
A note on ÃLukasiewicz’s three-valued logic

Pierluigi Minari

It is well known that ÃLukasiewicz’s three-valued-logic ÃL3 ad-
mits – unlike classical logic – the definition of two non trivial,
truth-functional modal operators � and �. We address the
question of finding a convenient syntactic characterization of
the “modal content” of ÃL3. To this aim, we consider Wajs-
berg’s axiomatization of ÃL3 (the calculus W) and prove its
equivalence with a modal calculus W� which, essentially, in-
cludes: the BCK+double negation schemas, the characteristic
modal schemas of S5 (K,T,4,B), full contraction for boxed
formulas and the “partial collapse” schema α → (α → �α).
As applications, we obtain a simple and natural completeness
proof à la Lindenbaum for W, as well as a considerable simpli-
fication of Wajsberg’s original, ingenious completeness proof.
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Introduction

According to Jan ÃLukasiewicz, both the original motivations and
the philosophical significance of the many-valued systems of propo-
sitional logic he started to develop around 1920 were to be found in
two strictly intertwined issues. On the one side, the “spiritual war”
against what he considered to be the subtlest form of determinism,
namely logical determinism as originated from the bivalence princi-
ple of classical Aristotelian – Crisippean logic (see ÃLukasiewicz 1918
and 1922). On the other side, the aim to provide an adequate logical
foundation to modal propositions and, more generally, to the very
notions of possibility and necessity. Where by an ‘adequate’ founda-
tion he meant not only one which was capable to give a systematic
account of the modal principles traditionally recognized as valid,
but also one in full accordance with the basic tenets of the exten-
sional approach to logic. This second point has to be stressed: the
widespread, natural association of – as we would now say – modal
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notions and intensional logic was explicitly rejected by ÃLukasiewicz
from the very beginning (see ÃLukasiewicz 1931), and this rejection
was defended and even reinforced in ÃLukasiewicz 1953: the modal
operators ¤ and ♦ have to be truth-functional unary connectives,
and the extensionality principle should be possibly accepted also for
modal contexts.

Without discussing this peculiar and – to us – hardly tenable
position, we just observe that, on its basis, ÃLukasiewicz’s claim con-
cerning the modal adequacy of his three-valued system ÃL3 (a claim
minutely defended in ÃLukasiewicz 1931) appears to be an almost
immediate consequence. In fact, unlike classical bivalent logic, ÃL3

is able to define two non-trivial, truth-functional operators ¤ and ♦
(namely: ¤α := ¬(α → ¬α), ♦α := ¬α → α; this fact was observed
by Tarski already in 1921) and to validate, among the “modal prin-
ciples” emerging from the logic tradition, those which ÃLukasiewicz
considered to be the most significant ones:

(i) the “modal square” of oppositions;
(ii) “Ab oportere ad esse valet consequentia”, and its dual

“Ab esse ad posse valet consequentia”;
(iii) “Unumquodque, quando est, oportet esse”;
(iv) “For some p, it is possible that p and it is possible that

not-p”.

In ÃLukasiewicz 1931, he notes that the ÃL3-tautologies ¤α ↔ ¬♦¬α
and ♦α ↔ ¬¤¬α, resp. ¤α → α and α → ♦α perfectly correspond
to (i) and (ii), as well as the (second-order) ÃL3-tautology ∃p (♦p ∧
♦¬p) corresponds to (iv). As for the more questionable (iii), he
skilfully takes advantage of the failure of the contraction law in
ÃL3 and proposes, as a (partially) adequate formal version, the ÃL3-
tautology α → (α → ¤α).

By the way, the counterintuitive tautology ♦α∧♦β → ♦(α∧β)
is not considered at all in the 1931 paper. It will be defended in
the later paper ÃLukasiewicz 1953 where, however, the extensional
many-valued framework within which modal logic is developed is
no more ÃL3, but a four-valued logic (which is not ÃL4 !). Actually,
the 1953 modal system differs from the one underlying ÃL3 under
many respects. In particular, the characteristic axiom schema of S5,
i.e. von Wright’s schema M ′′ (♦¤α → ¤α; see von Wright 1951)
is rejected as questionable from the intuitive point of view (while
it is valid in ÃL3, see Proposition 2.1 here). On the contrary, the
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general extensionality principle (α → β) → ((β → α) → (γ[p/α] →
γ[p/β])) is accepted (while it is not valid in ÃL3, see the remark after
Proposition 1.4, and Proposition 2.8).

The question concerning the adequacy, from a broad logical and
philosophical perspective, of ÃLukasiewicz extensional reconstruction
of modal logic will not be discussed any further in this paper. In-
stead, our aim is first of all to analyze a bit more deeply – and
from a purely formal point of view – the “modal content” of ÃL3,
and to characterize it syntactically within Wajsberg’s axiomatic cal-
culus (see Wajsberg 1931) W for ÃL3 (sections 1 and 2). It turns
out that W is equivalent with an axiomatic modal calculus W�
(with ¬,→ and ¤ as primitives) containing the transitivity, the ex-
change and the weakening axiom schemas (BCK) and the inference
rule of separation for →, the double-negation schemas and, as far
as ¤ is concerned, the characteristic schemas of the classical sys-
tem S5 plus, in addition, a contraction schema for boxed formulas
(¤α → (¤α → β)) → (¤α → β) and the partial collapse schema
α → (α → ¤α). Actually, some of the S5 schemas are redundant,
but it is not difficult to single out an independent axiomatization
(see Lemma 2.5).

In the remaining part of the paper we will show how such a
syntactic characterization (together with other related facts, namely
a modal version of the deduction and the replacement theorems) can
be fruitfully applied to present old completeness results in a new,
perhaps more natural, fashion. In section 3, we will try to make
fully explicit the modal skeleton which we think is hidden behind
Wajsberg’s original and extremely ingenious proof of the (special)
completeness theorem for ÃL3 w.r. to the calculus W. Many years
later a different method of proof, which more generally applies to all
ÃLukasiewicz’s finite-valued logics ÃLm, was proposed by Rosser and
Turquette (Rosser and Turquette 1952; see also Ackermann 1967
and Urquhart 1986). The completeness proof presented in section
4, using a modal form of Lindenbaum’s Lemma, is much in this
spirit.

1. Wajsberg’s axiomatization of ÃL3

Preliminaries. L is the propositional language determined by:
• a countable set V = {p0, p1, . . . } of propositional variables

(atoms);
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• the connectives ¬ (negation) and → (conditional);
• parentheses as auxiliary symbols.

By F we denote the set of all L-formulas, which is defined as usual.
The letters p, q, r . . . vary over V , while α, β, γ . . . vary over F .
The logical constants > and ⊥, as well as the unary connectives
(modalities) ♦ and ¤ , are defined as follows:

• > := (p0 → p0);
• ⊥ := ¬> ;
• ♦α := ¬α → α;
• ¤α := ¬(α → ¬α).

Moreover, for n ≥ 0, we use αn → β as an abbreviation of:
{

β if n = 0,

α → (αk → β) if n = k + 1.

Further notational conventions include:
• V (α) := {p ∈ V | p occurs in α};
• for p ∈ V, Fp := {α | V (α) = {p}};
• β ¹ α := β is a subformula of α;
• lg(α) := the length of α (number of occurrences of ¬ and
→ in α).

Finally, ≡ is used to denote syntactic identity between formulas.

Let us now briefly review the well known semantic characteri-
zation of ÃLukasiewicz’s three–valued logic ÃL3.
A trivalent valuation v for L (v ∈ VAL, in symbols) is a map:

v : V −→ {
0, 1/2, 1

}
.

Each v ∈ VAL is inductively extended to a map (still denoted by v)
from the set F of all formulas into the set

{
0, 1/2, 1

}
of truth-values,

by means of the following clauses:
• v(¬α) = 1− v(α) ,
• v(α → β) = max {1, 1− v(α) + v(β)} .

Note that, for the defined modal operators ¤ and ♦, it holds:

• v(¤α) =

{
1 if v(α) = 1,
0 otherwise.

• v(♦α) =

{
1 if v(α) ≥ 1/2,

0 otherwise.
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Finally, given α ∈ F and M ⊆ F , we set:
(1) α is a ÃL3-tautology (in symbols: |=3 α) iff:

∀v ∈ VAL ( v(α) = 1) .

(2) α is a ÃL3-logical consequence of M (in symbols: M |=3 α)
iff:

∀v ∈ VAL [(∀β ∈ M. v(β) = 1) ⇒ v(α) = 1] .

Wajsberg’s calculus. Wajsberg’s calculus W over L is determined
by the four axiom schemas:

α → (β → α)(W.1)

(α → β) → ((β → γ) → (α → γ))(W.2)

(¬β → ¬α) → (α → β)(W.3)

((α → ¬α) → α) → α(W.4)

and the inference rule:

α → β α

β
(separation).(RS)

As usual, given a (possibly empty) set of formulas M , M ` α
means that α can be derived in W from the assumptions in M (and
so ` α means that α is provable in W). Also, we will write

α a` β

as an abbreviation of: ` α → β and ` β → α.

Fact 1.1 (Validity). For every M ⊆ F and every α, M |=3 α ⇒
M ` α.

As shown by Wajsberg himself (see Wajsberg 1931), the four
axiom schemas of W are independent. As a drawback, there is usu-
ally a lot of tedious work to do in order to prove in W a number of
useful ÃL3-tautologies, like the following ones.

Proposition 1.2. For every α, β, γ :

α a` ¬¬α(L1)

` α → α(L2)

⊥ a` ¬(α → α)(L3)

¬α a` (α → ⊥)(L4)
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` (α → (β → γ)) → (β → (α → γ))(L5)

` (α → (α → ¬α)) → (α → ¬α)(L6)

` ((α → β) → β) → ((β → α) → α)(L7)

for n ≥ 2 : (αn → β) a` (α2 → β).(L8)

Proof. See Wajsberg 1931, or (for a different proof) the Appendix
here. ¤

ÃL3 is a “resource conscious” logic, in so far as the contraction
law

(p → (p → q)) → (p → q)
is not a ÃL3-tautology (assign 1/2 to p and 0 to q, to get a counter-
model). As an immediate consequence, we have that the standard
form of the deduction theorem fails for W. However, by making
essential use of the provable schema L8 of Proposition 1.2 above,
which in fact is a restricted form of contraction, it is clearly possible
to prove a still useful weakened version of the deduction theorem.

Proposition 1.3 (“Weak” deduction theorem). For every M ⊆
F and every α, β ∈ F :

M,α ` β ⇔ M ` α2 → β.(WDT)

Proof. By induction on the length of the derivation D of β from
M ∪ {α} , using W.1,W.2, L2, L5 and L8. ¤
Proposition 1.4 (Replacement rule). For every α, β, γ and ev-
ery p :

α a` β ⇒ γ[p/α] a` γ[p/β].(RE)

Proof. By straightforward induction on γ, using L1, L2, L5 and
W.2. ¤

Of course, due again to the absence of full contraction, the (clas-
sically valid) replacement schema fails in W. For example

0 (> → p) → [(p → >) → (¤> → ¤p)],

for otherwise the invalid formula p → ¤p would be provable.

Remark 1.5. Let G (see Grigolia 1977) be the calculus obtained
from W by replacing the axiom schema W.4 with the two axiom
schemas:

((α → β) → β) → ((β → α) → α)(G.4)
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(α → (α → ¬α)) → (α → ¬α).(G.5)

It is easily seen that G and W are equivalent: G.4 and G.5 are prov-
able in W (L6, resp. L5 of Proposition 1.2 ); conversely, W.4 follows
by applying G.4 to G.5.
Also, recall that {W.1,W.2,W.3,G.4;RS} is an independent axiom-
atization of ÃLukasiewicz’s infinite valued logic ÃL∞.

2. The “modal content” of W

We will now try to make explicit the behavior of the modal-
ities ¤ and ♦ in W, and then to characterize axiomatically the
underlying “modal logic” (for an algebraic characterization of the
{→, ¤}–fragment of ÃL3, see Figallo 1990).

Proposition 2.1. For every α and β :

¤α a` ¬♦¬α , ♦α a` ¬¤¬α(M1)

` α → (α → ¤α) , ` ¬α → (¬α → ¬♦α)(M2)

` α ⇒ ` ¤α , ` ¬α ⇒ ` ¬♦α(M3)

` α → β ⇒ ` ¤α → ¤β , ` α → β ⇒ ` ♦α → ♦β(M4)

` ¤α → α , ` α → ♦α(M5)

` α → ¤♦α , ` ♦¤α → α(M6)

` ¤α → ¤¤α , ` ♦♦α → ♦α(M7)

` ♦α → ¤♦α , ` ♦¤α → ¤α(M8)

` ((¤α)2 → β) → (¤α → β)(M9)

` ((♦α)2 → β) → (♦α → β)(M10)

α → (α → β) a` ¤α → β.(M11)

Proof. See the Appendix. ¤
Proposition 2.2 (“Modal” deduction theorems). For every
M ⊆ F and every formula α and β :

M, α ` β ⇔ M ` ¤α → β.(MDT.1) {
(a) M,4α ` β ⇔ M ` 4α → β

(b) M,¬4α ` β ⇔ M ` ¬4α → β
4 ∈ {¤, ♦}.(MDT.2)

Proof. MDT.1 follows by the weak deduction theorem (WDT) to-
gether with M11 above.
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MDT.2: (a) is an immediate consequence of MDT.1, M7 and M8;
(b) follows from (a) and M1. ¤
Proposition 2.3. For every α and β :

` ¤(α → β) → (¤α → ¤β).(M12)

Proof. Using M5 and the definition of ¤, together with L4, it is
easily seen that

¤(α → β), ¤α, ¬¤β ` ⊥ .

The conclusion follows by applying MDT.2 and L1. ¤

By Propositions 2.1 and 2.3 we now see that:

Fact 2.4. With respect to the defined operators ¤ and ♦, the cal-
culus W :

(1) is closed under the necessitation rule RN (M3), and
(2) proves the characteristic axiom schemas of the classical mo-

dal system S5, namely:

K (M12), T (M5), 4 (M7), B (M6), E (M8),

both w.r. to ¤ and to ♦ (in fact, these operators are inter-
definable as in S5, by M1).

Additionally:
(3) by M9 and M10, full contraction does hold for “boxed” for-

mulas (i.e. formulas of the form ¤α or ♦α);
(4) by M2, W proves α → (α → ¤α), which trivially is a col-

lapse schema in classical modal systems containing T.

Taking advantage of this fact, we obtain an equivalent “modal”
axiomatization of ÃL3 as follows.

Let L� be the propositional language resulting from L by addition
of ¤ as a new primitive unary connective. ♦ is defined as usual
(♦α := ¬¤¬α), and F� denotes the set of all formulas of L�.
Next, let W� be the calculus over L� which is determined by the
axiom schemas:

Group I — BCK + double negation:

α → (β → α)(W�.1)

(α → β) → ((β → γ) → (α → γ))(W�.2)

(α → (β → γ)) → (β → (α → γ))(W�.3)
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α → ¬¬α and ¬¬α → α(W�.4)
Group II — modal schemas:

¤α → α (T)(W�.5)

α → ¤♦α (B)(W�.6)

(¤α → (¤α → β)) → (¤α → β) (boxed contraction)(W�.7)

α → (α → ¤α) (partial collapse).(W�.8)

and the inference rule RS.

First of all, note that:

Lemma 2.5. The four modal schemas W�.5 −W�.8 are indepen-
dent, modulo the Group I schemas.

Proof. W�.8 is obviously independent, since it is not provable in the
classical modal system S5, while W�.5−W�.7 are.
ad W�.5: extend each v ∈ VAL to v : F� −→ {

0, 1/2, 1
}

by adding
to the standard clauses concerning ¬ and → the clause:

v(¤β) = 1 (and so v(♦β) = 0).

It is immediately verified that each formula which is provable from
W� minus W�.5 is a tautology in the new sense, while ¤p → p is
not.
ad W�.6: as above, this time with the clause:

v(¤β) = 0 (and so v(♦β) = 1).

It is easily verified that if α is provable from W� minus W�.6 then
either v(α) = 1 or v(α) = 0 for every v ∈ VAL, while v(p → ¤♦p) =
1/2 for v(p) = 1/2.
ad W�.7: trivial, by reading ¤α as α, for every α. ¤

To prove the equivalence of W and W�, we consider the trans-
lation

τ : F� −→ F
which is defined inductively as follows:

• τ(p) = p ,
• τ commutes with ¬ and → ,
• τ(¤α) = ¬(τ(α) → ¬τ(α)).

Theorem 2.6. W and W� are equivalent, in the following sense:

for every α ∈ F� : `W� α → τ(α) and `W� τ(α) → α;(i)
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for every α ∈ F : `W α ⇔ `W� α.(ii)

Proof. First of all, observe that W� is closed under RN (by W�.8
and separation), and proves the modal schema K. Indeed, using
W�.5 we get

` ¤(α → β) → (¤α → β)(a)

and, by applying W�.8 to (a),

` ¤(α → β) → (¤α → (β → ¤β));(b)

now, combining (a) and (b), we obtain

` (¤(α → β))2 → ((¤α)2 → ¤β)(c)

whence the conclusion follows by W�.7.
Finally, W� proves the modal schemas 4 (use W�.8, RN, K and
W�.7) and E (use, as in classical modal systems, 4,B,K, RN and
transitivity).

(i): it is clearly sufficient to show that, in W�, ¤α a` ¬(α → ¬α).
By the axiom schemas of Group I we have

` α → (α → ¬(α → ¬α));

then, using W�.5,

` ¤α → (¤α → ¬(α → ¬α))

and finally, by W�.7 :

` ¤α → ¬(α → ¬α).

The other direction easily follows by W�.8, exchange and contrapo-
sition.
(ii): in view of (i) and Propositions 2.1 and 2.3, it is sufficient to
show that W.4 is provable in W�.
By the axioms of Group I, we have:

` ¬¤α → ((¬¤α → α) → α),(1)

` α → ((¬¤α → α) → α).(2)

Then, by using RN, K, contraposition and the definition of ♦, we
obtain:

` ¬¤((¬¤α → α) → α) → ♦¤α,(1’)

` ¤α → ¤((¬¤α → α) → α).(2’)
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By (1’), using E, we get:

` ¬¤((¬¤α → α) → α) → ¤α(3)

whence, by transitivity with (2’):

` ¬¤((¬¤α → α) → α) → ¤((¬¤α → α) → α).(4)

But, by (i) above, we have ♦γ a` ¬γ → γ in W�; so

` ♦¤((¬¤α → α) → α)(5)

follows from (4) and then, using B (=W�.6):

` (¬¤α → α) → α.(6)

By (i) and (6) we finally get: ` ((α → ¬α) → α) → α. ¤

We conclude with two propositions – still concerning modalities
– which will be needed in the next sections. Essentially, the first one
shows how the truth-table of → in ÃL3 is reflected in W (recall that,
semantically, ¤α and ♦α correspond to v(α) = 1, resp. v(α) ≥ 1/2,
while ¤¬α and ♦¬α correspond to v(α) = 0, resp. v(α) ≤ 1/2).
The second proposition deals with two particularly useful modal
replacement schemas which hold in W.

Proposition 2.7. For every α and β :

` ¤¬α → ¤(α → β) , ` ♦¬α → ♦(α → β).(M13)

` ¤β → ¤(α → β) , ` ♦β → ♦(α → β).(M14)

` ¤α → (♦¬β → ♦¬(α → β)) ,(M15)

` ♦α → (¤¬β → ♦¬(α → β)).

` ¤α → (¤¬β → ¤¬(α → β)).(M16)

` ♦¬α → (♦β → (♦¬β → ¤(α → β))).(M17)

Proof. See the Appendix. ¤

Proposition 2.8 (“Modal” replacement schemas). For every
α, β, γ ∈ F and every atom p:

` ¤(α → β) → (¤(β → α) → (γ[p/α] → γ[p/β]))(MRE.1)

` ♦¬α → (♦α → (♦¬β → (♦β → (γ[p/α] → γ[p/β])))).(MRE.2)
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Proof. MRE.1: γ[p/α] → γ[p/β] is derivable from {α → β, β → α}
(proof by induction, using L1, L2, L5,W.2), so the conclusion follows
by MDT.1.
As for MRE.2: by MRE.1

` ¤(α → β) → (¤(β → α) → (γ[p/α] → γ[p/β])),

so by M17 we get:

` (♦¬α)2 → [(♦¬β)2 → (♦α → (♦β → (γ[p/α] → γ[p/β])))].

The conclusion now follows by boxed contraction M10. ¤

3. Wajsberg’s completeness proof revisited

Wajsberg’s original proof of the special completeness theorem
for W (i.e: |=3 α ⇒ ` α ) runs by induction on the number of dis-
tinct atoms occurring in α. Although the Author makes no mention
at all of the definable modal operators ¤ and ♦ and their underlying
logic, yet a careful inspection of his proof of both the basis and the
induction step shows that the key lemmas he employs (Theorems
T9, T10, T12, whose laborious and often intricate verification takes
up a considerable part of the paper; see pp. 20–21 of the English
translation in Borkowski 1970), actually concern clear-cut proper-
ties of the modal operators. Indeed, T9 and T12 correspond exactly
to the two forms of the modal replacement schema (MRE.1, resp.
MRE.2) we proved in sect. 2. On the other side, T10 corresponds
to:

Lemma 3.1. The following inference rule (“Wajsberg’s rule”) is
eliminable in W:

¤β → α ¤¬β → α ♦¬β → (♦β → α)
α

(WR)

Proof. Assume:

` ¤β → α(1)

` ¤¬β → α(2)

` ♦¬β → (♦β → α).(3)

Then by RN and K,4,E (i.e. M12, M7, M8) we get:

` ¤β → ¤α(4)

` ¤¬β → ¤α(5)
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` ♦¬β → (♦β → ¤α).(6)

By (4) and (5), using contraposition and M1:

` ♦¬α → ♦¬β(7)

` ♦¬α → ♦β,(8)

and by (6), (7) and (8):

` ♦¬α → (♦¬α → ¤α).(9)

By boxed contraction M10, (9) gives

` ♦¬α → ¤α,(10)

i.e., by M1 and the definition of ♦,

` ♦¤α,(11)

whence ` α finally follows by B, i.e. M6. ¤

Note that WR is a sort of argument by “excluded fourth”.
We shall now reconstruct Wajsberg’s proof from a modal point

of view — quite faithfully, save for a simplification in the proof of
the basis of the induction (Lemmas 3.2 and 3.3).
Let us denote by F∗p the set of all formulas α ∈ Fp containing at
least one subformula β s.t. β a` ¬p.

Lemma 3.2. If α ∈ FprF∗p , then either α a` p, or α a` p → p,
or α a` ¬(p → p).

Proof. Straightforward induction on α. ¤
Lemma 3.3. Let α ∈ Fp , u ∈ VAL, and u(p) = 1/2. If u(α) = 1 then

` ♦p → (♦¬p → α).

Proof. By induction on lg(α). Under the assumptions, there are
two cases two distinguish.
Case 1: α ∈ F∗p . Let then β ¹ α be such that

β a` ¬p , so also |=3 β → ¬p , |=3 ¬p → β.(1)

Then lg(β) > 0 and, for some γ and q, α ≡ γ[q/β]. Consider:

α′ := γ[q/¬p], α′′ := γ[q/p].
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Then lg(α′′) < lg(α) and u(α′′) = 1, since by (1) and the as-
sumptions 1/2 = u(p) = u(¬p) = u(β). Therefore, by the induction
hypothesis:

` ♦p → (♦¬p → α′′).(2)

On the other side, by modal replacement MRE.2:

` (♦p)2 → ((♦¬p)2 → (α′′ → α′)).(3)

Combining (2) and (3) we get

` (♦p)3 → ((♦¬p)3 → α′),(4)

and by modal contraction M10:

` ♦p → (♦¬p → α′).(5)

Since α a` α′ (by (1) and weak replacement RE), by (5) and RE
again we finally get the conclusion.
Case 2: α ∈ Fp r F∗p . Then, by Lemma 3.2 and the assumption
u(α) = 1, necessarily α a` p → p, whence the conclusion immedi-
ately follows by W.1 and replacement. ¤
Lemma 3.4. If α ∈ Fp and β ∈ {α[p/p → p], α[p/¬(p → p)]} , then
either β a` p → p or β a` ¬(p → p).

Proof. By straightforward induction on α, using L1–L4. ¤
Lemma 3.5. For every α ∈ F and p, q ∈ V : if

(i) ` α[p/q → q], (ii) ` α[p/¬(q → q)],

(iii) ` α[q/p], (iv) ` α[q/p → p], (v) ` α[q/¬(p → p)],

then ` α.

Proof. By the modal replacement theorem MRE.1 we have:

` ¤(p → (q → q)) → (¤((q → q) → p) → (α[p/q → q] → α)),(1)

` ¤(p → ¬(q → q)) → (¤(¬(q → q) → p) →(2)

→ (α[p/¬(q → q)] → α)).

Now, by L2, L3, L4, M3, M4, we have:

` ¤(p → (q → q)), ` ¤(¬(q → q) → p),

¤((q → q) → p) a` ¤p , ¤(p → ¬(q → q)) a` ¤¬p ;
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so (1), (2) and the assumptions (i) and (ii) give:

` ¤p → α,(3)

` ¤¬p → α.(4)

Exactly in the same way, from the assumptions (iv) and (v) we get:

` ¤q → α, so also ` ¤q → (♦p → (♦¬p → α)),(5)

` ¤¬q → α, so also ` ¤¬q → (♦p → (♦¬p → α)).(6)

Furthermore, by the modal replacement theorem MRE.2, we have:

` ♦q → (♦¬q → (♦p → (♦¬p → (α[q/p] → α))))(7)

and so by the assumption (iii)

` ♦q → (♦¬q → (♦p → (♦¬p → α))).(8)

By a first application of Wajsberg’s rule WR to (5), (6), (8) we
obtain

` ♦p → (♦¬p → α).(9)

A second application of WR to (3), (4), (9) gives the conclusion
` α. ¤
Theorem 3.6 (Special completeness). For every α :

|=3 α ⇒ ` α.

Proof. Assuming |=3 α, we argue by induction on the number n of
distinct atoms occurring in α.
n = 1 : then α ∈ Fp for some atom p, and by Lemma 3.3 we have:

` ♦p → (♦¬p → α),(1)

while MRE.1 and Lemma 3.4, exactly as in the proof of Lemma 3.5,
give:

` ¤p → α , ` ¤¬p → α.(2)

The conclusion follows by (1), (2) and Wajsberg’s rule WR.
n > 1 : let p and q be distinct atoms occurring in α. Since α is valid,
also its substitution instances

α[p/q → q], α[p/¬(q → q)],

α[q/p], α[q/p → p], α[q/¬(p → p)]
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are valid, and the conclusion immediately follows by the induction
hypothesis and Lemma 3.5. ¤

4. A general completeness theorem for W

As everyone knows, standard proofs of the general complete-
ness theorem for classical propositional logic essentially rely upon
Lindenbaum’s extension lemma, saying that every consistent set of
formulas has a maximal (i.e.: consistent and syntactically complete)
extension. Maximal sets of formulas are in fact into one–one corre-
spondence with bivalent valuations.

As for ÃL3, it turns out quite naturally, on the basis of the results
of sections 1 and 2, that: (i) the sets of formulas being into one–one
correspondence with trivalent valuations are exactly those consistent
sets (3-maximal sets, as we will say) which, for every formula α,
either prove ¤α (α has the value 1), or prove both ♦α and ♦¬α
(α has the value 1/2), or prove ¤¬α (α has the value 0); (ii) for
3-maximality, an analogous of Lindenbaum’s lemma does hold. As
a consequence, we can prove a general completeness theorem for W
( M |=3 α ⇒ M ` α ) much in the same way as for classical logic.

Definition 4.1. Let M be a set of formulas:
(1) M is consistent iff M 0 ⊥ ;
(2) M is 3-maximal iff M is consistent and, for every formula

α, the following condition (MAX3) is satisfied:

either M ` ¤α, or (M ` ♦α and M ` ♦¬α), or M ` ¤¬α.

Lemma 4.2. Let M be a consistent set of formulas. Then:
(i) For every α, either M +¤α is consistent, or M +♦α+♦¬α

is consistent, or M + ¤¬α is consistent.
(ii) The three cases of condition MAX3 are pairwise incompati-

ble.
(iii) If M is 3-maximal then, for every α :

M ` α ⇒ M ` ¤α.

Proof. (i): assume M is consistent and suppose, by absurd, that:

(a) M, ¤α ` ⊥; (b) M, ♦α, ♦¬α ` ⊥; (c) M, ¤¬α `⊥ .

Using MDT.2 and M1, we get:

M ` ♦α → ¤α, by (b);
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M ` ♦α, by (c);

therefore M ` ¤α and, by (a), M ` ⊥. This contradicts the consis-
tency of M .
(ii): assume M is consistent and suppose, by absurd, that two out
of the three cases of MAX3 hold simultaneously:

• if M ` ¤α and M ` ♦¬α then, by M1, M ` ¬¤α, so M `⊥ ;
• if M ` ¤α and M ` ¤¬α then, by M5, M ` α and M ` ¬α,

so M `⊥ ;
• if M ` ♦α and M ` ¤¬α then, by M1, M ` ¬♦α, so also

M `⊥ .

In all cases M is inconsistent, in contrast with the assumption.
(iii): suppose M is 3-maximal, M ` α, and M 0 ¤α. Then, by
MAX3,

either M ` ♦α and M ` ♦¬α , or M ` ¤¬α.

In the first case, by definition of ♦ and M ` ♦¬α, we have M `
α → ¬α and so, by M ` α, M ` ¬α and M ` ⊥ : contradiction.
In the second case, by M5 we have M ` ¬α and so, by M ` α,
M ` ⊥ : contradiction again. ¤

Lemma 4.3. Let M be 3-maximal. For every α and β :
(i) if M ` ¤(α → β), one of the following cases does hold:

(a) M ` ¤β,
(b) M ` ¤¬α,
(c) M ` ♦α and M ` ♦¬α and M ` ♦β and M ` ♦¬β ;

(ii) if M ` ¤¬(α → β), then M ` ¤α and M ` ¤¬β;
(iii) if M ` ♦(α → β) and M ` ♦¬(α → β), one of the following

cases does hold:
(a) M ` ¤α and M ` ♦β and M ` ♦¬β ,
(b) M ` ♦α and M ` ♦¬α and M ` ¤¬β .

Proof. Straightforward verification, using MAX3 and M13–M17 of
Proposition 2.7. ¤

Lemma 4.4 (Extension). Every consistent set of formulas M can
be extended to a 3-maximal set M∗.

Proof. The standard proof of Lindenbaum’s lemma is adapted in the
obvious way, using Lemma 4.2. Namely, having fixed an enumera-
tion {αn}n≥0 of F , we define inductively the infinite chain {Mn}n≥0
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of sets of formulas:




M0 := M

Mk+1 :=





Mk + ¤αk if this set is consistent,
Mk + ♦αk + ♦¬αk if this set is consistent,
Mk + ¤¬αk otherwise.

The definition is correct by (i) and (ii) of Lemma 4.2, and M∗ :=⋃
n≥0 Mn is clearly a 3-maximal extension of M . ¤

Theorem 4.5 (General completeness). For every M ⊆ F and
every formula α:

M |=3 α ⇒ M ` α.

Proof. Suppose M 0 α. Then M +¬¤α is consistent, for otherwise
M ` ¤α by MDT.2 and L1, and then M ` α by M5.
By Lemma 4.4, let M∗ be a 3-maximal extension of M + ¬¤α.
Next, let v∗ ∈ VAL be the valuation induced by M∗ as follows:

v∗(p) :=





1 , if M∗ ` ¤p
1/2 , if M∗ ` ♦p and M∗ ` ♦¬p

0 , if M∗ ` ¤¬p.

(1)

v∗ is well defined and total by (ii) of Lemma 4.2 and 3-maximality
of M∗.
By (1) and Lemma 4.3 it is easily verified, by induction on β, that:

for all β ∈ F : v∗(β) :=





1 , if M∗ ` ¤β
1/2 , if M∗ ` ♦β and M∗ ` ♦¬β

0 , if M∗ ` ¤¬β.

(2)

Since M + ¬¤α ⊆ M∗ and M∗ is 3-maximal, we have:

for every γ ∈ M, v∗(γ) = 1 , by (iii) of Lemma 4.2 and (2);(3)

v∗(α) 6= 1 , by (2) and M∗ 0 ¤α.(4)

We conclude, by (3) and (4), that M 23 α. ¤



ÃLukasiewicz’s three valued logic 181

5. Appendix

Proof of Proposition 1.2. Here are the formal proofs of L1 – L8 in
W (together with the proofs of the auxiliary schemas and eliminable
inference rules A1 – A6).

[A1] ` ¬α → (α → β)

1 ¬α → (¬β → ¬α) W.1

2 (¬β → ¬α) → (α → β) W.3
3 A1 W.2 : 1, 2

[L1←] ` ¬¬α → α

1 ¬¬α → (¬α → ¬(α → ¬α)) A1

2 (¬α → ¬(α → ¬α)) → ((α → ¬α) → α) W.3

3 ¬¬α → ((α → ¬α) → α) W.2 : 1, 2

4 ((α → ¬α) → α) → α W.4
5 L1 ← W.2 : 3, 4

[L1→] ` α → ¬¬α

1 ` ¬¬¬α → ¬α L1 ←
2 L1 → W.3 : 1

[L2] ` α → α

1 α → ¬¬α L1
2 ¬¬α → α L1
3 L2 W.2 : 1, 2

[A2] ` (> → α) → α

1 > → ((α → ¬α) → >) W.1
2 > L2

3 (α → ¬α) → > RS : 1, 2

4 (> → α) → ((α → ¬α) → α) W.2 : 3

5 ((α → ¬α) → α) → α W.4
6 A2 W.2 : 4, 5
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[A3] ` α → ((α → β) → β)

1 (> → α) → ((α → β) → (> → β)) W.2

2 α → (> → α) W.1

3 α → ((α → β) → (> → β)) W.2 : 1, 2

4 ((α → β) → (> → β)) → [((> → β) → β) →
→ ((α → β) → β)] W.2

5 α → [((> → β) → β) → ((α → β) → β)] W.2 : 3, 4

6 > → ((> → β) → β) A2,W.1

7 [((> → β) → β) → ((α → β) → β)] →
→ (> → ((α → β) → β)) W.2 : 6

8 α → (> → ((α → β) → β)) W.2 : 5, 7

9 (> → ((α → β) → β)) → ((α → β) → β) A2
10 A3 W.2 : 8, 9

[L5] ` (α → (β → γ)) → (β → (α → γ))

1 (α → (β → γ)) → [((β → γ) → γ) → (α → γ)] W.2

2 β → ((β → γ) → γ) A3

3 [((β → γ) → γ) → (α → γ)] → (β → (α → γ)) W.2 : 2
4 L5 W.2 : 1, 3

Note: in the following, the abbreviation ‘ LL : . . . ’ means: provable
from lines . . . by using (a combination of) RS, W.1−W.3, L1, L2,
L5, A1–A3.

[L3] ⊥a` ¬(α → α)

1 (α → α) → > W.1,L2

2 > → (α → α) W.1,L2

3 ¬(α → α) →⊥ LL : 2

4 ⊥→ ¬(α → α) LL : 1
5 L3 3, 4

[L4] ¬α a` (α →⊥)

1 ¬α → (α → ⊥) A1
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2 (> → ¬α) → ¬α A2

3 (α → ⊥) → (¬⊥ → ¬α) LL
4 > → ¬⊥ L1

5 (α →⊥) → (> → ¬α) LL : 3, 4

6 (α →⊥) → ¬α W.2 : 2, 5
7 L4 1, 6

[L6] ` (α → (α → ¬α)) → (α → ¬α)

1 (((α → ¬α) → α) → α) → [(α → (α → ¬α)) →
→ (((α → ¬α) → α) → (α → ¬α))] W2

2 (α → (α → ¬α)) →
→ (((α → ¬α) → α) → (α → ¬α)) W.4, 1

3 ¬α → ¬¬(α → ¬α) LL

4 ¬(α → ¬α) → α W.3 : 3

5 ((α → ¬α) → ¬(α → ¬α)) → ((α → ¬α) → α) LL : 4

6 (α → (α → ¬α)) →
→ (((α → ¬α) → ¬(α → ¬α)) → (α → ¬α)) LL : 2, 5

7 [((α → ¬α) → ¬(α → ¬α)) →
→ (α → ¬α)] → (α → ¬α) W.4

8 L6 W.2 : 6, 7

[A4]
` α → β ` (α → ¬α) → β

` β

1 α → β `
2 (α → ¬α) → β `
3 (β → ¬α) → (α → ¬α) W.2 : 1

4 (β → ¬α) → β W.2 : 2, 3

5 (β → ¬β) → ((¬β → ¬α) → (β → ¬α)) W.2
6 ¬β → ¬α LL : 1

7 (β → ¬β) → (β → ¬α) LL : 5, 6

8 (β → ¬β) → β W.2 : 4, 7

9 ((β → ¬β) → β) → β W.4
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10 β RS : 8, 9

[A5]
` α → γ ` β → γ

` ((α → β) → β) → γ

1 ((α → β) → β) → (¬β → ¬(α → β)) LL

2 ¬(α → β) → α LL
3 α → γ `
4 ¬(α → β) → γ W.2 : 2, 3

5 ((α → β) → β) → (¬β → α) LL : 1, 2

6 (¬β → α) → ((α → ¬α) → (α → β)) LL

7 (α → β) → [((α → β) → ¬(α → β)) → ¬(α → β)] A3

8 (¬β → α) → [(α → ¬α) →
→ (((α → β) → ¬(α → β)) → ¬(α → β))] LL : 6, 7

9 (¬β → α) → [(α → ¬α) →
→ (((α → β) → ¬(α → β)) → γ)] LL : 4, 8

10 ((α → β) → β) → [(α → ¬α) →
→ (((α → β) → ¬(α → β)) → γ)] W.2 : 5, 9

11 ((α → β) → ¬(α → β)) →
→ [(α → ¬α) → (((α → β) → β) → γ))] LL : 10

12 β → γ `
13 (α → β) → [((α → β) → β) → β] A3

14 (α → β) → [((α → β) → β) → γ] LL : 12, 13

15 (α → β) → [(α → ¬α) →
→ (((α → β) → β) → γ)] LL : 14

16 (α → ¬α) → (((α → β) → β) → γ) A4 : 11, 15

17 γ → (((α → β) → β) → γ) W.1

18 α → (((α → β) → β) → γ) W.2 : 3, 17

19 ((α → β) → β) → γ A4 : 16, 18

[L7] ` ((α → β) → β) → ((β → α) → α)

1 α → ((β → α) → α) W.1

2 β → ((β → α) → α) A3
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3 L7 A5 : 1, 2

[A6] ` (α → (α → (α → β))) → (α → (α → β))

1 ¬α → (α → β) L1

2 (α → ¬α) → (α → (α → β)) LL : 1

3 ((α → (α → β)) → α) → ((α → ¬α) → α) W.2 : 2

4 ((α → ¬α) → α) → α W.4

5 ((α → (α → β)) → α) → α W.2 : 3, 4
6 A6 L7 : 5

[L8]: for n ≥ 2: (αn → β) a` (α2 → β)

1 (αn → β) → (α2 → β) A6, LL

2 (α2 → β) → (αn → β) LL
3 L8 1, 2

¤
Proof of Proposition 2.1. The proofs of M1 – M5 are straight-
forward, by LL and the definitions of ¤ and ♦.
[M6] (a) ` α → ¤♦α (b) ` ♦¤α → α

1 α → ♦α M5
2 ¬♦α → ¬α LL : 1

3 (♦α → ¬♦α) → (♦α → ¬α) LL : 2

4 ((¬α → α) → ¬α) → ¬α W4, LL

5 (♦α → ¬α) → ¬α Def. : 4

6 (♦α → ¬♦α) → ¬α W.2 : 3, 5

7 α → ¬(♦α → ¬♦α) LL : 6

8 M6 (a) Def. : 7

[M7] (a) ` ¤α → ¤¤α (b) ` ♦♦α → ♦α

1 (α → (α → ¬α)) → (α → ¬α) L6

2 (α → (α → (α → ¬α))) → (α → (α → ¬α)) L8

3 (α → (α → (α → ¬α))) → (α → ¬α) W.2 : 1, 2

4 (α → (¬(α → ¬α) → ¬α)) → ¬¬(α → ¬α) LL : 3
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5 (α → (¤α → ¬α)) → ¬¤α Def. : 4

6 (¤α → ¬¬(α → ¬α)) → ¬¤α LL : 5

7 (¤α → ¬¤α) → ¬¤α Def. : 6

8 ¤α → ¬(¤α → ¬¤α) LL : 7

9 M7 (a) Def. : 8

[M8] (a) ` ♦α → ¤♦α (b) ` ♦¤α → ¤α

1 ♦♦α → ♦α M7
2 ¤♦♦α → ¤♦α M4 : 1
3 ♦α → ¤♦♦α M6

4 M8 (a) W.2 : 2, 3

[M9] (¤α → (¤α → β)) → (¤α → β)

1 (¤α → (¤α → β)) → (¤α → (¬β → ¬¤α)) LL

2 (¤α → (¤α → β)) → (¬β → (¤α → ¬¤α)) LL : 1

3 (¤α → (¤α → β)) → (¬β → ¬¤¤α) Def. : 2

4 (¤α → (¤α → β)) → (¤¤α → β) LL : 3
5 ¤α → ¤¤α M7
6 M9 LL : 4, 5

[M10] (♦α → (♦α → β)) → (♦α → β)

1 (♦α → (♦α → β)) → (♦α → (¬β → ¬♦α)) LL

2 (♦α → (♦α → β)) → (¬β → (♦α → ¬♦α)) LL : 1

3 (♦α → (♦α → β)) → (¬β → ¬¤♦α) Def. : 2

4 (♦α → (♦α → β)) → (¤♦α → β) LL : 3
5 ♦α → ¤♦α M8
6 M10 LL : 4, 5

[M11] (α → (α → β)) a` (¤α → β)

1 (α → β) → (¤α → β) LL, M5

2 (¤α → (α → β)) → (¤α → (¤α → β)) LL : 1

3 (α → (α → β)) → (¤α → (α → β)) LL, M5

4 (α → (α → β)) → (¤α → (¤α → β)) W.2 : 2, 3
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5 (¤α → (¤α → β)) → (¤α → β) M9

6 (α → (α → β)) → (¤α → β) W.2 : 4, 5

7 (α → ¤α) → ((¤α → β) → (α → β)) W.2

8 (α → (α → ¤α)) → (α → ((¤α → β) → (α → β))) LL : 7

9 α → (α → ¤α) M2

10 α → ((¤α → β) → (α → β)) RS : 8, 9

11 (¤α → β) → (α → (α → β)) LL : 10
12 M11 5, 11

¤
Proof of Proposition 2.7. The proofs of M13, M14 and M16 are
immediate, by using M4, M12 and LL. Note that we may now use
MDT.1 and MDT.2 (Proposition 2.2).

[M15] (a) ` ¤α → (♦¬β → ♦¬(α → β))

1 ¤(α → β) ass.
2 ¤α ass.
3 ♦¬β ass.
4 ¤β M12 : 1, 2
5 ¬♦¬β M1 : 4
6 ⊥ L1 : 3, 5

7 M15 (a) MDT.2, M1

[M15] (b) ` ♦α → (¤¬β → ♦¬(α → β)): analogously.

[M17] ` ♦¬α → (♦β → (♦¬β → ¤(α → β)))

1 ♦¬(α → β) ass.

2 (α → β) → ¬(α → β) Def., LL : 1

3 ¬(α → β) → ¬β LL

4 (α → β) → ¬β W.2 : 2, 3
5 ♦β ass.

6 (α → β) → β Def.,W.2 : 4, 5

7 (β → α) → α L7 : 6

8 ¬β → (β → α) L1
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9 ¬β → α W.2 : 7, 8
10 ♦¬β ass.
11 β → α Def.,W.2 : 9, 10
12 α RS : 7, 11
13 ♦¬α ass.
14 ¬α Def., RS : 12, 13
15 ⊥ LL : 12, 14

16 ♦¬α → (♦β → (♦¬β → (♦¬(α → β) →⊥))) MDT.2
17 M17 LL, M1 : 16

¤
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