h = a(a−1h) ∈ aH

because a−1h ∈ H. Therefore, H ⊆ aH, and ergo aH = H.

3. By the definition of a group, (ab)h = a(bh) for all a, b, h ∈ G.

4. First, assume aH = bH. By the first property, a ∈ aH, thus a ∈ bH.

Next, assume a ∈ bH. Then a = bh for some h ∈ H. Thus, aH = bhH.

By the second property, because h ∈ H, bhH = bH. By transitivity of

equality, aH = bH.

5. By the first property, a ∈ aH, thus every element is in a coset. By the

fourth property, c ∈ aH ∩ bH if and only if cH = aH and cH = bH.

Thus, aH ∩ bH is nonempty if and only if aH = bH.

6. By the fourth property, aH = bH if and only if a ∈ bH. Further,

a ∈ bH if and only if a = bh for some h ∈ H, that is, e = a−1bh. We

know e = a−1bh ∈ H, and by the second property, this is true if and

only if H = a−1bhH = a−1bH because h ∈ H.

7. First, assume aH is a subgroup. Thus, e ∈ aH. By the fifth property,

because e ∈ H ∩ aH, H = aH. By the second property, a ∈ H. The

argument reverses.

8. Consider the mapping aH → bH given by ah 7→ bh for all ah ∈ aH.

This is a one-to-one mapping because if bh1 = bh2, by cancellation,

h1 = h2 and hence ah1 = ah2. Therefore, because the mapping is

one-to-one, |aH| = |bH|.
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As Theorem 7.1.6 shows, if we compute aH for every a ∈ G, where H is a

subgroup of group G, we will have redundancies. Thus, it is not practical to

find all cosets by exhausting all representatives. Below is an example of a

more practical approach to computing cosets.

Example 7.1.7. Consider the group U(20) and its subgroup H = {1, 11}.
We know by property (1) of Theorem 7.1.6 that H = 11H is a coset. By

property (5), these are the only representations of this coset and, further, we

can find another coset by choosing a representative not in H. By choosing

representative 3, we see that 3H = {3, 13}. We continue to find cosets by

choosing representatives not already in a coset. Thus, we get the following

cosets.

H = 11H = {1, 11}

3H = 13H = {3, 13}

7H = 17H = {7, 17}

9H = 19H = {9, 19}

3

Example 7.1.8.s Let’s study a group with symbols to see how coset

properties hold, because numbers are really just symbols. Consider the group

J = {♥, ©, %, F, T, ♣}. Below is the Cayley Table for group J , so

that we can determine what the identity is and understand what different
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compositions will yield.

J ♥ © % F T ♣
♥ ♥ © % F T ♣
© © % ♥ ♣ F T

% % ♥ © T ♣ F

F F T ♣ ♥ © %

T T ♣ F % ♥ ©

♣ ♣ F T © % ♥

By observing the Cayley Table, we see that ♥ is the identity. In group J , let

W = {♥,F}, which is a subgroup. The right and left cosets of W are listed

below.

♥W = {♥♥,♥F} = {♥,F} W♥ = {♥♥,F♥} = {♥,F}

©W = {©♥,©F} = {©,T} W© = {♥©,F©} = {©,♣}

%W = {%♥,%F} = {%,♣} W% = {♥%,F%} = {%,T}

Notice that using the subgroup W , we created three unique left and right

cosets. In this example we are able to see that ♥W = W♥, and only coset

representatives from W generate equal left and right cosets. Notice that

©W 6= W© and %W 6= W%. This is because J is not a commutative group.

Thus we can see from the example that not all left and right cosets will

necessarily be equal to one another. 3

Cosets may seem random at first, but they provide a lot of structure. In a

sense, cosets allow us to partition a group into sets based on some desirable

quality. Consider the following examples.
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Example 7.1.9. Below are the cosets of 10Z in Z.

10Z = {. . . ,−20,−10, 0, 10, 20, . . .}

1 + 10Z = {. . . ,−19,−9, 1, 11, 21, . . .}

2 + 10Z = {. . . ,−18,−8, 2, 12, 22, . . .}

3 + 10Z = {. . . ,−17,−7, 3, 13, 23, . . .}

4 + 10Z = {. . . ,−16,−6, 4, 14, 24, . . .}

5 + 10Z = {. . . ,−15,−5, 5, 15, 25, . . .}

6 + 10Z = {. . . ,−14,−4, 6, 16, 26, . . .}

7 + 10Z = {. . . ,−13,−3, 7, 17, 27, . . .}

8 + 10Z = {. . . ,−12,−2, 8, 18, 28, . . .}

9 + 10Z = {. . . ,−11,−1, 9, 19, 29, . . .}

These cosets classify all integers into sets of integers that have the same digit

in the ones-place. 3

Example 7.1.10. Consider the group GL(2,R) and its subgroup SL(2,R).

Recall that the operation on these groups is multiplication. Then the cosets

of SL(2,R) in GL(2,R) have form cSL(2,R) for c ∈ R∗. Notice that the set

cSL(2,R) is the set of all matrices of determinant c. Thus, in this way, cosets

give us a way to categorize all matrices based on their determinants. 3

In particular, because the kernel of a homomorphism is a subgroup, cosets

help us understand more about homomorphisms.

Theorem 7.1.11. Let φ : G → G′ be a homomorphism from group G to

group G′.

1. For a, b ∈ G, φ(a) = φ(b) if and only if a ker(φ) = b ker(φ).

2. For a ∈ G, if φ(a) = a′, then φ−1(a′) = a ker(φ).
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Proof. Let φ : G → G′ be a homomorphism from group G to group G′ and

a, b ∈ G. Let e′ ∈ G′ be the identity of G′. For the first property, assume

φ(a) = φ(b). Then

e′ = (φ(a))−1φ(b) = φ(a−1)φ(b) = φ(a−1b)

because φ is a homomorphism. Thus, a−1b ∈ ker(φ), and by property (6) of

Theorem 7.1.6, a ker(φ) = b ker(φ). This argument reverses.

For the second property, assume φ(a) = a′ for some a′ ∈ G. Then

φ−1(a′) = {g ∈ G |φ(g) = a′}.

To show set equality, first assume g ∈ φ−1(a′), thus φ(g) = a′. Thus, φ(a) =

φ(g), and by the previous property, a ker(φ) = g ker(φ). By property (4) of

Theorem 7.1.6, g ∈ a ker(φ). Hence φ−1(a′) ⊆ a ker(φ). For the reverse set

inclusion, assume k ∈ ker(φ). Then

φ(ak) = φ(a)φ(k) = φ(a) = a′.

Therefore, ak ∈ φ−1(a′), and note that by the definition of coset, ak ∈
a ker(φ). Hence, a ker(φ) ⊆ φ−1(a′), and ergo a ker(φ) = φ−1(a′).

Property (1) of Theorem 7.1.11 gives us a way to find which elements map to

the same place without determining to where those elements actually map.

Property (2) give us a way to determine all the elements that map to a given

a′ ∈ G′ once we know one element in G that maps to a′. Below is an example

of how to use these properties in computations.

Example 7.1.12. The mapping φ : Z20 → Z4 given by φ(x) = x mod 4 is
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a homomorphism. Then

ker(φ) = {x ∈ Z20 |x = 0 mod 4} = {0, 4, 8, 12, 16} = 〈4〉.

The operation on Z20 is addition, thus we will write the cosets additively.

Consider the element a = 17 ∈ Z20.

1. Which elements map to the element φ(17) ∈ Z4? For b ∈ Z20, we know

φ(17) = φ(b) if and only if 17 + ker(φ) = b + ker(φ). By property

(4) of Theorem 7.1.6, this is true if and only if b ∈ 17 + ker(φ). By

computation, we see that

17 + ker(φ) = {17, 1, 5, 9, 13}.

Thus, we may conclude that 1, 5, 9, and 13 also map to φ(17). Note

that we never had to determine to which element 17 actually maps.

2. Which elements map to 3 ∈ Z4? Certainly, 3 ∈ Z20 maps to 3 ∈ Z4.

Then the set of all elements that map to 3 ∈ Z4 is

φ−1(3) = 3 + ker(φ) = {3, 7, 11, 15, 19}.

Thus, we determined all elements that map to 3 by only knowing 3 7→ 3.

3

Example 7.1.13. The mapping φ : Z30 → Z6 given by φ(x) = x mod 6 is

a homomorphism. Then

ker(φ) = {x ∈ Z30 |x = 0 mod 6} = 〈6〉.

To determine where each element of Z30 maps, rather than performing thirty

computations, we can use Theorems 7.1.6 and 7.1.11. By choosing one coset
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representative at a time and computing the kernal’s cosets in Z30, we see that

ker(φ) = 0 + 〈6〉 = {0, 6, 12, 18, 24}

1 + ker(φ) = 1 + 〈6〉 = {1, 7, 13, 19, 25}

2 + ker(φ) = 2 + 〈6〉 = {2, 8, 14, 20, 26}

3 + ker(φ) = 3 + 〈6〉 = {3, 9, 15, 21, 27}

4 + ker(φ) = 4 + 〈6〉 = {4, 10, 16, 22, 28}

5 + ker(φ) = 5 + 〈6〉 = {5, 11, 17, 23, 29}

Thus, for example, we automatically know that 5, 11, 17, 23, 29 ∈ Z30 all map

to 5 ∈ Z6. 3

Example 7.1.14.s Let the map of φ : Z30 → Z30 be a homomorphism

defined by φ(22) = 29 with ker(φ) = 〈5〉. By applying Theorem 5.2, we know

elements that also map to 29 are 2, 7, 12, 17, and 27. 3

Though cosets are not mentioned in the theorem below, we use cosets to

prove it.

Theorem 7.1.15. Let φ : G → G′ be a homomorphism, and let H be a

subgroup of G.

1. If | ker(φ)| = n, then φ is an n-to-one mapping.

2. If |H| = n, then |φ(H)| divides n.

3. If φ is onto and ker(φ) is the trivial subgroup, then φ is an isomorphism.

Proof. Let φ : G→ G′ be a homomorphism, and let H be a subgroup of G.

1. Assume | ker(φ)| = n. By property (8) in Theorem 7.1.6, all cosets

have the same size, thus all cosets have size | ker(φ)| = n. By property
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(2) in Theorem 7.1.11, when φ(a) = a′, φ−1(a′) = a ker(φ). Thus,

|φ−1(a′)| = n for all a′ ∈ G′, which means φ is an n-to-one mapping.

2. Let φH be the restriction of φ that acts only on H, that is, φH : H →
φ(H). Then φH is a homomorphism, and moreover, it is onto φ(H).

Suppose | ker(φH)| = m. By the first property of this theorem, φH is

an m-to-one mapping. Thus |φH |m = |H|, and therefore |φH | divides

|H| = n.

3. If ker(φ) = {e}, then by the first property, φ is one-to-one. If φ is also

onto, then φ is an isomorphism by definition.

We continue with the homomorphism established in Example 7.1.12 to demon-

strate the properties in Theorem 7.1.15.

Example 7.1.16. Let φ : Z20 → Z4 be the homomorphism from Example

7.1.12. We know that | ker(φ)| = 5, thus φ is a five-to-one mapping. This

means that for each element in g ∈ Z4, five elements from Z20 map to that

element g.

Let H = 〈2〉 ∈ Z20, then |H| = 10. By computation, we see that φ(H) =

{0, 2, 4, 6, 8} = 〈2〉 ≤ Z4. Thus, |φ(H)| divides |H|. 3

EXERCISES

Exercise 7.1.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let G be a group, H a subgroup of G, and a, b ∈ G.

a. aH = Ha

b. |aH| = |bH|
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c. |aH| = |Ha|

Exercise 7.1.2. Let H = {e, (13), (24), (13)(24)}.

a. Find the left cosets of H in S4.

b. Find the right cosets of H in S4.

Exercise 7.1.3. Let H = 〈6〉 ≤ Z.

a. Find the left cosets of H in Z.

b. Are the cosets 23 +H and 35 +H equal? Why?

c. Are the cosets 14 +H and 42 +H equal? Why?

d. Are the cosets −17 +H and 11 +H equal? Why?

Exercise 7.1.4. For n ∈ N, let H = 〈n〉 ≤ Z. How many left cosets of H

are there in Z?

Exercise 7.1.5. Find all the left cosets of H = {1, 11} in U(30).

Exercise 7.1.6. Suppose a ∈ G and |a| = 30. For each of the following

subgroups, find all of the left cosets of the subgroup in 〈a〉.

a. 〈a6〉

b. 〈a16〉

c. 〈a25〉

d. 〈a27〉

Exercise 7.1.7. Let G be an Abelian group, a ∈ G, and H a subgroup of

G. Prove that aH = Ha.

Exercise 7.1.8. Prove that “is in the same coset as” is an equivalence rela-

tion.

Exercise 7.1.9. Let H = {a+ bi ∈ C∗ | a2 + b2 = 1} be a subset of C∗.

a. Prove H is a subgroup of C∗.
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b. If you graph H on the complex plane, what will be the shape of the

graph?

c. Give a geometric description of the coset (4 + 3i)H.

d. Find another coset representative of (4 + 3i)H.

Exercise 7.1.10. Suppose φ : Z50 → Z50 is a homomorphism such that

φ(37) = 45 and ker(φ) = 〈10〉. Determine all the elements that also map to

45.

Exercise 7.1.11. Let φ : Z2 → Z be given by φ((x, y)) = x− y.

a. Prove that φ is a homomorphism.

b. Find ker(φ).

c. Describe the set φ−1(1).

d. Describe the coset (2, 5) + ker(φ).

e. Find another coset representative of (2, 5) + ker(φ).

Exercise 7.1.12. Let H and K be subgroups of group G. Let g ∈ G. Prove

that g(H ∩K) = gH ∩ gK.

7.2 Lagrange’s Theorem

In your algebraic heart of hearts, you may already realize Lagrange’s The-

orem. Indeed, we have already seen its restriction to cyclic groups. Note

that Lagrange’s Theorem applies to all finite groups, and is therefore a very

strong theorem.

Theorem 7.2.1 (Lagrange’s Theorem). Let G be a finite group and H a

subgroup of G. Then |H| divides |G|, and moreover, |G : H| = |G|/|H|.

Proof. Let G be a finite group and H a subgroup of G. We know that G

is finite, thus there are a finite number of cosets of H. Assume there are k
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distinct cosets of H in G. Let ai for 1 ≤ i ≤ k be coset representatives of the

k distinct cosets of H in G. By property 5 of Theorem 7.1.6, these cosets

partition G, thus

G = a1H ∪ · · · ∪ akH.

Further, these cosets are disjoint, thus

|G| = |a1H|+ · · ·+ |akH|.

By property 8 of Theorem 7.1.6, these cosets all have the same cardinality,

thus

|G| =
k∑

i=1

|aiH| = k|H|.

Therefore, |H| divides |G|. Further, k, index of H in G, is |G|/|H|.

We have already seen many examples of Lagrange’s Theorem. Take a moment

to look back to your favorite subgroups of finite groups to determine some

examples of Lagrange’s Theorem.

Example 7.2.2. Let G be a group of order 32 ·5 ·7 and let H be a subgroup

of G. Then H has order 1, 3, 32, 3 ·5, 32 ·5, 3 ·7, 32 ·7, 3 ·5 ·7, or 32 ·5 ·7. 3

Lagrange’s Theorem has some immediate corollaries, the proofs of which are

left as exercises.

Corollary 7.2.3. In a finite group, the order of the element divides the order

of the group.

Example 7.2.4.s We will prove that a group of order 16 must have an

element of order 2.

Suppose we have a group G and |G| = 16, and consider some a ∈ G. By

Corollary 5.1, |a| must divide |G|. Thus, |a| = 1, 2, 4, 8, or 16. Thus, we
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proceed with the following 5 cases.

• Case 1: If |a| = 1, then a is the identity e of G and 〈e〉 = {e}. Thus,

we can not construct an element of order two using only this a, though

there 15 other elements to consider.

• Case 2: If |a| = 16, then

〈a〉 = {e, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}

and |〈a〉| = 16. Notice that |a8| = 2.

• Case 3: If |a| = 8, then 〈a〉 = {e, a1, a2, a3, a4, a5, a6, a7} and |〈a〉| = 8.

Notice |a4| = 2.

• Case 4: If |a| = 4, then 〈a〉 = {e, a1, a2, a3} and |〈a〉| = 4. Notice

|a2| = 2.

• Case 5: If |a| = 2, then we are done.

Thus, for each possibility of |a| 6= 1, we have shown that there is an element

with order 2. In conclusion, a group of order 16 must have an element of

order 2. 3

Corollary 7.2.5. A group of prime order is cyclic.

Corollary 7.2.6. Let G be a group with identity e. Then for every a ∈ G,

a|G| = e.

Another corollary of Lagrange’s Theorem is Fermat’s Little Theorem, a the-

orem you may have proved in your Number Theory class.

Corollary 7.2.7 (Fermat’s Little Theorem). For every a ∈ Z and every

prime p, ap ≡ a mod p.



7.2. LAGRANGE’S THEOREM 205

Proof. Let a ∈ Z. By the Division Algorithm, a = pm+ r for some m, r ∈ Z
such that 0 ≤ r < p. Thus, a ≡ pm + r ≡ r mod p. Therefore we will prove

that rp ≡ r mod p.

If r = 0, then 0p ≡ 0 mod p and the result holds. Now assume r 6= 0.

Therefore, r is relatively prime to p, that is, r ∈ U(p). By the definition of

the Euler Phi Function and Theorem 5.2.29, |U(p)| = φ(p) = p − 1. Note

that the identity of U(p) is 1. By Corollary 7.2.6,

r|U(p)| = rp−1 = 1

in U(p), thus rp−1 ≡ r mod p in Z. Multiplying both sides by r, we see that

rp ≡ r mod p.

Lagrange’s Theorem provides a list of possible orders of subgroups. It does

not guarantee that a subgroup exists for each order! Consider the non-

example below.

Non-Example 7.2.8. Consider A4, which has order 12. In particuar, A4

has one element of order 1, three elements of order 2, and eight elements of

order 3. By Lagrange’s Theorem, every subgroup of A5 will have order 1, 2,

3, 4, 6, or 12. Below we show that A4 has no subgroup of order 6.

By way of contradiction, assume H is a subgroup of order 6, thus H can not

contain all eight elements of order 3. Let a ∈ A4−H be an element of order

3. By Lagrange’s Theorem, the index of H in A4 is 2, that is, there are two

left cosets of H in A4. We consider the element a2 and proceed by cases.

1. If a2 ∈ H, then by closure, (a2)2 ∈ H. Recall that |a| = 3. Thus,

a4 = a ∈ H, which is a contradiction.

2. If a2 ∈ aH, then a2 = ah for some h ∈ H. By cancellation, a = h ∈ H,

which is a contradiction.
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Therefore, no subgroup of order 6 can exist. 3

EXERCISES

Exercise 7.2.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let G be a group and H a subgroup of G.

a. Assume |G| is divisible by d ∈ N. Then G has a subgroup of order d.

Exercise 7.2.2. Refer back to Fermat’s Little Theorem and compute each

of the following.

a. 315 mod 7

b. 824 mod 11

c. 464 mod 31

Exercise 7.2.3. Let G be a group and H and K subgroups of orders 8 and

15, respectively. Find |H ∩K|.

Exercise 7.2.4. Let G be a group and H and K subgroups of orders m and

n, respectively, where m and n are relatively prime. Find |H ∩K| and prove

your conjecture.

Exercise 7.2.5. Prove Corollary 7.2.3.

Exercise 7.2.6. Prove Corollary 7.2.5.

Exercise 7.2.7. Prove Corollary 7.2.6.

Exercise 7.2.8. Prove that |U(n)| is even for every n > 2.

Exercise 7.2.9. Prove that a group of order 8 must have an element of order

2.

Exercise 7.2.10. Let p be a prime. Prove that a group of order p3 must

have an element of order p.
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Exercise 7.2.11.s Let G be a group. Show that N(G) = G.

Exercise 7.2.12. Let G be a group such that |G| = pq for distinct primes

p and q. Let a, b ∈ G be elements such that |a| = p and |b| = q. Prove that

the only subgroup of G that contains both a and b is G itself.

Exercise 7.2.13. Let G be a group such that |G| = pq for distinct primes p

and q. Prove that every proper subgroup of G is cyclic.

Exercise 7.2.14. Let H be a subgroup of S4 containing both (34) and (123).

Prove that H = S4.
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Chapter 8

Constructing Groups

Innovation is taking two things that already exist

and putting them together in a new way.

Tom Freston

In Section 3.3, we first studied subgroups, or groups within a larger group.

Now we begin the study of using existing groups to build new groups. First,

we will put groups together to create a larger group, a sort of “group mul-

tiplication.” Second, we will reduce a group to cosets to create a smaller

group, a sort of “group division.”

8.1 External Direct Products

In Exercise 6.2.2, we saw that D4 6≈ S4 and D12 6≈ S4. This may have left

you wondering if the groups D4, D12, and S4 were isomorphic to anything

other than themselves. Recall that we could show these groups were not

isomorphic by studying the orders of their elements. Once again, the orders

209
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of the elements and the patterns of their behavior will help us, this time, to

find isomorphisms. We begin by learning how piece together groups to make

larger groups.

Definition 8.1.1. Let n ∈ N. An n-tuple is an ordered list of n items.

In calculus, you studied n-tuples frequently, for a 2-tuple is simply an or-

dered pair and a 3-tuple is an ordered triple. Thus, an n-tuple is just a

generalization of these ideas.

Example 8.1.2. Consider the space

R7 = {(r1, r2, r3, r4, r5, r6, r7) | ri ∈ R, 1 ≤ i ≤ 7}.

Then the element (
√

2, 0,−1.5, π,−π, e, 12) ∈ R7 is a 7-tuple. 3

Now we consider groups whose elements are n-tuples.

Definition 8.1.3. Let G1, G2, ..., Gn be groups for n ∈ N. The external

direct product of these groups is the set of all n-tuples such that the ith

component is an element of Gi, that is,

G1 ⊕G2 ⊕ · · · ⊕Gn = {(g1, g2, . . . , gn) | gi ∈ Gi, 1 ≤ i ≤ n}.

Note that the collection G1, G2, ..., Gn is a finite collection of groups.

Theorem 8.1.4. Given groups G1, G2, ..., Gn be groups for n ∈ N, the

external direct product G1 ⊕G2 ⊕ · · · ⊕Gn is a group under the component-
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wise operation.

The proof that the external direct product is indeed a group is left as an

exercise. Below is an example of an external direct product and how our

previous concepts apply to this new idea.

Example 8.1.5. Consider the group Z4 ⊕ U(4). We see that this group is

the set

Z4 ⊕ U(4) = {(0, 1), (1, 1), (2, 1), (3, 1),

(0, 3), (1, 3), (2, 3), (3, 3)}

whose operation is addition modulo 4 in the first component and multipli-

cation modulo 4 in the second component. Below are some examples of

previous topics now applied to this external direct product.

• Operation: Consider the elements (2, 3) and (3, 3). Then

(2, 3) ∗ (3, 3) = (2 + 3, 3 · 3) = (1, 1)

because the first component contains elements of Z4 and the second

component contains elements of U(4).

• Identity: As the operation is performed component-wise, the identity is

found according to the components. The identity of the first component

is 0 and the identity of the second component is 1. Thus, (0, 1) is the

identity of Z4 ⊕ U(4).

• Inverses: Consider the element (3, 3) ∈ Z4 ⊕ U(4). To find its inverse,

we must find the inverse of the elements in each of the components.

Thus,

(3, 3)−1 = (3−1, 3−1) = (1, 3).
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To check, we see that

(3, 3) ∗ (3, 3)−1 = (3, 3) ∗ (1, 3) = (3 + 1, 3 · 3) = (0, 1),

and (0, 1) is indeed the identity.

• Order: Consider the element (1, 3) ∈ Z4 ⊕ U(4). In Z4, |1| = 4. In

U(4), |3| = 2. Thus, |(1, 3)| = lcm(4, 2) = 4. Just to check, consider

the example below.

• Cyclic subgroup: The subgroup 〈(1, 3)〉 is shown below.

〈(1, 3)〉 = {(1, 3)i | i ∈ Z}

= {(1i, 3i) | i ∈ Z}

= {(1, 3), (2, 1), (3, 3), (0, 1)}

As predicted, |(1, 3)| = |〈(1, 3)〉| = 4.

• Cosets: Once again, consider the subgroup 〈(1, 3)〉, which has order

four. The group Z4 ⊕ U(4) has order eight, thus, by Lagrange’s The-

orem, |Z4 ⊕ U(4) : 〈(1, 3)〉| = 8/4 = 2. To find the second coset of

〈(1, 3)〉, we take an element not in this subgroup, say (2, 3). Then

(2, 3)〈(1, 3)〉 = {(2, 3) ∗ (1, 3), (2, 3) ∗ (2, 1), (2, 3) ∗ (3, 3), (2, 3) ∗ (0, 1)}

= {(2 + 1, 3 · 3), (2 + 2, 3 · 1), (2 + 3, 3 · 3), (2 + 0, 3 · 1)}

= {(3, 1), (0, 3), (1, 1), (2, 3)}.

Thus, we see that Z4 ⊕ U(4) = 〈(1, 3)〉 t (2, 3)〈(1, 3)〉.

3

The following are some theorems that summarize some of the patterns you
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might have predicted while reading through Example 8.1.5.

Theorem 8.1.6. Consider an element of external direct product of a finite

number of groups.

• If all components of the element have finite order, then the order of the

element is the least common multiple of the orders of the components.

• If a component of the element has infinite order, then the order of the

element is infinite.

Proof. For n ∈ N, let G1 ⊕ G2 ⊕ · · · ⊕ Gn be an external direct product of

groups Gi, 1 ≤ i ≤ n. For each i, let ei ∈ Gi be the identity. Consider the

element g = (g1, g2, . . . , gn). We proceed by cases.

Let j = |g| and k = lcm(|g1|, |g2|, . . . , |gn|). By construction, k is a multiple

of |gi| for each i, and because the operation is component-wise,

gk = (g1, g2, . . . , gn)k = (gk1 , g
k
2 , . . . , g

k
n) = (e1, e2, . . . , en).

Thus, |g| = j ≤ k. By construction, j is the order of g, thus,

gj = (g1, g2, . . . , gn)j = (gj1, g
j
2, . . . , g

j
n) = (e1, e2, . . . , en).

Thus, j must be a multiple of the order of gi for each i. Therefore, j ≥ k.

Ergo, j = k.

Now assume one of the components of g has infinite order, without loss of

generality, call this component g1. By definition of infinite order, there does

not exist a natural number ` such that g`1 = e1. Therefore, there does not

exist a natural number ` such that

g` = (g1, g2, . . . , gn)` = (g`1, g
`
2, . . . , g

`
n) = (e1, e2, . . . , en).
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Ergo, |g| is infinite.

In Example 8.1.5, we saw an example of a cyclic subgroup within an external

direct product. The following theorem goes in the opposite direction, that

is, it provides a tool for determining when an external direct product is itself

a cyclic group.

Theorem 8.1.7. Given finite cyclic groups G1, G2, ..., Gn, for n ∈ N, the

external direct product G1 ⊕ G2 ⊕ · · · ⊕ Gn is cyclic if and only if |Gi| and

|Gj| are relatively prime for all i 6= j.

Proof. For each group Gi, let |Gi| = mi and let ei be the identity of Gi. We

proceed by induction on n. When n = 1, it follows that G is cyclic if and

only if the external direct product G is cyclic.

When n = 2, we consider G1 ⊕ G2. First, assume G1 ⊕ G2 is cyclic and

let (g1, g2) be a generator. Suppose gcd(m1,m2) = d. The group G1 ⊕ G2

has order m1m2, thus |(g1, g2)| = m1m2. Notice that d divides m1m2 by

definition. By Corollary 7.2.6 of Lagrange’s Theorem,

(g1, g2)
m1m2/d = (g

m1m2/d
1 , g

m1m2/d
2 )

= ((gm1
1 )m2/d, (gm2

2 )m1/d)

= (e
m2/d
1 , e

m1/d
2 )

= (e1, e2).

Therefore, |(g1, g2)| ≤ m1m2/d, yet |(g1, g2)| = m1m2, thus it must be that

d = 1. Therefore, |G1| and |G2| are relatively prime.

Second, assume |G1| = m1 and |G2| = m2 are relatively prime. Let g1 ∈ G1

and g2 ∈ G2 be generators. By Theorem 8.1.6, |(g1, g2)| = lcm(m1,m2) =

m1m2 because m1 and m2 are relatively prime. Then |g1, g2| = m1m2 =

|G1 ⊕G2|, thus G1 ⊕G2 is cyclic.
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The remaining proof is left as an exercise.

Example 8.1.8. The group U(10)⊕ Z8 is not cyclic because

gcd(|U(10)|, |Z8|) 6= 1.

We see that |U(10)| = 4, |Z8| = 8, and |U(10) ⊕ Z8| = 32. An element in

U(10) has order one, two, or four. An element in Z8 has order one, two, four,

or eight. Thus, it is impossible to choose a ∈ U(10) and b ∈ Z8 such that

|(a, b)| = lcm(|a|, |b|) > 8. 3

Example 8.1.9. The group U(10)⊕ Z10 is not cyclic because

gcd(|U(10)|, |Z10|) 6= 1.

We see that |U(10)| = 4, |Z10| = 10, and |U(10) ⊕ Z8| = 40. An element

in U(10) has order one, two, or four. An element in Z10 has order one, two,

five, or ten. Thus, it is impossible to choose a ∈ U(10) and b ∈ Z10 such that

|(a, b)| = lcm(|a|, |b|) > 20. 3

The following corollary applies Theorem 8.1.7 to the groups of integers under

modular arithmetic. Its proof is left as an exercise.

Corollary 8.1.10. Let k = m1m2 · · ·mn for natural numbers m1,m2, . . . ,mn.

Then

Zk ≈ Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn

if and only if mi and mj are relatively prime for all i 6= j.

Example 8.1.11. The groups Z14 and Z2⊕Z7 are isomorphic because |Z2|
and |Z7| are relatively prime. 3

Example 8.1.12. The prime decomposition of 105 is 105 = 3 · 5 · 7. Thus,

we know Z105 ≈ Z3⊕Z5⊕Z7. Further, by Corollary 8.1.10, these groups are
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also isomorphic the following groups.

Z105 ≈ Z3 ⊕ Z5 ⊕ Z7

≈ Z15 ⊕ Z7

≈ Z21 ⊕ Z5

≈ Z35 ⊕ Z3

3

The contrapositive of Corollary 8.1.10 is particularly useful. Consider the

example below.

Example 8.1.13. All of the following groups have order sixteen, though

only one of them is cyclic. By Corollary 8.1.10, none of these groups are

isomorphic.

• Z16

• Z2 ⊕ Z8

• Z4 ⊕ Z4

• Z2 ⊕ Z2 ⊕ Z4

• Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2

3

Consider the following example about some groups of units.

Example 8.1.14. Consider U(20) = {1, 3, 7, 9, 11, 13, 17, 19}. We know

that 20 has prime decomposition 20 = 22 · 5, thus we also consider U(4) =
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{1, 3} and U(5) = {1, 2, 3, 4}. Below is a table of each element in U(20), and

the equivalence of that element in U(4) and U(5).

x ∈ U(20) x mod 4 x mod 5

1 1 1

3 3 3

7 3 2

9 1 4

11 3 1

13 1 3

17 1 2

19 3 4

There are many patterns to notice. Every element in U(20) reduces to an

element in U(4) and U(5). Further, the eight elements in U(20) reduce into

four copies of U(4) and two copies of U(5). 3

This example is generalized in the theorem below.

Theorem 8.1.15. Let k = m1m2 · · ·mn for natural numbers m1,m2, . . . ,mn.

If mi and mj are relatively prime for all i 6= j, then

U(k) ≈ U(m1)⊕ U(m2)⊕ · · · ⊕ U(mn).

Proof. We proceed by induction on n. When n = 1, it follows that U(m1) ≈
U(m1). Now, consider when n = 2. To prove that U(m1m2) and U(m1) ⊕
U(m2), we need to find an isomorphism linking the two groups. Let x ∈
U(m1m2) and consider the function φ : U(m1m2) → U(m1) ⊕ U(m2) given

by

φ(x) = (x mod m1, x mod m2).



218 CHAPTER 8. CONSTRUCTING GROUPS

The proof that this function is indeed an isomorphism is left as an exercise.

The remaining proof by induction is also left as an exercise.

EXERCISES

Exercise 8.1.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a. For cyclic groups G and G′, G⊕G′ is cyclic.

Exercise 8.1.2. Prove Theorem 8.1.4.

Exercise 8.1.3. Find all of the subgroups of order two in Z2 ⊕ Z2 ⊕ Z2.

Exercise 8.1.4.s Find two distinct subgroups of order twenty in Z50⊕Z60.

Exercise 8.1.5. Find two distinct subgroups of order twelve in Z30 ⊕ Z40.

Exercise 8.1.6. Let G and G′ be groups with identities e ∈ G and e′ ∈ G′.
Prove that G ≈ G⊕ {e′}.

Exercise 8.1.7. Suppose G, G′, H, and H ′ are groups such that G ≈ G′

and H ≈ H ′. Prove that G⊕H ≈ G′ ⊕H ′.

Exercise 8.1.8. Determine if the following groups are cyclic.

a. Z2 ⊕ Z2

b. Z2 ⊕ Z3

c. S3 ⊕ Z3

d. U(10)⊕ U(12)

Exercise 8.1.9. For groups G and G′, conjecture when G ⊕ G′ is Abelian.

Prove your conjecture.



8.1. EXTERNAL DIRECT PRODUCTS 219

Exercise 8.1.10. Are the groups D3 and Z3 ⊕ Z2 isomorphic? Prove your

conjecture.

Exercise 8.1.11. Is Z⊕ Z cyclic? Prove your conjecture.

Exercise 8.1.12. Consider the group Z15 ⊕ Z25.

a. What are all of the orders of its elements?

b. Is Z15 ⊕ Z25 cyclic? Why or why not?

Exercise 8.1.13. Consider the group Z12 ⊕ Z15.

a. Determine the number of elements of order 3 in Z12 ⊕ Z15.

b. Determine the number of cyclic subgroups of order 3 in Z12 ⊕ Z15.

Exercise 8.1.14. Consider the group Z20 ⊕ Z50.

a. Determine the number of elements of order 10 in Z12 ⊕ Z15.

b. Determine the number of cyclic subgroups of order 10 in Z12 ⊕ Z15.

Exercise 8.1.15. Are the groups Z8 ⊕ Z2 and Z4 ⊕ Z4 isomorphic? Prove

your conjecture.

Exercise 8.1.16. Complete the proof of Theorem 8.1.7.

Exercise 8.1.17. Prove Corollary 8.1.10.

Exercise 8.1.18. For each of the following, use Corollary 8.1.10 to find all

of the isomorphic decompositions of Zn.

a. n = 30

b. n = 60

c. n = 120

Exercise 8.1.19. Classify all cyclic groups of order 12. For each distinct

group, find its generators.
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Exercise 8.1.20. Prove that the function φ : U(m1m2) → U(m1) ⊕ U(m2)

given by

φ(x) = (x mod m1, x mod m2).

in the proof of Theorem 8.1.15 is an isomorphism.

Exercise 8.1.21. Prove that U(55) ≈ U(75). (Hint: Do not find an iso-

morphism.)

Exercise 8.1.22. Let G and H be groups. Prove that G⊕H ≈ H ⊕G.

Exercise 8.1.23. Finish the proof of Theorem 8.1.15.

8.2 Normal Subgroups

As we saw in Section 7.1, given a coset representative, the left coset is not

necessarily equal to the right coset. There are certain subgroups, though,

that do produce left and right cosets that are equal. We now study this

phenomenon, as these subgroups will play an important role in developing

new groups and understanding isomorphisms.

Definition 8.2.1. Let G be a group. A subgroup H is normal if aH = Ha

for all a ∈ G. The normal subgroup relationship is denoted H C G.

Example 8.2.2. Every subgroup in an Abelian group is normal. For every

coset representative a ∈ G and every h in subgroup H, ah = ha, thus

aH = Ha. 3

Example 8.2.3. Given a group G, its center, Z(G), is a normal subgroup.

For every coset representative a ∈ G and every z ∈ Z(G), az = za because
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Z(G) is the subgroup of all elements in G that commute with all elements in

G. 3

Example 8.2.4. Let G = S4 and H = {e, (12)(34), (13)(24), (14)(23)}.
The index of H in G is |G : H|/|H| = 24/4 = 6, thus we expect to find six

cosets of H in G. Through calculation, we determine that

H = {e, (12)(34), (13)(24), (14)(23)}

(12)H = {(12), (34), (1324), (1423)}

(13)H = {(13), (1234), (24), (1432)}

(14)H = {(14), (1243), (1342), (23)}

(23)H = {(23), (1342), (1243), (14)}

(24)H = {(24), (1432), (13), (1234)}

Through calculation, we determine that

H = {e, (12)(34), (13)(24), (14)(23)}

H(12) = {(12), (34), (1423), (1324)}

H(13) = {(13), (1432), (24), (1234)}

H(14) = {(14), (1342), (1243), (23)}

H(23) = {(23), (1243), (1342), (14)}

H(24) = {(24), (1234), (13), (1432)}

Thus, for every a ∈ S4, aH = Ha, which means that H is a normal subgroup

of S4. 3

The definition of normal only requires that a coset representative creates the
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same left coset as right coset. The definition does not require that the coset

representative creates the same coset elements in the same order. That is,

for coset representative a and subgroup H, the definition requires aH = Ha,

but it does not require that ah = ha for all h ∈ H. Consider the example

below.

Example 8.2.5. In Example 8.2.4, we found that S4 has normal subgroup

H = {e, (12)(34), (13)(24), (14)(23)}. Consider the coset representative a =

(12) and the cosets it generates, shown below.

(12)H = {(12)e, (12)(12)(34), (12)(13)(24), (12)(14)(23)}

= {(12), (34), (1324), (1423)}

H(12) = {e(12), (12)(34)(12), (13)(24)(12), (14)(23)(12)}

= {(12), (34), (1423), (1324)}

Consider h = (13)(24) ∈ H. In (12)H, ah = (12)(13)(24) = (1324). In

H(12), ha = (13)(24)(12) = (1423). Thus, we see that ah 6= ha for some

h ∈ H. Nonetheless, H C S4, because aH = Ha for all coset representatives

a ∈ S4. 3

Non-Example 8.2.6. LetG = S4 andK = {e, (12), (34), (12)(34)}. Through

calculation, we determine that

(13)K = {(13), (123), (134), (1234)}

K(13) = {(13), (132), (143), (1432)}

Thus, we have found an a ∈ S4 such that aK 6= Ka, therefore, K is not a

normal subgroup of S4. 3

The theorem below gives an equivalent definition of a normal subgroup.

Theorem 8.2.7. Let G be a group and H a subgroup of G. Then H is
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normal in G if and only if aHa−1 ⊆ H for all a ∈ G.

Proof. Let G be a group and H a subgroup of G. First, assume H is normal

in G. Thus, for every h ∈ H, there exists an h′ ∈ H such that ah = h′a.

Hence, aha−1 = h′ ∈ H for all h ∈ H. Therefore, aHa−1 ⊆ H.

Second, assume aHa−1 ⊆ H for all a ∈ G. Then, for every h ∈ H, there exists

an h′ ∈ H such that aha−1 = h′. Hence, ah = h′a ∈ Ha, thus aH ⊆ Ha.

Similarly, when aha−1 = h′, ha−1 = a−1h′ ∈ a−1H, thus Ha−1 ⊆ a−1H. This

true for all a ∈ G, including a−1. Therefore, aH = Ha, which means that H

is normal in G.

Below, we reconsider Non-Example 8.2.6 to better understand how to use

Theorem 8.2.7.

Example 8.2.8. Let G = S4 and K = {e, (12), (34), (12)(34)}, as in Non-

Example 8.2.6. For coset representative (13), we see that

(13)K(13)−1 = (13)K(13)

= {(13)e(13), (13)(12)(13), (13)(34)(13), (13)(12)(34)(13)}

= {e, (23), (14), (14)(23)}

which is not a subset of K. Therefore, K is not a normal subgroup of S4. 3

Theorem 8.2.7 gives us an alternative way to test if a subgroup is normal.

Like with many of our previous concepts, we will test our knowledge in two

types of subgroup calculations: 1) the subgroup is given explicitly and 2) the

subgroup is given in set-builder notation. In practice, we find the following.

• When working with a subgroup given in set-builder notation, Theorem

8.2.7 will be useful to determine whether or not a subgroup is normal.
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This is because Theorem 8.2.7 only requires one calculation.

• When working with a subgroup given explicitly, this theorem is par-

ticularly useful for showing a subgroup is not normal. This is because

Theorem 8.2.7 requires only one calculation to conclude that a sub-

group is not normal. Comparatively, when using the definition, we

must perform two calculations to determine that the subgroup was not

normal, as in Non-Example 8.2.6.

• When working with a subgroup given explicitly, Theorem 8.2.7 is might

not be as useful as the definition of normal. This is because, using the

definition, for group G and subgroup H, we only must perform 2|G : H|
calculations to determine that the subgroup is normal. When using

Theorem 8.2.7, we may have to perform |G| calculations.

Below is an example of how to use the definition to prove that a subgroup is

normal.

Theorem 8.2.9. The intersection of two normal subgroups is normal.

Proof. Let G be a group with normal subgroups M and N . Take a ∈M ∩N .

By Exercise 7.1.12,

a(M ∩N) = aM ∩ aN.

By the definition of normal, aM ∩ aN = Ma ∩ Na, and by Exercise 7.1.12

again, Ma ∩Na = (M ∩N)a. Hence, M ∩N is normal in G.

Below is an example of how to use Theorem 8.2.7 to prove that a subgroup

given in set-builder notation is normal.

Theorem 8.2.10. Let φ be a homomorphism from group G to group G′.

1. If N is a normal subgroup of G, then φ(N) is a normal subgroup of

φ(G).
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2. If N ′ is a normal subgroup of G′, then φ−1(N ′) is a normal subgroup

of G.

3. The kernel of φ is a normal subgroup of G.

Proof. Let φ be a homomorphism from group G to group G′. The proof of

the first property is left as an exercise.

Now assume N ′ is a normal subgroup of G′. We know that

φ−1(N ′) = {n ∈ G |φ(n) ∈ φ(N ′)}.

Take a ∈ G. Then

aφ−1(N ′)a−1 = {ana−1 |φ(n) ∈ φ(N ′)}.

By the definition of homomorphism,

φ(ana−1) = φ(a)φ(n)φ(a−1) = φ(a)φ(n)φ(a)−1.

Recall that φ(n) ∈ N ′. By Theorem 8.2.7, g′N ′(g′)−1 ⊆ N ′ for all g′ ∈ G′.
Taking, g′ = φ(a) ∈ G′, we see that φ(a)φ(n)φ(a)−1 ∈ N ′. Hence, ana−1 ∈
φ−1(N ′). Thus, aφ−1(N ′)a−1 ⊆ φ−1(N ′), and by Theorem 8.2.7, φ−1(N ′) is

normal in G.

The subgroup {e′}, where e′ ∈ G′ is the identity, is normal in G′. By the

second property,

φ−1({e′}) = {n ∈ G |φ(n) = e′} = ker(φ)

is normal in G.

The following definition relates to normal subgroups.
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Definition 8.2.11. A group is simple if its only normal subgroups are the

trivial subgroup and the group itself.

Example 8.2.12. The group Z5 is simple because it has no proper sub-

groups, let alone proper normal subgroups. The group Z6 is not simple

because H = {0, 2, 4} is a proper subgroup of Z6, and Z6 is Abelian. 3

In a sense, simple groups serve as building blocks for more complicated

groups. Further study of simple groups requires more advanced abstract

algebra, material that might be covered in a second or third semester.

EXERCISES

Exercise 8.2.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let G be a group and H a subgroup of G.

a. A group has a normal subgroup.

b. A group has a nontrivial normal subgroup.

c. If N C G, then ng = gn for all n ∈ N and all g ∈ G.

d. If N C G, then N C H.

e. If N C H, then N C G.

f. If a ∈ G, then aHa−1 ⊆ H.

g. If G is Abelian, then H C G.

h. Z(G) C G

i. If M,N C G, then M ∪N C G.

j. If M,N C G, then M ∩N C G.

Exercise 8.2.2. Revisit Examples 7.1.1 through 7.1.10. Determine which

examples are about normal subgroups and which examples are about sub-

groups that are not normal.
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Exercise 8.2.3. Let G be a group with subgroup H. Prove that if each left

coset of H is equal to some right coset of H, then H is normal in G.

Exercise 8.2.4. Let n > 2 be a natural number. Prove that An C Sn.

Exercise 8.2.5. Is A3 simple? Is A4 simple?

Exercise 8.2.6. Prove that a subgroup of index two is normal.

Exercise 8.2.7. For natural number n ≥ 3, let H be the subgroup of ro-

tations in Dn. Prove that H is normal in Dn. Conclude that Dn is not

simple.

Exercise 8.2.8. Prove the first property in Theorem 8.2.10.

Exercise 8.2.9. Let M be a normal subgroup of N , and let N be a normal

subgroup of G. Is M normal in G? Prove your conjecture.

Exercise 8.2.10. Consider G = Sn for natural number n ≥ 2, and let i be

a natural such that 1 ≤ i ≤ n. Is stabG(i) C G? Prove your conjecture.

Exercise 8.2.11. Let G be a group with subgroup H. Prove that H C

N(H).

8.3 Quotient Groups

Now we begin the study of groups created by “dividing groups,” or quotient

groups.

Definition 8.3.1. Let G be a group and N a normal subgroup of G. The

set of cosets of N in G,

G/N = {aN | a ∈ G},
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is a group under the operation (aN) ∗ (bN) = (ab)N for all a, b ∈ G. This

group is called the quotient group of G by N .

Before we prove that the quotient group is indeed a group, we study some

examples.

Example 8.3.2. The subgroup 4Z is a normal subgroup of Z because Z is

Abelian. Note that the operation in Z is addition, thus we write the cosets

additively. The quotient group of Z by 4Z is

Z/4Z = {4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}.

The operation of addition modulo 4 is performed on the coset representatives.

The Cayley tables of Z/4Z is shown below.

Z/4Z 4Z 1 + 4Z 2 + 4Z 3 + 4Z
4Z 4Z 1 + 4Z 2 + 4Z 3 + 4Z

1 + 4Z 1 + 4Z 2 + 4Z 3 + 4Z 4Z
2 + 4Z 2 + 4Z 3 + 4Z 4Z 1 + 4Z
3 + 4Z 3 + 4Z 4Z 1 + 4Z 2 + 4Z

Look familiar? 3

Example 8.3.3. The group U(20) has normal subgroup 〈11〉. Below is the

quotient groups they create.

U(20)/〈11〉 = {〈11〉, 3〈11〉, 7〈11〉, 9〈11〉}

To which group is U(20)/〈11〉 isomorphic? 3

The example below begins to illustrate a difficulty when using cosets in com-



8.3. QUOTIENT GROUPS 229

putations.

Example 8.3.4. Consider the quotient group in Example 8.3.2. Each coset

is infinite, hence there are an infinite number of coset representatives for each

coset, thus, we could instead represent the quotient group as

Z/4Z = {−12 + 4Z, 17 + 4Z, 30 + 4Z, 11 + 4Z}.

Continuing to choose less-than-helpful coset representatives, we could display

the Cayley table of Z/4Z as shown below.

Z/4Z −12 + Z 17 + 4Z 30 + 4Z 11 + 4Z
−12 + Z 60 + 4Z 61 + 4Z 62 + 4Z 63 + 4Z
17 + 4Z −19 + 4Z −18 + 4Z −17 + 4Z −16 + 4Z
30 + 4Z 202 + 4Z 203 + 4Z 204 + 4Z 205 + 4Z
11 + 4Z 3 + 4Z 4 + 4Z 1 + 4Z 2 + 4Z

It may not be initially intuitive that (−12 + 4Z) + (17 + 4Z) = 61 + 4Z and

that this coset is indeed the same coset as (17+4Z)+(−12+4Z) = −19+4Z.

Judging from the Cayley table alone, it does not appear that the group Z/4Z
is Abelian. Moreover, judging from the Cayley table alone, it does not appear

that Z/4Z is a group at all. 3

The potential difficulty with coset computations arises because there are

multiple ways to represent a single coset. Recall that a binary operation on

a set S is a function from S × S to S. This leads us the following definition.

Definition 8.3.5. An assignment is well-defined if, for each input, it yields

the same output, regardless of the representation of the input.
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A function is well-defined, thus you have seen many examples of well-defined

assignments before. Therefore, we begin with some non-examples.

Non-Example 8.3.6. Consider the sets A = {0, 1, 2, 3, 4}, B = {3, 4, 5, 6},
and C = {0, 1, 2, 3, 4, 5, 6}. For c ∈ C, the assignment

f(c) =

0 c ∈ A

1 c ∈ B

is not well-defined. Consider c = 3. When considering 3 ∈ A, it may seem as

though f(3) = 0. When considering 3 ∈ B, it may seem as though f(3) = 1.

Thus, the assignment f is not well-defined. 3

Non-Example 8.3.7. Consider the quotient group Z/4Z. The assignment

f : Z/4Z → Z12 given by f(x + 4Z) = 2x is not well-defined. The element

2 + 4Z in Z/4Z can also be represented as 6 + 4Z. The assignment f acts on

this coset in the following ways.

f(2 + 4Z) = 2 · 2 = 4 ∈ Z12

f(6 + 4Z) = 2 · 6 = 0 ∈ Z12

Therefore, even though 2 + 4Z = 6 + 4Z, f(2 + 4Z) 6= f(6 + 4Z). Therefore,

the assignment f is not well-defined. 3

As we began to see in Non-Examples 8.3.6 and 8.3.7, an assignment is not

well-defined if it assigns one input to more than one output. Recall the

following types of assignments, and let n > 1 be a natural number.

• A homomorphism can be n-to-one.

• An isomorphism is one-to-one.

• A not well-defined assignment is one-to-n for at least one input.
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In practice, when working with elements that have multiple representations,

like cosets, we must verify that any assignment we create is well-defined. To

do this, assume two distinct representations of the input and prove that the

two forms of the output are equal. Below, we give an example of how this

proof technique fails in when the assignment is not well-defined.

Non-Example 8.3.8. Revist the assignment f in Non-Example 8.3.7. Con-

sider the element x+4Z and its alternative representation y+4Z where x 6= y.

Then f(x + 4Z) = 2x and f(y + 4Z) = 2y. By assumption, x 6= y, thus 2x

does not necessarily equal 2y. 3

The proof of the lemma below includes an example of how to prove an as-

signment is well-defined.

Lemma 8.3.9. Let G be a group and N a normal subgroup of G. For all

a, b ∈ G, the operation (aN) ∗ (bN) = (ab)N is well-defined.

Proof. Let G be a group and N a normal subgroup of G. If N is the trivial

subgroup, then (aN) ∗ (bN) = (ab)N holds because a ∗ b = ab.

Now assume |N | > 1. Take elements a, a′, b, b′ ∈ G such that aN = a′N and

bN = b′N , yet a 6= a′ and b 6= b′. As a subgroup, the identity e is in N , thus

ae = a = a′n1 and be = e = b′n2 for some n1, n2 ∈ N . Taking the element ab

as a coset representative, we see that

(ab)N = (a′n1)(b
′n2)N = a′(n1b

′)n2N = a′(n1b
′)N

because n2 ∈ N . Note that n1b ∈ Nb = bN because N is normal. Therefore,

n1b
′ = b′n3 for some n3 ∈ N , which allows us to continue rewriting the coset

as

a′(n1b
′)N = a′(b′n3)N = (a′b′)N.

In conclusion, the cosets (ab)N and (a′b′)N are equal, which proves that the
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operation is well-defined.

Lemma 8.3.9 provides the tool we need to prove that the quotient group is

indeed a group.

Theorem 8.3.10. Let G be a group and N a normal subgroup of G. The

quotient group G/N is a group under the operation (aN) ∗ (bN) = (ab)N for

all a, b ∈ G.

Proof. Let G be a group, N a normal subgroup of G, and a, b ∈ G where e is

the identity. In Lemma 8.3.9, we verified that the operation is well-defined.

By the construction of the operation, (aN) ∗ (bN) = (ab)N , and abN is a

coset of N in G, thus the operation is closed.

Consider cosets aN, bN, cN ∈ G/N . Then

(aN ∗ bN) ∗ cN = (abN) ∗ cN

= (ab)cN

= a(bc)N

= aN ∗ (bcN)

= aN ∗ (bN ∗ cN)

because G is associative.

By definition of a group, G has an identity, say e. Then, for all a ∈ G,

(aN) ∗ (eN) = (ae)N = aN , and similarly, (eN) ∗ (aN) = aN . Therefore,

eN = N is the identity of G/N . By definition of a group, for all a ∈ G,

a−1 ∈ G. Then, (aN) ∗ (a−1N) = (aa−1)N = N , thus a−1N = (aN)−1.

Given a normal subgroup N in group G, we now know that G/N is a group.

This means that, for coset representative a ∈ G, aN plays two roles:
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1. The set aN is a coset, thus |aN | represents the number of elements in

the coset aN .

2. The set aN is a group element, thus |aN | represents the order of the

element aN in the quotient group G/N .

We will use both writing and mathematical context to determine how to

interpret |aN |. Consider the examples below.

Example 8.3.11. The subgroup 〈4〉 is normal in the group Z24. We know

that |〈4〉| = 6 and |Z24/〈4〉| = 4. Consider the coset 3 + 〈4〉. The notation

|3 + 〈4〉| has the following interpretations.

1. As a coset, 3 + 〈4〉 = {3, 7, 11, 15, 19, 23}, thus |3 + 〈4〉| = 6.

2. As an element in the quotient group Z24/〈4〉, we see that

〈3 + 〈4〉〉 = {3 + 〈4〉, 2 + 〈4〉, 1 + 〈4〉, 〈4〉},

thus |3 + 〈4〉| = 4.

3

Example 8.3.12. The subgroup 〈4〉 is normal in the group Z. We know

that |〈4〉| is infinite and |Z/〈4〉| = 4. Consider the coset 3+〈4〉. The notation

|3 + 〈4〉| has the following interpretations.

1. As a coset, 3+ 〈4〉 = {. . . ,−5,−1, 3, 7, 11, . . .}, thus |3+ 〈4〉| is infinite.

2. As an element in the quotient group Z/〈4〉, we see that

〈3 + 〈4〉〉 = {3 + 〈4〉, 2 + 〈4〉, 1 + 〈4〉, 〈4〉},

thus |3 + 〈4〉| = 4.
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Thus, the interpretation of |3 + 〈4〉| can yield both a finite order and an

infinite order. 3

As we will see, quotient groups yield many powerful results. Below are a few.

Theorem 8.3.13. Let G be a group with center Z(G). If G/Z(G) is cyclic,

then G is Abelian.

Proof. Let G be a group and assume G/Z(G) is cyclic. Thus, there exists

some element aZ(G) ∈ G/Z(G) such that G/Z(G) = 〈aZ(G)〉. Taking g ∈ G
to be a coset representative, there exists some i ∈ Z such that gZ(G) =

(aZ(G))i = aiZ(G). Hence, g = aiz for some z ∈ Z(G). By the definition of

center, z commutes with all elements, ergo

ga = aiza = aiaz = aaiz = ag,

therefore g ∈ C(a). By assumption, g ∈ G is arbitrary, thus G ⊆ C(a). This

implies that a ∈ Z(G), which implies that aZ(G) = Z(G).

Recall that aZ(G) is the generator of G/Z(G) and Z(G) is the identity

element of G/Z(G). Thus, |G/Z(G)| = 1. This implies that G = Z(G).

Therefore, G is Abelian.

In the next example, we use the contrapositive of Theorem 8.3.13.

Example 8.3.14. We know that D4 is non-Abelian, thus by Theorem

8.3.13, D4/Z(D4) is not cyclic. We verify this by calculating all of the cosets
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of Z(D4) below.

Z(D4) = {R0, R180}

R90Z(D4) = {r90, R270}

HZ(D4) = {H,V }

DLZ(D4) = {DL, DR}

Notice that |D4/Z(D4)| = 4 and each non-identity element in D4/Z(D4) has

order two. Therefore, no element in D4/Z(D4) is a generator.

Also notice that D4/Z(D4) categorizes the movements of D4. This is another

example of how the partitions cosets form highlight some structure of the

original group. 3

The proof of the theorem below provides a good example of how quotient

groups can be helpful in calculations and proofs.

Theorem 8.3.15 (Cauchy’s Theorem for Abelian Groups). Let G be an

Abelian group of order n, and let p be a prime divisor of n. Then G has an

element of order p.

Proof. Let G be a finite Abelian group. If |G| = 2, then its nonidentity

element has order two. If |G| = 3, then by Exercise 5.2.26, G is cyclic, and

its nonidentity elements have order three. We proceed by induction. Assume

|G| = n, p is a prime that divides n, and each group of order less than n has

an element of order p.

Let g 6= e ∈ G. Then |g| > 1 and |g| has a prime factor. Suppose |g| = mq

for m, q ∈ N and q is prime. Then |gm| = q. Thus, we may conclude that G

has an element of prime order.

Let a ∈ G be an element of prime order. If |a| = p, then a is an element in
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G of order p. Assume |a| 6= p, say |a| = r where r is prime. We know that

G is Abelian, thus all of its subgroups are normal. Therefore, G/〈a〉 is an

Abelian group. Moreover, p divides |G|, and because |〈a〉| = r 6= p, p must

also divides |G/〈a〉|. By the inductive hypothesis, G/〈a〉 has an element of

order p, say b〈a〉 for b ∈ G.

If |b〈a〉| = p, then (b〈a〉)p = bp〈a〉 = e〈a〉 = 〈a〉. This implies that bp ∈ 〈a〉.
If bp = e ∈ 〈a〉, then b ∈ G is an element of order p.

Suppose bp 6= e ∈ 〈a〉. Recall that |〈a〉| = r where r is prime. Thus, |bp| = r.

Therefore, br has order p.

EXERCISES

Exercise 8.3.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let G be a group and H a subgroup of G.

a. The set G/H is a group.

b. The set G/G is a group.

Exercise 8.3.2. For each of the following quotient groups, make a Cayley

table and then determine to which familiar group the group is isomorphic.

(You do not need to prove the two groups are isomorphic.)

a. Z/6Z
b. D3/〈(123)〉
c. U(40)/〈27〉

Exercise 8.3.3. Let f : Z/10Z → Z50 be given by f(x + 10Z) = x. Is this

assignment well-defined? If so, prove it. If not, find a counterexample.

Exercise 8.3.4. In the definition of a quotient group, why is the condition

that the subgroup is normal necessary? If the subgroup is not normal, what

happens?
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Exercise 8.3.5. The groups 〈5〉 and 〈20〉 are subgroups of Z. Prove that

〈5〉/〈20〉 ≈ Z4.

Exercise 8.3.6. Let H = {e, (13)(24)} ≤ A4.

a. Prove that H is not normal.

b. Prove that the set of cosets of H in A4 is not a group.

Exercise 8.3.7. Let G be a group with normal subgroup N . For each of

the following, compute the order of the element g ∈ G/N .

a. 9 + 〈12〉 in Z/〈12〉
b. 19〈5〉 in U(28)/〈5〉
c. (12)〈(123)〉 in S4/〈123〉
d. 11 + 〈42〉 in Z60/〈42〉
e. (1, 1)〈(3, 3)〉 in Z6 ⊕ U(8)/〈(3, 3)〉

Exercise 8.3.8. For group G with normal subgroup N , prove the following

about G/N .

a. If G is Abelian, then G/N is Abelian.

b. If G is cyclic, then G/N is cyclic.

Exercise 8.3.9. Let G be a group with normal subgroups M and N . If

M ≈ N , must G/M be isomorphic to G/N? Prove your conjecture.

Exercise 8.3.10. Let G = U(16), M = 〈15〉, and N = 〈9〉. Are M and N

isomorphic? Are G/M and G/N isomorphic?

Exercise 8.3.11. Let p and q be distinct prime numbers. Prove that an

Abelian group of order pq is cyclic.

Exercise 8.3.12. The groups below are isomorphic to either Z8, Z4 ⊕ Z2,

or Z2 ⊕ Z2 ⊕ Z2. Determine to which group each quotient group is

isomorphic and justify your claim.

a. Z4 ⊕ Z12/〈(2, 10)〉
b. U(32)/〈31〉
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8.4 The Isomorphism Theorems

A common theme you may have noticed throughout your mathematics edu-

cation is that after learning how to use a definition, we often create new ways

to show a definition holds without having to individually prove each piece

of the definition. In this section, we will study some theorems that allow us

ways to conclude two groups are isomorphic without having to construct an

isomorphism between them.

Example 8.4.1. Revisit Example 6.1.10. The map φ : Z20 → Z4 defined

by φ(x) = x mod 4 is a homomorphism with kernel

ker(φ) = {0, 4, 8, 12, 16} = 〈4〉 ≤ Z20.

We see that the quotient group Z20/ ker(φ) is

Z20/ ker(φ) = {〈4〉, 1 + 〈4〉, 2 + 〈4〉, 3 + 〈4〉}.

We will see that Z20/ ker(φ) ≈ φ(Z20) ≈ Z4. 3

Example 8.4.2. The map φ : Z40 → Z10 defined by φ(x) = 2x mod 10 is

a homomorphism with kernel

ker(φ) = {0, 5, 10, 15, 20, 25, 30, 35} = 〈5〉 ≤ Z40.

We see that the quotient group Z40/ ker(φ) is

Z40/ ker(φ) = {〈5〉, 1 + 〈5〉, 2 + 〈5〉, 3 + 〈5〉, 4 + 〈5〉}.

Notice that φ only maps elements of Z40 to the evens in Z10, that is

φ(Z40) = {0, 2, 4, 6, 8} = 〈2〉 ≤ Z10.
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We will see that Z40/ ker(φ) ≈ φ(Z40) ≈ Z5. 3

In Theorem 8.2.10, we saw that the kernel of a homomorphism is a normal

subgroup. In Section 8.3, we studied how quotient groups can be isomorphic

to other, non-quotient, groups. Now, we put these two ideas together and

see that when the quotient group is constructed with using a kernel, a very

specific group to which the quotient group is isomomorphic is the image.

This idea is summarized and formalized below.

Theorem 8.4.3 (The First Isomorphism Theorem ). Let G and G′ be groups

and φ : G → G′ a homomophism. Then G/ ker(φ) ≈ φ(G) is an isomor-

phism.

Proof. Let ψ : G/ ker(φ)→ φ(G) be defined by ψ(g ker(φ)) = φ(g) for g ∈ G.

First we will show that ψ is well-defined, and then we will show that it is an

isomorphism.

0. Well-defined: Consider g ker(φ), h ker(φ) ∈ G/ ker(φ) such that g ker(φ) =

h ker(φ) and g 6= h ∈ G. By property 1 of Theorem 7.1.11, g ker(φ) =

h ker(φ) if and only if φ(g) = φ(h). Notice that

φ(g) = ψ(g ker(φ)) = ψ(h ker(φ)) = φ(h)

by definition of ψ. Therefore, ψ maps distinct representations of the

same coset to the same element in φ(G), hence ψ is well-defined.

1. Operation-preserving: Take g ker(φ), h ker(φ) ∈ G/ ker(φ). Then

ψ(g ker(φ) ∗ h ker(φ)) = ψ(g ∗ h ker(φ))

by the definition of the operation on the quotient group. Further,

ψ(g ∗ h ker(φ)) = φ(g ∗ h)
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by the definition of ψ. Recall that φ is a homomorphism and therefore

preserves the operation, yielding

φ(g ∗ h) = φ(g) ∗ φ(h).

Once again, by the definition of ψ, we see that

φ(g) ∗ φ(h) = ψ(g ker(φ)) ∗ ψ(h ker(φ)).

All together, we find that

ψ(g ker(φ) ∗ h ker(φ)) = ψ(g ker(φ)) ∗ ψ(h ker(φ)),

meaning that ψ preserves the operation.

2. One-to-one: Assume φ(g) = φ(h) ∈ φ(G). By property 1 of Theorem

7.1.11, this is true if and only if g ker(φ) = h ker(φ).

3. Onto: Consider the element φ(g) ∈ φ(G). Then g ker(φ) ∈ G/ ker(φ)

is the element such that ψ(g ker(φ)) = φ(g).

Therefore, G/ ker(φ) ≈ φ(G).

Recall that a homomorphism is n-to-one, where n ∈ N, and its kernel has

size n. The First Isomorphism Theorem has us place two restrictions on the

homomorphism.

1. In a sense, by using the kernel to construct the quotient group, we

are “cancelling” all of the redundancies, making the resulting function

one-to-one.
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2. By considering only the image of the homomorphism, and not neces-

sarily the full codomain, the function, we are considering is an onto

homomorphism.

The result is that the homomorphism under these restrictions is both one-

to-one and onto. Thus, the homomorphism under these restrictions is an

isomorphism. The example below illustrates this idea.

Example 8.4.4. Consider the homomophism φ : Z18 → Z6 given by φ(x) =

2x mod 6. It has kernel ker(φ) = 〈3〉 ≤ Z18 and thus is a six-to-one mapping.

The quotient group

Z18/ ker(φ) = {〈3〉, 1 + 〈3〉, 2 + 〈3〉}

has order three. In a sense, when we “divide” a group of order eighteen by a

group of order six, we create a group of order three. Thus, the domain of our

six-to-one mapping becomes restricted to the first three elements, reducing

our six-to-one mapping down to a one-to-one mapping.

Let φ|{0,1,2} denote the mapping φ restricted to the set {0, 1, 2}.

Below is an illustration of the mapping of φ. The darker lines represent

the mapping of φ|{0,1,2}. They emanate from the three coset representatives,

showing that the mapping applied to the reduction Z18/ ker(φ) is indeed

one-to-one.

Notice that neither φ nor φ|{0,1,2} is onto. Thus, in order to make these

functions onto, we must consider these functions as mapping to image φ(Z18)

instead of the codomain Z6.
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Below is an example of how to use the First Isomorphism Theorem.

Example 8.4.5. We will prove that GL(2,R)/SL(2,R) ≈ R∗. Previously,

we would have done this by fulfilling the definition of isomorphism. To do

that, we could have had to calculate the cosets, find a function, and then

show that the function is well-defined, one-to-one, onto, and preserves the

operation. Instead, we’ll use the First Isomorphism Theorem. We’ll find a

homomorphism that maps from GL(2,R) to R∗ with kernel SL(2,R).
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The identity of R∗ is 1 ∈ R∗, thus we need to find a function that maps

SL(2,R) to 1 ∈ R∗. Noting that all elements in SL(2,R) have determinant

one, we choose the function φ : GL(2,R)→ R∗ defined by φ(A) = det(A) for

all A ∈ GL(2,R). Therefore, ker(φ) = SL(2,R). Notice that all elements in

GL(2,R) have nonzero determinant, and, moreover, all other real values are

determinants of matrices in GL(2,R). Therefore, φ(GL(2,R)) = R∗. By the

First Isomorphism Theorem, GL(2,R)/SL(2,R) ≈ R∗.

Additionally, this tells us that we can treat the cosets in GL(2,R)/SL(2,R)

as nonzero real numbers, and we did not have to perform any coset compu-

tations. 3

The First Isomorphism Theorem offers more insight into the behavior of both

homomorphisms and isomorphisms. The proofs of the corollaries below are

left as exercises.

Corollary 8.4.6. Let G and G′ be finite groups. If φ : G → G′ is a homo-

morphism, then |φ(G)| divides |G| and |G′|.

Corollary 8.4.7. For natural number n ≥ 2, Z/〈n〉 ≈ Zn.

In the Theorem 8.2.10, we see that the kernel of a homomorphism is a normal

subgroup. Below is the converse of this property.

Theorem 8.4.8. Every normal subgroup of a group G is a kernel of a ho-

momorphism of G.

Proof. LetG be a group andN a normal subgroup ofG. Define φ : G→ G/N

as φ(x) = xN for x ∈ G. The identity of G/N is the coset N . By the
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definition of φ and property 2 of Theorem 7.1.6,

ker(φ) = {g ∈ G |φ(g) ∈ N}

= {g ∈ G | gN ∈ N}

= {g ∈ G | g ∈ N}

= N.

Therefore, N is the kernel of the homomorphism φ.

Of course, when creating delightful quotient groups, we can continue to get

more complicated. Below is an example of how to compute a nested quotient

group.

Example 8.4.9. In Z, 12Z and 3Z are normal subgroups and 12Z is a sub-

group of 3Z. We will calculate the nested quotient group (Z/12Z)/(3Z/12Z).

First, we see

Z/12Z = {12Z, 1 + 12Z, 2 + 12Z, . . . , 11 + 12Z}.

By calculation, we see that

3Z/12Z = {12Z, 3 + 12Z, 6 + 12Z, 9 + 12Z}.
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Therefore, by definition, the cosets in (Z/12Z)/(3Z/12Z) are

(Z/12Z)/(3Z/12Z) = {g + 3Z/12Z | g ∈ Z/12Z}

= {(12Z) + 3Z/12Z, (1 + 12Z) + 3Z/12Z,

(2 + 12Z) + 3Z/12Z, (3 + 12Z) + 3Z/12Z,

(4 + 12Z) + 3Z/12Z, (5 + 12Z) + 3Z/12Z,

(6 + 12Z) + 3Z/12Z, (7 + 12Z) + 3Z/12Z,

(8 + 12Z) + 3Z/12Z, (9 + 12Z) + 3Z/12Z,

(10 + 12Z) + 3Z/12Z, (11 + 12Z) + 3Z/12Z}

Recall that 3Z/12Z = {12Z, 3 + 12Z, 6 + 12Z, 9 + 12Z}. Below we show each

of these cosets explicilty.

(12Z) + 3Z/12Z = {12Z, 3 + 12Z, 6 + 12Z, 9 + 12Z}

(1 + 12Z) + 3Z/12Z = {1 + 12Z, 4 + 12Z, 7 + 12Z, 10 + 12Z}

(2 + 12Z) + 3Z/12Z = {2 + 12Z, 5 + 12Z, 8 + 12Z, 11 + 12Z}

(3 + 12Z) + 3Z/12Z = {3 + 12Z, 6 + 12Z, 9 + 12Z, 12 + 12Z}

(4 + 12Z) + 3Z/12Z = {4 + 12Z, 7 + 12Z, 10 + 12Z, 13 + 12Z}

(5 + 12Z) + 3Z/12Z = {5 + 12Z, 8 + 12Z, 11 + 12Z, 14 + 12Z}

(6 + 12Z) + 3Z/12Z = {6 + 12Z, 9 + 12Z, 12 + 12Z, 15 + 12Z}

(7 + 12Z) + 3Z/12Z = {7 + 12Z, 10 + 12Z, 13 + 12Z, 16 + 12Z}

(8 + 12Z) + 3Z/12Z = {8 + 12Z, 11 + 12Z, 14 + 12Z, 17 + 12Z}

(9 + 12Z) + 3Z/12Z = {9 + 12Z, 12 + 12Z, 15 + 12Z, 18 + 12Z}

(10 + 12Z) + 3Z/12Z = {10 + 12Z, 13 + 12Z, 16 + 12Z, 19 + 12Z}

(11 + 12Z) + 3Z/12Z = {11 + 12Z, 14 + 12Z, 17 + 12Z, 20 + 12Z}

Recall that when considering cosets of 12Z, we can reduce our representatives
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modulo 12. Therefore, our cosets are actually the following.

(12Z) + 3Z/12Z = {12Z, 3 + 12Z, 6 + 12Z, 9 + 12Z}

(1 + 12Z) + 3Z/12Z = {1 + 12Z, 4 + 12Z, 7 + 12Z, 10 + 12Z}

(2 + 12Z) + 3Z/12Z = {2 + 12Z, 5 + 12Z, 8 + 12Z, 11 + 12Z}

(3 + 12Z) + 3Z/12Z = {3 + 12Z, 6 + 12Z, 9 + 12Z, 12Z}

(4 + 12Z) + 3Z/12Z = {4 + 12Z, 7 + 12Z, 10 + 12Z, 1 + 12Z}

(5 + 12Z) + 3Z/12Z = {5 + 12Z, 8 + 12Z, 11 + 12Z, 2 + 12Z}

(6 + 12Z) + 3Z/12Z = {6 + 12Z, 9 + 12Z, 12Z, 3 + 12Z}

(7 + 12Z) + 3Z/12Z = {7 + 12Z, 10 + 12Z, 1 + 12Z, 4 + 12Z}

(8 + 12Z) + 3Z/12Z = {8 + 12Z, 11 + 12Z, 2 + 12Z, 5 + 12Z}

(9 + 12Z) + 3Z/12Z = {9 + 12Z, 12Z, 3 + 12Z, 6 + 12Z}

(10 + 12Z) + 3Z/12Z = {10 + 12Z, 1 + 12Z, 4 + 12Z, 7 + 12Z}

(11 + 12Z) + 3Z/12Z = {11 + 12Z, 2 + 12Z, 5 + 12Z, 8 + 12Z}

We have some redundant cosets listed. Notice that we have the following



8.4. THE ISOMORPHISM THEOREMS 247

partitions:

(12Z) + 3Z/12Z = (3 + 12Z) + 3Z/12Z

= (6 + 12Z) + 3Z/12Z

= (9 + 12Z) + 3Z/12Z,

(1 + 12Z) + 3Z/12Z = (4 + 12Z) + 3Z/12Z

= (7 + 12Z) + 3Z/12Z

= (10 + 12Z) + 3Z/12Z,

(2 + 12Z) + 3Z/12Z = (5 + 12Z) + 3Z/12Z

= (8 + 12Z) + 3Z/12Z

= (11 + 12Z) + 3Z/12Z.

In conclusion, we see that

(Z/12Z)/(3Z/12Z) = {(12Z) + 3Z/12Z,

(1 + 12Z) + 3Z/12Z,

(2 + 12Z) + 3Z/12Z}.

Notice that (12Z) + 3Z/12Z is the identity element of this quotient group.

Thus, the cosets in (Z/12Z)/(3Z/12Z) have representatives 0, 1, and 2. To

simplify notation, we write this quotient group and its elements as

(Z/12Z)/(3Z/12Z) = {3Z/12Z, 1 + 3Z/12Z, 2 + 3Z/12Z}.

We could continue the example by showing that (Z/12Z)/(3Z/12Z) ≈ Z3.

3

Did that seem like a lot of work? Do nested quotient groups seem like fun?
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Below is a theorem to help us simplify nested quotient groups.

Theorem 8.4.10 (Third Isomorphism Theorem). Let G be a group with

normal subgroups M and N such that N ≤M . Then

(G/N) / (M/N) ≈ G/M.

The proof of this theorem is left as an exercise. Below is an example of the

power of the Third Isomorphism Theorem.

Example 8.4.11. Revisit Example 8.4.9. Now, we’ll apply the Third Iso-

morphism Theorem, with G = Z, M = 3Z, and N = 12Z. We see that

(Z/12Z)/(3Z/12Z) ≈ Z/3Z.

By Corollary 8.4.7, Z3 ≈ Z/3Z. Thus,

(Z/12Z)/(3Z/12Z) ≈ Z3

as conjectured in Example 8.4.9. 3

EXERCISES

Exercise 8.4.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a.

Exercise 8.4.2. Use the First Isomorphism Theorem to prove that for any

group G with identity e, G/{e} ≈ G.

Exercise 8.4.3. Use the First Isomorphism Theorem to prove that for any

groups G and G′ with identities e and e′, respectively, G⊕G′/G⊕{e′} ≈ G′.
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Exercise 8.4.4. Recall that R+ is the group of positive real numbers under

multiplication. Use the First Isomorphism Theorem to prove that

R∗/{1,−1} ≈ R+.

Exercise 8.4.5. Prove Corollary 8.4.6.

Exercise 8.4.6. Prove Corollary 8.4.7.

Exercise 8.4.7. Use the First Isomorphism Theorem to prove that for dis-

tinct primes p and q, Zpq ≈ Zp ⊕ Zq.

Exercise 8.4.8. Consider the groups Z⊕ Z/〈(2, 5)〉 and Z.

a. Use the First Isomorphism Theorem to prove that Z⊕ Z/〈(2, 5)〉 ≈ Z.

b. Graph the kernel on the Z⊕ Z plane.

c. Describe the cosets in Z⊕ Z/〈(2, 5)〉 graphically.

d. Justify why Z⊕ Z/〈(2, 5)〉 ≈ Z by referencing your graph.

Exercise 8.4.9. Let G be a finite group with normal subgroup N . Prove

that the order of the group element gN ∈ G/N divides the order of the group

element g ∈ G.

Exercise 8.4.10.s Use the Third Isomorphism Theorem to determine the

elements in (Z/30Z)/(6Z/30Z).

Exercise 8.4.11. Use the Third Isomorphism Theorem to determine the

elements in (Z/20Z)/(5Z/20Z).

Exercise 8.4.12. Use the First Isomorphism Theorem to prove the Third

Isomorphism Theorem. Let φ : G/N → G/M be defined by φ(gN) = gM .
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Chapter 9

Rings

Quotes

Person

Consider the group Z and its element x. When we first began studying

groups, the notation x2 may have been confusing, because while the operation

in the group Z is addition and thus x2 = x+x, multiplication is also a binary

operation on Z. Further, Z is not the only set on which both addition and

multiplication are binary. Now, we begin to study groups with two binary

operations that behave nicely.

9.1 Introduction to Rings

Below is our first definition of a set with two binary operations. Like with

groups, we will start with a basic definition, and slowly include additional

properties.

251
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Definition 9.1.1. Let R be a set with two binary operations, addition and

multiplication. Then R is a ring if, for all a, b, c ∈ R, the following properties

hold.

1. Addition is commutative: a+ b = b+ a.

2. Addition is associative: (a+ b) + c = a+ (b+ c).

3. There exists an additive identity: ∃ 0 ∈ R such that a + 0 = a for all

a ∈ R.

4. Additive inverses exist: ∀ a ∈ R, ∃ a ∈ R such that a+ (−a) = 0.

5. Multiplication is associative: (ab)c = a(bc).

6. Distributivity holds: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

The first four properties above claim that a ring is an Abelian group under

addition. The fifth property is the only property just about multiplication.

The sixth property is distributivity, which shows us how addition and multi-

plication interact. As addition is necessarily commutative in a ring, we have

the definition below.

Definition 9.1.2. A ring is commutative if multiplication is commutative.

Perhaps what is most telling is the properties not listed in the definition,

that is, a ring is not necessarily a group under multiplication. Notice that

in Definition 9.1.1, a ring is not required to have a multiplicative identity or

multiplicative inverses. Recall that an element with a multiplicative inverse

is called a unit. This leads us to the definition below.
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Definition 9.1.3. In a ring, a nonzero element that is a multiplicative

identity is a unity.

Consider the examples below.

Example 9.1.4. The integers form a commutative ring with unity 1. No-

tice that 1 and −1 are the only units in Z, no other elements have multi-

plicative inverses. 3

Example 9.1.5. The set Z5 is a commutative ring with unity 1. All nonzero

elements are units. 3

Example 9.1.6. The set Z6 is a commutative ring with unity 1. The only

units are 1 and 5. Notice that there do not exist x, y, z ∈ Z6 such that

2x = 1, 3y = 1, or 4z = 1. 3

Example 9.1.7. The set of 2 × 2 matrices with real entries, M2(R), is a

noncommutative ring. It has unity

[
1 0

0 1

]
. There are infinitely many units

in this ring, and there are infinitely many elements without multiplicative

inverses. 3

Non-Example 9.1.8. The set of 2×2 invertible matrices with real entries,

GL(2,R), is not a ring. It does not have an additive identity. 3

Example 9.1.9.s The group Z2 ⊕ Z3 is also a ring. Observe the Cayley

table of its elements under addition:
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(Z2 ⊕ Z3, +) (0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(0, 0) (0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(1, 0) (1, 0) (0, 0) (1, 1) (0, 1) (1, 2) (0, 2)

(0, 1) (0, 1) (1, 1) (0, 2) (1, 2) (0, 0) (1, 0)

(1, 1) (1, 1) (0, 1) (1, 2) (0, 2) (1, 0) (0, 0)

(0, 2) (0, 2) (1, 2) (0, 0) (1, 0) (0, 1) (1, 1)

(1, 2) (1, 2) (0, 2) (1, 0) (0, 0) (1, 1) (0, 1)

We find that the operation is closed, as well as commutative. We also have

the additive identity (0, 0). Notice that each element has an inverse, since the

element (0, 0) appears once in each column and row. Anytime the composi-

tion of two elements creates (0, 0), the elements are inverses of one another.

Observe the Cayley table under multiplication of the nonzero elements of

Z2 ⊕ Z3:

((Z2 ⊕ Z3)
∗, ·) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(1, 0) (1, 0) (0, 0) (1, 0) (0, 0) (1, 0)

(0, 1) (0, 0) (0, 1) (0, 1) (0, 2) (0, 2)

(1, 1) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

(0, 2) (0, 0) (0, 2) (0, 2) (0, 1) (0, 1)

(1, 2) (1, 0) (0, 2) (1, 2) (0, 1) (1, 1)

We observe that the operation multiplication is closed with unity (1, 1). Thus,

Z2 ⊕ Z3 is a ring. 3

A ring is not necessarily a group under multiplication because a ring does not

necessarily have unity and thus nonzero elements are not necessarily units.
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Hence, in a ring, nonzero elements can be units and non-units. The theorem

below helps us understand how these elements interact under multiplication.

Theorem 9.1.10. Let R be a commutative ring and take a, b ∈ R such that

a is a unit and b a non-unit. Then ab is not a unit.

Proof. Let R be a commutative ring. Take a ∈ R and b ∈ R such that

a is a unit and b is a non-unit. Consider ab and suppose for the sake of

contradiction that ab is a unit. Then there exists c ∈ R such that abc = 1.

Thus, by associativity and commutativity, (ac)b = 1. Thus, by definition, b

is a unit. This is a contradiction. Therefore, by contradiction, if a and b are

a unit and non-unit, respectively, in commutative ring R, then ab is not a

unit.

Notice that we specified R is commutative. If we suppose that R is not

commutative, this statement does not always hold.

The term “order” applies to rings like it does to groups. What are the orders

of the rings in the previous examples?

Definition 9.1.11.s Let R be a ring. The order of R is the cardinality

of the set R, denoted |R|.

Notice that the following properties result from the definition of a ring,

though they are not part of the definition themselves. They may seem in-

tuitive, though they are still worth verifying. Moreover, they are new to us

because they show us how addition and multiplication interact within a ring.

Theorem 9.1.12. Let R be a ring and let a, b, c ∈ R. Then

1. a0 = 0a = 0,
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2.s. −(−a) = a

3. a(−b) = (−a)b = −(ab),

4. (−a)(−b) = ab,

Moreover, if R has unity 1, then

5. (−1)a = −a and

6. (−1)(−1) = 1.

Proof. Let R be a ring and let a, b, c ∈ R.

1. By the definition of additive identity, we know that 0 + a0 = a0 and

0 + 0 = 0. Substituting for 0, we see that a0 = a(0 + 0). Recall that R

is a group under addition, thus we may assume additive distributivity.

Therefore, a(0 + 0) = a0 + a0. By transitivity of equality, we see that

0 + a0 = a(0 + 0) = a0 + a0.

We may assume additive cancellation because R is a group under ad-

dition, thus we may cancel a0 on both sides of the equation above,

yielding

0 = a0.

A similar argument shows that 0a = 0.

2. s We know that a + (−a) = 0 by our definition of additive inverse.

Consider that the negation of (−a) will be −(−a). By definition of

the inverse, we can then assume (−a) + (−(−a)) = 0. Taking our two

equations that are both equal to zero, we can substitute for zero to find

that
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a+ (−a) = (−a) + (−(−a)).

A ring is commutative under addition, thus we may rearrange the first

equation such that

(−a) + a = (−a) + (−(−a)).

We may assume additive cancellation here because R is a group under

addition, thus we may cancel (−a) on the left of both sides of the

equation above yielding

a = (−(−a)).

Thus we get that −(−a) = a as desired.

3. When b ∈ R, we know that −b ∈ R because R is a group under

addition. By distributivity, a(−b) + ab = a(−b + b). By definition of

additive inverse, (−b) + b = 0. Thus,

a(−b) + ab = a(−b+ b) = a0 = 0.

Additing −(ab) to both sides, we see that a(−b) = −(ab), as desired.

A similar argument shows that (−a)b = −(ab)

The proofs of the remaining properties are left as exercises.

Notice that the first property shows us how the additive identity behaves

under multiplication. The rest of the properties show us how additive inverses

interact with other elements under multiplication.
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Example 9.1.13. The ring Z10 is a commutative ring with unity. Its ad-

ditive identity is 0, its unity is 1, and its units are 1, 3, 7, and 9. Below, we

give examples of the properties described in Theorem 9.1.12. Arbitrarily, let

a = 3 and b = 9 throughout the demonstration.

1. For every a ∈ Z10, a0 = 0a = 0. For example, 2 · 0 = 0 and 0 · 7 = 0.

2. Consider a = 3. Then −a = 7. Further, −(−a) = −(7) = 3.

3. Consider a = 3 and b = 9. Thus, −a = 7 and −b = 1. Further, we

see that the following products are equal, regardless of which element’s

additive inverse we use in the computation.

a(−b) = 3 · 1 = 3

(−a)b = 7 · 9 = 3

−(ab) = −(3 · 9) = −(7) = 3

4. We know that −a = 7 and −b = 1. Then

(−a)(−b) = 7 · 1 = 7 = 3 · 9 = ab.

3

Many of our results about groups translate to results about multiplication

within rings. Below are a few theorems that should not surprise you, and

thus their proofs are left as exercises. Remember, a ring is not necessarily a

group under multiplication, which is why these theorems must first assume

existence of certain elements.

Theorem 9.1.14. If a ring has a unity, then it is unique.

Theorem 9.1.15. If a ring element is a unit, then its inverse is unique.
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Recall that in groups, the generic notation for the operation is multiplication,

does not necessarily imply that, in a specific group, the operation must be

multiplication. Similarly, in rings, the generic notations for the operations

are addition and multiplication, though a specific ring does not necessarily

have those operations. In many of the examples we will study, the opera-

tions will be some variant of addition and multiplication, like addition and

multiplication modulo a natural number, or matrix addition and multipli-

cation. Below is an example of a ring whose two operations are distinctly

not addition and multiplication. To understand the example, we first have a

definition.

Definition 9.1.16. Let A and B be sets. The symmetric difference be-

tween A and B, denoted A∆B, is the set of elements that are in A or B but

not both, as shown below.

A∆B = (A−B) ∪ (B − A).

Example 9.1.17. Let X be a set. Then P(X), the power set of X, is a

ring under the operations ∆ and ∩. 3

EXERCISES

Exercise 9.1.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a. A ring is commutative.

b. For n ∈ N, Dn is a ring.

c. Ring operations are addition and multiplication.

d. s. For m,n ≥ 2, Zm ⊕ Zn is a ring.
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Exercise 9.1.2. Consider the ring R = {0, 2, 4, 6, 8} under addition and

multiplication modulo 10. Does R have a unity? If so, what is it?

Exercise 9.1.3. Find an n ∈ N such that the ring Zn does not have the

following properties. For each of the following properties, give an example

to show that the property does not hold in Zn. Let a, b, c ∈ Zn.

a. If a2 = a, then a = 0 or a = 1.

b. If ab = 0, then a = 0 or b = 0.

c. If ab = ac and a 6= 0, then b = c.

Exercise 9.1.4. Complete the proof of Theorem 9.1.12. Justify each step;

do not simply present strings of equalities.

Exercise 9.1.5. Give an example of elements a and b in a ring R such that

the equation ax = b has multiple solutions. Include at least two distinct

solutions in your explanation.

Exercise 9.1.6. Let A and B be sets. Show that an equivalent definition of

A∆B is

A∆B = (A ∪B)− (A ∩B).

Exercise 9.1.7. Consider the set X = {1, 2, 3} and its powerset, P(X).

a. Make a Cayley table of (P(X),∩). Is (P(X),∩) an Abelian group?

b. Make a Cayley table of (P(X),∆). Is (P(X),∆) an Abelian group?

c. Which operation is “addition?” Which operation is “multiplication?”

Exercise 9.1.8. A ring is associative under multiplication.

a. For elements A,B,C ∈ P(X), write the definition of associativity.

b. Draw Venn diagrams to justify that P(X) is associative under

multiplication.

Exercise 9.1.9. Distributivity holds in a ring.

a. For elements A,B,C ∈ P(X), write the definition of distributivity.
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b. Draw Venn diagrams to justify that distributivity holds in P(X)

under addition and multiplication.

Exercise 9.1.10. Prove Theorem 9.1.14.

Exercise 9.1.11. Prove Theorem 9.1.15.

Exercise 9.1.12. Let n ≥ 2 and consider the ring Zn. Let a, b, c ∈ Zn, and

let x be a variable in Zn. Consider the equation ax+ b = c.

a. Determine a value of n, and give an example of the values of

a, b, c ∈ Zn, such that such that ax+ b = c does not have a solution.

b. Determine a value of n, and give an example of the values of

a, b, c ∈ Zn, such that such that ax+ b = c has multiple solutions.

c. Determine a value of n such that ax+ b = c always has a solution.

Justify your response.

Exercise 9.1.13. Let R be a ring with elements a and b.

a. Give an example of a R, a, and b such that a2 − b2 6= (a+ b)(a− b).
b. Prove that a2 − b2 = (a+ b)(a− b) if and only if R is commutative.

9.2 Subrings

Like a group has subgroups, a ring has subrings, which we begin to study

now. Like there are many “nice” properties that subgroups may have, there

are many “nice” properties that subrings may have, which we will study in

the coming sections. Below, we start with the (hopefully non-surprising)

definition of a subring.

Definition 9.2.1. A subset S of a ring R is a subring of R if S is a ring

itself under the operations of R.
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Example 9.2.2. The set of even integers is a subset of Z. Further, 2Z
is a subring of Z because 2Z satisfies the definition of a ring under the

addition and multiplication inherited from Z, as shown below. Consider

2a, 2b, 2c ∈ 2Z.

1. In Z, addition is commutative. As 2Z ⊆ Z, addition in 2Z is also

commutative.

2. In Z, addition is associative. As 2Z ⊆ Z, addition in 2Z is also asso-

ciative.

3. In Z, the additive identity is 0. We see that 0 = 2 · 0 ∈ 2Z. As 2Z ⊆ Z,

0 is the additive identity in 2Z.

4. By Theorem 9.1.12, −(2a) = 2(−a) ∈ 2Z. Further,

2a+ (−(2a)) = 2a+ 2(−a)

= 2(a+ (−a))

= 2(0)

= 0

by substitution, distributivity, the definition of inverse, and Theorem

9.1.12, respectively. Thus, additive inverses exist in 2Z.

5. In Z, multiplication is associative. As 2Z ⊆ Z, multiplication in 2Z is

also associative.

6. Distributivity holds in Z, and as 2Z ⊆ Z, distributivity holds in 2Z.

3

Example 9.2.3. The set S = {0, 4, 8, 12, 16} is a subring of Z20. Under

addition, S ≈ Z5. Associativity of multiplication and distributivity are in-

herited from Z20. 3
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Non-Example 9.2.4.s We justify that N is not a subring of Z below.

Let a, b ∈ N such that a = 5 and b = 7. Recall that for N to be a subring of

Z, a− b ∈ N. Notice that 5− 7 = −2 6∈ N. This shows that N does not have

closure over subtraction. Therefore, N is not a subring of Z, as desired. 3

Like with subgroups, we have a subring test as a tool to help us prove a

subset is a subring.

Theorem 9.2.5 (Subring Test). Let R be a ring and let S ⊆ R be nonempty.

For a, b ∈ S, if

1. a− b ∈ S, and

2. ab ∈ S

then S is a subring of R.

Proof. Let R be a ring and let S ⊆ R be nonempty. Assume S is closed

under subtraction and multiplication, that is, for all a, b ∈ S, a− b, ab ∈ S.

To show that S is a subgroup of R under addition, we will use the One-Step

Subgroup Test. Recall that the additive version of the One-Step Subgroup

Test claims that if the subset is closed over subtraction, then the subset is a

subgroup. Therefore, S is a subgroup of R under addition. Further, by the

definition of a ring, R is an Abelian group under addition. As S is a subset

of R, S is also Abelian.

By assumption, S is closed under multiplication, therefore multiplication

is a binary operation on S. By the definition of a ring, associativity and

distributivity hold in R. As S is a subset of R, associativity and distributivity

also hold in S.
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Therefore, S is a ring, and as it is a subset of R with the same operations, S

is a subring of R.

Example 9.2.6.s The set Z[i] = {a + bi | a, b ∈ Z} is a subring of C.
Note that 0 = 0 + 0i ∈ Z[i], and that Z[i] ⊂ C. Now let x, y ∈ Z[i]. Then

x = a+bi and y = c+di for a, b, c, d ∈ Z. Note that x−y = a+bi−(c+di) =

(a− c) + (b− d)i, where (a− c), (b− d) ∈ Z, by closure of integer addition.

Further, xy = (a+bi)(c+di) = ac+adi+bci−bd = (ac−bd)+(ad+bc)i where

(ac− bd), (ad+ bc) ∈ Z under closure of integer addition and multiplication.

Thus, Z[i] passes the Subring Test. 3

Non-Example 9.2.7.s Let I be the imaginary numbers with integer co-

efficients. The set Z ∪ I is not a subring of C. Let a ∈ Z and b ∈ I, a, b 6= 0.

Then a − b = a − ci for some c ∈ Z, c 6= 0. Thus, a − b 6∈ Z and a − b 6∈ I.
Hence, S fails the subring test. 3

Below is an example of how to use the Subring Test in a proof.

Theorem 9.2.8. For n ∈ N, the subset nZ is a subring of Z.

Proof. Let n ∈ N and consider the set nZ. In Exercise 6.2.9, we proved that

nZ is a subgroup of Z. Therefore, for all x, y ∈ nZ, x − y ∈ nZ, because a

group is closed and contains inverses.

Consider elements x, y ∈ nZ. Then x = nx′ and y = ny′ for some x′, y′ ∈ nZ.

Moreover,

xy = (nx′)(ny′) = n(x′ny′)

is an element of nZ. Therefore, by the Subring Test, nZ is a subring of Z.

The next few definitions give us some more examples of rings and subrings.

Notation. For a ring R, the square bracket notation following R denotes the

adjunction of whatever is in the brackets to the ring R. For example, R[♥]
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is the ring of all elements in R, the element ♥, and whatever elements are

also needed to (multiplicatively) close R ∪ {♥}.

This may seem abstract, but of course you have seen examples of ring ad-

junction before. Now, we formally define a few.

Definition 9.2.9. Let R be a ring and let x be a variable. Then R[x] is

the ring of polynomials in variable x with coefficients and constants in R,

R[x] = {r0 + r1x+ r2x
2 + · · ·+ rnx

n | ri ∈ R, i ≤ n ∈ N}.

Example 9.2.10. The ring R[x] is the ring of all real polynomials in one

variable. The ring Z[x] is the ring of integer polynomials in one variable. 3

In Definition 9.2.9, when we let R = Z and x = i, we get a very particular

ring.

Definition 9.2.11. The set of Gaussian integers, denoted, Z[i], is the set

Z[i] = {a+ bi | a, b ∈ Z}.

Working with Definition 9.2.9, notice that we do not specify higher powers

of x because x2 = i2 = −1, thus all polynomials in i will be degree one or

fewer. Further, we could adjoin roots other than i.

Example 9.2.12. We could adjoin the author’s favorite number,
√

2, to
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the integers, creating

Z[
√

2] = {a+ b
√

2 | a, b ∈ Z}.

Notice that because we are adjoining a root of a degree two polynomial, we

do not specify powers higher than one.

Similarly, in

Z[
3
√

2] = {a+ b
3
√

2 + c
3
√

2
2
| a, b, c ∈ Z},

we do not need to specify powers higher than two. 3

EXERCISES

Exercise 9.2.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let R be a ring and S a subset of R.

a. If S is a group under addition, then S is a subring.

b. If R has unity and S is a subring, then S also has unity.

c. If R is commutative and S is a subring, then S is also commutative.

Exercise 9.2.2.s For each of the following sets, S, determine if S is a

subring of C and justify your answer. Let I be the imaginary numbers with

integer coefficients.

a. S = {a+ bi | a, b ∈ Z, a = b}.

b. S = {a+ bi | a, b ∈ Z, a = −b}.

c. S = {a+ bi | a, b ∈ Z, a = ±b} ∪ Z ∪ I.

Exercise 9.2.3. Find an example of a subset S of a ring R that is a subgroup

of R under addition but not a subring. Prove that S is a subgroup. Give an

example to prove that S is not a subring.
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Exercise 9.2.4.s We know that the ring 3Z does not have unity. Find a

subset of 3Z under a modulus of your choosing that does have unity. Use a

Cayley table under multiplication to prove your subset has unity.

Exercise 9.2.5. Prove that the Gaussian integers form a subring of C.

Exercise 9.2.6. Let S = {a + b
√

2 | a, b ∈ Z}. Prove that S is a subring of

R.

Exercise 9.2.7. Prove that

S =

{[
a b

0 d

] ∣∣∣∣ a, b, d ∈ R
}

is a subring of M2(R).

Exercise 9.2.8. Let R be a ring. Show that the center of R,

Z(R) = {a ∈ R | ar = ra ∀ r ∈ R}

is a subring of R.

Exercise 9.2.9. Let R be a ring with subrings S and T . Is the set

S + T = {s+ t | s ∈ S, t ∈ T}

a subring of R? If so, prove it. If not, provide a counterexample.

Exercise 9.2.10. Let R be a ring and let a be a multiplicative idempotent

of R.

a. Prove that aRa = {ara | r ∈ R} is a subring of R.

b. Prove that a is the unity of aRa.

Exercise 9.2.11. Let R be a ring with element a. Show that

S = {r ∈ R | ar = 0}
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is a subring of R.

Exercise 9.2.12. Let U(Z[i]) denote the units of the Gaussian integers,

Z[i].

a. Find U(Z[i]) and prove that the set you found is correct and complete.

b. Is U(Z[i]) a subring of Z[i]? If so, prove it. If not, explain why not.

Exercise 9.2.13. Let S and T be subrings of ring R.

a. Is S ∩ T a subring of R? If so, prove it. If not, why not?

b. Is S ∪ T a subring of R? If so, prove it. If not, why not?

9.3 Integral Domains

Now we begin studying properties that make rings and subrings “nicer.” We

begin by studying when multiplicative cancellation holds.

Definition 9.3.1. Let R be a commutative ring. A zero-divisor is an ele-

ment a 6= 0 ∈ R such that there exists a nonzero b ∈ R such that ab = 0.

Example 9.3.2. Consider the commutative ring Z10. We know 2 · 5 = 0,

yet 2 6= 0 and 5 6= 0, thus 2 and 5 are zero-divisors. Similarly, 4, 6, 8 ∈ Z10

are also zero-divisors. 3

Non-Example 9.3.3. The ring Z2 has no zero-divisors, as the multipli-

cation table below shows. Note that 0 has been omitted from the table, as

zero-divisors must be non-zero elements.

· 1 2

1 1 2

2 2 1
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Similarly, Z3 has no zero-divisors. 3

The example below is an important, yet possibly surprising, example, given

that we know Z2 and Z3 have no zero-divisors.

Example 9.3.4.s Here we see that external direct products can also have

zero-divisors. Consider the external direct product Z2⊕Z3. We know (1, 0) ·
(0, 1) = (0, 0), yet (1, 0) 6= (0, 0) and (0, 1) 6= (0, 0), thus (1, 0) and (0, 1) are

zero-divisors. Similarly, (0, 2) ∈ Z2 ⊕ Z3 is also a zero-divisor. 3

Example 9.3.5. The ring M2(R) has zero-divisors. For example,(
1 0

1 0

)
·

(
0 0

1 1

)
=

(
0 0

0 0

)
.

3

The definition below describes rings without zero-divisors. Notice that is also

assumes commutativity.

Definition 9.3.6. An integral domain is a commutative ring with unity

and without zero-divisors.

Example 9.3.7. The ring Z is an integral domain because it is commuta-

tive and no non-zero elements multiply to 0. 3

Theorem 9.3.8. The Gaussian integers form an integral domain.

Proof. By Exercise 9.2.5, we know that Z[i] is a ring. Thus, we need to verify

that Z[i] is commutative with no zero-divisors. Take elements a+ bi, c+di ∈
Z[i].
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By definition, a, b, c, d ∈ Z. Then

(a+ bi)(c+ di) = ac+ adi+ bic+ bidi

by distributivity. Recall that Z and C are commutative rings, which means

they also have additive commutativity, thus

ac+ adi+ bic+ bidi = ca+ cbi+ dia+ dibi = (c+ di)(a+ bi).

Therefore, Z[i] is commutative.

We continue to analyze the product (a+ bi)(c+ di) to verify that Z[i] has no

zero-divisors. We see that

(a+ bi)(c+ di) = ac+ adi+ bic+ bidi = ac+ adi+ bci− bd.

By distributivity and additive commutativity,

ac+ adi+ bci− bd = (ac− bd) + (ad+ bc)i.

By way of contradiction, assume that this product is 0 and a+ bi, c+ di 6= 0.

This creates the system of equations below.

ac− bd = 0 (9.1)

ad+ bc = 0 (9.2)

We proceed by cases: either c 6= 0 or c = 0.

Case 1. Assume c 6= 0. Then, by Equation 9.1, we determine a = bdc−1. By

substitution into 9.2and by distributivity, b(d2c−1 + c) = 0. As these

factors are, supposedly, integers, and Z is an integral domain, one of

these factors must be 0. Thus, we have two subcases: either b 6= 0 or

b = 0.
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Case 1.1. Assume b 6= 0. Then d2 = −c2, which is only possible when

c = d = 0. This is a contradiction, as we assumed c+ di 6= 0.

Case 1.2. Assume b = 0. Then, by Equations 9.1 and 9.2, ac = ad = 0.

As these factors are integers, either a = 0 or c = d = 0. As just

discussed, c = d = 0 leads to a contradiction. Similarly, a = 0

implies that a+ bi = 0, which is a contradiction.

Thus, we have found contradictions in all cases that emanate from Case

1. Therefore, c 6= 0 is impossible

Case 2. Assume c = 0. Then, by Equations 9.1 and 9.2, ad = bd = 0. As

in Case 1.2, this creates a contradiction.

As all possible values of c lead to contradictions, our assumption must be

false. Therefore, if a+ bi, c+ di 6= 0, their product must be non-zero. There-

fore Z[i] has no zero-divisors.

As Z[i] is a commutative ring with no zero-divisors, Z[i] is an integral domain.

The definition of an integral domain requires a ring to have three additional

properties.

1. The ring is commutative.

2. The ring has unity.

3. The ring has no zero-divisors.

There are rings that satisfy some, but not all, of these properties. Some

examples are below, others are left for more advanced study of abstract

algebra.
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Non-Example 9.3.9. The ring Z12 is commutative and has unity, yet is

has zero-divisors. Thus, Z12 is not an integral domain. 3

Non-Example 9.3.10. The ring 2Z has is commutative and has no zero-

divisors, yet is has no unity. Thus, 2Z is not an integral domain. 3

Integrals domains have a particularly nice property. The proof of the theorem

below is short and sweet, and therefore it is left to the reader as an exercise.

Theorem 9.3.11. Let D be an integral domain and a, b, c ∈ D. If ab = ac

and a 6= 0, then b = c.

Thus, in an integral domain, we have multiplicative cancellation. Beware:

this does not imply that the ring is a group under multiplication.

Example 9.3.12. The integers form an integral domain. Under multipli-

cation, the integers are not a group. 3

The following definition could have been introduced in the Chapter 2, but it is

of particular interest now that we have some understanding of zero-divisors.

Definition 9.3.13. An element a in ring R is nilpotent if and only if an = 0

for some n ∈ N.

Example 9.3.14. In Z8, 6 is nilpotent because 63 ≡ 0 mod 8. 3

Non-Example 9.3.15. In Z10, 6 is not nilpotent because 6n ≡ 6 mod 10

for all n ∈ N. 3

EXERCISES
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Exercise 9.3.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let R be a ring.

a. A ring of infinite order has a zero-divisor.

b. An integral domain has unity.

c. The ring Zn is an integral domain.

d. For rings R1 and R2, the ring R1 ⊕ R2 is an integral domain.

e. If r ∈ R, then r is either a unit or a zero-divisor.

Exercise 9.3.2.s Let R = Z35. Which elements of R, if any, are zero-

divisors?

Exercise 9.3.3. Find an example of an element in a ring that is neither a

unit nor a zero-divisor.

Exercise 9.3.4. Give an example of a commutative ring that does not have

any zero-divisors, yet is not an integral domain.

Exercise 9.3.5. Revisit Theorem 9.3.11.

a. Prove Theorem 9.3.11.

b. If cancelation holds, must R be an integral domain? If so, prove it. If

not, find a counterexample.

Exercise 9.3.6. a. Find the set of zero-divisors in Z20. Compare this to

the set U(20).

b. Show that every element r ∈ Z∗20 is either a unit or a zero-divisor.

Exercise 9.3.7. For each of the following rings, find all zero-divisors.

a. Z3 ⊕ Z5

b. Z6 ⊕ Z8

Exercise 9.3.8. Let n ≥ 2 and consider Zn.
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a. Prove that every non-zero element in Zn is either a unit or a

zero-divisor.

b. Where does your argument fail if applied, instead, to Z?

Exercise 9.3.9. Let a be a multiplicative idempotent in integral domain R.

Prove that a = 0 and a = 1 are the only idempotents.

Exercise 9.3.10. Consider the ring Z4 ⊕ Z6.

a. Determine all zero-divisors.

b. Determine all multiplicative idempotents.

c. Determine all nilpotent elements.

Exercise 9.3.11. Consider the set Z2[i] = {a + bi | a, b ∈ Z2}. Create the

addition table for Z2[i]. Create the multiplication table for Z2[i]
∗. Is Z2[i] a

ring? Is it an integral domain?

Exercise 9.3.12. Consider the set Z3[i] = {a + bi | a, b ∈ Z3}. Create the

addition table for Z3[i]. Create the multiplication table for Z3[i]
∗. Is Z3[i] a

ring? Is it an integral domain?

Exercise 9.3.13. Let R = P({1, 2, 3}) under the operations ∩ and ∆. Is R

an integral domain? If so, prove it. If not, give a counterexample.

Exercise 9.3.14. Let n ≥ 2. Prove that Zn is an integral domain if and

only if n is prime.

9.4 Ideals

Given a group and a subgroup, we can consider the set of cosets. The set of

cosets is a group itself if and only if the subgroup is normal. The requirement

that the left cosets equal the right cosets is important, particularly because

it allows the group operation to be well-defined. Now, we begin to study the

ring-equivalent of a normal subgroup.
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Definition 9.4.1. Let R be a ring. A subring I of R is a left ideal if for

every r ∈ R and every a ∈ I, ra ∈ I. Similarly, a subring I of R is a

right ideal if for every r ∈ R and every a ∈ I, ar ∈ I. A subring I of R is an

ideal if it is both a left and right ideal.

A subring I is an ideal if, for every r ∈ R, rI = {ra | a ∈ I} and Ir =

{ar | a ∈ I} are both subsets of I. In a sense, I “absorbs” elements from

R because its elements can be composed with elements in R − I and that

composition will always land in I.

Example 9.4.2. The subring 6Z is an ideal of Z. Take any element r ∈
Z − 6Z. Take any element a ∈ 6Z. Then ra and ar will both be multiples

of 6, thus ra, ar ∈ 6Z. In a sense, 6Z absorbed r because, once r was acted

upon by an element of 6Z, it produced an element of 6Z. 3

Like with subgroups and subrings, we have an Ideal Test.

Theorem 9.4.3 (Ideal Test). Let R be a ring with element r and let I be a

nonempty subset of R with elements a and b. Then I is an ideal of R if

1. a− b ∈ I, and

2. ra, ar ∈ I.

Example 9.4.4. Consider the subring 10Z in Z. We know 10 ∈ 10Z, thus

10Z is nonempty, and we proceed with the Ideal Test. Consider 10a, 10b ∈ Z
and r ∈ Z.

1. By distributivity, 10a− 10b = 10(a− b) ∈ 10Z.

2. The integers have associativity, commutativity, and closure. Thus,

r(10a) = 10(ra) ∈ 10Z and (10a)r = 10(ar) ∈ 10Z.



276 CHAPTER 9. RINGS

Thus, the subring 10Z is an ideal of Z. 3

There are many different levels of “niceness” of ideals, more than we will

study. In the rest of this section, we study a few types of ideals.

Definition 9.4.5.s Let I be an ideal of ring R. Then I is a proper ideal

if I is not the trivial ideal of R and I is not equal to R.

This is much like a proper subset. The next definition is a bit more subtly

complex, as the following examples will demonstrate.

Definition 9.4.6. Let R be a commutative ring with unity. For a ∈ R, the

set

〈a〉 = {ra | r ∈ R}

is the principal ideal generated by a.

Example 9.4.7. In the ring Z, the principal ideal generated by 2 is

〈2〉 = {2r | r ∈ Z} = 2Z.

In the ring Z[x], the ring of polynomials with integer coefficients, the principal

ideal generated by 2 is

〈2〉 = {2r | r ∈ Z[x]},

which is the set of integer polynomials with even coefficients and even con-

stants. 3
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A principal ideal can be generated in a commutative ring with unity. Below

is an example to show why unity is necessary in the definition.

Non-Example 9.4.8. The ring 2Z is commutative but does not have unity,

thus we can not use ring elements to generate principal ideals. Suppose, for

a moment, that we wanted to use 2 ∈ 2Z as a generator. Then we would

create the set of all elements in 2Z multiplied by 2, which would create the

set of all multiples of 4. This means that 2 would not actually be in the ideal

it “generated.” Weird, right? Thus, when we generate principal ideals, we

do so in commutative rings with unity. 3

Definition 9.4.9. Let R be a commutative ring with unity and let a, b ∈ R.

Then the ideal generated by a and b is

〈a, b〉 = {r1a+ r2b | r1, r2 ∈ R},

which is the linear combination of elements a and b.

Of course, the definition of 〈a, b〉 could be extended to any finite number of

generators. Below is an example with two generators.

Example 9.4.10. Consider the ring Z[x]. The ideal generated by 2, x ∈
Z[x] is

〈2, x〉 = {2r1(x) + xr2(x) | r1(x), r2(x) ∈ Z[x]}.

Notice that 2r1(x) will generate all polynomials with even coefficients and

even constants. Also notice that xr2(x) will generate all polynomials with

a constant term of zero. Thus, when we take linear combinations of even
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polynomials and polynomials without a constant term, we will create

〈2, x〉 = {axnn+ an−1x
n−1 + · · ·+ a1x+ a0 ∈ Z[x] |n ∈ N, a0 is even},

the set of polynomials in Z[x] with even constant term. For example, consider

the polynomials r1(x) = 3x2 + 5, r2(x) = 7x − 1 ∈ Z[x]. These polynomials

create the element

2r1(x) + xr2(x) = 2 · (3x2 + 5) + x · (7x− 1) = 13x2 − x+ 10 ∈ 〈2, x〉.

Notice that this polynomial has odd coefficients and its constant term is

even. 3

Though the next definition may seem obvious, it requires some attention paid

to quantifiers.

Definition 9.4.11. Let R be a commutative ring with elements a and b.

Let I be a proper ideal of R. Then I is a prime ideal if ab ∈ I implies that

a ∈ I or b ∈ I.

Thus, an ideal I is prime if for every element in I, and for every decomposition

of each element, one of those factors is in I. An ideal J is not prime if there

exists some element that has some decomposition such that none of those

factors is in J .

Non-Example 9.4.12. The ring Z is commutative and has unity, thus we

can consider the principal ideals generated by its elements. Consider the

ideal 〈12〉. Notice that 12 = 3 × 4, where 3, 4 ∈ Z − 〈12〉. Thus, 12 is an

element of the ideal even though it has a decomposition such that none of
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its factors is in the ideal. Therefore, 〈12〉 is not a prime ideal. 3

Example 9.4.13. The ideal 〈7〉 is a prime ideal of the ring Z. Any x ∈ 〈7〉
has form x = 7y for y ∈ Z. The factor 7 can not be decomposed further

because it is prime. Thus, because every decomposition of every element in

〈7〉 will include a 7, which is an element of 〈7〉, the ideal 〈7〉 is prime. 3

Example 9.4.14.s We can find all prime ideals of Z8 ⊕ Z20. The prime

ideal of Z8 is 〈2〉 and the prime ideals of Z20 are 〈2〉 and 〈5〉. The prime

ideals of Z8 ⊕ Z20 are

〈(1, 1)〉, 〈(1, 2)〉, 〈(1, 5)〉, 〈(2, 1)〉, 〈(2, 2)〉 and 〈(2, 5)〉.

Notice, 〈0〉 is not a prime ideal of Z8 because 0 = 2·4 and 2, 4 6∈ 〈0〉. Similarly,

〈0〉 is not a prime ideal of Z20 beacuse 0 = 2 · 10 and 2, 10 6∈ 〈0〉. 3

The definition below has a group-theoretic counterpart, though we study

it now because this type of ideal creates very nice quotient rings. (Yes, of

course, we will study quotient rings.)

Definition 9.4.15. Let R be a commutative ring and let I be a proper

ideal of R. Let J be an ideal of R. Then I is a maximal ideal if I ⊆ J ⊆ R

implies that either J = I or J = R.

A proper ideal is maximal if the only ideal that contains it is the ring itself.

Non-Example 9.4.16. Consider the ideal 〈12〉 in ring Z. The ideals 〈2〉,
〈3〉, 〈4〉, and 〈6〉 are all proper ideals that contain 〈12〉. Thus, 〈12〉 is not a

maximal ideal. 3
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Example 9.4.17. The ideals 〈2〉 and 〈3〉 are both maximal ideals of Z. 3

The past few examples may have led you to conjecture the theorem below.

Its proof is left as an exercise.

Theorem 9.4.18. In Z, a prime ideal is a maximal ideal.

Example 9.4.19. The ring Z10 is commutative and has unity, thus we can

consider the principal ideals generated by its elements. Consider the ideal

〈2〉 = {0, 2, 4, 6, 8}. This ideal is maximal.

To see that 〈2〉 is maximal, by way of contradiction, assume that it is not.

Then there must be some proper ideal, say J such that 〈2〉 ⊂ J ⊂ Z10. This

means that J must contain at least one element in Z10− 〈2〉, without loss of

generality, suppose J contains 3 ∈ Z10 − 〈2〉. Thus we know that

0, 2, 4, 6, 8, and 3

are all elements of J . Now, in order for J to be a maximal ideal, it must

be a subring. As we just introduced a new element into our subset, we turn

back to the definition of subring to determine if the inclusion of 3 forces us

to include any other elements of Z10 − 〈2〉 in J .

A subring is a subgroup under addition, thus J must be closed under addition.

We know that two evens added together will produce an even number, thus
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we focus on the element 3 ∈ J . Below, we add 3 to the elements of J :

3 + 0 = 3,

3 + 2 = 5,

3 + 4 = 7,

3 + 6 = 9,

3 + 8 = 1,

3 + 3 = 6.

Thus, by the additive closure property of rings, J needs to include the ele-

ments 1, 5, 7, 9 ∈ Z10. This means that J now includes the elements

0, 2, 3, 4, 6, 8, 1, 3, 5, 7, and 9.

Thus, J = Z10. This is a contradiction! We assumed that 〈2〉 was not

maximal, meaning that we could find a proper ideal containing 〈2〉. We

could not find such a proper ideal, thus it must be that 〈2〉 is maximal after

all. 3

Example 9.4.20. The ideal 〈2〉 in Z12 is a maximal ideal. Similarly, the

ideal 〈3〉 in Z12 is a maximal ideal. Notice that these ideals have different

orders, and both are maximal. 3

Though prime ideals are maximal in Z, this is not true in all rings. Below is

an example of an ideal is that is maximal but not prime.

Example 9.4.21. Consider the ring R = {0, 2, 4, 6} under arithmetic mod-

ulo 8. This is a commutative ring without unity, thus we can not create

principal ideals, though we can consider prime and maximal ideals. Notice
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that I = {0, 4} is an ideal because it is a subring and

rI = {ra | r ∈ R, a ∈ I}

= {0 · 0, 2 · 0, 4 · 0, 6 · 0, 0 · 4, 2 · 4, 4 · 4, 6 · 4}

= I.

Is I prime? No. Notice that 4 ∈ I and 4 = 2 · 2, where 2 6∈ I. Thus, because

4 ∈ I has a decomposition of factors not in I, I is not a prime ideal.

Is I maximal? Yes. Suppose, by way of contradiction, J is some proper ideal

such that I ⊂ J ⊂ R. Then J must contain either 2 or 6, but not both. If J

contains 2, then by additive closure, J must contain 2 + 4 = 6. If J contains

6, then by additive closure, J must contain 4 + 6 = 2. Thus, J can not exist,

and therefore, I is maximal. 3

Below is an example of two principal ideals that are prime but not maximal.

Example 9.4.22. The ring Z[x] is commutative with unity 1, thus we can

generate principal ideals. The principal ideals below are also prime, and

neither is maximal.

• The ideal 〈2〉 is prime.

• The ideal 〈x〉 = {rx | r ∈ Z[x]} is prime.

Both 〈2〉 and 〈x〉 are contained in 〈2, x〉, the ideal of polynomials with even

constant term, thus neither 〈2〉 nor 〈x〉 is maximal. 3

Admittedly, this section contains many examples but few proofs. For in-

stance, you may be wondering how we prove a given ideal is prime, but not

maximal. We will revisit ideals, and study more abstract proofs, once we

have a few more tools.
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EXERCISES

Exercise 9.4.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.

a. An ideal is a subring.

b. A principal ideal is prime.

c. A prime ideal is maximal.

d. In a ring, the maximal ideals have the same cardinality.

Exercise 9.4.2.s Show that 2Z is an ideal of Z.

Exercise 9.4.3. Consider the subset S = {a + bi | a ∈ Z, b ∈ 2Z} ⊆ Z[i].

Prove that S is a subring of Z[i] but not an ideal of Z[i].

Exercise 9.4.4. Let R be a commutative ring with unity. Prove that 〈a〉 is

an ideal for every a ∈ R.

Exercise 9.4.5. Let I and J be ideals of ring R.

a. Is I ∪ J an ideal of R? If so, prove it. If not, find a counterexample.

b. Is I ∩ J an ideal of R? If so, prove it. If not, find a counterexample.

Exercise 9.4.6. Let A and B be ideals of ring R. Prove that

A+B = {a+ b | a ∈ A, b ∈ B}

is an ideal of R.

Exercise 9.4.7. a. Show that the subset

D =

{(
0 b

0 d

)
: b, d ∈ R

}

is a left ideal of the ring M2(R).
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b. Show that the subset

A =

{(
a b

0 0

)
: b, d ∈ R

}

is a right ideal of the ring M2(R).

Exercise 9.4.8. Let R be a ring and I an ideal of R.

a. Prove that if 1 ∈ I, then I = R.

b. Prove that if u ∈ I is a unit, then I = R.

c. Determine all ideals in R⊕ R.

Exercise 9.4.9. Consider the ring R[x]. Let S be the subset of

differentiable functions.

a. Is S a subring of R[x]? If so, prove it. If not, find an counterexample.

b. Is S an ideal of R[x]? If so, prove it. If not, find an counterexample.

Exercise 9.4.10.s For a commutative ring R with elements a and b, prove

that 〈a〉 is a subring of 〈a, b〉.

Exercise 9.4.11. Find all prime ideals of Z12 ⊕ Z20.

Exercise 9.4.12. Let n ∈ N.

a. Prove that nZ is an ideal of Z.

b. Prove that nZ is a prime ideal if and only if n is prime.

Exercise 9.4.13. Let S = {f(x) ∈ Z[x] | f(0) = 0}.

a. Prove that S is a subring of Z[x].

b. Is S a prime ideal of R[x]? Justify your response in a sentence or two.

c. Is S a maximal ideal of R[x]? Justify your response in a sentence or

two.

Exercise 9.4.14. Find all of the maximal ideals in each of the following.

Justify why these ideals are maximal.
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a. Z8

b. Z15

c. Z20

d. Zn, n ∈ N and n ≥ 2

Exercise 9.4.15. Consider the ring R = {0, 2, 4, 6, 8, 10} under modulo 12

arithmetic. Find an ideal in R that is maximal but not prime. Prove your

set meets these qualifications.

Exercise 9.4.16. Prove Theorem 9.4.18.

Exercise 9.4.17. Let R be a commutative ring and let A be a subset of R.

The annihilator of A is the set Ann(A) = {r ∈ R | ra = 0, ∀ a ∈ A}. Prove

that Ann(A) is an ideal of R.

Exercise 9.4.18. Let P and S be prime ideals of ring R.

a. Is P ∪ S a prime ideal? If so, prove it. If not, find a counterexample.

b. Is P ∩ S a prime ideal? If so, prove it. If not, find a counterexample.

9.5 Fields

As we have seen, multiplication can behave rather unexpectedly in rings.

Below is a definition of a type of ring in which multiplication behaves quite

nicely.

Definition 9.5.1. A field is a commutative ring with unity in which every

nonzero element is a unit.

Thus, a field is a ring in which every nonzero element has a multiplicative

inverse.
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Non-Example 9.5.2. The ring Z is not a field because, for example, 7 ∈ Z
does not have a multiplicative inverse. 3

Example 9.5.3. The rings Q, R, and C all are fields because every nonzero

element has a multiplicative inverse. 3

Non-Example 9.5.4.s Take the ring 3Z. Notice 3Z is a group under

addition but 3Z∗ is not a group under multiplication, because, for

3Z = {...,−6,−3, 0, 3, 6, 9, 12, 15, ...},

there are no inverses for elements in the set. Therefore, 3Z is not a field. 3

Non-Example 9.5.5. The ring Z12 is not a field because, for example,

4 ∈ Z12 does not have a multiplicative inverse. 3

As the example below highlights, a field is a ring R such that both (R,+)

and (R∗, ·) are Abelian groups.

Example 9.5.6. The ring Z7 is a field. Below is the Cayley table of Z∗7
under multiplication. Notice that every element has an inverse.

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

We see that 1−1 = 1, 2−1 = 4, 3−1 = 5, and 6−1 = 6. 3

Corollary 9.5.7. Let S be a set such that (S,+) and (S∗, ·) are Abelian
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groups. If distributivity holds, then S is a field.

A field is always an integral domain, though the converse is not necessarily

true. Recall that Z7 is an integral domain. Thus, in Example 9.5.6, we see

that an integral domain can be a field. In Example 9.5.2, we see that an

integral domain is not necessarily a field. Below is a theorem about a case

when the converse is true, and the following definition is given for clarity.

Definition 9.5.8.s Let F be a ring. The order of F is the cardinality of

the set F, denoted |F |.

Theorem 9.5.9. A finite integral domain is a field.

Proof. Let D be a finite integral domain, thus D is commutative and has

unity. The unity is its own inverse, thus take some element d 6= 0 ∈ D that

is not the unity. Consider the set of elements d generates multiplicatively:

{d, d2, d3, . . .}.

By Lemma 5.2.14, because D is finite, di = dj for some i, j ∈ N. Without

loss of generality, we may assume i > j, say i = j + k for some k ∈ N. Then

di = dj+k = djdk. By transivity of equality,

djdk = dj.

Recall that D is an integral domain, thus by Theorem 9.3.11, we may cancel

dj from both sides of the equation, yielding dk = 1. This implies that

dk = dk−1d = 1,
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showing that dk−1 is the multiplicative inverse of d. We chose d ∈ D arbitrar-

ily, thus every nonzero element in D has a multiplicative inverse. Therefore,

D is a field.

The proof of the following is left as an exercise.

Corollary 9.5.10. Let p be a prime. Then Zp is a field.

Thus, Z7 is a field and Z9 is not. In Corollary 9.5.10, the integral domains

that are fields have prime order, however, Theorem 9.5.9 does not specify that

the finite order must be prime. Indeed, there are fields of finite composite

order, as the example below demonstrates.

Example 9.5.11. Consider the set Z3[
√

2] = {a + b
√

2 | a, b ∈ Z3}, and

notice that this set has exactly nine elements. First, we will verify that

Z3[
√

2] is a group under addition. Let a+ b
√

2, c+ d
√

2 ∈ Z3[
√

2].

0. Addition is a binary operation on Z3[
√

2]. Addition is commutative,

thus

(a+ b
√

2) + (c+ d
√

2) = (a+ c) + (b+ d)
√

2.

As Z3 is a group under addition, a + c, b + d ∈ Z3. Thus, addition is

closed on Z3[
√

2].

1. Addition is associative on Z3[
√

2].

2. The additive identity is 0 = 0 + 0
√

2, and 0 ∈ Z3[
√

2] because 0 ∈ Z3.

3. The additive inverse of a + b
√

2 is −(a + b
√

2) = −a − b
√

2. As Z3 is

a group under addition, −a,−b ∈ Z3, thus −a− b
√

2 ∈ Z3[
√

2].

The Cayley Table below shows that Z3[
√

2]∗ under multiplication is a com-

mutative group with unity.
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1 2
√

2 1 +
√

2 2 +
√

2 2
√

2 1 + 2
√

2 2 + 2
√

2

1 1 2
√

2 1 +
√

2 2 +
√

2 2
√

2 1 + 2
√

2 2 + 2
√

2

2 2 1 2
√

2 2 + 2
√

2 1 + 2
√

2
√

2 2 +
√

2 1 +
√

2
√

2
√

2 2
√

2 2 2 +
√

2 2 + 2
√

2 1 1 +
√

2 1 + 2
√

2

1 +
√

2 1 +
√

2 2 + 2
√

2 2 +
√

2 2
√

2 1 1 + 2
√

2 2
√

2

2 +
√

2 2 +
√

2 1 + 2
√

2 2 + 2
√

2 1
√

2 1 +
√

2 2
√

2 2

2
√

2 2
√

2
√

2 1 1 + 2
√

2 1 +
√

2 2 2 + 2
√

2 2 +
√

2

1 + 2
√

2 1 + 2
√

2 2 +
√

2 1 +
√

2 2 2
√

2 2 + 2
√

2 2 +
√

2 1

2 + 2
√

2 2 + 2
√

2 1 +
√

2 1 + 2
√

2
√

2 2 2 +
√

2 1 2
√

2

Thus, we see that Z3[
√

2] is a field with exactly nine elements.

3

Example 9.5.12.s The diagram below shows the nested “niceness” of

groups, rings, and fields.
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GROUPS UNDER ADDITION

RINGS

RINGS WITH UNITY COMMUTATIVE RINGS

INTEGRAL DOMAINS

FIELDS

Example: R Non-Example: N

Example: Zn Non-Example: Dn

Example: 2ZExample: M2(Z)

Example: Z Non-Example: 2Z
Non-Example: M2(Z)

Non-Example: Z4

Example: Z5 Non-Example: Z12

3

As with groups and rings, fields have subsets that are also fields, and once

again, we have a two-step test for such a subset. Recall that a field F is a
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group under addition, thus 0 ∈ F . Further, F ∗ is a group under multiplica-

tion, thus 1 ∈ F . Thus, F has at least two elements in it. Thus, our two-step

test not only requires the subset to be nonempty, the test requires the subset

to have at least two elements.

Theorem 9.5.13. Let F be a field and K a subset of F with at least two

elements. Then K is a subfield of F if for every a, b ∈ K and b 6= 0,

1. a− b ∈ K, and

2. ab−1 ∈ K.

Example 9.5.14.s This is an example of determining that Q is a subfield

of C. We can prove this by using Theorem 9.5.13. First we can see that Q
has at least 2 elements because it has 0 and 1. Now let a, b ∈ Q. Thus we

can let

a =
x

y
and b =

w

z

where w, x ∈ Z and y, z ∈ Z∗. So we can see that a−b = x
y
− w

z
= xz−wy

yz
. Now

because the integers are closed under addition and multiplication, xz−wy ∈
Z and yz ∈ Z∗ because Z has no zero-divisors, and thus we know that

a− b ∈ Q. We can also see that the inverse of b under multiplication will be
z
w

when b 6= 0. Thus

ab−1 =
x

y
· z
w

=
xz

wy
.

Again because the integers are closed under multiplication we know that

ab−1 ∈ Q. Therefore by Theorem 9.5.13 we know that Q will be a subfield

of C. 3

EXERCISES

Exercise 9.5.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response.
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a. If F is a field and x ∈ F , then x is a unit.

b. For n ∈ N, Zn is a field.

c. A finite field has prime order.

d. s In a field, an idempotent has a multiplicative inverse.

Exercise 9.5.2. Give an example of an integral domain that is not a field

and contains C.

Exercise 9.5.3. Consider the ring R = {0, 2, 4, 6, 8} under modulo 10 arith-

metic. Make a Cayley table for R under addition. Make a Cayley table for

R∗ under multiplication. Is R a field?

Exercise 9.5.4. For n ∈ N, what is the difference between Zn[i]∗ and Z∗n[i]?

Exercise 9.5.5. Is Z2[i] a field? If so, create its addition and multiplication

tables. If not, explain why not.

Exercise 9.5.6. Is Z3[i] a field? If so, create its addition and multiplication

tables. If not, explain why not.

Exercise 9.5.7. Prove that Z7[
√

3] is a field.

Exercise 9.5.8. Prove Corollary 9.5.10.

Exercise 9.5.9.s Prove if K is a subfield of H and H is a subfield of G,

then K is a subfield of G.

Exercise 9.5.10. a. Give an example of a field F with subfield K.

b. Prove the Subfield Test. (Hint: Use the One-Step Subgroup Test

twice.)

Exercise 9.5.11. Prove that Q[
√

3] is a subfield of R.
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9.6 Characteristic of a Ring

Recall that in a group G under addition, the order of an element g ∈ G is the

smallest n ∈ N such that n copies of g yields the additive identity, that is,

ng = 0. Similarly, in a group G under multiplication, the order of an element

g ∈ G is the smallest n ∈ N such that n copies of g yields the multiplicative

identity, that is, gn = 1. In either case, if no such n ∈ N exists, the order of

g is infinite. The definition below is a bit a like order, only now that we are

studying rings, we mix multiplication with the additive identity.

Definition 9.6.1. Let R be a ring. If there exists an n ∈ N such that

nx = 0 for all x ∈ R, then the smallest such n is the characteristic of R.

If no such n ∈ N exists, then R has characteristic 0. In both cases, the

characteristic of ring R is denoted char(R).

Example 9.6.2. The characteristic of Z3 is 3. The table below shows the

values of nx for all x ∈ Z3, beginning with n = 0.

n 0 1 2

1 0 1 2

2 0 2 1

3 0 0 0

Notice that n = 3 is the smallest positive integer such that nx = 0 for all

x ∈ Z3. Thus, char(R) = 3. 3

Example 9.6.3. The characteristic of Z4 is 4. The table below shows the

values of nx for all x ∈ Z4, beginning with n = 0.
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n 0 1 2 3

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

4 0 0 0 0

Notice that n = 4 is the smallest positive integer such that nx = 0 for all

x ∈ Z4. Thus, char(R) = 4. 3

Example 9.6.4. Let R = {0, 5, 10, 15, 20, 25} under modulo 30 arithmetic.

The table below shows the values of nx for all x ∈ R, beginning with n = 0.

n 0 5 10 15 20 25

1 0 5 10 15 20 25

2 0 10 20 0 10 20

3 0 15 0 15 0 15

4 0 20 10 0 20 10

5 0 25 20 15 10 5

6 0 0 0 0 0 0

Notice that n = 6 is the smallest positive integer such that nx = 0 for all

x ∈ R. Thus, char(R) = 6. 3

Example 9.6.5. Consider the ring Z2 ⊕ Z3. The table below shows the

values of n(x, y) for all (x, y) ∈ Z2 ⊕ Z3, beginning with n = 0.

n (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

1 (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

2 (0, 0) (0, 2) (0, 1) (0, 0) (0, 2) (0, 1)

3 (0, 0) (0, 0) (0, 0) (1, 0) (1, 0) (1, 0)

4 (0, 0) (0, 1) (0, 2) (0, 0) (0, 1) (0, 2)

5 (0, 0) (0, 2) (0, 1) (1, 0) (1, 2) (1, 1)

6 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
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Thus, char(Z2 ⊕ Z3) = 6. 3

Example 9.6.6. The characteristic of Z5[i] is 5. Let x = a + bi ∈ Z5[i],

thus a, b ∈ Z5. Then

5x = 5(a+ bi) = 5a+ 5bi = 0 + 0i = 0,

hence char(Z5[i]) ≤ 5. To show that char(Z5[i]) is equal to 5, we must show

that 5 is the smallest n ∈ N such that nx = 0 for all x ∈ Z5[i]. Recall that

1 ∈ Z5 has order 5 under addition. Thus, for 1 ∈ Z5[i], n · 1 = 0 for n = 5,

and n = 5 is the smallest such number. Therefore, char(Z5[i]) = 5, even

though |Z5[i]| = 25. 3

This example hints at that theorem below. Its proof is left as an exercise.

Theorem 9.6.7. Let R be a ring with unity 1. If the order of 1 under

addition is infinite, then char(R) = 0. If the order of 1 under addition is n,

then char(R) = n.

Recall that integral domains are a specific, “nicer” type of ring. Thus, we

can strengthen Theorem 9.6.7 if we assume the ring is an integral domain.

Theorem 9.6.8. Let D be an integral domain. Then char(D) is either 0 or

prime.

Proof. Let D be an integral domain. Thus, D has unity 1. If the order of 1

under addition is infinite, then by Theorem 9.6.7, char(D) = 0.

Assume the order of 1 under addition is n, where n ∈ N. By the definition

of order under addition, n · 1 = 0. Further, suppose n can be factored as

n = jk, where j, k ∈ N. Then

0 = n · 1 = (jk) · 1 = (j · 1)(k · 1).
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Thus, we have two factors, (j · 1) and (k · 1), whose product is 0. As D is an

integral domain, which has no zero divisors, either (j · 1) or (k · 1) must be 0.

Without loss of generality, suppose (j · 1) = 0. Recall that n is the smallest

natural number such that n · 1 = 0, thus n ≤ j. Also recall that j is a factor

of n, hence j ≤ n. Therefore, j = n. Hence, the only way to decompose n

into positive factors is n = n · 1, which means that n is prime.

Hence, the order of 1 under addition is prime. By Theorem 9.6.7, char(D) is

also prime.

EXERCISES

Exercise 9.6.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let R be a ring.

a. char(Zn) = n

b. char(Zn[x]) = n

c. char(R) < 0

d. char(R) is prime.

Exercise 9.6.2. Find the characteristics of the following rings.

a. Z12

b. 2Z12

c. Z3 ⊕ Z4

d. 4Z

e. Z3 ⊕ 4Z

f. M2(Z3)

g. M2(Z4)

h. M2(Z)
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Exercise 9.6.3. Prove Theorem 9.6.7.

Exercise 9.6.4. Let n ≥ 2. Prove that char(Zn[x]) = n.

Exercise 9.6.5. Let F be a field of order 3n, for n ∈ N. Prove that char(F ) =

3.

Exercise 9.6.6. Let R be a commutative ring with elements x and y.

Suppose char(R) = n, where n ∈ N. Consider the expression (x+ y)n.

a. When n = 2, show that

(x+ y)2 = x2 + y2.

b. When n = 3, show that

(x+ y)3 = x3 + y3.

c. Let n = 4. Find an example of x, y ∈ R such that (x+ y)4 6= x4 + y4.

d. Let p be a prime and suppose char(R) = p. Prove that

(x+ y)p = xp + yp. (Hint: You may assume the Binomial Theorem.)

Exercise 9.6.7.s Consider the ring Zp ⊕ Zq such that p, q ∈ N and p and

q are relatively prime. What is the characteristic of the ring?

Exercise 9.6.8.s a. What is the characteristic of Z15 ⊕ Z20?

b. Prove that char(Zm ⊕ Zn) = lcm(m,n) where m,n ≥ 2.

c. Conjecture about the value of char(Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn) where

n ∈ N and mi ≥ 2.

Exercise 9.6.9. Let R be a ring with order n. Prove that char(R) divides

n.

Exercise 9.6.10. Let R be a commutative ring such that char(R) = 2. Prove

that the set of idempotents in R is a subring of R.
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Exercise 9.6.11. Let R be a ring with unity.

a. Prove that if n · 1 6= 0 for all n ∈ N, then char(R) = 0.

b. Prove that if n · 1 = 0 for some n ∈ N, then char(R) = n.

9.7 Quotient Rings

Like with groups, given a ring, we can create a quotient ring. Recall that

a quotient group is a group of cosets. Similarly, a quotient ring is a ring of

cosets. Cosets in rings are defined very similarly to cosets in groups.

Recall that, given a group G, H being a subgroup of G is not sufficient for

G/H to be a quotient group because the operation is not necessarily well-

defined. In order for G/H to be a quotient group, H must be a normal

subgroup of G. Similarly, given a ring R, S being a subring is not sufficient

for R/S to be a quotient ring. In order for R/S to be a quotient ring, S must

be an ideal of R, as the definitions below state, and as we will prove after a

few examples.

Definition 9.7.1. Let R be a ring and I an ideal of R. For r ∈ R, the set

r + I = {r + a | a ∈ I}

is the ring coset in R containing r.

Notice that, unlike in group theory, we do not differentiate between a left

coset and a right coset because rings are commutative under addition.
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Definition 9.7.2. Let R be a ring and I an ideal of R. The set of cosets

of I in R,

R/I = {r + I | r ∈ R}

is a ring under the operations of coset representative addition and coset

representative multiplication. This ring is called the quotient ring.

Before we prove that the quotient ring is indeed a ring, we give some exam-

ples.

Example 9.7.3. Consider the ideal 6Z in the ring Z. Then Z/6Z is a

quotient ring. To see an example of addition and multiplication of elements

in Z/6Z, consider the elements 3 + 6Z and 4 + 6Z in Z/6Z. Below is an

example of addition:

(3 + 6Z) + (4 + 6Z) = (3 + 4) + 6Z = 7 + 6Z = 1 + 6Z.

Below is an example of multiplication:

(3 + 6Z) · (4 + 6Z) = (3 · 4) + 6Z = 12 + 6Z = 6Z.

As we might expect, the coset represented by the additive identity, 0 + 6Z =

6Z, is the additive identity in the quotient ring. Similarly, the coset repre-

sented by the unity, 1 + 6Z, is the unity in the quotient ring. 3

Recall that to show that a quotient group is a group, we first showed that

the operation of coset addition is well-defined. Similarly, we now show that

the operation of coset multiplication is well-defined.

Lemma 9.7.4. Let R be a ring and S a subring of R. Then coset multipli-

cation is well-defined if and only if S is an ideal of R.
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Proof. Let R be a ring and suppose S is a subring of R. Let u, u′, v, v′ ∈ R
be coset representatives such that u + S = u′ + S and v + S = v′ + S and

u 6= u′ and v 6= v′. Then u = u′ + s1 and v = v′ + s2 for elements s1, s2 ∈ S.

Hence,

uv = (u′ + s1)(v
′ + s2) = u′v′ + u′s1 + v′s2 + s1s2

by distributivity. By closure, we know s1s2 ∈ S because S is a subring. The

elements u′s1 and v′s2 will be in S for all u′, v′ ∈ R and for all s1, s2 ∈ S if

and only if S is an ideal, by the definition of ideal. Thus,

(u+ S)(v + S) = uv + S = u′v′ + S = (u′ + S)(v′ + S)

if and only if S is an ideal of R.

As the definition states, a quotient ring is indeed a ring, and the proof is left

as an exercise.

Theorem 9.7.5. Let R be a ring and I an ideal of R. The quotient ring

R/I is a ring under the operations of coset representative addition and mul-

tiplication.

Below is an example of a quotient ring without unity.

Example 9.7.6. The ring 2Z does not have unity. In 2Z, 8Z is an ideal,

and thus we may consider the quotient ring 2Z/8Z. Below is the Cayley

tables of 2Z/8Z under addition.

+ 8Z 2 + 8Z 4 + 8Z 6 + 8Z
8Z 8Z 2 + 8Z 4 + 8Z 6 + 8Z

2 + 8Z 2 + Z 4 + 8Z 6 + 8Z 8Z
4 + 8Z 4 + 8Z 6 + 8Z 8Z 2 + 8Z
6 + 8Z 6 + 8Z 8Z 2 + 8Z 4 + 8Z
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Below is the Cayley table of 2Z/8Z under multiplication. Notice that there

is no unity.

· 2 + 8Z 4 + 8Z 6 + 8Z
2 + 8Z 4 + 8Z 8Z 4 + 8Z
4 + 8Z 8Z 8Z 8Z
6 + 8Z 4 + 8Z 8Z 4 + 8Z

3

The example below may seem similar to Example 9.7.6. Look for a surprising

difference as you read it.

Example 9.7.7. The ring 2Z does not have unity. In 2Z, 6Z is an ideal,

and thus we may consider the quotient ring 2Z/6Z. Below are the Cayley

tables of 2Z/6Z under addition and multiplication.

+ 6Z 2 + 6Z 4 + 6Z · 2 + 6Z 4 + 6Z
6Z 6Z 2 + 6Z 4 + 6Z 2 + 6Z 4 + 6Z 2 + 6Z

2 + 6Z 2 + Z 4 + 6Z 8Z 4 + 6Z 2 + 6Z 4 + 6Z
4 + 6Z 4 + 6Z 6Z 2 + 6Z

Thus, we see that 4 + 6Z is the unity of 2Z/6Z. This may seem strange,

because the quotient ring has unity even though the original ring 2Z does

not. 3

Below is a particularly fun example of a quotient ring.

Example 9.7.8. The Gaussian integers form a commutative ring with

unity 1, thus we may consider principal ideals in Z[i]. Consider the prin-

cipal ideal 〈3− i〉. What are the cosets in the quotient ring Z[i]/〈3− i〉?
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Certainly, they have form a+ bi+ 〈3− i〉, where a+ bi ∈ Z[i]. What are the

distinct cosets in Z[i]/〈3− i〉? Is there a finite number of them?

We know 0 + 〈3− i〉 is a coset. Further, both 0 and 3 − i can represent

the coset 0 + 〈3− 1〉 = 3 − i + 〈3− i〉. Thus, 0 and 3 − i are equivalent,

because “is in the same coset as” is an equivalence relation. Therefore, in

Z[i]/〈3− i〉, 0 = 3− i, which then implies that 3 = i. How does this help us

determine the distinct cosets in Z[i]/〈3− i〉?

Consider, for example, the coset 8 + 7i+ 〈3− i〉. The relation 3 = i implies

that 7i = 21. Thus, 8 + 7i+ 〈3− i〉 = 8 + 21 + 〈3− i〉 = 29 + 〈3− i〉.

We can make another reduction on our coset representatives. If 3 = i, then

32 = i2. Thus, 9 = −1, which implies that 10 = 0. Hence, we may reduce

our coset representatives even further. For example,

8 + 7i+ 〈3− i〉 = 29 + 〈3− i〉

= 10 + 10 + 9 + 〈3− i〉

= 9 + 〈3− i〉.

Thus far, we have taken a coset of the form of a+bi+ 〈3− i〉, where a, b ∈ Z,

and reduced it to a coset of the form c + 〈3− i〉, where c ∈ Z. We then

showed that we could reduce the representative c using modulo 10 arithmetic.

Therefore, we know the cosets

〈3− i〉, 1 + 〈3− i〉, 2 + 〈3− i〉, . . . , 9 + 〈3− i〉

are in Z[i]/〈3− i〉. Can we reduce this set any more?

To answer this question, we will show that the coset 1+〈3− i〉, as an element
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in the quotient group Z[i]/〈3− i〉, has additive order 10. Notice that

10(1 + 〈3− i〉) = 10(1) + 〈3− i〉 = 0 + 〈3− i〉 = 〈3− i〉,

thus the order of 1 + 〈3− i〉 divides 10. We proceed by cases.

• If the order of 1 + 〈3− i〉 is 1, then 1 + 〈3− i〉 = 0 + 〈3− i〉, thus

1 ∈ 〈3− i〉. As 〈3− i〉 is an ideal, this means that

1 = (3− i)(a+ bi)

for some a + bi ∈ Z[i]. Then 1 = (3a + b) + (−a + b)i. Reducing the

linear system 1 = 3a + b and 0 = −a + b, we see that 1 = 10b. This

has no solution for b ∈ Z. Ergo, the order of 1 + 〈3− i〉 is not 1.

• If the order of 1 + 〈3− i〉 is 2, then 2 = (3 − i)(a + bi). The induced

linear system yields 2 = 10b, which has no integer solution. Thus, the

order of 1 + 〈3− i〉 is not 2.

• Without loss of generality, the order of 1 + 〈3− i〉 is not 5.

Therefore, the additive order of 1 + 〈3− i〉, as an element of Z[i]/〈3− i〉 is

10. This shows that

Z[i]/〈3− i〉 = {a+ 〈3− i〉 | a ∈ {0, 1, 2, . . . , 9}}.

3

Recall that there are more specific and “nice” types of rings and ideals. As the

ideal is more well-behaved, the resulting quotient ring is more well-behaved,

as the theorems below state.

Theorem 9.7.9. Let R be a commutative ring with unity and let I be an

ideal of R. Then R/I is an integral domain if and only if I is a prime ideal.
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Theorem 9.7.10. Let R be a commutative ring with unity and let I be an

ideal of R. Then R/I is a field if and only if I is a maximal ideal.

These theorems provide additional tools to prove that an ideal is prime or

maximal. Consider the example below.

Example 9.7.11. We consider the ideal I = {(0, y) | y ∈ Z} in Z⊕Z. The

ring Z⊕Z is commutative and has unity, thus we can use the theorems above.

Thus, we analyze the quotient ring Z ⊕ Z/I. Consider coset (x, y) + I. As

the operation in Z⊕ Z is component-wise, we see that

(x, y) + I = (x, 0) + (0, y) + I = (x, 0) + I

because (0, y) ∈ I. Thus, each x ∈ Z will generate a unique coset (x, 0) + I.

Therefore,

Z⊕ Z/I = {(x, 0) + I |x ∈ Z}

Though we have not formally defined ring isomorphisms yet, hopefully it is

not a stretch of your imagination to see that {(x, 0) + I |x ∈ Z} ≈ Z. As

the quotient ring Z ⊕ Z/I is isomorphic to Z, an integral domain that is

not a field, the quotient ring Z ⊕ Z/I is an integral domain that is not a

field. By Theorem 9.7.9, I is a prime ideal, and by Theorem 9.7.10, I is not

maximal. 3

EXERCISES

Exercise 9.7.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let R be a ring, S a subring of R, and I an ideal of R.

a. The set R/S is a ring.

b. The set R/I is a ring.

c. The set R/I is a field.
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d. If R is infinite, then R/I is infinite.

e. The ring R/I has unity.

f. The ring R/I has zero-divisors.

Exercise 9.7.2. Revisit Examples 9.7.6 and 9.7.7. Find another example of

a ring R with ideals I and H such that R and R/I do not have unity and

R/H does have unity. Prove your claims by including the Cayley tables of

R/I and R/H under multiplication. What is the unity of R/H?

Exercise 9.7.3. Prove Theorem 9.7.5.

Exercise 9.7.4. For each of the following ideals I, find all distinct cosets in

Z[i]/I. Justify your claims.

a. I = 〈4− i〉
b. I = 〈1− 3i〉

Exercise 9.7.5. Find the multiplicative inverse of each of the following

cosets in the quotient ring Z5[x]/〈x2 + x+ 2〉. For each coset a, prove that

the inverse you find, a−1, is indeed the inverse by showing that aa−1 = 1.

a. x+ 4 + 〈x2 + x+ 2〉
b. 4x+ 3 + 〈x2 + x+ 2〉

Exercise 9.7.6. Consider the ring Z3[x] and its ideal I = 〈x2 + x+ 1〉. Show

that Z3[x]/〈x2 + x+ 1〉 is not a field.

Exercise 9.7.7. Prove Theorem 9.7.9.

Exercise 9.7.8. Prove Theorem 9.7.10.

Exercise 9.7.9. Consider the ideal I = 〈2 + 4i〉 in Z[i].

a. Is I a prime ideal? If so, prove it. If not, find a counterexample.

b. Determine the order of Z[i]/I.

c. Determine char(Z[i]/I).

Exercise 9.7.10. Let R be a ring such that charR 6= 0 and let I be a proper

ideal of R. Determine charR/I.
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9.8 Ring Homomorphisms

Like with groups, ring homomorphisms are operation-preserving, that is, ring

homomorphisms preserve both addition and multiplication.

Definition 9.8.1. A ring homomorphism φ is a mapping from a ring R to

a ring R′ that preserves both ring operations, that is,

φ(x+ y) = φ(x) + φ(y)

and

φ(xy) = φ(x)φ(y)

for all x, y ∈ R.

Example 9.8.2. For natural number n ≥ 2, the mapping φ : Z→ Zn given

by φ(x) = x mod n is a ring homomophism. 3

Example 9.8.3. Consider the rings Z12 and Z30. To find a ring homomor-

phism φ : Z12 → Z30, we first find a group homomorphism between these

groups, that is, we first focus on addition.

We know that φ(x) = cx, for some c ∈ Z30, and, more specifically, φ(1) = c.

By Theorem 6.1.15, |c| divides |1| = |Z12| = 12. By Corollary 7.2.3, |c|
divides |Z30| = 30. Thus, |c| can equal 1, 2, 3, or 6. We proceed by cases.

• If |c| = 1, then c = 0. Thus, φ(x) = 0.

• If |c| = 2, then c = 15. Thus, φ(x) = 15x.

• If |c| = 3, then c = 10 or c = 20. Thus, φ(x) = 10x or φ(x) = 20x.
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• If |c| = 6, then c = 5 or c = 25. Thus, φ(x) = 5x or φ(x) = 25x.

Next, we focus on multiplication. Recall that φ(1) = c. A ring homomor-

phism preserves multiplication, thus because φ(1) = φ(1 · 1) = φ(1)φ(1),

we know that c = c · c must be true as well. Thus, we know search for

multiplicative idempotents in Z30. By calculation, we see that

0 = 0 · 0 mod 30

5 6= 5 · 5 mod 30

10 = 10 · 10 mod 30

15 = 15 · 15 mod 30

20 6= 20 · 20 mod 30

25 = 25 · 25 mod 30.

Thus, there are four ring homomorphisms φ : Z12 → Z30, namely, φ(x) = 0,

φ(x) = 10x, φ(x) = 15x, and φ(x) = 25x. 3

Below is a theorem detailing these properties.

Theorem 9.8.4. Let φ : R → R′ be a ring homomorphism from ring R to

ring R′, and let r ∈ R. Let S be a subring of R and let I ′ be an ideal of R′.

1. For any n ∈ N, φ(nr) = nφ(r) and φ(rn) = [φ(r)]n.

2. The set φ(S) is a subring of R′.

3. If S is an ideal and φ is onto, then φ(S) is an ideal.

4. If R is commutative, then φ(R) is commutative.

5. If R has unity, R′ is not the trivial ring, and φ is onto, then φ(1) is

the unity of R′.
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6. The map φ is an isomorphism if and only if φ is onto and ker(φ) = {0}.

7. If φ is an isomorphism, then φ−1 is an isomorphism.

Proof. Let φ : R→ R′ be a ring homomorphism from ring R to ring R′, and

let r ∈ R. Let S be a subring of R and let I ′ be an ideal of R′.

To prove the third property, let suppose S is an ideal and φ is surjective. As

S is a subring, φ(S) is nonempty, thus we consider φ(a), φ(b) ∈ φ(S). Then

φ(a) + φ(b) = φ(a+ b)

because φ is a homomorphism. Further, a+ b ∈ S because S is an ideal, thus

φ(a) + φ(b) = φ(a + b) ∈ φ(S). Now, for r′ ∈ R′, consider r′φ(a). As φ is

surjective, there exists r ∈ R such that φ(r) = r′. Thus,

r′φ(a) = φ(r)φ(a) = φ(ra)

because φ is a homomorphism. As S is an ideal, ra ∈ S. Ergo, φ(ra) =

r′φ(a) ∈ φ(S). Therefore, φ(S) is an ideal of R′.

The rest of the properties are left to the reader as delightful exercises.

The example below demonstrates some of these claims.

Example 9.8.5. Consider the homomorphism φ : Z12 → Z30 given by

φ(x) = 10x, which we first saw in Example 9.8.3. Let r ∈ Z12, S a subring

of Z12, and I ′ be an ideal of Z30.

1. For any n ∈ N, φ(nr) = nφ(r) and φ(rn) = [φ(r)]n. For the sake of
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demonstration, consider r = 7 ∈ Z12 and n = 2 ∈ N. Then

φ(nr) = φ(2 · 7) = φ(14) = φ(2) = 20

nφ(r) = 2φ(7) = 2φ · 70 = 2 · 10 = 20.

2. The set φ(S) is a subring of R′. For the sake of demonstration, consider

the subring S = {0, 2, 4, 6, 8, 10}. Then

φ(S) = {φ(s) | s ∈ S}

= {φ(0), φ(2), φ(4), φ(6), φ(8), φ(10)}

= {0, 20, 10},

which is indeed a subring of Z30.

3. In the example above, notice that S = 〈2〉 is an ideal. Though φ is not

onto, in this case, φ(S) = 〈10〉 is also an ideal.

3

Non-Example 9.8.6. Revisit Example 9.8.3. None of the homomorphisms

are onto, and none map the unity of Z12 to the unity of Z30. 3

Non-Example 9.8.7. Groups Z and 2Z are isomorphic. In particular,

φ : Z → 2Z given by φ(x) = 2x and φ(x) = −2x are isomorphisms between

these groups. As rings, there does not exist a ring ismorphism between these

groups! Notice that these rings do not have the same structure, in particular,

one of these rings has unity and one does not. 3

Theorem 9.8.8. Let φ : R → R′ be a ring homomorphism from ring R to

ring R′. Then ker(φ) is an ideal of R.

Theorem 9.8.9 (First Isomorphism Theorem for Rings). Let φ : R→ R′ be

a ring homomorphism from ring R to ring R′. Then R/ ker(φ) ≈ φ(R).
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Theorem 9.8.10. Let R be a ring with unity 1. Then the mapping φ : Z→ R

given by φ(x) = x is a ring homomorphism.

EXERCISES

Exercise 9.8.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let φ be a homomorphism from ring R to ring R′.

a. φ(x) = x is a ring homomorphism

Exercise 9.8.2. Determine if each of the following is a ring

homomorphism.

a. φ : Z5 → Z10 given by φ(x) = 5x

b. φ : Z5 → Z20 given by φ(x) = 4x

Exercise 9.8.3. Prove the first property in Theorem 9.8.4.

Exercise 9.8.4. Prove the second property in Theorem 9.8.4.

Exercise 9.8.5. Prove the fourth property in Theorem 9.8.4.

Exercise 9.8.6. Prove the fifth property in Theorem 9.8.4.

Exercise 9.8.7. Prove the sixth property in Theorem 9.8.4.

Exercise 9.8.8. Prove the seventh property in Theorem 9.8.4.

Exercise 9.8.9.s Prove that a ring homomorphism maps an idempotent

to another idempotent.

Exercise 9.8.10. For each of the following, determine all of the ring

homomorphisms φ.

a. φ : Z→ Z.

b. φ : Z⊕ Z→ Z⊕ Z.
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Exercise 9.8.11. For each of the following pairs, determine if the rings are

ring-isomorphic.

a. 2Z and 3Z
b. 2Z and 4Z

Exercise 9.8.12. Prove that φ : C→ C given by φ(a+ bi) = a− bi is a ring

automorphism.

Exercise 9.8.13. Prove Theorem 9.8.8.

Exercise 9.8.14. Prove Theorem 9.8.9.

Exercise 9.8.15. Prove that Z[x]/〈x〉 ≈ Z. Use this result to determine if

〈x〉 is prime or maximal in Z[x].

Exercise 9.8.16. Consider Z3[x]/〈x2 + 1〉.

a. Prove that Z3[i] ≈ Z3[x]/〈x2 + 1〉.
b. Is Z3[x]/〈x2 + 1〉 ≈ Z3 ⊕ Z3? If so, prove it. If not, explain why not.

Exercise 9.8.17. Prove that (Z⊕Z)/(〈m〉⊕〈n〉) is ring-isomorphic to Zm⊕
Zn.

Exercise 9.8.18. Let R and S be rings. Prove that φ : R ⊕ S → S via

φ((r, s)) = r is a ring homomorphism.

Exercise 9.8.19. Let R and S be rings. Prove that R⊕ S is isomorphic to

S ⊕R.
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Chapter 10

Polynomials

Quote

Person

Sadly, as we begin our last chapter, we realize that we do not have the time

to build our way up to the Fundamental Theorem of Algebra. Nonetheless,

we end our journey with a study of polynomials, which may help shed light

on why the Fundamental Theorem of Algebra holds.

10.1 Polynomial Rings

Throughout your mathematical career, you have studied polynomials with

real, or maybe complex, coefficients. As the reals and the complex numbers

form fields, you may now realize that these polynomials behave quite nicely.

We study polynomials with coefficients from a ring R. By reducing the

restraint on the coefficients, we get some quirky and counterintuitive results.

313
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Definition 10.1.1. Let R be a commutative ring. For variable x, the set

of polynomials with coefficients in R,

R[x] =

{
n∑

i=0

aix
i

∣∣∣∣ ai ∈ R, n ∈ N

}
= {anxn + an−1x

n−1 + · · ·+ a1x+ a0 | ai ∈ R, n ∈ N},

is the ring of polynomials over R.

The proof that R[x] is indeed a ring when R is a ring is left to the reader.

Notice that R[x] is a ring whose elements are polynomials with coefficients

in ring R. Two polynomials are equal if their monomials are equal. They

are not necessarily equal if they produce the mapping of the elements in the

domain, which, by default, we assume to be R.

Example 10.1.2. Consider the ring Z5[x]. The elements f(x) = x, g(x) =

x5, h(x) = x + 1, and j(x) = x5 + 1 are all distinct elements because each

has a unique combination of monomials. The table below shows how these

polynomials map the elements of Z5 to Z5.

f(x) g(x) h(x) j(x)

0 7→ 0 0 7→ 0 0 7→ 1 0 7→ 1

1 7→ 1 1 7→ 1 1 7→ 2 1 7→ 2

2 7→ 2 2 7→ 32 = 2 2 7→ 3 2 7→ 33 = 3

3 7→ 3 3 7→ 243 = 3 3 7→ 4 3 7→ 244 = 4

4 7→ 4 4 7→ 1024 = 4 4 7→ 0 4 7→ 1025 = 0

As maps, f(x) and g(x) have the same behavior, but they are not the same

element in Z5[x]. The elements f(x) and g(x) are distinct in Z5[x], even

though the maps they induce are the same. Similarly, h(x) and j(x) are
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distinct elements in Z5[x], even though the maps they induce on Z5 are the

same. 3

Thus, for f(x), g(x) ∈ R[x], think of f(x) and g(x) as elements in the poly-

nomial ring; do not think of them simply as the maps they induce.

To add polynomials, we add the coefficients of the monomials of the same

degree. To multiply polynomials, we use the distributivity property of rings.

This is exactly how you once learned to add and multiply real polynomials.

Addition and multiplication of polynomials in rings under modular arith-

metic, however, may seem a bit surprising. Consider the example below.

Example 10.1.3. Consider the elements f(x) = 3x2 + 2x + 4 and g(x) =

4x + 1 in Z5[x]. By definition, the coefficients of the monomials in f(x)

and g(x) are elements in Z5, which means that these coefficients are under

modulo 5 arithmetic. Thus,

f(x) + g(x) = (3x2 + 2x+ 4) + (4x+ 1)

= (3 + 0)x2 + (2 + 4)x+ (4 + 1) (10.1)

= 3x2 + x.

Notice that in Equation 10.1, 2 + 4 = 1 in Z5, thus (2 + 4)x = x. Similarly,

4 + 1 = 0 in Z5.
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Below we find the product f(x) · g(x).

f(x) · g(x) = (3x2 + 2x+ 4) · (4x+ 1)

= 3x2 · 4x+ 2x · 4x+ 4 · 4x+ 3x2 · 1 + 2x · 1 + 4 · 1

= (3 · 4)x3 + (2 · 4)x2 + (4 · 4)x+ (3 · 1)x2 + (2 · 1)x+ (4 · 1)

= 2x3 + 3x2 + x+ 3x2 + 2x+ 4

= (2x3) + (3x2 + 3x2) + (x+ 2x) + (4)

= 2x3 + x2 + 3x+ 4

3

The definition of a polynomial ring claims that the set is indeed a ring,

though it is worth verifying this claim. The proof of the theorem below is

left as an exercise.

Theorem 10.1.4. Let R be a commutative ring. Then R[x] is a ring.

Polynomial rings can misbehave, especially if the ring of coefficients is not

an integral domain or field. Consider the examples below.

Example 10.1.5. Consider the ring Z12[x], and notice that Z12 is not an

integral domain because it has zero-divisors. Consider the elements 8x, 3x2 ∈
Z12. Traditionally, you may think that a degree one polynomial multiplied

by a degree two polynomial will yield a degree three polynomial, but that

is not necessarily true. Under multiplication, 8x · 3x2 = 24x3 = 0 because

24 = 0 ∈ Z12. Thus, a degree one polynomial multiplied by a degree two

polynomial yielded a constant. 3

Example 10.1.6. Consider the polynomial f(x) = x3 + 2x ∈ Z12, and

notice that Z12 is not an integral domain. Traditionally, you may think that

f(x) has three roots, or at most three roots, because it is a degree three
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polynomial, but that is not necessarily true. Through calculation, we find

that f(x) induces the map listed below.

f(0) = 0

f(1) = 3

f(2) = 12 = 0

f(3) = 33 = 9

f(4) = 72 = 0

f(5) = 135 = 3

f(6) = 228 = 0

f(7) = 357 = 9

f(8) = 528 = 0

f(9) = 747 = 3

f(10) = 1020 = 0

f(11) = 1353 = 9

Ergo, we see that f(x) is a degree three polynomial with six roots. 3

The proof of the theorem below is left as an exercise, though the following

examples may shed some light on the proof.

Theorem 10.1.7. If D is an integral domain, then D[x] is an integral do-

main.

Example 10.1.8. Recall that Z is an integral domain because it is com-

mutative, has unity 1, and has no zero-divisors. Then Z[x] is an integral

domain. 3

Non-Example 10.1.9. The ring Z6 is not an integral domain because

2, 3 ∈ Z6 are zero-divisors. Similarly, Z6[x] is not an integral domain. The
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elements 2 and 3 are zero-divisors in Z6[x]. Similarly, 2x and 3x2 are zero-

divisors.

Interestingly, the element 2x+ 3 is not a zero-divisor. First, note that there

is no constant c 6= 0 ∈ Z6 such that c(2x + 3) = 0. Now, consider a degree

one polynomial ax+ b ∈ Z6[x] such that

(2x+ 3)(ax+ b) = 0

and assume that a and b are not both 0 ∈ Z6. Notice

(2x+ 3)(ax+ b) = 2ax2 + (2b+ 3a)x+ 3b = 0

induces a system of three equations:

2a = 0 (10.2)

2b+ 3a = 0 (10.3)

3b = 0. (10.4)

Equation 10.2 implies that a = 3 or a = 0. Equation 10.4 implies that b = 2

or b = 0. Recall that a and b are not both 0. This leaves us with three cases.

1. Assume a = 3 and b = 2. Then 2b+ 3a = 4 + 9 = 1, which contradicts

Equation 10.3.

2. Assume a = 3 and b = 0. Then 2b + 3a = 9 = 3, which contradicts

Equation 10.3.

3. Assume a = 0 and b = 2. Then 2b+3a = 4, which contradicts Equation

10.3.

Therefore, we see that no such a and b exist. Hence, the element 2x+3 ∈ Z6[x]

is not a zero-divisor. 3
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In the above example, we only need to consider constants and degree one

polynomials. If this is not clear, consider a degree two polynomial, ax2 +

bx+ c ∈ Z6[x], where a, b, and c are not all zero. Suppose

(2x+ 3)(ax2 + bx+ c) = (2a)x3 + (2b+ 3a)x2 + (2c+ 3b)x+ 3c = 0.

Thus, a degree two polynomial induces relations similar to those induced

by Equations 10.2, 10.3, and 10.2. Without loss of generality, higher degree

polynomials induce similar relations, which lead to similar contradictions.

EXERCISES

Exercise 10.1.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let R be a ring and f(x) ∈ R[x] be a polynomial of degree d.

a. Two polynomials that induce the same map are equal polynomials.

b. Polynomial f(x) has d roots.

c. Polynomial f(x) has at most d roots.

d. Polynomial f(x) has exactly d roots.

e. If g(x) ∈ R[x] has degree n, then deg f(x) · g(x) = d+ n.

f. If f(x), g(x) ∈ R[x] are zero-divisors, then f(x) · g(x) is a zero-divisor.

g. If f(x), g(x) ∈ R[x] are zero-divisors, then f(x) + g(x) is a

zero-divisor.

Exercise 10.1.2. Find two distinct elements in Z3[x] that induce the same

mapping on Z3.

Exercise 10.1.3. Consider the rings Z2 and Z2[x].

a. Find all possible maps from Z2 to Z2.

b. Find all polynomials up through degree 2 in Z2[x]. Which of these

induce the same maps on Z2?
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c. For n ∈ N, how many polynomials of degree n are in Z2[x]?

Exercise 10.1.4. For each of the following pairs, find f(x) + g(x) and

f(x) · g(x).

a. f(x) = 3x+ 5, g(x) = 6x+ 2 ∈ Z7[x]

b. f(x) = 2x+ 3, g(x) = x2 + 2x ∈ Z4[x]

c. f(x) = 2x2 + 2x+ 1, g(x) = x2 + 2 ∈ Z3[x]

Exercise 10.1.5. For each of the following, find all of the roots of f(x).

a. f(x) = 3x2 + 4x+ 1 ∈ Z8[x] in Z8.

b. f(x) = x3 + 3x2 + 2x ∈ Z10 in Z10

Exercise 10.1.6. Prove Theorem 10.1.4.

Exercise 10.1.7. Prove Theorem 10.1.7.

Exercise 10.1.8. Determine if the following elements are zero-divisors in

Z8[x]. Justify your claims.

a. 6x

b. 4x2 + 2

c. 2x3 + 4x+ 6

Exercise 10.1.9. Determine if the following elements are zero-divisors in

Z10[x]. Justify your claims.

a. 5x

b. 8x2 + 2

c. 5x3 + 4x

Exercise 10.1.10. Let R be a ring and f(x), g(x) ∈ R[x].

a. Show, by example, that it is possible for

deg(f(x) · g(x)) < deg(f(x)) + deg(g(x)).

b. Prove that when R is an integral domain,

deg(f(x) · g(x)) = deg(f(x)) + deg(g(x)).
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Exercise 10.1.11. Suppose R and S are rings and φ : R → S is a ring

homomorphism. Define ψ : R[x]→ S[x] by

ψ
(∑

aix
i
)

=
∑

φ(ai)x
i.

Prove that ψ is a ring homomorphism.

Exercise 10.1.12. Suppose R and S are isomorphic. Prove that R[x] and

S[x] are isomorphic.

10.2 Division Algorithm

Recall that Theorem 3.2.26, the Division Algorithm, is about integers. Be-

low, we adapt this theorem to be about polynomials. The purpose of either

Division Algorithm is to write something larger in terms of how many copies

of something smaller it contains plus the resulting remainder.

If the proof seems notationally cumbersome, follow along with the example

that follows.

Theorem 10.2.1 (Division Algorithm for Polynomials). Let F be a field.

Let a(x), b(x) ∈ F [x] such that b(x) 6= 0. Then there exist q(x), r(x) ∈ F [x]

such that a(x) = b(x) · q(x) + r(x) and 0 ≤ deg(r(x)) < deg(b(x)).

Proof. To begin, out of a(x) and b(x), we assume at least one function has

degree greater than zero. Otherwise, a(x) and b(x) are simply constants in

F .

If deg(a(x)) = 0, then we are assuming deg(b(x)) > 0. In this case, q(x) = 0

and r(x) = b(x) because a(x) has smaller degree than b(x). Similarly, if

deg(a(x)) < deg(b(x)), q(x) = 0 and r(x) = b(x).
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Now we may assume deg(a(x)) ≥ deg(b(x)). Let n = deg(a(x)) and m =

deg(b(x)), thus we are assuming n ≥ m. Further, let a(x) and b(x) be

represented by the following:

a(x) =
n∑

i=0

aix
i = anx

n + an−1x
n−1 + · · ·+ a1x+ a0

b(x) =
m∑
i=0

bix
i = bmx

m + bm−1x
m−1 + · · ·+ b1x+ b0.

Using polynomial long division, we divide a(x) by b(x). The monomial we

need to multiply b(x) by to create the leading monomial of a(x) is an
bn
xn−m.

For the next step in polynomial long division, we compute

a(x)−
(
an
bn
xn−m

)
b(x),

which we will call α1(x). Hence, deg(α1(x)) = 0 or deg(α1(x)) < deg(a(x)),

and, as we have already shown, α1(x) = b(x)·q1(x)+r1(x) for some q1(x), r1(x) ∈
F [x]. Thus

a(x) =

(
an
bn
xn−m

)
b(x) + α1(x)

=

(
an
bn
xn−m

)
b(x) + b(x) · q1(x) + r1(x)

= b(x) ·
(
an
bn
xn−m + q1(x)

)
+ r1(x).

Thus, we have found q(x) = an
bn
xn−m + q1(x) and r(x) = r1(x).

Example 10.2.2. Suppose b(x) = 2x2+3 ∈ R[x]. For each of the following

a(x) ∈ R[x], we wish to determine the polynomials q(x), r(x) ∈ R[x] such

that a(x) = b(x) · q(x) + r(x). We roughly follow the presentation of cases in

the proof of Theorem 10.2.1.
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• Let’s consider a case when a(x) is a constant. If a(x) = 5, then

a(x) = 5 = 0 · (2x2 + 3) + 5.

In this case, q(x) = 0 and r(x) = 5 = a(x).

• Let’s consider a different case when deg(a(x)) < deg(b(x)). If a(x) =

x+ 5, then

a(x) = x+ 5 = 0 · (2x2 + 3) + (x+ 5).

Once again, q(x) = 0 and r(x) = x+ 5 = a(x).

• Let’s consider a case when deg(a(x)) = deg(b(x)). Suppose a(x) =

3x2 − x− 1. We perform polynomial long division below.

3
2

2x2 + 3
)

3x2 − x − 1

− 3x2 − 9
2

− x− 11
2

Thus, we see that

a(x) = 3x2 − x− 1 =

(
3

2

)(
2x2 + 3

)
+

(
−x− 11

2

)
,

meaning that q(x) = 3
2

and r(x) = −x − 11
2

. Notice that deg(r(x)) <

deg(b(x)).

• Let’s consider a case when deg(a(x)) > deg(b(x)). Suppose a(x) =
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x3 + 4x2 − x− 1. We perform polynomial long division below.

1
2
x + 2

2x2 + 3
)

x3 + 4x2 − x− 1

− x3 − 3
2
x

4x2 − 5
2
x− 1

− 4x2 − 6

− 5
2
x− 7

Thus, we see that

a(x) = x3 + 4x2 − x− 1 =

(
1

2
x+ 2

)(
2x2 + 3

)
+

(
−5

2
x− 7

)
,

meaning that q(x) = 1
2
x + 2 and r(x) = −5

2
x − 7. Notice that

deg(r(x)) < deg(b(x)).

3

Thus, we now begin to study polynomials that divide other polynomials.

Like a natural number could be prime or composite, a polynomial might or

might not have other polynomials as factors.

The proof of the following corollary is left as an exercise.

Corollary 10.2.3. Let F be a field, a ∈ F , and f(x) ∈ F [x]. Then f(a) is

the remainder of f(x) divided by the polynomial x− a.

Example 10.2.4. Consider f(x) = x2 − 3x + 5 ∈ R[x] and take a = 4.
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Below, we divide f(x) by x− 4 using polynomial long division.

x+ 1

x− 4
)

x2 − 3x+ 5

− x2 + 4x

x+ 5

− x+ 4

9

Thus, the remainder is 9. Notice that f(4) = 9. 3

The following corollary is biconditional, and thus it is useful in multiple ways.

Its proof is left as an exercise.

Corollary 10.2.5. Let F be a field, a ∈ F , and f(x) ∈ F [x]. Then x− a is

a factor of f(x) if and only if a is a root of f(x).

This means that if we know f(a) = 0, then we may factor x− a out of f(x).

Additionally, if we know x− a is a factor of f(x), we also know f(a) = 0.

Example 10.2.6. Consider f(x) = x3 + 3x2 − 2x− 4 ∈ R[x]. We see that

f(−1) = −1 + 3 + 2− 4 = 0,

thus we know that x+ 1 is a root of f(x). We use the Division Algorithm to
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determine g(x) such that f(x) = (x+ 1)g(x).

x2 + 2x− 4

x+ 1
)

x3 + 3x2 − 2x− 4

− x3 − x2

2x2 − 2x

− 2x2 − 2x

− 4x− 4

4x + 4

0

Hence, f(x) = (x+ 1)(x2 + 2x− 4). 3

Theorem 10.2.7. Let F be a field and f(x) ∈ F [x] a polynomial of degree

n. Then f has at most n roots, counting multiplicity.

Proof. We proceed by induction on the degree of f(x). For the first base

case, if deg(f(x)) = 0, then f(x) has no roots, as it is a constant, and the

result holds. For the second base case, if deg(f(x)) = 1, then f(x) = a1x+a0

for a1, a0 ∈ F , and −a0/a1 is the only root of f(x). Again, the result holds.

For the inductive hypothesis, assume that the result holds for all polynomials

in F [x] of degree n − 1 or less. Further, assume deg(f(x)) = n. If f(x) has

no roots, then the result holds. Assume f(x) has root a of multiplicity k. By

the Division Algorithm and Corollary 10.2.5, we may write f(x) as

f(x) = (x− a)k · q(x). (10.5)

Notice that

deg(f(x)) = deg((x− a)k · q(x)) = k + deg(q(x)),
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thus 1 ≤ k ≤ n.

If a is the only root of f(x), the result holds. Assume b 6= a is a root of f(x).

Hence f(b) = 0. Substituting x = b into Equation 10.5, we see that

0 = f(b) = (b− a)k · q(b).

By assumption, b− a 6= 0, and because F is a field, it must be that q(b) = 0.

Therefore, b is also a root of the polynomial q(x). Recall that 1 ≤ k ≤ n,

which means that deg(q(x)) < n. By the inductive hypothesis, q(x) has at

most deg(q(x)) = n− k roots. Ergo, f(x) has at most k+ (n− k) roots.

Example 10.2.8. Let f(x) = x4 − 1. As a polynomial in R[x], f(x) has

two roots, namely 1 and −1. As a polynomial in C[x], f(x) has four roots,

namely 1, −1, i, and −i. Notice that R and C are fields. 3

Non-Example 10.2.9. In Exercise 10.1.5, 3x2 + 4x + 1 has more than

two roots. This can happen in polynomial rings when the coefficients are

elements of a ring that is not a field. 3

EXERCISES

Exercise 10.2.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let F be a field and let f(x) ∈ F [x] have degree d.

a. If f(x) ∈ F [x], then f(x) has a root in F .

b. If f(x) ∈ F [x], then f(x) has d roots in F .

Exercise 10.2.2. Let f(x) = x3 − 3x2 + 4 ∈ R[x].

a. Let a = 1. Find f(a). Find the remainder of f(x) divided by x− a.

b. Let b = −3. Find f(b). Find the remainder of f(x) divided by x− b.



328 CHAPTER 10. POLYNOMIALS

c. Let c = 2. Find f(c). Find the remainder of f(x) divided by x− c.

Exercise 10.2.3. Let p be a prime and let

f(x) = x4 + 2x3 + 3x+ 3, g(x) = 2x+ 1 ∈ Zp[x]. For each of the following p,

find the quotient and remainder when f(x) is divided by g(x).

a. p = 5

b. p = 7

Exercise 10.2.4. Suppose F is an infinite field and f(x) ∈ F [x]. Prove that

if f(a) = 0 for infinitely many a ∈ F , then f(x) = 0.

Exercise 10.2.5. Prove Corollary 10.2.3.

Exercise 10.2.6. Prove Corollary 10.2.5.

Exercise 10.2.7. Let f(x) ∈ R[x]. For a ∈ R, suppose that f(a) = 0 and

f ′(a) 6= 0, where f ′(x) is the derivative of f(x) with respect to x. Prove that

the multiplicity of the root a is one.

Exercise 10.2.8. Consider xp−1 − 1 ∈ Zp[x]. Prove that

xp−1 − 1 = (x− 1)(x− 2)(x− 3) · · · (x− (p− 1)).

Exercise 10.2.9. Let F be a field and f(x) =
∑
aix

i ∈ F [x]. Prove that

x− 1 is a factor of f(x) if and only if
∑
ai = 0.

Exercise 10.2.10. A principal ideal domain is an integral domain in which

every ideal is a principal ideal. Use the Division Algorithm for Polynomials

to prove that if F is a field, F [x] is a principal ideal domain.

10.3 Irreducible Polynomials

The Division Algorithm for Polynomials is much like the Division Algorithm

for natural numbers. In this section, we begin to study decompositions of

polynomials, which are similar to prime factorizations of natural numbers.
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Definition 10.3.1. Let D be an integral domain and f(x) ∈ D[x] be a

polynomial that is neither the zero polynomial nor a unit. Then the polyno-

mial f(x) is irreducible over D if for every decomposition f(x) = g(x) ·h(x),

g(x), h(x) ∈ D[x], either g(x) or h(x) is a unit in D[x]. A polynomial that is

nonzero, not a unit, and not irreducible is reducible over D.

Example 10.3.2. The definitions of irreducible and reducible apply to

nonzero elements that are not units. In R[x], the element 3 is a unit, thus 3

is neither reducible nor irreducible. In Z[x], the element 3 is neither a zero

nor a unit, thus 3 must be either irreducible or reducible. Every possible

factorization of 3 ∈ Z[x], that is, 3 = 1 · 3 = −1 · −3, includes a factor that

is a unit, thus 3 ∈ Z[x] is irreducible. 3

Example 10.3.3. Let f(x) = 3x2 + 12.

• As a polynomial in Z[x],

f(x) = 3x2 + 12 = 3(x2 + 4)

is the only decomposition of f(x) into factors that are also in Z[x].

Neither 3 nor x2 + 4 is a unit in Z[x], thus f(x) is reducible over Z.

• As a polynomial in R[x],

f(x) = 3x2 + 12 = 3(x2 + 4)

is the only decomposition of f(x) into factors that are also in R[x]. The

polynomial 3 is a unit in R[x], thus f(x) is irreducible over R.
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• As a polynomial in C[x],

f(x) = 3x2 + 12 = 3(x2 + 4) (10.6)

= [3(x− 2i)](x+ 2i) (10.7)

= (x− 2i)[3(x+ 2i)] (10.8)

are the only decompositions of f(x) into factors that are also in C[x].

In Equation 10.6, the polynomial 3 is a unit in C[x]. In Equations

10.7 and 10.8, none of the factors are units in C[x]. Therefore, because

not all decompositions include a factor that is a unit, the polynomial

f(x) = 3x2 + 12 is reducible over C.

3

When D is a field, not just an integral domain, an irreducible polynomial is

a bit like “prime polynomial” in that can not be decomposed into smaller

polynomials.

Theorem 10.3.4. Let F be a field and f(x) ∈ F [x] be a polynomial of degree

two or three. Then f(x) is reducible over F if and only if f(x) has a zero in

F .

Proof. Let f(x) ∈ F [x] be a polynomial of degree two or three.

First, suppose f(x) is reducible, that is f(x) = g(x) ·h(x), where g(x), h(x) ∈
F [x]. By Exercise 10.1.10, deg(f(x)) = deg(g(x)) + deg(h(x)), and thus g(x)

and h(x) have degrees strictly less than deg(f(x)). Thus, either g(x) or h(x)

has degree one, and without loss of generality, assume deg(g(x)) = 1. Then

g(x) = ax+ b for some a, b ∈ F , and note that a 6= 0 by construction. As F

is a field, −a−1b ∈ F , and, in particular, g(−a−1b) = 0. Thus, f(−a−1b) = 0.

Now suppose that f(a) = 0 for some a ∈ F [x]. By Theorem 10.2.5, x− a is



10.3. IRREDUCIBLE POLYNOMIALS 331

a factor of f(x). Thus, f(x) is reducible.

Example 10.3.5. In C[x], the polynomial f(x) = x2 + 3 has zeros ±3i.

Thus, f(x) is reducible in C. Over R, f(x) has no zeros, because ±3i ∈ C−R,

thus f(x) is irreducible in R[x]. 3

Example 10.3.6. Consider f(x) = x2 + 2.

• As a polynomial in Z3[x], f(1) = 0 and f(2) = 0. Thus, f(x) is

reducible in Z3.

• Below is a chart displaying the mapping of the elements in Z5[x].

f(0) = 2

f(1) = 3

f(2) = 1

f(3) = 1

f(4) = 3.

Thus, f(x) has no roots in Z5[x], therefore it is irreducible over Z5.

3

Theorem 10.3.7. Suppose F is a field and let f(x) ∈ F [x]. Then 〈f(x)〉 is

maximal in F [x] if and only if f(x) is irreducible over F .

Proof. First, suppose 〈f(x)〉 is maximal. Recall that neither {0} nor F [x]

are maximal ideals of F [x]. Thus, 〈f(x)〉 6= {0}, and f(x) 6= 0. Also,

〈f(x)〉 6= F [x], and thus by Exercise 9.4.8, f(x) is not a unit. Thus, f(x)

must be either irreducible or reducible. Suppose that f(x) = g(x)·h(x) where

deg(g(x)) < deg(f(x)). Then 〈f(x)〉 ⊂ 〈g(x)〉, and as 〈f(x)〉 is maximal, this
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means that 〈g(x)〉 = F [x]. Thus, g(x) must be a unit in F . Therefore, f(x)

is irreducible, as every factorization of it includes a unit.

Second, suppose f(x) is irreducible. Consider an ideal I such that

〈f(x)〉 ⊆ I ⊆ F [x].

By Exercise 10.2.10, I = 〈g(x)〉 for some g(x) ∈ F [x]. Thus, f(x) = g(x)h(x)

for some h(x) ∈ F [x]. As f(x) is irreducible, this means that either g(x) or

h(x) is a unit. If g(x) is a unit, then I = 〈g(x)〉 = F [x]. If h(x) is a unit,

then I = 〈g(x)〉 = 〈f(x)〉. Ergo, 〈f(x)〉 is a maximal ideal.

The following corollary follows directly from Theorem 10.3.7, and its proof

is left as an exercise.

Corollary 10.3.8. Suppose F is a field and f(x) ∈ F [x] is irreducible. Then

F [x]/〈f(x)〉 is a field.

EXERCISES

Exercise 10.3.1. For each of the following, determine if the statement is

always true, sometimes true, or never true. In a sentence or two, justify

your response. Let f(x) ∈ D[x], where D is an integral domain.

a. If f(x) is irreducible in C[x], then f(x) is irreducible in R[x].

b. If f(x) is reducible in C[x], then f(x) is reducible in R[x].

c. If f(x) is not reducible, then f(x) is irreducible.

Exercise 10.3.2. Consider the polynomial rings Z[x], R[x], and C[x]. Give

another example of a polynomial that is reducible in exactly two of three of

these rings.

Exercise 10.3.3. Consider the polynomial f(x) = x2 + 1. Determine f(x)

is irreducible over the following fields and justify your claim.
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a. Z3

b. Z5

Exercise 10.3.4. Completely reduce x3 + 7 ∈ Z11[x].

Exercise 10.3.5. Prove Corollary 10.3.8.

Exercise 10.3.6. Suppose p is a prime and f(x) ∈ Zp[x] is an irreducible

polynomial of degree n. Prove that Zp[x]/〈f(x)〉 is a field of order pn.
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Appendix A

Cayley Tables of Some

Dihedral Groups

Symbol Description Mapping

R0

Rotation of 0◦

counterclockwise

1

23
R0

1

23

R120 Rotation of 120◦
1

23
R120

2

31

R240 Rotation of 240◦
1

23
R240

3

12

V
Reflection about the

vertical axis

1

23
V

1

32

L
Reflection about the axis

from the left vertex

1

23
L

2

13

R
Reflection about the axis

from the right vertex

1

23
R

3

21
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D3 R0 R120 R240 V L R

R0 R0 R120 R240 V L R

R120 R120 R240 R0 R V L

R240 R240 R0 R120 L R V

V V L R R0 R120 R240

L L R V R240 R0 R120

R R V L R120 R240 R0
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Symbol Description Mapping

R0

Rotation of 0◦

counterclockwise

1

23

4
R0

1

23

4

R90 Rotation of 90◦

1

23

4
R90

2

34

1

R180 Rotation of 180◦

1

23

4
R180

3

41

2

R270 Rotation of 270◦

1

23

4
R270

4

12

3

H
Reflection about the

horizontal axis

1

23

4
H

2

14

3

V
Reflection about the

vertical axis

1

23

4
V

4

32

1

DL

Reflection about the left

diagonal

1

23

4
DL

3

21

4

DR

Reflection about the right

diagonal

1

23

4
DR

1

43

2
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D4 R0 R90 R180 R270 H V DL DR

R0 R0 R90 R180 R270 H V DL DR

R90 R90 R180 R270 R0 DR DL H V

R180 R180 R270 R0 R90 V H DR DL

R270 R270 R0 R90 R180 DL DR V H

H H DL V DR R0 R180 R90 R270

V V DR H DL R180 R0 R270 R90

DL DL V DR H R270 R90 R0 R180

DR DR H DL V R90 R270 R180 R0
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Symbol Description Mapping

R0

Rotation of 0◦

counterclockwise

1

23

4
5

R0 1

23

4
5

R72 Rotation of 72◦
1

23

4
5

R72 2

34

5
1

R144 Rotation of 144◦
1

23

4
5

R144 3

45

1
2

R216 Rotation of 216◦
1

23

4
5

R216 4

51

2
3

R288 Rotation of 288◦
1

23

4
5

R288 5

12

3
4
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Symbol Description Mapping

V
Reflection about the

vertical axis

1

23

4
5

V 4

32

1
5

FNW

Reflection about the axis

from the northwest vertex

1

23

4
5

FNW 2

15

4
3

FSW

Reflection about the axis

from the southwest vertex

1

23

4
5

FSW 5

43

2
1

FSE

Reflection about the axis

from the southeast vertex

1

23

4
5

FSE 3

21

5
4

FNE

Reflection about the axis

from the northeast vertex

1

23

4
5

FNE 1

52

4
3
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D5 R0 R72 R144 R216 R288 V FNW FSW FSE FNE

R0 R0 R72 R144 R216 R288 V FNW FSW FSE FNE

R72 R72 R144 R216 R288 R0 FSE FNE V FNW FSW

R144 R144 R216 R288 R0 R72 FNW FSW FSE FNE V

R216 R216 R288 R0 R72 R144 FNE V FNW FSW FSE

R288 R288 R0 R72 R144 R216 FSW FSE FNE V FNW

V V FSW FNE FNW FSE R0 R144 R288 R72 R216

FNW FNW FSE V FSW FNE R216 R0 R144 R288 R72

FSW FSW FNE FNW FSE V R72 R216 R0 R144 R288

FSE FSE V FSW FNE FNW R288 R72 R216 R0 R144

FNE FNE FNW FSE V FSW R144 R288 R72 R216 R0
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Symbol Description Mapping

R0

Rotation of 0◦

counterclockwise

1

2

34

5

6
R0

1

2

34

5

6

R60 Rotation of 60◦

1

2

34

5

6
R60

2

3

45

6

1

R120 Rotation of 120◦

1

2

34

5

6
R120

3

4

56

1

2

R180 Rotation of 180◦

1

2

34

5

6
R180

4

5

61

2

3

R240 Rotation of 240◦

1

2

34

5

6
R240

5

6

12

3

4

R300 Rotation of 300◦

1

2

34

5

6
R300

6

1

23

4

5
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Symbol Description Mapping

F12

Reflection about the 12

o’clock axis

1

2

34

5

6
F12

6

5

43

2

1

F11

Reflection about the 11

o’clock axis

1

2

34

5

6
F12

5

4

32

1

6

F10

Reflection about the 10

o’clock axis

1

2

34

5

6
F10

4

3

21

6

5

F9

Reflection about the 9

o’clock axis

1

2

34

5

6
F9

3

2

16

5

4

F8

Reflection about the 8

o’clock axis

1

2

34

5

6
F8

2

1

65

4

3

F7

Reflection about the 7

o’clock axis

1

2

34

5

6
F7

1

6

54

3

2
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D6 R0 R60 R120 R180 R240 R300 F12 F11 F10 F9 F8 F7

R0 R0 R60 R120 R180 R240 R300 F12 F11 F10 F9 F8 F7

R60 R60 R120 R180 R240 R300 R0 F11 F10 F9 F8 F7 F12

R120 R120 R180 R240 R300 R0 R60 F10 F9 F8 F7 F12 F11

R180 R180 R240 R300 R0 R60 R120 F9 F8 F7 F12 F11 F10

R240 R240 R300 R0 R60 R120 R180 F8 F7 F12 F11 F10 F9

R300 R300 R0 R60 R120 R180 R240 F7 F12 F11 F10 F9 F8

F12 F12 F7 F8 F9 F10 F11 R0 R300 R240 R180 R120 R60

F11 F11 F12 F7 F8 F9 F10 R60 R0 R300 R240 R180 R120

F10 F10 F11 F12 F7 F8 F9 R120 R60 R0 R300 R240 R180

F9 F9 F10 F11 F12 F7 F8 R180 R120 R60 R0 R300 R240

F8 F8 F9 F10 F11 F12 F7 R240 R180 R120 R60 R0 R300

F7 F7 F8 F9 F10 F11 F12 R300 R240 R180 R120 R60 R0
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Appendix B

Hints and Solutions

All hints and solutions are contributed by students. Be grateful for those

who come before you.

CHAPTER 3

A Solution to Exercise 5.1.6.s First, we consider that GL2(Z2) is given by

the set of 2 × 2 matrices, A, with entries in Z2 for which det(A) 6= 0, and

that SL2(Z2) is given by the set of 2×2 matrices, B, with elements in Z2 for

which det(B) = 1. Since 1 ∈ Z2 is the only non-zero number in Z2, it follows

that SL2(Z2) = GL2(Z2). Let G = GL2(Z2) = H = SL2(Z2). Since N(H)

is given by the set of all g ∈ G for which the conjugate of g in H is equal

to H, and in our case, H = G, we are looking for g ∈ GL2(Z2) for which

gGg−1 = G. Since this involves a large number (36) of matrix operations, we

347
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will name each g ∈ GL2(Z2) as follows, noting that e is our identity:

a =

[
1 1

0 1

]
, b =

[
1 1

1 0

]
, c =

[
1 0

1 1

]
,

d =

[
0 1

1 1

]
, e =

[
1 0

0 1

]
, f =

[
0 1

1 0

]
.

Note that in GL2(Z2), we have a = a−1, b = d−1, c = c−1, d = b−1, e = e−1,

and f = f−1. Now using these assignments to evaluate our conjugates, we

produce the following table for each h ∈ SL2(Z2) = GL2(Z2).

ghg−1 h = a h = b h = c h = d h = e h = f gHg−1

aha a d f b e c GL2(Z2)
bhd f b a d e c GL2(Z2)
chc f d c b e a GL2(Z2)
dhb c b f d e a GL2(Z2)
ehe a b c d e f GL2(Z2)
fhf c d a b e f GL2(Z2)

Hence, for all g ∈ GL2(Z2), we have gHg−1 = gGg−1 = H = G, and it

follows that N(H) = H = G. 3

A Solution to Exercise 5.1.15.s By the definition of group center, given

z ∈ Z(G), we are assured that zx = xz for all x ∈ G. Furthermore, since

H ⊆ Z(G), we have h ∈ Z(G) for all h ∈ H, and thus hx = xh for every

h ∈ H and x ∈ G. It then follows that for every h ∈ H, given x ∈ G, we

have xhx−1 = xx−1h = h. Thus xHx−1 = H for all x ∈ G, and we see that

N(H) = G by definition. �
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A Solution to Exercise 5.2.8.s Notice that 1 is a generator of Z60. Therefore

〈54〉 = 〈154〉

= 〈1gcd(90,54)〉

= 〈118〉

= 〈18〉

= {18, 36, 54, 72, 0}.

Also notice, using Theorem 3.32,

|〈54〉| = |154|

=
|1|

gcd(|1|, 54)

=
90

gcd(90, 54)

=
90

18

= 5.

3

A Solution to Exercise 6.1.6.s Notice, 210 = 2 · 3 · 5 · 7. Thus,

φ(210) = 210
(

1− 1

2

)(
1− 1

3

)(
1− 1

5

)(
1− 1

7

)
= 210

(1

2

)(2

3

)(4

5

)(6

7

)
= 210

( 48

210

)
= 48.

Therefore, φ(210) = 48. 3
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A Hint about Exercise 5.2.23.s Use Theorem 5.2.19. Be sure to follow bi-

conditional proof techniques.

A Solution to Exercise 5.2.27.s For the following, we consider G = Z12

and note that G is a group under addition modulo 12.

a. i. When H ⊇ 〈3〉 ∪ {2}, we see that H ⊇ {0, 2, 3, 6, 9}. However, H

cannot be a subgroup of G because it is not closed. Since the 2 is

in H, we must also include

3 + 2 = 5,

6 + 2 = 8,

9 + 2 = 11.

Now, H ⊇ {0, 2, 3, 5, 6, 8, 9, 11}. Notice that H is still not closed

and we need to include even more elements. We see that

2 + 2 = 4,

11 + 2 = 1,

2 + 5 = 7,

2 + 8 = 10

must also be added for closure. Finally, we see that

H = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} = Z12, and is closed. Thus,

we must include seven elements in order to make H a subgroup

of G.

ii. When H ⊇ 〈4〉 ∪ {2}, we see that H ⊇ {0, 2, 4, 8}. However, H

cannot be a subgroup of G because it is not closed. Since the 2 is
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in H, we must also include

4 + 2 = 6,

8 + 2 = 10.

Now, H = {0, 2, 4, 6, 8, 10}. In this case, H is closed. We know

H is closed because any composition of two elements will result

in an even, and all evens in Z12 are included in H. Thus, we only

needed to add two more elements to H in order to make it a

subgroup of G, and now, H = {0, 2, 4, 6, 8, 10} = 〈2〉.

iii. When H ⊇ 〈9〉 ∪ {8}, we see that H ⊇ {0, 3, 6, 8, 9}. However, H

cannot be a subgroup of G because it is not closed. Since the 8 is

in H, we must also include

3 + 8 = 11,

6 + 8 = 2,

9 + 8 = 5.

Now, H ⊇ {0, 2, 3, 5, 6, 8, 9, 11}. Notice that H is still not closed

and we need to include even more elements. We see that

8 + 8 = 4,

11 + 2 = 1,

2 + 5 = 7,

2 + 8 = 10

must also be included for closure. Finally, we see that

H = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} = Z12, and is closed. Thus,

we must add seven elements in order to make H a subgroup of G.

b. In each part, after the new elements are included in H, H is cyclic.
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Whether the inclusion of new elements created the parent group or a

different subgroup, H is cyclic in the cases shown. In general, we

started with H ⊇ 〈a〉 ∪ {b}, where a, b ∈ Z12. If a and b are relatively

prime, the resulting H after elements are included for closure, is Z12.

If a and b are not relatively prime, like in part (b), the resulting H is

the cyclic group generated by the smallest common factor between a

and b.

c. Based on the results, we hypothesize that subgroups of cyclic groups

are also cyclic.

�

A Solution to Exercise 5.2.29.s a. Suppose |〈a〉| = m. By Corollary 3.1,

|a| = m, and it follows that am = 1 ∈ U(n). Furthermore, this implies

that am ≡ 1 mod n and hence n | am − 1.

b. Suppose n | am − 1. Then it follows that am ≡ 1 mod n, hence am =

1 ∈ U(n). Furthermore, |a| divides m, and thus m = j|a| for some

j ∈ N. Now suppose that n > ak for all k that divide m. It follows that

ak mod n = ak 6= 1 for all k that divide m. Since |a| divides m, we have

a|a| mod n = a|a| 6= 1. But a|a| = 1 by definition, and thus if n | am − 1

and n > ak for all k that divide m, then |a| = m.

�

CHAPTER 6

A Solution to Exercise 6.1.6.s Recall that the operation in Z18 is addition

modulo 18 and the operation in Z378 is addition modulo 378.

• Suppose n = 3. Then,
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φ(153) = φ(15 + 15 + 15) = φ(9) = 189 mod 378

and

[φ(15)]3 = (315)3 = 945 = 189 mod 378.

Thus, φ(153) = [φ(15)]3.

• Suppose n = 20. Then,

φ(1520) = φ(300) = φ(12) = 252 mod 378

and

[φ(15)]20 = (315)20 = 6300 = 252 mod 378.

Thus, φ(1520) = [φ(15)]20.

3

A Hint about Exercise 6.1.10.s Use the properties of the identity such as

ee = e.

A Hint about Exercise 6.1.12.s Recall property 3 of Theorem 6.1.15. Let

g ∈ G. Once you’ve narrowed down the possibilities for |g|, proceed with

cases.

CHAPTER 7
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A Solution to Exercise 7.2.11.s Let G be a group. By Lagrange’s Theorem,

note that |G : G| = |G|/|G| = 1. Further, note that eG = G where e is the

identity in G. Since |G : G| = 1, then by Theorem 5.1 part 8, it follows that

gG = G for all g ∈ G. Now take g, h ∈ G. Note that for each g we have

hg−1 = j for some j ∈ G, by group closure. Thus, for each g ∈ G, we have

gj = ghg−1. Hence, each representative coset of G in G is equivalent to the set

of conjugates of the representative element in G. Since each coset in G yields

G, it then follows that gGg−1 = G for all g ∈ G, and thus N(G) = G. �

CHAPTER 8

A Solution to Exercise 8.1.4.s Notice in Z50, |10| = 5. Similarly in Z60, |15| =
4. Therefore, |(10, 15)| = lcm(5, 4) = 20. Thus, the subgroup 〈(10, 15)〉 ⊂
Z50 ⊕Z60 and has order 20. Notice in Z50, |0| = 1. Similarly in Z60, |3| = 20.

Therefore, |(0, 20)| = lcm(1, 20) = 20. Thus, the subgroup 〈(0, 20)〉 ⊂ Z50 ⊕
Z60 and has order 20. These subgroups are distinct because for 0, 10 ∈ Z50

and 15, 20 ∈ Z60, |10| 6= |0| and |15| 6= |20|. In conclusion, our two subgroups

of order 20 in Z50 ⊕ Z60 are 〈(10, 15)〉 and 〈(0, 20)〉. 3

A Hint about Exercise 8.3.11.s Use Cauchy’s Theorem for Abelian Groups.

This will be a direct proof.

A Solution to Exercise 8.4.10.s By the Third Isomorphism Theorem, we

get that (Z/30Z)/(6Z/30Z) ≈ Z/6Z. Then, by Corollary 6.3, we get that

Z/6Z ≈ Z6. We know that Z6 = {0, 1, 2, 3, 4, 5} and

(Z/30Z)/(6Z/30Z) = {a+ 6Z/30Z|a ∈ Z6}.
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Thus, we get that

(Z/30Z)/(6Z/30Z) ={6Z/30Z, 1 + 6Z/30Z, 2 + 6Z/30Z,

3 + 6Z/30Z, 4 + 6Z/30Z, 5 + 6Z/30Z}.

3

A Hint about Exercise 8.4.12.s If the identity of G/M is M = mM for

m ∈M , then what is ker(φ)?

CHAPTER 9

A Solution to Exercise 9.1.1.s d. This is always true. The ring has identity

(0, 0), and is closed under component addition because Zm and Zn are rings.

The set is also closed under component multiplication because Zm and Zn

are rings. 3

A Hint about Exercise 9.1.4.s Be sure to reference the definition of a ring

frequently.

A Solution to Exercise 9.2.2.s a. We find that S = {a+bi | a, b ∈ Z, a =

b} is not a subring of C. Let a+ ai, c+ ci ∈ S. Then a+ ai = a(1 + i)

and c+ ci = c(1 + i). Thus, (a+ ai)(c+ ci) = ac(1 + i)2 = 2aci ∈ Z[i].

Consider that 2aci 6∈ S for all cases where both a 6= 0 and c 6= 0. Thus,

S fails the subring test.

b. We find that S = {a+ bi | a, b ∈ Z, a = −b} also fails the subring test.

Let a − ai, c − ci ∈ S. Then a − ai = a(1 − i) and c − ci = c(1 − i).
Thus, (a− ai)(c− ci) = ac(1− i)2 = −2aci ∈ Z[i]. Similarly to part a),
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−2aci 6∈ S for all cases where both a 6= 0 and c 6= 0. Thus, S fails the

subring test.

c. Finally, S = {a + bi | a, b ∈ Z, a = ±b} ∪ Z ∪ I fails the subring

test as well. Although the set is closed under multiplication, it is now

not closed under addition. Note that there exists a ∈ Z ⊂ S and

b = ci ∈ I ⊂ S where c ∈ Z, a 6= c. In this case, a− b 6∈ S.

3

A Solution to Exercise 9.2.4.s Answers may vary. Notice one solution to

this problem is the ring R = {0, 3, 6, 9} which is a subset of 3Z, and consider

it under modulo 12 arithmetic. Observe the Cayley table of the nonzero

elements under multiplication

R∗ 3 6 9

3 9 6 3

6 6 0 6

9 3 6 9

This shows that the unity here is 9. 3

A Solution to Exercise 9.3.2.s A zero-divisor is a nonzero element a ∈ R

such that there exists a nonzero b ∈ R such that ab = 0. In Z35, ab = 0 if

ab = 35k, for k ∈ Z, because we are in modulo 35 arithmetic. Therefore,

the multiples of 5 or 7 are zero-divisors and the set of zero-divisors in R is

{5, 7, 10, 14, 15, 20, 21, 25, 28, 30}. 3

A Hint about Exercise 9.3.5.s Consider Theorem 9.1.12.
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A Hint about Exercise 9.3.4.s Recall the definitions of a commutative ring

and an integral domain. Then, find what makes them different.

A Solution to Exercise 9.4.2.s For 2Z to be an ideal of Z, then a− b ∈ 2Z
and ra, ar ∈ 2Z for a, b ∈ 2Z and rZ. Since a, b ∈ 2Z, we can say a = 2m

and b = 2n for m,n ∈ Z. So we can say a − b = 2m − 2n = 2(m − n).

Since m − n ∈ Z, 2(m − n) ∈ 2Z. So a − b ∈ 2Z. We can also say that

ra = r(2m). Since rings are commutative, r(2m) = (2m)r. Since rings are

associative, (2m)r = 2(mr). Since mr ∈ Z, 2(mr) ∈ 2Z. So ra ∈ 2Z. We

can say that ar = (2m)r. Since rings are associative, (2m)r = 2(mr). Since

mr ∈ Z, 2(mr) ∈ 2Z. So ar ∈ 2Z. In summation, 2Z is an ideal of Z. 3

A Solution to Exercise 9.4.10.s Let R be a ring and a, b ∈ R. Then 〈a〉 =

{ra|r ∈ R} and

〈a, b〉 = {r1a+ r2b | r1, r2 ∈ R},

by definition of principle ideal. Now let ra ∈ 〈a〉. Notice that ar = ar + 0b,

where 0 is the identity of R. Since a, 0 ∈ R, then ar = ar + 0b ∈ 〈a, b〉.
Thus, 〈a〉 ⊆ 〈a, b〉. Since 〈a〉 is a subring of R, and 〈a〉 ⊆ 〈a, b〉, then 〈a〉 is

a subring of 〈a, b〉. 3

A Hint about Exercise 9.4.12.s When proving the direction, “If nZ is a

prime ideal, then n is prime,” use proof by contradicition.

A Hint about Exercise 9.5.8.s What is gcd(a, p) for all a ∈ Z∗p?

A Solution to Exercise 9.5.9.s Let H, K and G be fields so that K is a

subfield of H and H is a subfield of G. Notice that since K is a subfield of
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H, K is a subgroup of H. Similarly, since H is a subfield of G then H is a

subgroup of G. Therefore by Exercise 3.3.7, K is a subgroup of G. Therefore,

for K to be a subfield of G we need to show for a, b ∈ K, a − b ∈ K and

ab−1 ∈ K.

1. Non-empty:

Notice that since K is a subfield of H, we know K has at least two

elements. Thus K is non-empty.

2. a− b ∈ K:

Notice that since K is a subfield of H, we know that for a, b ∈ K,

a− b ∈ K.

3. ab−1 ∈ K:

Notice that since K is a subfield of H, we know that for a, b ∈ K,

ab−1 ∈ K.

Hence, K is a subfield of G. �

A Solution to Exercise 9.5.1.s c. This is sometimes true. Since a field has

no zero-divisors, there are exactly two idempotents, namely 1 and 0. As 1 is

the unity, it is its own multiplicative inverse, however, since 0 is the identity,

it does not have a multiplicative inverse. 3

A Hint about Exercise 9.6.5.s Be sure to reference LaGrange’s Theorem.

A Hint about Exercise 9.6.6.s Consider the coefficients of the binomial ex-

pansion.
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A Solution to Exercise 9.6.7.s Notice that the ring is made up of elements

(0, 0), (0, 1), (1, 0), (1, 1), increasing to (p − 1, q − 1). Since p and q are

relatively prime, we know the only factor they share is 1. Also, since p and

q are prime themselves, the values 1 through p − 1 are relatively prime to

q, and the values 1 through q − 1 are relatively prime to p. Thus the only

way to generate a zero element is to multiply the coordinate by a multiple

of both p and q. This is the least common multiple of p and q, which is pq.

Thus the characteristic of the ring is pq. 3

A Solution to Exercise 9.6.8.s a. Notice that the highest order of an el-

ement is 15 in Z15 and the highest order of an element is 20 in Z20.

Thus char(Z15 ⊕ Z20) = lcm(15, 20) = 60.

b. Let a ∈ Zm and b ∈ Zn. Then from the corollary 5.1 we know that

the order of a under addition will divide |Zm| = m and the order of b

under addition will divide |Zn| = n. Thus ak = m and bc = n where

c, k ∈ N. By definition lcm(m,n) is a multiple of both m and n. So we

can see that (a, b)lcm(m,n) = (0, 0) because am = 0 and bn = 0.

Now suppose that a natural d < lcm(m,n) exists such that (a, b)d =

(0, 0) for all a ∈ Zm and b ∈ Zn. Thus d has to be a multiple of

the orders under addition of a and b. Now the least common multiple

is the smallest number that is a multiple of both m and n which we

know exist as orders in Zn and Zm. Thus d = lcm(m,n). Therefore

char(Zm ⊕ Zn) = lcm(m,n) where m,n ≥ 2. 3

c. We can see that char(Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn) = lcm(m1,m2, · · · ,mn)

where n ∈ N and mi ≥ 2.

3
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A Solution to Exercise 9.8.9.s Let φ : R → R′ be a ring homomorphism,

and let a ∈ R be an idempotent. Then a = aa, by defintion of idempotent.

Notice

φ(a) = φ(aa)

= φ(a)φ(a)

by definition of homomorphism. Thus, φ(a) is an idempotent. Ergo, a ring

homomorphism maps an idempotent to another idempotent. 3

A Hint about Exercise 9.8.15.s Show there is a ring homomorphism φ from

Z[x] to Z. Consider Theorem 9.7.9.

CHAPTER 10

A Hint about Exercise 10.2.5.s Use the Division Algorithm and evaluate

when x = a.
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