
Plymouth State Plymouth State

Digital Commons @ Plymouth State Digital Commons @ Plymouth State

Open Educational Resources Open Educational Resources

1-10-2018

Software Engineering Lecture Notes (Student Version) Software Engineering Lecture Notes (Student Version)

Kyle Burke
Plymouth State University, paithanq@gmail.com

Follow this and additional works at: https://digitalcommons.plymouth.edu/oer

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Burke, Kyle, "Software Engineering Lecture Notes (Student Version)" (2018). Open Educational Resources.
11.
https://digitalcommons.plymouth.edu/oer/11

This Text is brought to you for free and open access by the Open Educational Resources at Digital Commons @
Plymouth State. It has been accepted for inclusion in Open Educational Resources by an authorized administrator
of Digital Commons @ Plymouth State. For more information, please contact
ajpearman@plymouth.edu,chwixson@plymouth.edu.

https://digitalcommons.plymouth.edu/
https://digitalcommons.plymouth.edu/oer
https://digitalcommons.plymouth.edu/psu_oer
https://digitalcommons.plymouth.edu/oer?utm_source=digitalcommons.plymouth.edu%2Foer%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.plymouth.edu%2Foer%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.plymouth.edu/oer/11?utm_source=digitalcommons.plymouth.edu%2Foer%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ajpearman@plymouth.edu,chwixson@plymouth.edu

CS 4140: Software Engineering∗

Lecture Notes - Student Version†

Kyle Burke

January 10, 2018

“Weeks of programming can save you hours of planning.” -unknown

This work is licensed under a Creative Commons “Attribution
4.0 International” license.

Abstract

Lecture notes for an upper-level undergraduate software engineering course, with
a strong focus on software design. Students taking this course should have already
completed a data structures course. These notes are designed to be used with Dale
Skrien’s text Object Oriented Design using Java [3].

Contents

Preface 5
Plan and Goals . 5
Acknowledgements . 5
Under Construction . 5

0 Introduction 6
0.0 Project Teams . 6
0.1 UML: Class Diagrams . 6
0.2 Bad Design: Repeated Code . 11
0.3 JavaDoc . 15
0.4 Model-View-Controller Heuristic . 15
0.5 Second Intro . 20

∗Kyle would always like to hear about how useful his notes are. If you have any comments about these,
please email him at paithanq@gmail.com.

†Created with lectureNotes.sty, which is available at: http://turing.plymouth.edu/~kgb1013/

lectureNotesLatexStyle.php (or, GitHub: https://github.com/paithan/LaTeX-LectureNotes). Many
or most of the answers to questions are hidden so that some of class will still be a challenge for students.

1

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
paithanq@gmail.com
http://turing.plymouth.edu/~kgb1013/lectureNotesLatexStyle.php
http://turing.plymouth.edu/~kgb1013/lectureNotesLatexStyle.php
https://github.com/paithan/LaTeX-LectureNotes

CONTENTS CONTENTS

1 Basic Object-Oriented Programming 21
1.0 Elegance . 21
1.1 Public vs Private Variables . 22

2 Observer Pattern 26
2.0 Code to Fix . 27
2.1 Object-Oriented Design Pattern Basics 28
2.2 Solution: Observer Pattern . 28
2.3 Applying the Observer Pattern . 32

3 When to Inherit? 32
3.0 Code Reuse . 34
3.1 “Is-A” Perspective . 36
3.2 Similar Public Interfaces . 45
3.3 Polymorphism . 49
3.4 Summary . 50

4 State Pattern 51
4.0 State Pattern Basics . 51
4.1 Example: Debugging Print Modes . 52
4.2 Example: Pokédex - Caught and Unseen Pokémon 59
4.3 Example: Monopoly . 65

5 Singleton Pattern 68
5.0 Use Reluctantly! . 69
5.1 The Singleton Participant . 70
5.2 Removing the Public ”Constant” . 72
5.3 Delaying the Construction . 73
5.4 Solving the Race Condition . 75
5.5 Java’s Solution to the Bottleneck . 75
5.6 Example: LinkedIntList . 76
5.7 When to use the Singleton Pattern . 77
5.8 When to Use? . 77

6 Elegant Methods 78
6.0 Public vs. Private Methods . 78
6.1 Method Documentation . 80
6.2 Pre/Post Conditions . 81
6.3 Overriding Clone . 84

7 Elegant Classes 87
7.0 Pre-Implementation Steps . 87
7.1 Extract Nouns and Verbs . 89
7.2 CRC (Class-Responsibilities-Collaborators) Cards 89
7.3 Cohesion . 89
7.4 Responsibilities . 91
7.5 Immutable Classes . 91
7.6 Coding to Interfaces . 91
7.7 Coupling . 95

Page 2 © 2018 Kyle Burke cb

CONTENTS CONTENTS

8 OODP: Composite Pattern 97
8.0 Pac Man . 97
8.1 Composite Pattern Specifics . 101
8.2 Composite Nim . 104

9 OODP: Factory Method Pattern 115
9.0 Example: Nim . 115
9.1 Factory Method Pattern Basics . 119
9.2 Factory Method with State Pattern . 120

10 OODP: Command Pattern 120
10.0 Command Pattern Specifics . 120
10.1 Web Browsing . 122

11 Waterfall Software Development 128
11.0 Steps . 128
11.1 Benefits . 128
11.2 Limitations . 128
11.3 Other Philosophies . 128

12 Agile Software Development 129
12.0 The Agile Manifesto . 129
12.1 Agile Iterations . 132
12.2 Customer Representative . 136
12.3 Information Radiator . 137
12.4 Code Quality in an Agile Team . 139
12.5 Team Experience . 140

13 OODP: Visitor Pattern 143
13.1 Motivation: Collectibles from the 1980’s 143
13.2 Visitor Pattern Participants . 150
13.3 Implemented Example . 153
13.4 Downsides . 156

14 Parallel OODP: Producer-Consumer 156
14.0 Motivation and the Big Problem . 157
14.1 Common First Code . 158
14.2 Sleeping with Semaphores . 160
14.3 Instilling OO principles . 165
14.4 Improvements . 167
14.5 Shifting Responsibilities . 169

15 Parallel OODP: Master-Worker 173
15.0 Motivation . 173
15.1 Initial OO Master-Worker . 174
15.2 First Improvements . 176
15.3 Using the Command Pattern . 179
15.4 Double-down on Command . 180
15.5 Giving Back . 184

Page 3 © 2018 Kyle Burke cb

CONTENTS CONTENTS

15.6 Waiting for Workers . 191
15.7 Master-Worker: Summary . 200

16 Parallel OODP: Pipeline Pattern 201
16.0 Pipeline Pattern based on State Pattern Paper 201
16.1 Final Code and Diagram . 202

17 Evolution of Design Patterns 204
17.0 Downsides of Design Patterns . 204
17.1 OODP and PL . 205

Appendix A Java Programming with Objects 206
A.0 Downcasting . 207
A.1 Summary . 213

1

When I Don’t Comment My Code

1Found on reddit: https://www.reddit.com/r/ProgrammerHumor/comments/66xzzc/when_i_dont_

comment_my_code/.

Page 4 © 2018 Kyle Burke cb

https://www.reddit.com/r/ProgrammerHumor/comments/66xzzc/when_i_dont_comment_my_code/
https://www.reddit.com/r/ProgrammerHumor/comments/66xzzc/when_i_dont_comment_my_code/

CONTENTS CONTENTS

Preface

Plan and Goals

These lecture notes are designed to be used for a course in conjunction with Dale
Skrien’s book, Object Oriented Design using Java [3]. With this influence, the course
spends most of its time covering elements of software design.

Acknowledgements

I must thank all of my students who have taken this course2. They have influenced
the order of topics I cover and will continue to have an impact for as long as I teach
this course. I have learned more about good design from teaching these students than
I did while taking courses. I am so lucky to have many students who are quick to tell
me the changes I should make and what worked well for them. This feedback is always
helpful. I specifically want to thank:

• Dang and Amanda, the first two students who somehow survived a course that I
made far too hard. Thanks and sorry!

• Will, who introduced me to the Command Pattern.

• Ryan and Bob, who didn’t even take the course from me, but who convinced me
to introduce MVC early.

• ... I’ll add more as I remember them!

I learned to care so greatly about good design from Dale Skrien3. He showed us
glimpses of design patterns in his Data Structures course, just enough to prime us for
the ”experimental” software design course he was creating. Everyone who could signed
up for Dale’s new course—offered first in 2002—and it did not disappoint. There was
so much to learn, and I didn’t get to flex that muscle during much of grad school.
Luckily, the torch continued burning, and I got to teach an upper-level software course
right after graduating in 2009. Dale’s lessons lasted for seven dormant years, but armed
with his excellent (and then new) text, I jumped right in as though no time had passed.
Thank you, Dale!

I just discovered the tikz-uml4 LATEXpackage and am beginning to add diagrams
using that instead of LibreOffice. Thanks to Nicolas Kielbasiewicz and other developers
of this cool package!

Thanks also to Christin Wixson for helping me make all the necessary changes to
include this (and my other lecture notes) in Plymouth State’s institutional repository5.

Under Construction

There’s still so much to do. I’m working hard to convert over my hand-written notes
into this form. Here’s a list of some of the things I have left to do:

• Convert the diagrams to TikZ-UML.

2Wittenberg CS 253 and CS 353 in addition to Plymouth State CS 4140.
3http://www.cs.colby.edu/djskrien/
4http://perso.ensta-paristech.fr/~kielbasi/tikzuml/index.php?lang=en
5http://digitalcommons.plymouth.edu

Page 5 © 2018 Kyle Burke cb

http://www.cs.colby.edu/djskrien/
http://perso.ensta-paristech.fr/~kielbasi/tikzuml/index.php?lang=en
http://digitalcommons.plymouth.edu

0 INTRODUCTION

• Add tons of missing chapters/sections/etc.

• Add references to Dale’s book sections from each section in here.

• Add a little tutorial on using TikZ-UML in case students want to use that for
their class diagrams. (Who am I kidding? They won’t do that...)

• Add references to A2A for the Parallel/Concurrent OODP sections.

0 Introduction

In this course, you will:

• Write lots of code.

• Highly consider good software design.

0.0 Project Teams

First step: choose programming teams. Considerations:

• Team members need to put equal effort into working on the projects.

• Team sizes: 2-3 people. Preference towards 2.

• Everyone must be on a team.

• Pair/Triple-Programming is most efficient. Find a team with a similar weekly
schedule to yours.

• Large experience/skill gaps are dangerous. It’s best to find teammates at your
”level”.

We need to choose teams immediately because you’ll probably want to begin work on
your project today.

〈 Let students discuss with each other to determine teams. (Leave
the room?) 〉

0.1 UML: Class Diagrams

Often, easier to communicate and organize ideas in diagrams rather
than code. UML (Unified Modelling Language) describes often-used
diagrams. One part of UML is class diagrams. You will bring class
diagrams to me each meeting.

Page 6 © 2018 Kyle Burke cb

0.1 UML: Class Diagrams 0 INTRODUCTION

Sandwich

- hasLettuce : boolean
- meat : Meat
- condiments : Collection<Ingredient>

+ Sandwich(Bread, Meat) : Sandwich
+ cut() : void
+ hasMustard() : boolean
+ eat() : void
+ addCondiment(Ingredient) : void

Q: Would Food be a sub- or superclass of Sandwich?

A:

〈 Include Food in the diagram: 〉

Sandwich

- hasLettuce : boolean
- meat : Meat
- condiments : Collection<Ingredient>

+ Sandwich(Bread, Meat) : Sandwich
+ cut() : void
+ hasMustard() : boolean
+ eat() : void
+ addCondiment(Ingredient) : void

Food

Page 7 © 2018 Kyle Burke cb

0.1 UML: Class Diagrams 0 INTRODUCTION

Q: How are inheritance connections drawn?

A:
Big empty arrow pointing to the bottom of the
superclass coming out of the top of the sub-
class. Implemented interfaces are the same, ex-
cept that the edge is a dashed line.

Q: Which other types of connections come out of the tops and
bottoms of class boxes?

A: None!

Q: What if we want to include Meat. How can we fit Meat
into the diagram?

A:

Sandwich

- hasLettuce : boolean
- meat : Meat
- condiments : Collection<Ingredient>

+ Sandwich(Bread, Meat) : Sandwich
+ cut() : void
+ hasMustard() : boolean
+ eat() : void
+ addCondiment(Ingredient) : void

Food

Meat

Page 8 © 2018 Kyle Burke cb

0.1 UML: Class Diagrams 0 INTRODUCTION

Q: Is it okay to combine the subclassing arrows for Food and
Meat like in the drawing?

A: Yes! In fact, you should only have one arrow
coming in to the bottom of any class!

Q: What does the arrow from Sandwich to Meat mean?

A: It means that Sandwich has a field of type Meat.

Q: What’s up with the filled diamond?

A:

”Strong aggregation”. The filled diamond
means that Sandwich ”owns” the field. Usu-
ally that means that Sandwich created it or it
will be garbage collected because Sandwich dis-
appears. It’s definitely a subtle point.

Q: Wait... what’s the other option?

A:

The diamond could be open. ”Non-strong” ag-
gregation. In this case, the object doesn’t own
it. I do not expect you to get all the diamonds
right on your figures. In fact, you don’t have to
draw diamond in your figures.

Page 9 © 2018 Kyle Burke cb

0.1 UML: Class Diagrams 0 INTRODUCTION

Q: What is important about the positioning of the base and
tip of the arrow?

A:
• Base: I like to put it at the field itself.

• Tip: I like to direct it to the head of the
class (top box).

We won’t worry about drawing the fields and/or methods of Meat
at this point. If it’s a class that you’ve designed, then you want to
list all these things. If it’s a built-in class (e.g. JPanel) then you
only need to single box.

*

Sandwich

- hasLettuce : boolean
- meat : Meat
- condiments : Collection<Ingredient>

+ Sandwich(Bread, Meat) : Sandwich
+ cut() : void
+ hasMustard() : boolean
+ eat() : void
+ addCondiment(Ingredient) : void

Food

Meat

Ingredients

Q: What if there are multiple things?

A:

Page 10 © 2018 Kyle Burke cb

0.2 Bad Design: Repeated Code 0 INTRODUCTION

Q: Which other class should we add to the diagram that will
use an asterisk?

A:

0.2 Bad Design: Repeated Code

Q:
Let’s say I’m new to a software project, and I’m looking at
the code... and I see a line that could be causing an error. I
fix it right then (probably not a good idea without talking
to someone). What might I be worried about?

A:

Q:

What if we’re upgrading the code for a program, and we had
a slew of integer variables that should only have positive
values. We often had while loops that would decrement the
variables, then afterwards:

if (x < 1) x = 1;

Now we want to allow zero to be a legal value. What is the
biggest problem we have to face?

A:

Page 11 © 2018 Kyle Burke cb

0.2 Bad Design: Repeated Code 0 INTRODUCTION

Q: What’s a common issue in these two situations?

A:

Q: What kind of other duplication do we need to be worried
about throughout?

A:

Q:
What if I am able to replace each of the tests on x with a
method (function) call instead? What would be the benefit
there?

A:

〈 Check out this implementation for a Binary Tree: http://

turing.plymouth.edu/~kgb1013/DB/4140/binaryTreeExample/v0/

BinaryIntTree.java 〉

Q: Does this code compile?

A:

Page 12 © 2018 Kyle Burke cb

http://turing.plymouth.edu/~kgb1013/DB/4140/binaryTreeExample/v0/BinaryIntTree.java
http://turing.plymouth.edu/~kgb1013/DB/4140/binaryTreeExample/v0/BinaryIntTree.java
http://turing.plymouth.edu/~kgb1013/DB/4140/binaryTreeExample/v0/BinaryIntTree.java

0.2 Bad Design: Repeated Code 0 INTRODUCTION

Q: Does the unit test run?

A:

Q: Why not?

A:

Q: What do we have to do to fix it?

A:

〈 Here’s a version with the tests in place: http://turing.

plymouth.edu/~kgb1013/DB/4140/binaryTreeExample/v1/BinaryIntTree.

java 〉

Q: What’s a potential problem going forward with this code?

A:

This is not an immediately easy problem to solve. Notice: in
each case, if the child is not null, I just call the appropriate method
on that child. I’d like to call that method independent of whether
the child is null.

Page 13 © 2018 Kyle Burke cb

http://turing.plymouth.edu/~kgb1013/DB/4140/binaryTreeExample/v1/BinaryIntTree.java
http://turing.plymouth.edu/~kgb1013/DB/4140/binaryTreeExample/v1/BinaryIntTree.java
http://turing.plymouth.edu/~kgb1013/DB/4140/binaryTreeExample/v1/BinaryIntTree.java

0.2 Bad Design: Repeated Code 0 INTRODUCTION

Q: What happens if I call the method on a null object in Java?

A:

Q: How else could we represent not having a child? (Hard!)

A:

〈 Check out the code here: http://turing.plymouth.edu/

~kgb1013/DB/4140/binaryTreeExample/v2/BinaryIntTree.java

〉
null is actually considered to be a mistake. Here’s the quote

from Tony Hoare, who was a developer of ALGOL back in the
1960’s:

“I call it my billion-dollar mistake. It was the invention
of the null reference in 1965. At that time, I was designing
the first comprehensive type system for references in an ob-
ject oriented language (ALGOL W). My goal was to ensure
that all use of references should be absolutely safe, with
checking performed automatically by the compiler. But I
couldn’t resist the temptation to put in a null reference,
simply because it was so easy to implement. This has led
to innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and
damage in the last forty years.”6

This is an example of a programming pattern that uses Polymor-
phism: the Null Object Pattern.

TODO: Should I introduce the Null Object Pattern in full here?
(a la http://www.cs.oberlin.edu/~jwalker/nullObjPattern/)
I could talk about them here and move all that stuff up...

6Source: https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

Page 14 © 2018 Kyle Burke cb

http://turing.plymouth.edu/~kgb1013/DB/4140/binaryTreeExample/v2/BinaryIntTree.java
http://turing.plymouth.edu/~kgb1013/DB/4140/binaryTreeExample/v2/BinaryIntTree.java
http://www.cs.oberlin.edu/~jwalker/nullObjPattern/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

0.3 JavaDoc 0 INTRODUCTION

〈 Go over the syllabus! 〉

0.3 JavaDoc

This is covered in the class book in Appendix B.
〈 Describe JavaDoc comments: class headers, instance variable

(constant) headers, public method headers, tags. 〉

Q: Why do I want you to JavaDoc things for this class?

A:

0.4 Model-View-Controller Heuristic

〈 Talk about old students helping me fix this course by suggesting
topics. 〉

One of these suggested topics is the Model-View-Controller paradigm.
The idea to is identify and separate out these three parts:

• Model: The actual data for something (X).

• View: Handles the way X is displayed.

• Controller: Handles changes/input to the system.

The more you can separate these things, the better.

Q: However, there is one automatic view that I include in every
model. What is that?

A:

Page 15 © 2018 Kyle Burke cb

0.4 Model-View-Controller Heuristic 0 INTRODUCTION

MVC is a good way to start dividing up the different parts for a
project. Some development tools (e.g. Spring framework) have you
start with this.

• If they’re using the game project you assigned them: “Note, I
divided up the classes using MVC.”

• TODO: add more cases here as/if you create more projects.

0.4.1 Example: Pokédex

In the Pokémon mythos, it is very useful to have your Pokédex
while out hunting. It’s like a little PDA that tells you about the
Pokémon you encounter.

〈 Draw a sketch of a Pokédex, like a game boy. 〉

Q:

If Dexter (common Pokédex name) is currently on a screen
showing general information about Jigglypuffs, which part
of MVC should be responsible for the information? (I.e.,
#39, Normal Type, “When its huge eyes light up, it sings
a mysteriously soothing melody that lulls its enemies to
sleep.”)

A:

Q: What might we call this class?

A:

Q: What are some fields for this class?

A:

Page 16 © 2018 Kyle Burke cb

0.4 Model-View-Controller Heuristic 0 INTRODUCTION

Q: What is responsible for presenting this data?

A:

Q: Why do we want the View and the Model to be disjoint?
Why not use the same object?

A:

Q: What is a better term for classes being disjoint?

A:

Q: Some adversaries to MVC argue that every model should
have a default view. Why?

A:

Page 17 © 2018 Kyle Burke cb

0.4 Model-View-Controller Heuristic 0 INTRODUCTION

Q: Why might different views be good for Pokédex software?

A:

Q: Which MVC part will get involved if I push the Right-
arrow, because I want to go to pokemon #40?

A:

Page 18 © 2018 Kyle Burke cb

0.4 Model-View-Controller Heuristic 0 INTRODUCTION

Q:

Fill in the following sequence of events from the Controller’s
perspective:

1. Press Right-Arrow

2. Controller “hears” the right-arrow-push

3. ?

4. ?

5. Controller tells the view to ...?

A:

Q: What are some of the fields for the Controller going to be
in this instance?

A:

Remember that we want to decouple the different parts of MVC
as much as possible. (It’s very hard.)

Page 19 © 2018 Kyle Burke cb

0.5 Second Intro 0 INTRODUCTION

Q: Which classes need to know about which other classes?

A:

Q: Is this how it always is? Hint: consider the project code.

A:

Q: Why doesn’t the Controller need to know about the View?

A:

We’ll see more ways of how to separate the different parts.

0.5 Second Intro

Three Problematic Expectations. You can’t expect...

Past ...code to have been designed well.

Present ...to make the best choices the first time.

Page 20 © 2018 Kyle Burke cb

1 BASIC OBJECT-ORIENTED PROGRAMMING

Future ...how your code will be used in the future. (Example: unsafe
methods in one buried class.)

I expect you to overcome these with good design!

1 Basic Object-Oriented Programming

7

1.0 Elegance

Code Elegance! “Shivers of joy” vs “Shudders of revulsion.”
Elegance is: (page 5) (list all out first)

• Usability: Is it easy for the client to use?

• Completeness: Does it satisfy all the client’s needs?

• Robustness: will it deal with unusual situations gracefully and
avoid crashing?

• Efficiency: will it perform the necessary computations with rea-
sonable resources?

• Scalability: will it still perform when the problems grow by a
lot?

• Readability: is it easy for other programmers to read the code?

• Reusability: can the code be reused in other settings?

• Simplicity: is the code unnecessarily complex?

• Maintainability: can defects be fixed easily without adding new
defects?

• Extensibility: can new features easily be added/unwanted fea-
tures easily be removed?

7XKCD comic 292: https://xkcd.com/292/

Page 21 © 2018 Kyle Burke cb

https://xkcd.com/292/

1.1 Public vs Private Variables 1 BASIC OBJECT-ORIENTED PROGRAMMING

Q: Which are parts of Object-Oriented Design?

A:

Q: Which others are important for this class?

A:

Q: Improving which ones helps remove technical debt?

A:

1.1 Public vs Private Variables

Consider this Square class:

Square

Square

+ sideLength : double

+ Square(double side)

Q: Can I create an ”illegal” square?

A:

Page 22 © 2018 Kyle Burke cb

1.1 Public vs Private Variables 1 BASIC OBJECT-ORIENTED PROGRAMMING

Q: How?

A:

Q: What should we do instead of making them public?

A:

Square

Square

- sideLength : double

+ Square(double side)

Q: What should I do if I want to access or change the value?

A:

Square

Square

- sideLength : double

+ Square(double side)
+ getSideLength() : double
+ setSideLength(double length) : void

Page 23 © 2018 Kyle Burke cb

1.1 Public vs Private Variables 1 BASIC OBJECT-ORIENTED PROGRAMMING

Q: How could these setters prevent the problem with setting
negative side lengths?

A:

public class Square {
private double sideLength;

public void setSideLength(double length) {
if (length > 0) {

this.sideLength = length;

}
}

...

}

Q: Is there a chance something unexpected could happen here?

A:

Q: What’s a better solution?

A:

Page 24 © 2018 Kyle Burke cb

1.1 Public vs Private Variables 1 BASIC OBJECT-ORIENTED PROGRAMMING

Q: Which kind of exception is most relevant here?

A:

Let’s rewrite it using an exception!

public void setSideLength(double length) {
if (length > 0) {

this.sideLength = length;

} else {
throw new IllegalArgumentException(

"Square.setSideLength called with a non-positive

length!");

}
}

Q: Where else might we need to guard against negative values?

A:

Page 25 © 2018 Kyle Burke cb

2 OBSERVER PATTERN

Q: How should we write the constructor?

A:

Q: How could we make this better?

A:

2 Observer Pattern

〈 Draw a gameboy-based Pokédex with Control Pad, and buttons
B and A. 〉

Q: Recall our Pokédex example: What happened when we
pressed right on the control pad?

A:

Page 26 © 2018 Kyle Burke cb

2.0 Code to Fix 2 OBSERVER PATTERN

2.0 Code to Fix

Q:

Consider the following buttons. What do they each do?
(Assume we’re currently looking at a single Pokémon.)

• Control Pad ←
• Control Pad ↑
• Control Pad ↓
• A

• B

A:

〈 Draw this diagram:

Pokedex
- buttons: Collection<Button>

+ wasPressedSince(Date) :
 Boolean
+ getIdentity() : String

Button

- timePressed: Date
- identity: String

*

〉

Q: How does it work to determine whether a button was
pressed?

A:

Page 27 © 2018 Kyle Burke cb

2.1 Object-Oriented Design Pattern Basics 2 OBSERVER PATTERN

TODO: add some code in here?

2.1 Object-Oriented Design Pattern Basics

Each OO design pattern has some properties, including participants
and roles.

Q: What are the participants in a design pattern?

A:

Q: What are the roles in a design pattern?

A:

TODO: add more here?

2.2 Solution: Observer Pattern

The observer pattern is (another) object-oriented Design Pattern.
〈 Draw diagram:

Page 28 © 2018 Kyle Burke cb

2.2 Solution: Observer Pattern 2 OBSERVER PATTERN

+ add(Observer): void
+ notify(): void

Subject
- observers: Collection
 <Observer> + update(Object info): void

<<interface>>

Observer

+ update(Object info): void

ConcreteObserver

*

〉

Q: What are the participants?

A:

Q: What field does the Subject need to have?

A:

Q: What is the role of the Subject? (What does it do?)

A:

Page 29 © 2018 Kyle Burke cb

2.2 Solution: Observer Pattern 2 OBSERVER PATTERN

Q: The Observer’s role is to define the interface for concrete
observers. What is the role of the Concrete Observer?

A:

Q: Why is it good to have the interface?

A:

Q: What will the notify method of the Subject look like? (We
can add nearly all of that code.)

A:

Q: In Java, you might not have to implement the Observer
interface yourself. Why not?

A:

Page 30 © 2018 Kyle Burke cb

2.2 Solution: Observer Pattern 2 OBSERVER PATTERN

Q: What’s the Object that’s sent as the parameter to Java’s
ActionListener?

A:

For many of the events, you can get the object source of the
event. (E.g. ActionEvent.getSource())9

Q: How can we use generics in the Observer Pattern to make
it more reusable?

A:

〈 Draw this diagram:

+ add(Observer<Event>): void
+ notify(): void

Subject
- observers: Collection
 <Observer<Event>> + update(Event info): void

<<interface>>

Observer<Event>

+ update(Event info): void

ConcreteObserver

*

Event
uses

uses

〉
9For a full list of Built-in Java Listeners, see http://docs.oracle.com/javase/tutorial/uiswing/

events/api.html

Page 31 © 2018 Kyle Burke cb

http://docs.oracle.com/javase/tutorial/uiswing/events/api.html
http://docs.oracle.com/javase/tutorial/uiswing/events/api.html

2.3 Applying the Observer Pattern 3 WHEN TO INHERIT?

2.3 Applying the Observer Pattern

Q: How do we apply the pattern to our Pokédex problem? For
each Participant, which real class fills it?

A:

Q: Draw out the class diagram.

A:

3 When to Inherit?

We need to consider the question: When should you use inheri-
tance? When should class B extend/implement/subclass class A?

Page 32 © 2018 Kyle Burke cb

3 WHEN TO INHERIT?

〈 Draw class diagram: B extends A with a question mark next
to the extending arrow. 〉

Q: Is it easy to misuse?

A:

Q: What is the alternative?

A:

〈 Draw this figure:

B

 ?
which

A

〉
There are four common reasons developers consider having B

subclass A:

• Code Reuse

• “Is-A” perspective

• Matching (Public) Interfaces

• Polymorphism

Not all of them are good reasons.

Page 33 © 2018 Kyle Burke cb

3.0 Code Reuse 3 WHEN TO INHERIT?

Q: What do each of these mean? When is this a justification
for using inheritance?

A:

3.0 Code Reuse

Justification reminder: ”Lots of the fields in A and/or bodies of
methods in A are what I want in B. I should reuse that code by
having B inherit from A.”

Code Reuse is good!

Q: Which mammal lays eggs and has a bill like a duck?

A:

Page 34 © 2018 Kyle Burke cb

3.0 Code Reuse 3 WHEN TO INHERIT?

Q: Should we have Platypus extend the Duck class so we can
reuse the layEgg and getBill methods?

A:

Q: What if Duck also had the molt method? What would have
to do in the Platypus class?

A:

Q: What would the body of Platypus.molt look like?

A:

Guideline: Platypus Rule10: A class inheriting methods should
not nullify them or do something completely different or unex-
pected.

Q: Should Platypus extend Duck?

A:

10As named by Amelia Rowland, ’18.

Page 35 © 2018 Kyle Burke cb

3.1 “Is-A” Perspective 3 WHEN TO INHERIT?

3.1 “Is-A” Perspective

Q: What was the justification we gave for the ”is-a” perspec-
tive?

A:

Q: What kind of mammal is a platypus?

A:

Then maybe platypus should inherit from the monotrene class?
This still might not always be the case...

Let’s consider a “classic” example (Classic because it’s about 20
years old.) Recall our Square class.

Square

Square

- sideLength : double

+ Square(double side)
+ getSideLength() : double
+ setSideLength(double length) : void

Let’s add a Rectangle class now!

Q: We’ve been tasked to fix some code for Rectangles and
Squares. what do we know about all Squares?

A:

Page 36 © 2018 Kyle Burke cb

3.1 “Is-A” Perspective 3 WHEN TO INHERIT?

Q: Let’s inherit! What will our picture look like?

A:

Q: What fields should our Rectangle have? What public meth-
ods will it have?

A:

Ehh, screw all of that. I just used public values instead:

Page 37 © 2018 Kyle Burke cb

3.1 “Is-A” Perspective 3 WHEN TO INHERIT?

public class Rectangle {
public double width;

public double height;

public Rectangle(double width, double height)

{
if (width > 0 && height > 0) {

this.width = width;

this.height = height;

} else {
//exception!

}
}

}

Q: What’s the first thing we need to do to rewrite the Square

class to subclass Rectangle?

A:

Q: Is there any data duplication?

A:

Q: How should we fix this?

A:

Page 38 © 2018 Kyle Burke cb

3.1 “Is-A” Perspective 3 WHEN TO INHERIT?

Q: Do we need to fix Square.setSideLength?

A: Yes!

Q: Fix it!

A:

Q: Do we need to fix Square’s constructor?

A: Nope!

Q: Can the user create illegal Squares?

A:

Q: How?

A:

Page 39 © 2018 Kyle Burke cb

3.1 “Is-A” Perspective 3 WHEN TO INHERIT?

Q: How can we fix this?

A:

Q: What is the difference?

A:

Let’s try private first and see if we can keep it that way! (This
is the best strategy.)

Q: Do we still have a problem between Square and Rectangle?

A:

Q: Is this code duplication?

A:

Q: What can we do about it?

A:

Page 40 © 2018 Kyle Burke cb

3.1 “Is-A” Perspective 3 WHEN TO INHERIT?

Q: What are we going to want in Rectangle now?

A:

Q: What should the setters look like?

A:

Q: Should we change the Rectangle constructor?

A:

This last step is called Refactoring, which we will do a lot this
semester.

Q: Can I make the instance variables private? (If they’re not
already.)

A:

Page 41 © 2018 Kyle Burke cb

3.1 “Is-A” Perspective 3 WHEN TO INHERIT?

Q: Okay, so now how do we implement
Square.setSideLength?

A:

Q: Can we create illegal Squares?

A:

Q: How can we fix this?

A:

Q: What will the new Square.setWidth be?

A:

Page 42 © 2018 Kyle Burke cb

3.1 “Is-A” Perspective 3 WHEN TO INHERIT?

Q: Does that work?

A:

Q: How can we fix this?

A:

Q: Does this code work?

A:

Q: Can I create illegal Squares?

A:

Q: Did we have to override any methods in Square?

A:

Page 43 © 2018 Kyle Burke cb

3.1 “Is-A” Perspective 3 WHEN TO INHERIT?

Q: Can unexpected things happen?

A:

List<Rectangle> boxes = monkey.getBoxes();

//set all the boxes to have width 5.0; don’t

change height

for (Rectangle box : boxes) {
box.setWidth(5.0);

}

Q: What could go wrong here?

A:

This is very dangerous!
Guideline: Principle of Least Surprise - The user should not be

surprised when an object of type A has unknown subtype B.
There are even more guidelines to help dissuade subclassing based

solely on the Is-A perspective:

Q: Sounds like we shouldn’t often have B subclass A... What
if both A and B are immutable?

A:

Guideline: Class B, identical to A but with extra restrictions

Page 44 © 2018 Kyle Burke cb

3.2 Similar Public Interfaces 3 WHEN TO INHERIT?

on its state, should not be a subclass of A unless they are both
immutable.

Notice that this fits the Math model. Everything in Math is im-
mutable, thus every Square is also a Rectangle without problem! (I
don’t think Euclid was considering modifier methods when writing
Elements.)

It can be very easy to add lots of classes, but sometimes they
aren’t totally appropriate.

Q: What benefit does having a Square class have?

A:

Guideline: Remove classes with little or no unique behavior.

3.2 Similar Public Interfaces

Q: What was the justification we gave for inheritance based on
matching public interfaces?

A:

Q: Are there any reasons this might lead us astray?

A:

Guideline: Liskov Substitution Principle (LSP) - It is accept-
able for B to subclass A only if for each method in both A and B’s
interfaces, B’s method:

Page 45 © 2018 Kyle Burke cb

3.2 Similar Public Interfaces 3 WHEN TO INHERIT?

• Accepts as input all the values that A’s method accepts (and
possibly more), and

• Does everything with those values that A’s method does (and
possibly more).

Q: Why is this?

A:

〈 Draw this figure:

Person

- name
- address

- grades

Student
- salary

Employee

〉

Q: Plymouth State is creating a new system to keep track of
people on campus. Is there any problem with this design?

A:

Page 46 © 2018 Kyle Burke cb

3.2 Similar Public Interfaces 3 WHEN TO INHERIT?

Q: What happens if we have a student who is also an employee?

A:

Q: What else could go wrong here?

A:

Guideline: These are roles, and temporary roles should gener-
ally not be subclasses.

Q: What should we do instead of inheritance?

A: Composition. Have Student and Employee

have Person fields.

〈 Draw this figure:

Person

- name
- address

- person : Person
- grades

Student

- person : Person
- salary

Employee

〉
Let’s pretend the following is the design that has been created

for an Art Museum.
〈 Draw this figure:

Page 47 © 2018 Kyle Burke cb

3.2 Similar Public Interfaces 3 WHEN TO INHERIT?

WallSpace Exhibit

ArtMuseum Room*

*

ArtPiece

〉

Q:

What do you see that violates some of our guidelines?
Hints: (reveal these one at a time)

• Are there any temporary roles here?

• Can an exhibit span multiple rooms?

• Can an art piece be in both the East Asian exhibit and
the Turbulent Water exhibit?

• Does all art exist on walls?

• Should an art piece know about its location or the other
way around?

A:

Page 48 © 2018 Kyle Burke cb

3.3 Polymorphism 3 WHEN TO INHERIT?

Q: Draw a new, more appropriate diagram.

Here’s a version we often come up with:

DisplaySpace

Exhibit ArtMuseum Room*

ArtPiece

* **

3.3 Polymorphism

Q: Do we need inheritance to use polymorphism?

A:

Page 49 © 2018 Kyle Burke cb

3.4 Summary 3 WHEN TO INHERIT?

3.4 Summary

Q:

Let’s summarize what we’ve learned in this chapter. Which
of the following are good reasons to use inheritance vs ref-
erencing?

• Code Reuse

• “Is-A”

• Matching Public Interfaces

• Polymorphism

A:

Q:
Bonus point: Which has better efficiency: Inheritance or
Referencing? (Don’t ever make a programming decision
based on this!)

A:

Page 50 © 2018 Kyle Burke cb

4 STATE PATTERN

4 State Pattern

In our crusade to remove ugly conditionals, we enlist the aid of the
State Pattern, a more general version of the Null Object Pattern.

4.0 State Pattern Basics

The State Pattern is the simple paragon of polymorphism.
〈 Draw the following diagram: 〉

Context

- state : State

+ request()

in request:
this.state.handle()

in request:
this.state.handle()

State

+ handle()

ConcreteStateA

+ handle()

ConcreteStateB

+ handle()

Q: What are the Participants?

A:

Page 51 © 2018 Kyle Burke cb

4.1 Example: Debugging Print Modes 4 STATE PATTERN

Q: What are the roles?

A:

• Context: Object that has a changeable
state.

• State: Abstract class for the different
states.

• Each ConcreteStateX: One of the many
states to implement the handle method.

Q: Can we extend this pattern by adding another method to
each State class?

A:

4.1 Example: Debugging Print Modes

When coding my Google Hangouts bot, I spend a lot of time adding
and removing debugging print statements. In the acceptNewChat

method in my HangoutsBot class, I decide to add a boolean flag
field that tells me whether I want the debugging statements.

〈 Draw the figure. 〉
HangoutsBot

- debugModeOn : boolean

+ acceptNewChat() : void

if (this.debugModeOn) {
System.out.println("x=" + x);

}

Page 52 © 2018 Kyle Burke cb

4.1 Example: Debugging Print Modes 4 STATE PATTERN

Q: Problem here?

A:

Q: How might be make this more elegant?

A:

〈 Draw this:

HangoutsBot

- debugMode : DebugState

+ acceptNewChat() : void

DebugState

- isOn : boolean

+ print(String): void
〉

Q: How would I implement print?

A:

Q: How would I replace the code in the acceptNewChat

method?

A:

Page 53 © 2018 Kyle Burke cb

4.1 Example: Debugging Print Modes 4 STATE PATTERN

Q: Have we fixed most of the problem?

A:

Q: Have we used the State Pattern?

A:

Q: Our current state actually has two separate states. What
are they?

A:

Q: So what should my states be?

A:

Page 54 © 2018 Kyle Burke cb

4.1 Example: Debugging Print Modes 4 STATE PATTERN

Q: What will that diagram look like?

A:

Q: Which classes here fill in for each of the State Pattern par-
ticipants?

A:

Page 55 © 2018 Kyle Burke cb

4.1 Example: Debugging Print Modes 4 STATE PATTERN

Q: Now how do we implement print in the two classes?

A:

Q: Doesn’t this violate something? We’re nullifying a method!
Which principle does this violate?

A:

Q: Could the situation get more complicated? If so, how?

A:

Page 56 © 2018 Kyle Burke cb

4.1 Example: Debugging Print Modes 4 STATE PATTERN

Q: How do we handle this?

A:

Q: What will that diagram look like?

A:

Page 57 © 2018 Kyle Burke cb

4.1 Example: Debugging Print Modes 4 STATE PATTERN

Q: What are the benefits of using the State Pattern?

A:

Q: What’s so cool about being able to extend by adding new
State classes?

A:
Can add new states even if you don’t have ac-
cess to the source code for the Context class.
Awesome!

Page 58 © 2018 Kyle Burke cb

4.2 Example: Pokédex - Caught and Unseen Pokémon 4 STATE PATTERN

4.2 Example: Pokédex - Caught and Unseen Pokémon

Q:

I’m out walking in the woods, hunting for Pokémon, when
I get a message from my younger sibling: “Hey! Have you
seen a Bulbasaur yet? It’s Pokémon number 1!” I pull out
my Pokédex to see what it has to say about this species. If
I’ve never seen one, what does it tell me?

A:

Q:
I’m wondering how to explain to my younger sib that I’m
a failure, but then I see a Bulbasaur! I throw a Pokéball at
it and catch it! What does my Pokédex say now?

A:

Time to implement this in our Pokedex class:

Pokedex

- captured : ArrayList<Boolean>

Page 59 © 2018 Kyle Burke cb

4.2 Example: Pokédex - Caught and Unseen Pokémon 4 STATE PATTERN

This might be the code for the method that returns this view:
public JPanel viewPokemon(Pokemon pokemon) {

int number = pokemon.getNumber();

boolean caught = this.captured.get[number];

String name;

if (caught) {
name = pokemon.getName();

} else {
name = "???";

}
Figure figure; //either a blank image or a spinnable

3D model.

if (caught) {
model = pokemon.getModel();

} else {
model = this.getBlankImage();

}
float height;

...

}

Q: What’s wrong with this?

A:

Q: There’s a simple fix to just have one conditional. What’s
that?

A:

Page 60 © 2018 Kyle Burke cb

4.2 Example: Pokédex - Caught and Unseen Pokémon 4 STATE PATTERN

Q: Why is this not a perfect fix?

A:

Q: Let’s employ the State Pattern. What are my participants
going to be?

A:

Q: Okay, now draw the new Class Diagram.

A:

Page 61 © 2018 Kyle Burke cb

4.2 Example: Pokédex - Caught and Unseen Pokémon 4 STATE PATTERN

+ viewPokemon(Pokemon): JPanel

Pokedex
- encounteredStates:
 ArrayList<EncounteredStates>

<<abstract>>

EncounteredState

UnseenState

*

CaughtState

Q: What are some of the methods we want in the
EncounteredStates?

A:

Q: Okay, let’s update the class diagram again!

+ viewPokemon(Pokemon): JPanel

Pokedex
- encounteredStates:
 ArrayList<EncounteredStates> + getName(Pokemon) : String

+ getFigure(Pokemon) : Figure
+ getHeight(Pokemon) : float

<<abstract>>

EncounteredState

+ getName(Pokemon) : String
+ getFigure(Pokemon) : Figure
+ getHeight(Pokemon) : float

UnseenState

*

+ getName(Pokemon) : String
+ getFigure(Pokemon) : Figure
+ getHeight(Pokemon) : float

CaughtState

Page 62 © 2018 Kyle Burke cb

4.2 Example: Pokédex - Caught and Unseen Pokémon 4 STATE PATTERN

Q: How could we rewrite the viewPokemon method now?

A:

Q: Have we covered all the different states?

A:

Let’s add a new state: SeenUncaughtState
〈 Update the diagram!

Page 63 © 2018 Kyle Burke cb

4.2 Example: Pokédex - Caught and Unseen Pokémon 4 STATE PATTERN

+ viewPokemon(Pokemon): JPanel

Pokedex
- encounteredStates:
 ArrayList<EncounteredStates> + getName(Pokemon) : String

+ getFigure(Pokemon) : Figure
+ getHeight(Pokemon) : float

<<abstract>>

EncounteredState

+ getName(Pokemon) : String
+ getFigure(Pokemon) : Figure
+ getHeight(Pokemon) : float

UnseenState

*

+ getName(Pokemon) : String
+ getFigure(Pokemon) : Figure
+ getHeight(Pokemon) : float

CaughtState

+ getName(Pokemon) : String
+ getFigure(Pokemon) : Figure
+ getHeight(Pokemon) : float

SeenUncaughtState

〉

Q: How much code do we have to write in the Pokedex class
to implement this change?

A:

Q: Why is this so awesome?

A:

Page 64 © 2018 Kyle Burke cb

4.3 Example: Monopoly 4 STATE PATTERN

4.3 Example: Monopoly

Q: When rolling dice in Monopoly, what does getting ”dou-
bles” allow you to do?

A:

Consider the case where there isn’t a maximum number of turns
you can stay in jail. (Normally, you must be released after three
turns.)

〈 Draw Class diagram for Monopoly Player. Attributes:

• - currentLocation: MonopolySpace

• - inJail: boolean

• - doublesSoFar: int

And methods:

• + moveDistance(numberOfSpaces: int): void

• + moveToSpace(space: MonopolySpace): void

• + isInJail(): boolean

〉

Q: What can we make more elegant using the State Pattern?

A:

Page 65 © 2018 Kyle Burke cb

4.3 Example: Monopoly 4 STATE PATTERN

Q: Which State Pattern participant role will the Monopoly-
Player take?

A:

Q: Which fields should we be able to replace?

A:

Q: What shall we call this new state?

A:

〈 Draw DoublesAndJailState:

• abstract!

• methods:

– + processDiceRoll(die0:int, die1:int, player:MonopolyPlayer):

void

– + isInJail(): boolean

〉

Page 66 © 2018 Kyle Burke cb

4.3 Example: Monopoly 4 STATE PATTERN

Q: In Groups: come up with a Class Diagram of your solution.
Hint: my solution has no fields.

A:

Q: What does the isInJail method do in each?

A:

Q:
What would the processDiceRoll method look like in
InJail? Hint: I added a setDoublesAndJailState to the
player class.

A:

Page 67 © 2018 Kyle Burke cb

5 SINGLETON PATTERN

Q: Write processDiceRoll for the other three!

A:

TODO: add more here. Find my notes; we did lots!

5 Singleton Pattern

TODO: add a class diagrams to the end of this section!
Sometimes you only want to have a single instance of an object.

The Singleton Pattern is a means to enforce this.

Page 68 © 2018 Kyle Burke cb

5.0 Use Reluctantly! 5 SINGLETON PATTERN

Q:

Consider a room-scheduling object, RoomScheduler, which
keeps track of when rooms on campus are scheduled. It has
methods such as:

• isFree(Room, Date start, Date end)

• scheduleRoom(Room, Date start, Date end)

What is the problem with having multiple instances of
RoomScheduler?

A:

5.0 Use Reluctantly!

Q:
In order to implement the Singleton pattern, we need a
single “point of entry” to prevent people from creating new
instances of our object. What’s already a huge red flag
about this?

A:

Often, inexperienced programmers will think it’s okay to intro-
duce a Singleton because they need to access some variable from
anywhere. Don’t do this! Using an OO Design Pattern does not
automatically mean you’re using good design!

Page 69 © 2018 Kyle Burke cb

5.1 The Singleton Participant 5 SINGLETON PATTERN

5.1 The Singleton Participant

Q:
Goal: have a class where the constructor can’t be invoked
by outside code. What’s wrong with just removing the
constructor?

A:

Q: What can we do to make the constructor inaccessible by
outside classes?

A:

Common for other code to access the instance by doing something
like the following:

RoomScheduler scheduler = RoomScheduler.instance;

scheduler.isFree(...);

Q: What does that mean must be in our code?

A:

Page 70 © 2018 Kyle Burke cb

5.1 The Singleton Participant 5 SINGLETON PATTERN

Q: Where then are we going to call the constructor?

A:

Q: Shivers of Joy or Shudders of Revulsion?

A:

Example: Here’s the code so far for a general Singleton:

public class Singleton {
public static Singleton instance = new

Singleton();

private Singleton() {
//constructor code goes here

}
}

Q: When can the constructor be executed?

A:

Q: Does that solve the problem this pattern sets out to solve?

A:

Page 71 © 2018 Kyle Burke cb

5.2 Removing the Public ”Constant” 5 SINGLETON PATTERN

Q: Great! Is it well-designed?

A:

Q: Reasons for shudders?

A:

5.2 Removing the Public ”Constant”

Q: Let’s try to solve these design issues! How can we make the
field private?

A:

In the RoomScheduler case, here’s how we would get and use our
singleton.

RoomScheduler scheduler = RoomScheduler.getInstance();

scheduler.isFree(...);

Page 72 © 2018 Kyle Burke cb

5.3 Delaying the Construction 5 SINGLETON PATTERN

Q: How can we implement the getInstance method? (In gen-
eral or specifically for RoomScheduler.)

A:

There is a bit of an efficiency problem here. Sometimes a Single-
ton can be a very heavy class, because it’s doing lots of concurrency-
management stuff. The constructor may take a lot of time to ex-
ecute. We may not want the Singleton constructor to execute im-
mediately upon execution of the code. This is especially a problem
if we’re testing the code; each time we test we have to first wait for
the constructor to execute!

5.3 Delaying the Construction

Q: How can we use a Just-in-Time approach and not execute
the constructor until we first access the instance?

A:

Q: Does this solve the problem?

A:

Page 73 © 2018 Kyle Burke cb

5.3 Delaying the Construction 5 SINGLETON PATTERN

Q: Does it solve it well?

A:

Q: Why not? What design “red flags” do we have?

A:

Q: Are there any practical problems remaining?

A:

Q: How could we have multiple threads doing lots of unneces-
sary work? (And possibly cause big problems.)

A:

Page 74 © 2018 Kyle Burke cb

5.4 Solving the Race Condition 5 SINGLETON PATTERN

5.4 Solving the Race Condition

Q: We want Java to enforce that only one thread can execute
the first branch of getInstance at a time. Can we do this?

A:

Q:
We can enforce that only one thread can invoke
getInstance at a time. How does that work? Hint: it’s a
Java keyword.

A:

Q: Sweet! No problems, right? Hint: think parallel efficiency.

A:

5.5 Java’s Solution to the Bottleneck

Q: Java has a special way to solve this problem: Lazy Class
Loading. What does that mean?

A:

Page 75 © 2018 Kyle Burke cb

5.6 Example: LinkedIntList 5 SINGLETON PATTERN

Q: Does this work for inner classes?

A:

Q: How can we use it to solve our problem?

A:

public class Singleton {
private static class SingletonHolder {

public static Singleton instance = new

Singleton();

}
private Singleton() {

//constructor code goes here

}
public static getInstance() {

return SingletonHolder.instance;

}
}

This solution lazy loading of inner classes was proposed by Bill
Pugh11 as a new implementation of Java. See http://www.journaldev.
com/1377/java-singleton-design-pattern-best-practices-examples#

bill-pugh-singleton for more information.

5.6 Example: LinkedIntList

TODO: Tree or Linked List? I should probably do a LinkedList
here and have the Tree as an exercise.

11http://www.cs.umd.edu/~pugh/

Page 76 © 2018 Kyle Burke cb

http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-examples#bill-pugh-singleton
http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-examples#bill-pugh-singleton
http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-examples#bill-pugh-singleton
http://www.cs.umd.edu/~pugh/

5.7 When to use the Singleton Pattern 5 SINGLETON PATTERN

5.7 When to use the Singleton Pattern

5.8 When to Use?

Q:

Which of the following are good reasons to use the Singleton
Pattern? Which are terrible reasons?

1. Want to be able to access fields/methods from any-
where.

2. Want to enforce there is only one copy of an object.

3. Want a class that doesn’t require any state (no fields).

4. Want to force client code to be unable to call construc-
tors.

A:

Some slam dunks with Singleton:

• Something that can only have one instance.

• States from State Pattern with no fields. (You can save on
memory by only having one instance of them.)

If you are ever in doubt, you should probably not be using the
Singleton Pattern.

Page 77 © 2018 Kyle Burke cb

6 ELEGANT METHODS

6 Elegant Methods

Q: Recall the Query-Command Separation Principle. What
does that say?

6.0 Public vs. Private Methods

An invariant is a statement about the state of an object that must
be true. Examples:

• The size of a stack is equal to the number of stack frames.

• A balanced tree should have all leaves with depth equal to the
height of the tree or one less.

• A max heap should have the greatest element at the root.

Q: If we had a Rodent class, what could an invariant of an
object in that class?

A:

One good way to debug is to write private methods that check the
invariants. Then write a satisfiesInvariants method to check
all of them. The following example could be from a sorted Tree Set
class:

private boolean satisfiesInvariants() {
return (this.isBalanced() &&

this.satisfiesOrder() && this.hasNoDuplicates());

}

Page 78 © 2018 Kyle Burke cb

6.0 Public vs. Private Methods 6 ELEGANT METHODS

Q: What is the difference between public and private methods?

Q: When should you make a method private vs. public?

Consider the following methods inside the Rodent class:

• Public: mouse()

• Private:devilMouse() and angelMouse()

〈 Write the code for mouse on the board:
public void mouse() {

(Leave space here)

this.devilMouse();

(Leave space here)

this.angelMouse();

(leave space here)

} 〉
〈 Let’s add some calls to satisfiesInvariants in here:

public void mouse() {
System.out.println(this.satisfiesInvariants());

this.devilMouse();

System.out.println(this.satisfiesInvariants());

this.angelMouse();

System.out.println(this.satisfiesInvariants());

} 〉

Q: For which of those statements is it okay to print false?

A:

Page 79 © 2018 Kyle Burke cb

6.1 Method Documentation 6 ELEGANT METHODS

Q: Why?

A:

Let’s restate that as a guideline:
Guideline: Invariants need to be satisfied between any public

method calls.
TODO: more here? Check with written notes.

6.1 Method Documentation

Q: What is the difference between internal documentation and
external documentation?

A:

Q: How is this specifically relevant to compiled languages?

A:

Page 80 © 2018 Kyle Burke cb

6.2 Pre/Post Conditions 6 ELEGANT METHODS

Q: What’s the problem? Hint: similar to code and data dupli-
cation...

A:

TODO: add more in here from the written notes
(And in the Javadoc stuff that starts on page 16.)

6.2 Pre/Post Conditions

Q: Documentation should always state the pre- and post-
conditions for a method. What are pre-conditions?

Q: What are post-conditions?

Consider the following implementation of Double:

Double

+ squareRoot() : Double
+ getRoot(root) : Double

Q: What are the pre- and post-conditions of squareRoot?

A:

Page 81 © 2018 Kyle Burke cb

6.2 Pre/Post Conditions 6 ELEGANT METHODS

Q: What are the pre- and post-conditions of getRoot?

A:

Q:

Recall the Liskov Substitution Principle (Section 3.2): ”It
is okay for B to subclass A only if for each method in both
A and B: B’s method takes all the inputs that A’s takes
(and possibly more) and does everything that A’s does (and
possibly more).”
Does it seem like we can rephrase this using pre- and post-
conditions?

A:

Page 82 © 2018 Kyle Burke cb

6.2 Pre/Post Conditions 6 ELEGANT METHODS

Q:

Let’s use < to mean ”less strict than”. Fill in the boxes
using either ≤ or ≥:
It is okay for B to subclass A if, for all methods M in both
A and B (MA and MB):

• preconditions(MA) � preconditions(MB), and

• postconditions(MA) � postconditions(MB)

A:

Let’s do an example! Go back to our square root example. Let’s
assume there’s a Double.getRoot(int degree) method. This could
be used in the following way:
Double double = new Double(125.0);

double cubedRoot = double.getRoot(3);

System.out.println(cubedRoot); //should be 5.0

Consider subclassing Double in the following way:

Double

+ Double(double)
+ squareRoot() : Double
+ getRoot(root) : Double

Complex

+ Complex(double real, double imag)

Page 83 © 2018 Kyle Burke cb

6.3 Overriding Clone 6 ELEGANT METHODS

Q: Is there any benefit to this?

A:

Yes, because we can now return complex num-
bers if we take the square root of an imaginary
number. Example:
Complex c = new Complex(-1, 0);

Q: What will the pre and post conditions be?

A:

6.3 Overriding Clone

Q: Let’s do an example. What’s the Cloneable interface?
(Which method does it enforce?)

A:

Page 84 © 2018 Kyle Burke cb

6.3 Overriding Clone 6 ELEGANT METHODS

Q: In intro programming, we learned about two types of clones.
What were they?

A:

Q:

Which type of clone is this (in the Triangle class, where
each field is a Point object.)? (Note: you should always
start with a call to the super class’s clone method, as we
will see.)
public Object clone() {

Triangle copy = (Triangle)

this.super.clone();

copy.p0 = this.p0;

copy.p1 = this.p1;

copy.p2 = this.p2;

}

A:

〈 Draw this code, then the resulting object diagram:
Point origin = new Point(0,0);

Point right = new Point(3,0);

Point up = new Point(0, 4);

Triangle rightTriangle = new Triangle(origin, right, up);

Triangle rightClone = (Triangle) rightTriangle.clone(); 〉

Page 85 © 2018 Kyle Burke cb

6.3 Overriding Clone 6 ELEGANT METHODS

Q: Why is the shallow clone dangerous?

A:

Q:

There’s another problem here. What if we clone in the
following code:
Collection<Triangle> triangles =

landscape.getTriangulation();

Collection<Triangle> copies = new

ArrayList<Triangle>();

for (Triangle triangle : triangles) {
Triangle copy = (Triangle) triangle.clone();

copies.add(copy);

}
What could be a problem here? Hint: what’s the

type of triangle?

A:

Q: What do we need to do to get clone to return a
ColorTriangle?

A:

Page 86 © 2018 Kyle Burke cb

7 ELEGANT CLASSES

Q: Okay, let’s fix the shallow problem first. How can we rewrite
the clone method to deepen itd?

A:

7 Elegant Classes

Yet another big section of information I could give you before you
start work on even your first project...

Q: When you are first given a new Project, should you start
off by implementing the project?

A:

7.0 Pre-Implementation Steps

7.0.0 Read the Project Spec(ification).

7.0.1 Ask Questions!

Usually the spec will not be fully clear. Now is a great time to
clarify anything you’re not certain about. (In true Agile Develop-
ment, this should be easy because you have access to the Customer
Representative12 at all time. Questions can be asked at any point
in the process!)

12See Section 12.2 for more information about the role of the Customer Representative

Page 87 © 2018 Kyle Burke cb

7.0 Pre-Implementation Steps 7 ELEGANT CLASSES

7.0.2 Come up with Use Cases.

Q: What is a use case?

A:

For example, when I took this course in 2002, we had to create
a program for playing sounds. Here’s an example use case for an
early version of the program:

• User starts running the program. A window appears with a
large empty box. Next to the empty box are two columns of
buttons with one simple image on each. One has a cat, another
a car. The button with a dog is selected already. Below the
empty box is a button with the Play symbol on it.

• The user clicks in the empty box. A rectangle with the dog
image appears at the mouse click. (We’ll refer to this box as
the Sound Panel from here on.)

• The user clicks the play button and a red line appears at the
left-hand side of the Sound Panel, and moves from left-to-right.
When it reaches the Dog-rectangle, it continues to move while
a barking noise is heard. The sound ends exactly as the red
line reached the right-hand side of the dog-box. The red line
continues to the right until it reaches the end of the Sound
Panel and disappears. The play button remains disabled while
the red line is moving.

• The user clicks on the car button on the button panel. It be-
comes selected and the dog button becomes unselected.

• The user clicks on the sound panel again and a rectangle of dif-
ferent width than the dog rectangle with the cat image appears
where the mouse was clicked.

• The user clicks again and another cat rectangle appears.

Page 88 © 2018 Kyle Burke cb

7.1 Extract Nouns and Verbs 7 ELEGANT CLASSES

• The user clicks the play button and the red line moves across
the sound panel again. It plays the sound of each rectangle
while it’s touching that box. The height of the box in the
sound panel does not change the sound produced by each box.

7.1 Extract Nouns and Verbs

7.2 CRC (Class-Responsibilities-Collaborators) Cards

TODO: way more to put here!
2016: skipped to Cohesion

7.3 Cohesion

Guideline: Cohesion: Every class should be responsible for doing
one thing and doing it well.

Q: Does this mean that every class should have one method?

A:

Q: What are some the benefits of following this guideline?

A:

Page 89 © 2018 Kyle Burke cb

7.3 Cohesion 7 ELEGANT CLASSES

Q: What are some good examples of classes?

A:

Often times, you’ll see a name that looks like this: BigFiletOMacFish.
Red flag!

Q:

What’s wrong with this class?

- name : String
- age : int
- address : String
- make : String
- model : String
- mileage : int

CarOwner

A:

Q: What’s a better solution?

A:

Page 90 © 2018 Kyle Burke cb

7.4 Responsibilities 7 ELEGANT CLASSES

Q: How can we measure cohesion?

A:

7.4 Responsibilities

Let’s do more guidelines:
Guideline: Different kinds of responsibilities should be delegated
to different classes.

7.5 Immutable Classes

Skipped in 2017!

7.6 Coding to Interfaces

Guideline: Code to interfaces, not classes.

Q: What does this mean?

A:

Whenever possible, write code that references
other types as abstractly as possible. This
means two things:

• Use Interfaces instead of classes.

• If you can’t use an interface, go as high up
the directory tree as possible.

Consider the following classes:

Page 91 © 2018 Kyle Burke cb

7.6 Coding to Interfaces 7 ELEGANT CLASSES

uses

Wolverine

+ getAngerLevel() : int

AnimalHandler

+ getAngries(ArrayList<Wolverine>) :
ArrayList<Wolverine>

... and this implementation of getAngryOnes:
public ArrayList<Wolverine> getAngries(ArrayList<Wolverine>

wolverines) {
ArrayList<Wolverine> angries = new ArrayList<Wolverine>();
for (Wolverine : wolverines) {

if (wolverine.getAngerLevel() > 10) {
angries.add(wolverine);

}
}
return angries;

}

Q: Let’s think about changing things to follow the spirit of
”Coding to Interfaces”. Could we generalize the parameter?

A:

Q: Great! How general could we make it?

A: Iterable<Wolverine>

Q: Why can we do that?

A:

Page 92 © 2018 Kyle Burke cb

7.6 Coding to Interfaces 7 ELEGANT CLASSES

Q: How can I change the return type?

A:

Q: When should you do that?

A:

Q: How does that help?

A:

Q: When should we leave the return type as an ArrayList?

A:
If there’s something specific about an ArrayList
that is needed by the invoking code, then we
should leave it alone.

Page 93 © 2018 Kyle Burke cb

7.6 Coding to Interfaces 7 ELEGANT CLASSES

Q: When would be the time to go ”halfway”? E.g. to List?

A:
Maybe there’s something important about hav-
ing the return type be a list. Maybe it’s ordered
or needs to be indexable.

Q:

Okay, one more generalization. Many members of the
weasel family are known for being ornery (e.g. wolverine,
badger, and honey badger). What if all subtypes of Weasel
have the getAngerLevel method? How can we generalize
further?

A:

Q: What would be even better?

A:

If we have a GetsAngry interface:

�interface�
GetsAngry

+ getAngerLevel() : int

Q: What’s the benefit of coding to interfaces?

A: You gain lots and lots of Freedom!13

Page 94 © 2018 Kyle Burke cb

7.7 Coupling 7 ELEGANT CLASSES

7.7 Coupling

If we are able to make the third change to our Wolverine and Ani-
malHandler classes from the last section, then we have a new class

diagram:

uses

�interface�
GetsAngry

+ getAngerLevel() : int

Wolverine

+ getAngerLevel() : int

AnimalHandler

+ getAngries(ArrayList<Wolverine>) :
ArrayList<Wolverine>

Q: What does this new diagram highlight?

A: It’s clear just how independent AnimalHandler
is from Wolverine.

Q:
Sometimes you will find classes that are very dependent on
one another. Or you may find two different parts of a class
diagram that have lots of interconnections between each
other. Is this good or bad?

A:
Bad! You want to minimize the interconnec-
tions between different parts of the program,
either single classes or groups of classes.

Page 95 © 2018 Kyle Burke cb

7.7 Coupling 7 ELEGANT CLASSES

Q: What are some other terms for this separating?

A:

• Minimizing coupling

• Keeping classes orthogonal (might have to
explain this term)

• Minimizing interdependence between
classes.

Q: How can I rephrase this if I think of a class diagram as a
graph?

A:

Q: What can become nearly impossible if you don’t do this?

A:

TODO: more to add here...
when you talk about tightly coupled, here’s a funny picture:

Page 96 © 2018 Kyle Burke cb

8 OODP: COMPOSITE PATTERN

14

8 OODP: Composite Pattern

Sometimes we want to treat collections and individual objects the
same way.

8.0 Pac Man

Consider the following: I’m making a poster about the history of
video games. I’m making the poster in LibreOffice15 and I start by
making a few objects. I make the following three single objects:

〈 Draw this:

16 〉
14Source: https://twitter.com/jezenthomas/status/576376992167276544
15http://www.libreoffice.org/
16Yes, I did make this in Libre Office.

Page 97 © 2018 Kyle Burke cb

https://twitter.com/jezenthomas/status/576376992167276544
http://www.libreoffice.org/

8.0 Pac Man 8 OODP: COMPOSITE PATTERN

Q: Which classic character can I make from these?

A:

〈 Draw the combination:

〉

Q:
I’m probably going to be using this combination a bunch.
Copy-pasting, resizing, etc. What should I do with both
of these? (Hint: it’s a LibreOffice thing and probably also
something you can do in other graphics programs.)

A:

Q: Sweet! Who else might be an important character to in-
clude on my poster? Hint: similar in drawing to Pac-Man.

A:

Q: How do I ”draw” Ms. Pac-Man?

A:

Page 98 © 2018 Kyle Burke cb

8.0 Pac Man 8 OODP: COMPOSITE PATTERN

〈 Draw Ms. Pac-Man:

〉

Q: How do I draw a hairbow?

A:

Q: Now what do we do?

A:

Q: Which kind of data structure is the grouping like?

A:

〈 Draw the tree:

Page 99 © 2018 Kyle Burke cb

8.0 Pac Man 8 OODP: COMPOSITE PATTERN

〉

Q: Which figures are the leaves?

A:

Q: Which are the internal nodes?

A:

Page 100 © 2018 Kyle Burke cb

8.1 Composite Pattern Specifics 8 OODP: COMPOSITE PATTERN

Q: Often we have a collection of objects that we want to act
as a single object. How can we do this?

A:

8.1 Composite Pattern Specifics

The idea here is that we want our object to be either a leaf or a
composite object.

〈 Draw the initial figure: (note the space left blank for Compos-
ite fields!)

+ operation(L) : x

<<abstract>>

Component

+ operation(L) : x

Leaf

+ operation(L) : x

Composite
?

〉

Q: Then I could give the Composite class a Collection<Leaf>

objects. Does that solve the problem?

A:

Page 101 © 2018 Kyle Burke cb

8.1 Composite Pattern Specifics 8 OODP: COMPOSITE PATTERN

Q: What do we need to fix this?

A:

Q: What should the Composite have instead? Hint: to get
trees of any level?

A:

〈 Draw the figure:

+ operation(L) : x

<<abstract>>

Component

+ operation(L) : x

Leaf *

+ operation(L) : x

Composite or 2

〉
Multiple ways to implement Composite:

• Constant number of ”children” (usually 2) E.g. left : Component,
right : Component.

• Variable number of children: children : Collection<Component>

Page 102 © 2018 Kyle Burke cb

8.1 Composite Pattern Specifics 8 OODP: COMPOSITE PATTERN

Q: When user code interacts with classes in the Composite
Pattern, which classes does it think it’s using?

A:

〈 Draw Client, which uses the Component class. TODO: make
a figure for the whole thing. 〉

Q: Why is this good?

A:

Q: How do we add/remove from a Composite?

A:

Q: What’s the problem with adding methods to the Composite
class?

A:

Page 103 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q: How could we get those methods in the Component inter-
face?

A:

Q: What’s the problem here?

A:

Q: What is a problem with letting the Client use the
Composite constructor?

A:

Q: What about this separate object idea?

A:

8.2 Composite Nim

〈 Describe the game of Nim. 〉

Page 104 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q:
A Nim position is really just a combination of single rows.
How could we use the Composite Pattern here? (What will
the three main participants be?)

A:

Q: What fields will CompositeNim have?

A:

Q: What about the fields for NimRow?

A:

Here’s the class diagram for what we’ve got so far. Note: can’t
get the attribute to jump out yet.

2

Nim

NimRow

- numSticks : int

CompositeNim

- left : Nim
- right : Nim

Page 105 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q: Let’s add a constructor for the NimRow class.

A:

Q: Now add a constructor for CompositeNim

A:

Q: Let’s add toString() : String to the Nim interface.
Where am I going to add code?

A: NimRow and Composite Nim?

Page 106 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q: Implement toString in NimRow.

A:

Q: Now implement toString in CompositeNim.

A:

Q: Let’s add hasMoves() : boolean to the Nim interface.
Where do we need to add code?

A:
• abstract stub in Nim:

public abstract boolean hasMoves();

• implementation in NimRow and Compos-
iteNim

Page 107 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q: Where will the JavaDoc go?

A:

Q: What are we adding to NimRow?

A:

Q: What’s the code for CompositeNim?

A:

Q: Next let’s write getMoves() : Collection<Nim>. Where
are we going to put code?

A:

Page 108 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q: Implement getMoves in NimRow.

A:

Page 109 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q:
Okay, now implement getMoves in CompositeNim. (You
may have to show an example of all the moves from, say,
two piles: 3, 4.)

A:

Q: Can we now change hasMoves to reduce the number of im-
plemented methods?

A: Yes! Move hasMoves() up to Nim!

Page 110 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q: What will the implemented version of that look like in Nim?

A:

Note: This is as far as I got in 2017. We talked about equals,
but didn’t get there.

Here’s where I get most years.

2

Nim

+ hasMoves() : boolean
+ getMoves() : Collection<Nim>

NimRow

- numSticks : int

+ NimRow(int)
+ getMoves() : Collection<Nim>
+ toString() : String

CompositeNim

- left : Nim
- right : Nim

+ CompositeNim(Nim, Nim)
+ getMoves() : Collection<Nim>
+ toString() : String

Q: We’d probably like a hasMove(Nim) : boolean method,
but it will be much easier if we do which other method first?

A:

Page 111 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q: Let’s see if we can agree on when two Nim games should be
equal. Are 3, 5, 7 and 7, 3, 5 equivalent?

A:

Well, yes, but it’s a bit odd. A player might be
surprised if they moved from 3, 6, 7 to 7, 3, 5.
It really depends on what we’re doing here. For
our purposes, let’s say they’re not equivalent.
(i.e. order matters)

Q: How many different ways can we represent the game 3, 5,
7 with our code?

A:

Q:
Let’s add equals(Object) : boolean to the Nim in-
terface. Plan: abstract equals(Nim) in Nim, imple-
mented equals(Object) : boolean in Nim, then imple-
ment equals(Nim) in subclasses, which comes next...

A:

Q:
Let’s add equals(Nim) : boolean to the NimRow class.
Hint: also include a equals(NimRow): boolean method
here.

Page 112 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q:
Now let’s add equals to the CompositeNim class. Does the
order of the rows in a Nim board really change the game at
all?

A:

Oh yikes! That’s a problem. To handle this, let’s write a protected
toMap() method that returns a Map<Integer, Integer>. Then we
can just test the equality of two maps.

〈 Describe Maps if someone is not familiar with them. 〉

Q: Okay, let’s write toMap. First the NimRow version!

A:

Q: Okay, now the CompositeNim version of toMap.

A:

Q: Okay, now let’s write equals for the CompositeNim class.

A:

Page 113 © 2018 Kyle Burke cb

8.2 Composite Nim 8 OODP: COMPOSITE PATTERN

Q: Does anyone see something we can do to clean things up?

A:

Q: Now let’s add hasMove(Nim) : boolean. Can we imple-
ment this in the abstract class?

A:

Q: What does the code for that look like? Hint: Can you write
it in one line?

A:

〈 Describe algorithm for determining whether a Nim position
has a winning move. 〉

Q: Let’s write a hasWinningMove() method. Is there a method
we might want to write first?

A:

Page 114 © 2018 Kyle Burke cb

9 OODP: FACTORY METHOD PATTERN

Q: Okay, let’s write the getNimSum. First in the NimRow class.

A:

Q: Okay, now for the CompositeNim class.

A:

Q: Okay, now where should we implement hasWinningMove()?
What’s the code for that?

A:

9 OODP: Factory Method Pattern

Sometimes we either can’t or don’t want to have the user call a
constructor to create an object. In that case, it might be time to
use the Factory Method Pattern.

9.0 Example: Nim

Continuing from the Nim example introduced in Section 8.2 we have
overlooked one vital piece: we can’t create Nim objects! Issues:

• Can’t initialize Nim objects: it’s abstract.

• User shouldn’t interact with the Leaf or Composite classes in
the Composite Pattern, so can’t call the constructor there.

Page 115 © 2018 Kyle Burke cb

9.0 Example: Nim 9 OODP: FACTORY METHOD PATTERN

Q: Why shouldn’t the user interact with those classes?

A:

Q: How do we get around not using the constructor for the
subclasses directly?

A:

Q: Which class should createNim be implemented in?

A:

Q:
To start off, let’s have this method always return the game:
3, 5, 7. How are we going to use it? (Write a line of code
for a Client class.)

A:

Q: So is our method going to be static or not?

A:

Page 116 © 2018 Kyle Burke cb

9.0 Example: Nim 9 OODP: FACTORY METHOD PATTERN

Q: Implement the method!

A:

Q:
Remember how we learned about coding to interfaces. Let’s
practice that now! How can we change the declared types
of the variables in that method?

A:

Page 117 © 2018 Kyle Burke cb

9.0 Example: Nim 9 OODP: FACTORY METHOD PATTERN

Q: It’s slightly inelegant to use the CompositeNim and NimRow

constructors. Why is that?

A:

Q: How could we fix this problem?

A:

Q: Okay, what does our class diagram look like now?

A:

Q: It looks like NimFactory is very tightly coupled with the
three Nim game classes. How do we fix that?

A:

Page 118 © 2018 Kyle Burke cb

9.1 Factory Method Pattern Basics 9 OODP: FACTORY METHOD PATTERN

Q: What do I do if I want to create something other than the
3-5-7 board? Let’s create random boards!

A:

9.1 Factory Method Pattern Basics

Q: What does the Factory Method class diagram look like?

A:

creates

Client

�interface�
Product

ConcreteProduct

Creator

+ abstract - factoryMethod() : Product
? operation() : void

ConcreteCreator

+ factoryMethod() : Product

Page 119 © 2018 Kyle Burke cb

9.2 Factory Method with State Pattern 10 OODP: COMMAND PATTERN

9.2 Factory Method with State Pattern

TODO: drawing of RandomNimFactory subclassing NimFactory.

Q: Why is this better?

A:

TODO: more here! Three factories: StandardNimFactory, SpecifiedNimFactory,
and RandomNimFactory.

10 OODP: Command Pattern

Often we want to treat executable code as a referenceable/passable/storeable
value. Example: OS schedules jobs. Solution: keep a priority queue
of jobs to execute, possible if each job is storeable.

Q:
In some programming languages, you can do this with func-
tions. Called: ”first-order functions”. What are some lan-
guages you know that act like this?

A:

Luckily a solution exists even for languages like Java without
first-order functions: the Command Pattern.

10.0 Command Pattern Specifics

Four main participants:

• Command: interface with an execute() : void method.

• ConcreteCommand: implementes the Command interface, en-
capsulating the action.

Page 120 © 2018 Kyle Burke cb

10.0 Command Pattern Specifics 10 OODP: COMMAND PATTERN

• Invoker: The class that invokes the execute() method of the
Command objects.

• Client: The class that creates the ConcreteCommand objects
and sends them to the Invoker.

〈 Draw this figure: 〉
Command Pattern

*

createsuses

�interface�
Command

execute() : void

ConcreteCommand

execute() : void

Invoker

- commands : Collection<Command>

Client

Q: What is the advantage of separating the Invoker and
Client?

A:

Page 121 © 2018 Kyle Burke cb

10.1 Web Browsing 10 OODP: COMMAND PATTERN

Q: Can the Invoker store commands?

A:

Q: What are some other benefits?

A:

Q: Does Java have a similar class to Command?

A:

Q: What is especially awesome about the Runnable class.

A:

10.1 Web Browsing

I would like a WebBrowser class with:

Page 122 © 2018 Kyle Burke cb

10.1 Web Browsing 10 OODP: COMMAND PATTERN

• +goBack():void

• +goForward():void

• +goToPage(String url):void (Called when a new URL is
typed into the address bar or a link is clicked.)

We’ll assume there is another method that does the actual loading
of a page: loadPage(String url):void Assume this one is already
implemented.

Let’s use the Command Pattern to implement the other three
methods. Plan:

• use a Command for moving to a new page. (WebBrowseCommand)

• store all the page movements in back and forward stacks of
commands.

Q: Which role will the WebBrowser class fulfill?

A:

Q: Who will store the stacks of WebBrowseCommands?

A:

I called my Invoker: UrlManager and gave it similar methods to
my Client:

• +goBack():void

• +goForward():void

• +goToNewPage(WebBrowseCommand):void

Page 123 © 2018 Kyle Burke cb

10.1 Web Browsing 10 OODP: COMMAND PATTERN

Q: Which role remains to be filled?

A:

I called mine GoToPageCommand. It has two fields:

• url:String

• browser:WebBrowser

Q: What does the GoToPageCommand constructor look like?
Hint: it’s boring.

A:

Q: What about the execute() method?

A:

Q: What will the fields of the WebBrowser look like?

A:

Page 124 © 2018 Kyle Burke cb

10.1 Web Browsing 10 OODP: COMMAND PATTERN

Q:

Let’s try to implement the UrlManager. What fields do we
need here? Hint: we need three:

• Stack of commands

• Another stack of commands

• A single command.

What are their roles?

A:

Q: Let’s implement the goToNewPage(WebBrowseCommand)

method!

A:

Page 125 © 2018 Kyle Burke cb

10.1 Web Browsing 10 OODP: COMMAND PATTERN

Q: Let’s implement the goBack method next!

A:

Q: Let’s implement goForward.

A:

Q: What about the methods in WebBrowser? What should the
goBack and goForward methods do?

A:

Q: What should that goToPage method do?

A:

Page 126 © 2018 Kyle Burke cb

10.1 Web Browsing 10 OODP: COMMAND PATTERN

Q: Implement it!

A:

Q:
We would like other code to not call the
WebBrowser.loadPage() method. Can we make it
private?

A:

Q: Isn’t there another solution?

A:

An inner (non-static) class solves a lot of problems:

• Code in the inner class has access to all members of the outer
class.

• Then loadPage can be private!

• Increases encapsulation of the WebBrowser and it’s components.

• If the inner class is private, then we increase information hiding!

Page 127 © 2018 Kyle Burke cb

11 WATERFALL SOFTWARE DEVELOPMENT

11 Waterfall Software Development

Waterfall development is a linear model for creating software. Each
step is succeeded by the next, so that each step should be fully
completed before moving on to the next.

11.0 Steps

1. Requirements: A complete product requirements document should
be produced that details the product expectations.

2. Design: The structure of the code should be designed before
any implementation is done.

3. Implementation: The software is actually coded.

4. Verification: The correctness of the software is measured so
that it’s certain that all the requirements have been met.

5. Maintenance: The software is changed to remove bugs and to
implement new features, etc.

I’m not going to go into detail about these steps, mostly because
I think you all have learned a bit about this in a previous class.

11.1 Benefits

Design is important! Design before you code! Cowboy coding
doesn’t really have a place here.

11.2 Limitations

In practice, these steps don’t actually happen one after another.
TODO: add more to this chapter

11.3 Other Philosophies

There are many other software philosophies.17 We’re going to talk
next about the philosophy of Agile Software development.

17There’s a long list at https://en.wikipedia.org/wiki/List_of_software_development_

philosophies.

Page 128 © 2018 Kyle Burke cb

https://en.wikipedia.org/wiki/List_of_software_development_philosophies
https://en.wikipedia.org/wiki/List_of_software_development_philosophies

12 AGILE SOFTWARE DEVELOPMENT

12 Agile Software Development

Agile Software Development consists of a bunch of software devel-
opment methods where change is expected. Change happens, so
the project must be able to evolve without waiting for permission.

12.0 The Agile Manifesto

Agile Manifesto:
We are uncovering better ways of developing software by doing

it and helping others do it. Through this work we have come to
value:

• Individuals and interactions over Processes and tools

• Working software over Comprehensive documentation

• Customer collaboration over Contract negotiation

• Responding to change over Following a plan

That is, while there is value in the items on the right, we value
the items on the left more.

Page 129 © 2018 Kyle Burke cb

12.0 The Agile Manifesto 12 AGILE SOFTWARE DEVELOPMENT

Q: What do you think each of the four points means?

A:

12 Major Principles:

• Customer Satisfaction by rapid delivery of useful software.

• Welcome changing requirements, even late in development.

• Working software delivered frequently (weeks rather than months)

• Close, daily cooperation between business people and devs

• Projects built around motivated individuals, who should be
trusted.

• Co-location allows best communication.

• Working software is measurement of success.

• Sustainable Development to maintain a constant pace.

• Continuous attention to technical excellence and good design.

Page 130 © 2018 Kyle Burke cb

12.0 The Agile Manifesto 12 AGILE SOFTWARE DEVELOPMENT

• Simplicity—the art of maximizing the amount of work not done—
is essential

• Self-organizing teams

• Regular adaptation to changing circumstances

Q: Where is Agile Development appropriate?

A:

Q: In Agile Dev, is it better to predict problems or adapt to
them?

A:

An adaptive team may have trouble reporting what they’re going
to do next week, but will be able to report about which features
they are planning for next month.

Page 131 © 2018 Kyle Burke cb

12.1 Agile Iterations 12 AGILE SOFTWARE DEVELOPMENT

Q: How much should an agile team document their code?

A:

Q: What’s wrong with too much documentation?

A:

Q: What’s wrong with too little documentation?

A:

12.1 Agile Iterations

Q: How long should an individual task be?

A:

Page 132 © 2018 Kyle Burke cb

12.1 Agile Iterations 12 AGILE SOFTWARE DEVELOPMENT

Q: Each group of tasks organized into an iteration. What hap-
pens in each iteration?

A:

Q: What does this sequence remind you of?

A:

Each iteration is kind of like a mini-waterfall. Kind of.

Q: How long should each iteration last?

A:

Q: What happens at the end of the iteration?

A:

Page 133 © 2018 Kyle Burke cb

12.1 Agile Iterations 12 AGILE SOFTWARE DEVELOPMENT

Q: Why bring the clients in between each pair of iterations?

A:

Consider the functions of the team discussed earlier: planning,
requirements analysis, design, coding, unit testing, and acceptance
testing.

Q: Which of the functions can only happen once?

A:

Q: When are planning and requirements analysis repeated?

A:

Q: When does unit testing happen?

A:

Page 134 © 2018 Kyle Burke cb

12.1 Agile Iterations 12 AGILE SOFTWARE DEVELOPMENT

Q: Why is automated testing vital for an Agile team?

A:

Q: How often should an agile team meet to discuss progress?

A:

Q: What does each team member (or subgroup) report at the
meeting?

A:

Q: What happens if you (a team member) think you can solve
another team member’s roadblock?

A:

Page 135 © 2018 Kyle Burke cb

12.2 Customer Representative 12 AGILE SOFTWARE DEVELOPMENT

12.2 Customer Representative

Q: Big idea: who is the unusual member of the agile team?

A:

Q: What are their responsibilities?

A:

Page 136 © 2018 Kyle Burke cb

12.3 Information Radiator 12 AGILE SOFTWARE DEVELOPMENT

Q:
What happens if the customer representative is filled by a
member of the software development team (instead of the
stakeholders)?

A:

Q: What should be done if there cannot be a customer repre-
sentative on the team?

A:

12.3 Information Radiator

An information radiator is a large physical display set up to display
the current status of the project.

Q: Who should be able to see the information radiator?

A:

Page 137 © 2018 Kyle Burke cb

12.3 Information Radiator 12 AGILE SOFTWARE DEVELOPMENT

Q: Why passerby?

A:

Q: What media should the information radiator use?

A:

Q: What is a build light indicator?

A:

Often uses three lights:

• Pass

• Fail

• Being re-tested

Page 138 © 2018 Kyle Burke cb

12.4 Code Quality in an Agile Team 12 AGILE SOFTWARE DEVELOPMENT

Q: Who uses the BLI?

A:

12.4 Code Quality in an Agile Team

Q: We spent lots of time covering good code design. How im-
portant is that for an agile team?

A:

Q: How is good design often recognized?

A:

Q: What else helps drive quality code?

A:

Page 139 © 2018 Kyle Burke cb

12.5 Team Experience 12 AGILE SOFTWARE DEVELOPMENT

Q: What happens when code quality is not maintained?

A:

12.5 Team Experience

Q:
A customer requests a project be completed with Agile en-
gineering with 10 software developers. You have 20 people
to choose from: 10 senior devs and 10 junior devs. Who do
you put on the project?

A:

Q: Why?

A:

Page 140 © 2018 Kyle Burke cb

12.5 Team Experience 12 AGILE SOFTWARE DEVELOPMENT

Q: Why don’t new people learn as they go?

A:

Q: What does this tell you about getting into Agile develop-
ment?

A:

Q: What does this tell you about Agile development from a
business perspective?

A:

Page 141 © 2018 Kyle Burke cb

12.5 Team Experience 12 AGILE SOFTWARE DEVELOPMENT

Q:
I’ve seen college described the following way: Enough Sleep,
Good Grades, Social Life; Choose two. How could we use
the “choose two” mentality in the Iron Triangle?

A:

Q: If you are choosing to use Agile Development, which two
are you choosing?

A:

Q: In what ways is it expensive?

A:

Page 142 © 2018 Kyle Burke cb

13 OODP: VISITOR PATTERN

13 OODP: Visitor Pattern

13.1 Motivation: Collectibles from the 1980’s

Let’s say we have a binary tree describing a My Little Pony toy
collection.19 The MyLittlePony class has a toString method so
the client’s tree can nicely print the collection.

Q:
Old My Little Pony toys can be sold for money, and their
recent trade values are updated daily on a fan website. How
might our clients want us to improve the MyLittlePony

class?

A:

One solution to this problem is to include a toStringWithPrice()
method in the MyLittlePony class.

Q: Why should we add this new method instead of change the
toString method to print out the price?

A:

Let’s complicate the matter further:

• Another client has a collection of G.I. Joe toys, which we have
recorded in an ArrayList<GIJoe>.

• A client also has a collection of Cabbage Patch Kids, itemized
in a Graph<CabbagePatchKid>.

• Online, updating-value databases exist for both!

19Note: I came up with this example before the Friendship is Magic TV series was created. It predates
any bronyhood I may or may not have adopted.

Page 143 © 2018 Kyle Burke cb

13.1 Motivation: Collectibles from the 1980’s 13 OODP: VISITOR PATTERN

Q: What do these two clients probably want?

A:

Q: What is probably true of the CabbagePatchKid,
MyLittlePony, and GIJoe classes?

A:

Q:
Since we’re such good developers, we also find a way to
determine the eBay trade value and volume for each of the
three 80’s toys. What will our clients want once we tell
them?

A:

Q: How many specialized toString-ish methods do we have?

A:

Page 144 © 2018 Kyle Burke cb

13.1 Motivation: Collectibles from the 1980’s 13 OODP: VISITOR PATTERN

Q: In general, how many will we have if we have n toy types
and m different methods required?

A:

Q: Where do we probably have some repeated code?

A:

Q: What should we do to fix this?

A:

This is what code that used that might look like:

MyLittlePony posey = new MyLittlePony(...);

EbayVolumePrinter printer = new

EbayVolumePrinter();

printer.print(posey);

Q: What’s a problem with this?

A:

Page 145 © 2018 Kyle Burke cb

13.1 Motivation: Collectibles from the 1980’s 13 OODP: VISITOR PATTERN

Q:
Wait... how is that? What does the
EbayVolumePrinter.print(EightiesToy toy) method
have to do?

A:

public String print(EightiesToy toy) {
if (toy instanceOf MyLittlePony) {

MyLittlePony pony = (MyLittlePony) toy;

return this.printPony(pony);

}
...

}

Q: Also, now how many total methods do we have?

A:

Q: How many in general for n toys and m printers?

A:

Let’s do something that looks a bit like a step backwards. Let’s
add a method to the MyLittlePony class:

public String toStringWithEbayVolume() {
EbayVolumePrinter printer = new

EbayVolumePrinter();

return printer.printMyLittlePony(this);

}

Page 146 © 2018 Kyle Burke cb

13.1 Motivation: Collectibles from the 1980’s 13 OODP: VISITOR PATTERN

Q:
Now how many total public methods do we have for these
specialized toString-type methods? (For our specific 3 toy
types.)

A:

Q: And in general? (n toys, m printers)

A:

Q:
Is there some way we can condense all of the methods
toStringWithEbayVolume, toStringWithEbayPrice, and
toStringWithPrice?

A:

Q: Let’s call that method specialToString. Is it going to
take any parameters?

A:

Q: What is the parameter it’s going to take?

A:

Page 147 © 2018 Kyle Burke cb

13.1 Motivation: Collectibles from the 1980’s 13 OODP: VISITOR PATTERN

public String specialToString(Printer printer) {
return printer.printMyLittlePony(this);

}

Q: What’s the signature for the printMyLittlePony method?

A:

Q: Can I change this to public String print(MyLittlePony

pony)?

Q: Wait... then is it different from public String

print(GIJoe joe)?

A: Yup! Different Signatures!

Q: Wow! What’s specialToString going to look like now?

A:

Q: Anything specific to Ponies in there?

A: Nope!

Page 148 © 2018 Kyle Burke cb

13.1 Motivation: Collectibles from the 1980’s 13 OODP: VISITOR PATTERN

Q: Then where can we move it?

A: Nowhere.

Q: Why can’t we move it up to EightiesToy class?

A:
Because inside each of the subclasses, the
type of this is specific. There isn’t any
print(EightiesToy) method in the Printer

classes.

Q: How many total methods do we have now?

A:

Q: Can we do any better?

A: Not really

Q: What’s the benefit of this reorganization, then?

A: The Printers are well-separated from the Toys

Page 149 © 2018 Kyle Burke cb

13.2 Visitor Pattern Participants 13 OODP: VISITOR PATTERN

Q: Which can we add without having to modify anything else,
Toys or Printers?

A:

13.2 Visitor Pattern Participants

We can generalize this plan for any objects by using the Visitor
Pattern! Participants:

• ConcreteElement: Object to perform some operation on.

• Element: interface for different ConcreteElement classes.

• ConcreteVisitor: Object that will perform the action on the
visited object.

• Visitor: Interface for the different visitors.

• Client: Uses the ConcreteVisitors to perform operations on
elements.

Q: Which of the above roles do we want each of our example
classes to fit in?

A:

The Printers are our Visitors, which do different things based on
both:

• Visitor type

Page 150 © 2018 Kyle Burke cb

13.2 Visitor Pattern Participants 13 OODP: VISITOR PATTERN

• Element type

Both dynamically! The Visitor Pattern lets us do this without sac-
rificing polymorphism, using a double-dispatch technique: we’re go-
ing to use dynamic method invocation twice by making two method
calls.

First invocation: choose the element type; the second one dy-
namically chooses the element.

Q:
The pattern’s two interfaces, Visitor and Element, are a
bit different from what we’ve built so far as our abstract
classes, Printer and EightiesToys. What can we do to
make our visiting more flexible?

A:

Using the generic type: our Visitor<T> means that the visit

methods have return type T.

Q:
On the Element<T> side, we’re going to need to accept the
visitor, like the 80’s toys accepted the printer. What is the
signature of that accept method?

A:

Page 151 © 2018 Kyle Burke cb

13.2 Visitor Pattern Participants 13 OODP: VISITOR PATTERN

Q: We can implement that accept method in the abstract su-
perclass! What does that method look like?

A:

Q: What’s the problem with implementing this in the abstract
class?

A:

Q: What should we do instead?

A:

Q: What’s super weird about this?

A:

Q: And that makes Kyle sad because...?

A:

Page 152 © 2018 Kyle Burke cb

13.3 Implemented Example 13 OODP: VISITOR PATTERN

Q: What’s another benefit of this?

A:

Q: What is going to be in the abstract Visitor?

A:

Q: To add a new visitor, where do we have to add code?

A:

Q: Why is this helpful?

A:

〈 Draw the class diagram! 〉 TODO: add the diagram here

13.3 Implemented Example

Let’s implement the Visitor pattern with our classes from before:
EightiesToy, Printer, and their subclasses.

Page 153 © 2018 Kyle Burke cb

13.3 Implemented Example 13 OODP: VISITOR PATTERN

Q: What will the code look like for EightiesToy?

A:

Q: Okay, let’s implement one of the subclasses: MyLittlePony.
Ignore all other methods aside from the accept method.

A:

Q: Do the same for GIJoe and CabbagePatchKid.

Q: Let’s implement the EightiesToyVisitor superclass. Do
it!

A:

Page 154 © 2018 Kyle Burke cb

13.3 Implemented Example 13 OODP: VISITOR PATTERN

Q: Let’s implement the EbayVolumePrinter class! (We don’t
need to include the bodies of any methods here...)

A:

Page 155 © 2018 Kyle Burke cb

13.4 Downsides 14 PARALLEL OODP: PRODUCER-CONSUMER

13.4 Downsides

Q: What are some limitations of this pattern?

A:

14 Parallel OODP: Producer-Consumer

Q:
Remember old newspaper printers with the big machines?
If you’re printing up today’s newspapers, it can take a while
for them all to finish. What should I do after the first
bundles of papers come off the machines?

A: Start distributing them!

Page 156 © 2018 Kyle Burke cb

14.0 Motivation and the Big Problem14 PARALLEL OODP: PRODUCER-CONSUMER

14.0 Motivation and the Big Problem

Q:
In this metaphor, the machine is the Producer, creating the
newspapers, and my army of young ”Newsies”20 (hooray no
child labor laws) is my Consumer. What’s the big idea here?

A:

Q: What are some examples of this (both real-world and
computing-land)?

A:

Real World:

• Grocery Stores put milk into the fridge cab-
inets, customers buy them.

• I produce lecture notes as fast as I can and
then teach them during my classes.

• Students are assigned homework in their
different classes and turn it in when due.

Computing:

• Computer Jobs are created by applications
and the user and are run on the CPU when
the scheduler decides.

• Routers receive packets in one channel and
send them out on another.

•

Page 157 © 2018 Kyle Burke cb

14.1 Common First Code 14 PARALLEL OODP: PRODUCER-CONSUMER

Q:
There’s an easy solution here: just put a queue as a ”buffer”
between the Producer and Consumer. Boom, code up a
Queue using an ArrayList and we’re done! Right? What’s
the problem here?

A:

Q: What do we want the Producer to do if they try to add
something to a full buffer?

A:

Q: What do we want the Consumer to do if they try to remove
something from an empty buffer?

A:

14.1 Common First Code

Here’s what the (non-OO) code commonly looks like:
public void producer(Queue buffer) {

while (true) {
Object produced = this.generate();

if (buffer.isFull()) {
producerSleep(); //blocks ’til producerAwaken()

call

}
buffer.add(produced);

if (buffer.size() == 1) {

Page 158 © 2018 Kyle Burke cb

14.1 Common First Code 14 PARALLEL OODP: PRODUCER-CONSUMER

consumerAwaken();

}
}

}

public void consumer(Queue buffer) {
while(true) {

if (buffer.isEmpty()) {
consumerSleep(); //blocks until consumerAwaken()

}
boolean wasFull = buffer.isFull();

Object produced = buffer.remove();

if (wasFull) {
producerAwaken();

}
this.consume(produced);

}
}

21

21Comic source: https://xkcd.com/1926/

Page 159 © 2018 Kyle Burke cb

https://xkcd.com/1926/

14.2 Sleeping with Semaphores 14 PARALLEL OODP: PRODUCER-CONSUMER

Q: What are some issues with this design? (There are lots.)

A:

• Not very OO. The producer and consumer
seem like separate roles and should each
have their own class. Then there’s a lot
to do there...

• Looks like generics could be useful in there
since we are declaring things to be of type
Object.

• These methods are not thread safe! That
means that if you run them, a race con-
dition can occur: unexpected results can
happen due to the timing of instructions in
separate threads. In this case, there is the
potential for a deadlock!

14.2 Sleeping with Semaphores

Q: Let’s first address an implementation issue: How do we
implement the awaken and sleep methods?

A: Semaphores!

Page 160 © 2018 Kyle Burke cb

14.2 Sleeping with Semaphores 14 PARALLEL OODP: PRODUCER-CONSUMER

Q: What is the interface for a Semaphore?

A:

• Constructor: Semaphore(numTokens :

int)

• p(): asks to ”borrow” a token. If none is
available it blocks until one becomes avail-
able.

• v(): returns a token. Sometimes it’s okay
for code that never borrowed a token to re-
turn one.

2223

Q: How many semaphores will we need?

A:

Q: What will we call them?

A:

How about:

• producerAwake (blocks when the producer
needs to sleep) and

• consumerAwake (block when the consumer
needs to sleep)

22p is short for the Dutch proberen (to try out); v is short for verhohen (to increase)
23Java’s Semaphore implementation (https://docs.oracle.com/javase/7/docs/api/java/util/

concurrent/Semaphore.html) uses acquire() and release() as p() and v(), respectively.

Page 161 © 2018 Kyle Burke cb

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html

14.2 Sleeping with Semaphores 14 PARALLEL OODP: PRODUCER-CONSUMER

Q:

Can we just make the following replacements?

• producerSleep() → this.producerAwake.p()

• producerAwaken() → this.producerAwake.v()

• consumerSleep() → this.consumerAwake.p()

• consumerAwaken() → this.consumerAwake.v()

A:
Not really. Remember that the problem hap-
pened because we skipped over some of the
awaken calls.

Q: What can we do instead?

A:
We’ll set it up so that the calls are not inside
conditionals. We’ll just call them every single
time through the loops!

Page 162 © 2018 Kyle Burke cb

14.2 Sleeping with Semaphores 14 PARALLEL OODP: PRODUCER-CONSUMER

Q:

There are two things to think about to understand how this
works:

• How many tokens is each Semaphore going to start
with? (Hint: not 1) and

• Where exactly are the calls to p and v going to go?

Let’s tackle the second question first. Let’s rewrite the
producer loop.

A:

public void producer(Queue buffer) {
while(true) {

Object produced =

this.generate();

//block until there’s space in

the buffer

this.producerAwake.acquire();

buffer.add(produced);

//indicate that there’s another

element in the buffer

this.consumerAwake.release();

}
}

Page 163 © 2018 Kyle Burke cb

14.2 Sleeping with Semaphores 14 PARALLEL OODP: PRODUCER-CONSUMER

Q: How about the consumer loop?

A:

Q: Okay, how many tokens is the producerAwake Semaphore
going to have initially?

A:
The size of the buffer. So:
this.producerAwake = new

Semaphore(buffer.size());

Q: What about the consumerAwake Semaphore?

A:

Page 164 © 2018 Kyle Burke cb

14.3 Instilling OO principles 14 PARALLEL OODP: PRODUCER-CONSUMER

14.3 Instilling OO principles

This fixes the race condition, but there are other problems related
to the design that do make it easier to run this code. We will
definitely be making other changes with the Semaphores also.

Q:
What do I need to do to get the current code running?
What would the constructor (let’s just put everything in
there for now) have to look like to get everything running?

A:

Q:

Page 165 © 2018 Kyle Burke cb

14.3 Instilling OO principles 14 PARALLEL OODP: PRODUCER-CONSUMER

Q: Okay, let’s think ahead a bunch and see if we can figure out
what the four participants of our final design pattern are.

A:

• Producer: Class that creates objects that
need to be consumed.

• Consumer: Class that consumes created
objects.

• Buffer: Data Structure that holds pro-
duced objects that are waiting to be con-
sumed.

• Client: Creates the Producer, Consumer,
and Buffer and launches the Producer and
Consumer.

Q: Which of the three main classes will have references to the
others?

A: Producer and Consumer will have references to
the Buffer.

Page 166 © 2018 Kyle Burke cb

14.4 Improvements 14 PARALLEL OODP: PRODUCER-CONSUMER

Consumer-Producer v0

uses

uses Client
Calls
Producer.produce()

and
Consumer.consume()

Calls
Producer.produce()

and
Consumer.consume()

Producer

- buffer : Buffer

+ producer() : void
+ generate() : Object

Consumer

- buffer : Buffer

+ consumer() : void
+ consume(Object) : void

Buffer

- maxSize : int
- elements : Collection

+ add(Object) : void
+ remove() : Object
+ isEmpty() : boolean
+ isFull() : boolean

14.4 Improvements

Q: What’s the first change we notice? Hint: think about the
data structures class.

A:

Q: What about the Producer class. What is going on in the
producer method?

A:

Page 167 © 2018 Kyle Burke cb

14.4 Improvements 14 PARALLEL OODP: PRODUCER-CONSUMER

Q: Should that be running in its own thread?

A:

Q: So what should we do with it?

A:

Q: What about Consumer’s consumer method?

A:

Q: What might the code in the Client look like that launches
everything? (Hint: I used Strings in my example.)

A:

New Class Diagram! (Note: I’ve removed the Client from here
on out.)

Page 168 © 2018 Kyle Burke cb

14.5 Shifting Responsibilities 14 PARALLEL OODP: PRODUCER-CONSUMER

Consumer-Producer v1

�interface�
Runnable

+ run() : void

Producer

- buffer : Buffer

+ run() : void
+ generate() : T

Consumer

- buffer : Buffer

+ run() : void
+ consume(T) : void

Buffer

- maxSize : int
- elements : Collection<T>

+ add(T) : void
+ remove() : T
+ isEmpty() : boolean
+ isFull() : boolean

5

14.5 Shifting Responsibilities

Q:
Okay, now where are we going to put the semaphores to
keep everything thread safe? If we had to choose just one
object to handle the concurrency, where does that respon-
sibility fit most cleanly?

A: Use the buffer!

Page 169 © 2018 Kyle Burke cb

14.5 Shifting Responsibilities 14 PARALLEL OODP: PRODUCER-CONSUMER

Q: Let’s give the buffer a semaphore field. How can we use
this to solve our problem?

A:

Q: Let’s implement the add method for the Buffer.

A:

Q: Okay, now implement the remove.

A:

Here’s the updated figure

Page 170 © 2018 Kyle Burke cb

14.5 Shifting Responsibilities 14 PARALLEL OODP: PRODUCER-CONSUMER

Consumer-Producer v2

�interface�
Runnable

+ run() : void

Producer

- buffer : Buffer

+ run() : void
+ generate() : T

Consumer

- buffer : Buffer

+ run() : void
+ consume(T) : void

Buffer

- maxSize : int
- elements : Collection<T>
- semaphore : Semaphore

+ add(T) : void
+ remove() : T
+ isEmpty() : boolean
+ isFull() : boolean

Q: Let’s fix the Producer’s run method. Hint: significantly
easier now!

A:

public void run() {
while (true) {

T produced = this.generate();

this.buffer.add(produced);

}
}

Page 171 © 2018 Kyle Burke cb

14.5 Shifting Responsibilities 14 PARALLEL OODP: PRODUCER-CONSUMER

Q: Now what about Consumer’s?

A:

Q: How can I simplify this in Java?

A:

24

I found out about these classes from the Java Revisited blog [2].

24API: https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/

LinkedBlockingQueue.html

Page 172 © 2018 Kyle Burke cb

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html

15 PARALLEL OODP: MASTER-WORKER

Q: What will our Client code look like, then? (Use the String
example again.)

A:

15 Parallel OODP: Master-Worker

25

Master-Worker is a classic parallel design pattern[1], though the
specifics vary a bit. It is also known as the Master-Slave pattern
and the SPMD (Single Program; Multiple Data) pattern.

15.0 Motivation

Q: What should we do if we have one big computation to solve
and lots of available hardware threads?

A:
Split the problem up into little pieces. If we
can’t divide up the problem into smaller con-
current problems, we can’t use this pattern.

Q: If we divide it up into m pieces and have p threads, is it a
problem if m >> p?

A: Not really.

25Thanks a ton to Dale Skrien for helping me work out the details of this!

Page 173 © 2018 Kyle Burke cb

15.1 Initial OO Master-Worker 15 PARALLEL OODP: MASTER-WORKER

Q: What are we going to do?

A: Give each thread a piece to solve. When they’re
done, give it another one.

Q: What are we hiding under the rug here?

A: The actual part to break-down the problem into
little pieces.

Q: And what happens when all the little pieces are done?

A: We have to put them back together.

15.1 Initial OO Master-Worker

The original object-version of this pattern was given in [1]. It has
the following parts:

Page 174 © 2018 Kyle Burke cb

15.1 Initial OO Master-Worker 15 PARALLEL OODP: MASTER-WORKER

Master-Worker v0

creates

uses Client Calls Mas-
ter.service();
Calls Mas-
ter.service();

Master

+ Master(...)
+ service() : void
- splitWork() : void
- callWorkers() : void
- combineResults() : void

Worker

+ subservice() : void

Q: What’s the purpose of the three private methods in Master?

A:

To do the three things we talked about:

splitWork : divides the work up into small
pieces. (Presumably this sets up a data
structure with all the data for the subcom-
putations.

callWorkers : assigns the data pieces to
the Workers, then calls their subservice

method, until all the data is processed.)

combineResults : takes the results of each
subcomputation and builds the final data
result.

Page 175 © 2018 Kyle Burke cb

15.2 First Improvements 15 PARALLEL OODP: MASTER-WORKER

15.2 First Improvements

Q: What’s a problem with Master.service?

A: It doesn’t return anything.

Q: Okay, let’s make it fruitful. What should it return?

A:

Q: Even better?

A:

Q: How else should we change service?

A: Give it a parameter.

Q: And what type should that be?

A:

Page 176 © 2018 Kyle Burke cb

15.2 First Improvements 15 PARALLEL OODP: MASTER-WORKER

Q: Can we write the body of Master.service()?

A: Yes!

Q: Write it!

A:

public Out service(In input) {
this.splitWork(input);

this.callWorkers();

return this.combineResults();

}

Q: What is splitWork going to do if it’s void?

A: It will have to assign the results of the splitting
to a field! Okay, let’s add a field: workerInputs

Q: How is combineResults going to work without taking any
parameters?

A:

Q:
Since we know the necessary methods in Master and
Worker, how can we take the first step to improving these
patterns?

A: Use abstract classes.

Page 177 © 2018 Kyle Burke cb

15.2 First Improvements 15 PARALLEL OODP: MASTER-WORKER

Q: Can we implement any of the methods in the abstract
classes?

A:

Here are the improvements we’ve made so far:
TODO: generic types are not working in the title of an abstract

class.

Master-Worker v1

creates

uses Client

Master

- workerInputs : Collection
- workerOutputs : Collection

+ service(In input) : Out
- splitWork(In) : void
- callWorkers() : void
- combineResults() : Out

body of service:
this.splitWork(input);

this.callWorkers();

return

this.combineResults();

body of service:
this.splitWork(input);

this.callWorkers();

return

this.combineResults();

ConcreteMaster

+ ConcreteMaster(...)
- splitWork(In) : void
- callWorkers() : void
- combineResults() : Out

Worker

+ subservice() : void

ConcreteWorker

+ ConcreteWorker(...)
+ subservice() : void

Page 178 © 2018 Kyle Burke cb

15.3 Using the Command Pattern 15 PARALLEL OODP: MASTER-WORKER

15.3 Using the Command Pattern

Q: Which part of this is reminiscent of the Command Pattern
(Section 10)?

A: Worker

Q: What class should we replace Worker with (in Java)?

A: Runnable
26

Q: What are the added benefits of using Runnable?

A:

Q: What changes do we have to make to replace Worker with
Runnable?

A:

We’ll also change ConcreteWorker to just be Worker. Here’s the
most recent version of our design. (Notice, I’m leaving the Client
out from this point on.)

26https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Page 179 © 2018 Kyle Burke cb

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

15.4 Double-down on Command 15 PARALLEL OODP: MASTER-WORKER

Master-Worker v2

creates

Master

- workerInputs : Collection
- workerOutputs : Collection

+ service(In) : Out
- splitWork(In) : void
- callWorkers() : void
- combineResults() : Out

ConcreteMaster

+ ConcreteMaster(...)
- splitWork(In) : void
- callWorkers() : void
- combineResults() : Out

�interface�
Runnable

+ run() : void

Worker

+ Worker(...)
+ run() : void

Q: What does the code look like to create and dispatch a
Worker?

A: Worker worker = new Worker(...);

new Thread(worker).start();

15.4 Double-down on Command

Q: How different are each of the Workers going to be?

A: Not very. Going to run the exact same code...
but on different input.

Page 180 © 2018 Kyle Burke cb

15.4 Double-down on Command 15 PARALLEL OODP: MASTER-WORKER

Q: What design pattern could we use here?

A:

Q: Again??

A:

Q: Who will own this command?

A:

Q: What should ConcreteMaster.callWorkers look like?

A:

private void callWorkers() {
for (Object datum :

dataForWorkers) {
Worker worker = new

Worker(this.command, datum);

new Thread(worker).start();

}
}

Page 181 © 2018 Kyle Burke cb

15.4 Double-down on Command 15 PARALLEL OODP: MASTER-WORKER

Q: The Object variable is a bit awkward. How can we clean
this up using generics?

A: Include Generics for input/output for the work-
ers. Let’s use WIn and WOut.

Q: Okay, let’s fix ConcreteMaster.callWorkers().

A:

Q: Should the Worker’s command field be Runnable, Callable,
or something else?

A:

27

27Callable is the version of Runnable that returns a value: https://docs.oracle.com/javase/8/docs/

api/java/util/concurrent/Callable.html

Page 182 © 2018 Kyle Burke cb

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

15.4 Double-down on Command 15 PARALLEL OODP: MASTER-WORKER

Q: Returning is nice. Why can’t the Worker extend Callable
instead of Runnable?

A:

Q: It’s really important for the Command to either have no
state or be immutable. Why is that?

A:
The same Command object is used for all the
worker commands. If any fields are changed
during the execute method, then we can have
some race conditions!

Update the class diagram:

Master-Worker v3

creates

*

Master

- workerInputs : Collection
- workerOutputs : Collection
- command : Command

+ service(In) : Out
- splitWork(In) : void
- callWorkers() : void
- combineResults() : Out

ConcreteMaster

+ ConcreteMaster(...)
- splitWork(In) : void
- callWorkers() : void
- combineResults() : Out

�interface�
Runnable

+ run() : void

Worker

- command: Command
- input: WIn

+ Worker(Command, WIn)
+ run() : void

�interface�
Command

+ execute(WIn)
: WOut

Page 183 © 2018 Kyle Burke cb

15.5 Giving Back 15 PARALLEL OODP: MASTER-WORKER

15.5 Giving Back

Q: If the worker’s run method is void, how will we hand data
back to the ConcreteMaster?

A: Include a method in ConcreteMaster that ac-
cepts the finished work.

Q: How will that method put the work back in the proper
place?

A:
It will have to know the location in the data
structure to return the information. E.g.:
public void returnData(WOut datum, int

index)

Q: What are some problems with this?

A:

Page 184 © 2018 Kyle Burke cb

15.5 Giving Back 15 PARALLEL OODP: MASTER-WORKER

Q: Can we do better?

A: Yes!

Q: How?

A:

Q: What other methods does this capsule object need?

A:

Q: What is the problem with these? Specifically, isFull?

A: Polling.

Q: What’s the solution to polling?

A:

Page 185 © 2018 Kyle Burke cb

15.5 Giving Back 15 PARALLEL OODP: MASTER-WORKER

Q: Okay, so what methods will we add to the Capsule class?

A:

Q: Which methods can we remove then?

A:

Q: What’s the signature of this class going to be?

A:

Q: Let’s implement some of these! First off: the constructor.

A:

public Capsule() {
this.isFull = false;

this.value = null;

this.listeners = new

LinkedList<ActionListener>();

}

Page 186 © 2018 Kyle Burke cb

15.5 Giving Back 15 PARALLEL OODP: MASTER-WORKER

Q: Next, fill()

A:

public void fill(T value) {
this.value = value;

this.isFull = true;

this.notify();

}

Q: Finally, getValue()

A:

public T getValue() {
if (this.isFull) {

return this.value;

} else {
throw new

RuntimeException("Tried to get the

value from an empty capsule!");

}
}

Q: What about the add(Observer) method?

A:

Just like the one shown in the Ob-
server pattern. For Java, we can use
the ActionListener interface, so it’ll be
addActionListener(ActionListener):
public void addActionListener(ActionListener

listener) {
this.listeners.add(lisetener);

}

Page 187 © 2018 Kyle Burke cb

15.5 Giving Back 15 PARALLEL OODP: MASTER-WORKER

Q: So what about the notify method?

A:

public void notify() {
for (ActionListener listener :

this.listeners) {
listener.actionPerformed(new

ActionEvent(this, 0, ""));

}
}

TODO: add another iteration of the class diagram here

Q: I think we can finally implement the Worker class! First
up: constructor, which is extremely boring.

A:

public Worker(Command command, WIn

input, Capsule capsule) {
this.command = command;

this.input = input;

this.capsule = capsule;

}

Q: Can we write the Worker.run method yet?

A:

Page 188 © 2018 Kyle Burke cb

15.5 Giving Back 15 PARALLEL OODP: MASTER-WORKER

Q: What could be a problem with the data structures for the
worker inputs and outputs?

A:

Q: Do they need to be the same?

A:

Q: What should we do here?

A:

Q: Okay, what do we need to add to our capsule class?

A:

Page 189 © 2018 Kyle Burke cb

15.5 Giving Back 15 PARALLEL OODP: MASTER-WORKER

Q: How can this improve the Worker class’s constructor?

A:

Q: So what method do we need to update?

A:

Q: Update it!

A:

〈 Make sure the class diagram matches this: 〉

Page 190 © 2018 Kyle Burke cb

15.6 Waiting for Workers 15 PARALLEL OODP: MASTER-WORKER

Master-Worker Pattern v4

creates

*

Master

- command : Command
- workerData :

Collection<IOCapsule>

+ service(In) : Out
- splitWork(In) : void
- callWorkers() : void
- combineResults() : Out

ConcreteMaster

splitWork(In) : void
combineResults() : Out

�interface�
Runnable

+ run() : void

Worker

- command : Command
- capsule : IOCapsule

+ Worker(Command,
IOCapsule)
+ run() : void

�interface�
Command

+ execute(WIn)
: WOut

IOCapsule

- input : WIn
- output : WOut

+ IOCapsule(WIn)
+ getInput() : WIn
+ fill(WOut) : void
+ getOutput() : WOut

15.6 Waiting for Workers

Q: Last big issue: There’s a weird part in our old service

method. What’s wrong with this?

A:
We need to wait for the workers to finish before
calling combineResults. Right now it doesn’t
wait!

Page 191 © 2018 Kyle Burke cb

15.6 Waiting for Workers 15 PARALLEL OODP: MASTER-WORKER

Q: How do we get the code to wait? (Either at the beginning
of combineResults or at the end of callWorkers)

A:

Q: What is a Semaphore?

A:

Page 192 © 2018 Kyle Burke cb

15.6 Waiting for Workers 15 PARALLEL OODP: MASTER-WORKER

Q: What is the interface for a Semaphore?

A:

• Constructor: Semaphore(numTokens :

int)

• p(): asks to ”borrow” a token. If none is
available it blocks until one becomes avail-
able.

• v(): returns a token. Sometimes it’s okay
for code that never borrowed a token to re-
turn one.

2829

Q: Which class will have a Semaphore field?

A: Master

Q: When will it be created?

A:
28p is short for the Dutch proberen (to try out); v is short for verhohen (to increase)
29Java’s Semaphore implementation (https://docs.oracle.com/javase/7/docs/api/java/util/

concurrent/Semaphore.html) uses acquire() and release() as p() and v(), respectively.

Page 193 © 2018 Kyle Burke cb

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html

15.6 Waiting for Workers 15 PARALLEL OODP: MASTER-WORKER

Q:

Let’s implement the following strategy:

• Start with a semaphore with lots of tokens.

• Each worker requests a token before it starts work, then
returns it when it’s done.

• Before we call combineResults, we need to request to-
kens again so that doesn’t go until all workers have
finished.

How many tokens should we include initially?

A:

Q: How many tokens do we need to request at that end part?

A:

Q: Is there a benefit to putting all of this synchronization code
into callWorkers?

A:

Q:
Okay, so we want all of the workers to take a token when
they launch, and return it when they’re done. Where should
we put another call to p()?

A:

Page 194 © 2018 Kyle Burke cb

15.6 Waiting for Workers 15 PARALLEL OODP: MASTER-WORKER

Q: Okay, when should the other calls to p() and v() happen?

A:

Q: Okay, where do I put that call to p?

A:

Q: What about the call to v?

A:

Q: What does that mean about the workers?

A:

Page 195 © 2018 Kyle Burke cb

15.6 Waiting for Workers 15 PARALLEL OODP: MASTER-WORKER

Q: Let’s update the callWorkers method!

A:

Q:
Why does there have to be a separate loop at the end? Why
can’t I just put the call to acquire in at the last line of the
loop?

A:

Page 196 © 2018 Kyle Burke cb

15.6 Waiting for Workers 15 PARALLEL OODP: MASTER-WORKER

Q: Let’s update Worker.run?

A:

Q:
We can actually make our code run faster by removing some
calls to acquire (and modifying the semaphore construc-
tor). How can we do that?

A:

Page 197 © 2018 Kyle Burke cb

15.6 Waiting for Workers 15 PARALLEL OODP: MASTER-WORKER

Q: What does the updated method look like now?

A:

Q:
There are two ways to remove that last loop and replace it
with a single call to acquire. What are those ways? (Hint:
I had to look at the Semaphore API to make sure both were
legal.)

A:

Page 198 © 2018 Kyle Burke cb

15.6 Waiting for Workers 15 PARALLEL OODP: MASTER-WORKER

Q: What’s the code for the negative tokens version? (Hint:
how many negative tokens do you need to initialize with?)

A:

Q: Do we still need to use the Observer Pattern?

A:

Q: Okay, so what was the thing about the binary tree to re-
combine?

A:

There’s a bit of a bottleneck in terms of launch-
ing all the threads: it all uses a single loop.
What if instead, we had a binary tree where
the leaves had the data for the workers. Then
we could launch them in parallel from the root
in Θ(log(n)) steps. We’d have to have the re-
combining done in that much time too, though.
Definitely a good plan, but that’s for another
time...

Page 199 © 2018 Kyle Burke cb

15.7 Master-Worker: Summary 15 PARALLEL OODP: MASTER-WORKER

15.7 Master-Worker: Summary

Sweet! We did a lot of work! Here’s the final class diagram:

Master-Worker Pattern Final

creates

*

Master

- command : Command
- workerData :

Collection<IOCapsule>
- semaphore : Semaphore

+ service(In) : Out
- splitWork(In) : void
- callWorkers() : void
- combineResults() : Out

ConcreteMaster

splitWork(In) : void
combineResults() : Out

�interface�
Runnable

+ run() : void

Worker

- command : Command
- capsule : IOCapsule
- semaphore : Semaphore

+ Worker(Command,
IOCapsule, Semaphore)
+ run() : void

�interface�
Command

+ execute(WIn)
: WOut

IOCapsule

- input : WIn
- output : WOut

+ IOCapsule(WIn)
+ getInput() : WIn
+ fill(WOut) : void
+ getOutput() : WOut

Q: What are the benefits of this pattern?

A:
• Everything runs in parallel.

• No possibilities of data structure errors.

• User only has to implement a little bit.

Page 200 © 2018 Kyle Burke cb

16 PARALLEL OODP: PIPELINE PATTERN

Q: What exactly does the user have to implement?

A:

16 Parallel OODP: Pipeline Pattern

Requirements: need to have already seen the BlockingQueue Java
stuff from the Producer/Consumer pattern.

TODO: flesh out this section a bunch more. I don’t remember
what I did, but it went really well. I started with the state pattern.

16.0 Pipeline Pattern based on State Pattern Paper

I built this all off of the paper I read many years ago... an earlier
version of this one by MacDonald, Szafron, and Schaffer: ”Rethink-
ing the Pipeline as Object–Oriented States with Transformations”
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.150.4556&rep=rep1&type=pdf)

Talk about this stuff. Make some drawings on the board. We
don’t want an actual pipeline, just the stages in a queue that get
run. Note: we have to make sure that Order Does Not Matter.
(Otherwise, this doesn’t really work.)

Page 201 © 2018 Kyle Burke cb

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.4556&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.4556&rep=rep1&type=pdf

16.1 Final Code and Diagram 16 PARALLEL OODP: PIPELINE PATTERN

16.1 Final Code and Diagram

Pipeline Pattern - Final

�interface�
Runnable

+ run() : void

PipeStepElement

- toProcess : BlockingQueue<PipeStepElement>
- finished : BlockingQueue<PipeStepElement>

+ run() : void
- addToProcess(PipeStepElement)
- addToFinished(PipeStepElement)

ConcretePipeStepAElement

+ ConcretePipeStepAElement(...)
+ run() : void

ConcretePipeStepBElement

+ ConcretePipeStepBElement(...)
+ run() : void

ConcretePipeStepCElement

+ ConcretePipeStepCElement(...)
+ run() : void

TearDownElement

+ TearDownElement(...)
+ run() : void

Dispatcher

- numPipeElements : int
- toProcess : BlockingQueue<PipeStepElement>
- finished : BlockingQueue<PipeStepElement>

+ Dispatcher(BlockingQueue<PipeStepElement> toProcess, ...)
+ processAll() : void
+ getFinished() : PipeStepElement

TODO: add the Client to the picture. The Client creates the
toProcess queue, puts all the initial pipe steps in there, then calls
processAll on the Dispatcher, then calls getFinished to get them all
out.

Here’s the code for the processAll method in the Dispatcher class:
public void processAll() {
while (this.numPipeElements > 0) {

Page 202 © 2018 Kyle Burke cb

16.1 Final Code and Diagram 16 PARALLEL OODP: PIPELINE PATTERN

PipeStepElement element = this.toProcess.take();

new Thread(element).start();

}
}

Here’s the code for getFinished, also in the Dispatcher class:
public synchronized PipeStepElement getFinished() {
PipeStepElement finished = this.finished.take();

this.numPipeElements --;

if (this.numPipeElements <= 0) {
this.toProcess.put(new TearDownElement());

}
return finished;

}

Page 203 © 2018 Kyle Burke cb

17 EVOLUTION OF DESIGN PATTERNS

17 Evolution of Design Patterns

17.0 Downsides of Design Patterns

30

There are some arguments against Design Patterns. One is: it
creates too much repeated code. If I implement a complicated pat-
tern in 12 places, then there is going to be lots of repeated code.

30Monkey User comic ”Design Patterns Bureaucracy, from http://www.monkeyuser.com/2017/

design-patterns-bureaucracy/

Page 204 © 2018 Kyle Burke cb

http://www.monkeyuser.com/2017/design-patterns-bureaucracy/
http://www.monkeyuser.com/2017/design-patterns-bureaucracy/

17.1 OODP and PL 17 EVOLUTION OF DESIGN PATTERNS

Q: What’s the solution?

A:

17.1 OODP and PL

New languages and/or language features often pop up to simplify
or remove common code patterns.

TODO: talk about how this works with non-OO patterns. E.g.
evolution of Java for-each loops.

Q: Which patterns have already been integrated into Java?

A:

The Master-Worker pattern, covered in ??, is completely unnec-
essary in some languages, e.g. Chapel31.

A Little Holiday Software Joke
I usually arrive here—the end of the notes—at the end of the fall
semester. The midst of the holiday season. The following tweet is
excellent advice for budding software developers.

31http://chapel.cray.com

Page 205 © 2018 Kyle Burke cb

http://chapel.cray.com

A JAVA PROGRAMMING WITH OBJECTS

32

Appendices

A Java Programming with Objects

〈 Do Basic OOD pages 8 - 15 〉

Q:

What if we have the getName method implemented in both
Primate and Monkey. Which of those two does the following
snippet call?
Primate primeape = new Monkey(‘‘Primeape", O57);

primeape.getName();

A:
32Source: https://twitter.com/chrisalbon/status/943342608742604801

Page 206 © 2018 Kyle Burke cb

https://twitter.com/chrisalbon/status/943342608742604801

A.0 Downcasting A JAVA PROGRAMMING WITH OBJECTS

Q: What is this called?

A:

A.0 Downcasting

Q: Let’s return to the primeape example. What if we later
want to get primeape’s Bananas?

A:

Q: What will that code look like?

A:

Q: What could be the result if we’re not careful?

A:

Page 207 © 2018 Kyle Burke cb

A.0 Downcasting A JAVA PROGRAMMING WITH OBJECTS

Q: Workaround?

A:

Two red flags just jumped up:

• instanceof: Means you’re probably not using Polymorphism
when you should. Leads to repeated, ugly conditionals!

• ”Workaround” Yuck! That means we’re not being elegant.

A.0.1 Java Generics

Sometimes Programming Language changes can aid elegance.
Prior to Generics (1.4, say) a Java snippet might look like:

ArrayList stolenBananas = monkey.getBananas();

Object element;

Banana banana;

for (int i = 0; i < stolenBananas.size(); i++) {
element = stolenBananas.get(i);

banana = (Banana) element;

monkey.peelAndEat(banana);

}

Q: Would Java complain about any of this at compile time?

A:

Q: Why is this a problem?

A:

Page 208 © 2018 Kyle Burke cb

A.0 Downcasting A JAVA PROGRAMMING WITH OBJECTS

Q: How do generics solve this problem?

A:

Q: Assume now that getBananas returns an
ArrayList<Banana>. How can we rewrite the code?

A:

Q: Which of our elegance criteria does this improve?

A:

Page 209 © 2018 Kyle Burke cb

A.0 Downcasting A JAVA PROGRAMMING WITH OBJECTS

Q: Is this new stuff worse in any way?

A:

That programming pattern became very common. Even before
for-each loops existed, iterators were devised to abstract away the
need for reliance on linear-shaped data structures.

ArrayList<Banana> stolenBananas =

monkey.getBananas();

for (Iterator<Banana> bananaIterator =

stolenBananas.iterator(); iterator.hasNext();)

{
//leave a space here

monkey.peelAndEat(iterator.getNext());

}

Q: Why is this an improvement?

A:

Q: Any downsides?

A:

Page 210 © 2018 Kyle Burke cb

A.0 Downcasting A JAVA PROGRAMMING WITH OBJECTS

Q: What do we have to change to make this extremely
reusable?

A:

Q: How does this change make our code more Extensi-
ble/Maintainable?

A:

Q: Let’s rewrite the snippet using a for-each loop!

A:

Q: How is this an improvement?

A:

Page 211 © 2018 Kyle Burke cb

A.0 Downcasting A JAVA PROGRAMMING WITH OBJECTS

Q: Is there any more room for improvement here?

A:

Q: What do you think that signature is?

A:

Q: But... Monkeys can also eat Oranges! Should we have two
methods?

A:

Q: How can we combine them?

A:

The code might look like this:

public void peelAndEat(Fruit fruit) {
fruit.peel();

this.eat(fruit);

}

Great! Now we’re using lots of inheritance.
〈 Draw a little class diagram: Banana and Orange are subclasses
of Fruit! ... and so is Watermelon. 〉

Page 212 © 2018 Kyle Burke cb

A.1 Summary A JAVA PROGRAMMING WITH OBJECTS

Q: Any problems?

A:

Q: What might we want to do?

A:

A.1 Summary

Q: What are some basic Heuristics (rules of thumb) we’ve
learned so far? (Some might be from previous courses too!)

A:

Page 213 © 2018 Kyle Burke cb

REFERENCES REFERENCES

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-oriented Software Architecture: a System of
Patterns, Volume 1. Number v. 1. John Wiley and Sons, 1996.

[2] J. Paul. Producer consumer design pattern with blocking
queue example in java, 2012.
http://javarevisited.blogspot.com/2012/02/

producer-consumer-design-pattern-with.html.

[3] Dale Skrien. Object-Oriented Design Using Java (1. ed.).
McGraw-Hill Education, 2008.

Page 214 © 2018 Kyle Burke cb

http://javarevisited.blogspot.com/2012/02/producer-consumer-design-pattern-with.html
http://javarevisited.blogspot.com/2012/02/producer-consumer-design-pattern-with.html

	Software Engineering Lecture Notes (Student Version)
	Recommended Citation

	Preface
	Plan and Goals
	Acknowledgements
	Under Construction

	Introduction
	Project Teams
	UML: Class Diagrams
	Bad Design: Repeated Code
	JavaDoc
	Model-View-Controller Heuristic
	Second Intro

	Basic Object-Oriented Programming
	Elegance
	Public vs Private Variables

	Observer Pattern
	Code to Fix
	Object-Oriented Design Pattern Basics
	Solution: Observer Pattern
	Applying the Observer Pattern

	When to Inherit?
	Code Reuse
	``Is-A'' Perspective
	Similar Public Interfaces
	Polymorphism
	Summary

	State Pattern
	State Pattern Basics
	Example: Debugging Print Modes
	Example: Pokédex - Caught and Unseen Pokémon
	Example: Monopoly

	Singleton Pattern
	Use Reluctantly!
	The Singleton Participant
	Removing the Public "Constant"
	Delaying the Construction
	Solving the Race Condition
	Java's Solution to the Bottleneck
	Example: LinkedIntList
	When to use the Singleton Pattern
	When to Use?

	Elegant Methods
	Public vs. Private Methods
	Method Documentation
	Pre/Post Conditions
	Overriding Clone

	Elegant Classes
	Pre-Implementation Steps
	Extract Nouns and Verbs
	CRC (Class-Responsibilities-Collaborators) Cards
	Cohesion
	Responsibilities
	Immutable Classes
	Coding to Interfaces
	Coupling

	OODP: Composite Pattern
	Pac Man
	Composite Pattern Specifics
	Composite Nim

	OODP: Factory Method Pattern
	Example: Nim
	Factory Method Pattern Basics
	Factory Method with State Pattern

	OODP: Command Pattern
	Command Pattern Specifics
	Web Browsing

	Waterfall Software Development
	Steps
	Benefits
	Limitations
	Other Philosophies

	Agile Software Development
	The Agile Manifesto
	Agile Iterations
	Customer Representative
	Information Radiator
	Code Quality in an Agile Team
	Team Experience

	OODP: Visitor Pattern
	Motivation: Collectibles from the 1980's
	Visitor Pattern Participants
	Implemented Example
	Downsides

	Parallel OODP: Producer-Consumer
	Motivation and the Big Problem
	Common First Code
	Sleeping with Semaphores
	Instilling OO principles
	Improvements
	Shifting Responsibilities

	Parallel OODP: Master-Worker
	Motivation
	Initial OO Master-Worker
	First Improvements
	Using the Command Pattern
	Double-down on Command
	Giving Back
	Waiting for Workers
	Master-Worker: Summary

	Parallel OODP: Pipeline Pattern
	Pipeline Pattern based on State Pattern Paper
	Final Code and Diagram

	Evolution of Design Patterns
	Downsides of Design Patterns
	OODP and PL

	Appendix Java Programming with Objects
	Downcasting
	Summary

