
Evidence Reading Mechanisms∗

Frédéric Koessler† Eduardo Perez-Richet‡

December 5, 2018

Abstract

In an environment with privately informed agents who can produce evidence, we study imple-

mentation of a social choice function by reading mechanisms: mechanisms that simply apply the

social choice function to a consistent interpretation of the evidence. We provide sufficient con-

ditions on the social choice function and the evidence structure for ex post implementability by

such mechanisms. If the first-best policy of a mechanism designer satisfies this condition, then its

implementation by a reading mechanism does not require commitment. We show that with rich

evidence structures, (i) a function that is implementable with transfers is also implementable with

evidence but no transfer, (ii) under private value, the efficient allocation is implementable with

budget balanced and individually rational transfers, and (iii) in single-object auction and bilat-

eral trade environments with interdependent values, the efficient allocation is implementable with

budget balanced and individually rational transfers.

Keywords: Implementation, Mechanism Design, Evidence, Hard Information, Commitment.

JEL classification: C72; D82.

1 Introduction

The usual mechanism design approach assumes cheap talk communication: messages are equally

accessible to all types of agents, regardless of what they know. Under this assumption, a designer who

wants to implement a contingent plan of action must be able to deter all possible lies. In this paper,

following a thin but grounded tradition in the mechanism design literature, we assume that privately

informed agents have access to costless evidence, i.e., to type-dependent sets of messages (e.g., physical

documents certifying endowments, costs, product characteristics, incomes, or health conditions).1 We
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1See, for example, Green and Laffont (1986), Glazer and Rubinstein (2004), Forges and Koessler (2005),

Glazer and Rubinstein (2006), Bull and Watson (2007), Deneckere and Severinov (2008), Sher (2011, 2014),
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provide sufficient conditions for implementability by simple mechanisms and show that they apply to

familiar environments like auctions and bilateral trade. These conditions also allow us to characterize

evidence structures such that a social choice function that can be implemented with transfers can also

be implemented with evidence but no transfer.

We focus on reading mechanisms. Such mechanisms simply apply the contingent plan of action of

the designer (the social choice function) to a reading of the evidence, that is, a consistent interpretation

of each message profile. To justify this approach think of the social choice function as the first-best plan

of action of the designer, which she would implement if she knew the agents’ types. The use of a reading

mechanism ensures that, for all preferences of the designer that are compatible with her first-best, the

actions mandated by the mechanism are optimal given beliefs that are consistent with the evidence

provided by the agents. In particular, if her first-best is implementable by a reading mechanism with

accurate readings on the equilibrium path, then, regardless of her particular preferences, it can be

implemented as a perfect Bayesian equilibrium of the disclosure game in which the designer would

choose her action as mandated by the mechanism after having observed the agents’ reports. Hence,

reading mechanisms are immune against a lack of commitment by the designer. In addition, they are,

by construction, simple and deterministic.

To illustrate the restrictions imposed by reading mechanisms, consider the following simple example

with a single agent with two possible types, t1 and t2, and four alternatives, a0, a
′
0, a1 and a2. The

set of messages available to the agent is {m0,m1} when her type is t1 and {m0,m2} when her type is

t2, so her type is fully certifiable. Still, the agent can decide not to certify any information by sending

the message m0, which provides no evidence. The utilities of the designer (first coordinate) and the

agent (second coordinate) as a function of the alternative chosen by the designer and the type of the

agent are given by the following table:

a0 a′0 a1 a2

t1 0,−2 0, 1 2, 0 1, 2

t2 0, 1 0,−2 1, 2 2, 0

The first-best of the designer (f(t1) = a1, f(t
2) = a2) can be implemented with the following mech-

anism: choose alternative a1 after message m1, choose alternative a2 after message m2, and randomize

Sher and Vohra (2014), Hart, Kremer, and Perry (2017), Strausz (2016). Kartik and Tercieux (2012) con-
sider Nash implementation, whereas Ben-Porath and Lipman (2012) consider sub-game perfect implementation.
Ben-Porath, Dekel, and Lipman (2014) consider costly information verification.
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uniformly between alternatives a0 and a′0 after message m0. This is not a reading mechanism, because

a reading mechanism should “read” the message m0 as coming from either t1 or t2, and then apply

the first-best alternative (i.e., a1 or a2) to this reading. Hence, contrary to the above mechanism, a

reading mechanism is necessarily deterministic and credible for the designer whatever her preference

compatible with her first-best. In this example, the first-best cannot be implemented by a reading

mechanism.

Implementation by an accurate reading mechanism requires two intuitive conditions. First, as it is

the case for any mechanism with evidence, the evidence structure must be sufficiently rich to provide

each informational type of each agent with a message that conveys her information. This message

must be such that no other informational type of the same agent would be both willing to and capable

of using the same message. We call this the evidence base condition. Second, the designer must be

able to deter participants from using other messages than those in the evidence base. Her only lever

to do so is her reading of evidence. Thus, implementation is possible whenever the designer can have

a skeptical and consistent interpretation of each participant’s message. This is the case if the set of

types that could have sent a given message admits a worst case type, that is a type that no other

type for whom the message was available would have been willing to masquerade as. In the previous

example, message m0 has no worst case type, so the social choice function is not implementable by a

reading mechanism.

In this paper, we will assume that the first condition, the evidence base condition, is always satisfied.

Whether this condition is satisfied or not depends on the evidence structure, agents’ preferences, and

on the social choice function that the designer would like to implement. However, it is always satisfied

under the assumption that agents are able to certify their type and in particular if everything is

certifiable. Our focus is to study precisely when the second condition, the existence of a worst case

type, is satisfied.

The literature on evidence, or hard information, starts with the sender-receiver models of Grossman and Hart

(1980), Grossman (1981) and Milgrom (1981). One branch of the ensuing literature has tried to identify

conditions that preclude the full disclosure result of the seminal papers (Milgrom and Roberts, 1986,

Shin, 2003, Wolinsky, 2003, Dziuda, 2011). More importantly for this paper, another branch has sought

to extend the full revelation result to more general settings: Okuno-Fujiwara, Postlewaite, and Suzumura

(1990) consider information disclosure preceding a game, while Seidmann and Winter (1997) and

Giovannoni and Seidmann (2007) consider sender-receiver games à la Crawford and Sobel (1982) and
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introduce the notion of worst case type which we use in this paper. Hagenbach, Koessler, and Perez-Richet

(2014) work with this notion to build a theory that includes and extends former full revelation re-

sults, and develop ideas that play an important role in this paper. Lipman and Seppi (1995) give

full revelation results in a different environment, with symmetrically informed senders and sequential

communication.

The literature on mechanism design with evidence starts with Green and Laffont (1986). In a

principal agent model, they provide a necessary and sufficient condition on the evidence structure

(the nested range condition) for a revelation principle to hold. Singh and Wittman (2001) show how

to implement social choice functions without this condition but with state-independent preferences

in the allocation. Bull and Watson (2007), Deneckere and Severinov (2008) and Strausz (2016) ex-

tend the revelation principle to more general mechanism design setups and message structures, while

Forges and Koessler (2005) develop similar results for communication games.

Glazer and Rubinstein (2004) and Glazer and Rubinstein (2006) consider the role of evidence in

a simple persuasion problem in which an informed sender seeks to persuade an uninformed receiver

to take an action that she only wishes to take in particular circumstances. Glazer and Rubinstein

(2004) considers a mechanism in which the sender first declares her type, and then may be asked

to produce evidence. They develop a linear programming approach that allows them to characterize

an optimal mechanism which is of the claim and verify form, and show how the receiver can benefit

from randomization at the verification stage. Closer to our paper, Glazer and Rubinstein (2006)

assume that the sender directly sends evidence, so a mechanism is a persuasion rule that states which

messages are deemed convincing by the receiver. They show that randomization is not needed, and

provide a procedure to find an optimal persuasion rule. In both papers, the optimal mechanism is

shown to be credible in the sense that the behavior of the sender and the receiver constitutes a perfect

Bayesian equilibrium of an associated disclosure game (see also Sher, 2011, 2014, Hart et al., 2017,

Ben-Porath, Dekel, and Lipman, 2017).

With the exception of Ben-Porath et al., 2017, all the articles mentioned in the paragraph above

assume that agents have state-independent preferences. Under this assumption, implementation with

a reading mechanism is trivial once the evidence base condition is satisfied because the designer can

punish an agent who does not use a message from the evidence base by choosing the least preferred

action of the agent. Our contribution is to significantly relax the assumptions of these articles on

preferences, by providing and applying general conditions for implementation by a reading mechanism.
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However, we put strong requirements on evidence structures to obtain our results.

Ben-Porath et al., 2017 allow for type-dependent preferences, and show that the mechanism de-

signer is equally well off whether or not she can commit, with or without robust incentive compatibility,

and with or without randomization. By contrast with our approach, they do not put any restriction

on the evidence structure and consider optimal mechanism design rather than implementation. They

consider a restricted class of preferences, but in this respect comparison is difficult as their class of

preferences can cover environments that give rise to masquerading cycles, which would be problematic

in our environment, but fails to cover many situations without cycles that our results cover. Finally,

the mechanism itself does not require commitment in our case, whereas they make the more subtle but

weaker claim that there is a perfect Bayesian equilibrium that yields the same payoff to the principal

as the optimal mechanism.

For simplicity, the main text only contains sufficient conditions for ex-post implementation. In

the appendix, we present the analogue of our general results for interim implementation, and we

provide necessary and sufficient conditions for interim and ex-post implementation under additional

constraints.

2 The Model

There is a set N of n agents indexed by i, and a set of alternatives denoted by A. Each agent has

a type ti which encodes her privately observed information. The set of possible realizations of this

random variable is a finite set Ti, and T = T1× · · ·× Tn is the set of type profiles. The utility of agent

i when alternative a is implemented is ui(a; t), where t = (t1, · · · , tn). We say that i has private values

if ui(a; t) is independent of t−i.

The evidence structure is defined by a finite message spaceMi, and a correspondenceMi : Ti ⇒ Mi

for each agent, where Mi(ti) is the set of messages available to agent i of type ti. A subset Si ⊆ Ti is

certified by a message mi if M
−1
i (mi) = Si, where M

−1
i (mi) ≡

{

ti ∈ Ti |mi ∈ Mi(ti)
}

. Si is certifiable

if there exists a message mi that certifies Si, that is, a message which is available to all the types in

Si, and to none other. We say that the evidence structure
(

Mi,Mi

)n

i=1
satisfies own type certifiability

if, for every agent i, and every ti ∈ Ti, the set {ti} is certifiable.

The set of consistent interpretations of a message profile m, which we call the set of readings of

m, is given by R(m) = M−1
1 (m1) × · · · × M−1

n (mn) ⊆ T . A reading of the evidence is a function

5



ρ : M → T such that, for every m, ρ(m) ∈ R(m). It is an interpretation of each possible message

profile as a type profile that is consistent with the evidence.

A social choice function is a mapping f : T → A. We consider only deterministic and static

mechanisms. Since we take the evidence structure as given, a mechanism is then simply given by a

deterministic outcome function g : M → A, which determines the alternative chosen by the designer

following every possible message profile. In the game defined by the mechanism g(·), each agent

chooses a messaging strategy µi : Ti → Mi such that µi(ti) ∈ Mi(ti).

A messaging strategy profile µ(·) is an ex post equilibrium of the game generated by the mecha-

nism g(·) if, for every type profile t, every agent i, and every message mi ∈ Mi(ti), ui
(

g(µ(t)); t
)

≥

ui
(

g(mi, µ−i(t−i)); t
)

. A mechanism g(·) ex post implements the social choice function f(·) if there ex-

ists an ex post equilibrium µ(·) of the game generated by g(·), such that g
(

µ(t)
)

= f(t) for every t ∈ T .

In the remainder of the paper, we will refer to ex post implementation simply as implementation, and

to ex post equilibrium as equilibrium.2

A mechanism g(·) is a reading mechanism if the alternative chosen by the mechanism designer is

always consistent with the messages she receives and the social choice function she wants to implement;

that is, for every message profile m ∈ M, there exists a type profile t ∈ R(m) such that g(m) = f(t).

The outcome function of a reading mechanism is completely pinned down by a reading of the

evidence. Indeed, the outcome function g(·) of a reading mechanism can always be defined as the

action f
(

ρ(m)
)

for some reading ρ(·). In such mechanisms, the designer only decides how to read the

evidence, and that determines the outcome. To each reading corresponds a unique reading mechanism,

but different readings may generate the same mechanism if the social function is not one to one.

We say that a reading mechanism ρ(·) implements f(·) with accurate readings (on the equilibrium

path) if there exists a strategy profile µ(·) that forms an equilibrium of the game induced by ρ(·) and

satisfies ρ(µ(t)) = t, for every t ∈ T .

The payoff for agent i to masquerade as another type si when she is really of type ti, under a social

choice function f(·), is given by the following masquerading payoff function:

vi(si|ti; t−i) = ui
(

f(si, t−i); ti, t−i

)

.

These payoff functions represent the incentives of agents of given types to masquerade as other

2Interim implementation is discussed in the appendix.
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types. These incentives are determined by the social choice function and the preferences of the agents.

For each agent i, and each type profile t−i, they can be summarized by an oriented graph on Ti, such

that a type ti points to a type si if ti has an incentive to masquerade as si. Following Hagenbach et al.

(2014), we call the relation that defines this graph a masquerade relation: we say that ti wants to

masquerade as si given t−i, denoted by ti
M[t−i]
−−−−→ si, if and only if vi(si|ti; t−i) > vi(ti|ti; t−i). For a

generic masquerade relation, we will use the notation −→. Notice that the masquerading relation is not

necessarily transitive.

We can use this relation to define a worst-case type (given t−i) for Si ⊆ Ti as a type in Si that no

other type in Si would like to masquerade as. We denote the set of such types as

wct(Si|t−i) :=
{

si ∈ Si |∄ ti ∈ Si, ti
M[t−i]
−−−−→ si

}

.

Graphically, a worst case type is a type in Si with no incoming arc from any other type in Si. The

set of worst case type may be empty, or have more than one element. A masquerade relation −→ on Ti

admits a cycle (t1i , . . . , t
k
i ) if t

1
i −→ t2i , t

2
i −→ t3i . . . , tki −→ t1i .

Lemma 1 (Acyclicity and Worst Case Types). Let −→ be a masquerade relation on an individual type

set Ti. The following points are equivalent: (i) −→ is acyclic; (ii) Every nonempty subset Si ⊆ Ti

admits a worst case type; (iii) There exists a function w : Ti → R such that ti −→ si ⇒ w(si) > w(ti).

Proof. See Proposition 1 in Hagenbach et al. (2014).

If condition (iii) holds, we say that the masquerade relation is weakly represented by the function

w(·). The representation is weak because we have an implication rather than an equivalence. If it

were an equivalence, the masquerade relation would be a linear ordering of types, as with the utility

representation of rational preferences.

An evidence base for agent i is a set of messages Ei ⊆ Mi such that there exists a one-to-one

function ei : Ti → Ei that satisfies ei(ti) ∈ Mi(ti) and ti ∈
⋂

t−i∈T−i
wct

(

M−1
i

(

ei(ti)
)∣

∣t−i

)

for every

ti. Hence, whether an evidence base is available for an agent is a property of a social choice function

together with the evidence structure and the agent’s preferences. Whenever own type certifiability is

satisfied for an agent, her message correspondence admits an evidence base, regardless of preferences

and the social choice function under consideration.

Example 1 (Evidence Base). As an illustration, consider a single privately informed agent i with
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three possible types, Ti = {t1, t2, t3}, whose masquerade relation is given by t1 −→ t2, t2 −→ t3. The

message correspondence Mi(t
1) = {m1,m3,m4}, Mi(t

2) = {m1,m2,m4}, Mi(t
3) = {m1,m2,m3}

admits two evidence bases: Ei = {m1,m2,m3} and Ei = {m4,m2,m3}. On the contrary, the message

correspondence Mi(t
1) = {m1,m4}, Mi(t

2) = {m1,m2,m3,m4}, Mi(t
3) = {m1,m3} does not admit

any evidence base because type t3 has no message certifying an event for which it is a worst case type.

⋄

In the usual mechanism design formulation, the designer is allowed to design a space of messages

that are accessible for free to all types. We have not done that because if such messages exist, they

can be described in our framework. However, it is interesting to think about the introduction of such

messages as a way to relax the evidence base condition in the characterization results of the next

sections. To see that, suppose that the designer can create a set of additional messages for each agent

that are accessible for free irrespective of types, and let M̂i be the set of such messages for agent i. We

consider the new evidence structure M̃i = Mi ×M̂i in which agent i of type ti can send any message

in Mi(ti)× M̂i. We refer to structures that can be obtained in this way as cheap talk completions of
(

Mi,Mi(·)
)n

i=1
.

Proposition 1. There exists a cheap talk completion of
(

Mi,Mi(·)
)n

i=1
such that agent i has an evi-

dence base if and only if, for every ti, there exists a message mi ∈ Mi such that ti ∈
⋂

t−i
wct

(

M−1
i (mi)|t−i

)

.

Proof. Suppose that there exists a cheap talk completion with an evidence base for agent i. Since all

types of i have access to the messages in M̂i, the fact that ti has a message (mi, m̂i) ∈ M̃i for which

it is a worst case type, implies that it is a worst case type of the set certified by mi ∈ Mi(ti). Suppose

now that every type has a message such that it is a worst case type of the set certified by this message.

Then the only reason why an evidence base may not exist in the initial evidence structure would be

that several types, say two types ti and si, share a unique message mi for which they are worst case

types. But then, allowing ti and si to send message mi together with another cheap talk message, m̂i

for ti, and m̂′
i for si, would mean that, in the new structure obtained by completing with m̂i and m̂′

i,

they each have a different message for which they are a worst case type.

Intuitively, when we allow for such completions, we will have an evidence base for agent i as

long as any type of agent i has access to a piece of evidence that rules out any type si that would

like to masquerade as ti, under some profile t−i. In a framework where masquerading incentives are
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monotonic, as in the seller-buyer model of Milgrom (1981), an agent of a given type (for example

quality), must be able to rule out any lower type. This condition is related to the distinguishability

condition3 in Kartik and Tercieux (2012), and to the incentive compatibility conditions derived in

Deneckere and Severinov (2008).

3 Sufficient Conditions for Implementation

The existence of an evidence base is important for implementation, because it allows the agents to

convey their type with a message that no other type would both want and be able to imitate. For

implementation to be possible, the second important requirement is for the designer to be able to

punish deviators. With reading mechanisms, the designer can only punish a deviator with a consistent

but skeptical reading, that is by attributing, for every realization of t−i, the piece of evidence mi sent

by the deviator to a type ti which is a worst case type among the types that could have sent mi.

These intuitions are formalized in the following theorem. The proof is by construction, and is similar

to the construction of a fully revealing equilibrium in Hagenbach et al. (2014). The evidence base

of an agent provides a natural candidate for her equilibrium strategy, so we construct a mechanism

that reads each message from this evidence base accurately. Then we can complete the reading by

interpreting each message profile comprising a unilateral deviation from equilibrium messages as the

correct type profile for the non deviators, and a worst case type for the deviator. It is easy to see that

such readings make unilateral deviation non profitable.

Theorem 1. There exists a reading mechanism that implements f(·) with accurate readings if the

following conditions hold for every agent i: (i) For every t−i ∈ T−i, and every message mi ∈ Mi, the

set M−1
i (mi) admits a worst case type given t−i; (ii) Mi(·) admits an evidence base.

Proof. We construct an accurate reading as follows. For every i, let ei : Ti → Mi be a one-to-one

mapping associated with an evidence base of agent i. Consider a message profile m such that for every

i 6= j, the message mi is in the range of ei. Then if mj is also in the range of ej , the reading of the

message profile is ρj(mj,m−j) = e−1
j (mj), and ρi(mj,m−j) = e−1

i (mi) for every i 6= j. If on the other

hand, mj is not in the range of ej, then ρi(mj ,m−j) = e−1
i (mi) for every i 6= j, whereas the message

of agent j is interpreted as a type in wct
(

M−1
j (mj)|ρ−j(mj ,m−j)

)

. For any message profile m such

3In their work on Nash implementation, a type must be able to disprove any other type such that the pair would
violate Maskin monotonicity.
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that two or more agents deviate from (ei)i∈N , any

Then the strategy profile e is fully revealing. It is also an (ex-post) equilibrium. Indeed if all agents

but i use this strategy profile, then a message mi of agent i that does not belong to the range of ei

is interpreted as a type in wct
(

M−1
i (mi)|t−i

)

for every t−i. Hence such a deviation does not benefit

to agent i. Another possible deviation would be to send a message in the range of ei that differs from

ei(ti), call it ei(t
′
i), when i’s type is really ti. But then this message is interpreted as t′i regardless of

t−i, and because t′i is a worst case type of ei(t
′
i) given any t−i, agent i does not gain from the deviation

if her true type is ti.

In order to do optimal mechanism design, that is to find the optimal contingent plan for a designer

with given preferences, it is useful to be able to characterize the set of implementable contingent

plans in a tractable manner. The conditions of Theorem 1 are not easy to deal with. Furthermore,

it is easier to work with a condition that involves only the preferences of the agent, rather than the

message structure. We can characterize the set of social choice functions that are implementable under

any message structure that satisfies own type certifiability as being the set of social choice functions

that generate acyclic masquerade relations. Lemma 1 provides an easy condition that is equivalent to

acyclicity. In Hagenbach et al. (2014), we provide several easy to check conditions on masquerading

payoffs that also ensure acyclicity.

Corollary 1. There exists a reading mechanism that implements f(·) with accurate readings under

any message structure that satisfies own type certifiability if for every agent i and every t−i ∈ T−i the

masquerade relation
M[t−i]
−−−−→ is acyclic on Ti.

Proof. Own type certifiability ensures that the evidence base condition is satisfied. Then to implement

f(·) it is sufficient to satisfy the worst case type condition of Theorem 1. By Lemma 1, we know that

it is satisfied for every certifiable subset if and only if the masquerade relation is acyclic.

4 Evidence and Transfers

In this section, we assume that the agents have quasilinear preferences. The preferences of agent i

over alternatives are still represented by the function ui(a; t), which we now interpret as the valuation

of the agent. If agent i is given a transfer τi, her utility is given by ui(a; t) + τi.

In an evidence-free message structure, every mechanism is a reading mechanism. In this case, the
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following incentive compatibility conditions are necessary and sufficient conditions for implementabil-

ity.

Definition 1 (Evidence-Free Incentive Compatibility). A social choice function satisfies ex post in-

centive compatibility if, for every t ∈ T , every agent i and every si ∈ Ti

vi(si|ti, t−i) ≤ vi(ti|ti, t−i). (EFIC)

When using transfers, the mechanism designer can modify the incentives of the agents. We will

therefore consider ex post transfer functions τi : T → R, and the corresponding modified masquerading

payoff Vi(si|ti; t−i) = vi(si|ti; t−i) + τi(si; t−i). We start with a simple example showing that reading

mechanisms can sometimes achieve implementation in situations where transfers cannot.

Example 2 (Evidence 1 – Transfers 0). Consider a setup with one agent of two possible types t and

t′, and an evidence structure that satisfies own type certifiability. The social choice function selects

action a when the type is t, and action a′ when the type is t′. The preferences of the agent are given

by u(a, t) = u(a′, t′) = 0, u(a′, t) = 2, u(a, t′) = −1. Therefore t wants to masquerade as t′, but t′ does

not want to masquerade as t, hence the masquerade relation is acyclic, and the social choice function

is implementable with evidence. It is not implementable with transfers, because any transfer that is

sufficient to discourage t from claiming t′ makes t′ claim to be t. ⋄

In fact, every social choice function that is implementable with transfers can be implemented by

a reading mechanism with accurate readings as long as the evidence base condition is satisfied. The

intuition is simple: the worst case type associated with any subset of types is the type that would

have received the highest transfer. To see that, note that if some other type, with a lower transfer,

could obtain a better outcome by pretending to be this highest transfer type, then this type would be

even more incentivized to claim being the highest transfer type under the transfer scheme because she

would also get a higher transfer. But then, that would contradict the fact that the transfer scheme

implements the social choice function. More precisely, the proof shows that the negative of the transfer

function provides a weak representation of the masquerade relation, and then concludes by Lemma 1.

Theorem 2. If f(·) is implementable with transfers and no evidence, it is also implementable with no

transfers by a reading mechanism with accurate readings under any evidence structure such that each

Mi(·) admits an evidence base. Furthermore, there exist social choice functions that are implementable
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with no transfers by a reading mechanism with accurate readings under any evidence structure such

that each Mi(·) admits an evidence base, but not with transfers and no evidence.

Proof. The social choice function is implementable with transfers and no evidence if and only if there

exists (τi)
n
i=1 such that for every i, every t ∈ T , and every si ∈ Ti, Vi(si|ti; t−i) satisfies (EFIC),

i.e., Vi(si|ti; t−i) = vi(si|ti; t−i) + τi(si; t−i) ≤ Vi(ti|ti; t−i) = vi(ti|ti; t−i) + τi(ti; t−i) or, equivalently,

vi(si|ti; t−i) − vi(ti|ti; t−i) ≤ τi(ti; t−i) − τi(si; t−i). ti wants to masquerade as si given t−i if and

only if vi(si|ti; t−i) − vi(ti|ti; t−i) > 0. From (EFIC), this implies τi(ti; t−i) − τi(si; t−i) > 0, i.e.,

−τi(si; t−i) > −τi(ti; t−i). Hence, −τi(·; t−i) is a weak representation of the masquerade relation of

agent i given t−i, allowing us to conclude by Lemma 1 and Theorem 1. The second part of the theorem

is proved by Example 2.

5 Efficient Mechanism Design with Private Values

In this section, we consider the problem of implementing an efficient social choice function f(t) ∈

argmaxa∈A
∑

i ui
(

a; t
)

and allow the mechanism designer to use both evidence and transfers. Given

a social choice function f(·), an ex-post transfer scheme τi for i = 1, . . . , n is individually rational

if, for every agent i, and every type profile t, Vi(ti|ti; t−i) = vi(ti|ti; t−i) + τi(t) ≥ 0. It is budget

balanced if, for every type profile t,
∑

i τi(t) ≤ 0. It fully extracts surplus if, for every type profile

t,
∑

i τi(t) = −
∑

i vi(ti|ti; t−i). To make it possible to satisfy both individual rationality and budget

balance, we assume that, for every type profile t,
∑

i vi(ti|t) ≥ 0.

Theorem 3. Assume private values and consider an efficient social choice function together with a

transfer scheme such that an evidence base is available for each agent. Then, this social choice function

and transfer scheme can be implemented by a reading mechanism with accurate readings. In particular,

under own-type certifiability, the transfer scheme can be chosen to satisfy individual rationality and

budget balance, and even extract full surplus.

Proof. The proof is related to the classical Vickrey-Clarkes-Groves mechanism. Let hi(t) = τi(t) −
∑

j 6=i uj
(

f(t); tj
)

denote what remains of agent i’s transfer after subtracting her externality on other
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participants. Then i’s incentive to masquerade as si when her type is ti is given by

Vi(si|ti, t−i)− Vi(ti|ti, t−i) = ui
(

f(si, t−i); ti
)

+
∑

j 6=i

uj
(

f(si, t−i); tj
)

+ hi(si, t−i)

− ui
(

f(ti, t−i); ti
)

−
∑

j 6=i

uj
(

f(ti, t−i); tj
)

− hi(ti, t−i) ≤ hi(si, t−i)− hi(ti, t−i),

where the inequality is a consequence of the fact that f(ti, t−i) maximizes the sum
∑

i ui
(

a; ti
)

. But

then hi(·, t−i) is a weak representation of i’s masquerade relation given t−i. Hence, by Lemma 1, every

subset of types of agent i admits a worst case type. We can conclude with Theorem 1.

In a way, this result is almost a corollary of Theorem 2. Since, under private values, an efficient

social choice function can be implemented with transfers by a VCG mechanism, then it can also be

implemented by a reading mechanisms with accurate readings, with evidence and no transfers. The

value added of Theorem 3 is to show that, with evidence, transfers can be chosen to satisfy individual

rationality and budget balance, which is not possible in general with VCG mechanisms.

Since full surplus extraction can be achieved under private values, one might wonder whether,

with evidence, it is ever necessary to pay an information rent in order to achieve efficiency. In the

next section, we show that full surplus extraction can be achieved in single-object auctions with

interdependent valuations, but not in multiple-object auctions. In Section 7 we show that full surplus

extraction can be achieved in bilateral trade environments with interdependent valuations.

6 Auctions

In this section, we explore the consequence of relaxing the private value assumption in auction envi-

ronments. We also provide examples of situations where reading mechanisms fail.

The agents have quasilinear utilities, and agent i’s valuation of the single object for sale is given

by a function ui(t) ≥ 0 that depends on the full type profile t. An auction (a social choice function)

is a rule for allocating the object to one of the agents α : T → N , and a positive4 price function

π : T → R+ for the winner of the auction.

An auction is individually rational if it never requires the winner to pay a price higher than her

valuation, that is π(t) ≤ uα(t)(t). It is efficient if it allocates the good to one of the agents with the

highest valuation, that is α(t) ∈ argmaxi ui(t). It is fully extractive if it is efficient and π(t) = uα(t)(t).

4An auction is therefore budget balanced by definition.
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Theorem 4 (Single-Object Auctions). Any individually rational auction such that an evidence base is

available for each agent is implementable by a reading mechanism with accurate readings. In particular,

under own-type certifiability, the fully extractive auction is implementable by a reading mechanism with

accurate readings.

Proof. Pick an agent i, and fix t−i. We can split the type set of agent i into two regions, the set of

types for which she does not get the good, T 0
i , and the set of types for which she obtains the good,

T +
i . First, note that any type masquerading as a type in T 0

i forgoes the good and gets a payoff of

0. Second, any type in T +
i obtains a nonnegative payoff by masquerading as her true type, because

the auction is individually rational. These two observations imply that no type wants to masquerade

as a type in T 0
i , and therefore, if the masquerade relation

M[t−i]
−−−−→ admits a cycle on Ti, then all the

types involved in the cycle must lie in T +
i . Because all types in T +

i obtain the good, the gain in payoff

obtained by a type ti ∈ T +
i by masquerading as another type si ∈ T +

i is given by the difference of

prices π(ti, t−i) − π(si, t−i). This implies that the masquerading relation
M[t−i]
−−−−→ restricted to T +

i is

weakly represented by the function −π(·, t−i). Then we can conclude by Lemma 1 and Theorem 1.

Note that Dasgupta and Maskin (2000) exhibit an ex post incentive compatible efficient auction in

a framework with interdependence and no evidence. However, they must impose a one dimensionality

assumption on the type set. The equivalent of a one dimensionality assumption in our framework

would be an assumption that the type set of each agent can be linearly ordered so that ti > t′i if and

only if ui(ti, t−i) > ui(t
′
i, t−i), for every t−i. In addition, they assume that each agent’s type has more

influence on her own valuation than on the valuation of other agents’ valuations. We do not need such

assumptions with evidence since we impose no restriction on agents’ valuation functions.5

Jehiel, Meyer-Ter-Vehn, Moldovanu, and Zame (2006) point out that, in environments with mul-

tidimensional types, interdependent valuations, transfers and no evidence, the only ex post imple-

mentable social choice functions are the constant ones under a minimal assumption on preferences.

However, Bikhchandani (2006) argues that this assumption is not satisfied in private goods allocation

models and shows that ex post implementation is possible by a generalized VCG mechanism in a single

good allocation problem with multidimensional types and interdependent valuation. His possibility

result is obtained in a two-player environment under the assumption that a player’s information mat-

5Dasgupta and Maskin (2000) consider a continuum of types. It would not affect our result to work with a continuum
of types provided that all certifiable subsets are compact and the auction would have to use a pricing scheme that is
upper semi continuous in the type of the agent that is getting the good.
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Environment 1

∅ {1} {2} {1, 2}

u1(s1) 0 7 3 10

u2(s1) 0 5 4 9

u1(t1) 0 10 2 12

u2(t1) 0 15 1 16

Environment 2

∅ {1} {2} {1, 2}

u1(s1) 0 2 8 10

u2(s1) 0 0 9 9

u1(t1) 0 8 5 13

u2(t1) 0 9 1 10

Table 1: Two Multi-Object Auction Environments

ters more to her than to the other player. Our result shows that in environments with a rich evidence

structure, no other assumptions are needed for ex post implementation.

The next example shows that with multiple objects, individually rational and efficient auctions may

generate cycles in the masquerade relations of the agents. This is important for several reasons. First,

it shows that, even under own-type certifiability, reading mechanisms do have limitations. Second,

when full extraction is not possible it may be possible to achieve efficiency and individual rationality

by leaving an information rent to the agents.

Example 3 (Two Multiple-Object Auctions). Consider auction environments with two agents, and

two goods. The set of possible bundles that can be allocated to an agent is
{

∅, {1}, {2}, {1, 2}
}

.

Agent 1 has information, encoded in the type set T1 = {s1, t1}, while agent 2 has no information.

We assume that agent 1’s information is fully certifiable and consider two payoff environments, for

which the valuations of the different bundles are given in Table 1. The squares indicate the efficient

allocation. In the first environment, full extraction cannot be achieved, but efficiency and individual

rationality can be achieved by foregoing an information rent. In the second one, individual rationality

and efficiency cannot be achieved together.

First, consider environment 1. In the fully extractive auction, each agent pays her value for the

bundle she receives. Therefore, all agents get a payoff of 0 if the auction proceeds according to the

true type of agent 1. Suppose that agent 1 convinces the auctioneer that her type is t1 instead of

s1. In this case, agent 1 obtains good 2 instead of good 1, at a price of 2. Since her true type is s1,

her payoff is u1

(

{2}|s1
)

− 2 = 1 > 0. Therefore, s1
M
−→ t1. Now suppose that agent 1 convinces the

auctioneer that her type is s1 instead of t1. Then she obtains good 1 instead of good 2, at a price of

7, so her masquerading payoff is u1
(

{1}|t1
)

− 7 = 3 > 0. Therefore, t1
M
−→ s1.
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It is, however, possible to find an individually rational and efficient auction that leads to an acyclic

masquerade. Consider, for example, changing the price of object 1 from 7 to 6 when the type is s1.

Then agent 1 of type s1 has a payoff of 1 under truthful revelation, and does no longer profit by

masquerading as t1. This change of price makes the incentive of t1 to masquerade as s1 stronger,

but this is not a concern since the cycle is broken. The information rent that has to be paid in this

auction is 1 if the type is s1, and 0 otherwise. It is easy to check that this is in fact the revenue

maximizing auction among individually rational efficient auctions. The expected information rent is

therefore equal to the probability of type s1.

By contrast, for environment 2, no individually rational and efficient auction can prevent a mas-

querading cycle. Indeed, individual rationality implies that the price of good 1 is at most 2 under s1,

and the price of good 2 is at most 5 under t1. Therefore, the gain of s1 from masquerading as t1 is at

least (8 − 5) − 2 = 1, and the gain of t1 from masquerading as s1 is at least (8 − 2) − 5 = 1. If we

relax the constraint of positive prices, however, efficiency and individual rationality can be obtained

by setting the price of good 1 to −1 in state s1. Then, budget balance is also satisfied because the

auctioneer can price good 2 at 9 in state s1. ⋄

7 Bilateral Trade

In this section, we consider the bilateral trade problem of Myerson and Satterthwaite (1983). We

enlarge the traditional environment by considering interdependent valuations, so that the private

information of the seller may enter in the valuation of the buyer, and vice versa. Bilateral trade with

evidence has been considered in Singh and Wittman (2001) and Deneckere and Severinov (2008). Both

papers consider Bayesian implementation, and assume private values. Furthermore, the mechanisms

they build are not reading mechanisms. We show that implementation by a reading mechanism is

possible.

There are two agents with quasilinear preferences and one object. Agent 1 owns the object and

is a potential seller, and agent 2 is a potential buyer. The seller’s value for the item is given by

ς(t1, t2) ≥ 0, and the buyer’s value for the item is β(t1, t2) ≥ 0, where t1 ∈ T1 is the type of the seller

and t2 ∈ T2 is the type of the buyer.

A social choice function for this problem is called a trading rule. It determines whether trade takes

place, and the transfers to each agent. Hence, it is characterized by three functions λ : T1×T2 → {0, 1},
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τ1 : T1 × T2 → R and τ2 : T1 × T2 → R, where λ(t1, t2) takes value 1 if trade takes place, and 0

otherwise, and τ1(t1, t2) and τ2(t1, t2) are respectively the transfers to the seller and the buyer. Then,

the masquerading payoffs of the seller and the buyer are given by v1(s1|t1, t2) = τ1(s1, t2) +
(

1 −

λ(s1, t2)
)

ς(t1, t2), and v2(s2|t2, t1) = τ2(t1, s2) + λ(t1, s2)β(t1, t2).

A trading rule is efficient if trade occurs whenever β(t1, t2) > ς(t1, t2), and trade does not occur

whenever β(t1, t2) < ς(t1, t2). It is budget balanced if, for every t1, t2, we have τ1(t1, t2)+ τ2(t1, t2) ≤ 0.

It is individually rational if the following implications hold

λ(t1, t2) = 1 ⇒ τ1(t1, t2) ≥ ς(t1, t2) and τ2(t1, t2) ≥ −β(t1, t2)

λ(t1, t2) = 0 ⇒ τ1(t1, t2) = τ2(t1, t2) = 0.

Let G(t1, t2) = β(t1, t2) − ς(t1, t2) denote the gains from trade. We will consider efficient trading

rules that split the gains from trade between the seller, the buyer and the designer. Therefore the

transfer functions are given by τ1(t1, t2) = λ(t1, t2)
{

ς(t1, t2) + αs(t1, t2)G(t1, t2)
}

, and τ2(t1, t2) =

−λ(t1, t2)
{

β(t1, t2) − αb(t1, t2)G(t1, t2)
}

, where λ(t1, t2) is an efficient trading rule, αb(t1, t2) ≥ 0

and αs(t1, t2) ≥ 0 are such that αb(t1, t2) + αs(t1, t2) ≤ 1, and represent the respective shares of

the gains from trade obtained by the buyer and the seller. These trading rules thus give a share

αd(t1, t2) =
(

1 − αb(t1, t2) − αs(t1, t2)
)

of the gains from trade to the designer. They are efficient,

budget balanced and individually rational by construction. In fact, they span all the set of efficient,

budget balanced and individual rational trading rules.

Theorem 5 (Bilateral Trade). Any efficient, budget balanced and individually rational trading rule

such that an evidence base is available for each agent is implementable by a reading mechanism with

accurate readings.

Proof. We show that these trading rules lead to acyclic masquerade relations for the seller and the

buyer. We start with the seller, so we fix the information of the buyer to some type t2. First, note

that a trading type never wants to masquerade as a non-trading type. Indeed, a trading type t1 gets

more than her value for the good since τ1(t1, t2) = ς(t1, t2) + αs(t1, t2)G(t1, t2) ≥ ς(t1, t2), whereas, if

she masqueraded as a non-trading type, she would have to keep the good.

Second, a non-trading type never wants to masquerade as another non-trading type. Indeed, in

both cases the seller gets to keep the good so she is indifferent. Therefore, a masquerading cycle

can only occur among trading types. However, a trading type t1 wants to masquerade as another
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Trading types Non trading types

masquerade

possible

Individual Rationality

⇒No masquerade

Indifferent
Incentive = transfer

⇒ No cycle

Partition of TS for a given tB

Figure 1: Bilateral Trade – intuition for the proof of Theorem 5.

trading type t′1 if and only if τ1(t1, t2) < τ1(t
′
1, t2). But this implies that the function τ1(·, t2) is a

weak representation of the masquerade relation restricted to trading types. Hence, by Lemma 1, there

cannot exist a masquerading cycle among trading types.

For the buyer, the proof is symmetric. Start by fixing a seller type t1. A trading type never

wants to masquerade as a non-trading type, because when trading she pays less for the good than

her valuation. A non-trading type never wants to masquerade as another non-trading type because it

does not change anything. Finally, the masquerade over trading types can be weakly represented by

the transfer function τ2(t1, ·), hence there can be no masquerading cycles among trading types.

The intuition of the proof is similar as in the single-object auction case. Fixing the types of the

other agent, the type set of an agent, say the seller, can be partitioned into trading types and non-

trading types. Trading types do not want to masquerade as non-trading types because individual

rationality implies that they are compensated for trading. Therefore a masquerading cycle can only

consist of trading types. But a trading type wants to masquerade as another trading type only if she

is getting a better transfer by doing so. Therefore the masquerade relation among trading types is

governed by transfers, and has no cycle. Figure 1 illustrates this intuition.

Note that the bilateral trade environment satisfies the condition on preferences of Jehiel et al.

(2006) for their result on impossibility of non-trivial ex post implementation. Therefore our result

illustrates the fact that even with an accurate reading mechanism the limits are not as narrow in

environments with evidence.
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8 Conclusion

In an environment where agents have access to evidence, we have defined a new class of mechanisms

in which the designer must apply the social choice function to a profile of types that is consistent with

the received profile of evidence, both along and off the equilibrium path. Such mechanisms are robust

to the designer’s commitment ability and to her preferences (as long as the social choice function

represents her first-best), and they offer a solution to many classical mechanism design problems

that are problematic under cheap talk. This is subject to having a rich evidence structure (say, own

type certifiability). When this is the case, our results show that the set of implementable policies is

considerably enlarged. While, in practice, evidence may not be as widely available as required for our

results, they establish a benchmark, and contribute to drawing a picture of what can and cannot be

achieved with evidence.

A Appendix

This appendix presents additional definitions to provide necessary and sufficient conditions for interim
and ex-post implementation.

A.1 Additional Definitions

The interim belief of agent i about the types of the other agents is given by a distribution pi(·|ti) ∈
∆(T−i). A messaging strategy profile µ : T → M is an interim equilibrium6 of this game if, for every
i, every ti, and every mi ∈ Mi(ti),

E
(

ui
(

g(µ(t)); t
)

|ti
)

≥ E
(

ui
(

g(mi, µ−i(t−i)); t
)

|ti
)

.

A mechanism g(·) interim implements the social choice function f(·) if there exists an interim
equilibrium µ(·) of the game generated by g(·), such that g

(

µ(t)
)

= f(t) for every t ∈ T .
The interim masquerading payoff of agent i is given by the function

vi(si|ti) =
∑

t−i∈T−i

ui
(

f(si, t−i); ti, t−i

)

pi(t−i|ti).

For the interim masquerade relation, we say that ti wants to masquerade as si, denoted by ti
M
−→ si,

if and only if vi(si|ti) > vi(ti|ti). The set of interim worst-case types is denoted by

wct(Si) :=
{

si ∈ Si |∄ ti ∈ Si, ti
M
−→ si

}

An interim evidence base for agent i is a set of messages Ei ⊆ Mi such that there exists a one-
to-one function ei : Ti → Ei that satisfies ei(ti) ∈ Mi(ti), and ti ∈ wct

(

M−1
i

(

ei(ti)
))

for every ti. If

6As in Bergemann and Morris (2005, 2011), we use the term interim instead of Bayesian (equilibrium or implementa-
tion) to highlight the fact that we do not assume a common prior.

19



cheap talk completion of the evidence structure is allowed, the condition for an interim evidence base
is that, for each ti, there exists mi such that ti ∈ wct

(

M−1
i

(

mi

))

.
A reading is independent if for every i the reading of the evidence satisfies ρi(mi,m−i) = ρi(mi,m

′
−i)

for every mi, m−i and m′
−i. It means that agent i’s evidence is interpreted independently of the evi-

dence submitted by other agents.7

As in the main paper, we say that a reading mechanism implements f(·) with accurate readings if
it reads the evidence correctly on the equilibrium path of the corresponding equilibrium.

Definition 2 (Accurate Implementation). A reading mechanism with associated reading ρ(·) accurately
(interim or ex post) implements f(·) if there exists an (interim or ex post) equilibrium strategy profile
µ(·) such that, for every t ∈ T , ρ

(

µ(t)
)

= t.

Definition 3 (Straightforward Implementation). A reading mechanism with associated reading ρ(·)
straightforwardly (interim or ex post) implements f(·) if there exists an (interim or ex post) equilibrium
strategy profile µ(·) such that ρ

(

µ(t)
)

= t, and ρ−i

(

µ−i(t−i),mi

)

= t−i, for every t ∈ T , every i ∈ N ,
and every mi ∈ Mi.

Hence straightforward implementation is more restrictive than accurate implementation. It implies
that, if all agents except i use their equilibrium strategy, then the type profile of these non deviators
is correctly interpreted. Note also that accurate implementation by an independent reading implies
straightforward implementation.

A.2 Necessary and Sufficient Conditions for Implementation

Theorem 6 (Interim Implementation). There exists a reading mechanism that accurately interim
implements f(·) with an independent reading if and only if the following conditions hold for every
agent i:

(i) For every message mi ∈ Mi, the set M−1
i (mi) admits an interim worst case type.

(ii) Mi(·) admits an interim evidence base.

Proof. (⇐) By (ii), we can pick, for each agent i, a one-to-one mapping ei : Ti → Mi corresponding
to an evidence base of i. By (i), we can choose an independent reading ρ(·) such that, for every mi,
ρi(mi) ∈ wct

(

M−1
i (mi)

)

and for every ti, ρi
(

ei(ti)
)

= ti. Suppose that every agent i adopts ei(·)
as her strategy in the game defined by the mechanism associated with ρ(·). Then for every t, the
mechanism selects the outcome f

(

ρ(e(t))
)

= f(t). Hence, if the strategy profile e(·) is an equilibrium
of the game, we have succeeded in implementing f(·) with accurate readings. It remains to show that
e(·) is indeed an equilibrium. Suppose then that agent i of type ti deviates with a message mi 6= ei(ti).
Then the implemented outcome is f

(

wi, t−i

)

, where wi ∈ wct
(

M−1
i (mi)

)

. But then we know that
vi(wi|ti) ≤ vi(ti|ti), so the deviation is not profitable for i.

(⇒) Let ρ(·) be an independent reading such that the associated mechanism implements f(·) with
accurate readings, and let µ∗(·) be the associated equilibrium strategy profile. Then, by definition
of accurate implementation, ρ

(

µ∗(t)
)

= t. Consider some message mi of agent i. The equilibrium
condition implies that, for every ti ∈ M−1

i (mi),

vi(ti|ti) ≥ E
(

ui
(

f
(

ρ(mi, µ
∗
−i(t−i))

)

; t
)

|ti
)

= E
(

ui
(

f
(

ρi(mi), t−i

)

; t
)

|ti
)

= vi
(

ρi(mi)|ti
)

,

7When types are independent, this restriction has the same flavor as the belief consistency requirement “no signaling
what you don’t know” of a perfect Bayesian equilibrium (Fudenberg and Tirole, 1991).
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where first equality is a consequence of accuracy and independence. Since, by definition of a reading
mechanism, ρi

(

mi)
)

∈ M−1
i (mi), this proves that ρi

(

mi

)

∈ wct
(

M−1
i (mi)

)

. This proves (i).
To prove (ii), consider the particular case in which mi = µ∗

i (si) for some type si ∈ Ti. Then
ρi
(

mi, µ
∗
−i(t−i)

)

= si, by accuracy and independence, and therefore we have shown that si is a worst
case type of the set certified by µ∗

i (si). The accuracy property also implies that µ∗
i (si) 6= µ∗

i (ti)
whenever si 6= ti. Otherwise, we would have ti = ρi

(

µ∗
i (ti)

)

= ρi
(

µ∗
i (si)

)

= si. Therefore, the function
µ∗
i : Ti → Mi defines an evidence base for i.

It is easy to show that the existence of an evidence base for each agent is necessary for implemen-
tation with any mechanism. The worst case type condition, however, is only necessary if we require
accurate implementation and independent readings. If the reading is not required to be independent,
then ex post instead of interim worst case types could be used (see Theorem 7). To illustrate the
importance of accuracy, the following example exhibits a social choice function that is not accurately
interim implementable with independent reading, because of a missing interim worst case type, but
can nevertheless be implemented by a reading mechanism with independent reading.

Example 4 (Committing to incorrect readings). There are two agents and five alternatives A =
{a, b, c, d, e}. The set of agent 1’s types is T1 = {t01, t

1
1, t

2
1, t

3
1, t

4
1}, and the set of agent 2’s types is

T2 = {t12, t
2
2}, with a uniform prior probability distribution. Consider the following social choice

function:8

f(·, ·) t01 t11 t21 t31 t41
t12 e b a d c

t22 e a b c d

Assume that agent 2’s utility is maximized when f(·) is implemented (so that he never has an
incentive to deviate), and agent 1’s utility function is given by the following table, where the squares
indicate the outcomes prescribed by the social choice function:

u1(·; ·) =

t12
a b c d e

t01 2 2 −1 −1 0

t11 −1 0 −1 2 2

t21 0 −1 −1 −1 −1

t31 2 −1 −1 0 −1

t41 −1 −1 0 −1 −1

t22
a b c d e

t01 2 2 −1 −1 0

t11 0 −1 2 −1 2

t21 −1 0 −1 −1 −1

t31 −1 2 0 −1 −1

t41 −1 −1 −1 0 −1

The interim masquerade relations of the agents and the evidence structures are summarized in
Figure 2. Agent 1’s interim masquerade relation has a cycle. There is an interim evidence base for
each agent, but the certifiable set {t01, t

1
1, t

2
1, t

3
1} has no interim worst case type. Hence, f(·) is not

accurately interim implementable with an independent reading. However, it is implemented with the
following independent reading and interim equilibrium strategies, where the red lines correspond to
incorrect readings given the equilibrium strategies:

8Note that this function satisfies responsiveness, that is, for every ti 6= t′i, there exists a profile t−i such that f(ti, t−i) 6=
f(t′i, t−i).
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Agent 1

m0
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1

m34

1

m43

1

t0
1

t1
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t3
1

t2
1

t4
1

m12

1

m21

1

Agent 2

t1
2

t2
2

m12

2

m21

2

Figure 2: Committing to incorrect readings: interim masquerade relations and evidence structures.

µ1 ρ1 µ2 ρ2
t01 7−→ m0

1 7−→ t01 t12 7−→ m12
2 7−→ t22

t11 7−→ m12
1 7−→ t21 t22 7−→ m21

2 7−→ t12
t21 7−→ m21

1 7−→ t11
t31 7−→ m34

1 7−→ t41
t41 7−→ m43

1 7−→ t31
m0123

1 7−→ t31

The intuition is that, by committing to incorrect readings, the designer can emulate the use of
inconsistent punishments while remaining within the boundaries of reading mechanisms. To see that,
note that, given the masquerade relation of agent 1, the key is to dissuade the use of the message
m0123

1 . This cannot be done accurately because of the cycle. In the mechanism described above, m0123
1

is interpreted as t31, which should make t11 willing to use this message. The trick is that the designer
is voluntarily misinterpreting the equilibrium messages of agent 2, so agent 1 with type t11, expects
that the outcome implemented by the designer when she pretends to be t31 and the true type of agent
2 is t22 will be f(t31, t

2
2) = f(t41, t

1
2) = c. Thus, this is as if the designer attributed the message m0123

1

to t41, which no type in M−1
1 (m0123) wants to masquerade as. The designer cannot do that directly

because such a reading would not be consistent with evidence. But she can emulate that outcome by
misreading evidence from agent 2 on the equilibrium path.9 ⋄

For ex post implementation, we weaken the necessary properties of the mechanisms used in the
characterization since we require straightforward implementation instead of accurate implementation
with an independent reading.

Theorem 7 (Ex Post Implementation). There exists a reading mechanism that straightforwardly ex
post implements f(·) if and only if the following conditions hold for every agent i:

(i) For every t−i ∈ T−i, and every message mi ∈ Mi, the set M−1
i (mi) admits a worst case type

given t−i.

(ii) Mi(·) admits an evidence base.

9Note that the conclusion does not change if we modify the evidence structure so as to satisfy the normality condition of
Bull and Watson (2007), Deneckere and Severinov (2008), and Forges and Koessler (2005). For example, if we complete
the above evidence structure with messages certifying the singletons, the allocation f(·) is still implementable with the
above readings and messaging strategies, but is not implementable with accurate readings. Interestingly, f(·) is then
implemented without asking maximal evidence to the agents: if the designer asks each agent to completely certify her
type, then f(·) cannot be implemented with a reading mechanism.
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Proof. (⇐) This part of the proof is the same as the proof of Theorem 1. The straightforwardness
property is satisfied by construction of ρ(·).

(⇒) Let ρ(·) be a reading such that the associated mechanism straightforwardly implements f(·),
and let µ∗(·) be the associated ex post equilibrium strategy profile. Consider some message mi of
agent i. The equilibrium condition implies that, for every t−i ∈ T−i, and every ti ∈ M−1

i (mi), and

vi(ti|ti; t−i) ≥ E
(

ui
(

f
(

ρ(mi, µ
∗
−i(t−i))

)

; t
)

|ti
)

= E
(

ui
(

f
(

ρi(mi, µ
∗
−i(t−i)), t−i)

)

; t
)

|ti
)

= vi
(

ρi(mi, µ
∗
−i(t−i))|ti

)

,

where the second line comes from the straightforward implementation property. Since, by def-
inition of a reading mechanism, ρi(miµ

∗
−i(t−i)) ∈ M−1

i (mi), this proves that ρi(mi, µ
∗
−i(t−i)) ∈

wct
(

M−1
i (mi)|t−i

)

. This proves (i).
Now, consider the particular case wheremi = µ∗

i (si) for some type si ∈ Ti. Then ρi(mi, µ
∗
−i(t−i)) =

si, by the straightforwardness property, and therefore we have shown that si is a worst case type of the
set certified by µ∗

i (si) given t−i. The straightforwardness property also implies that µ∗
i (si) 6= µ∗

i (ti)
whenever si 6= ti. Otherwise, we would have ti = ρi

(

µ∗
i (ti), µ

∗
−i(t−i)

)

= ρi
(

µ∗
i (si), µ

∗
−i(t−i)

)

= si.
Therefore, the function µ∗

i : Ti → Mi defines an evidence base for i.

Ex post implementability by a reading mechanism implies interim implementability by a reading
mechanism. However, the reading used for ex post implementation, even if it satisfies straightforward-
ness, may not satisfy independence. To illustrate the relations between ex post and interim imple-
mentation by reading mechanisms, we provide an example such that the conditions of Theorem 6 and
Theorem 7 are not satisfied, but accurate interim implementation by a reading mechanism is possible.

Example 5 (Accurate interim implementation without independence or straightforwardness). Con-
sider two agents. The type sets are T1 = {t1, t

′
1} and T2 = {t2, t

′
2, t

′′
2}. The common prior is that the

types of the two agents are independently and uniformly distributed over their respective supports.
We assume that the only certifiable sets of agent 2 are the singletons {t2}, {t

′
2} and {t′′2}, so that

there is no need to incentivize full revelation from agent 2. The certifiable sets for agent 1 are the
singletons, {t1} and {t′1}, and the set {t1, t

′
1}, so that there exists an evidence base, but agent 1 needs

to be incentivized to provide precise information. For simplicity, we denote the messages by the sets
they certify.

The ex post masquerading relations of agent 1 and her interim masquerading relation are given
in Figure 3 with intensities. There is an ex post cycle when the type of agent 2 is t2, and there is
an interim cycle. Therefore the conditions of Theorem 6 and Theorem 7 are not satisfied. Accurate
interim implementation is possible with the following reading:

ρ1
(

{t1, t
′
1}, {t2}

)

= ρ1
(

{t1, t
′
1}, {t

′
2}
)

= t1 and ρ1
(

{t1, t
′
1}, {t

′′
2}
)

= t′1.

Indeed, if the type of agent 2 is t′′2 , the uninformative message {t1, t
′
1} of agent 1 is read as t′1, which is

an ex post worst case type. Hence she has no incentive to be vague conditionally on the type of agent
2 being t′′2. Agent 1 cannot be given ex post incentives if the type of agent 2 is t2, but the designer
can dissuade her from being vague by pooling this event with the event in which agent 2 has type
t′2. The expected masquerading gain conditional of agent 2 not being of type t2 is +6 for a t1 type
masquerading as a t′1 type, and -2 for a t′1 type masquerading as a t1 type, an therefore interpreting
the vague message as t1 is dissuasive. ⋄
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Figure 3: Accurate interim implementation without independence or straightforwardness – ex post
and interim masquerade relations of agent 1.
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