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ABSTRACT: Cordierite bonded porous SiC ceramics having pore fractions (ε) between 0.33 and 0.72 and pore sizes of 6−50
μm, flexural strength of 5−54 MPa, and elastic modulus of 6−42 GPa were prepared by oxide bonding at 1350 °C in air
compacts of SiC, Al2O3 and MgO powders with petroleum coke (PC) as the sacrificial pore former. To test the applicability of
the porous ceramics in the fluid flow field, air permeation behavior was studied with fluid superficial velocity from 0.083 to 0.90
m s−1 and at 26−750 °C. The Darcian, k1, and the non-Darcian, k2, permeability coefficients were evaluated by fitting
Forchheimer’s equation to the experimental results. The temperature dependence of the permeability coefficients was explained
from structural changes occurring during test conditions. The collection efficiency of filter ceramics (ε = 0.62−0.68) operating on
removal of nanosized aerosol particles with sizes varying from 7 to 300 nm was determined by counting particles before and after
filtration at a fluid superficial velocity of 0.1 m s−1. Experimental results showed variation of collection efficiency from 96.7 to
99.9%. The size-selective fractional collection efficiency at different porosity levels was derived by using the well-known single-
collector efficiency model considering some boundary conditions, and the model data were validated with experimental results.
The test results were used for examination of the applicability of the filter ceramics in nanoparticle filtration processes.

I. INTRODUCTION

Porous SiC ceramics are promising filtering media for the
control of particulate matter (PM) emissions from off-gas
streams in many important industrial processes, such as coal/
biomass combustion and gasification for power generation,
thermal remediation of contaminated soils, incineration of
biomedical and industrial wastes, metal smelting, and
manufacturing of cement, carbon black, and glass, etc.1−11

The long-term needs of the power generation systems have
driven the development of high-temperature particle filtration
technology using ceramic filters, but the focus is now shifted
more and more to the chemical and process industry. SiC
ceramics have low bulk density, excellent mechanical and
chemical stability, high thermal conductivity, and thermal shock
resistance, and they can also withstand high temperatures and
hostile atmospheres. Processing routes are found to retain or
create porosity without sacrificing these special properties.
Oxide bonding is one of the major techniques used for
synthesis of porous SiC ceramics. This technique is simple and
inexpensive because it does not require any sophisticated
equipment and delicate instrumentation. SiC ceramics can be
processed by the oxide bonding technique at low temperatures
(1300−1550 °C) under an ambient atmosphere using
commercial-grade raw powders. Clay, silica, and mullite are
often used as oxide bonds for SiC.12−17 Cordierite (2MgO·
2Al2O3·5SiO2) is also considered another important bond as it
has a low thermal expansion coefficient and good thermal and
chemical stability and can be processed at a low temperature
(1350 °C).18

Studies on permeation behavior of porous ceramics are
important as the results can be used to determine the optimum
flow conditions and characteristic features of filtering media to
ensure that the cost of fan shaft power (operational cost) and
filtering media (capital cost) is kept to a minimum for effective
off-gas cleaning. The face velocity and the pressure drop with
which ceramic filters typically operate vary in the ranges of 1−5
cm s−1 and 100−8000 Pa, respectively, depending on the
particle collection efficiency and the characteristic features
(porosity, pore size, thickness, and structure type, e.g., granular,
fibrous, and cellular, etc.) of the filtering medium.2,11,19,20 For
high flow rate exhaust gases that often occur in many industrial
processes, optimization of filter structure causes the operational
pressure drop to decrease and the face velocity to increase
without any change in the overall collection efficiency, implying
useful savings of power and space for filter installation and
operation.
The impact on air quality of hot gas cleaning technologies is

also an important issue that needs to be considered during
development of ceramic filters. The collection efficiency of a
filter depends on the PM emission limit and the PM
concentration of a hot aerosol stream. For stringent environ-
mental control, acceptable limits of airborne particles finer than
10 μm (PM 10) and 2.5 μm (PM 2.5) are regulated. With the
rapid development of new technologies, new processes, and
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new products based on nanoparticles, the knowledge on how
these materials severely affect human health and life also grows
very fast and serious considerations are being given on issues of
bringing the emissions of ultrafine particlesparticles finer
than 0.1 μm (PM 0.1)from industrial processes under
stringent regulatory control.21 The researchers, thus, now
consider the size of airborne particles an important ultimate
parameter of processing and optimization of industrial filters.
Ceramic filters must have the ability to capture ultrafine dusts,
meet the stringent PM emission standards, and perform in a
way similar to high-efficiency particulate air (HEPA) filters or
ultralow penetration air (ULPA) filters that exhibit size-
selective performance in workplace and clean room applica-
tions.
In this context, the present study is performed as a part of an

Indian−Brazilian research project that aims to develop high-
performance SiC ceramic filters for removal of fine and ultrafine
particulate matter from hot gas streams in industrial
applications. The focus of this paper is on performance
evaluation of cordierite bonded SiC filters processed by the
oxide bonding technique. The influences of structural
parameters (porosity and pore size) on mechanical and
permeability characteristics were evaluated and discussed.
Experimental data of nanoaerosol filtration by the porous
ceramics were acquired and compared to the existing models in
order to determine the best parameters for the optimized filter
compositions.

II. EXPERIMENTAL PROCEDURE
(1). Sample Preparation. Powders of SiC (α-SiC; purity,

98.20% (w/w); d50 = 22.5 μm; Grindwell Norton Ltd.,
Mumbai, India), Al2O3 (α-Al2O3; purity > 98% (w/w); d50 =
6.5 μm; Indian Aluminum Co. Ltd., Bangalore, India), MgO
(purity > 97% (w/w); d50 = 4.5 μm; Mark Specialties India Pvt.
Ltd., Mumbai, India), and petroleum coke (ash content, 0.68%
(w/w); d50 = 11.4 μm; Assam Carbon Products Ltd., Assam,
India) as the pore former were taken in such a way that the
weight ratio (R) of Al2O3 to MgO was 2.53, the ratio (y) of
combined weight of Al2O3 and MgO to a total weight of Al2O3,
MgO, and SiC was 0.20, and the volume fraction (x) of the
pore former varied from 0.23 to 0.76. The powders were wet
mixed in a suitable liquid medium, dried, and pressed in the
form of bars (47 × 20 × 13 mm3) and discs (40 mm diameter
× 10 mm thickness). Well-dried bars and discs were fired at
1100 °C in air for 4 h in an electrically heated furnace (Model
No.-TE-3499-2, Therelek Engineers (P) Ltd., Bangalore, India)
for burning of the pore former and subsequently sintered at
1350 °C for 4 h to produce the cordierite bonded porous SiC
ceramic samples.
(2). Sample Characterization. Apparent porosity of the

sintered samples was measured by water immersion method.
Identification of product phases was made by X-ray
diffractometry technique (XRD, PW 1710, Philips, Eindhoven,
The Netherlands, with Cu Kα radiation of the wavelength of
1.5406 Å). Microstructural examination was done by scanning
electron microscopy (SEM, Model SE-440, Leo-Cambridge,
Cambridge, U.K.). The average pore size and the pore size
distribution were evaluated by Hg-intrusion porosimetry
(Poremaster, Quantachrome Instruments Inc., Boynton
Beach, Florida, USA). Room-temperature flexural strength
was determined in the three-point mode (sample dimension, 45
× 4.7 × 3.5 mm3; span, 40 mm; loading rate, 0.5 mm min−1) in
an Instron Universal Testing Machine (Model 1123, Instron

Corp., Norwood, MA, USA). Young’s modulus was determined
from the slope of the load-deflection curves using standard
software (Instron Bluehill-2, Bucks, U.K.).
Permeability to air flow was evaluated from room temper-

ature to around 750 °C using a laboratory-made air permeator
described elsewhere.22−25 Permeability coefficients of the
samples (discs of 40 mm diameter and 10 mm thickness)
were determined by the Forchheimer’s equation applicable for
the compressible flow of fluids through flat membranes:26−29
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where Pi and Po are, respectively, the absolute air pressures at
the entrance and exit of the sample, vs is the outlet superficial
air velocity, i.e., volumetric air flow rate at the sample exit (Q)
divided by the cross-sectional area normal to the flow (A), L is
the sample thickness, μ and ρ are respectively the viscosity and
the density of the permeating fluid (air), and k1 and k2 are,
respectively, the Darcian and non-Darcian permeability
coefficients, in reference to Darcy’s law. The parameters k1
and k2 are introduced to account for the viscous and inertial
effects on the flow systems. They incorporate only the
structural features of the porous medium and therefore are
considered constant even if the fluid or the flow conditions
change.
A dimensionless parameter, known as Forchheimer’s

number, is defined by the expression:
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The percentage contributions of viscous and inertial losses
on total pressure drop of a ceramic filter can thus be estimated
by27
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The permeability coefficients k1 and k2 were obtained by
polynomial fitting of Forchheimer’s equation (eq 1) to vs and
ΔP experimental data. The density and the viscosity of air at a
temperature To and pressure Po (atmospheric pressure at the
laboratory location (95.46 kPa)) at the exit stream were
determined following the procedure described in ref 27.
The filtration behavior of the porous ceramics was examined

by conducting the dust collection efficiency test at room
temperature using NaCl nanoparticles (standard particles used
for airborne dust filtration tests) of density 2165 kg m−3 and
size ranging from 7 to 300 nm. The details of the experimental
setup and the procedure of the test were described elsewhere.22

The filtration velocity was fixed at 0.10 m s−1, and the average
inlet dust concentration was 1700 μg m−3. The fractional
collection efficiency (Efrac) at any particle size (i) was
determined from the ratio of the difference of the particle
concentration at the inlet (Cinlet,i) and the outlet (Coutlet,i) to the
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particle concentration at the inlet. The overall particle
collection efficiency (Eoverall) was computed by

=
−

E
C C

Coverall
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inlet (6)

where Cinlet and Coutlet, the total concentrations of particles (μg
m−3) at the inlet and outlet of the filter, respectively, are
obtained by
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III. RESULTS AND DISCUSSION
(1). Structural and Physical Characterization. Sintered

samples exhibited neither surface cracks nor distortion of shape.
Negligible changes (<1%) of major dimensions were noticed.
The recorded variation of apparent porosity (ε) was from 30.1
± 1.2 to 71.7 ± 2.6%. XRD analysis detected α-SiC, cordierite,
and cristobalite as the main crystalline phases present in the
sintered samples. The presence of a negligible quantity of Al2O3
was also detected. In the starting mixtures the amounts of
Al2O3 and MgO were such that stoichiometric formation of
cordierite was possible. During sintering, SiC oxidized,
oxidation derived SiO2 reacted with Al2O3 and MgO forming
cordierite, and the residual SiO2 finally converted to
cristobalite.18

Results of XRD analysis indicated that the cordierite
formation reaction was nearly complete. Microstructure
examination of the sintered samples indicated formation of an
open-cell pore morphology. A typical micrograph of a sintered
sample is shown in Figure 1. SiC particles were seen to be
bonded at the contacting regions. Energy dispersive X-ray
(EDX) analysis of the bond phase showed that it contained Mg,
Al, Si, and O atoms, indicating formation of an oxide bond with
an average Mg:Al atom ratio (1:2), the same as that of the
cordierite. The Si:O atom ratio was different from that of
cordierite, likely because of the presence of silica in the bond

phase. SiC particles were seen to be coated with a vitreous
layer. At around 1350 °C formation of cordierite is accelerated
due to crystallization of this phase directly from a liquid
phase.30 The SiC particles are likely to be coated with the
liquid.
The porous SiC ceramics studied in the present work also

behaved mechanically like cellular solids. The flexural strength
of the porous ceramics varied within a range of 5.0 ± 0.8 to
53.7 ± 1.3 MPa, showing a trend for decreasing strength with
increasing porosity (Figure 2). A similar trend was also

observed for elastic modulus (varied over the range of 6.2 ± 1.8
to 42.1 ± 6.8 GPa; Figure 2). These behaviors can be explained
by the minimum solid area (MSA) based model that predicts
an exponential relationship between porosity and mechanical
property (strength (σ) or elastic modulus (E)) in cellular
solids:31,32

σ σ= ε−eo
b

(9)

= ε− ′E E e b
o (10)

where σ and E are the flexural strength and elastic modulus of
the material at a porosity level of ε and σο and Eo are the
flexural strength and elastic modulus data of completely dense
material; b and b′ are constants that depend on the shape and
stacking of the pores. The mechanical property and porosity
data were well-fitted to eqs 11 and 12 (Figure 2), and the values
of σο, b, Eo, and b′ obtained from the fitting equations were 269
MPa, 5.1, 287 GPa, 6.6, respectively. The values of these
constants obtained in the present work were in the ranges of
the reported values.13−15,33,34 The value of b can be 6 and 9 for
cubic and rhombic stacking of pores.35 The use of the rule of
mixture further indicates that the stacking was predominantly
cubic for the porous SiC ceramics investigated in the present
work.
The average pore size (dpore) increased from 5.6 to 49.5 μm,

and the experimental dpore and ε data were fitted to an
exponential relation with a fairly good fitting quality (Figure 3).
A porous medium bears a typical relation between dpore and ε
that depends on the very nature of the porous medium. For
fibrous SiC ceramics synthesized by pressure-pulsed chemical
vapor infiltration of carbonized cellulose powder performs,
Ohzawa et al. observed that pore size varied with porosity in a
nonlinear fashion.36 Sepulveda et al. obtained a logarithmic

Figure 1. SEM image of cordierite bonded porous SiC ceramics
synthesized from a powder compact having x = 0.48, y = 0.20, and R =
2.53.

Figure 2. Flexural strength and elastic modulus of cordierite bonded
porous SiC ceramics as a function of apparent porosity.
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relationship between pore size and relative density (ρr) for
highly porous hydroxyapatite synthesized by gel-casting of
foams.37 Since ρr = 1 − ε, the relation indicates that pore size
changes with porosity in a logarithmic or exponential
mannera trend that was also obtained in the present work.
(2). Fluid Dynamic Characterization. The SiC samples of

different porosities were tested for permeation initially with air
flow under ambient conditions (To ≈ 29 °C, Po ≈ 95.06 kPa; ρ
= 1.1 kg m−3; μ = 1.88 × 10−5 Pa s). Experimental data and the
respective model fitting curves are presented in Figure 4. The
air velocity ranged from 0.083 to 0.67 m s−1. The parabolic
relationship between the pressure drop parameter (Pi

2 − Po
2)/

2PoL and superficial velocity (vs) was confirmed through the
high-quality fitting of Forchheimer’s equation for compressible
fluids (correlation coefficient R2 > 0.999).
The permeability coefficients k1 and k2 were evaluated from

the curves fitted to Forchheimer’s equation in Figure 4. The
data are presented in a comprehensive map proposed by
Innocentini et al.26,27 that classifies porous media according to

the type and application (Figure 5). Permeability of SiC porous
samples was mostly located in the range for granular filters (k1

≈ 10−13−10−15 m2), corroborating literature data on ceramic
filters.19,27,38 A remarkable increase in permeability was
achieved with the increase of porosity, and samples with ε >
47.5% were included in the typical range for hot aerosol filters
as described in the literature.19 The map is also useful for
revealing an unequivocal relationship linking k1 and k2,
regardless of the type of material. In cases in which only k1 is
available, k2 can be fairly estimated by the expression:

= −
⎛
⎝⎜

⎞
⎠⎟k

k
exp

1.71588
2

1
0.08093

(11)

Permeability coefficients k1 and k2 are also usually related to
porosity and to a characteristic length (deq) of the filter
structure through Ergun-like equations, given by27,39

Figure 3. Dependence between average pore size and apparent
porosity of SiC samples.

Figure 4. Permeation curves obtained with airflow at room temperature for samples of different porosities.

Figure 5. Classification of permeability data of cordierite based SiC
filters tested in this work. (Adapted from Innocentini et al.26,27)
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For filters in which the solid matrix is continuous and the
constitutive particles/grains/fibers are not individually recog-
nizable, the average pore or cell size (dpore) is considered as the
characteristic length deq; on the other hand, if the filter is made
of packed columns of loose multisided particles/grains/fibers,
the characteristic length is customarily selected by the Sauter
mean diameter (dvs) of the particle/grain/fiber size distribu-
tion.25 If the constitutive particles of the filter are spherical,
then a simple relationship between dvs and dpore can be
derived:27

ε
ε

= −
d d1.5
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vs pore (14)

In this case, eqs 12 and 13 can be rewritten as
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2
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Equations 12 and 15 defining the Darcian coefficient k1 have
been tested and validated for a variety of unconsolidated porous
media and also for several systems of partially sintered porous
ceramics on the condition that the size distribution of ceramic
raw materials is representative in the consolidated product.
However, if the experimental data and studies in the literature
are considered, one definite conclusion that can be drawn is
that while Ergun equations work fine for k1, they are not
reliable for k2 over a wide range of pore size or particle size,
indicating that the Ergun approach does not fit the relationship
between k1 and k2 well to the permeability map shown in Figure
5. This point is well-documented in the literature, as many

empirical equations have been suggested to predict k2 based on
the knowledge of k1 obtained from Ergun equation (eqs 12 or
15).40−43 One viable approach proposed in this work for
estimation of k2 from porosity and pore/particle size is based
on the relationship between k1 and k2 derived from a large
experimental data set, as shown in the permeability map of
Figure 5, and is represented by eq 11. Substitution of Ergun
equations for k1eqs 12 and 15in eq 11 thus gives

ε
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To check the applicability of this approach, the experimental
ε and dpore data of SiC filters were used in eq 18 to estimate k2,
and the results were plotted in Figure 6, together with the
values of k2 predicted by Ergun eq 16 using the same ε and dpore
data. The y = x line indicates the hypothetical agreement
between predicted and experimental values obtained from the
airflow tests. Plots in Figure 6 confirm that (i) as expected,
Ergun eq 12 predicted very well the Darcian permeability k1 for
the sintered SiC filters of average pore size in the micrometric
scale (from 5.6 to 45.5 μm) and a wide ranging porosity from
30.1 to 71.7%; (ii) Ergun eq 13 overestimated the non-Darcian
coefficient k2, and the deviation increased progressively with a
decrease in k1, also confirming the trends reported in the
literature;41 (iii) the proposed equation derived on the basis of
the permeability map (eq 18) displayed a satisfactory and
consistent predictability of k2 in the entire range of
experimental data.
Calculations based on experimental permeability coefficients

k1 and k2 of samples of different porosities confirm that even for
a relatively high face velocity of vs = 0.1 m s−1, the contributions
of viscous effects and inertial effects to the total pressure drop
shown by filter samples for air flow at 101.3 kPa and 30 °C are

Figure 6. Comparison of theoretical prediction by Ergun-like equations and eq 18 of the present work and experimentally measured data of k1 and k2
(where, for example, 1E-11 represents 1 × 10−11).
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97 and 3%, respectively. This proves that regardless of the
porosity level, the airflow through porous SiC samples under
typical ambient aerosol filtration conditions follows reasonably
Darcy’s law.
The influence of gas temperature on the permeation behavior

of cordierite based SiC filters was investigated using samples of
porosity at six different levels. Figure 7 illustrates typical

permeation curves for a sample of ε = 41.6% (airflow test was
done with face velocity ranging from 0.083 to ∼0.90 m s−1 and
at three temperatures). The results showed that the resistance
to fluid flow increased with temperature, as reported by other
authors.25,44,45 The other samples tested under the same
conditions also showed similar trends. The results also
confirmed that the experimental data fitted to Forchheimer’s
equation (eq 1) exceptionally well.
The variations of permeability coefficients k1 and k2 with

temperature for different samples are shown in Figure 8, which
indicates a slight increase of k1 and a decrease of k2 with an
increase of temperature from 30 to 750 °C. Similar qualitative
trends were observed by Innocentini et al. for refractory

castables,23 by Barg et al. for freeze casting foams,45 and by
Biasetto et al. for porous lanthanum carbide discs.25

The permeation behavior of SiC filter samples (Figure 7) was
thus affected not only by the changes of properties of air
(increase of 131% in μ and decrease of 70% in ρ, for an increase
of temperature from 30 to 750 °C) but also by the variation of
permeability coefficients (average increase of 71% in k1 and
average decrease of 94% in k2). All of these factors account for
the change of pressure drop by the temperature. The situation
can be better analyzed by the data generated on the basis of
simulation of airflow through the SiC samples at vs = 0.05 m s−1

and temperature at two levels (30 and 750 °C; Table 1). Equal
sample thickness (L = 0.01 m) was considered. There are three
aspects of the data presented in Table 1: (i) with temperature
remaining the same, an increase in ε caused a clear reduction in
filter pressure drop (ΔP); (ii) with porosity remaining constant,
an increase in temperature caused the pressure drop to
increase; (iii) the contribution of inertial effect on pressure
drop was very small for all samples at 30 °C (<1.2%), and it was
further reduced at 750 °C (<0.2%). Thus if it is considered that
clean or virgin filtering elements are used at 300−1500 °C with
vs = 0.05 m s−1 and they show pressure drop values in the range
of 1000−5000 Pa,1 several conclusions can be drawn on the
basis of the data shown in Table 1: (i) SiC samples of porosity
>55% are the good candidates to be used as hot aerosol filters,
as they exhibited pressure drop values comparable to those of
commercial products; (ii) the increase of viscosity with
temperature was the main factor responsible for the rising
pressure drop levels of SiC filters; and (iii) at increasing airflow
temperatures, tendencies of the pressure drop curves are to
obey Darcy’s law.46

(3). Dust Filtration Behavior. The mechanisms by which
particles are arrested by filter media are well-documented in the
published literature. The expressions were derived in the
literature on the basis of semiempirical correlations, considering
the process of filtration to be time-independenta condition
valid for the first stage of a filtration process when no dust cake
is present in the filter. In the present work, the fractional
collection efficiency of a filter in the first filtration stages was
calculated using the single-collector efficiency model derived for
granular filters:47−49

ε η
= − −

−⎡
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aKL
d

1 exp
(1 )
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where L, ε, and dc represent respectively the filter thickness,
filter porosity, and the average collector diameter (represented
here as the average Sauter diameter of the raw SiC powder used
to prepare the filter sample, dvs); a is the fitting constant (in this
work a is considered to be unity); and K is given by Yoshida
and Tien as49
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According to the model, the total collection efficiency of a
single collector (ηT) is the combination of the individual
contributions due to different collection mechanisms,diffusion
(ηD), inertia (ηI), direct interception (ηDI), gravity (ηG), and
electrophoresis (ηE). The single collector combined efficiency
(ηT) is given by

Figure 7. Typical permeation curves obtained for airflow in three
temperature levels. Data presented are for a sample with porosity of
41.6%.

Figure 8. Influence of airflow temperature on permeability coefficients
of cordierite bonded SiC samples of different porosity (where, for
example, 1E-3 represents 1 × 10−3).
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η η η η η η= − − − − − −1 (1 )(1 )(1 )(1 )(1 )T D DI I G E
(21)

The diffusional collection arises from the random movement
of suspended small particles in a gasknown as Brownian
diffusionand the single-collector diffusional efficiency is given
by47

η ε= − −A N4(1 ) PeD
2/3

S
1/3 2/3

(22)

where the Happel’s parameter (AS) is given by
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The Peclet number (NPe) and the diffusion coefficient (D)
are given by

=N
v d
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B S
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where dpi is the nanoparticle dust size, kB is the Boltzmann
constant, T is the absolute temperature, μ is the air
viscosity,and FS is the slip correction factor which is given by
Allen and Raabe as50
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where λ is the mean free path of air. The single-collector inertia
efficiency is given by51

η = N N0.2589 StI ,eff R (27)

The interception parameter (NR) and the effective Stokes’
number (NSt,eff) are
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The Reynolds number (NRe) and the Stokes’ number (NSt)
are given by
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The expression for estimation of the collection efficiency due
to direct interception is given by52

η ε= − N6.3DI
2.4

R
2

(32)

The collection efficiency due to gravitational effects is given
by52,53

η = × −
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2 t

s

0.5

(33)

where the terminal settling velocity (vt) of the dust particle is
obtained within the Stokes free-fall regime (NRe <1) and g is the
acceleration due to gravity.
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18t
p pi

2

(34)

The single-collector electrophoretic efficiency (ηE) was not
considered in the present case as the NaCl dust particles were
neutralized (by Kyrpton-85 Neutralizer) before they entered
the filter.
Figure 9 presents the typical contribution of each mechanism

to the total single-collector efficiency (ηT) in the size range of

Table 1. Pressure Drop Parameters Estimated by the Forchheimer’s Equation for Airflow with vs = 0.05 m s−1 through Samples
of Different Porosities at Two Temperature Levels (30 and 750 °C)

To = 30 °C To = 750 °C

ε (%) ΔP (Pa)a ΔPviscous (%)b ΔPinertial (%)c ΔP (Pa)a ΔPviscous (%)b ΔPinertial (%)c ΔPincrease: 30−750 °C (%)

30.2 55911 98.8 1.2 98901 99.8 0.2 76.9
41.6 14750 98.8 1.2 24677 99.8 0.2 67.3
47.9 5740 99.0 1.0 10146 99.9 0.1 76.8
55.0 2963 98.9 1.1 5628 99.9 0.1 89.9
62.5 1144 98.6 1.4 2145 99.8 0.2 87.5
66.6 741 99.6 0.4 1430 100.0 0.0 93.0
66.7 343 99.1 0.9 673 99.9 0.1 96.2

aCalculated by eq 1 using k1 and k2 from Figure 8, μ and ρ are as found in ref 27, and L = 0.01 m. bCalculated by eqs 2 and 4. cCalculated by eqs 2
and 5.

Figure 9. Contributions of different dust collection mechanisms to the
single-collector efficiency for a filter with porosity of 68.42% (where,
for example, 1E-3 represents 1 × 10−3).
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dust particles from 7 to 300 nm for the filter sample with
porosity of 68.4%. Similar trends were also noticed for the
other filter samples of different porosity.
The fractional filter efficiency (Efrac) was estimated as a

function of dust particle size (dpi) at different porosity levels by
the sets of eqs 19−34 and using experimental conditions (mean
free path of air at room temperature and atmospheric pressure:
λ = 7.56 × 10−8 m; viscosity of air, μ = 1.86 × 10−5 kg m−1 s−1;
density of air, ρ = 1.08 kg m−3; and face velocity of aerosol, vs =
0.1 m s−1). Figure 10 shows the plots correlating fractional
efficiency with dust particle size.

At each porosity level the theoretical efficiencies also show a
decreasing trend for larger particles up to 300 nm. A
comparison between the modeling (theoretical) and exper-
imental curves shows satisfactory agreement between the
proposed correlation of fractional collection efficiency with
particle size and the experimental results. The small differences
that still exist between the modeling (theoretical) and the
experimental curves may be due to the fact that calculations of
fractional collection efficiencies are done on the basis of
granular filter medium whereas the experiments were done
using filters made of sintered porous ceramics. Figure 9 also
reveals that the diffusional mechanism plays the most dominant
role on the capture of nanoparticles by the filtering media.
Other authors also indicated that Brownian diffusion is the
most dominant dust collection mechanism for the capture of
submicrometer size particles by fibrous filters.54,55 The overall
efficiency was found to decrease with porosity (Figure 10). The
overall efficiency was also estimated using the single-collector
model:

∑=
=

E wE
i

ioverall
7 nm

300 nm

frac
(35)

where Efrac is the fractional efficiency for the ith particle (eq 19)
and wi is the mass fraction:

=w
C

Ci
iinlet,

inlet (36)

The overall filter efficiency was estimated by eq 35. The
accuracy of Eoverall depends on the proper fitting of the single-
collector size in eq 19.
The dust collection efficiency test was conducted for samples

with three levels of porosity (ε = 62.2, 67.1, and 68.4%). Table
2 shows that the model and the experimental overall efficiencies

tally very well if the values of the single-collector size are
selected from a range of 19.6−23.7 μma range of particle
diameter with which the single-collector size agrees very well in
the present study. Figure 11 shows a very good agreement

between the theoretical (model) and experimental Eoverall versus
ε curves. An increase in porosity is likely to cause a deleterious
effect on diffusional mechanism, resulting in the decrease of the
collection efficiency with porosity. Similar observation was also
made by Freitas et al. and Innocentini et al. who showed that an
increase of porosity due to thermal expansion was the reason
behind a decrease of capture efficiency of a filter.56,26 The
authors also reported that in countries such as Brazil the flue
gas cleaning technologies for sugar cane bagasse boilers require
typically an overall efficiency minimum of 97% to meet the
particulate matter emission regulations.26 The overall efficiency
of the investigated porous SiC ceramics thus indicates their
strong application possibility as filters in nanoparticle
separation processes.

IV. CONCLUSION
(1) Cordierite bonded porous SiC ceramics for removal of
airborne nanoparticles was successfully prepared by oxide
bonding of powder compacts of SiC, Al2O3, and MgO at 1350
°C in air. Samples of varied porosity in a range of 30.1−71.7%

Figure 10. Comparison between modeling and experimental curves of
fractional collection efficiency versus particle size at different levels of
porosity of SiC filters.

Table 2. Comparison of the Predicted (Model) and
Experimental Overall Efficiency, Eoverall

overall efficiency,
Efrac (%)

porosity (%) experiment model
fitting value of collector size,

dc = dvs (μm)

68.42 96.7 96.9 23.7
67.13 98.6 98.5 22.0
62.17 99.9 99.9 19.6

Figure 11. Effect of sample porosity on the overall particle collection
efficiency.
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could be synthesized by the variation of petroleum coke pore
former volume fraction from 0.23 to 0.76. Stoichiometric
formation of cordierite was possible by maintaining the Al2O3
to MgO molar ratio of 2:1; the desired amount of silica was
obtained by the oxidation of SiC. SEM/EDX test supported
formation of cordierite in the bond phase bridging the gap
between the contacting SiC particles. Microstructure examina-
tion also indicated formation of interconnected pore structure.
That the porous ceramics behave like true cellular solids is also
confirmed by mechanical property data.
(2) A parabolic relationship between pressure drop/super-

ficial velocity was confirmed through high-quality fitting of
experimental data to the Forchheimer’s equation. Permeability
coefficient values could increase several orders of magnitude
depending on the addition of the sacrificial pore former used to
create porosity in the ceramic material, indicating that it is
possible to tailor this parameter according to the need of a
specific application.
(3) The permeability coefficients of the porous SiC ceramic

samples with porosity greater than ∼48% indicated that the
values are well within the typical range of hot aerosol filters.
(4) The Darcian permeability coefficient, k1, but not the non-

Darcian permeability coefficient, k2, fitted well to the Ergun-like
equations for granular media; Based on the relationship
between the permeability coefficients obtained by fitting a
large number of reported k1 and k2 data in a permeability map,
equations can be proposed for more reliable prediction for k2
compared to the prediction made by the Ergun-like equations:

ε
ε

= − −⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k

d
exp

2.57394(1 )
,

based on particle size

2

0.16186

0.24279
p

0.16186

ε
= −

⎛
⎝⎜

⎞
⎠⎟k

d
exp

2.41044
, based on pore size2 0.08093 0.16186

(5) Permeation curves obtained at high temperatures (up to
∼750 °C) and high superficial velocities (up to 0.90 m s−1)
indicated that resistance to fluid flow increased with temper-
ature mainly because of the increase of the fluid viscosity with
temperature. Preliminary analysis of the permeability data for
air flow at superficial velocities up to 0.05 m s−1 and
temperatures up to ∼750 °C revealed that pressure drop is
mostly governed by viscous effects and Darcy’s law is valid for
the test conditions, suggesting the possibility of application of
porous SiC ceramics as filtering media for typical aerosol
filtration processes.
(6) The filtration of nanoparticles (of sizes from 7 to 300

nm) in the SiC filter ceramics had showed that fractional
particle collection efficiency decreased with increasing particle
size at fixed fluid superficial velocity (0.10 m s−1). The size-
selective fractional collection efficiency of the filter ceramics
could be described very well by the single-collector efficiency
model for granular filters based on classical collection
mechanisms. The comparison of experimental results with the
calculated collector efficiency showed the predominance of
diffusional mechanism in the range studied.
(7) The overall dust collection efficiency measured with the

samples of porosity varying from 62 to 68% showed a
decreasing trend with porosity, likely because of the deleterious
effect of porosity on the diffusional mechanism. The overall
efficiency could also be modeled on the basis of the single-

collector size from a range of 19.6−23.4 μma range of
particle diameter used in the present studyand a very good
agreement between the modeled and experimental overall
collection efficiency−porosity relations was obtained. The
overall efficiency of the investigated SiC samples thus indicates
their strong application possibilities in nanoparticle filtration
processes.
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■ NOMENCLATURE
a fitting constant in eq 19
A filter face area exposed to fluid flow (m2)
AS Happel’s parameter
D diffusion coefficient (m2 s−1)
dc average collector diameter (m)
deq mean spherical particle diameter (m)
dpi dust particle size (m)
dpore average pore size (m)
dvs Sauter mean diameter of the particle/grain/fiber (m)
E Young’s modulus (GPa)
Efrac fractional collection efficiency
Eoverall overall collection efficiency
Fo Forchheimer’s number
FS slip correction factor
G acceleration due to gravity (m s−2)
K dimensionless parameter defined in eq 20
k1 Darcian permeability coefficient (m2)
k2 non-Darcian permeability coefficient (m)
kB Boltzmann constant (m2 kg s−2 K−1)
L sample thickness (m)
MMair average molar mass of dry air (kg mol−1)
NPe Peclet number
NR interception parameter
NRe Reynolds’ number
NSt Stokes’ number
NStef f effective Stokes’ number
P absolute pressure (kg m−1 s−2)
Pi absolute inlet pressure (kg m−1 s−2)
Po absolute outlet pressure (kg m−1 s−2)
Q volumetric flow rate of the fluid (m3 s−1)
R2 correlation coefficient
T absolute temperature (K)
vs fluid velocity (m s−1)
vt terminal setting velocity (m s−1)
Greek Letters
α thermal expansion coefficient
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ε apparent porosity (vol %)
ηD single collector efficiency due to diffusion
ηDI single collector efficiency due to direct interception
ηE single collector efficiency due to electrophoresis
ηG single collector efficiency due to gravity
ηI single collector efficiency due to inertia
ηT total single collector efficiency
λ mean free path of gas molecules (m)
μ fluid viscosity (kg m−1 s−1)
ρ fluid density (kg m−3)
ρp dust particle density (kg m−3)
σ flexural strength (MPa)
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