
Int. J. Comput. Sci. Theor. App., 2016, vol. 5, no. 2., p. 28-34.

Available online at www.orb-academic.org

International Journal of
Computer Science:

Theory and Application
ISSN: 2336-0984

Bisimilarity, Datalog and Negation
Antoun Yaacoub
Lebanese University, Lebanon
Email: antoun.yaacoub@ul.edu.lb

ABSTRACT
We extend the concept of bisimilarity relation between datalog goals from positive datalog programs to stratified
and restricted Datalog programs with negation. The introduction of negation forced us to reconsider the search
space and the semantics in order to guarantee and preserve soundness and completeness results. We address the
problem of deciding whether two given goals are bisimilar with respect to a given program. When the given
programs are stratified or restricted with negation, this problem is decidable.

KEYWORDS
Logic programming — Equivalence of goals — Datalog — Decision problem — Computational complexity —
Deductive database
c© 2016 by Orb Academic Publisher. All rights reserved.

1. Introduction
In [1, 2, 3, 4, 5], a formal framework is given for deciding

the bisimilarity relation between Datalog goals. However, all of
these papers deal with positive programs only. This paper ex-
tends the framework of [1] to interpreters for Datalog programs
with negation, i.e. logic programs allowing negative literals in
clauses bodies.

We restrict our attention to stratified and restricted Datalog
programs, for which a clear semantics is available [6, 7, 8]. One
of the well known problems is the occurrence of floundering
[9, 10]: a nonground negative goal cannot be answered properly.
Thus, goals of the form ← not p(x) are not allowed. Since
the SLDNF-trees do not present enough detail in the treatment
of negative literals, these trees are augmented and show the
construction of subsidiary SLDNF-trees of← G when not G
is selected [11].

The goal of this paper is to suggest the use of equivalence re-
lations between logic programs that take into account the shape
of the SLDNF-trees that these programs give rise to. This idea is
not new: in automata theory, for instance, many variants of the
equivalence relation of bisimilarity have been defined in order
to promote the idea that automata with the same trace-based
semantics should sometimes not be considered as equivalent if
they are not bisimilar [12].

In this paper, we consider Datalog programs with nega-
tion. Furthermore, comparing two given Datalog programs with
negation and taking into account the shape of the SLDNF-trees
they give rise to, necessitates the comparison of infinitely many
SLDNF-trees. Thus, we restrict our study to the comparison
of two given Datalog goals. We will say that, with respect to

a fixed Datalog program P with negation, two given goals are
equivalent when their SLDNF-trees are bisimilar.

In this paper, we investigate the computability of the equiva-
lence problem between Datalog goals. In particular, we examine
the following decision problems:

• given two Datalog goals F,G and a stratified Datalog
program P, determine if the SLDNF-trees of P∪F and
P∪G are bisimilar.

• given two Datalog goals F,G and a restricted Datalog
program with negation P, determine if the SLDNF-trees
of P∪F and P∪G are bisimilar.

In section 2 of this paper, we will present some basic notions
about Datalog programs with negated literals, syntax and seman-
tics. In section 3, we will introduce the concept of bisimulation
between Datalog goals with negated literals. In section 4, we
will address the problem of deciding whether two given goals
are bisimilar with respect to a given stratified Datalog program.
In section 5, we will address the same question as in section 4
by considering here restricted Datalog programs with negation.
These programs allow a specific kind of recursion in the clauses.
Section 6 concludes this paper.

2. Datalog Programs with negated literals
Datalog [13, 14, 15, 16] is a simplified version of Prolog.

A Datalog program consists of a finite set of Horn clauses of
the form A0← A1, · · · ,An, where each Ai is a literal of the form
p(t1, · · · , tk) such that p is a predicate symbol of arity k and the
t1, · · · , tk are terms. A term is either a constant or a variable.

28

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ORB Academic Journals

https://core.ac.uk/display/228424655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A. Yaacoub / International Journal of Computer Science: Theory and Application

The left-hand side of a Datalog-clause is called its head and the
right-hand side is called its body. Any Datalog program must
satisfy the following condition: each variable which occurs in
the head of a clause must also occur in the body of the same
clause. A Datalog program P is said to be stratified if it forbids
recursion inside negation. For example, any program containing
a clause of the form p← q,not p is not stratified. Nor is any
program containing clauses of the form:
p← q,not r
r← s, p

We say that if P contains a clause of the form A←··· , p(· · ·), · · · ,
then predicate p occurs positively in the clause, and if P contains
a clause of the form A← ·· · ,notp(· · ·), · · · then predicate p
occurs negatively in the clause. Note that, a predicate could
occur both positively and negatively, even in the same clause.

not is negation by failure (NBF): not B succeeds when all
attempts to prove B fail after a finite number of resolution steps.

A normal logic program P is stratified when there is a parti-
tion P = P0∪P1∪·· ·∪Pn (Pi and Pj disjoint for all i 6= j) such
that, for every predicate p:

• the definition of p (all clauses with p in the head) is
contained in one of the partitions/strata Pi

and, for each 1≤ i≤ n:

• if a predicate occurs positively in a clause of Pi then its
definition is contained within ∪ j≤iPj

• if a predicate occurs negatively in a clause of Pi then its
definition is contained within ∪ j<iPj

A program P is said to be stratified if there is any such
partition.

Example 2.1. Stratified program
Let P be the following program:
p(X)← q(X),not r(X);
p(X)← q(X),not t(X);
r(X)← s(X),not t(X);
t(a)←;
s(a)←;
s(b)←;
q(a)←;

A possible stratification of P is:
P = {p(X)← q(X),not r(X); p(X)← q(X),not t(X)}∪
{r(X)← s(X),not t(X)}∪
{t(a)←;s(a)←;s(b)←;q(a)←}

Example 2.2. Non-stratified program
Let P be the following program:
p← q,not r;
r← s,not p;
q←;

s←;

This program cannot be stratified since it contains a recursion
through negation.

The dependency graph of a stratified Datalog program P
is the graph (N,E) where N is the set of all predicate symbols
occurring in P and E is the adjacency relation (edges labeled
+/-) defined on N as follows:

• pE+q (p refers + to q) iff P contains a clause of the form
p(· · ·)← ··· ,q(· · ·), · · ·

• pE−q (p refers - to q) iff P contains a clause of the form
p(· · ·)← ··· ,not q(· · ·), · · ·

Let E∗ be the reflexive transitive closure of E.
A logic program P is stratified iff the dependency graph for P
contains no cycles containing a negative edge.
A Datalog program P is said to be restricted iff for all clauses
A0 ← A1, · · · ,An in P and for all 1 ≤ i ≤ n− 1, if A0 is of the
form p(· · ·) and Ai is of the form q(· · ·), then not qE ∗ p

Example 2.3. Dependency Graph of a Stratified program The
dependency graph of the following program is:
p← q,r;
p← not q,s;
q← q,not t;

Example 2.4. Dependency Graph of a non-stratified program
The dependency graph of the following program is:
p← q,r;
q← not p,s;
q← q,not t;
The logic program P is not stratified since the dependency

graph for P contains a cycle containing a negative edge (note
the existence of the negative edge directed from node q to node
p).

The inference rule we rely on in this paper, is the so-
called SLDNF proof procedure. In fact, the computation of
a goal/query G← L1, · · · ,Lm is a series of derivation steps:

29



A. Yaacoub / International Journal of Computer Science: Theory and Application

←G

θ1|←G1

θ2|←G2
...

θn|
←Gn−1
�

The θi are the unifiers (m.g.u.’s) produced by each derivation
step. The answer computed θ is the composition of these unifiers
θ = θ1 · · ·θn.
There are two kinds of derivation steps.

1. Computation rule selects a positive literal Li = B:

θ

∣∣∣∣∣∣∣∣∣∣
L1, · · · ,Li−1,B,Li+1, · · ·Ln

resolve with clause B′←M1, · · · ,Mk where B.θ = B′.θ

← (L1, · · · ,Li−1,M1, · · · ,Mk,Li+1, · · · ,Ln)θ

2. Computation rule selects a negative literal Li = not B:

ι

∣∣∣∣∣∣∣∣∣∣
L1, · · · ,Li−1,not B,Li+1, · · ·Ln

sub-computation: all ways of computing B fail

← (L1, · · · ,Li−1,Li+1, · · · ,Ln)θ

ι is the identity substitution (the NBF sub-computation
does not generate bindings for variables, it only succeeds
or fails. NBF is purely a test.)

The SLDNF-tree of P∪G is a labeled tree satisfying the
above derivation steps.

Example 2.5. SLDNF-tree
Let P be the following program:
p(x)← q(x,y),not p(y),
q(a,b)←,
and let G be the goal← p(a). The next figure shows the SLDNF-
tree for this goal. The success and failure branches are dis-
cussed:

← p(a)

← q(a,y)

← not p(b)

�

← p(b)

← q(b,y)

Since the goal← p(b) fails (its associated tree shows a fail-
ure branch),← not p(b) succeeds and thus← p(a) succeeds.

The computation rule picks out one of the literals of the
current goal (query). The computation rule must be safe: it
must not pick a negative literal containing a variable. This
is necessary for soundness. If the current goal contains only
negative literals with variables then the computation cannot
proceed: it flounders.

The SLDNF proof procedure, which is the most common
way of executing normal logic programs is sound, but not com-
plete (because of the possibility of floundering and of infinite
computation trees) with respect to this semantics.

3. Bisimulation with negated literals
As stated in [1], a bisimulation is a binary relation between

goals such that related goals, even NBF ones, have ”equivalent”
SLD-trees.

Let P be a Datalog program with negated literals. A binary
relation Z between Datalog goals is said to be a P-bisimulation
iff it satisfies the following conditions for all Datalog goals
F1,G1 such that F1Z G1:

• F1 =� iff G1 =� ,

• For each resolvent F2 of F1 and a clause in P, there exists
a resolvent G2 of G1 and a clause in P such that F2Z G2,

• For each resolvent G2 of G1 and a clause in P, there exists
a resolvent F2 of F1 and a clause in P such that F2Z G2.

• For the SLD-tree Φ associated to F1 =← not A1, · · · ,
there exists an SLD-tree Φ′ associated to G1 =←not B1, · · ·
such that A1Z B1.

• For the SLD-tree Φ′ associated to G1 =← not B1, · · · ,
there exists an SLD-tree Φ associated to F1 =←not A1, · · ·
such that B1Z A1.

Note that the main difference between this definition of
bisimulation and the one proposed for datalog programs without
negated literals is the introduction of two supplementary tests.

30



A. Yaacoub / International Journal of Computer Science: Theory and Application

These tests check whether the SLD-trees of the two leftmost
negated atoms (if they exist) in a goal are bisimilar. One can
check easily that the set of all P-bisimulations is closed under
taking arbitrary unions.

Proposition 3.1. There exists a maximal P-bisimulation, namely
the binary relation Z P

max between Datalog goals with negated lit-
erals defined as follows: F1Z

P
maxG1 iff there exists a P-bisimulation

Z such that F1Z G1. Z P
max is an equivalence relation on the

set of all Datalog goals.

Example 3.2. Let P be the following program:

p(a,b)← not q(b,a), p(a,b)← q(a,b),
q(a,b)←, p(b,b)← q(a,b)

and let F =← p(a,y) and G =← p(b,y).

← p(a,y)

← not q(b,a)

�

← q(a,b)

�

← p(b,y)

← q(a,b)

�

with
← q(b,a)

Z is not a P-bisimulation due the presence of an associated
tree for the goal← q(b,a) in the left tree and the absence of an
associated tree for the goal ← q(a,b) in the right tree. Since
F 6Z G, then F 6Z P

max G.

It was shown in [1] that, in the general case, it is undecidable,
given a Prolog program P and Prolog goals F1, G1, to determine
whether F1Z

P
maxG1. Thus, we will restrict our language and

consider stratified and restricted Datalog programs with negation
in order to restore the decidability of our decision problem.

4. Decidability of Bisimulation for Stratified
Datalog Programs with Negation

We now study the computational decidability of the fol-
lowing decision problem: (πstrneg) given an stratified Datalog
program P with negation and Datalog goals F1,G1, determine
whether F1Z

P
maxG1. In this respect, let P be a stratified Datalog

program with negation. In Algorithm 1, bothempty(F1,G1)
is a Boolean function returning true iff F1 = � and G1 = �,
whereas bothfail(F1,G1) is a Boolean function returning
true iff F1 6=�, successor(F1)=/0, G1 6=� and successor(G1)=/0.
Moreover, successor(.) is a function returning the set of all
resolvents of its argument with a clause of P whereas get-element(.)
is a function removing one element from the set of elements
given as input and returning it.

In order to demonstrate the decidability of (πstrneg), we need
to prove the following lemmas for all Datalog goals F1,G1:

begin
if (SLDNF-tree(F1) exists and SLDNF-tree(G1) not
exists)

or
(SLDNF-tree(F1) not exists and SLDNF-tree(G1)

exists)
or
(SLDNF-tree(F1) exists with root A and

SLDNF-tree(G1) exists with root B and
bisim1(A,B) = f alse) then

return f alse
end
else

if bothempty(F1,G1) or both f ail(F1,G1) then
return true

end
else

SF ←− successor(F1)
SG←− successor(G1)
if SF 6= /0 and SG 6= /0 then

SF ′←− SF
while SF ′ 6= /0 do

F2←− get-element(SF ′)
f ound-bisim←− f alse
SG′←− SG
while SG′ 6= /0 and

f ound-bisim = f alse do
G2←− get-element(SG′)
f ound-bisim←− bisim1(F2,G2)

end
if f ound-bisim = f alse then

return f alse
end

end
SG′←− SG
while SG′ 6= /0 do

G2←− get-element(SG′)
f ound-bisim←− f alse
SF ′←− SF
while SF ′ 6= /0 and

f ound-bisim = f alse do
F2←− get-element(SF ′)
f ound-bisim←− bisim1(G2,F2)

end
if f ound-bisim = f alse then

return f alse
end

end
return true

end
else

return f alse
end

end
end

end
Algorithm 1: function bisim1(F1,G1)

31



A. Yaacoub / International Journal of Computer Science: Theory and Application

Lemma 4.1 (Termination). bisim1(F1,G1) terminates.

Lemma 4.2 (Completeness). If F1Z
P

maxG1, then
bisim1(F1,G1) returns true.

Lemma 4.3 (Soundness). If bisim1(F1,G1) returns true,
then F1Z

P
maxG1.

In order to prove the termination, we will introduce two
notions. The first is the level of a goal and the second is a
measure which calculates the maximum number of steps needed
to reach a leaf from some node in a SLDNF-tree.

Let F =← A1, · · · ,An,not B1, · · · ,not Bm, the level of F
is defined as follows:

level(F)=

 max{level(A1), · · · , level(An), level(B1), · · · , level(Bm)}

0 iff
{
∀Ai ∈ F, i = 1, · · · ,n; level(Ai) = 0
∀B j ∈ F, j = 1, · · · ,m; level(b j) = 0

Consider also H1 a Datalog goal with negated atoms. Let:
M(H1) = max{L(D)| D = (H1⇒ ··· ⇒ Hn) a derivation from
H1}
and let:

L(D) =

{
0 if D = (H1)

∑
n−1
i=1 C(Hi,Hi+1) if D = (H1⇒ ··· ⇒ Hn)

where

C(Hi,Hi+1) =

{
1 if Hi =← A, · · ·
M(← A)+1 if Hi =← not A, · · ·

We can prove by induction on the level of goals, that the
M-function is well-defined.

Proof. Let F =← H1, · · · ,Hn be a goal of level zero, then for
every i = 1, · · · ,n, level(Hi) = 0. Thus, each Hi is either a
fact or/and an atom that appears in the body of some clause(s).
Thus, the function C for goals of level 0 is always equal to 1.
Consequently, M(F) = n−1.
Suppose that M(F) is defined for all goals of level ≤ k.
Consider a goal F of level k + 1. Consider also an atom A
(positive or negative) in the goal F of level k+1. Since A is of
level k+1, then A will be resolved into resolvents of level ≤ k.
Thus F of level k+ 1 will be resolved to some goals of level
≤ k.

For the previous example, M(← p(a,y)) = 3, and M(←
p(b,y)) = 2.

Let� be the binary relation on the set of all pairs of Datalog
goals defined by: (F2,G2)� (F1,G1) iff

• M(F2)< M(F1),

• M(G2)< M(G1),

� is a well-founded partial order on the set of all pairs of goals.

Proof of Lemma 1. The proof is done by�-induction on (F1,G1).
Let (F1,G1) be such that for all (F2,G2), if (F2,G2)� (F1,G1)
then bisim1(F2,G2) terminates. Since every recursive call to
bisim1 that is performed along the execution of bisim1(F1,G1)
is done with respect to a pair (F2,G2) of goals such that (F2,G2)�
(F1,G1), then bisim1(F1,G1) terminates.�

Proof of Lemma 2. Let us consider the following property:
(Prop1(F1,G1)) if F1Z

P
maxG1 then bisim1(F1,G1) returns

true. Again, we proceed by�-induction. Suppose (F1,G1) is
such that for all (F2,G2), if (F2,G2)� (F1,G1) then Prop1(F2,G2).
Let us show that Prop1(F1,G1). Suppose F1Z

P
maxG1. Hence, for

all successors F2 of F1, there exists a successor G2 of G1 such
that F2Z

P
maxG2, and conversely. Seeing that the logic program

is stratified, then (F2,G2)� (F1,G1). By induction hypothe-
sis, Prop1(F2,G2). Since F2Z

P
maxG2, then bisim1(F2,G2)

returns true. As a result, one sees that bisim1(F1,G1)
returns true.�

Proof of Lemma 3. It suffices to demonstrate that the binary
relation Z defined as follows between Datalog goals is a bisimu-
lation: F1Z G1 iff bisim1(F1,G1) returns true. Let F1,G1
be Datalog goals such that F1Z G1. Hence, bisim1(F1,G1)
returns true. Thus, obviously, F1 = � iff G1 = �, and the
first condition characterizing bisimulations holds for Z . Now,
suppose that F2 is a resolvent of F1 and a clause in P. Since
bisim1(F1,G1) returns true, then there exists a resolvent
G2 of G1 and a clause in P such that bisim1(F2,G2) re-
turns true, i.e. F2Z G2. As a result, the second condition
characterizing bisimulations holds for Z . The third condition
characterizing bisimulations holds for Z too, as the reader can
quickly check. The same discussion applies for any couple of
associated trees to negated bisimilar goals, verifying thus the
fourth and fifth conditions. Thus Z is a bisimulation. �

As a consequence of lemmas 1 – 3, we have:

Theorem 4.4. Algorithm 1 is a sound and complete deci-
sion procedure for (πstrneg).

It follows that (πstrneg) is decidable.

5. Decidability of Bisimulation for Re-
stricted Datalog Programs with Negation

In this section, we will consider restricted programs with
negation with a restriction that we will not allow any dependen-
cies between the rightmost negative atom (if it is exists) in a
clause and the atom in its head.

We study here the computational decidability of the fol-
lowing decision problem: (πresneg) given a restricted Datalog
program P with negation and Datalog goals F1,G1, determine
whether F1Z

P
maxG1. In this respect, let P be a restricted Datalog

program with negation. In Algorithm 2, bothempty(Fi,Gi)
, bothfail(Fi,Gi) and occur((F1 ⇒ ·· · ⇒ Fi),(G1 ⇒
·· · ⇒ Gi)) are similar to the corresponding functions used in

32



A. Yaacoub / International Journal of Computer Science: Theory and Application

begin
if (SLDNF-tree(F1) exists and SLDNF-tree(G1) not

exists) or (SLDNF-tree(F1) not exists and
SLDNF-tree(G1) exists) or (SLDNF-tree(F1) exists
with root A and SLDNF-tree(G1) exists with root B
and bisim2(A,B) = f alse) then

return f alse
end
else

if bothempty(Fi,Gi) or both f ail(Fi,Gi) or
occur((F1⇒ ·· · ⇒ Fi),(G1⇒ ··· ⇒ Gi)) then

return true
end
else

SF ←− successor(Fi)
SG←− successor(Gi)
if SF 6= /0 and SG 6= /0 then

SF ′←− SF
while SF ′ 6= /0 do

F ′←− get-element(SF ′)
f ound-bisim←− f alse
SG′←− SG
while SG′ 6= /0 and

f ound-bisim = f alse do
G′←− get-element(SG′)
f ound-bisim←− bisim2((F1⇒
·· · ⇒ Fi⇒ F ′),(G1⇒ ·· · ⇒
Gi⇒ G′))

end
if f ound-bisim = f alse then

return f alse
end

end
SG′←− SG
while SG′ 6= /0 do

G′←− get-element(SG′)
f ound-bisim←− f alse
SF ′←− SF
while SF ′ 6= /0 and

f ound-bisim = f alse do
F ′←− get-element(SF ′)
f ound-bisim←− bisim2((G1⇒
·· · ⇒ Gi⇒ G′),(F1⇒ ·· · ⇒
Fi⇒ F ′))

end
if f ound-bisim = f alse then

return f alse
end

end
return true

end
else

return f alse
end

end
end

end
Algorithm 2: function bisim2((F1⇒···⇒Fi),(G1⇒···⇒
Gi))

Algorithm 1. As the reader can see, Algorithm 2 is very
similar to the other algorithms.
In order to demonstrate the decidability of (πresneg), we need to
prove the following lemmas for all Datalog goals F1,G1.

Lemma 5.1 (Termination). bisim2((F1),(G1)) terminates.

Lemma 5.2 (Completeness). If F1Z
P

maxG1, then bisim2((F1),(G1))
returns true.

Lemma 5.3 (Soundness). If bisim2((F1),(G1)) returns
true, then F1Z

P
maxG1.

One can follow the same proofs presented for the positive
case [1] except that we need to prove that for a restricted pro-
gram P with negation and a goal F1, all its derived subgoals in
all the derivations must be bounded.
For this, suppose that the derived subgoals are not bounded and
suppose that F1 =← A.
Consider a derivation D of the form D = (F1⇒ F2⇒ ··· ⇒ Fn).
One can decompose each Fi(i ≥ 2) into the concatenation of
suffixes of body of clauses:
Fi = L1

1, · · · ,L
k1
1 , · · · ,L1

i , · · · ,L
ki
i ,L

1
i+1, · · · ,L

ki+1
i+1 , · · · ,L1

n, · · · ,Lkn
n ,

where 1 ≤ i < n, k1 > 0, · · · ,kn > 0. Note that, for example,
L1

i , · · · ,L
ki
i is a suffix of the body of the clause pi← Qi in the

program P, and that L1
i+1, · · · ,L

ki+1
i+1 is a suffix of the body of the

clause pi+1← Qi+1. Since Fi can be decomposed as described,
then the head atom pi of the clause pi← Qi can be unified with
the atom L0

i+1 which precedes L1
i+1 contained in Qi+1.

Since level(L0
i+1)< level(pi+1) (as pi+1 depends on L0

i+1), thus
level(pi)< level(pi+1). This contradicts the fact that Fi is not
bounded.
As a consequence of lemmas 4 – 6, we have:

Theorem 5.4. Algorithm 4 is a sound and complete deci-
sion procedure for (πresneg).

It follows that (πresneg) is decidable.

6. Conclusion
In this paper, we have introduced the concept of bisimula-

tion between datalog goals with negation: two Datalog goals are
bisimilar with respect to a given program when their SLDNF-
trees are bisimilar. As proved, when the given logic program is
stratified or restricted with negation, the problem of deciding
whether two given goals are bisimilar is decidable. The proof
of decidability of bisimulation problem for restricted logic pro-
gram with negation that we presented in Section 5 is based on
techniques that were developed in [17] for detecting loops in
logic programming.

We have shown the decidability of the bisimilarity relation
between negated Datalog goals. We are currently working to-
ward evaluating the complexity of our algorithms.

Future work can be dedicated also to the study of the adapta-
tion of the flow definitions, presented in [1, 2, 3, 4] for positive
Datalog programs, to Datalog programs with negation. These
flows could also be studied for Datalog programs with negation
equiped with bottom up evaluation techniques.

33



A. Yaacoub / International Journal of Computer Science: Theory and Application

References
[1] BALBIANI, P., AND YAACOUB, A. Deciding the

bisimilarity relation between Datalog goals (regu-
lar paper). In European Conference on Logics in
Artificial Intelligence (JELIA), Toulouse, 26/09/2012-
28/09/2012 (http://www.springerlink.com, septembre
2012), L. Fariñas del Cerro, A. Herzig, and J. Mengin, Eds.,
Springer, pp. 67–79.

[2] YAACOUB, A. Towards an information flow in logic pro-
gramming. International Journal of Computer Science
Issues (IJCSI) 9, 2 , 2012.

[3] YAACOUB, A., AND AWADA, A. Inference Control On
Information Flow In Logic Programming. International
Journal of Computer Science: Theory and Application (IJC-
STA), 2015, Vol. 3, Issue.: 1, p. 13-22.

[4] YAACOUB, A. Flux de l’information en programmation
logique Université Paul Sabatier - Toulouse III, thèse de
doctorat, 2012.

[5] YAACOUB, A. AWADA, A. AND KOBEISSI, H. Infor-
mation Flow in Concurrent Logic Programming. British
Journal of Mathematics & Computer Science, 2015, Vol. 5,
Issue.: 3, p. 367-382

[6] VAN GELDER, A., ROSS, K., AND SCHLIPF, J.S. Un-
founded Sets and Well-Founded Semantics for General
Logic Programs Proceedings of the 7th Symposium on Prin-
ciples of Databases, 1988, pp. 221–230 ACM SIGACT-
SIGMOD

[7] GELFOND, M. AND LIFSCHITZ, V. The Stable Model Se-
mantics for Logic Programming ,in: R. Kowalski, K. Bowen
(Eds.), Proceedings of the 5th International Conference on
Logic ProgrammingMIT Press, Cambridge, MA, 1988, pp.
1070–1080

[8] PRZYMUSINSKI, T.C. On the Declarative Semantics of De-
ductive Databases and Logic Programs ,in: J. Minker (Ed.),
Foundations of Deductive Databases and Logic Program-
mingMorgan Kaufmann, Los Altos, CA, 1987, pp. 193–216

[9] KEMP, D.B. AND TOPOR, R.W. Completeness of a Top-
Down Query Evaluation Procedure for Stratified Databases
,in: R. Kowalski, K. Bowen (Eds.), Proceedings of the 5th
International Conference on Logic ProgrammingMIT Press,
Cambridge, MA, 1988, pp. 178–194

[10] SEKI, H. AND ITOH, H. A Query Evaluation Method for
Stratified Programs under the Extended CWA ,in: R.A.
Kowalski, K.A. Bowen (Eds.), Proceedings of the 5th In-
ternational Conference on Logic ProgrammingMIT Press,
Cambridge, MA, 1988, pp. 195–211

[11] PRZYMUSINSKI, T.C. On the Declarative and Procedural
Semantics of Logic Programs J. Automated Reasoning, 5,
1989, pp. 167–205

[12] Sangiorgi, D.: On the origins of bisimulation and coinduc-
tion. In: ACM Trans. Program. Lang. Syst., pp. 1–41. ACM,
USA, 2009

[13] STEFANO, C., AND GEORG, G., AND LETIZIA, T. What
you always wanted to know about Datalog (and never dared
to ask). Knowledge and Data Engineering, IEEE Transac-
tions, 1989, Vol. 1, Issue.: 1, p. 146–166.

[14] CLARK K.L. Negation as Failure ,in: H. Gallaire, J.
Minker (Eds.), Logic and Data Bases, Plenum, New York,
1978, pp. 293–322

[15] LLOYD, J.W. Foundations of Logic Programming, 2nd
Edition. Springer, 1987.

[16] ULLMAN, J. Principles of Databases and Knowledge base
Systems, Volume I and II. Computer Science Press, 1988.

[17] Bol, R.N., Apt, K.R., Klop, J.W.: An Analysis of Loop
Checking Mechanisms for Logic Programs. In: Theoretical
Computer Science, vol. 86, pp. 35–79, 1991

34


	Introduction
	Datalog Programs with negated literals
	Bisimulation with negated literals
	Decidability of Bisimulation for Stratified Datalog Programs with Negation
	Decidability of Bisimulation for Restricted Datalog Programs with Negation
	Conclusion
	References

