KENMOTSU MANIFOLDS ADMITTING SCHOUTEN-VAN
KAMPEN CONNECTION

Nagaraja Gangadharappa Halamananavar
and Kiran Kumar Lakshmana Devasandra

Abstract. The objective of the present paper is to study the Kenmotsu manifold admitting the Schouten-van Kampen connection. We study the Kenmotsu manifold admitting the Schouten-van Kampen connection satisfying certain curvature conditions. Also, we prove the equivalent conditions for the Ricci soliton in a Kenmotsu manifold to be steady with respect to the Schouten-van Kampen connection.

Keywords: Ricci solitons, Kenmotsu manifolds, Schouten-van Kampen connection, concircular curvature tensor, projective curvature tensor, conharmonic curvature tensor, shrinking.

1. Introduction

The Schouten-van Kampen connection has been introduced for studying non-holomorphic manifolds. It preserves - by parallelism - a pair of complementary distributions on a differentiable manifold endowed with an affine connection [2] [9] [17]. Then, Olszak studied the Schouten-van Kampen connection to adapt it to an almost contact metric structure [14]. He characterized some classes of almost contact metric manifolds with the Schouten-van Kampen connection and established certain curvature properties with respect to this connection. Recently, Gopal Ghosh [7] and Yildiz [24] studied the Schouten-van Kampen connection in Sasakian manifolds and f-Kenmotsu manifolds, respectively. Kenmotsu manifolds introduced by Kenmotsu in 1971[10] have been extensively studied by many authors [20] [15] [16]. In 1982, Hamilton [8] introduced the notion of Ricci flow to find a canonical metric on a smooth manifold. Since then the Ricci flow has become a powerful tool for the study of Riemannian manifolds. The Ricci soliton, considered to be a self-similar solution to the Ricci flow is a Riemannian metric g on a manifold M, together with a vector field V such that

$$
(L_V g)(X,Y) + 2S(X,Y) + 2\lambda g(X,Y) = 0,
$$

Received September 07, 2017; accepted December 07, 2018
2010 Mathematics Subject Classification. Primary 53D10; Secondary 53D15.
where L_V denotes the Lie derivative along V, and S and λ are respectively the Ricci tensor and a constant. A Ricci soliton is said to be shrinking or steady or expanding depending on whether λ is negative, zero or positive. A Ricci soliton is said to be a gradient Ricci soliton if the vector field V is the gradient of some smooth function f on M. In [18], Sharma started the study of Ricci solitons in the K-contact geometry. In 2016, the authors in [21] explained the nature of Ricci solitons in f-Kenmotsu manifolds with a semi-symmetric non-metric connection. Ramesh Sharma et al. [18] [19], De et al. [4][1], and Nagaraja et al. [12] [11] [13] extensively studied Ricci solitons in contact metric manifolds in many different ways.

This paper is structured as follows. After a brief review of Kenmotsu manifolds in Section 2, in Section 3 we obtain the expressions of the curvature tensor, Ricci tensor and scalar curvature with respect to the Schouten-van Kampen connection, study the curvature properties of the Kenmotsu manifold admitting the Schouten-van Kampen connection, and prove the conditions for the Kenmotsu manifold admitting the Schouten-van Kampen connection to be isomorphic to the hyperbolic space. In the last section we prove the equivalent conditions for the Ricci soliton in a Kenmotsu manifold admitting the Schouten-van Kampen connection to be steady.

2. Preliminaries

A $(2n + 1)$-dimensional smooth manifold M is said to be an almost contact metric manifold if it admits an almost contact metric structure (ϕ, ξ, η, g) consisting of a tensor field ϕ of type $(1, 1)$, a vector field ξ, a 1-form η and a Riemannian metric g compatible with (ϕ, ξ, η) satisfying

\begin{equation}
\phi^2 X = -X + \eta(X)\xi, \quad \phi \xi = 0, \quad g(X, \xi) = \eta(X), \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0,
\end{equation}

and

\begin{equation}
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).
\end{equation}

An almost contact metric manifold is said to be a Kenmotsu manifold [3] if

\begin{equation}
(\nabla_X \phi)Y = -g(X, \phi Y)\xi - \eta(Y)\phi X,
\end{equation}

where ∇ denotes the Riemannian connection of g.

In a Kenmotsu manifold the following relations hold [6].

\begin{align}
\nabla_X \xi &= X - \eta(X)\xi, \\
(\nabla_X \eta)Y &= g(\nabla_X \xi, Y), \\
R(X, Y)\xi &= \eta(X)Y - \eta(Y)X, \\
S(X, \xi) &= -2\eta(X), \\
S(\phi X, \phi Y) &= S(X, Y) + 2\eta(X)\eta(Y),
\end{align}

for any vector fields X, Y, Z on M, where R denote the curvature tensor of type $(1, 3)$ on M.

3. Kenmotsu manifolds admitting Schouten-van Kampen connection

Throughout this paper we associate * with the quantities with respect to the Schouten-van Kampen connection. The Schouten-van Kampen connection ∇^* associated to the Levi-Civita connection ∇ is given by [14]

$$\nabla^*_X Y = \nabla_X Y - \eta(Y)\nabla_X \xi + (\nabla_X \eta)(Y)\xi,$$

for any vector fields X, Y on M.

Using (2.4) and (2.5), the above equation yields,

$$\nabla^*_X Y = \nabla_X Y + g(X,Y)\xi - \eta(Y)X. \quad (3.2)$$

By taking $Y = \xi$ in (3.2) and using (2.4) we obtain

$$\nabla^*_X \xi = 0. \quad (3.3)$$

We now calculate the Riemann curvature tensor R^* using (3.2) as follows:

$$R^*(X,Y)Z = R(X,Y)Z + g(Y,Z)X - g(X,Z)Y. \quad (3.4)$$

Using (2.6) and taking $Z = \xi$ in (3.4), we get

$$R^*(X,Y)\xi = 0. \quad (3.5)$$

On contracting (3.4), we obtain the Ricci tensor S^* of a Kenmotsu manifold with respect to the Schouten-van Kampen connection ∇^* as

$$S^*(Y,Z) = S(Y,Z) + 2ng(Y,Z). \quad (3.6)$$

This gives

$$Q^*Y = QY + 2nY. \quad (3.7)$$

Contracting with respect to Y and Z in (3.6), we get

$$r^* = r + 2n(2n + 1), \quad (3.8)$$

where r^* and r are the scalar curvatures with respect to the Schouten-van Kampen connection ∇^* and the Levi-Civita connection ∇, respectively.

From the above discussions we state the following:

Theorem 3.1. The curvature tensor R^*, the Ricci tensor S^* and the scalar curvature r^* of a Kenmotsu manifold M with respect to the Schouten-van Kampen connection ∇^* are given by (3.4), (3.6) and (3.8), respectively. Further, the curvature tensor R^* of ∇^* satisfies

i) $R^*(X,Y)Z = -R^*(Y,X)Z$,
ii) $R^*(X,Y,Z,W) + R^*(Y,X,Z,W) = 0$,
iii) $R^*(X,Y,Z,W) + R^*(X,Y,W,Z) = 0$,
iv) $R^*(X,Y)Z + R^*(Y,Z)X + R^*(Z,X)Y = 0$,
v) S^* is symmetric.
From (3.6), it follows that

Theorem 3.2. A Kenmotsu manifold M admitting the Schouten-van Kampen connection is Ricci flat with respect to the Schouten-van Kampen connection if and only if M is an Einstein manifold with respect to Levi-Civita connection.

Now, if $R^*(X, Y)Z = 0$, then by virtue of (3.4), we get

$$(3.9) \quad R(X, Y, Z, U) = g(X, Z)g(Y, U) - g(Y, Z)g(X, U).$$

Thus, we state that

Theorem 3.3. Let M be a Kenmotsu manifold admitting the Schouten-van Kampen connection. The curvature tensor of M with respect to the Schouten-van Kampen connection vanishes if and only if M with respect to the Levi-Civita connection is isomorphic to the hyperbolic space $H^{2n+1}(-1)$.

An interesting invariant of the concircular transformation is concircular curvature tensor. The concircular curvature tensor [22] C^* with respect to the Schouten-van Kampen connection ∇^* is defined by

$$(3.10) \quad C^*(X, Y)Z = R^*(X, Y)Z - \frac{r^*}{2n(2n+1)}[g(Y, Z)X - g(X, Z)Y],$$

for all vector fields X, Y, Z on M. If C^* vanishes, the conditions in theorem (3.1) are satisfied.

Definition 3.1. A Kenmotsu manifold with respect to the Schouten-van Kampen connection ∇^* is said to be ξ-concircularly flat if $C^*(X, Y)\xi = 0$.

In view of (3.4) and (3.8) in (3.10), we get

$$(3.11) \quad C^*(X, Y)Z = R(X, Y)Z + g(Y, Z)X - g(X, Z)Y - \frac{r + 2n(2n+1)}{2n(2n+1)}[g(Y, Z)X - g(X, Z)Y].$$

By taking $Z = \xi$ in (3.11) and then using (2.1) and (2.6), we find

$$(3.12) \quad C^*(X, Y)\xi = \frac{r + 2n(2n+1)}{2n(2n+1)}R(X, Y)\xi.$$

Thus, from (3.4), (3.8), (3.11) and (3.12), we have the following theorem:

Theorem 3.4. Let M be a Kenmotsu manifold admitting the Schouten-van Kampen connection. In M, the following three conditions are equivalent:

i) M is ξ-concircularly flat,

ii) $r = -2n(2n+1)$,

iii) $r^* = 0$.

Definition 3.2. A Kenmotsu manifold is said to be ϕ-concircularly flat with respect to the Schouten-van Kampen connection ∇^* if

\begin{equation}
g(C^*(\phi X, \phi Y)\phi Z, \phi W) = 0,
\end{equation}

for any vector fields X, Y, Z on M.

Using (3.10) in (3.13), we have

\begin{equation}
g(R^*(\phi X, \phi Y)\phi Z, \phi W) = \frac{r^*}{2n(2n+1)}\{g(\phi Y, \phi Z)g(\phi X, \phi W) - g(\phi X, \phi Z)g(\phi Y, \phi W)\}.
\end{equation}

Let $\{e_1, e_2, e_3, \ldots, e_{2n+1}\}$ be a local orthonormal basis of vector fields in M. Then $\{\phi e_1, \phi e_2, \phi e_3, \ldots, \phi e_{2n+1}\}$ is also a local orthonormal basis. If we put $X = W = e_i$ in (3.14) and summing up with respect to i, $1 \leq i \leq 2n+1$, we obtain

\begin{equation}
\sum_{i=1}^{2n} g(R^*(\phi e_i, \phi Y)\phi Z, \phi e_i) = \frac{r^*}{2n(2n+1)} \sum_{i=1}^{2n} \{g(\phi Y, \phi Z)g(\phi e_i, \phi e_i) - g(\phi e_i, \phi Z)g(\phi Y, \phi e_i)\}.
\end{equation}

From (3.15), it follows that

\begin{equation}
S^*(\phi Y, \phi Z) = \frac{r^*(2n-1)}{2n(2n+1)}g(\phi Y, \phi Z).
\end{equation}

Using (2.1), (3.6) and (3.8) in (3.16), we get

\begin{equation}
S(\phi Y, \phi Z) + 2ng(\phi Y, \phi Z) = \frac{(r + 2n(2n+1))(2n-1)}{2n(2n+1)}g(\phi Y, \phi Z).
\end{equation}

By using (2.2) and (2.8) in (3.17), we obtain

\begin{equation}
S(Y, Z) + 2n\eta(Y)\eta(Z) + \{2n - \frac{(r + 2n(2n+1))(2n-1)}{2n(2n+1)}\}g(\phi Y, \phi Z) = 0.
\end{equation}

Hence by contracting (3.18), we get

\begin{equation}
r = -2n.
\end{equation}

By substituting the equation (3.19) in (3.10), we get

\begin{equation}
C^*(X, Y)Z = R(X, Y)Z + \frac{1}{2n+1}\{g(Y, Z)X - g(X, Z)Y\}.
\end{equation}

This leads to the following:

\textbf{Theorem 3.5.} Let the Kenmotsu manifold M admitting the Schouten-van Kampen connection be ϕ-concircularly flat. Then M is of constant sectional curvature $-\frac{1}{2n+1}$ if and only if the concircular curvature tensor C^* vanishes.
We consider

By making use of (3.10) and (3.6) in (3.21), we obtain
\[
C^*S^* = S(R(X, Y)Z - \frac{r}{2n(2n + 1)} \{g(Y, Z)X - g(X, Z)Y\}, U)
+ S(Z, R(X, Y)U - \frac{r}{2n(2n + 1)} \{g(Y, U)X - g(X, U)Y\}).
\]

Suppose \(C^*S^* = 0 \). Then we have
\[S^*(C^*(X, Y)Z, U) + S^*(Z, C^*(X, Y)U) = 0. \]

Taking \(U = \xi \) in (3.23) and using (3.6), it follows that
\[S^*(Z, C^*(X, Y)\xi) = 0. \]

Making use of (2.1), (2.6) and (3.11) in (3.24), we get
\[\frac{r + 2n(2n + 1)}{2n(2n + 1)} S^*(Z, \eta(X)Y - \eta(Y)X) = 0. \]

Replacing \(X \) by \(\xi \) in (3.25) and using (2.1) and (3.6), we see that
\[\frac{r + 2n(2n + 1)}{2n(2n + 1)} \{S(Z, Y) + 2ng(Z, Y)\} = 0. \]

Contracting (3.26) with respect to \(Y \) and \(Z \), we get
\[r = -2n(2n + 1). \]

From (3.22) and (3.27), we obtain
\[S(Y, Z) = -2ng(Y, Z). \]

Thus \(M \) is an Einstein manifold.

Again, by substituting (3.27) in (3.11), we obtain
\[C^*(X, Y)Z = R(X, Y)Z + \{g(Y, Z)X - g(X, Z)Y\}. \]

Thus, from the above discussion and using (3.4), (3.8) and (3.12), we state the following:

Theorem 3.6. Let \(M \) be a Kenmotsu manifold admitting the Schouten-van Kampen connection. Then \(C^*S^* = 0 \) if and only if \(S(Y, Z) = -2ng(Y, Z) \). Further if \(C^* = 0 \) then \(M \) is isomorphic to the hyperbolic space \(H^{2n+1}(-1) \).
Theorem 3.7. If in a Kenmotsu manifold M admitting the Schouten-van Kampen connection, $C^*S^* = 0$ holds, then the following three conditions are equivalent:

1. M is ξ-concircularly flat,
2. $r = -2n(2n + 1)$,
3. $r^* = 0$.

The projective curvature tensor P^* with respect to the Schouten-van Kampen connection ∇^* is defined by

$$
(3.30) \quad P^*(X,Y)Z = R^*(X,Y)Z - \frac{1}{2n} \{S^*(Y,Z)X - S^*(X,Z)Y\}.
$$

If the projective curvature tensor P^* with respect to the Schouten-van Kampen connection ∇^* vanishes, then from (3.30), we have

$$
(3.31) \quad R^*(X,Y)Z = \frac{1}{2n} \{S^*(Y,Z)X - S^*(X,Z)Y\}.
$$

Now in view of (3.4) and (3.6), (3.31) takes the form

$$
(3.32) \quad g(R(X,Y)Z,W) + g(Y,Z)g(X,W) - g(X,Z)g(Y,W) = \frac{1}{2n} \{[S(Y,Z) + 2ng(Y,Z)]g(X,W) - [S(X,Z) + 2ng(X,Z)]g(Y,W)\}.
$$

Now taking $W = \xi$ in (3.32), we obtain

$$
(3.33) \quad S(Y,Z)\eta(X) - S(X,Z)\eta(Y) = 2n\{g(X,Z)\eta(Y) - g(Y,Z)\eta(X)\}.
$$

Again, setting $X = \xi$ in (3.33), we get

$$
(3.34) \quad S(Y,Z) = -2ng(Y,Z).
$$

Contracting the above equation (3.34), we get

$$
(3.35) \quad r = -2n(2n + 1).
$$

Using (3.34) in (3.31), we have $R^* = 0$.

Thus we state the following:

Theorem 3.8. Let M be a Kenmotsu manifold admitting the Schouten-van Kampen connection. In M, the vanishing of the projective curvature tensor with respect to the Schouten-van Kampen connection leads to the vanishing of the curvature tensor with respect to the Schouten-van Kampen connection.

By making use of (3.4) and (3.6) in (3.30), we get

$$
(3.36) \quad P^*(X,Y)Z = R(X,Y)Z - \frac{1}{2n} \{S(Y,Z)X - S(X,Z)Y\}.
$$
Suppose \((P^\ast(X,Y)).S^\ast(Z,U) = 0\) holds in a Kenmotsu manifold \(M\). Then we have
\[
S^\ast(P^\ast(X,Y)Z, U) + S^\ast(Z, P^\ast(X,Y)U) = 0.
\]
Taking \(X = \xi\) in the equation (3.37), we get
\[
S^\ast(P^\ast(\xi,Y)Z, U) + S^\ast(Z, P^\ast(\xi,Y)U) = 0.
\]
By using (3.36), equation (3.38) turns into
\[
S(Y, Z)\eta(U) + S(Y, U)\eta(Z) = 0.
\]
In view of the equation (3.6), (3.39) becomes
\[
S(Y, Z)\eta(U) + S(Y, U)\eta(Z) + 2n\{g(Y, Z)\eta(U) + g(Y, U)\eta(Z)\} = 0.
\]
In (3.40), taking \(U = \xi\) and contracting with respect to \(Y\) and \(Z\), we get
\[
S(Y, Z) = -2ng(Y, Z).
\]
and
\[
r = -2n(2n + 1).
\]
Again, by substituting (3.42) in (3.30), we obtain
\[
P^\ast(X,Y)Z = R(X,Y)Z + \{g(Y,Z)X - g(X,Z)Y\}.
\]
Thus we can state that

Theorem 3.9. In a Kenmotsu manifold \(M\) admitting the Schouten-van Kampen connection, \(P^\ast.S^\ast = 0\) if and only if \(S(Y, Z) = -2ng(Y, Z)\).
Further, if \(P^\ast = 0\) then \(M\) is isomorphic to the hyperbolic space \(H^{2n+1}(-1)\).

The conharmonic curvature tensor [5] \(K^\ast\) with respect to the Schouten-van Kampen connection \(\nabla^\ast\) is defined by
\[
K^\ast(X,Y)Z = R^\ast(X,Y)Z - \frac{1}{2n-1}\{S^\ast(Y,Z)X - S^\ast(X,Z)Y\}
\]
If the conharmonic curvature tensor \(K^\ast\) with respect to the Schouten-van Kampen connection \(\nabla^\ast\) vanishes, then from (3.44), we have
\[
R^\ast(X,Y)Z = \frac{1}{2n-1}\{S^\ast(Y,Z)X - S^\ast(X,Z)Y\}
\]
and
\[
g(Y,Z)Q^\ast X - g(X,Z)Q^\ast Y\}.
\]
By using (3.4), (3.6) and (3.7) in (3.45), we get

\[g(R(X, Y)Z, W) + g(Y, Z)g(X, W) - g(X, Z)g(Y, W) \]
\[= \frac{1}{2n - 1}[S(Y, Z) + 4ng(Y, Z)]g(X, W) \]
\[- [S(X, Z) + 4ng(X, Z)]g(Y, W) \]
\[+ S(X, W)g(Y, Z) - S(Y, W)g(X, Z). \] (3.46)

Taking \(W = \xi \) in (3.46), we obtain

\[S(Y, Z)\eta(X) - S(X, Z)\eta(Y) - 2n\{g(X, Z)\eta(Y) - g(Y, Z)\eta(X)\} = 0. \] (3.47)

Taking \(X = \xi \) in (3.47), we get

\[S(Y, Z) = -2ng(Y, Z). \] (3.48)

Contracting the equation (3.48), we get

\[r = -2n(2n + 1). \] (3.49)

Using (3.48) in (3.45), we have \(R^* = 0 \).

Thus we state the following:

Theorem 3.10. Let \(M \) be a Kenmotsu manifold admitting the Schouten-van Kampen connection. In \(M \), the vanishing of the conharmonic curvature tensor with respect to the Schouten-van Kampen connection leads to the vanishing of the curvature tensor with respect to the Schouten-van Kampen connection.

4. **Ricci solitons in Kenmotsu manifold admitting Schouten-van Kampen connection**

Suppose the Kenmotsu manifold \(M \) admits a Ricci soliton with respect to the Schouten-van Kampen connection \(\nabla^* \). Then

\[(L^* V)g(X, Y) + 2S^*(X, Y) + 2\lambda g(X, Y) = 0. \] (4.1)

If the potential vector field \(V \) is the structure vector field \(\xi \), then since \(\xi \) is a parallel vector field with respect to the Schouten-van Kampen connection (from (3.3)), the first term in the equation (4.1) becomes zero, hence \(M \) reduces to an Einstein manifold. In this case, the results in Theorem (3.6) and (3.9) hold.

If \(V \) is pointwise collinear with the structure vector field \(\xi \), i.e. \(V = b\xi \), where \(b \) is a function on \(M \), then the equation (1.1) implies that

\[bg(\nabla^*_X \xi, Y) + (Xb)\eta(Y) + bg(X, \nabla^*_Y \xi) + (Yb)\eta(X) + \]
\[2S^*(X, Y) + 2\lambda g(X, Y) = 0. \] (4.2)
Using (3.3) and (3.6) in (4.2), it follows that

\[(Xb)\eta(Y) + (Yb)\eta(X) + 2S(X, Y) + 2\{2n + \lambda\}g(X, Y) = 0.\]

(4.3)

By setting \(Y = \xi\) in (4.3) and using (2.7), we obtain

\[(Xb) = -\{2\lambda + \xi b\}\eta(X).\]

(4.4)

Again replacing \(X\) by \(\xi\) in (4.4), we get

\[(\xi b) = -\lambda.\]

(4.5)

Substituting this in (4.4), we have

\[(Xb) = -\lambda\eta(X).\]

(4.6)

By applying \(d\) on (4.6), we get

\[\lambda d\eta = 0.\]

(4.7)

Since \(d\eta \neq 0\) from (4.7), we have

\[\lambda = 0.\]

(4.8)

Substituting (4.8) in (4.6), we conclude that \(b\) is a constant. Hence it is verified from (4.3) that

\[S(X, Y) = -(2n + \lambda)g(X, Y) + \lambda\eta(X)\eta(Y).\]

(4.9)

This leads to the following:

Theorem 4.1. If a Kenmotsu manifold with respect to the Schouten-van Kampen connection admits a Ricci soliton \((g, V, \lambda)\) with \(V\) pointwise collinear with \(\xi\), then the manifold is an \(\eta\)-Einstein manifold and the Ricci soliton is steady.

Acknowledgements The authors are grateful to the referees for their valuable suggestions towards the improvement of the paper.

REFERENCES

Nagaraja Gangadharappa Halammanavar
Department of Mathematics
Bangalore University
Jnana Bharathi Campus
Bengaluru - 560 056
INDIA
hgnraj@yahoo.com

Kiran Kumar Lakshmana Devasandra
Department of Mathematics
Bangalore University
Jnana Bharathi Campus
Bengaluru - 560 056
INDIA
kirankumar250791@gmail.com