
University of Media Stuttgart

Faculty of Information & Communication
Data Science & Business Analytics

Robert Bosch GmbH

Corporate Research
Department CR/AEU2

THESIS

Continuous Authentication using
Inertial-Sensors of Smartphones and

Deep Learning

Holger Büch
Mat.-No. 33953

Submitted in partial fulfillment of the requirements for the degree of
Master of Science in Data Science & Business Analytics
at the University of Media Stuttgart in June 28th, 2019.

1. Reviewer Prof. Dr. Johannes Maucher
Faculty of Print and Media
University of Media, Stuttgart

2. Reviewer Dr. Michael Dambier
Corporate Research, CR/AEU2
Robert Bosch GmbH

Additional Advisor Dr. Robert Duerichen
Corporate Research, CR/AEU2
Robert Bosch GmbH

Holger Büch

Continuous Authentication using Inertial-Sensors of Smartphones and Deep Learning

THESIS, June 28th, 2019

Reviewers: Prof. Dr. Johannes Maucher and Dr. Michael Dambier

Additional Advisor: Dr. Robert Duerichen

University of Media Stuttgart

Data Science & Business Analytics

Faculty of Information & Communication

Nobelstraße 10

70569 Stuttgart, Germany

Declaration

Hiermit versichere ich, Holger Büch, ehrenwörtlich, dass ich die vorliegende Master-
arbeit mit dem Titel: “Continuous Authentication using Inertial-Sensors of Smart-
phones and Deep Learning” selbstständig und ohne fremde Hilfe verfasst und keine
anderen als die angegebenen Hilfsmittel benutzt habe.

Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken
entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht.
Die Arbeit ist noch nicht veröffentlicht oder in anderer Form als Prüfungsleistung
vorgelegt worden.

Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen
Folgen (§ 17 Abs. 5 der Studien- und Prüfungsordnung berufsbegleitender weit-
erführender Studiengänge, 5-semestrig) einer unrichtigen oder unvollständigen
ehrenwörtlichen Versicherung zur Kenntnis genommen.

Stuttgart, June 28th, 2019

Holger Büch

Abstract
The legitimacy of users is of great importance for the security of information systems.
The authentication process is a trade-off between system security and user experi-
ence. E.g., forced password complexity or multi-factor authentication can increase
protection, but the application becomes more cumbersome for the users. Therefore,
it makes sense to investigate whether the identity of a user can be verified reliably
enough, without his active participation, to replace or supplement existing login
processes.

This master thesis examines if the inertial sensors of a smartphone can be leveraged to
continuously determine whether the device is currently in possession of its legitimate
owner or by another person. To this end, an approach proposed in related studies
will be implemented and examined in detail. This approach is based on the use of a
so-called Siamese artificial neural network to transform the measured values of the
sensors into a new vector that can be classified more reliably.

It is demonstrated that the reported results of the proposed approach can be repro-
duced under certain conditions. However, if the same model is used under conditions
that are closer to a real-world application, its reliability decreases significantly. There-
fore, a variant of the proposed approach is derived whose results are superior to the
original model under real conditions.

The thesis concludes with concrete recommendations for further development of
the model and provides methodological suggestions for improving the quality of
research in the topic of “Continuous Authentication”.

Keywords: Deep Learning, Machine Learning, Sensors, Authentification

v

Abstract (German)

Für die Sicherheit von Informationssystemen ist die Legitimierung der Nutzer von
großer Bedeutung. Der Authentifizierungsprozess ist dabei eine Gratwanderung
zwischen Sicherheit des Systems und Benutzerfreundlichkeit. So können etwa
erzwungene Passwortkomplexität oder Multi-Faktor-Authentifizierung den Schutz
erhöhen, für Anwender wird die Bedienung jedoch umständlicher. Daher stellt sich
die Frage, ob die Identität des Nutzers auch ohne seine aktive Mitwirkung zuverlässig
genug verifiziert werden kann, um dadurch Anmeldeprozesse sinnvoll ersetzen oder
ergänzen zu können.

In dieser Masterarbeit wird die Frage untersucht, ob mithilfe der Inertialsensoren
eines Smartphones kontinuierlich ermittelt werden kann, ob sich das Gerät gerade in
Besitz seines rechtmäßigen Eigentümers befindet, oder von einem Dritten getragen
wird. Hierzu wird ein in der Forschungsliteratur vorgeschlagener Ansatz nach
implementiert und genauer untersucht. Der Ansatz basiert auf der Verwendung eines
sogenannten siamesischen künstlichen neuronalen Netzwerks, um die Messwerte der
Sensoren in einen anderen Vektor zu transformieren, der zuverlässiger klassifiziert
werden kann.

Im Ergebnis wird gezeigt, dass sich die berichteten Ergebnisse des vorgeschlagenen
Ansatzes unter bestimmten Voraussetzungen reproduzieren lassen. Wird das gleiche
Modell unter Bedingungen eingesetzt, die einer realen Anwendung näher kommen,
nimmt die Zuverlässigkeit jedoch massiv ab. Daher wird eine Variante des genutzten
Ansatzes hergeleitet, deren Ergebnisse dem ursprünglichen Modell unter realen
Bedingungen überlegen sind.

Die Arbeit schließt mit konkreten Empfehlungen zur Weiterentwicklung des Modells
und gibt methodische Anregungen zur Qualitätssteigerung der Forschung in diesem
Themenfeld der “Continuous Authentication”.

Schlagwörter: Deep Learning, Machine Learning, Sensoren, Authentifizierung

vi

Contents

1 Introduction 1

2 Basics 3

2.1 Access Control and Authentication 3

2.1.1 Access Control Process . 3

2.1.2 Information Sources for Authentication 4

2.1.3 Frequency of Authentication 5

2.1.4 Authentication Metrics (FAR, FRR, and EER) 6

2.2 Sensors . 7

2.2.1 Accelerometer . 7

2.2.2 Gyroscope . 8

2.2.3 Magnetometer . 9

2.2.4 IMU . 10

2.2.5 Constraints regarding Sensor Data 10

3 Related Work 13

3.1 Datasets . 13

3.2 Data Preprocessing . 15

3.2.1 Noise Filtering . 15

3.2.2 Manual Feature Construction 16

3.2.3 Data Reduction . 17

3.2.4 Deep Features . 18

3.2.5 Context Information . 20

3.3 Classifiers . 20

3.3.1 Gaussian Mixture Model . 20

3.3.2 One Class Support Vector Machine 21

3.3.3 Hidden Markov Model . 21

3.3.4 Artificial Neural Networks . 22

3.4 Evaluation Settings . 24

4 Concept 27

4.1 General Idea . 27

4.2 Use Case . 29

4.3 Design Decisions . 29

vii

4.3.1 Active vs. Passive . 29

4.3.2 One Class vs. Binary Classification 30

4.3.3 Sensor Selection . 31

4.3.4 Manual Feature Construction vs. Deep Features 32

4.4 Evaluation Criteria . 32

4.4.1 Authentication Reliability . 33

4.4.2 Training Delay . 33

4.4.3 Detection Delay . 33

4.4.4 Evaluation Setting . 34

4.5 Model Selection . 35

4.5.1 One Class Support Vector Machine 35

4.5.2 Siamese Network . 37

5 Experiments 39

5.1 Project Setup . 39

5.2 Dataset . 40

5.3 Initial Data Preparation . 42

5.4 Modeling OCSVM . 46

5.5 Modeling Siamese CNN . 51

5.6 Evaluation Results . 57

5.6.1 Authentication Reliability . 58

5.6.2 Training Delay . 60

5.6.3 Detection Delay . 61

5.6.4 Interpretation . 61

5.7 Improvement of Modeling . 66

5.7.1 Test Parameters . 66

5.7.2 Results of Parameter Search 68

5.8 Final Evaluation . 70

6 Discussion 75

6.1 Considerations . 75

6.2 Recommendations . 77

7 Conclusion 79

A Appendix 81

A.1 Further related studies . 81

A.2 Commonly computed Features . 82

A.3 Parameters for OCSVM Approach . 83

A.4 Parameters for Siamese CNN Approach 84

A.5 Authentication Accuracy . 85

A.6 Detection Delay . 86

A.7 Pair Distances during Training . 87

viii

A.8 Parameter Search Results . 88
A.9 Minor Learnings . 93

Bibliography 95

List of Figures 101

List of Tables 103

List of Equations 105

Acronyms 107

ix

1Introduction

Verifying a user’s identity is crucial for the security of information systems. But
the authentication process, in which a person verifies himself as a known and
legitimate user of a system, seems to bear an inherent trade-off between reliability
and convenience: The convenience of the user decreases if the reliability is improved,
e.g., by enforcing complex password rules, multi-factor authentication, or frequent
re-authentication. And this is not just a question of comfort, the security of the whole
system can suffer from low user acceptance, whether through a written password
attached to a computer monitor, a personal physical access token shared between
colleagues, deliberately deactivating security features or other workarounds.

Is it possible to validate a user, without the need for his active participation in the
authentication process? How can a system continuously collect information provided
passively by the user and use unique patterns embedded in this information to
identify the user? Does such a system improve the convenience of authentication?
How reliable is it, and how does it affect security? Those are common research
questions in the field of Continuous Authentication (CA), the topic of this master
thesis. Given the omnipresence of personal smartphones, with their steadily increas-
ing computational power and a variety of built-in sensors, it seems appropriate for
this thesis to focus on leveraging the capabilities of those devices.

The purpose of this thesis is to assess the feasibility of a CA approach which is based
on data provided by the inertial sensors of smartphones. Those sensors, gyroscope,
accelerometer, and magnetometer, have the advantage to not depend on the active
usage of the smartphone, they only need to be able to capture movements produced
by the user. This aspect concludes the motivation behind the thesis: If it is possible
to authenticate a user through the smartphone without the need for active usage of
the device, it will open up the possibility to not only authenticate the user against,
e.g., the phones operating system. The authentication state could also be shared
with third-party systems, which cannot recognize the user on their own, to benefit
from CA through the smartphone.

The research in this thesis focuses on experiments performed on a desktop computer
with datasets collected by smartphones up front, and on verifying the ability of
different machine learning models to classify the user as legitimate “owner” or

1

illegitimate “impostor”. Before this ability is evaluated, further topics seem to be
secondary. Therefore, other important tasks like testing the authentication on actual
mobile devices, assessing the system’s security against planned attacks, designing
an architecture for integration with third-party systems, or keeping the machine
learning model up to date have been held out of scope for this thesis.

The idea of using inertial sensors of smartphones for CA already was the topic of
many previous studies by different researchers. Such related work is summarized in
Chapter 3. While I examined those studies, it became apparent, that most researchers
spend a lot of effort into feature engineering, trying to find different representations
of the sensor data which can be leveraged effectively as input for machine learning
models to classify the sensors’ signals. But with the advancements in the field of
Artificial Neural Networks (ANNs), it is tempting to supersede the manual feature
engineering with feature learning through deep learning methods.

The promising results published by Centeno et al. (2018) were one of the reasons I
decided to reimplement their approach, a combination of a Siamese Convolutional
Neural Network (CNN) with an One Class Support Vector Machine (OCSVM), as a
significant aspect of this thesis. I elaborate on this and other design decisions, along
with further building blocks of my concept, in Chapter 4.

The details of the experiments and the used dataset are presented in Chapter 5.
Those experiments include the implementation of an OCSVM baseline model and
the mentioned ensemble of a Siamese CNN with an OCSVM, along with an extensive
evaluation. Within the experiments, I demonstrate, that the promising reported
results are to my best knowledge caused by a setup, which is not applicable in a
real-world scenario. I also show that the same models perform significantly weaker
if the conditions of a real-world scenario are applied. Further, I evaluate the impact
of various model parameters and propose a variation of the original model with
improved performance in conditions closer to real-world scenarios, but without
getting near the performance reported in the original study.

In Chapter 6, I discuss significant findings I discovered while working on this thesis,
propose questions for future research, and make suggestions on how the research in
CA could be improved in general.

But before deep diving into the topic of this thesis, the next Chapter 2 introduces
into basic aspects specific to the examined subject.

2 Chapter 1 Introduction

2Basics

The first section in this chapter explains and contextualizes the domain of this
thesis: behavioral biometrics based Continuous Authentication. The second section
describes the functional principles and constraints of the smartphone sensors relevant
for this thesis to improve the understanding of the data they produce.

2.1 Access Control and Authentication

To protect a computing system against illegitimate access, it has to be equipped
with some kind of control mechanism. To pass this mechanism, the user has to
follow a specific process containing multiple steps or sub-processes. This topic is
too complex to be cover in detail in this thesis. The following subsections focus on
the aspects needed to understand and judge the approach of CA as the topic of this
thesis. The three aspects most relevant for this thesis are: The general process of
access control including authentication, the source of information which is used
to perform authentication, and the frequency of authentication with its impact on
security and convenience. For a more detailed examination of authentication, refer
to Dasgupta et al. (2017).

2.1.1 Access Control Process

The process of gaining access to a computing system usually consists of multiple
steps or subprocesses. These often include at least the following three subsequent
steps: identification, authentication, and authorization.

Identification is the process where the user has to proof his “true” identity, e.g., his
legal identity as a citizen by showing his official passport, or his identity as the owner
of a specific e-mail account by entering a piece of secret information that has been
sent to that account (Dasgupta et al., 2017, p. 2). Often identification is only needed
during an initial registration process or if irregularities question the true identity.

Authentication is the process in which the user provides information to verify that he,
as a user, is a person with an already proven “true” identity. Usually, this information

3

contains an identifier and a secret like a username and a password. Dasgupta et al.
(2017, p. 2) define this process as follows:

“Authentication is the mandatory process to verify the identity of a user
and restricts illegitimate users to access the system.”

Authorization is the process of granting or denying access right to the authenticated
user, respectively his device (NIST, 2018). Usually, those access rights are only
temporarily valid during a usage session and get revoked after a certain period, e.g.,
after a defined time of inactivity or triggered by a particular action. Then the user is
prompted to authenticate again if he wants to regain access to the system.

2.1.2 Information Sources for Authentication

One aspect of authentication is the kind of information provided to the system. This
information can be knowledge-based, possession-based and biometric-based, or like
Li et al. (2018, p. 32555) wrote, based on “what you know”, “what you have” and
“what you are”.

Knowledge-based information has to be memorized by the user. Common types are
passwords, PINs, or graphical patterns. This information should be theoretically hard
to extract by an attacker, but in practice, its vulnerability through inherent weak-
nesses has been demonstrated frequently, e.g., on the system side by automatically
guessing weak passwords or on the user side by social engineering or observation.
Nevertheless, because of its convenience and cheap implementation, the application
of this approach is still widespread. (Centeno et al., 2018, p. 2)

Possession base information is bound to a device, like a card, token, or key. The
information stored on this device is just as safe as the device itself, which can
be stolen or replicated, sometimes even during normal usage and without the
knowledge of its owner, like as it keeps happening with credit cards. Possession
based authentication requires hardware support to read the information from the
device. (Li et al., 2018, p. 32555)

Biometric-based information is supposed to be bound to the user as an individual.
Physical biometrics rely on static characteristics of the user, that are considered to be
close to unique for any human, like fingerprints or voice. This information is prone
to duplication, often caused by the limited precision of the devices detecting the
biometrics. Behavioral biometrics are based on the identification of unique patterns
in the behavior of human beings during activity, e.g., touch or body movements.
While this approach is also prone to duplication attacks, it has the benefit to not

4 Chapter 2 Basics

necessarily require the user’s active participation during the authentication process.
(Li et al., 2018, pp. 32555f)

Nowadays, often two or more different sources of information are combined in
a so-called two or multiple factor authentication process to improve security and
compensate for the weaknesses of the individual approaches. In this case, the user
has to prove, e.g., that he doesn’t only know username and password but is also
in possession of the phone number associated with his identity by answering an
automated phone call.

2.1.3 Frequency of Authentication

The kind of information used for authentication also sets constraints to the frequency,
in which the authentication can be performed: Very common is a one-time authen-
tication, where the authentication information is requested only once per session.
If the authentication information is gathered repeatedly during a single session in
short time intervals, it is called Continuous Authentication (CA).

As already mentioned, knowledge-based, possession-based, and physical biometrics-
based authentication approaches require the active participation of the user. He has
to enter his credentials, swipe his card, connect a USB-Device, or touch a fingerprint
reader. Those one-time authentications stay valid, e.g., until a certain period has been
passed or until a certain number of transactions has been reached. The thresholds
for such limits have to be balanced between the inconvenience for the user and the
desired level of security. An attacker can exploit the delay between authentication
and revocation to gain access, e.g., by stealing an unlocked smartphone or slipping
through a closing door.

CA1 on the other hand, continually monitors the legitimacy of the user, e.g., by
continuously analyzing behavioral biometrics. The system can revoke access if it
detects that another person replaced the legitimate user. Practically there still is a
delay between authenticating and revoking. This delay has to be minimized. As
authentication needs no active participation by the user, this delay is only restricted
by the ability to identify the user through implicit information and doesn’t necessarily
have to be balanced against convenience. Besides the usage of CA as the primary
authentication method, the absence of any user interaction facilitates its application
as an auxiliary method to increase security as a second authentication factor or to
improve convenience, e.g., by skipping reauthentication if the CA system provides a
sufficient certainty about the user’s identity. (Centeno et al., 2017, p. 2)

1Sometimes also called implicit, transparent or active authentication (Patel et al., 2016, p. 50).

2.1 Access Control and Authentication 5

2.1.4 Authentication Metrics (FAR, FRR, and EER)

Various metrics exist to compare the performances of authentication systems. The
most common metrics for evaluation of CA systems are Falsse Acceptance Rate
(FAR)2, False Rejection Rate (FRR)3 and Equal Error Rate (EER).4, originating from
the field of biometrics. (Ashbourn, 2015, p. 12)

FAR is the ratio of the total number of falsely accepted authentication attempts by
unauthorized users to the total number of correctly rejected attempts by unautho-
rized users (Li et al., 2018, p. 32560). The lower the FAR, the more secure can a
system be considered. FAR is similar to the so-called type I error or α-error used in
statistical tests (Jain et al., 2004, p. 7):

FAR = false acceptances
correct rejects

(2.1)

FRR is kind of the opposite to FAR. It is the ratio of the total number of falsely
rejected authentication attempts by legitimate users to the total number of correctly
authorized attempts of legitimate users (Li et al., 2018, p. 32560). A lower FRR
indicates better convenience for the user because the system is less likely to deny
legitimate access. It can be compared to type II error or β-error in statistics (Jain
et al., 2004, p. 7):

FRR = false rejects
correct acceptances

(2.2)

As decreasing FAR usually results in a higher FRR and vice versa, a trade-off has to
be chosen between those metrics depending on the circumstances of the planned use
case (Li et al., 2018, p. 32560). The EER is used to make this trade-off comparable
to a certain extent: It is the value where FAR equals FRR (Figure 2.1). A lower
EER indicates a more reliable system. Table 2.1 shows EERs for various biometric
features as a reference.

The EER cannot be measured directly. Instead, it can be approximated by searching
the classification threshold t that minimizes |FAR − FRR| and then calculating
EER = FFR+FRR

2 for this threshold t.

2Also called False Match Rate (FMR; Jain et al., 2004, p. 6).
3Also called False Non Match Rate (FNMR; Jain et al., 2004, p. 6).
4Used by, e.g., Neverova et al. (2016, p. 1817), Sitová et al. (2016, p. 880), Li et al. (2018, p. 32560).

6 Chapter 2 Basics

Fig. 2.1.: EER as trade-off between FAR and FRR. Source: Reid (2004, p. 150).

Tab. 2.1.: EERs reached with biometric features. Source: Dasgupta et al. (2017, pp. 48–60).

Biometric Modality EER

Fingerprint 2%

Gait 7.3%

Keystroke 1.8%

Retina 0.8%

Voice 6%

2.2 Sensors

Before working with smartphone sensor data, it is useful to know how those sensors
work, what exactly they measure, and which of their characteristics possibly influence
the usage of their data for analysis purposes. While smartphones contain multiple
types of sensors, which also vary between vendors and models, this section is limited
to cover three types that are used in the later implementation (see Chapter 5).

2.2.1 Accelerometer

Accelerometers measure the acceleration a, which is described as the change in
velocity dv over time t divided by time of the velocity change dt. As the velocity
v can also be described as the derivation of distance x over time t, a can also be
described by using the change in distance. (Hering and Schönfelder, 2018, p. 371)

a(t) = dv(t)
dt = d2x(t)

dt2 (2.3)

That’s how the acceleration can be derived from measuring the time and deflection of
a springy mounted mass during the exposure to an accelerating force (Figure 2.2).

2.2 Sensors 7

Sensors in smartphones are built as Microelectromechanical Systems (MEMSs) and
detect the position of a mass mounted in a substrate by measuring electric capacity
(Figure 2.3) (Hering and Schönfelder, 2018, pp. 372f). A single accelerometer can
measure the linear acceleration along a single axis. Therefore, three of such devices
are needed to cover the three-dimensional space.

From the output of the accelerometer, the velocity v is calculated by integrating
acceleration a while the position x can be derived from integrating velocity (W3C,
2019, Sec. 3.1):

v =
∫
a · dt and x =

∫
v · dt (2.4)

Therefore, it is theoretically possible to obtain the orientation of the accelerometer
in space. But the double integral amplifies the sensors drift (see Section 2.2.5) and
renders the position x too imprecise for most applications. (W3C, 2019, Sec. 3.1)

2.2.2 Gyroscope

Gyroscopes are devices to measure angular displacement per time or so-called
angular velocity. A single gyroscope can detect the angular rate against one axis.
Therefore, three gyroscopes need to be combined to cover all three axes of space
(Hering and Schönfelder, 2018, pp. 374f.). For sensors in modern smartphones,
three so-called Coriolis Vibratory Gyroscopes (CVGs) are combined in a single MEMS
(Kalantar-zadeh, 2013, pp. 143–145).

The gyroscopes that are embedded in consumer devices like smartphones are usually
based on a vibrating mass (Figure 2.4). This mass vibrates along one axis and gets
deflected by the Coriolis force when it is exposed to a torque. The sensed deflection
is used to calculate the angular velocity of the movement. Because of the constant
high-frequency vibration, gyroscopes are among the sensors with the highest power
consumption. (W3C, 2019, Sec. 3.2)

F=D⋅v

F=K⋅x

F=m⋅a

x

Spring

Damping

Mass

Fig. 2.2.: Schematic of an accelerometer. Source: Hering and Schönfelder (2018, p. 371).

8 Chapter 2 Basics

+

−

Electrodes

Electrodes

Substrate

Case with
Electrodes

Test Mass

+ + + + +

−− − − −

Fig. 2.3.: Schematic of a capacity based MEMS accelerometer. Source: Hering and Schön-
felder (2018, p. 373).

Fig. 2.4.: Schematic of a vibrating gyroscope. Source: Kalantar-zadeh (2013, p. 145).

The angular velocity w can be used to calculate the angular distance moved during
the time span dt, which could then be used to determine the current angle θ of the
gyroscope itself (W3C, 2019, Sec. 3.2):

θnn = θn−1 + w · dt (2.5)

But like with accelerometer drift generated by noise has to be considered.

2.2.3 Magnetometer

While there are different types of magnetometers available, the most common types
used in today’s smartphones are based on Anisotropic Magnetoresistance (AMR)
or Giant Magnetoresistance (GMR). Those types can be miniaturized, show a low
power consumption as well as low production costs. But they still provide a magnetic
resolution in the order of 1–10 nT which is good enough for navigation purposes on
Earth5. (Včelák et al., 2015, pp. 1077f)

AMR and GMR are Magnetoresistance (MR) effects: if a conductor of a particular
material gets exposed to a changing external magnetic field its electric resistance
changes. This change in resistance can be measured and used to infer the strength of
the external magnetic field. Both AMR and GMR are effects appearing in ferromag-

5The magnetic field of the Earth ranges between 25,000 and 65,000 nT depending mostly on the
location of measurement. (Wikipedia contributors, 2018)

2.2 Sensors 9

Fig. 2.5.: Bosch SensorTech BMI263 IMU. Source: Bosch Sensortec (2018a).

netic materials. AMR-based magnetometers are cheaper to produce than GMR-based
magnetometers, which on the other hand are smaller, more accurate and have a
lower power consumption. (Hering and Schönfelder, 2018, pp. 13–16)

Similar to accelerometer and gyroscope, a magnetometer in a smartphone needs to
measure the strength of the magnetic field on all three axes to cope with different
possible orientations of the phone (Včelák et al., 2015, pp. 1077f). To determine
the direction in which the device is pointing the gravity vector, detected by the
accelerometer and optionally gyroscope, is needed. (W3C, 2019, Sec. 3.3)

2.2.4 IMU

A three-axis accelerometer and a three-axis gyroscope can be combined in a single
chip, sometimes also including a three-axis magnetometer. Such an Inertial Measure-
ment Unit (IMU) can be produced as small as a gyroscope or accelerometer alone.
An example of such a device is the BMI263 by Bosch SensorTec (Figure 2.5). This
Inertial Measurement Unit (IMU) covers flexible measurement ranges which can
cover from 125 °/s up to 2000 °/s of angular rate for the accelerometer and from
2 g up to 16 g for the gyroscope with a digital resolution of 16 bit. One benefit
of IMUs like the BMI263 over the standalone sensors is the possibility to include
self-calibration features. Some applications for such a device are image stabilization,
panorama panning, or gesture recognition. (Bosch Sensortec, 2018b)

2.2.5 Constraints regarding Sensor Data

While the quality of the sensor output generally increases with the development
of new smartphone generations, the data quality will keep competing with other
factors like production costs, size, and energy consumption. As those compromises
affect the data quality and analysis, it’s useful to know their possible consequences,
which influences their impact and how they can be compensated.

10 Chapter 2 Basics

One unwanted effect is the so-called “noise”: Random fluctuations appearing in the
output signal of the sensors, even if the measurand doesn’t change. The signal-to-
noise ratio is a standard metric to describe its influence and is calculated by dividing
the mean of the sensor’s signal by the standard deviation of the noise (Kalantar-
zadeh, 2013, p. 14). A gradual change in the sensor’s output occurring even if the
measurand stays constant is called “drift”. It is a systematic error and manifests itself
in a change of the sensor’s baseline, i.e. the output value that the sensor generates
without any stimulus (Kalantar-zadeh, 2013, p. 16). Inaccuracies during calibrating
the sensors can lead to a so-called “calibration error”, which systematically shifts the
signal’s output away from the input value of the stimulus (Fraden, 2016, p. 42).

Multiple internal and external factors influence noise, drift, and calibration errors.
They can even vary between the same sensors of the same batch. Some external
factors are temperature, electromagnetic signals, or mechanical vibrations (Kalantar-
zadeh, 2013, p. 14). E.g., the magnetometer experiences an offset drift depending on
the temperature of the sensor. Hard or soft magnetic material in the surrounding of
the sensor can produce magnetic disturbances as well (Včelák et al., 2015, p. 1078).
Even the intensity of the Earth’s magnetic field itself changes significantly depending
on the distance to the poles. Temperature changes are also known to cause electronic
noise (Kalantar-zadeh, 2013, p. 14). Errors from internal factors can be rooted in
construction, production, assembling, or calibration. They can slowly appear over
time, e.g., through the degeneration of the sensor’s material, which is known to
influence the drift of sensors (Kalantar-zadeh, 2013, p. 14).

Some of the mentioned constraints can be reduced by fusing data from multiple
sensors into a so-called high-level sensor. E.g., an absolute orientation sensor can be
implemented by leveraging the gravitational vector detected by the accelerometer
and the vector pointing to the North detected by the magnetometer. Additionally,
data from the gyroscope can be used to enhance those vectors. Such a high-level
sensor can provide orientation information stationary to the Earth’s plane like it is
needed for Augmented Reality applications (Figure 2.6). Such high-level sensors
often include preprocessing of the data, like removing noise with low-pass and
high-pass filters and also are available as MEMS. (W3C, 2019, Sec. 4)

2.2 Sensors 11

-X

+Z

-Z

-Y

+Y

uB

uEuN

uG

+X

N

W

Y

X

Z

Fig. 2.6.: Smartphone’s absolute orientation: Gravity vector uG from accelerometer and
magnetic field vector uB from magnetometer are used to calculate the vectors
uE pointing to East (uE = uB × uG) and vector uN pointing to North (uN =
uG× uE). Source: W3C (2019, Sec. 4.3).

12 Chapter 2 Basics

3Related Work

This chapter presents related work to this thesis in a cross-sectional manner by
comparing different methods chosen in previous studies for each step in the machine
learning process. That deviates from common practice to present related work
by sequentially describing studies one after the other. The intention behind this
structure is to provide a better overview of the possible options for the individual
steps as a foundation for the choices to make during the implementation. The
downside of this structure is that the decisions made by the different authors are
taken slightly out of context. Please refer to the original papers to get the full picture
of the individual approaches.

Table 3.1 shows an overview of studies closely related to this thesis, which means,
they are investigating CA using only smartphones’ sensor data, leveraging at least
one inertial sensor and relying on regular6 smartphone usage. Related studies that do
not quite match these criteria but are regularly referenced in the field of CA are listed
in Appendix A.1. It is important to note that the experimental setups of the different
studies differ regarding various important aspects, like the used datasets, the usage
of different sensors (between 1 and 30 different sensor modalities) and differences
in the evaluated attack scenarios. Due to those differences, the performance metrics
reported in the table are not directly comparable!

3.1 Datasets

Even though there are multiple public datasets available containing smartphone
sensor data for the purpose of activity recognition7 those are usually not useful for
CA, because the datasets were recorded in very controlled environments, with fixed
mounted smartphones or published without subject information. One exception is
the “Complex Human Activities Dataset (CHAD)” (Shoaib et al., 2016) as a collection
focused on activity recognition, which also has been used for CA by E.-u.-Haq et al.
(2017). It is limited to 10 subjects performing predefined activities for about 3–5 min
and are thus not comparable to a real-world scenario.

6The user doesn’t have to adjust his behavior or perform additional actions for the authentication.
7E.g. “Smartphone-Based Recognition of Human Activities and Postural Transitions Data Set” (Reyes-

Ortiz et al., 2015) or “WISDM Activity Prediction” (WISDM Lab, 2012).

13

Tab. 3.1.: Key-Studies in the field of CA using mobile phone sensors, ordered by year of publication. Column
“One Class” (OC) indicates if only owner data is used during the final classification. The metrics for
performance and detection delay are listed as reported by the authors.

Study Features Best Model OC Dataset Performance (%) Delay

Frank et al. (2010) Constructed Time-delay embeddings no Custom Acc. 100% –

Shi et al. (2011) Constructed Ensemble of various no Custom Acc. > 95 –

Zhu et al. (2013) Constructed Continous n-gram yes Custom TPR 71.3, FPR 13.1 4.96 s

Kayacik et al. (2014) Constructed Temporal/spatial model yes LLT, Custom Acc. 53.2–99.5 122 s

Lee and Lee (2015) Resampled SVM no Custom Acc. 90.23 ~20 s

Roy et al. (2015) Raw HMM yes Custom EER 0–12.85 21–1a

Sitová et al. (2016) Constructed SMD yes H-MOG EER 7.16–10.05 ~80 s

Neverova (2016) Deep DCWRNN + GMM yes Custom EER 8.8–18.17 30 s
H-MOG – –

Centeno et al. (2017) Raw Autoencoder yes H-MOG EER 4.5 20 s
CrowdSignals EER 2.2 20 s

Lee and Lee (2017) Resampled RF + KRR no Custom Acc. 98.1 6 s

E.-u.-Haq et al. (2017) Activity Seq. BN no CHAD Acc. 94.57 5 s

E.-u.-Haq et al. (2018) Constructed DT no CHAD Acc. 97.7 5 s

Centeno et al. (2018) Deep Siamese CNN + OCSVM yes H-MOG Acc. 97.8 1 s

Shen et al. (2018) Constructed HMM yes Custom FAR 3.98, FRR 5.03 8 s
H-MOG FAR 5.13, FRR 6.74 –

Li et al. (2018) Constructed OCSVM yes H-MOG EER 4.66 5 s

Li et al. (2019) Constructed KRR yes H-MOG EER 3.0 –

Deb et al. (2019) Deep Siamese LSTM – Custom TAR 97.15 when FAR 0.1 3 s

a number of touch actions

The dataset “LiveLab Traces (LLT)” (Shepard et al., 2011) consists of smartphone
data from 35 users and includes multiple sensor modalities besides the inertial
sensors, like app usage and call information. On the downside, the duration of the
data captured per user strongly varies from a few days to close to a year.

Another ambitious project called “CrowdSignals” tried to collect a vast amount
of smartphone sensor data for multipurpose analytical use cases. But after their
crowdfunding succeeded, they only published a small dataset sample until today
(AlgoSnap Inc., 2015). However, at least Centeno et al. (2017, p. 5) achieved to get
early access to the dataset for their research.

To my best knowledge, until now, there is only one publicly available dataset
specifically for CA, which was collected by Yang et al. (2014b). It’s commonly
referred to as the “Hand Movement, Orientation and Grasp (H-MOG)” dataset and
consists of data by inertial and touch sensors and was produced by 100 subjects
during 24 sessions. In those sessions, the users had to perform predefined activities

14 Chapter 3 Related Work

mirroring realistic scenarios. While the dataset is of good quality, two aspects are
limiting its usefulness for the use case of this thesis: All sessions include active usage
of the smartphone, and they are of a pretty short duration of 5–15 min. The dataset
became quasi-standard because of its public availability, proper documentation and
ease of use. It was leveraged by various researchers, as a primary dataset by Sitová
et al. (2016), Centeno et al. (2017), Centeno et al. (2018), Li et al. (2018), and Li
et al. (2018) or for benchmarking of different approaches by Shen et al. (2018).

Other researchers like Roy et al. (2015), Neverova (2016), Shen et al. (2018),
and Deb et al. (2019) undertook the effort to collect custom datasets but did not
publish them. Outstanding in the aspect of scale is the collection of Neverova (2016,
pp. 179f) which was performed by Google as part of a project called “Abacus”8:
It is reported to include data from approximately 1500 users captured in real life
situation. The dataset with probably the most features was collected by Deb et al.
(2019, pp. 3f) and is supposed to include 30 different sensor modalities captured in
a real-world setting.

3.2 Data Preprocessing

The input data for machine learning algorithms must be provided in an adequate
amount, structure, and format for the particular task. Data preprocessing comprises
of a set of techniques to transform raw data into the desired form. The decisions to
be made during this process strongly influence the performance and characteristics
of the final model. (García et al., 2015, p. 10)

The steps performed during data preprocessing depend on the characteristics of the
raw data, the targeted machine learning model, and its use case specific application.
It is not surprising that the studies related to CA using smartphone data applied
quite different techniques during this process. The following section summarizes
relevant approaches. If not explicitly stated otherwise, the studies do not provide
clear information about the impact of those specific steps. This section is meant as
an overview of options and doesn’t conclude any recommendation.

3.2.1 Noise Filtering

During the process of collection, it is unavoidable that the data gets contaminated
by imperfections to a certain degree. This kind of noise affects the performance and
robustness of the machine learning models trained with this data. Noise filtering

8The project “Abacus” was guided by Google Inc. to eliminate the necessity of protecting smartphone
applications with passwords. (Neverova, 2016, pp. 6f)

3.2 Data Preprocessing 15

denotes a set of techniques used to improve data quality before feeding it to the
model for training. (García et al., 2015, pp. 107f)

To reduce noise in the sensor’s signal (see Section 2.2.5), E.-u.-Haq et al. (2018,
p. 27) applied a smoothing filter with a length of 3 samples at 50 Hz frequency,
while Deb et al. (2019, p. 5) leveraged Fast Fourier Transform (FFT) to handle and
remove noise by mapping the measurements of the movement sensors from time
domain to frequency domain.

Shen et al. (2018, p. 51) propose a process called “kinematic information extraction”
composed of two steps for filtering data of inertial sensors and touch events. First,
the gravity component of the accelerometer’s signal is removed by employing a
Kalman filter under the assumption that the device’s acceleration without distortion
by gravity reflects the motion of the smartphone more accurately. In a second step,
noise reduction is performed by decomposing the signals using wavelet functions,
applying threshold analysis to the components, and afterward reconstructing the
original signal by using the inverse wavelet functions. This approach acknowledges
that signal noise appears at the whole spectrum of frequencies of the signal sensor.

Reyes-Ortiz et al. (2015) also separated the gravitational and movement components
from the acceleration signal but decided to use a Butterworth low-pass filter with
0.3 Hz cutoff frequency to target the assumed low frequencies of the gravitation.

3.2.2 Manual Feature Construction

Feature construction is the application of a set of operations to a set of existing
features to generate new features. Whereby those new features do not yield any
new information, but might describe the existing information in a form that is more
suitable for specific models or applications (García et al., 2015, p. 189). This step
was applied in the majority of the examined studies “manually”: the transforming
operations where chosen cognitively by the researchers.

It is common to compute features by applying a sliding window and calculating
various metrics for analysis of time series like sensor data. The set of aggregation
functions used for CA have already been widely tested in related fields like activity
recognition (E.-u.-Haq et al., 2018, p. 28). From the commonly computed features
(see Appendix A.2), the following have been reported to be quite useful for the task
of CA: energy9, entropy, minimum, maximum and mean of gyroscope as well as
energy and entropy of accelerometer. (Shen et al., 2018, pp. 52f)

9“Energy” is also often denoted as “signal magnitude area” or just “magnitude”.

16 Chapter 3 Related Work

The window parameters used for the aggregation range from 0.5 s to 5 s for window
size, the step-size from 50% overlap to no overlap (E.-u.-Haq et al., 2018, p. 28;
Reyes-Ortiz et al., 2015).

Beside fixed window parameters also cycle-based approaches have been evaluated.
Here the features are aggregated from cycle to cycle, e.g., from step to step during
gait. This cycle based approach performed weaker than the segment based procedure
with fixed window parameters. The main difficulty seems to be inaccurate cycle
detection in real-world environments, e.g., if the smartphone is not fixed to the body
but is held loosely in hand or pocket. (Al-Naffakh et al., 2018, p. 17)

Li et al. (2018) and Li et al. (2019) transferred “data augmentation” strategies known
from image classification to construct additional features by applying permutation,
sampling, scaling, cropping and jittering to the samples of a particular window length.
They report promising results on the H-MOG dataset (Li et al., 2018, pp. 5f). To me,
the study does not clarify if this approach basically optimizes the classification for the
given dataset or if it generalizes well enough to be used in a real-world scenario.

Even more advanced strategies were applied by Sitová et al. (2016, pp. 878–880),
who crafted the H-MOG features, a set of metrics designed to capture grasp resis-
tance and grasp stability during a touch event, and combined them with features
representing tap and keystroke actions.

3.2.3 Data Reduction

It is common to reduce the number of features and instances used as model input
to lower the computational effort, while maintaining a large amount of distinctive
information of the original data. This process is also known as “dimension reduction”
and regularly performed by grouping multiple features or selecting a meaningful
subset of features. Equivalent methods performed on the instances are categorized
as techniques for “data sampling”. (García et al., 2015, pp. 147f)

Shen et al. (2018) reduced their feature space from 192 features to 38 by calculating
the Mutual Information (MI) score and the Fisher score regarding the class variable
and applying a threshold to discard features with MI score below 0.5. They identified
the energy and the entropy of the gyroscope’s signal as the most informative features.
Kurtosis, skewness, and cross-mean rate resulted in MI scores below 0.5 for all
sensors. Besides, Shen et al. (2018, pp. 51f) drastically reduced the number of
samples by analyzing only the sensor data generated during touch events.

3.2 Data Preprocessing 17

Al-Naffakh et al. (2018, pp. 20–22) proposed a “dynamic feature vector” and in-
dividually selected a particular subset of features for every owner. As selection
criteria the means of every feature of the owner have been compared to the means
of every individual impostor. The more often the feature’s mean of the owner differs
from the feature’s mean of an impostor by at least standard deviation, the more the
feature is considered to be helpful. After this scoring, the most useful features were
selected, with the best results between 30 and 80 features. From my point of view,
this approach seems to be kind of simplified Gaussian Mixture Model (GMM).

Neverova (2016, p. 182) used the well-known Principal Component Analysis (PCA)
to transform the features into lower-dimensional space while preserving as much
variation in the data as possible. Sitová et al. (2016, pp. 881f) also applied PCA but
with the primary purpose of removing possible correlation between the features as a
precondition for their classifiers.

3.2.4 Deep Features

A different approach that aims to reduce the number of manual steps and decisions
needed for data preprocessing is to leverage ANNs to transform raw data into a
meaningful representation with lower dimensionality. The ANNs are supposed to
learn functions equivalent to techniques like filtering, manual feature construction,
and dimensionality reduction during their training. The main downsides of this
approach are the difficulty in identifying the best network architecture, the low
interpretability of the learned transformation functions and often the need of a large
amount of data plus compute power for training.

Neverova (2016, pp. 175ff) compared several network architectures regarding
their ability to learn deep features in the context of Continuous Authentication
(CA): CNN, vanilla Recurrent Neural Network (RNN), Long Short-Term Memory
(LSTM), and Clockwork Recurrent Neural Network (CWRNN). She also proposed a
new architecture named Dense Clockwork Recurrent Neural Network (DCWRNN)
(Figure 3.1).

The DCWRNN is a modification of the CWRNN, which captures patterns within
different temporal scales (“slower” and “faster” patterns) by partitioning the units
of the hidden recurrent layers in different groups with different update frequency,
the so-called frequency bands. In the original CWRNN, different subsets of units
in the low-frequency bands are active over time. That slows down the learning
process and results in possibly different responses to the same input at different
times during testing. The DCWRNN compensates these shortcomings by introducing
parallel threads shifted with respect to each other. (Neverova, 2016, pp. 176–179)

18 Chapter 3 Related Work

input , x (t) x (t + 1)x (t−1) x (t + 2)x (t−2)

V V V V V

k= 0

k= 1

k= 2

h (t−1) h (t) h (t + 1)

WWW W W

U UUU UU

h(t + 2)h (t−2)

ỹ (t + 1)output , ỹ (t)ỹ (t−1)ỹ (t−2) ỹ (t + 2)

input , x (t) x (t + 1)x (t−1) x (t + 2)x (t−2)

V V V V V

k= 0

k= 1

h (t−1) h (t) h (t + 1)

WWW W W

UUU UU

h(t + 2)h (t−2)

ỹ (t + 1)output , ỹ (t)ỹ (t−1)ỹ (t−2) ỹ (t + 2)

k= 2

U

Fig. 3.1.: Comparison of the original Clockwork RNN (top) with its sometimes inactive
units (grey) in the lower frequency bands (green, blue) and its modification called
Dense Clockwork RNN (bottom). Source: Neverova (2016, p. 177).

Centeno et al. (2018, pp. 3f) used a different network architecture. They trained
a Siamese CNN to learn features representing the difference in raw sensor data
between the owner and impostors. During authentication, this model computes deep
features, which are then fed into an OCSVM. This approach was reimplemented as
part of this thesis and is described in detail in Section 4.5.2.

During the writing of this thesis, Deb et al. (2019, p. 5) published another variant:
They claim to improve the quality of deep features generated by the Siamese network
by using LSTMs instead CNNs for the two sub-networks (Figure 3.2).

Fig. 3.2.: Architecture of Siamese LSTM. Source: Deb et al. (2019, p. 5).

3.2 Data Preprocessing 19

3.2.5 Context Information

All the studies that evaluated the authentication performance of their models regard-
ing different user contexts (e.g. “sitting”, “standing”, “walking”) revealed significant
varying performance of the same model in different settings. E.g., models tend to
perform better when the user is walking compared to when he is sitting.10

Therefore, it is possible to take circumstances into account by detecting the user’s
context and using different authentication models for those different situations. Lee
and Lee (2017, p. 304) tried classifying the samples into four different contexts first
but ended up using two different context models in the end. E.-u.-Haq et al. (2017,
p. 206) differentiated between six activities but provide classification metrics only
for the final authentication model and not for the context classification itself.

3.3 Classifiers

The main task during CA is to classify the incoming sensor data of the device as
produced by the owner (positive class) or as produced by an impostor (negative
class). In related studies, this problem was either interpreted as a binary classification
problem or as a problem of novelty detection, whereas only data of the positive
class is used during classifiers’ training. Consequently, classifiers based on those two
types of machine learning algorithms have been evaluated. This section provides an
overview of models which are considered to be most relevant.

3.3.1 Gaussian Mixture Model

Gaussian Mixture Model (GMM) is a generative probabilistic algorithm to model
input data as a mixture of multi-dimensional Gaussian probability distributions and
can be used similar to k-Means as clustering algorithm (VanderPlas, 2016, pp. 476f).
As a consequence, it can also be used to represent the feature density of each class
and predict probabilities of membership to these classes for an input vector. This
enables the use of GMM for classification tasks (Hastie et al., 2009, p. 463).

One aspect that makes GMM interesting for CA is the possibility to train a so-
called Universal Background Model (UBM) first using an iterative Expectation-
Maximization algorithm on all data and to later adapt this more generic model to
new training data by retraining it using Maximum A Posteriori estimation (Reynolds,

10Shen et al. (2018, p. 55) reported the only exception and presented better results during sitting than
walking, but the Hidden Markov Model (HMM) used in this study also is quite different from the
other approaches.

20 Chapter 3 Related Work

2009). Hence, it’s possible to do a compute-expensive pretraining of the GMM
centrally with data from all subjects included in the training dataset, then distribute
the UBM to the individual smartphones where it can be updated with the owner’s
data, which doesn’t even have to be included in the central training dataset.

Neverova (2016, p. 173) leverage this approach by pretraining the GMM on a large
amount of data with deep-features generated by their DCWRNN (see Section 3.2.4),
then retraining this generic UBM individually for every user and combining both
UBM and individualized user model as an ensemble classifier.

3.3.2 One Class Support Vector Machine

OCSVMs are a variant of the well-known Support Vector Machines (SVMs), a class
of linear algorithms leveraged for solving e.g., classification or regression problems
(Zhang, 2017). OCSVMs are trained with data limited to a single class to perform
Novelty Detection on the testing data. As OCSVM is one of the models used for this
thesis, it is described in more detail as part of the concept chapter in Section 4.5.

Sitová et al. (2016, p. 880) tested an OCSVM with Radial Basis Function (RBF)
Kernel against two other single class models, Scaled Euclidean Distance (SED) and
Scaled Manhattan Distance (SMD). They report OCSVM to result in the highest and
therefore worst EER, but with the remark that the performance of the three models
was close to par for walking scenarios and only strongly deviating in sitting situations
(Sitová et al., 2016, p. 882). Shen et al. (2018, p. 54) used an OCSVM with an
RBF Kernel as one of their baseline models and reported worse results compared to
their main Hidden Markov Model (HMM). Centeno et al. (2018, p. 5) leveraged the
OCSVM with an RBF Kernel as their only authentication model.

Lee and Lee (2015, pp. 5f) used a standard SVM as their only authentication
model first, but later tested it against Kernel Ridge Regression (KRR), a Naive
Bayes classifier, and a Linear Regression. The SVM was almost as good as the best
performing KRR model regarding the classification results but was rejected in favor
of KRR because of SVM’s higher computational needs (Lee and Lee, 2017, pp. 302f).
In the study by E.-u.-Haq et al. (2018, p. 31), the SVM performed better than the
competing models k-Nearest Neighbors (k-NN) and Decision Tree (DT).

3.3.3 Hidden Markov Model

Roy et al. (2015) was among the first employing Hidden Markov Models (HMMs)
for CA using smartphone sensor data. The underlying idea is that subsequent user

3.3 Classifiers 21

interactions can be interpreted as states in a Markov Process, where a stochastic
function can represent the transitions between different states. Such HMMs can
be used as a one class classifier and trained with only data from the owner. Roy
et al. (2015) analyzed user interactions with their smartphones and identified the
two most common touch gesture types: slide and tap gestures. For those they
build two separate classifiers, each consisting of three HMMs, one for each data
source: “touch”, “vibration” and “rotation”. The likelihood scores of the classifiers
are averaged to get a combined score. That ensures robust results, even if data
from a single sensor is unavailable for a certain time. When classifying multiple
subsequent gestures, their mean in a specific window is used as the authentication
score to provide more robust results. (Roy et al., 2015, pp. 1311–1313)

Shen et al. (2018) implemented a similar HMM based classifier. By using a larger
pool of subjects from their own data collection, they claim to have been able to
extract more informative behavioral features and improved the results of the classifier
to an EER between 4.74% and 9.73% depending on the usage scenario.

Quite refreshing in the study by Shen et al. (2018) is their extensive evaluation.
E.g., they discovered, that EER seems to decrease when the amount of training
data gets too big: They tested short-, medium-, and long-term scenarios with mean
training events of 154, 201 and 624, and reported EERs of 6.23%, 4.03% and 8.11%.
Shen et al. (2018) suspect the longer time span between training and testing events
as a reason for this observation. During the evaluation, the HMM based classifier
revealed better results than a competing SVM and an ANN model. The authors
argued the HMM captures the temporal nature of the sequence of events better than
the other models. (Shen et al., 2018, pp. 56f)

3.3.4 Artificial Neural Networks

Besides being leveraged to generate deep features (see Section 3.2.4), ANNs were
also studied as classifiers during authentication. Shen et al. (2018, pp. 54f) tested a
three-layered Multilayer Perceptron (MLP) as comparative model against their main
HMM classifier as well as against an OCSVM. The architecture consists of n input
nodes for n features, n · 2 nodes in a single hidden layer and a single node in the
output layer. This node’s output is then used as the classification score. The neural
network performed worst for all tested scenarios. However, the publication misses
information on how exactly the MLP was trained in a one class approach.

Centeno et al. (2017) studied the use of an autoencoder as authentication classifier.
They presented very promising results, but there are some open questions regarding
the implementation, which I want to describe in the following in more detail.

22 Chapter 3 Related Work

In general, an autoencoder is a type of Artificial Neural Network (ANN) that is
unsupervised trained to first encode a given vector from the input layer into a
representation, the so-called code, which is described by a hidden layer of the
network, and afterward, reconstruct the input from the code. The reconstruction is
served in the output layer. It would not be especially useful if the autoencoder would
be able to reconstruct the input vector exactly. Therefore, some restrictions are set
upon the network which forces the autoencoder to approximate and only learn those
aspects of the input data, which are most useful to reconstruct input vectors as good
as possible. For some applications of autoencoders, the ability to reconstruct is only
a means to an end for learning to generate the code, which can be leveraged for
feature learning or dimensionality reduction. (Goodfellow et al., 2016, p. 499)

For an overview of the different autoencoder variants, I recommend Goodfellow
et al. (2016, Chapter 14), while Hinton and Salakhutdinov (2006) describe the
under-complete autoencoder in more detail.

The variant of autoencoder, that Centeno et al. (2017, p. 4) leveraged for smartphone-
based CA, is the under-complete autoencoder (Figure 3.3). In this architecture, the
hidden layer representing the code has smaller dimensions than the input data and
thereby forces the autoencoder to learn a useful representation. During the learning
process, a loss function, which describes the dissimilarity between the input vector
and its reconstruction, is minimized. (Goodfellow et al., 2016, pp. 500f)

Centeno et al. (2017, p. 4) trained the autoencoder with samples from the owner in
a single class approach. The idea is that the network learns to reconstruct the data
from the user, which it was trained on, better than the data from unknown users.
The distance between the input vector and its reconstruction is expected to be lower
for samples from the owner, than for a sample from an impostor. The samples are
classified binary by applying a threshold on this distance.

One aspect in the given implementation surprised me: Centeno et al. (2017, p. 6)
used 1500 units in each hidden layer (they tested three setups using one, three,
and five hidden layers). As they took 500 samples as input vector, and each sample
consists of three values for each axis of the accelerometer, it means that the autoen-
coder actually was not set up as an under-complete autoencoder like depicted in
their architecture chart (Figure 3.3). Also, no other kind of regularization like the
sparse penalty is mentioned but would be expected for such an architecture. Via
correspondence11 I learned that different numbers of hidden units have been tested
(e.g., 1500 × 750 × 350 × 750 × 1500) but ended in similar results which was also
surprising to hear.

11E-Mail by M. P. Centeno, 26th Feb. 2019.

3.3 Classifiers 23

Fig. 3.3.: Autoencoder architecture with one hidden layer. ax1, ay1, az1 . . . axn, ayn, azn

are a set of accelerometer measurements taken as input, h1 . . . hn are activation
functions generating the code. W and b denote weights, and bias vectors learned
by the encoder and decoder sections. Source: Centeno et al. (2017, p. 4).

3.4 Evaluation Settings

An aspect that came to my attention during the review of related studies is the
absence of any kind of standardized approach for evaluating the performance of the
models in the context of CA. The different evaluation settings used by the authors
prevent any meaningful comparison between the studies. It is concerning that this
situation does not stop most authors from comparing the metrics directly. This
section describes aspects of the evaluation which are considered to be most relevant
and tend to be handled differently in the various studies.

One of the issues which make direct comparison impossible is that the studies use
different metrics to report the performance of their approaches (s. Table 3.1). The
Equal Error Rate (EER), one of the standard metrics for the biometric authentication
system (see Section 2.1.4), is reported as a metric by roughly one-third of the stud-
ies. Nearly half of the studies report accuracy (number of correctly classified objects
divided by total number of objects) as the classification metric. Even if this metric
is applied to balanced datasets12, it doesn’t reveal if the model has weaknesses
regarding false positives or false negatives, which has important implications for
authentication use cases. Most studies provide at least Receiver Operating Character-
12For datasets with unbalanced classes, accuracy is significantly harder to interpret and compare. If

in such cases the class distribution is not reported along with the accuracy, the metric becomes
meaningless.

24 Chapter 3 Related Work

istic (ROC) plots to give these insights. A minority of studies reported only FAR and
FRR as their primary metrics. As those metrics are parts of a trade-off, it needs a
justification for reporting specific values. None of the affected studies explicitly states
such an explanation, but at least they all provide plots comparing FAR and FRR.
Those plots suggest that the reported values maybe were selected using elbow-points.
Deb et al. (2019, pp. 7f) reported the True Acceptance Rates (TARs) corresponding
with FAR 1% and 0.1% without stating reasons for those thresholds.

Another problem is what is reported as the final authentication metric. E.g., Deb et al.
(2019) present metrics for the ability of their Siamese LSTM to distinguish positive
pairs and negative pairs as “authentication performance”, but without stating how
the classification was done.13 It is also unclear to me how this approach should
be implemented in a real authentication situation, especially how the positive and
negative pairs should be generated in such a case, and if the results would be
comparable. E.g. Deb et al. (2019, p. 6) compared their metrics with the metrics
reported by Centeno et al. (2018), but they both were derived quite differently:
Deb et al. (2019) reported the outcome of classifying positive and negative pairs
with their Siamese LSTM, while Centeno et al. (2018) used the Siamese CNN to
generate deep features as an input for a subsequent OCSVM and reported the final
authentication metrics. In my opinion, Deb et al. (2019) compares metrics of a
binary classification approach with metrics of a more difficult one class approach.

Some studies distinguish the performance regarding different usage scenarios like
walking or sitting, and report the metrics separately (Sitová et al., 2016, p. 877;
Shen et al., 2018, pp. 55f), while others report overall results (Centeno et al., 2017,
pp. 7f; Li et al., 2018, p. 11).

As a third problem, the evaluation setup varies a lot between the studies. Centeno et
al. (2017, p. 7) report the average of cross-validating 10 random “attack scenarios”,
where such a scenario is defined as classifying testing samples from the owner, whose
data was used to train the model, against the same number of samples from another
randomly selected user (1 vs. 1). On the other hand, Li et al. (2018, p. 6) classified
a certain amount of the owner’s samples along with the same amount of samples
randomly drawn from all 98 other users’ data (1 vs. all). Additionally, while most
studies reported the metrics for classifying a single sample, others like Shen et al.
(2018, p. 54) and Roy et al. (2015, p. 1313) report a “robust” value, which improves
accuracy by calculating the mean of the individual sample’s score across a sliding
window. Those different approaches are valid and justified, but make the results
harder to compare.

13One possibility would be a threshold on the Euclidean distance between the deep features. Another
would be an additional single node layer in the network using the deep features as input.

3.4 Evaluation Settings 25

Finally, different datasets contribute to the difficulty of comparison. At least Shen
et al. (2018) and Centeno et al. (2017) report results using the H-MOG dataset as
a reference along with a second dataset. But due to limitations of the dataset, this
is not always possible, e.g. Neverova et al. (2016, p. 1815) stated, H-MOG is too
small for their approach, other studies like Deb et al. (2019, p. 2) leveraged sensor
data that is not included in H-MOG. To my best knowledge, Sitová et al. (2016) (the
authors of H-MOG) were the only researchers to publish their datasets. Therefore,
all other studies with custom datasets are not reproducible.

As described above, the direct comparison of the various studies’ results is difficult.
Therefore, it is important to value the contributions of Khan et al. (2014) and Shen
et al. (2018) who are so far the only ones to provide comparative studies for the
different approaches. Khan et al. (2014) reimplemented six approaches published
between 2010 and 2014, including three approaches leveraging inertial sensors.
They evaluated accuracy, training delay, as well as computational complexity. Shen et
al. (2018), as part of assessing their own approach, also reimplemented six different
approaches published between 2013 and 2016. They used their custom dataset as
well as H-MOG for the evaluation. The result of this comparative study provides a
different view on the performance of the various models than the individual results
reported by the different authors do. Unfortunately, Shen et al. (2018) only provide
FAR and FRR as classification metrics. They also stated that their results should not
be generalized, and further investigation would be needed for a realistic comparison.
(Shen et al., 2018, pp. 58f)

26 Chapter 3 Related Work

4Concept

This chapter describes the ideas behind the implementation of Continuous Au-
thentication (CA) using smartphones’ inertial sensors presented in this thesis. It
condensates the options and knowledge gained from related studies (see Chapter 3)
into a coherent concept fitting to the circumstances of this thesis.

First, I describe the general idea of how to apply smartphone based CA in practical
use cases. Then I justify the design decisions I made before implementation and
explain the algorithms which have been identified as promising. Evaluation criteria
for testing the performance of the applied models are presented as well as the
evaluation setup in which those metrics should be computed to gain valid results.

4.1 General Idea

The general idea behind smartphone based CA is to estimate the probability of the
current smartphone’s user being the smartphone’s owner. That idea is built upon the
premise that a smartphone is typically tied to a single person, the owner, and not
regularly shared among multiple persons.

In a practical use case, the authentication process would be divided into three phases:
First, an enrollment phase, followed by continuous authentication and updating
phases. The last phase, which is needed to keep the model up to date over a longer
time-span, is not in the scope of this thesis but could look similar to the enrollment
phase. I present the first two phases in the following as a generic framework, not a
concrete architecture. It is designed upon an authentication framework presented
by Crouse et al. (2015, p. 137).

In the enrollment phase, the smartphone gathers data, which is used to train a model
for authentication (Figure 4.1). This model is then evaluated, e.g., by testing it with
the owner’s data and a predefined set of impostor data. If the model is considered
as not good enough, more data will be gathered, and the model will be retrained
and reevaluated. If the model meets the evaluation criteria, it is stored for usage
in the authentication phase. But before switching to the authentication phase, it is
necessary to check additional criteria like if the smartphone is still in possession of

27

Invalid Model
Locked State

Valid Model
Locked State

Device in
possession of

owner?

Gather more
behavior data

Train CA-model
No

No

Yes

Yes

CA: Continuous Authentication

Evaluate model Evaluation
criteria met?

Store
trained model

Verify possession

Fig. 4.1.: Schematic of the enrollment phase of the proposed authentication framework.

Valid Model

Locked State

Valid Model

Unlocked State

System in
locked state?

Fallback
authentication

successful?

Gather
behavior data

Classify data
(CA)

Authentication
successful?

Ask for password,
PIN or fingerprint

(KA/BA)Yes

No

Yes

Yes

No

No

CA: Continuous Authentication, KA: Knowledge-based Authentication, BA: Biometrical Authentication

Fig. 4.2.: Schematic of the authentication phase of the proposed authentication framework.

its legitimate owner. Otherwise, an attacker could take the smartphone during the
enrollment phase, train the model with his data, and get access to the system, before
the legitimate owner reports the loss of his device.

In the authentication phase, the device starts in a locked state and begins to gather
data for analysis continuously (Figure 4.2). If the classification detects an appropriate
certainty of the device being in possession of its legitimate owner, the authentication
is considered successful and the device switches to an unlocked state. The device gets
locked if the likelihood falls below a threshold. As a fallback, the user should be able
to authenticate using standard methods like a PIN or two-factor authentication.

The steps for the enrollment phase could be processed locally on the phone, but
model training and evaluation in the cloud could be possible, too. The authentication
phase should not rely on a network connection and should be processed only locally.
The authenticated “locked state” does not necessarily need to correspond with the
lock state of the smartphone’s operating system. It is meant more generic and can,
e.g., reflect the authentication state against a third party system that communicates
with the phone over network or Bluetooth.

28 Chapter 4 Concept

4.2 Use Case

Different use cases for smartphone-based CA are tightly bound to the smartphone
usage itself, where, e.g., login data is automatically provided to applications running
on the smartphone, or where the phone is automatically locked if it is taken out of
the owner’s hands.

The general use case for CA considered in this thesis, on the other hand, is focused
on authentication against third-party systems unrelated to the owner’s usage of the
smartphone. Such systems could be services that create an alert if a smartphone was
taken from its legitimate owner, or physical access control systems like safes, which
could use the presence of an authorized person as an additional authentication factor.
The proof of authentication could be provided as a token over network or radio
contact to the third party system performing the authorization, but this transmission
is out of this thesis’ scope. Nevertheless, the differentiation between those use case
types has an impact on the design decisions presented in the following section.

I will reason in the following section, that the use case considered in this thesis
has some different requirements than use cases that are bound to the smartphones’
usage. The targeted operational area is office space and also has an impact on
the requirements. It has to be considered that the behavior of the users and their
smartphone usage might differ in business situations from private situations.

4.3 Design Decisions

Some decisions strongly influence the implementation as well as the productive
operation of the system. It is essential to justify the decisions transparently, as there
is no clear right or wrong for choosing between the various design options.

4.3.1 Active vs. Passive

Passive CA is restricted to sensor data that is produced independently of smartphone
usages, such as audio signals, location data, or inertial sensors, which data can be
collected continuously. Active CA depends on active usage of the smartphone, e.g.,
texting, browsing, navigating, or calling, which produces additional data, like voice
recordings, touch data, or application usage information.

Obviously, active CA is easier to accomplish, as there is additional data available.
Also, this additional data produced by active interactions can be directly attributed to

4.2 Use Case 29

the smartphone user, while there are multiple possible sources for the data gathered
during passive CA. E.g., the touch data generated while texting via the devices’
onscreen keyboard is very likely produced by the current user, but the movements
detected by an accelerometer could be caused by the current user as well as by a
moving vehicle which transports the user.

The described use case (see Section 4.2) requires constant availability of the au-
thentication state, independently of the smartphone’s usage. Therefore, this thesis
targets passive CA. Nevertheless, data produced by active interactions could enhance
the reliability of the system during phases of active smartphone usage. Such a
combination of both approaches is out of scope for this thesis.

4.3.2 One Class vs. Binary Classification

The main task during CA is to classify the incoming sensor data of the device as
produced by the owner (positive class) or as produced by one of an unlimited number
of possible impostors (negative class).

One possibility is to interpret this requirement as a classical binary classification
problem. The selected model could be trained using data of the positive class against
a large number of impostors in the negative class (one vs. all). This approach would
make sense, if the model could generalize good enough to detect even unknown
impostors during testing, or if the use case scenario does not include any unknown
impostors at all.14 However, it would be difficult to predict, how the model would
behave with input data from an unknown impostor that’s very different from the
training data. It also would require access data from all known users available during
training or updating the model, which in practice probably would be implemented by
centralized data collection and model training, followed by distributing the models
to the smartphones. The challenges of such a setup are operational costs for central
data collection plus model distributions and privacy concerns, as the data from all
users have to be stored in a central location. On the other hand, this solution would
provide more control to improve data quality, model training, and testing, because
the data classified on the device could later be leveraged to improve the model.

Another option would be to interpret the situation as a one class problem, where only
data of the current owner is available. With algorithms of the novelty detection or
anomaly detection, a model can be trained using only the owner’s data. Such a model
can estimate if new data was produced by the same person or not. This approach
is usually more difficult than the binary classification because the suitability of the

14A possible scenario could be a facility, where only a limited amount of known people get access via
conventional access control systems, and where CA is only used inside this closed system.

30 Chapter 4 Concept

features to distinguish between users cannot be assessed during training time. On
the other hand, a one class model could be trained locally on the user’s smartphone.
Therefore, it would not have the operational or privacy-related downsides.

Of the reviewed studies (see Table 3.1), two thirds used the one class approach
for the final classification. Most of them additionally leverage multi-class data for
optimizing the feature preparation, either through manual feature engineering (e.g.,
Sitová et al., 2016), for creating a generic background model as a basis for the
individual owner models (Neverova et al., 2016), or by training a model to generate
deep features as input for the one authentication class model (Centeno et al., 2017).
Such an approach combines operational benefits from the one class approach with
the benefits of having more information available for model building. The privacy
concerns for the still needed central collection of user data could be avoided by
recruiting dedicated persons who could be asked to upload their data manually after
giving their consent. For those reasons, I considered such an approach as the most
suitable and selected it for implementation.

4.3.3 Sensor Selection

While all sensors which provide information about the smartphone’s user could
be leveraged to improve the reliability of the authentication system, there are
restrictions to be considered. As already mentioned above, some data sources
require active usage of the smartphone, which I previously discarded for this thesis
(see Section 4.3.1). Reading data from the GPS sensor needs appropriate permissions
and is not very useful in buildings. Reading information from other applications,
like messengers or keyboards, additionally requires elevated access rights to the
device, which might not be desirable for security and warranty reasons. Using
the microphone or camera as sensors could invoke privacy issues as well. Other
sensors, like gyroscope or barometer, are often missing in cheaper smartphone
models. Another aspect is the energy consumption: e.g., the continuous use of the
GPS sensor would result in a significant decrease in battery life. Patel et al. (2016,
pp. 51ff) describes more potential data sources for smartphone-based CA.

Regarding the limited scope of this thesis, I decided to use only inertial sensors:
gyroscope, accelerometer, and magnetometer. They are easily accessible, as they
don’t need any permissions on the devices operating system, they are present on
many current devices, they do not collect sensitive data from the surrounding and
have an acceptable energy consumption. And they are available in the public datasets
(see Section 3.1). It is important to note that those sensors are a good starting point
into CA for the mentioned reasons, but data from other sensors could and should be
included in a productive system to improve its reliability.

4.3 Design Decisions 31

4.3.4 Manual Feature Construction vs. Deep Features

As stated in Section 3.2.2, the majority of related studies constructed the features
for their model using manual feature engineering, while four studies leveraged
deep learning algorithms. As the generation of deep features has the potential to
combine the process of manually optimizing signal filtering, feature construction,
and dimensionality reduction in a single automated step. This approach is quite
tempting, the authentication performance reported by the authors (see Table 3.1)
seems quite promising and at least on par with other approaches. I decided to
implement such a deep feature learning approach, as one major downside of using
deep learning, missing interpretability, is not part of the evaluation criteria chosen
for this thesis (see Section 4.4),

4.4 Evaluation Criteria

It is good practice to define concrete evaluation criteria upfront to asses the per-
formance of a machine learning model. It facilitates more objective judgment and
improves the focus while proceeding with the concept and implementation phase.

A variety of metrics are available to support the quality assessment and performance
measurement of machine learning models. The challenge is to pick the right ones
for the given use case. The criteria used in this thesis are described below and have
been selected to cover three aspects:

1. Reliability of the approach as an authentication method.

2. Comparability with prior research in the same domain.

3. Constraints regarding practical application in potential use cases.

Other possible criteria had to be left out of this thesis, but have been studied by other
researchers in the domain. Those include the evaluation regarding resilience against
planned attacks (Kumar et al., 2015; Kayacik et al., 2014, p. 8–10), the adaption to
changes in the individual gait pattern over time (Horst et al. (2016); Kayacik et al.,
2014, pp. 7f), the interpretability of the created machine learning model (Horst
et al., 2018) and the energy consumption needed for authentication (Sitová et al.,
2016, pp. 887f). The computational complexity of the system is another commonly
considered criterion, especially for the part of the CA system running on the mobile
device, where processing power and battery are limited. To get meaningful results, it
would be necessary to measure the power consumption during classification on real
smartphones and set it into relation to the power consumption needed for gathering

32 Chapter 4 Concept

the sensor data. But looking at the performance improvements of smartphones as
well as machine learning frameworks, this criterion is considered to be less important
in the early stage of this study and not evaluated.

4.4.1 Authentication Reliability

Falsse Acceptance Rate (FAR), False Rejection Rate (FRR) and Equal Error Rate (EER)
are standard metrics used to describe the performance of authentication methods
(see Section 2.1.4). As the thresholds can be adapted to favor one of those metrics
on behalf of the other one, reporting FAR and its trade-off FRR seems not to be
useful in this state of model evaluation. The use case of this thesis does not contain
requirements regarding FAR vs. FRR. Therefore those metrics will be discarded in
favor of EER as a more generic and objective metric.

4.4.2 Training Delay

A classifier for CA based on behavioral metrics needs to be trained upfront with a
certain amount of behavioral data from the user who is going to be authenticated.
A new user, who is not yet known by the system, first needs to produce behavioral
data by carrying the smartphone around. This data is used to train the classifier. The
authentication functionality becomes available after this enrollment phase when the
classifier has reached an accuracy threshold. The time-span of data-gathering needed
to train the classifier upfront is the training delay. (Khan et al., 2014, pp. 266f)

The training delay is an essential metric for practical applications, as it constitutes a
limitation on potential use cases. The training delay depends on the desired accuracy
threshold to be reached and correlates with the availability of behavioral data that
the user produces during this time. It is necessary to consider these dependencies
for the interpretation of this criterion.

Khan et al. (2014, pp. 266–268) used the training delay as one of their criteria
for comparative evaluation of six different CA approaches on the H-MOG-Dataset.
Depending on the approach, a training delay between 165 seconds and 3.2 weeks
was needed to reach a classification accuracy of at least 80%.

4.4.3 Detection Delay

During the authentication phase, the trained classifier has to predict whether new
incoming sensor events were produced by the legitimate user or by an impostor.
As it is not feasible to accomplish this with a single sensor measurement, multiple

4.4 Evaluation Criteria 33

consecutive measurements are needed to decide reliably if the device is in possession
of its owner or not.

The time-span needed to gather enough consecutive events to do a classification
is called the detection delay15. An average detection delay of 30 seconds means
that a CA-system usually needs 30 seconds of consecutive data before being able
to detect that the smartphone is in possession of an illegitimate user. (Khan et al.,
2014, p. 267)

Like the training delay, the detection delay also has implications on potential use
cases. E.g., the CA-system would be of limited usefulness if it would need 60 seconds
of data before detecting an impostor, but the impostor could use the smartphone
to gain access to critical systems in less than 60 seconds. Like the training delay,
the detection delay also depends on the desired accuracy threshold and the device
movements during this time.

In their comparison (Khan et al., 2014, p. 268) reported detection delays between 2
and 10 seconds for the fastest approach and 15 minutes for the slowest approach.

4.4.4 Evaluation Setting

Selecting the metrics to use for model evaluation is important, but deciding how the
setting for evaluation should look like is crucial. It strongly influences the results.
I have already described the different configurations used in related studies (see
Section 3.4), along with some difficulties I see. As this thesis aims at getting a
realistic view of the feasibility of smartphone-based CA in a real-world application,
the evaluation setting should reflect this goal.

In general, data splitting into training, validation, and testing sets should be used.
The validation set is used to optimize preprocessing and the model’s hyperparameters.
The testing set is used only for the final model evaluation. It is crucial that no
information from the testing set leaks into the training or validation set and vice versa.
That does not only include data samples themselves, but also indirect information
like scaling parameters, which might hold information about the distribution of the
data in the target classes.

For ensemble approaches, where a generic model is trained upfront on data from all
users, and afterward a one class model is trained as the authentication classifier, it
would be desirable to include additional splitting, to train, validate and test both
models with separate data. However, due to the limited amount of data available it

15Sometimes also the term “classification delay” is used.

34 Chapter 4 Concept

might be a valid compromise to reuse data of the first model’s optimization to train
or validate the second model, as long as the dataset used for the final testing of the
authentication model is kept strictly separated.

A realistic and probably the most common attack scenario is that another individual
takes the owner’s phone. Therefore, testing samples from the owner against samples
from another single user per run is appropriate. As we consider the attacker to be
unknown, it’s essential, that no information of those impostors leaks into training
data. To get reliable results, the test owner vs. impostor should be repeated multiple
times per owner with different users as an impostor.

Regarding the different scenarios of data collection, it is appropriate to use an equal
amount of samples per walking and sitting scenarios from both the owner and
impostors to avoid bias towards one of the scenarios in the final testing. It would be
interesting to know how the distribution of the scenarios in training and testing sets
could influence the results. But this is out of the scope of this thesis.

K-fold cross-validation should be used at least for testing the authentication classifier.
K = 10 would be desirable to reduce the bias introduced in case of the training set is
too small. Depending on the training speed, it might be necessary to compromise and
decrease K. Usually 5–10 folds are recommended. (Hastie et al., 2009, pp. 242f)

4.5 Model Selection

The following sections describe the two models used for implementation. I focus
on the reasons why I selected those two models and on their central principles. For
detailed descriptions, I refer to other literature to stay in scope. The implementation
details are included in the documentation of the experiments (see Chapter 5).

The general idea is to select as baseline model and compare it against the reimple-
mentation of a more promising model from related studies. Originally, I planned to
improve the reimplemented approach afterward, after the performance evaluation, I
decided to take a step back and varied the evaluation settings instead.

4.5.1 One Class Support Vector Machine

An SVM is a model used for classification and regression problems. It belongs to a
class of classification models, which model the discriminators of the classes, instead
of the classes themselves. In a two-dimensional feature space with data points from
two classes, it finds a line that separates the classes from each other as reliable as

4.5 Model Selection 35

Fig. 4.3.: Example of an SVM classifier fitted to data with two classes (red, yellow), showing
margins (dashed lines) and support vectors (circles), for a fit with a higher (left)
and lower (right) C value. Source: VanderPlas (2016, p. 416).

possible while maximizing the margin between the line and the classes’ data points
(Figure 4.3). In higher dimensions, the discriminating line becomes a hyperplane.
(VanderPlas, 2016, p. 405)

The data points touching the margin are pivotal elements for that fit and are called
support vectors. The “sharpness” of the separating line can be tuned by a so-called
soft margin parameter C, which controls the number of data points allowed inside
the margin to enable a better fit (VanderPlas, 2016, pp. 415f). Additionally, different
kernels can be used to project the data points in higher dimensional space to improve
the fit for nonlinear boundaries. (VanderPlas, 2016, pp. 411f)

The idea of the supervised learning algorithm SVM, which needs classified data
during training, was transferred into the field of unsupervised novelty detection.
Instead of fitting discriminators between multiple classes, a discriminator is fitted
between regions with and without data points from a single class (Schölkopf et al.,
2000, pp. 582f). For regularizing the algorithm, parameter ν (nu) was introduced
(Figure 4.4). Its value is bound between 0 and 1 and is directly connected to the
fraction of detected outliers, e.g., if ν = 0.1 the model will be fit such that at least
10% of the data points are considered as outliers (Schölkopf et al., 2000, p. 588).

For in-depth explanations of the SVMs, I recommend Hastie et al. (2009, Chap-
ter 12.3), while the original paper by Schölkopf et al. (2001) describes the back-
ground of OCSVMs.

I selected the OCSVM as the baseline model for three reasons. First, the model was
already applied in multiple related studies (see Section 3.3.2), which indicates the
general suitability of the model for the given problem and, despite the variations re-
garding the evaluation approaches (see Section 3.4), might provide rough reference

16Source code: /notebooks/chapter-4-5-1-ocsvm-parameter-demo.ipynb

36 Chapter 4 Concept

=0.1 =0.1 OLs=10.2% =0.04 =0.1 OLs=10.2% =0.04 =0.25 OLs=25.1% =0.5 =0.25 OLs=27.3%

Fig. 4.4.: Example for the influence of OCSVM’s hyperparameters ν and γ when fitted with
dummy data using an RBF kernel. The decision boundaries (black) separate
normal data (magenta) from outliers (blue). Depending on parameters’ values,
the small cluster in the lower left will be interpreted as a separate cluster of
normal data (1st and 4th plots), as part of a single but larger region of normal data
(2nd plot) or as outlier (3rd plot).16

metrics. Second, Centeno et al. (2018), who’s main approaches were chosen to be
reimplemented, also used OCSVM as a baseline model. As Centeno et al. (2018) also
used the same H-MOG dataset, the results should be directly comparable. And last
but not least, OCSVM also was used by Centeno et al. (2018) as the classification
model of their primary approach which I chose for reimplementation. That leads to
synergy effects reducing effort.

4.5.2 Siamese Network

A Siamese network consists of two separate subnetworks, each with its own input
vector, and a single output. Both networks share the same weights. The output value
is derived from the distance between the output of the subnetworks and corresponds
to the similarity of the two input vectors. (Bromley et al., 1993, p. 740)

In the architecture (Fig. 4.5) used by Centeno et al. (2018, pp. 3f), the pairs of
input vectors x(i) and x(j) have a positive label y(i) if both inputs were generated
by the same user or a negative label in case the two inputs were generated by
different users. Both input vectors are transformed by CNNs into vectors of lower
dimensionality, and the distance d between those vectors is calculated. A so-called
contrastive loss function L takes both distance d and pair label y(i) as inputs and
produces a loss value, which is high if d is low and the label is negative, or d is high,
and the label is positive. If d is low and the label is positive, or d is high and the label
is negative, the loss becomes low. That effectively forces the networks to identify
and learn aspects of the data that are useful to distinguish between samples from
the same user and samples from different users.

4.5 Model Selection 37

Network 1

Network 2

Loss

x(i)

x(j)

y(i)

Shared
Weights

w, b

f(x(i))

f(x(j))

d(f(x(i)), f(x(j)))

Fig. 4.5.: Architecture of a Siamese network. Source: Centeno et al. (2018, p. 3).

To leverage the Siamese network for CA, it is upfront trained with both positive and
negative pairs from a labeled training dataset of known users. Afterward, distance
and loss functions get discarded. Only one of the networks17 is used to output the
lower dimensional features only. Those deep features are then used as input for
training and classification using an OCSVM, just like in the baseline model described
above (see Section 4.5.1). (Centeno et al., 2018, pp. 4f)

I selected this model as primary for reimplementation because it perfectly fits the
idea of extracting information from a larger dataset containing multiple users into a
generic model, which afterward can be leveraged for a one class approach with only
owners’ data (see Section 4.3.2). The input for a Siamese network is raw sensor data
and might not need effortful feature construction. Additionally, I saw a potential
for enhancement by testing different types of ANNs for the subnetworks that can
capture temporal aspects of the data, e.g., LSTM18 or CWRNN. Last but not least, the
results reported by (Centeno et al., 2018, pp. 5f) were promising, and the Siamese
network architecture was new and exciting to me.

17It does not matter which of the two networks is used: as they have the same architecture and share
weights, they are technically identical.

18While writing this thesis, a study using Siamese Network with LSTM for CA was published by Deb
et al. (2019).

38 Chapter 4 Concept

5Experiments

This chapter describes the reimplementation of two approaches presented by Centeno
et al. (2018), leveraging an One Class Support Vector Machine (OCSVM) and a
Siamese Convolutional Neural Network (CNN). Because of missing information in the
original paper, I had to make educated assumptions regarding the implementation,
which are also documented clearly.

The evaluation of both models is presented along with arguments, that some steps
used for preprocessing and testing applied in the original study have specific weak-
nesses which lead to poor performance in more realistic scenarios.

Last but not least, I propose a variant of the Siamese CNN approach that is better
applicable in a real-world scenario and leads to improved performance compared to
the original approach in the same scenario.

The following documentation is intended to contain all necessary information for the
reproduction of the experiments. The specifications of the desktop computer used
as a processing device include an Intel Xeon 3.60GHz CPU, 64GB RAM, Windows
10 and a 500GB SSD. An included CUDA capable Nvidia GPU was not leveraged
for deep learning to stay more independent of the hardware and make it easier to
execute the same code on other machines. All experiments were implemented using
Python 3.6 and commonly used public libraries. The source code has been made
publicly available on GitHub (Büch, 2019). All file paths referenced in the following
are relative to the root directory of this repository.

5.1 Project Setup

The project is structured in three main sections: All data, except for temporary
files, is stored in own section (/data/), nested into four subsections reflecting its
state (/data/external, /data/raw, /data/interim or /data/processed). Steps
related to initial data transformation and data loading are implemented as Python
modules (/src/). Data Exploration, modeling and evaluation are implemented in
Jupyter (/notebooks/), because the clarity and traceability those notebooks provide
by combining source code, documentation and output are considered to be beneficial

39

given the experimental stage of this project. Those notebooks were also used to
produce the data visualizations depicted in this thesis.

The repository contains a file with meta information denoting the versions of Python
itself as well as of the imported third-party libraries (/environment.yml) which can
be used reproduce the programming environment. It can be passed to the package
manager of the Anaconda Python Distribution19 to recreate the Python environment
I used for development. The enclosed documentation (/README.md) contains a
detailed description of all necessary steps.

5.2 Dataset

The H-MOG dataset is the basis for the following experiments. It has been collected
and made available for public download (Yang et al., 2014b). The dataset is
described in detail by its authors Yang et al. (2014a).

The data was collected in a controlled environment where multiple sessions of
smartphone usages were recorded for 100 users. In each session, the users performed
predefined tasks of the 3 types “reading”, “writing” or “map-navigation”. Additionally,
the scenario was varied as each task had to be performed while “sitting” and
“walking”. This results in 6 different session types per user. Each session was
repeated 4 times resulting in 24 sessions per user. The sensor data in the dataset
covers data of the accelerometer, gyroscope, and magnetometer at 100 Hz frequency.
Also, sensor data from screen interactions like touch, key-press, scroll, pinch, and
stroke are provided, but not relevant in the scope of this thesis.

25
64

87
38

90
15

85
64

01
87

60
11

21
87

19
52

77
96

20
18

48
62

12
76

24
82

52
89

31
98

57
92

84
27

81
35

73
35

68 ...
18

06
79

78
58

73
43

13
12

77
70

78
66

31
53

71
78

68
52

63
19

79
65

81
62

28
52

55
63

57
96

21
59

74
52

24
79

92
96

73
31

62
98

67
37

73
79

73
53

95
02

21
93

03

Subjects

0

500000

1000000

1500000

2000000

Sa
m

pl
es

Fig. 5.1.: Distribution of sample counts among subjects. The three subjects with incomplete
sessions are marked red. Only the tails of the distribution are depicted here, in
the center the sample counts decrease quite linearly.

19See https://www.anaconda.com/distribution/.

40 Chapter 5 Experiments

https://www.anaconda.com/distribution/

As the usage of the H-MOG dataset is already documented in multiple papers, its
exploration here is focused on the completeness of the data. In a first step, the
relevant CSV-files from the dataset have been converted into tables in a single
file of the Hierarchical Data Format (HDF) for performance reasons20. During
implementing the conversion process, I identified four issues:

1. Six sessions (9 to 14 of user 733162 have empty Accelerometer.csv files.

2. Some sessions have non-unique IDs in Activity.csv, resulting in an unclear
assignment of the metadata to the sensor data (e.g., for ID 100669012000002
in /100669_session_1/Activity.csv).

3. User 526319 and user 796581 have only data of 23 instead of 24 sessions.

4. The name of the data folder /hmog_dataset/207969/ is inconsistent with its
containing data, where the user is named 207696.

After the format conversion, I performed a data exploration, of which some results
are presented in the following.21

The inspection of value counts per user (Figure 5.1) revealed an imbalanced distri-
bution. For an unknown reason, the subjects with the most sensor data have over 3
times more data than the subjects with the fewest sensor data.

A histogram of the sessions’ durations (see Figure 5.2) revealed that the mean
duration of a session is around 8.6 minutes, and most of the sessions are even
shorter. That contradicts Centeno et al. (2018, p. 4) stating that each session of the
H-MOG datasets lasts about 15 minutes.

20See source code: /data/transform_to_hdf5.py.
21The full investigation, including, e.g., the complete versions of the following partial plots, can be

found in the source code: /notebooks/chapter-5-2-1-exploration-hmog-statistics.ipynb.

0 5 10 15 20 25 30 35
Session Duration in Minutes

0

50

100

150

200
mean
(8.6 min)

Fig. 5.2.: Histogram of the durations of all sessions in the H-MOG dataset.

5.2 Dataset 41

Fig. 5.3.: Distribution of sensor values of all subjects, plotted with log scale.

Fig. 5.4.: Exemplary distributions of magnetometer values along z-axis for 10 random
subjects, with outliers visible for subject 326223. Such conspicuous values are
found for all three axes, although less extreme.

Plotting the distribution of sensor data (Figure 5.3) of the whole dataset revealed,
that gyroscope’s values are very evenly distributed around zero, while accelerometer’s
distributions are left-skewed towards 10 (especially on y- and z-axis), because of
the gravity component. The x- and y-axis of the magnetometer are quite unevenly
distributed, and the z-axis includes some severe outliers. When I inspected those
magnetometer values subject-wise (Figure 5.4), it became clear that only a few users
produce those outliers.

5.3 Initial Data Preparation

The original format of the H-MOG dataset is a ZIP file containing Comma-separated
values (CSV) files organized in nested folders for users and sessions. The perfor-
mance of extracting and reading 28 GB of those files from a hard drive is quite
weak. Additionally, the data from the three sensors accelerometer, gyroscope, and
magnetometer is provided in separated files, requiring expensive joins of the sensor
values.

42 Chapter 5 Experiments

For those reasons, I implemented an initial transformation process (Figure 5.5) to
read the data from the CSV files, perform the necessary joins, remove unneeded
attributes and store the resulting tables in the Hierarchical Data Format (HDF) format
for faster read access to the data in the desired structure. The implementation of
this process has been balanced between computing performance, reusability, and
clarity, and is described in the following.

/subject_100669/session_100669_session_1/sensors_100hz
/subject_100669/session_100669_session_2/sensors_100hz
…
/subject_100669/session_100669_session_1/sensors_25hz
/subject_100669/session_100669_session_2/sensors_25hz
…

hmog-dataset.zip

hmog_dataset
├─ 100669
│ ├─ 100669_session_1
│ │ ├─ Activity.csv
│ │ ├─ Accelerometer.csv
│ │ ├─ Gyroscope.csv
│ │ ├─ Magnetometer.csv
│ │ └─ …
│ ├─ 100669_session_2
│ ├─ 100669_session_3
│ └─ …
├─ 151985
├─ 171538
└─ …

Join

HDF Store

Resample

Extract

./unzip_hmog_dataset.py

./transform_to_hdf5.py

./resample_dataset.py

Download

./download_hmog_dataset.py

Resample

/code/src/utility/dataset_loader.py

Load for further
Processing

/code/src/data/make_dataset.py

Fig. 5.5.: Process for initial data preparation mapped to corresponding Python files.

While joining the sensors’ data, I noticed, that the three sensor data files can, for a
single session, contain different numbers of sensor values and are annotated with
different timestamps. Investigating further, I discovered gaps of varying length in the
sensor readings: The sensor data is not uniformly sampled and would generate time
shifts between the sensor values if the data would be joined on row indices. Without
information, how those issues were handled by other researchers who worked with
this dataset (see Table 3.1), I decided to transform the data into a uniform sampled
time series. First, the values of each sensor are resampled to 10 ms based on their
timestamps, and existing gaps are interpolated linearly. Afterward, the resampled
values of the three sensors are joined into a single table. This created sequences
with incomplete sensor measurements on the start and end of the sessions, which
were truncated.

Metadata about the “task” performed by the proband and the “scenario” of the
recording session available in the Activity.csv files are joined with the sensor
data. The H-MOG dataset differentiates between 24 different tasks, with own IDs.

5.3 Initial Data Preparation 43

Each ID can be mapped to 1 of 6 different task-scenario-combinations, where a
task can be “write”, “read”, and “map navigate”, and a scenario can be “walking”
or “sitting”. I discarded the information about the exact task ID (1–24), because
this information was not used by Centeno et al. (2018), and joined the less granular
task-scenario-combination (1–6) instead. The metadata in the Activity.csv files
does not cover the entire time span of the sessions’ sensor recordings: There are
gaps before, after and between individual subtasks, effectively leading to periods
without any meta information. Again, in none of the related studies, this issue was
indicated, and it remains unclear how this situation was handled in previous studies.
As a single session always consists of the same task-scenario-combination, I decided
to ignore those gaps and assigned all sensor measurements of a session to the same
task-scenario combination. Measuring the effect of this decision would be desired,
but is not in the scope of this thesis.

As a sampling rate, Centeno et al. (2018, p. 5) stayed with the original frequency of
100 Hz for the OCSVM baseline model and tested 100 Hz as well as a subsample to
25 Hz for their Siamese CNN approach. For this ensemble approach, they reported
better results using the lower frequency. The original study does not explain how
exactly the subsampling was performed. Regarding the sampling scope, the correct
way is to sample each users’ sessions individually. Resampling multiple sessions per
user together in a single run would introduce a leakage of information between the
sessions through the overlapping sample-range at the start and end of the sessions.
As the sampling method, I calculated the mean over a sliding window of 4 samples.
The resampling was implemented as a step in the initial data transformation (see
Section 5.1) to avoid repeating this expensive task during the development of the
models afterward.

An option to filter out users with incomplete data was implemented in a helper
module, that is used to load the data from the HDF file for further processing.22

During implementation, I discovered discrepancies between the related studies
regarding the dataset’s completeness:23 Centeno et al. (2018, p. 4) used the H-MOG
dataset but excluded 10 of its 100 users. They stated that 90 users performed all 24
sessions of about 15 minutes in length. Those sessions consist of 8 reading sessions,
8 writing sessions, and 8 map navigating sessions. Sitová et al. (2016, pp. 879f),
Neverova et al. (2016, p. 1814) and Shen et al. (2018, p. 59) did not mention
excluding any of the 100 users. Li et al. (2018, p. 32560), also using the H-MOG
dataset, reported 2 users with “unusual” data, without revealing more details.

22Source code: /src/utility/dataset_loader.py.
23Different versions of the H-MOG dataset would explain those irregularities, but to my best knowledge,

no other than the currently available version has been published.

44 Chapter 5 Experiments

10
06

69
15

19
85

17
15

38
18

06
79

18
66

76
20

18
48

20
76

96
21

87
19

21
93

03
22

09
62

24
01

68
24

82
52

25
64

87
25

72
79

26
13

13
26

43
25

27
79

05
27

81
35

32
62

23
33

61
72

34
23

29
35

27
16

36
62

86
36

82
58

38
90

15
39

51
29

39
66

97
39

82
48

40
50

35
43

13
12

47
27

61
48

91
46

50
19

73
52

55
84

52
63

19
52

77
96

53
83

63
53

95
02

54
06

41
55

33
21

55
43

03
55

63
57

56
19

93
57

85
26

57
92

84
58

80
87

59
48

87
62

12
76

62
28

52
65

74
86

66
31

53
67

53
97

69
35

72
69

82
66

71
07

07
71

78
68

72
01

93
73

31
62

73
35

68
73

79
73

74
52

24
75

11
31

76
38

13
77

17
82

77
63

28
77

70
78

78
58

73
78

58
99

79
65

81
79

92
96

80
32

62
80

80
22

81
53

16
82

72
12

84
18

66
85

63
02

85
64

01
86

26
49

86
39

85
86

55
01

86
58

81
87

28
95

87
60

11
87

91
55

89
26

87
89

31
98

89
32

55
89

76
52

91
32

28
91

81
36

92
38

62
93

79
04

96
21

59
96

66
55

97
38

91
98

09
53

98
47

99
98

67
37

99
06

22
99

87
57

Subjects

0

4

8

12

16

20

24

Se
ss

io
ns

read + sit read + walk write + sit write + walk map + sit map + walk

Fig. 5.6.: Sessions per user for all 100 subjects of the H-MOG dataset, stacked by task-scenario-combination.
Five sessions with incomplete data from user 733162 have been excluded beforehand, the two
subject 526319 and 796581 are missing one session each.24

The results of my data exploration do not conclude with those statements. As already
shown in the previous section (see Section 5.2), the sessions are usually shorter
than 15 minutes, with a mean duration of 8.6 minutes (see Figure 5.4). Of the 100
users, only 2 did not perform all 24 sessions. Including the subject with missing
accelerometer data for multiple sessions, there are 3 users with incomplete data, not
10. The distribution of the session and their types (reading, writing, map navigating)
did not reveal further irregularities (Figure 5.6).

As it is unknown, which specific subjects Centeno et al. (2018) excluded, but I
wanted to have the same number of 90 users to have a comparable diversity in the
data, I decided to exclude the three users with incomplete data (526319, 733162 and
796581 along with users having an unusually large amount of data (256487, 389015
and 856401) or an exceptionally small amount of data (219303, 539502, 737973 and
986737) (see Figure 5.1).

The normalization of the data was one of the most significant issues during im-
plementation. The information available about how this step was executed in the
original study is limited: The only information provided by Centeno et al. (2018,
p. 3) is, that they performed channel wise min-max normalization into a range
between 0 and 1, Centeno et al. (2017) does not indicate any normalization at all.
On which scope the normalization was applied is unknown: It could be applied on
the whole dataset at once, for every subject individually, session-wise or even for
every window of samples. But not all variants make sense regarding the application
scenario. Also, it is unclear, if or how a differentiation was made between normaliza-
tion of training and testing sets: Was the data normalized before or after splitting
it into training and testing sets? A legitimate approach would be to fit a scaler on
the training set and normalize both training and testing sets using the same scaling
parameters to avoid leakage of information between the sets. An additional pitfall

24Source code: /notebooks/chapter-5-2-1-exploration-hmog-statistics.ipynb.

5.3 Initial Data Preparation 45

to avoid is the use of different scaling parameters for samples from the owner and
impostors during testing. All samples have to be normalized equally, as it is not
possible in a real-world application to distinguish between samples of the owner and
the impostor in this stage.

Through correspondence25, I learned that the normalization was performed subject-
wise and for all three models (OCSVM, autoencoder, Siamese CNN) equally.26 It
remains unclear, if and how the normalization was performed differently during the
testing phase than during the training phase. Due to those uncertainties, I decided
not to normalize the data during the initial data preparation, but instead treat the
normalization as an unknown parameter to be investigated further during modeling
in the Jupyter notebooks.

5.4 Modeling OCSVM

The OCSVM baseline model (see Section 4.5.1) in this thesis was build according
to the information published by Centeno et al. (2018). As they used the same
public H-MOG dataset, results were expected to be comparable but not equal, as
not all relevant aspects of the modeling are described in the original study. E.g.,
the provided model parameters include a range used for γ, but not its actual value
(Centeno et al., 2018, p. 5), information on the parameter C necessary for the Radial
Basis Function (RBF) is missing. Also, Centeno et al. (2018) seem not to clearly
distinguished between validation and testing sets and did not mention, how exactly
“the best accuracy rate obtained between all the results” (Centeno et al., 2018, p. 5),
which they report as the performance metric, was collected.

For those reasons, I took the information provided by Centeno et al. (2018) as the
basis for my implementation of the modeling and evaluation process (Figure 5.7),
but included additional steps not described in the original paper, notably:

• Two variations of the normalization step.

• A dedicated step for hyperparameter optimization using a validation split.

• Three evaluation steps for reporting authentication performance, detection
delay, and training delay.

Those and other adjustments are described in the following in detail, while Ap-
pendix A.3 summarizes the information provided by Centeno et al. (2018) and my

25E-Mail by M. P. Centeno, 14th Apr. 2019.
26This concludes, e.g., with Sitová et al. (2016, p. 880), who performed scaling based on standard

deviation but also subject wise and separately for every single feature.

46 Chapter 5 Experiments

90 Subjects
à 24 SessionsNormalize

Load Data

Split 60 Subjects
Train/Valid

30 Subjects
Train/Test

Run with increasing
Number of Training

Samples
Run multiple times
with 1 Test Sample

CV

Run 5 times
with default Number
of Train/Test samples

CVCV

Optimize
Hyper

Parameters
Generate
CV Splits

18 Owner Sessions

6 Owner Sessions
6x59 Non-Owner Sessions

OCSVM

Normalize
Fit/Transform
Training Data

Normalize
Transform

Validation Data

Repeat 60 times
all subjects
as owner

Repeat 59 times
all non-owners

as impostor

m Owner Samples
m Impostor Samples

n Samples

CV
Cross Validation Schema

Data of
60 Subjects

Train

Predict

Generate
Deep Features

Metrics

γ, ν

CV

Report
Detection Delay

Report
Training Delay

Report Auth.
Performance

Fig. 5.7.: Implemented process for the OCSVM (left) and details of the cross validation scheme used in several
steps (right). Three steps were executed optionally: The normalization step right after data loading
(orange) was applied for the “naive approach”, while in the “valid approach” the normalization (purple)
was applied after selecting training & testing/validation samples. The generation of deep features
(green) was only used for the Siamese CNN model (Section 5.5).

open questions along with the assumptions and modifications I made during the
implementation (Table A.3).

The Cross Validation (CV) used in the original study for training and testing is
described by Centeno et al. (2018, pp. 4f) quite well. The training of the OCSVM
is performed using data from one of 30 randomly selected subjects.27 18 sessions
per subject are reserved for training; 6 sessions are held out for testing (Figure 5.8).
Both folds consist of sessions with the same proportion of the six task-scenario-
combinations (training: 3 x 6 combinations; testing: 1 x 6 combinations). The
testing is performed in one versus one attack scenario, where 6 of the legitimate
user’s sessions are tested together with 6 sessions of another subject as an illegitimate
user. 29 of those attack scenarios were tested per owner, covering all possible
combinations with the other subjects. The whole procedure is repeated with each of
the 30 subjects as a legitimate user, resulting in 870 overall test scenarios.

The study does not provide information, how the hyperparameters optimization
was performed, and if or how a validation split was used. Therefore, I implemented
CV as follows: First, the 90 selected subjects of the dataset are split randomly into two

27Only 30 subjects were chosen because the remaining 60 subjects were used to train the Siamese
CNN in the main approach, and the number of subjects should be equal for both approaches.

5.4 Modeling OCSVM 47

Fig. 5.8.: Schema of data splitting for training and testing. The six different session types are denoted A–F.
18 sessions from one subject are used for training, 6 additional sessions from the training subject are
tested along with six sessions from one other subject. Every subject is once selected as owner and tested
against all remaining subjects.

sets: A validation set, containing 60 subjects used for hyperparameter tuning, and a
testing set, containing 30 subjects for model evaluation. These sets are then split
into training sessions and validation/testing sessions. Then one subject is selected
as “owner”, and samples from his training sessions are used for model training.
Afterward, pairs of owner’s and impostor’s samples from the validation/testing
sessions are selected for prediction, as depicted in Figure 5.8. Every subject is once
denoted as the owner, which leads to training and validation of 60 models during
optimization. To gain more robust results, I repeated the split into training and
validation/testing sessions 5 times using different seeds for the random operations.
The hyperparameter optimization was implemented as a random search, testing 80
combinations of γ and ν per run. After pretesting with a subset of the data and a
broad parameter range, the range for the random search was narrowed down and
set to the region of interest of 0.001 to 1000 for γ and 0.0001 to 0.3 for ν.

It is important to mention that the hyperparameters were optimized only once based
on the results of all subjects in the validation set. Optimizing the parameters for
every individual subject as an owner would be desirable and would undoubtedly
produce better results, but requires significantly more effort. To choose the values of
γ and ν, which are later used for the models of all subjects during testing, I calculated
the medians of the best combinations per owner found during the validation step of
the random parameter search (Figure 5.9).

48 Chapter 5 Experiments

Fig. 5.9.: Best combinations of the parameters γ and ν found per owner during the random
search, using EER as scoring metric. The size and hue indicate the mean EER
across all attack scenarios per owner.

0.00 0.05 0.10 0.15 0.20 0.25 0.3010
4

10
3

10
2

10
1

10
0

10
1

10
2

10
3

median()
0.091

median()
0.086

Mean EER per Owner
(Validation Results)

0.450
0.300
0.150
0.000

Centeno et al. (2018, p. 5) limited the amount of training data per user to 6750 ob-
servations or 67.5 seconds. It is not clearly stated, but I expect this applies to both
their OCSVM baseline model and their primary Siamese CNN model for comparable
results. With a window length of 0.5 seconds, this results in 135 training samples
per user. An equal number of samples is selected from every user’s session; in the
case of 18 sessions, these are 8 samples per session rounded up. It is not mentioned,
how many samples were used for testing, so I decided to use the same number of
8 samples per session as used for training. It remains unclear why the number of
6750 observations was chosen as training set size. Therefore, I covered this aspect
during my evaluation of the training delay (see Section 5.6).

Due to the already mentioned lack of clarity regarding the normalization (see
Section 5.3), I decided to test two different normalization approaches at this point.
First, I implemented a version, in which the data is initially normalized feature-
wise per subject using the min-max algorithm, before splitting into training and
testing sets. I refer to this variant as the “naive approach” because it introduces bias
into the testing data and is not applicable in a realistic scenario, because during
the authentication phase data from the owner and a potential impostor cannot be
distinguished upfront and therefore must be normalized using the same parameters.
Second, I implemented a variant which I named “valid approach”, where I split the
data into training and testing set upfront, fit the normalization scaler using only the
owner’s training samples, and apply the same fitted scaler to the testing samples for
both owner and impostor.

The evaluation of the model performance was split into three parts, one for each
evaluation criterion (see Section 4.4). To assess the authentication performance, CV
was performed as described above on the 30 subjects of the testing set and the EERs

5.4 Modeling OCSVM 49

for all owner–impostor scenarios were computed. This step was performed 5 times
using different seeds for the random operations to gain more robust results.

The same CV was used to evaluate the training delay, where the CV was repeated 14
times with an increasing number of samples for model training. The tested training
set sizes range from 1 and 750 samples or 0.5 and 350 seconds for the proposed
window length.

The detection delay can hardly be assessed directly, as it would require labeled
sensor recordings of scenarios, where impostors took over the phone of the owner
during the same recording session. Injecting impostor data from another session into
the owner’s session and detecting this injection would be a possible approximation,
but I rejected that idea, because it seems to be far from a realistic scenario, where
the sensor values usually do not change abruptly between one sensor reading and
the next one, as they might do in this testing scenario.28 Instead, I decided to
take the number of samples used to reach a certain confidence interval of EER as a
proxy for the detection delay. Following Illowsky and Dean (2013, pp. 445–447) the
error bound for a population mean EBM can be estimated based on the standard
deviation σ, the number of samples n and the z-score z for α

2 , where α can be
obtained with the chosen confidence level CL through CL = 1− α:

EBM =
(
zα

2

)
·
(
σ√
n

)
(5.1)

As we want to derive the number of samples n for a certain margin of error EBM ,
we can transform the formula to:

n =
⌈(zα

2
· σ

EBM

)2
⌉

(5.2)

Because it is impossible to evaluate fractions of a sample, the resulting value is
rounded up d e to the next integer value.

For my evaluation, I chose CL = 95% which results in the z-score z 1−CL
2

= z0.025 =
1.96, and a maximum margin of error EBM = 0.0025. With this formula, we can
estimate the number of samples n needed to state with 95% confidence, that the
population’s true mean EER is inside an interval of ±2.5% EER.

In the implementation, I tested single owner samples against single samples from all
other subjects as impostors, to obtain EERs for 400 individual samples per owner,
plotted the narrowing confidence interval and calculated n. As already mentioned, n
is not the detection delay. It is a proxy that indicates, how many samples are needed

28E.g., the magnetic fields of the various sessions vary a lot, maybe due to different surroundings. Such
a difference might be easy to detect by the model but is unlikely to happen in a realistic scenario.

50 Chapter 5 Experiments

until we can estimate the mean EER with a certain confidence, as one property of
detection delay.

It is also important to mention, that this calculation provides only a rough approxi-
mation: For the specific use case of biometrical authentication, where an owner’s
sample is tested against impostors’ samples pairwise, Schuckers (2009) propose a
formula, that also takes the intra-comparison pair correlation and error rate into
account for calculating the confidence interval. I kept this more elaborated approach
out of this thesis’ scope, but recommend its use in future research undertakings.

5.5 Modeling Siamese CNN

The implemented process of this approach is divided into two phases (Figure 5.10).
In the first phase, a Siamese CNN (see Section 4.5.2) is trained, in the second phase,
the trained CNN is used to generate deep features that are then used to train an
OCSVM as authentication model, just like described in the previous section 5.4. The
implementation follows the parameters used by Centeno et al. (2018), which are
summarized in Table A.4. As not all necessary information is available, and some
details remain ambiguous, I again had to make some educated assumptions.

The most important open question of the OCSVM baseline model (see Section 5.4)
also applies to the Siamese CNN approach: How was the subject wise min-max
normalization performed? Exactly as with the OCSVM, I decided to test a naive
approach with normalization before splitting into test and training sets, and a more
realistic approach, where normalization of the owners training set is repeated on the
whole testing set using the parameters fitted during training.

The data splitting, as described by Centeno et al. (2018, pp. 4f), is performed in
such a way, that 60 users are used to train the Siamese CNN, while the remaining 30
users are used to train and test the final OCSVM authentication model. However, it
remains unclear, how the validation and testing of the Siamese CNN were performed,
and if and how a validation set was used for the final authentication model. Centeno
et al. (2018, p. 4) state to sample data from 18 sessions29 of every 60 users for
training the Siamese CNN, which could lead to the assumption, that the remaining
6 sessions per user were used for testing/validation. But such a splitting would
not provide valid results: If validation is performed with sessions from the subjects,
whose data was also used for training, the results would be biased. Regarding the

29The statement “From each user, we sample data from 18 different sessions, 6 sessions for each
task-motion condition activities (reading-sitting, reading-walking, writing-sitting, writing-walking,
navigating-sitting, navigating-walking).” (Centeno et al., 2018, p. 4) is assumed to contain a typo.
It would lead to 36 sessions.

5.5 Modeling Siamese CNN 51

90 Subjects
à 24 Sessions

Load Data

Split
50 Subjects
Train/Valid

Generate
Pairs

n Pairs of
40 Subjects

m Pairs of
10 Subjects

Siamese
CNN

Repeat 1-20
Epochs

Train

Predict
40 Subjects

Train/Valid/Test

Normalize

Repeat with
different

Parameters

Siamese
CNN

Trained
CNN

Extract Child
Network

Metrics
Distance, Loss

Proceed like
OCSVM

Retrain
with all 50
Subjects

Optimized
Hyper Parameters

Fig. 5.10.: Implemented process for the Siamese CNN approach. A subset of 50 subjects are used to train and
validate the Siamese CNN (middle and left), the remaining 40 subjects are used to perform the OCSVM
process as described in Figure 5.7, with the single difference, that now the trained CNN (green) is
used to transform the raw samples into deep features, before feeding them into the OCSVM.

final OCSVM authentication model, it is not mentioned that a validation set was
used for tuning its hyperparameters.

In my implementation, I decided to introduce specific validation sets to be able
to optimize the hyperparameters without introducing bias into the model. The
downside is that I had less data for training the Siamese Network than proposed
by Centeno et al. (2018): Data from 10 subjects are used as a validation set for the
OCSVM. The final training and testing of the authentication model should be done
with the same number of 30 subjects to stay comparable with Centeno et al. (2018).
Consequently, 50 instead of 60 subjects remained for training the Siamese CNN. For
this deep learning step, I decided to compromise between a bias-free model and
the size of the training data. After using data from 40 subjects for training and
10 subjects for validation during the hyperparameter optimization, I retrained the
network with data from all 50 subjects under the assumption, that the benefit of
additional data has a more significant impact than the bias introduced in the Siamese
CNN. The final training and testing of the authentication using the OCSVM are not
influenced by this bias anyway, as it is performed with the 30 subjects unknown to
both models.

52 Chapter 5 Experiments

MaxPool
2x2

Conv
7x7

Conv
5x5

MaxPool
2x2

Conv
3x3

Conv
3x3

MaxPool
2x2

MaxPool
2x2

1@25x9 32@25x9

32@13x5 64@13x3

64@7x3 128@7x3 128@4x2
32@4x2

32@2x1

64x1

Flatten

CNN (left)

𝑋𝑋1𝑖𝑖
left sample

𝑋𝑋2𝑖𝑖
right sample

𝑌𝑌𝑖𝑖
class label

Pair i

64x1

Flatten

CNN (right)

𝐷𝐷𝑊𝑊(𝑋𝑋1𝑖𝑖 , 𝑋𝑋2𝑖𝑖)
Euclidean distance

𝐿𝐿(𝑊𝑊, 𝑌𝑌,𝑋𝑋1,𝑋𝑋2
𝑖𝑖
)

contrastive loss
shared weights, biases

MaxPool
2x2

Conv
7x7

Conv
5x5

MaxPool
2x2

Conv
3x3

Conv
3x3

MaxPool
2x2

MaxPool
2x2

32@25x9

32@13x5 64@13x3

64@7x3 128@7x3 128@4x2
32@4x2

32@2x1

Fig. 5.11.: Architecture of the Siamese CNN, modeled based on the available information by Centeno et al. (2018).
All filters use padding. The vector of the last CNN layer (green) is taken as deep feature.

The reimplementation of the Siamese CNN architecture (Figure 5.11) was a chal-
lenge, as it is not described consistently: Centeno et al. (2018, p. 5) state, that a
2D vector of size features × window size is provided as input for the first of four
2D convolutional layers. However, 2D convolutional layers need 3D input data.
Therefore, I assume, that the input of “a 2D block of motion data [. . .]” is meant to
be a “flat” 3D vector of size features×window size×1. In this case, the filter would
be moved along the time axis and the sensor axis of the input vector. This is possible,
but only, when using padding for both convolutional and pooling layers, which is
not mentioned in the original paper. Otherwise, the given filter sizes would cause
negative dimension size in the network. Also, the ordering of the features, the axes
of the three sensors, might influence the results of this setup, but information about
the order of the feature vector is not provided. Nevertheless, I implemented that
architecture at this stage (and propose an alternative architecture in Section 5.7).
Another important parameter of the CNNs architecture not mentioned by Centeno
et al. (2018) is, which activation functions were used for the convolutional layers.
Without having time to go deeper into architecture optimization, I decided to use
the common activation function Rectified Linear Unit (ReLU), which is known to
have several advantages in CNNs (Nair and E. Hinton, 2010, pp. 2f).

The distinctive aspect of a Siamese Network is its contrastive loss function, which
was introduced and explained in detail by Hadsell et al. (2006, pp. 2–4): Consider a
set of training vectors I = { ~X1, · · · , ~Xp}. In our case, the Siamese network consists

5.5 Modeling Siamese CNN 53

of two CNNs with shared weights W . The input I is provided during the training
phase to the Siamese network in pairs, e.g., input vectors ~X1 for one of the child
CNNs and ~X2 for the other. The class label Y of the pair is binary, Y = 0 if ~X1 and ~X2

is a so-called positive pair where both vectors come from the same user, and Y = 1
if ~X1 and ~X2 is a negative pair with vectors produced by two different users. During
the training, the CNNs learns a single30 parametric function GW to transform the
input vectors into output vectors GW (~X1) and GW (~X2). A parameterized distance
function DW is learned as the Euclidean distance between the output vectors:

DW (~X1, ~X2) =
∣∣∣∣∣∣GW (~X1)−GW (~X2)

∣∣∣∣∣∣ =

√√√√ n∑
i=1

(GW (~X1)i −GW (~X2)i)2 (5.3)

If we shorten the notation of DW (~X1, ~X2) to Di
W , then the contrastive loss function

L, which depends on trained weights W and the i-th input pair (Y, ~X1, ~X2)i, is
defined as:

L(W, (Y, ~X1, ~X2)i) = (1− Y i) · 1
2 · (D

i
W)2 + Y i · 1

2 · {max(0,m−Di
W)}2 (5.4)

where m > 0 is the so-called margin, which limits the contribution of the negative
pairs to the loss. This leads to the following behavior: The function leads to a
low loss value, if the input pair has a positive class label (Y = 0) and the distance
between its vectors DW (~X1, ~X2) is small, or if the pair is negative (Y = 1) and the
distance is high. Margin m can be used to tune the influence of the negative pairs.
Unfortunately, Centeno et al. (2018) do not provide the value they used for m or
any indication of how they obtained it. Therefore, I consider the margin as another
hyperparameter to optimize.

It might be useful to mention, that the implementation of the contrastive loss
function in Keras differences slightly from the formula given above:

K.mean(Y * K.square(D) + (1 - Y) * K.square(K.maximum(0, m - D)))

which is equivalent to:

L(W, (Y, ~X1, ~X2)i) = Y i · (Di
W)2 + (1− Y i) · {max(0,m−Di

W)}2 (5.5)

This is because in Keras it is more convenient to use Y = 1 for the positive pairs,
and Y = 0 for the negative pairs (inverse to Hadsell et al., 2006, p. 3), as complies
better with the default metric functions. Additionally, factor 1

2 is removed, as it does
not change the optimization results of the network. (GitHub.com, 2016)

30Because of shared weights and biases, the two networks are technically identical.

54 Chapter 5 Experiments

As described in the concept (see Section 4.5.2), the Siamese CNN is trained with
pairs of input vectors: positive pairs, were both input vectors are from the same
user, and negative pairs, with input vectors from different users. For generating the
pairs, which is done repeatedly on the fly for CV, I used an approach optimized for
computational speed. I decided to split all samples subject wise into halves, each
half containing the same number of samples for the same user. The first half is used
to generate the positive pairs: The samples of every subject are shuffled, divided into
halves, and aligned as the left and right side of the positive pairs. The second half is
shuffled across all subject, split into halves, and aligned as the left and right sides
of the negative pairs. This approach is quite fast but has the downside that there
is a certain probability, that “accidentally” some positive pairs are created within
the negative pairs. The classes are balanced as a last step of the pair generations,
but the distribution of samples across the subjects remain slightly unbalanced (see
Figure 5.12) as a compromise for computational efficiency.

Positive
Pairs

Negative
Pairs

0

2000

4000

6000

8000

10000

12000

14000

10
06

69
17

15
38

20
18

48
22

09
62

26
13

13
27

79
05

27
81

35
32

62
23

34
23

29
36

62
86

36
82

58
39

51
29

39
82

48
47

27
61

48
91

46
52

55
84

52
77

96
53

83
63

54
06

41
55

63
57

58
80

87
65

74
86

69
35

72
69

82
66

71
07

07
74

52
24

76
38

13
82

72
12

86
39

85
86

55
01

87
28

95
87

60
11

87
91

55
89

26
87

89
32

55
89

76
52

91
81

36
96

66
55

97
38

91
99

06
22

0

200

400

600

800

1000

1200

1400

Fig. 5.12.: Training Pairs: The two classes of pairs are balanced (magenta), but the dis-
tributed of subjects among them are slightly imbalanced (blue).

The training process of the Siamese CNN can be visualized nicely by plotting his-
tograms of the Euclidean distances for both positive and negative pairs (Figure 5.13).
Before training, both distributions are quite similar. During the training, when the
network learns to distinguish between both classes, the distributions are getting
more and more separated. The distances of the positive pairs are drawn towards
zero, while the distances of the negative pairs approach the margin. Of course, the
network learns this separation more precise for the training data. By looking at the
evolution of the loss for both training and validation sets (Figure 5.14), it is possible
to determine the epoch in which the loss of the validation data becomes stable. Then
the model is retrained to the chosen epoch and stored for further usage.

After the Siamese CNN is trained with those pairs, the model is prepared for generat-
ing the deep features. This is done by dropping the last two layers, that were used to

5.5 Modeling Siamese CNN 55

Before Training:

0.00 0.05 0.10 0.15 0.200

20 EER Threshold
(0.05)

Margin
(0.2)

Train Distances
positive pairs
negative pairs

0.00 0.05 0.10 0.15 0.200

20
EER Threshold
(0.05)

Margin
(0.2)

Valid Distances
positive pairs
negative pairs

Epoch 1:

0.00 0.05 0.10 0.15 0.20 0.25 0.300

10
EER Threshold
(0.10)

Margin
(0.2)

Train Distances
positive pairs
negative pairs

0.00 0.05 0.10 0.15 0.20 0.25 0.300

10
EER Threshold
(0.10)

Margin
(0.2)

Valid Distances
positive pairs
negative pairs

Epoch 2:

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400

10

EER Threshold
(0.10)

Margin
(0.2)

Train Distances
positive pairs
negative pairs

0.00 0.05 0.10 0.15 0.20 0.25 0.300

10
EER Threshold
(0.11)

Margin
(0.2)

Valid Distances
positive pairs
negative pairs

Epoch 5:

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400

20 EER Threshold
(0.10)

Margin
(0.2)

Train Distances
positive pairs
negative pairs

0.0 0.1 0.2 0.3 0.40

10

EER Threshold
(0.11)

Margin
(0.2)

Valid Distances
positive pairs
negative pairs

Fig. 5.13.: Distribution of Euclidean distances between positive and negative pairs during
training, for training (uneven rows) and validation set (even rows).

0 5 10 15 20 25 30 35 40
Epochs

0.003

0.004

0.005

0.006

0.007

0.008

Lo
ss

train
valid

Fig. 5.14.: Loss of training and testing sets during the epochs of training.

56 Chapter 5 Experiments

compute the Euclidean distance and the contrastive loss during training, and using
the last hidden layer of one of the CNNs as output layer instead.31

For the implementation of the OCSVM authentication model, I struggled with
the same missing information on hyperparameters as with the baseline model (see
Section 5.4). Again, I proceeded with a random parameter search. The training,
validation, and testing of the OCSVM authentication model in the Siamese CNN
approach is implemented identical to the baseline model, except for the CNN, which
gets injected to generate the deep features during the cross-validation (see Figure 5.7,
green). Instead of feeding the samples with the given window length directly into
the OCSVM, they are routed into the CNN, and the resulting deep features are used
as the OCSVM’s input.

All assumptions and decisions made during the reimplementation are summarized
in Table A.4, along with parameters that were derived from Centeno et al. (2018).

5.6 Evaluation Results

In this section, I will present the results of testing both suggested approaches, the
OCSVM baseline model, and the ensemble model consisting of a Siamese CNN for
feature learning and an OCSVM as authentication classifier. Both approaches have
been evaluated twice with different normalization strategies: the “naive approach”,
were the normalization was performed initially, on all data, and individually for
every subject, and a “valid approach”, where the normalization scaler was fitted on
the training data of the owner only and then applied to transform the testing data
for both owner and imposter.

Both models were tested using data of 30 subjects. No data of those subjects was
involved during the hyperparameter optimization of the models. The testing process
itself includes a CV, in which 1 of the 30 subjects is declared as “owner”, and the
model is trained with data of 18 sessions of this subject. Data from 6 different
sessions (1 session for each of the 6 task-scenario-combinations) of this owner were
tested against data from 6 sessions of another subject as “impostor” in 1 versus 1
scenario. The number of testing samples was equal for both the owner and impostor.
As this test was repeated with every remaining subject as an impostor, 29 tests were
performed per owner. Also, each of the 30 subjects once served as owner, leading to
870 test repetitions.

31Unfortunately, I was not able to adjust the input layer in Keras correctly: The network still needs a
pair of vectors as inputs. This might affect the speed of the prediction, but not the results.

5.6 Evaluation Results 57

Unlike Centeno et al. (2018), I repeated this whole process 5 times using different
seeds for the random operations during sample selection. The reason for this
procedure, which concludes in a total of 4.350 tests, is the small number of 8
random testing samples per subject according to the original study. The additional
repetitions are supposed to increase the robustness of the results.

In the following, I first describe the results regarding all three criteria and discuss
their implication afterward.

5.6.1 Authentication Reliability

As explained in the concept (see Section 4.4.1), the Equal Error Rate (EER) is the
preferred metric regarding authentication reliability for this thesis. Additionally,
the accuracy was calculated as another standard metric for classification: It was
necessary for comparison with the original study, where it was one of the metrics
reported by Centeno et al. (2018, p. 5). While the charts for visualizing the EER
are shown in this section, the detailed charts regarding accuracy can be found in
Appendix A.5.

The boxplot in Figure 5.15 shows the classification results for the “naive approach” of
the OCSVM baseline model. The data points compromise of all 145 tests (29x5) per
owner. Additionally, the mean EER 18.8% for all tests is depicted. The differences
among the different owners are quite interesting, spread and mean vary quite a lot.
The calculated mean accuracy was 86.3% (see Appendix A.5, Figure A.1).

Repeating the same test, but using a “valid approach” with normalization performed
closer to a real-world setting revealed very different results. Figure 5.16 visualizes
significant weaker classification performance. Only a single owner’s mean EER
reached the overall mean of the “naive approach”. It is also remarkable that the
owners’ individual results do not seem to correlate between the two approaches.
E.g., 862949, which performed extraordinary well in the “naive approach”, is no
longer conspicuous in the “valid approach”, performing worse than average. The
charts also indicate that fewer outliers are present in the “valid approach” compared
to the “naive approach”. The mean EER of the “valid approach” is 36.9%, while the
mean accuracy is 65.4%.

The differences between the two normalization approaches are even larger when the
Siamese CNN was used for generating the deep features as the OCSVM’s input: when
using the “naive approach”, the deep features as input for the authentication model
performed with an EER of 14.7% much better than the raw features (Figure 5.17).
When normalized with the “valid approach” on the other hand, the Siamese CNN

58 Chapter 5 Experiments

15
19

85

18
06

79

18
66

76

21
87

19

24
82

52

26
43

25

33
61

72

40
50

35

50
19

73

55
33

21

56
19

93

57
92

84

66
31

53

67
53

97

71
78

68

72
01

93

75
11

31

77
17

82

78
58

73

79
92

96

80
32

62

80
80

22

84
18

66

86
26

49

86
58

81

89
31

98

91
32

28

93
79

04

96
21

59

99
87

57

Owner

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
ER

mean
0.188

Fig. 5.15.: EERs of samples per owner – OCSVM (naive approach).

15
19

85

18
06

79

18
66

76

21
87

19

24
82

52

26
43

25

33
61

72

40
50

35

50
19

73

55
33

21

56
19

93

57
92

84

66
31

53

67
53

97

71
78

68

72
01

93

75
11

31

77
17

82

78
58

73

79
92

96

80
32

62

80
80

22

84
18

66

86
26

49

86
58

81

89
31

98

91
32

28

93
79

04

96
21

59

99
87

57

Owner

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
ER

mean
0.369

Fig. 5.16.: EERs of samples per owner – OCSVM (valid approach).

15
19

85

18
06

79

18
66

76

21
87

19

24
82

52

26
43

25

33
61

72

40
50

35

50
19

73

55
33

21

56
19

93

57
92

84

66
31

53

67
53

97

71
78

68

72
01

93

75
11

31

77
17

82

78
58

73

79
92

96

80
32

62

80
80

22

84
18

66

86
26

49

86
58

81

89
31

98

91
32

28

93
79

04

96
21

59

99
87

57

Owner

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
ER

mean
0.147

Fig. 5.17.: EERs of samples per owner – Siamese CNN (naive approach).

15
19

85

18
06

79

18
66

76

21
87

19

24
82

52

26
43

25

33
61

72

40
50

35

50
19

73

55
33

21

56
19

93

57
92

84

66
31

53

67
53

97

71
78

68

72
01

93

75
11

31

77
17

82

78
58

73

79
92

96

80
32

62

80
80

22

84
18

66

86
26

49

86
58

81

89
31

98

91
32

28

93
79

04

96
21

59

99
87

57

Owner

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
ER

mean
0.412

Fig. 5.18.: EERs of samples per owner – Siamese CNN (valid approach).

5.6 Evaluation Results 59

0 100 200 300
Training Data in Seconds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 E
ER

(a) OCSVM (naive approach)

0 100 200 300
Training Data in Seconds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 E
ER

(b) OCSVM (valid approach)

0 100 200 300
Training Data in Seconds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 E
ER

(c) Siamese CNN (naive approach)

0 100 200 300
Training Data in Seconds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 E
ER

(d) Siamese CNN (valid approach)

Fig. 5.19.: Training delay: mean EER and 95% confidence interval for different lengths of
training data for authentication model.

based model performed with an EER of 41.2% worse than the baseline model (Fig-
ure 5.18). Again, there does not seem to be a correlation between the classification
performance of the individual owners between the normalization approaches.

5.6.2 Training Delay

The training delay was evaluated by repeating the same steps used to evaluate
the authentication reliability, but with an increasing number of training samples.
12 different training set sizes (2, 4, 6, 8, 20, 60, 120, 180, 250, 350, 500 and
750 samples) were tested. For the baseline model, with its proposed sampling
rate of 100 Hz and window length of 50 measurements, this corresponds to time
spans between 0.5 and 375 seconds. The same time span was covered during the
evaluation of the Siamese CNN approach with its 25 Hz sampling rate and window
length of 25 (1, 2, 3, 4, 10, 30, 60, 90, 125, 175, 250 and 375 samples).

If the classification results for the different training set sizes are plotted (Figure 5.19),
It becomes visible, that the EER is stable above ~100 seconds training data, regard-
less of the used approach. The OCSVM “valid approach” gets stable earlier, with

60 Chapter 5 Experiments

0.0

0.1

0.2

0.3

0.4

0.5

40
.5

 s
81

 s
am

pl
es

Owner 151985

18
.0

 s
36

 s
am

pl
es

Owner 180679

12
.5

 s
25

 s
am

pl
es

Owner 186676

0.
5

s
1

sa
m

pl
es

Owner 218719

24
.5

 s
49

 s
am

pl
es

Owner 248252

0 1000.0

0.1

0.2

0.3

0.4

0.5

2.
0

s
4

sa
m

pl
es

Owner 264325

0 100

32
.0

 s
64

 s
am

pl
es

Owner 336172

0 100

18
.0

 s
36

 s
am

pl
es

Owner 405035

0 100

8.
0

s
16

 s
am

pl
es

Owner 501973

0 100

8.
0

s
16

 s
am

pl
es

Owner 553321

Seconds of Testing Data

Ex
pa

nd
in

g
m

ea
n

EE
R

Fig. 5.20.: Confidence Intervals – OCSVM (naive approach).

~50 seconds. This might explain the choice of 6750 measurements as training set
size by Centeno et al. (2018, p. 5): The training set length of 67.5 seconds is a good
compromise, with a performance very close to the optimum with relatively small
training data. s

5.6.3 Detection Delay

First, samples of the owner were tested one by one against a single sample from
every other subject as an impostor, and the corresponding EER was calculated. The
variance in the EER was visualized by plotting its expanding mean and expanding
confidence interval of confidence level 0.95 (Figure 5.20; for other approaches
see Appendix A.6) for the first 10 owners. Additionally, I calculated the number
of samples needed to estimate the mean EER with a confidence interval of 0.05
EER width and confidence level 0.95. The differences among the owners are again
interesting: while the confidence interval unsurprisingly seems to correlate positively
with the mean EER, we can also see with owner 405035, that also subject with
below average classification score can have a quite narrow confidence interval. 16.4
seconds of testing data were needed on average for the OCSVM “naive approach” to
reach the determined confidence threshold.

5.6.4 Interpretation

The results of the three evaluation criteria presented in the previous sections raise
questions, which need to be discussed. At this stage, the variations among the tested
approaches regarding the authentication reliability are certainly the most important

5.6 Evaluation Results 61

0.0 0.2 0.4 0.6 0.8 1.0
Mean Accuracy

Reimplementation (valid)

Reimplementation

Centeno et al. (2018)

Reimplementation (valid)

Reimplementation

Centeno et al. (2018)

valid robust 2D

naive min-max 2D

as reported

valid robust

naive min-max

as reported

0.569

0.900

0.978

0.618

0.863

0.869

0.0 0.2 0.4 0.6 0.8 1.0
Mean EER

Reimplementation (valid)

Reimplementation

Centeno et al. (2018)

Reimplementation (valid)

Reimplementation

Centeno et al. (2018)

valid robust 2D

naive min-max 2D

as reported

valid robust

naive min-max

as reported

0.448

0.147

 N/A

0.408

0.188

 N/A

Si
am

es
e

C
N

N
O

C
SV

M

Fig. 5.21.: Classification results – mean of all tested owners.

topics. The classification performance of the models strongly influences the two
other criteria, and therefore, are considered to be secondary.

When comparing the metrics of tested variants with the reported accuracy of the
original study by Centeno et al. (2018, p. 5), differences are apparent (Figure 5.21).
Due to a lack of details regarding the implementation of Centeno et al. (2018), it is
impossible to say, if they have chosen a normalization variant similar to the one I
introduced as a “naive approach” in this thesis, or if there are other reasons for their
promising results. Either I succeeded to reproduce the result of the original study
within the “naive approach”, which I consider to be not valid, or I failed to reproduce
the results, e.g., due to missing information. Further information is needed to resolve
this ambiguity.32

What I can tell is that the results of the OCSVM baseline model using the “naive
approach” can be considered as on par with the original study. The accuracy of my
implementation of the Siamese CNN approach is 7% lower, but considering the more
complex setup with more assumptions regarding the implementation, fewer number
of training data caused by my additional validation split and the unsolved question,
how exactly the accuracy was obtained in the original study, I judge this difference
also as minor.

More interesting to me is the question: Why did the normalization according to
the “valid approach” performed significantly worse than the “naive approach”? The
accuracy of the “valid approach” is close to random.

To answer this question, I explored the data set regarding normalization in an extra
Jupyter Notebook.33 Figure 5.22 shows the distributions of the features for 5 random
subjects. For the individual sensors, the upper and lower quartiles of the distributions
are similar between the subjects. The z-axis of the accelerometer is drawn towards

32According to the author of the original study, a publication with comprehensive details is planned to
be published later this year.

33Source code: /notebooks/chapter-5-6-4-explore-normalization.ipynb

62 Chapter 5 Experiments

10 by the gravity component, the median for the y-axis is lower and lowest for the
x-axis, with a median around zero. The values of all three axes of the gyroscope
are grouped close to zero. The values for the magnetometer vary more between
different subjects. For 4 of the 5 subjects, the z-axis has the lowest median, the x-axis
is in the middle, and the y-axis axis has the highest median. However, the absolute
values vary a lot, and there is also one subject (orange) with a different distribution.
Together with the distribution of the overall magnetometer values (see Figure 5.3),
this supports the assumption, that the surrounding might have a higher impact on
this sensor than the movements of the smartphone produced by its user.

But it is more important to investigate the outliers of the distributions, because the
maximum and minimum of a distribution has a huge effect on the normalization
using the min-max algorithm, which linearly transforms all values into a provided
range, e.g., 0 to 1, with the minimum value being transformed to 0 and the maximum
value to 1, which makes it sensitive to outliers. Moreover, we have a lot of those in
the data. I plotted the data of the same 5 subjects (Figure 5.3) after normalizing
them with the same min-max implementation used for the “naive approach” to
demonstrate this effect (Figure 5.23). The formerly similarly distributed values of
gyroscope and accelerometer have been shifted under the influence of their outliers:
median, lower and upper quartiles are now easily distinguishable between the
subjects, and also the distributions of the magnetometer values shifted.

This can explain the observed difference between the results of the “naive approach”
and the “valid approach”: It is very likely, that both models learned the differences in
the features’ distributions per subject, instead of the granular patterns of individual
samples. This hypothesis is hard to proof, especially in the Siamese CNN approach.
However, it is possible to look for further indications: If the hypothesis is correct,
then both models should perform worse, when a normalization method is used, that
is less sensitive to outliers, e.g., the standard scaler or even better the robust scaler,
which ignores values below the 1st and above the 3rd quartile during fitting. The
performance should be significantly weaker for both “naive approach” and “valid
approach”. Exactly this happened (Figure 5.24): The EER of the OCSVM approaches
increased to 50.0% (random-like) for the “naive approach” and 40.8% for the “valid
approach”. For the Siamese CNN, the EER of the “naive approach” increase to
48.1% and to 44.8% for the valid approach, when the robust scaler was used. The
histograms of the pairs distances during training (see Appendix A.7, Figure A.8)
reveal, that the network is unable to learn a transformation for differentiating the
pairs, the loss is around 3–5 times higher, and quite stable for the training set (see
Figure A.9). Surprisingly, the loss for the validation set is decreasing, but looking
closely at the histograms, it becomes visible, that is due to a tiny number of negative
pairs, which get extremely well transformed with a resulting distance around 0.7.

5.6 Evaluation Results 63

Fig. 5.22.: Distribution of raw sensor data for random subjects.

Fig. 5.23.: Distribution of sensor data for random subjects after min-max normalization.

64 Chapter 5 Experiments

0.0 0.2 0.4 0.6 0.8 1.0
Mean Accuracy

valid robust

valid min-max

naive robust

naive min-max

valid robust

valid min-max

naive robust

naive min-max

0.569

0.605

0.521

0.900

0.618

0.654

0.500

0.863

0.0 0.2 0.4 0.6 0.8 1.0
Mean EER

valid robust

valid min-max

naive robust

naive min-max

valid robust

valid min-max

naive robust

naive min-max

0.448

0.412

0.481

0.147

0.408

0.369

0.500

0.188

Si
am

es
e

C
N

N
O

C
SV

M

Fig. 5.24.: Classification results – original scaler (min-max) vs. robust scaler.

However, it is vital to notice, that more extensive research would be needed in order
to fully understand the causal relationships and rule out other possible causes, e.g.,
the non-linear standardization performed by the robust scaler could affect pattern
detection in the inertial data. It is also surprising, that with robust normalization the
“valid approach” performs better than the “naive approach” for both models, but the
difference is quite small.

The following three conclusions can be drawn from the evaluation so far:

1. The excellent performance of the “naive approach” is likely caused by the bias
introduced by upfront applying a subject-wise min-max normalization on data
containing outliers.

2. The performance of both models drops significantly in a scenario closer to a
real-world application, where the normalization scaler can be fitted only on
the training data and is applied to the testing data of both owner and impostor
(“valid approach”).

3. Sensor values produced by the magnetometer might have a more negative
than positive effect, as they probably introduce additional bias due to the
dependency on the surroundings, and do not reveal much information about a
smartphone’s movement patterns.

However, does this mean, that the proposed ensemble model of Siamese CNN and
OCSVM is the wrong approach to solving Continuous Authentication (CA) in a
real-world scenario? Not necessarily. With the knowledge about those pitfalls, I
tried to optimize various model parameters to improve the performance of the “valid
approach”. I selected the accuracy of the Siamese CNN using the “valid robust
approach” as a new baseline for my tests, as this variant is considered to be close to a

5.6 Evaluation Results 65

real-world application and not influenced by bias introduced through normalization.
Then multiple attempts were made to improve the model.

5.7 Improvement of Modeling

After I had identified the weaknesses in my reimplementation of the study by Centeno
et al. (2018), I decided to search for variants performing better with normalization
performed closer to a real-world application, and without exploiting random outliers
in the data. The focus hereby lies on the Siamese CNN approach, as it is the more
promising model. The various parameters and the testing results are described and
interpreted in the following subsections.

5.7.1 Test Parameters

Due to missing resources to implement and perform an automated parameter search,
I had to manually execute tests with a set of parameter changes assumed to be
most beneficial. Table 5.1 shows the prioritized parameters I altered, along with
the reasoning and the tested variants. Due to the given limitations, I left the testing
of all combinations of parameters to future research, and limited myself to test the
influence of the parameters sequentially like in a search tree: I started with the
parameter assumed to be most influential, and used the best performing option as
given for the next step. This process was repeated until all parameters were tested.
It is important to mention, that due to the computational complexity, I assessed the
parameters influence through the plots of the Siamese CNN’s training evolution,
and did not follow all subsequent steps of deep feature generation and OCSVM
evaluation. Plots can be found for all tests in Appendix A.8, HTML exports of the
corresponding notebooks are available in my repository34.

The CNN architecture, as the first and most influential parameter, needs to be
explained in more detail. The Siamese CNN architecture that I derived and from
the incomplete information in the study by Centeno et al. (2018) has some aspects
which seemed odd to me: A 3D input with 2D filters used for 2D time series data?
Around 164000 parameters to learn with a comparably low number around 28000
training samples? This seems like an unusual setup for me. Therefore, I decided to
test two other architecture.

The first alternative architecture is the 1D filter equivalent to the 2D filter architecture
I derived from the original paper (Figure 5.25). Besides the filter dimensions, I only

34Reports of parameter search: /reports/optimization/ (Büch, 2019).

66 Chapter 5 Experiments

Tab. 5.1.: Variations of parameters tested for Siamese CNN approach. The initial values of the “valid approch”
variant selected as new baseline are emphasized (bold).

Prio Parameter Variations Reasoning

1 CNN architecture Orig. CNN (2D filters),
Orig. CNN (1D filters),
FCN (1D filters)

In my opinion, the architecture with 2D filters seems not
to be the best option. Also it is quite common to use a
dense layer as last layer, instead of flattening the final
pooling layer.

2 Features {acc, gyr, mag},
{acc, gyr}, {acc}

The uneven distribution of magnetometer values among
the subjects might introduce bias to the model.

3 Window size 0.5, 1, 2, 5 sec. The window should be large enough to cover more than
one significant event, like steps.

4 Sampling rate 100 Hz,
25 Hz

Certainly has an influence, I test the two rates already
generated.

6 Scenarios {sit, walk},
{walk}, {sit}

Previous researches indicated, that CA can be performed
more reliable in walking scenarios (see Section 3.2.5).

adjusted the activation function: When I used ReLU, I got issues with “dying” units In
such a situation, the ReLU activation functions output always the same value (zero)
for any input. Such a state can happen if a large negative bias term for its weights
was learned. I exchanged the ReLUs with the Exponential Linear Unit functions to
solve this problem.

The second alternative architecture is based on a Fully Convolutional Network
(FCN). I became aware of this FCN architecture through a comparative study on
deep learning architecture for time series classification by Fawaz et al. (2018, p. 14f),
where that architecture performed quite well (only ResNet performed better), and
its relatively low number of parameters was mentioned as an important advantage,
which could be beneficial for a small amount of training data. Therefore, I decided
to test this architecture as part of the Siamese network. The FCN architecture was
proposed by Wang et al. (2016, p. 2), and consists of three sets of layers, where a
single set consists of a convolutional layer, followed by a batch normalization layer
and an activation layer. The three sets are ordered one after another before a global
average pooling layer followed by a softmax layer completes the architecture. The 1D
convolutional layers are configured with kernel sizes of {8, 5, 3} and {128, 256, 128}
filters, without striding. The padding is set to “same” for preserving the length of
the input vector. ReLU was used as an activation function. I made two adjustments
in my implementation of the architecture: I reduced the number of filters drastically
to {32, 64, 32} to reduce the number of parameters considering the small amount
of training data. Also, I exchanged the softmax layer used for classification by a
fully connected dense layer with 32 units, which are supposed to generate the deep
features to be fed into the OCSVM authentication classifier (Figure 5.26).

5.7 Improvement of Modeling 67

MaxPool
2

Conv
7

Conv
5

MaxPool
2

Conv
3

Conv
3

MaxPool
2

MaxPool
2

25x9 25x32 12x32

12x64 6x64

6x128 3x128

3x64 1x64 64

Flatten

CNN (left)

𝑋𝑋1𝑖𝑖
left sample

𝑋𝑋2𝑖𝑖
right sample

𝑌𝑌𝑖𝑖
class label

Pair i

CNN (right)

𝐷𝐷𝑊𝑊(𝑋𝑋1𝑖𝑖 , 𝑋𝑋2𝑖𝑖)
Euclidean distance

𝐿𝐿(𝑊𝑊, 𝑌𝑌,𝑋𝑋1,𝑋𝑋2
𝑖𝑖
)

contrastive loss
shared weights, biases

MaxPool
2

Conv
7

Conv
5

MaxPool
2

Conv
3

Conv
3

MaxPool
2

MaxPool
2

25x32 12x32

12x64 6x64

6x128 3x128

3x64 1x64 64

Flatten

Fig. 5.25.: Architecture of the Siamese CNN with 1D filters. All filters use padding. The vector of the last layer
(green) is taken as deep feature.

5.7.2 Results of Parameter Search

The results of the parameter search for the Siamese CNN were assessed by looking at
the distance distribution plots, the loss history, and the pairs’ “classification accuracy”
when applying a threshold to separate the distance distributions of both classes
(like the EER threshold in Figure 5.13). Please keep in mind that this accuracy is
correlated with but different from the authentication accuracy of the OCSVM. The
more or less surprising results (Figure 5.2) are commented in the following.

After training all three variants of the Siamese network, it became evident that all
three architectures performed quite poor (Figure A.10). None of the architectures
was able to distinguish between the positive and negative pairs of the validation
set (please remind, that the robust scaling using the “valid approach” was selected
as starting point for the parameter search). However, the FCN variant achieved
significantly better separation of the training set. Despite the odd loss history, which
probably indicates overfitting, I decided to choose this architecture as most promising
due to learning ability on the training set.

Regarding the tests with varying features, the bad performance of the feature set,
including magnetometer data, was expected. The final distance distribution plots
(see Figure A.11) visualize that the performance on the training data was better
than the other tested variants, but the performance on validation set was quite poor.

68 Chapter 5 Experiments

GlobalAvg
Pool

100x6 100x32

32

CNN (left)

𝑋𝑋1𝑖𝑖
left sample

𝑋𝑋2𝑖𝑖
right sample

𝑌𝑌𝑖𝑖
class label

Pair i

CNN (right)

𝐷𝐷𝑊𝑊(𝑋𝑋1𝑖𝑖 , 𝑋𝑋2𝑖𝑖)
Euclidean distance

𝐿𝐿(𝑊𝑊, 𝑌𝑌,𝑋𝑋1,𝑋𝑋2
𝑖𝑖
)

contrastive loss
shared weights, biases

100x64 100x32

32

Dense
32

Conv
8

Batch
Norm ReLu Conv

5
Batch
Norm ReLu Conv

3
Batch
Norm ReLu

GlobalAvg
Pool

100x6 100x32

32

100x64 100x32

32

Dense
32

Conv
8

Batch
Norm ReLu Conv

5
Batch
Norm ReLu Conv

3
Batch
Norm ReLu

Fig. 5.26.: Architecture of the Siamese CNN, with the FCN subnetworks modeled after Wang et al. (2016, p. 2).
All filters use padding. The vector of the last layer (green) is taken as deep feature.

This affirms the already stated assumption that those noisy sensor measurements
are probably not suitable for distinguishing smartphone users. Surprisingly, the
performance of the test with accelerometer and gyroscope data is slightly lower
than the test with accelerometer only. I assume that the performance regarding the
number of features, the window size, and the sampling rate might depend and
correlate with the number of trainable parameters in the network as well as the
available amount of training data. With rising dimensionality of the input vector, the
number of the network’s parameters to train increases, which requires more training
data. Looking at the test results regarding features, window size, and sampling
rate, I assume, that window sizes covering a longer time-span increase the model’s
performance until a certain point above 5 seconds. The effect that a lower sampling
rate and fewer features perform better, on the other hand, might be the result of the
smaller Fully Convolutional Network (FCN) implemented due to the limited amount
of training data. Of course, this hypothesis needs to be tested, but I leave this to
future research.

The fact that the model performed much better for scenarios of “walking” than
of “sitting”, and that “walking & sitting” scenarios result in medium accuracy, was
expected, as it confirms the results of related studies (see Subsection 3.2.5). However,
I did not miss the opportunity to repeat this test using the originally proposed
Siamese CNN with 2D filters, and min-max normalization using the “valid approach”.
The results were a low accuracy of 77.1% for “walking”, 94.8% for “sitting”, and

5.7 Improvement of Modeling 69

Tab. 5.2.: Parameter search for model improvement. Includes the parameters teste per step (bold) and the best
achieved accuracy during all epochs (small) with the best parameter emphasized (magenta).

Step CNN architecture Features Window size Sampling rate Scenarios

- Orig. CNN (2D filters) {acc, gyr, mag} 1 sec 25 Hz {sit, walk}

1 Orig. CNN (2D filters) 50.0%

Orig. CNN (1D filters) 50.3%

FCN (1D filters) 0.51%

{acc, gyr, mag} 1 sec 25 Hz {sit, walk}

2 FCN (1D filters) {acc, gyr, mag} 51.0%

{acc, gyr} 56.7%

{acc} 57.4%

1 sec 25 Hz {sit, walk}

3 FCN (1D filters) {acc} 0.5 sec 56.6%

1 sec 57.4%

2 sec 58.3%

5 sec 63.0%

25 Hz {sit, walk}

4 FCN (1D filters) {acc} 5 sec 25 Hz 63.0%

100 Hz 59.0%

{sit, walk}

5 FCN (1D filters) {acc} 5 sec 25 Hz {sit, walk} 63.0%

{sit} 57.3%

{walk} 73.0%

- FCN (1D filters) {acc} 5 sec 25 Hz {walk}

93.8% for the combination of both. I consider this different behavior as an additional
indication that the models trained on min-max scaled data are indeed not learning
patterns of the actual movements, but more general differences of the distributions.

The parameters identified as best during this incomplete manual search (bottom
row in 5.2) were used for a final evaluation of the complete ensemble. The result
of this evaluation, with the usage of a larger number of training samples as the
only difference to the setting during the parameter search, is reported in the next
section.

5.8 Final Evaluation

The evaluation of the final model was performed exactly like for the original and
the baseline model (see Section 5.6). Additionally, some insights into the training
process are presented. Figure 5.27 display the development of the pair distances
during the epochs of training, and Figure 5.28 show the loss history for training and
validation set. The latter looks a bit noisy.

The quality of the generated deep feature can be assessed by visualizing them after
reducing the vectors into 2D using Principal Component Analysis (PCA) for display in
a scatter plot, just like Centeno et al. (2018, p.4, Fig. 3) did. 300 random samples per
subject were selected from 10 subjects of the testing set, unseen by the Siamese CNN.

70 Chapter 5 Experiments

Epoch 1:

0.0 0.5 1.0 1.5 2.00

2
EER Threshold
(0.45)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2 EER Threshold
(0.49)

Margin
(1)

Valid Distances
positive pairs
negative pairs

Epoch 21:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.750

2 EER Threshold
(0.51)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.750

2 EER Threshold
(0.53)

Margin
(1)

Valid Distances
positive pairs
negative pairs

Epoch 51:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.750

2 EER Threshold
(0.53)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.750

2
EER Threshold
(0.57)

Margin
(1)

Valid Distances
positive pairs
negative pairs

Epoch 76:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.750

2 EER Threshold
(0.50)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.750

1

EER Threshold
(0.55)

Margin
(1)

Valid Distances
positive pairs
negative pairs

wcm

Fig. 5.27.: Siamese FCN (robust) – Distribution of Euclidean distances between positive
and negative pairs during training, for training (uneven rows) and validation set
(even rows).

0 10 20 30 40 50 60 70 80
Epochs

0.16

0.18

0.20

0.22

0.24

0.26

Lo
ss

train
valid

Fig. 5.28.: Siamese FCN (robust) – Loss of training and testing sets during the epochs of
training.

5.8 Final Evaluation 71

The deep feature generated using the “naive approach” with min-max normalization
(Figure 5.29, a) compose clearly separated clusters, with some overlaps, e.g. for
the brown and red colored subjects. The same network architecture with the same
parameters is unable to learn distinguishing patterns if the same data is transformed
using the robust scaler instead of min-max. After transformation into 2D using PCA,
the subjects mix up in a single cluster. The last plot shows the transformed deep
features of the proposed Siamese FCN with some structure, but besides a cluster
of a subset of samples from the turquoise subject, we can’t distinguish between
subjects either, indicating, that the classification performance will probably be not
satisfying.

0.2 0.1 0.0 0.1 0.2
PCA0

0.10

0.05

0.00

0.05

0.10

PC
A1

Subject
207696
240168
352716
431312
578526
622852
776328
785899
856302
980953

(a) Siamese CNN 2D (min-max)

0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
PCA0

0.075

0.050

0.025

0.000

0.025

0.050

0.075

PC
A1

Subject
207696
240168
352716
431312
578526
622852
776328
785899
856302
980953

(b) Siamese CNN 2D (robust)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
PCA0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

PC
A1

Subject
207696
240168
352716
431312
578526
622852
776328
785899
856302
980953

(c) Siamese FCN (robust)

Fig. 5.29.: Principal Componentent Analysis of deep features from subjects of the testing
set, generated by the original Siamese CNN with 2D filters (a, b) and by the
proposed Siamese FCN (c).

And indeed, the authentication performance resulted in a mean EER of 36.9% and
a mean accuracy of 65.3 % (Figure 5.30 and 5.33). One of the owners performed
much worse than the others for an unknown reason. The five seconds long window
size leads to a longer “detection delay” of 120.5 s or 24.1 samples on average, with
some owners needing significantly longer than other (Figure 5.32). However, the
training delay did not increase and is again around 60 s (Figure s5.31).

If we compare the results of this Siamese FCN, using a robust scaler and a valid
normalization approach, against the other tested variants (Figure 5.33), it is evident,
that its performance is far worse than with “naive approaches”. However, compared
to the other variants which are closer to a real-world application, by using a “valid
approach” to normalization and reducing the effect of outliers by using a robust
scaler, this new model performs best. Of course, the performance is not yet good
enough for an application, but during the implementation, I already had lots of ideas
for improvements, which I will share in the next chapter.

72 Chapter 5 Experiments

15
19

85

18
06

79

18
66

76

21
87

19

24
82

52

26
43

25

33
61

72

40
50

35

50
19

73

55
33

21

56
19

93

57
92

84

66
31

53

67
53

97

71
78

68

72
01

93

75
11

31

77
17

82

78
58

73

79
92

96

80
32

62

80
80

22

84
18

66

86
26

49

86
58

81

89
31

98

91
32

28

93
79

04

96
21

59

99
87

57

Owner

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
ER

mean
0.368

Fig. 5.30.: Siamese FCN (robust, valid approach) – EERs of samples per owner.

0.0

0.1

0.2

0.3

0.4

0.5

45
.0

 s
9

sa
m

pl
es

Owner 151985

12
5.

0
s

25
 s

am
pl

es

Owner 180679

40
5.

0
s

81
 s

am
pl

es

Owner 186676

80
.0

 s
16

 s
am

pl
es

Owner 218719

12
5.

0
s

25
 s

am
pl

es

Owner 248252

0 1000.0

0.1

0.2

0.3

0.4

0.5

20
.0

 s
4

sa
m

pl
es

Owner 264325

0 100

20
.0

 s
4

sa
m

pl
es

Owner 336172

0 100

12
5.

0
s

25
 s

am
pl

es

Owner 405035

0 100
80

.0
 s

16
 s

am
pl

es

Owner 501973

0 100

18
0.

0
s

36
 s

am
pl

es

Owner 553321

Seconds of Testing Data

Ex
pa

nd
in

g
m

ea
n

EE
R

Fig. 5.31.: Siamese FCN (robust, valid approach) – Confidence intervals of mean EER
expanding over seconds.

0 500 1000 1500
Training Data in Seconds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 E
ER

Fig. 5.32.: Siamese FCN (robust, valid approach) – Training delay.

0.0 0.2 0.4 0.6 0.8 1.0
Mean Accuracy

Proposed Siamese FCN

Reimplementation (valid)

Reimplementation

Centeno et al. (2018)

Reimplementation (valid)

Reimplementation

Centeno et al. (2018)

valid robust 1D (FCN)

valid robust 2D

naive min-max 2D

as reported

valid robust

naive min-max

as reported

0.653

0.569

0.900

0.978

0.618

0.863

0.869

0.0 0.2 0.4 0.6 0.8 1.0
Mean EER

Proposed Siamese FCN

Reimplementation (valid)

Reimplementation

Centeno et al. (2018)

Reimplementation (valid)

Reimplementation

Centeno et al. (2018)

valid robust 1D (FCN)

valid robust 2D

naive min-max 2D

as reported

valid robust

naive min-max

as reported

0.368

0.448

0.147

 N/A

0.408

0.188

 N/A

Si
am

es
e

C
N

N
O

C
SV

M

Fig. 5.33.: Classification results - Comparison of major variants.

5.8 Final Evaluation 73

6Discussion

After presenting my experiments and the evaluation of the original approach and my
proposed variation in the last chapter, it is appropriate to integrate the results into
the broader context. First, I present considerations regarding the challenges I faced
and discuss their impact on the goal of developing a smartphone base Continuous
Authentication (CA) system in general. Afterward, I give concrete recommendations
for further improving the approach presented in this thesis. Besides, a compilation
of minor bits of knowledge learned during my study can be found in Appendix A.9.
They seemed too specific or subjective for the central part of this work, but also too
interesting to discard.

6.1 Considerations

The biggest challenge I faced during this thesis was the reproducibility of related
studies due to missing information. While this thesis focused on reproducing a single
study, I also searched in other studies for essential details, without success. While the
bigger picture and general approach are usually presented appropriately, information
less important but necessary for a reproducible description is often missing, e.g.,
how exactly was the normalization or standardization performed? Which methods
were used for resampling? Which subjects of the dataset were excluded?

Of course, it is probably impossible to publish all information relevant for implemen-
tation in the format of a research paper within a limited number of pages. Also, it
is quite difficult to not forget any information interesting for others after working
focused on the topic for several months. But there is a simple solution to such
obstacles: Publishing the source code. It necessarily contains at least the parameters
and processing steps performed during study, which is a vital aid for people trying
to reproduce the results. The source code could even provide some reasoning or
references in the comments. To my best knowledge, none of the related studies
(see Table 3.1) published the source code of their experiments. In my opinion, the
research on this topic could be accelerated a lot if this changes.

The results of the various studies are basically incomparable. Whether it is the use
of different datasets and metrics, differences in the evaluated scenarios, testing

75

with and without Cross Validation (CV), or reporting the best or mean results: such
differences (see Section 3.4) make it hard to estimate the achieved progress. It would
be beneficial for research, if there would be some standard settings for testing the
performance of a CA system. Of course, the circumstances and goals of a study might
often require a specific evaluation approach, but I’m quite sure, many researchers
would welcome, if an easy to implement standard evaluation would be available.
In my opinion, developing such a standard would be an exciting undertaking and
probably highly appreciated by the research community.

While the H-MOG dataset, the first publicly available dataset dedicated to authenti-
cation use cases, is highly appreciated and I encourage its use during evaluation to
further improve comparability. Two aspects reduce its otherwise great usefulness: It
has been recorded in a controlled setting and does not include data of attacks. While
data from a controlled setting has its advantages, it certainly deviates a lot from a
real-world scenario, limiting the transferability of the results to a real application. It
would also be valuable if the data would include attack scenarios, where the same
device is taken out of the owner’s possession by an impostor during the same session.
Such scenarios would make the testing more realistic and would enable researchers
to evaluate criteria like detection delay in a comparable fashion. In my opinion, it
could also help communicate results, if the performance could be demonstrated on
close to “real” attack scenarios.

As I have learned during this thesis, collecting and compiling such a dataset is a huge
undertaking and effort of its own.35 Nevertheless, it also would be a prestigious
project if such a dataset would be made available and may be maintained with a list
of studies related to it (cf. MNIST dataset36).

Last but not least, another cross-study comparing the various approaches under
similar conditions would be highly valuable. The research done by Khan et al. (2014)
in this field is very beneficial, but considering the many new approaches proposed in
the last five years, an updated comparison seems suitable. Because of the reserve
to publish source code, this would be an extensive study of its own, but due to the
great variety of machine learning methods also a fascinating one.

35My own collection of data in a real-world setting with 10 subject over 14 days did not work out too
well. Difficulties in the data recording due to the heterogenous Android smartphone landscape
thinned the collected data down to 6 subjects. Issues with energy saving functions and differences
in the activity recognition API among the subjects’ smartphones slowed down the implementation
of the preprocessing too much to be able to perform tests within the time frame of this thesis.

36The website of the famous MNIST dataset for handwriting recognition with a curated list of related
studies is an excellent example: http://yann.lecun.com/exdb/mnist/.

76 Chapter 6 Discussion

http://yann.lecun.com/exdb/mnist/

6.2 Recommendations

Besides the general suggestions in the previous section, I gathered lots of ideas during
working on this thesis to improve the presented Siamese network approach. Some of
those have been already described in this thesis (see Section 5.7). Others could not
be tested in my limited time frame. The latter are listed here as recommendations
for further improvement of the model, prioritized by considering assumed impact
and effort.

1. Optimize hyperparameters per owner: The random search for best hyperpa-
rameters of the OCSVM revealed that the optimal parameter values vary
between the different owners (see Section 5.4). Tuning those parameters
using a validation split of the respective owner’s training data, instead of using
the same hyperparameters for all owners, is probably a quick win regarding
the model’s performance. While this step would increase the complexity in a
productive application slightly, it is perhaps still feasible.

2. Train Siamese CNN with owner data: In the presented approach, the deep fea-
ture generating Siamese CNN was trained using data from a separate set of
subjects. This was done with the idea in mind to train a single model centrally
and distribute it to the various devices in an application scenario. However, it
would be interesting to see the impact on the authentication performance, if
training data of the respective owner would also be included in the training
of the Siamese CNN. Implementing this in a productive application would
probably need some effort, but it might be justified depending on its impact.

3. Extensive parameter search: In this thesis, I performed a parameter search
by following an un-nested search tree, ordered by my educated assumptions.
With fewer limitations regarding resources like implementation time and
computation power, I expect a more extensive automated parameter search
with a broader search range to improve the results quite a lot.

4. Dynamic contrastive loss margin: In the given implementation, the margin
parameter of the contrastive loss function was defined as constant. During
literature research I came across several implementation favoring a dynamically
adjusted value for the margin. E.g., one approach is to set redefine the margin
after every batch or epoch to the value of the distance, which separates both
classes’ distributions. That is the same value I used for estimating the “accuracy”
during the training of the Siamese networks.

5. Test the Siamese LSTM variant: During the editing period of this thesis, a new
study was published, in which the CNNs of the Siamese network have been
exchanged by LSTM networks (Deb et al., 2019, p. 5). Those networks are
supposed to capture temporal aspects of time series better, and therefore might

6.2 Recommendations 77

be the right choice. The study reported promising results, but as it differs
in many aspects from the approach implemented in this thesis, it is hard to
estimate the impact of the different architecture alone.

6. Pre-classify user activity: The results of testing data from “sitting” scenarios
versus “walking” scenarios or mixed scenarios suggest that the activity state of
the user has quite some impact on the classification. This could be leveraged
by detecting the current activity upfront (e.g., via Android API) and either
train different models for the various activities or provide this information as
an additional feature of the model’s input data.

7. Introduce an absolute coordinate system: Some studies leveraged the grav-
ity of the Earth to remove its vector of the accelerometer data and detect the
spatial orientation of the smartphone. This orientation can be used to trans-
form the sensor data into an absolute coordination system (see Figure 2.6).
Some smartphones contain hardware and interfaces to provide this informa-
tion directly. Thus, consuming it through the API might be more accurate and
more accessible than deriving it from the inertial sensors manually. It might be
possible that the orientation in space as additional information supports the
neural networks in identifying unique patterns.

8. Include additional data sources: Gyroscope, accelerometer, and magnetome-
ter have some advantages over other sensors of the smartphone. However,
this data could be fused with additional data to improve the reliability of the
system. Patel et al. (2016) provide a good overview and also mention less
obvious signals, including Wifi access point sightings or background noise
detected by the microphone. Also, the combination of a smartphone with other
devices, e.g., a smartwatch, is possible (Al-Naffakh et al., 2018). Which data
can be accessed and included depends on the requirements of the use case.

9. Collect more data: The amount of training data is, of course, very important
for deep learning algorithms. The medium-sized H-MOG dataset limited the
number of trainable parameters that could be practically used for this thesis.
More data and the corresponding computation power could also enable the
testing of more complex network architectures.

78 Chapter 6 Discussion

7Conclusion

In this thesis, I have evaluated the feasibility of using inertial sensors of a smartphone
to classify its current user as the smartphone’s owner or an impostor to perform
Continuous Authentication (CA). A framework was presented, describing how such
an authentication process could like in an application, and an introduction into the
leveraged sensors was given.

The extensive review of related work revealed a variety of different approaches and
provided an overview of the multiple options available. Various machine learning
models used in previous studies were introduced as well as the different prepro-
cessing steps that have been applied. The related work proved the resourcefulness
of previous researchers but also unveiled severe deficits, with the complicated
reproducibility as the most critical one.

With the concept, I provided an outline of the later experiments, by reasoning the
design decisions I took. The decision to leverage a deep feature learning approach
was the most impactful one. This method allowed the combination of two benefits:
The training of a generic model allows leveraging existing behavioral information,
while the one class approach to classification does not depend on sharing data for
training the individual authentication models. The tempting idea to skip manual
feature engineering and learn the data transformation automatically also played a
part in the decision. Some other researchers already have been investigating those
possibilities in the past. Therefore, I decided to use the study by Centeno et al.
(2018) as a basis. As the H-MOG dataset used in this study is publicly available, I
had the chance to experiment with the reproducibility of their approach, which is
based on an ensemble of a Siamese CNN for feature learning and an OCSVM for
authentication.

Unexpected difficulties arose during the reimplementation of the Siamese CNN
approach, rooted in missing details about the original implementation and incon-
sistencies. Taking quite some assumptions, I was able to reproduce results similar
to those reported by the authors. But that was only possible by implementing steps
not appropriate for a real-world application and by exploiting outliers, instead of
identifying the user’s movement pattern. While it is unclear how similar the reim-
plementation actually got to the original, I proposed a more valid approach, which

79

with an Equal Error Rate (EER) of 44.8% did not even close reached the classifica-
tion performance reported by Centeno et al. (2018) and is very close to random.
Therefore, I proposed a new variant of the Siamese network, which uses the FCN
architecture for the Siamese subnetworks. After manual parameter optimization, the
model reached an EER of 37.4% in its final evaluation, which is also far from being
satisfying, but better than my valid reimplementation of the original model.

While discussing general issues of the research in CA, I argued for the release of the
source code along with the related studies, before proposing various ideas for future
research. This also includes a list of prioritized suggestions on how the proposed
FCN based Siamese network could be tuned to achieve better results.

I want to end this thesis by pointing out the high responsibility when dealing
with biometric identification features. Such information has intrinsically different
characteristics and a completely different value, which must be taken into account
by all stakeholders when used in practical applications.

„If someone steals your password, you can change
it. But if someone steals your thumbprint, you
can’t get a new thumb. The failure modes are
very different.

— Bruce Schneier
(Computer security expert and writer)

80 Chapter 7 Conclusion

AAppendix

A.1 Further related studies
Tab. A.1.: Studies related to CA not matching the relevance criteria for this thesis.

Study Best Model Reason for exclusion

Bo et al. (2013) OCSVM Uses touch inputs and application usage.

Frank et al. (2013) k-NN, SVM Uses touch inputs only.

Buriro et al. (2016) MLP Requires the user to draw his signature on the device.

Mahbub et al. (2016) Ensemble Uses face recognition, touch inputs, and geolocation only.

Fridman et al. (2017) Ensemble Uses touch inputs, application usage, and geolocation only.

81

A.2 Commonly computed Features
Tab. A.2.: Commonly computed features and number of resulting features (NF) per 3-axis

sensor. Aggregated from Shen et al. (2018, p. 52), Al-Naffakh et al. (2018, p. 21),
Parimi et al. (2018, pp. 3f).

Type Feature Set NF Description

Ti
m

e
D

om
ai

n

Mean 3 Average value

Median 3 Most often occurring values

Minimum 3 Lowest value

Maximum 3 Highest value

Range 3 Difference between highest and lowest values

Variance 3 Spread of values around their mean

STD 3 Standard deviation of the values

Kurtosis 3 Tailedness of value distribution

Skewness 3 Measure of symmetry of distribution

SMA 3 Signal Magnitude Area (SMA) or signal energy

Summed SMA 1 SMA of the three axis signals combined

Quantiles 3·x Separating partitions in the values distribution

IQR 3 Interquartile Range (IQR), a measure of variability

Cross-mean Rate 3 Fluctuation of the signal

Fr
eq

ue
nc

y
D

om
ai

n

Entropy 3 Dispersion of signal

Peek occurrences 3 Number of peeks occurred

Time between peeks 3 Average time between peeks

Slope between peeks (ul-Haq2018, p.28)

Peek to peek signal value (ul-Haq2018, p.28)

Max./Min Latency (ul-Haq2018, p.28) s

ALAR Absolute Latency to Amplitude Ratio

O
th

er

Correlation coeff. 3 Relationship between two axes

Cosine similarity 3 Pairwise cosine similarity measurements between axes

Covariance 3 Pairwise covariances between axes

DTW 3 Dynamic Time Warping

Band Power 3 Dynamic Time Warping

SNR 3 Signal to Noise Ratio

82 Chapter A Appendix

A.3 Parameters for OCSVM Approach
Tab. A.3.: Best parameters used for OCSVM baseline model and generating its input vectors, as provided by

Centeno et al. (2018, pp. 3–5), along with open questions.

Step Parameter Value Comment

D
at

a

Sensor values raw 3-axis of accelerometer, gyroscope, magnetometer.

Sensor frequency 100 Hz

Window length 0.5 sec Resulting in input vector length of 150.

Normalization MinMax(0,1) Channel wise, per subjecta.

O
C

SV
M

Train/Test subjects 30 60 were needed for the Siamese CNN.

Train sessions 18 Per Subject, randomly selected, but with stratified task types.

Train observations 6750 From owner only. Resulting in 135 samples for given window.

Test sessions 6 Per Subject, resulting in 870 scenarios of 1 vs. 1.

Kernel RBF Information on C or ν is missing.

Gamma 0.0001–100 Used as threshold for ROCa.

Open Question Selected Solution / Assumption

Which method was used for resampling
to 25 Hz?

Use mean over a sliding window of 4 samples width, and 4 samples
step width.

Which step width was used during fea-
ture generation?

To keep the number of samples stable, I used a 0.5 s step width,
which can be used with all tested window sizes (> 0.5 s).

Which 30 subjects were used for train-
ing and testing?

Select 30 subjects out of the 90 randomly.

Which 10 of the 100 subjects were ex-
cluded?

3 Subjects with incomplete sessions, plus 3 subjects with the most
data and 4 subjects with the least data (“outliers” regarding the
number of samples).

Which values for γ and ν were used? Perform a random search with the remaining 60 of the 90 subjects.b

How was subject wise normalization
performed?

Test two approaches: before splitting data into train and test sets,
and after.

a Via correspondence with Mr. Centeno.
b The resulting values are presented in Chapter 5.6.

A.3 Parameters for OCSVM Approach 83

A.4 Parameters for Siamese CNN Approach
Tab. A.4.: Best parameters used for selecting/preprocessing data, Siamese CNN feature extraction model, and

OCSVM authentication model, as provided by Centeno et al. (2018, pp. 3–5), along with open questions.

Step Parameter Value Comment

D
at

a

Sensor values raw 3-axis of accelerometer, gyroscope, magnetometer.

Sensor frequency 25 Hz

Window length 1 s Resulting in input vector length of 225.

Normalization MinMax(0,1) Channel wise, per subjecta.

Si
am

es
e

C
N

N

Train subjects 60 Separated from subjects used for OCSVM.

Train observations 6750 Per subject, resulting in 270 samples per subject.

Train samples 270 Per subject

Train pairs 8100 Implicitly given (60 ·270÷2). 50% positive, 50% negative pairs.

CNN Layers 4 Conv., Max Pool. Convolutional layers and Max Pooling layers are alternated.

Max Pooling 2x2

Conv. Layers 32 (7x7), 64 (5x5),
128 (3x3), 22 (3x3)

Filter number of last layer is deduced: it is stated to be adjusted
to result in a ~64 dimensional output vector.

Distance Function Eucl. Dist. Euclidean distance.

Loss Contr. Loss Contrastive loss function.

O
C

SV
M

Train/Test subjects 30 Separated from subjects used for Siamese CNN.

Train sessions 18 p. Subj Randomly selected, stratified task types.

Test sessions 6 p. Subj. Resulting in 870 scenarios of 1 vs. 1

Kernel RBF Information on C or ν is missing.

Gamma 0.0001–100 Used as threshold for ROCa.

Open Question Selected Solution / Assumption

Which value was chosen for the margin of the
contrastive loss function?

I used distribution plots of the loss of positive and negative pairs
to tune the margin.b

How to apply 2D filters on 2D input vectors? That is not possible. I assume 3D input blocks were meant.

How is the ordering of the sensor axis in the
input data?

This is relevant for the 2D convolutional filters, but not provided.
I use Accx,y,z, Gyrx,y,z, Magx,y,z.

How was the hyperparameter optimization per-
formed for the Siamese CNN?

By testing distance based EER on a validation set.

How did the validation set look like? 8 samples from 6 of 24 sessions per user.

Which activation functions were used for the
convolutional layers?

I decided to use ReLU, as it is known to work well with CNNs,
see, e.g., Nair and E. Hinton (2010).

a Via correspondence with Mr. Centeno.
b The resulting values are presented in Chapter 5.6.

84 Chapter A Appendix

A.5 Authentication Accuracy

15
19

85

18
06

79

18
66

76

21
87

19

24
82

52

26
43

25

33
61

72

40
50

35

50
19

73

55
33

21

56
19

93

57
92

84

66
31

53

67
53

97

71
78

68

72
01

93

75
11

31

77
17

82

78
58

73

79
92

96

80
32

62

80
80

22

84
18

66

86
26

49

86
58

81

89
31

98

91
32

28

93
79

04

96
21

59

99
87

57

Owner

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

mean
0.863

Fig. A.1.: Accuracy of samples per owner – OCSVM (naive approach).

15
19

85

18
06

79

18
66

76

21
87

19

24
82

52

26
43

25

33
61

72

40
50

35

50
19

73

55
33

21

56
19

93

57
92

84

66
31

53

67
53

97

71
78

68

72
01

93

75
11

31

77
17

82

78
58

73

79
92

96

80
32

62

80
80

22

84
18

66

86
26

49

86
58

81

89
31

98

91
32

28

93
79

04

96
21

59

99
87

57

Owner

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y mean
0.654

Fig. A.2.: Accuracy of samples per owner – OCSVM (valid approach).

15
19

85

18
06

79

18
66

76

21
87

19

24
82

52

26
43

25

33
61

72

40
50

35

50
19

73

55
33

21

56
19

93

57
92

84

66
31

53

67
53

97

71
78

68

72
01

93

75
11

31

77
17

82

78
58

73

79
92

96

80
32

62

80
80

22

84
18

66

86
26

49

86
58

81

89
31

98

91
32

28

93
79

04

96
21

59

99
87

57

Owner

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

mean
0.900

Fig. A.3.: Accuracy of samples per owner – Siamese CNN (naive approach).

15
19

85

18
06

79

18
66

76

21
87

19

24
82

52

26
43

25

33
61

72

40
50

35

50
19

73

55
33

21

56
19

93

57
92

84

66
31

53

67
53

97

71
78

68

72
01

93

75
11

31

77
17

82

78
58

73

79
92

96

80
32

62

80
80

22

84
18

66

86
26

49

86
58

81

89
31

98

91
32

28

93
79

04

96
21

59

99
87

57

Owner

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

mean
0.605

Fig. A.4.: Accuracy of samples per owner – Siamese CNN (valid approach).

A.5 Authentication Accuracy 85

A.6 Detection Delay

0.0

0.1

0.2

0.3

0.4

0.5

12
.5

 s
25

 s
am

pl
es

Owner 151985

18
.0

 s
36

 s
am

pl
es

Owner 180679

8.
0

s
16

 s
am

pl
es

Owner 186676

8.
0

s
16

 s
am

pl
es

Owner 218719

8.
0

s
16

 s
am

pl
es

Owner 248252

0 1000.0

0.1

0.2

0.3

0.4

0.5

8.
0

s
16

 s
am

pl
es

Owner 264325

0 100

4.
5

s
9

sa
m

pl
es

Owner 336172

0 100

8.
0

s
16

 s
am

pl
es

Owner 405035

0 100

8.
0

s
16

 s
am

pl
es

Owner 501973

0 100

8.
0

s
16

 s
am

pl
es

Owner 553321

Seconds of Testing Data

Ex
pa

nd
in

g
m

ea
n

EE
R

Fig. A.5.: Confidence intervals – OCSVM (valid approach).

0.0

0.1

0.2

0.3

0.4

0.5

16
.0

 s
16

 s
am

pl
es

Owner 151985

9.
0

s
9

sa
m

pl
es

Owner 180679

4.
0

s
4

sa
m

pl
es

Owner 186676

4.
0

s
4

sa
m

pl
es

Owner 218719

25
.0

 s
25

 s
am

pl
es

Owner 248252

0 1000.0

0.1

0.2

0.3

0.4

0.5

49
.0

 s
49

 s
am

pl
es

Owner 264325

0 100

9.
0

s
9

sa
m

pl
es

Owner 336172

0 100

9.
0

s
9

sa
m

pl
es

Owner 405035

0 100

4.
0

s
4

sa
m

pl
es

Owner 501973

0 100

4.
0

s
4

sa
m

pl
es

Owner 553321

Seconds of Testing Data

Ex
pa

nd
in

g
m

ea
n

EE
R

Fig. A.6.: Confidence intervals – Siamese CNN (naive approach).

0.0

0.1

0.2

0.3

0.4

0.5

10
0.

0
s

10
0

sa
m

pl
es

Owner 151985

81
.0

 s
81

 s
am

pl
es

Owner 180679

9.
0

s
9

sa
m

pl
es

Owner 186676

9.
0

s
9

sa
m

pl
es

Owner 218719

25
.0

 s
25

 s
am

pl
es

Owner 248252

0 1000.0

0.1

0.2

0.3

0.4

0.5

25
.0

 s
25

 s
am

pl
es

Owner 264325

0 100

9.
0

s
9

sa
m

pl
es

Owner 336172

0 100

16
.0

 s
16

 s
am

pl
es

Owner 405035

0 100

25
.0

 s
25

 s
am

pl
es

Owner 501973

0 100

9.
0

s
9

sa
m

pl
es

Owner 553321

Seconds of Testing Data

Ex
pa

nd
in

g
m

ea
n

EE
R

Fig. A.7.: Confidence intervals – Siamese CNN (valid approach).

86 Chapter A Appendix

A.7 Pair Distances during Training
Training history of the Siamese CNN with data normalized using the robust scaler.

Before Training:

0.05 0.10 0.15 0.20 0.25 0.300

20 EER Threshold
(0.10)

Margin
(0.2)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.80

20 EER Threshold
(0.10)

Margin
(0.2)

Valid Distances
positive pairs
negative pairs

Epoch 11:

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400

10

EER Threshold
(0.09)

Margin
(0.2)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.80

10
EER Threshold
(0.10)

Margin
(0.2)

Valid Distances
positive pairs
negative pairs

Epoch 21:

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350

20 EER Threshold
(0.10)

Margin
(0.2)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.80

10

EER Threshold
(0.10)

Margin
(0.2)

Valid Distances
positive pairs
negative pairs

Fig. A.8.: Distribution of Euclidean distances between positive and negative pairs during
training, for training (uneven rows) and validation set (even rows).

0 5 10 15 20 25 30 35 40
Epochs

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

Lo
ss

train
valid

Fig. A.9.: Loss of training and validation sets (robust scaled) after epochs of training data.

A.6 Detection Delay 87

A.8 Parameter Search Results

This section contains the results of the tested parameter for the Siamese CNN (see
Section 5.7). For every tested variant, the final pair-distance plot and loss history
of training and validation set after n epochs of training are displayed. For the full
training history, see the HTML exports of the corresponding test runs located in
/reports/optimization/ of the repository (Büch, 2019).

CNN architecture
Parameter Value

CNN architecture Original CNN (2D filters), Original CNN (1D filters), FCN (1D filters)

Features {acc, gyr, mag}

Window size 1

Sampling rate 25 Hz

Scenarios {sit, walk}

Epoch 11:

0.0 0.1 0.2 0.3 0.40

20 EER Threshold
(0.10)

Margin
(0.2)

Train Distances
positive pairs
negative pairs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

10
EER Threshold
(0.10)

Margin
(0.2)

Valid Distances
positive pairs
negative pairs

0 3 6 9 12 15 18
Epochs

0.010

0.012

0.014

0.016

0.018

0.020

0.022

Lo
ss

train
valid

(a) Original CNN (2D filters)

Epoch 20:

0.0 0.5 1.0 1.5 2.00

2
EER Threshold
(0.36)

Margin
(0.2)

Train Distances
positive pairs
negative pairs

0 1 2 3 4 50

2
EER Threshold
(0.37)

Margin
(0.2)

Valid Distances
positive pairs
negative pairs

0 3 6 9 12 15 18
Epochs

0

1

2

3

4

5

Lo
ss

train
valid

(b) Original CNN (1D filters)

Epoch 56:

0.00 0.25 0.50 0.75 1.00 1.25 1.500

2
EER Threshold
(0.51)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.5 1.0 1.5 2.0 2.5 3.00

2 EER Threshold
(0.51)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.15

0.20

0.25

0.30

0.35

Lo
ss

train
valid

(c) FCN (1D filters)

Fig. A.10.: Results of varying CNN architectures.

88 Chapter A Appendix

Features
Parameter Value

CNN architecture FCN (1D filters)

Features {acc, gyr, mag}, {acc, gyr}, {acc}

Window size 1 sec.

Sampling rate 25 Hz

Scenarios {sit, walk}

Epoch 56:

0.00 0.25 0.50 0.75 1.00 1.25 1.500

2
EER Threshold
(0.51)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.5 1.0 1.5 2.0 2.5 3.00

2 EER Threshold
(0.51)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.15

0.20

0.25

0.30

0.35

Lo
ss

train
valid

(a) {acc, gyr, mag}

Epoch 20:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2
EER Threshold
(0.49)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.20

2
EER Threshold
(0.50)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

Lo
ss

train
valid

(b) {acc, gyr}

Epoch 56:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2
EER Threshold
(0.52)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2
EER Threshold
(0.53)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.21

0.22

0.23

0.24

0.25

0.26

Lo
ss

train
valid

(c) {acc}

Fig. A.11.: Results of varying features.

A.8 Parameter Search Results 89

Window Size
Parameter Value

CNN architecture FCN (1D filters)

Features {acc}

window size 0.5, 1, 2, 5 sec.

Sampling rate 25 Hz

Scenarios {sit, walk}

Epoch 56:

0.0 0.2 0.4 0.6 0.8 1.0 1.20

2
EER Threshold
(0.49)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.20

2
EER Threshold
(0.51)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.22

0.23

0.24

0.25

0.26

Lo
ss

train
valid

(a) 0.5 seconds

Epoch 56:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2
EER Threshold
(0.51)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.20

2
EER Threshold
(0.52)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.22

0.23

0.24

0.25

0.26

Lo
ss

train
valid

(b) 1 second

Epoch 56:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2
EER Threshold
(0.49)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.20

2
EER Threshold
(0.51)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.20

0.21

0.22

0.23

0.24

0.25

0.26

Lo
ss

train
valid

(c) 2 seconds

Epoch 56:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.750

2 EER Threshold
(0.52)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2
EER Threshold
(0.52)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.20

0.22

0.24

0.26

Lo
ss

train
valid

(d) 5 seconds

Fig. A.12.: Results of varying window sizes.

90 Chapter A Appendix

Sampling Rate
Parameter Value

CNN architecture FCN (1D filters)

Features {acc}

window size 5 sec.

Sampling rate 25 Hz, 100 Hz

Scenarios {sit, walk}

Epoch 56:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.750

2 EER Threshold
(0.52)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2
EER Threshold
(0.52)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.20

0.22

0.24

0.26

Lo
ss

train
valid

(a) 25 Hz

Epoch 56:

0.00 0.25 0.50 0.75 1.00 1.25 1.500

2
EER Threshold
(0.50)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2 EER Threshold
(0.53)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.20

0.22

0.24

0.26

0.28

Lo
ss

train
valid

(b) 100 Hz

Fig. A.13.: Results of varying sampling rate.

A.8 Parameter Search Results 91

Scenarios
Parameter Value

CNN architecture FCN (1D filters)

Features {acc}

window size 5 sec.

Sampling rate 25 Hz

Scenarios {sit, walk}, {sit},{walk}

Epoch 56:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60

2
EER Threshold
(0.50)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2 EER Threshold
(0.51)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.20

0.22

0.24

0.26

Lo
ss

train
valid

(a) {walk, sit}

Epoch 56:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2
EER Threshold
(0.53)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

2
EER Threshold
(0.53)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.20

0.22

0.24

0.26

0.28

0.30

Lo
ss

train
valid

(b) {sit}

Epoch 56:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.000

2 EER Threshold
(0.52)

Margin
(1)

Train Distances
positive pairs
negative pairs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.750

2 EER Threshold
(0.53)

Margin
(1)

Valid Distances
positive pairs
negative pairs

0 8 16 24 32 40 48 56
Epochs

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Lo
ss

train
valid

(c) {walk}

Fig. A.14.: Results of varying scenario selection.

92 Chapter A Appendix

A.9 Minor Learnings

During the process of implementation, I learned lots of small things, too insignificant
for the precious space of the main chapters, but also too useful to discard. Therefore,
I decided to list them here in the Appendix:

Reading and writing large datasets
As expected, reading data directly from the original data format (CSV) was slow. I tried
SQLite, which performed really well but to leverage its performance, I had to write most
of the logic in SQL-statements, which was cumbersome and decreased code clarity. Then I
experimented with the Dask library37 and stored the data in Parquet format, but the learning
curve of the library turned out to be harder than expected for more complex operations.
Also, I ran into dependency and compatibility issues when I tried to use Dask on different
operating systems. In the end, I compromised by using HDF format. That turned out to be
quite fast, very easy to use, and has native support by Pandas. However, it doesn’t allow lazy
operations like Dask and therefore might not be the right choice if the data exceeds the size
of memory.

Data collection on Android smartphones
Using Android smartphones for data collection is quite challenging, due to the fragmented
market of multiple vendors: The variety of hardware components, Android OS versions,
and software customization by the vendors decreases compatibility and stability of apps.
Additionally, restricted rights for user or app makes it difficult to override Android system
functionality, like running an app in the background. Battery saving functionalities, especially
when customized by the vendor, complicate the usage additionally. Also, the Android activity
API, which was leveraged to detect the current user’s activity (walking, vehicle, still, etc.)
seems to behave quite differently across smartphones. Some phones seem to report the
activity in high frequency, while others so to report only changes in the activity. However,
I do not know whether the data logger implementation causes this issue or, e.g., different
Android versions.

Reproducing results
It is better to not take anything for granted, just because it is common sense. It matters what
is explicitly written. For the own implementation, try to provide any information needed
for reproduction, but noticed, how hard this is after working deep on the topic for a long
time. Therefore, publishing the source code is essential, and I will appreciate studies with
published source code more highly in the future.

Sanity checking of processing steps
In the beginning, I overlooked some implementation errors, which led to unexpected results
and was easily misleading. Then I started writing tests for the individual intermediate
steps, which significantly improved the situation. While I implemented the tests as simple
debugging outputs in this thesis, I plan to work with proper unit testing for future projects,
even in Jupyter Notebooks.

37https://docs.dask.org/en/latest/

A.9 Minor Learnings 93

https://docs.dask.org/en/latest/

Useful 3rd-party modules
Python is famous for its ecosystem of 3rd party modules, and while it is always a good idea
to not depend on them too much, I discovered four modules, which I didn’t come across
before, and which I found quite useful:

• tqdm (https://tqdm.github.io/)
Simple to use progress bars for terminal and Jupyter, also displaying time per iteration
and remaining time.

• dataclasses (https://docs.python.org/3/library/dataclasses.html)
Backport of the “dataclasses” introduced with Python 3.7. Very useful for maintaining
data objects. I used it as a feature-rich alternative for NamedTuples.

• pandas-profiling (https://github.com/pandas-profiling/pandas-profiling)
A module providing a statistical summary of pandas dataframes in the form of a neat,
interactive report. (Only for small to medium sized dataframes.)

• jupyterlab-toc (https://github.com/jupyterlab/jupyterlab-toc)
An extension of JupyterLab that displays all markdown headlines as a table of content
in the sidebar. Very useful for navigating more extended notebooks.

94 Chapter A Appendix

https://tqdm.github.io/
https://docs.python.org/3/library/dataclasses.html
https://github.com/pandas-profiling/pandas-profiling
https://github.com/jupyterlab/jupyterlab-toc

Bibliography

Al-Naffakh, N., N. Clarke, and F. Li (2018). „Continuous User Authentication Using Smart-
watch Motion Sensor Data“. In: Trust Management XII. Cham, Swiss: Springer, pp. 15–28.
DOI: 10.1007/978-3-319-95276-5_2 (cit. on pp. 17, 18, 78, 82).

AlgoSnap Inc. (2015). CrowdSignals.io. URL: http://crowdsignals.io/ (visited on Jan. 21,
2019) (cit. on p. 14).

Ashbourn, J. (2015). Practical Biometrics. London, UK: Springer. DOI: 10.1007/978-1-4471-
6717-4 (cit. on p. 6).

Bo, C., L. Zhang, X.-Y. Li, Q. Huang, and Y. Wang (2013). „SilentSense: Silent User Identifica-
tion via Touch and Movement Behavioral Biometrics“. In: Proceedings of the 19th Annual
International Conference on Mobile Computing & Networking. MobiCom ’13. Miami, FL:
ACM, pp. 187–190. DOI: 10.1145/2500423.2504572 (cit. on p. 81).

Bosch Sensortec (2018a). BMI263 - Product Description. URL: https : / / www . bosch -
sensortec.com/bst/products/all_products/bmi263 (visited on Nov. 6, 2018) (cit. on
p. 10).

– (2018b). BMI263 - Product Flyer. URL: https://ae-bst.resource.bosch.com/media/
_tech/media/product_flyer/BST-BMI263-FL000.pdf (visited on Nov. 6, 2018) (cit. on
p. 10).

Bromley, J., J. W. Bentz, L. Bottou, et al. (1993). „Signature Verification using a "Siamese"
Time Delay Neural Network“. In: International Journal of Pattern Recognition and Artificial
Intelligence 7, p. 25. DOI: 10.1142/S0218001493000339 (cit. on p. 37).

Büch, H. (2019). ContinAuth. GitHub repository. URL: https://github.com/dynobo/
ContinAuth (visited on June 30, 2019) (cit. on pp. 39, 66, 88).

Buriro, A., B. Crispo, F. Delfrari, and K. Wrona (2016). „Hold and Sign: A Novel Behavioral
Biometrics for Smartphone User Authentication“. In: 2016 IEEE Security and Privacy
Workshops (SPW), pp. 276–285. DOI: 10.1109/SPW.2016.20 (cit. on p. 81).

Centeno, M. P., A. v. Moorsel, and S. Castruccio (2017). „Smartphone Continuous Authenti-
cation Using Deep Learning Autoencoders“. In: 15th Annual Conference on Privacy, Security
and Trust (PST), pp. 1–9. DOI: 10.1109/PST.2017.00026 (cit. on pp. 5, 14, 15, 22–26,
31, 45).

Centeno, M. P., Y. Guan, and A. v. Moorsel (2018). „Mobile Based Continuous Authentication
Using Deep Features“. In: Proceedings of the 2nd International Workshop on Embedded and
Mobile Deep Learning (EMDL), pp. 19–24. DOI: 10.1145/3212725.3212732 (cit. on pp. 2,
4, 14, 15, 19, 21, 25, 37–39, 41, 44–47, 49, 51–54, 57, 58, 61, 62, 66, 70, 79, 80, 83, 84).

95

https://doi.org/10.1007/978-3-319-95276-5_2
http://crowdsignals.io/
https://doi.org/10.1007/978-1-4471-6717-4
https://doi.org/10.1007/978-1-4471-6717-4
https://doi.org/10.1145/2500423.2504572
https://www.bosch-sensortec.com/bst/products/all_products/bmi263
https://www.bosch-sensortec.com/bst/products/all_products/bmi263
https://ae-bst.resource.bosch.com/media/_tech/media/product_flyer/BST-BMI263-FL000.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/product_flyer/BST-BMI263-FL000.pdf
https://doi.org/10.1142/S0218001493000339
https://github.com/dynobo/ContinAuth
https://github.com/dynobo/ContinAuth
https://doi.org/10.1109/SPW.2016.20
https://doi.org/10.1109/PST.2017.00026
https://doi.org/10.1145/3212725.3212732

Crouse, D., H. Han, D. Chandra, B. Barbello, and A. K. Jain (2015). „Continuous authen-
tication of mobile user: Fusion of face image and inertial Measurement Unit data“. In:
2015 International Conference on Biometrics (ICB), pp. 135–142. DOI: 10.1109/ICB.2015.
7139043 (cit. on p. 27).

Dasgupta, D., A. Roy, and A. Nag (2017). Advances in User Authentication (Infosys Science
Foundation Series). Cham, Switzerland: Springer. DOI: 10.1007/978-3-319-58808-7
(cit. on pp. 3, 4, 7).

Deb, D., A. Ross, A. K. Jain, K. O. Prakah-Asante, and K. V. Prasad (2019). „Actions Speak
Louder Than (Pass)words: Passive Authentication of Smartphone Users via Deep Temporal
Features“. In: CoRR. arXiv: arXiv:1901.05107 (cit. on pp. 14–16, 19, 25, 26, 38, 77).

E.-u.-Haq, M., M. A. Azam, U. Naeem, S. ur Rèhman, and A. Khalid (2017). „Identifying
Smartphone Users based on their Activity Patterns via Mobile Sensing“. In: Procedia
Computer Science 113, pp. 202–209. DOI: 10.1016/j.procs.2017.08.349 (cit. on pp. 13,
14, 20).

E.-u.-Haq, M., M. A. Azam, U. Naeem, Y. Amin, and J. Loo (2018). „Continuous authentication
of smartphone users based on activity pattern recognition using passive mobile sensing“.
In: Journal of Network and Computer Applications 109, pp. 24–35. DOI: 10.1016/j.jnca.
2018.02.020 (cit. on pp. 14, 16, 17, 21).

Fawaz, H. I., G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller (2018). „Deep learning
for time series classification: a review“. In: DOI: 10.1007/s10618-019-00619-1. arXiv:
http://arxiv.org/abs/1809.04356v4 [cs.LG] (cit. on p. 67).

Fraden, J. (2016). Handbook of Modern Sensors. Cham Heidelberg New York Dordrecht
London: Springer. DOI: 10.1007/978-3-319-19303-8 (cit. on p. 11).

Frank, J., S. Mannor, and D. Precup (2010). „Activity and Gait Recognition with Time-delay
Embeddings“. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence.
AAAI’10. Atlanta, GA: AAAI, pp. 1581–1586 (cit. on p. 14).

Frank, M., R. Biedert, E. Ma, I. Martinovic, and D. Song (2013). „Touchalytics: On the
Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Authentica-
tion“. In: IEEE Transactions on Information Forensics and Security 8.1, pp. 136–148. DOI:
10.1109/TIFS.2012.2225048 (cit. on p. 81).

Fridman, L., S. Weber, R. Greenstadt, and M. Kam (2017). „Active Authentication on Mobile
Devices via Stylometry, Application Usage, Web Browsing, and GPS Location“. In: IEEE
Systems Journal 11.2, pp. 513–521. DOI: 10.1109/JSYST.2015.2472579 (cit. on p. 81).

García, S., J. Luengo, and F. Herrera (2015). Data Preprocessing in Data Mining. Cham
Heidelberg New York Dordrecht London: Springer. DOI: 10.1007/978-3-319-10247-4.
URL: https://doi.org/10.1007/978-3-319-10247-4 (cit. on pp. 15–17).

GitHub.com (2016). Error in Contrastive loss function for the Siamese example. URL: https:
//github.com/keras-team/keras/issues/1866 (visited on Apr. 17, 2019) (cit. on
p. 54).

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning. Cambridge, MA: MIT Press.
URL: http://www.deeplearningbook.org (cit. on p. 23).

Hadsell, R., S. Chopra, and Y. LeCun (2006). „Dimensionality Reduction by Learning an
Invariant Mapping“. In: 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR). Vol. 2, pp. 1735–1742. DOI: 10.1109/CVPR.2006.100 (cit. on
pp. 53, 54).

96 Bibliography

https://doi.org/10.1109/ICB.2015.7139043
https://doi.org/10.1109/ICB.2015.7139043
https://doi.org/10.1007/978-3-319-58808-7
http://arxiv.org/abs/arXiv:1901.05107
https://doi.org/10.1016/j.procs.2017.08.349
https://doi.org/10.1016/j.jnca.2018.02.020
https://doi.org/10.1016/j.jnca.2018.02.020
https://doi.org/10.1007/s10618-019-00619-1
http://arxiv.org/abs/http://arxiv.org/abs/1809.04356v4
https://doi.org/10.1007/978-3-319-19303-8
https://doi.org/10.1109/TIFS.2012.2225048
https://doi.org/10.1109/JSYST.2015.2472579
https://doi.org/10.1007/978-3-319-10247-4
https://doi.org/10.1007/978-3-319-10247-4
https://github.com/keras-team/keras/issues/1866
https://github.com/keras-team/keras/issues/1866
http://www.deeplearningbook.org
https://doi.org/10.1109/CVPR.2006.100

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning. New
York, NY: Springer. DOI: 10.1007/978-0-387-84858-7. URL: https://doi.org/10.
1007/978-0-387-84858-7 (cit. on pp. 20, 35, 36).

Hering, E. and G. Schönfelder, eds. (2018). Sensoren in Wissenschaft und Technik. Wiesbaden,
Germany: Springer. DOI: 10.1007/978-3-658-12562-2 (cit. on pp. 7–10).

Hinton, G. E. and R. R. Salakhutdinov (2006). „Reducing the Dimensionality of Data with
Neural Networks“. In: Science 313.5786, pp. 504–507. DOI: 10.1126/science.1127647
(cit. on p. 23).

Horst, F., F. Kramer, B. Schäfer, et al. (2016). „Daily changes of individual gait patterns
identified by means of support vector machines“. In: Gait & Posture 49, pp. 309–314. DOI:
10.1016/j.gaitpost.2016.07.073 (cit. on p. 32).

Horst, F., S. R. Lapuschkin, W. Samek, K. R. Müller, and W. I. Schöllhorn (2018). „What
is Unique in Individual Gait Patterns? Understanding and Interpreting Deep Learning in
Movement Analysis“. In: Book of Abstracts of the Annual Congress of the European College
of Sport Science. Vol. 23, p. 33 (cit. on p. 32).

Illowsky, B. and S. Dean (2013). Introductory statistics. Houston, TX: OpenStax College, Rice
University. URL: https://openstax.org/details/books/introductory-statistics
(visited on May 9, 2019) (cit. on p. 50).

Jain, A. K., A. Ross, and S. Prabhakar (2004). „An Introduction to Biometric Recognition“.
In: IEEE Transactions on Circuits and Systems for Video Technology 14.1, pp. 4–20. DOI:
10.1109/tcsvt.2003.818349 (cit. on p. 6).

Kalantar-zadeh, K. (2013). Sensors. Boston, MA: Springer. DOI: 10.1007/978-1-4614-5052-
8 (cit. on pp. 8, 9, 11).

Kayacik, H. G., M. Just, L. Baillie, D. Aspinall, and N. Micallef (2014). „Data Driven Authen-
tication: On the Effectiveness of User Behaviour Modelling with Mobile Device Sensors“.
In: Proceedings of the Third Workshop on Mobile Security Technologies (MoST). URL: https:
//researchportal.hw.ac.uk/en/publications/data-driven-authentication-on-
the-effectiveness-of-user-behaviour (visited on Apr. 29, 2019) (cit. on pp. 14, 32).

Khan, H., A. Atwater, and U. Hengartner (2014). „A Comparative Evaluation of Implicit
Authentication Schemes“. In: Research in Attacks, Intrusions and Defenses, pp. 255–275.
DOI: 10.1007/978-3-319-11379-1_13 (cit. on pp. 26, 33, 34, 76).

Kumar, R., V. V. Phoha, and A. Jain (2015). „Treadmill attack on gait-based authentication
systems“. In: 2015 IEEE 7th International Conference on Biometrics Theory, Applications
and Systems (BTAS), pp. 1–7. DOI: 10.1109/BTAS.2015.7358801 (cit. on p. 32).

Lee, W. and R. B. Lee (2015). „Multi-sensor authentication to improve smartphone security“.
In: 2015 International Conference on Information Systems Security and Privacy (ICISSP),
pp. 1–11 (cit. on pp. 14, 21).

– (2017). „Implicit Smartphone User Authentication with Sensors and Contextual Machine
Learning“. In: 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 297–308. DOI: 10.1109/DSN.2017.24 (cit. on pp. 14, 20, 21).

Li, Y., H. Hu, G. Zhou, and S. Deng (2018). „Sensor-Based Continuous Authentication
Using Cost-Effective Kernel Ridge Regression“. In: IEEE Access 6, pp. 32554–32565. DOI:
10.1109/ACCESS.2018.2841347 (cit. on pp. 4–6, 14, 15, 17, 25, 44).

Bibliography 97

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-658-12562-2
https://doi.org/10.1126/science.1127647
https://doi.org/10.1016/j.gaitpost.2016.07.073
https://openstax.org/details/books/introductory-statistics
https://doi.org/10.1109/tcsvt.2003.818349
https://doi.org/10.1007/978-1-4614-5052-8
https://doi.org/10.1007/978-1-4614-5052-8
https://researchportal.hw.ac.uk/en/publications/data-driven-authentication-on-the-effectiveness-of-user-behaviour
https://researchportal.hw.ac.uk/en/publications/data-driven-authentication-on-the-effectiveness-of-user-behaviour
https://researchportal.hw.ac.uk/en/publications/data-driven-authentication-on-the-effectiveness-of-user-behaviour
https://doi.org/10.1007/978-3-319-11379-1_13
https://doi.org/10.1109/BTAS.2015.7358801
https://doi.org/10.1109/DSN.2017.24
https://doi.org/10.1109/ACCESS.2018.2841347

Li, Y., H. Hu, and G. Zhou (2019). „Using Data Augmentation in Continuous Authentication
on Smartphones“. In: IEEE Internet of Things Journal 6.1, pp. 628–640. DOI: 10.1109/
JIOT.2018.2851185 (cit. on pp. 14, 17).

Mahbub, U., S. Sarkar, V. M. Patel, and R. Chellappa (2016). „Active user authentication for
smartphones: A challenge data set and benchmark results“. In: 2016 IEEE 8th International
Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–8. DOI: 10.1109/
BTAS.2016.7791155 (cit. on p. 81).

Nair, V. and G. E. Hinton (2010). „Rectified Linear Units Improve Restricted Boltzmann
Machines Vinod Nair“. In: vol. 27, pp. 807–814. URL: http://www.cs.toronto.edu/
~fritz/absps/reluICML.pdf (cit. on pp. 53, 84).

Neverova, N., C. Wolf, G. Lacey, et al. (2016). „Learning Human Identity From Motion
Patterns“. In: IEEE Access 4, pp. 1810–1820. DOI: 10.1109/ACCESS.2016.2557846 (cit. on
pp. 6, 26, 31, 44).

Neverova, N. (2016). „Deep learning for human motion analysis“. PhD thesis. Université
de Lyon. URL: https://tel.archives-ouvertes.fr/tel-01470466 (visited on Dec. 7,
2018) (cit. on pp. 14, 15, 18, 19, 21).

NIST - National Institute of Standards and Technology (2018). Computer Security Resource
Center, Glossary - authorization. URL: https : / / csrc . nist . gov / glossary / term /
authorization (visited on Dec. 19, 2018) (cit. on p. 4).

Parimi, G. M., P. P. Kundu, and V. V. Phoha (2018). „Analysis of head and torso movements
for authentication“. In: 2018 IEEE 4th International Conference on Identity, Security, and
Behavior Analysis (ISBA), pp. 1–8. DOI: 10.1109/ISBA.2018.8311460 (cit. on p. 82).

Patel, V. M., R. Chellappa, D. Chandra, and B. Barbello (2016). „Continuous User Authen-
tication on Mobile Devices: Recent progress and remaining challenges“. In: IEEE Signal
Processing Magazine 33.4, pp. 49–61. DOI: 10.1109/MSP.2016.2555335 (cit. on pp. 5, 31,
78).

Reid, P. (2004). Biometrics for network security. Upper Saddle River, NJ: Prentice Hall (cit. on
p. 7).

Reyes-Ortiz, J. L., D. Anguita, L. Oneto, and X. Parra (2015). UCI - Smartphone-Based
Recognition of Human Activities and Postural Transitions Data Set. URL: http://archive.
ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+
and+Postural+Transitions (visited on Jan. 21, 2019) (cit. on pp. 13, 16, 17).

Reynolds, D. (2009). „Gaussian Mixture Models“. In: Encyclopedia of Biometrics. Ed. by S. Z. Li
and A. Jain. Boston, MA: Springer, pp. 659–663. DOI: 10.1007/978-0-387-73003-5_196
(cit. on p. 20).

Roy, A., T. Halevi, and N. Memon (2015). „An HMM-based multi-sensor approach for
continuous mobile authentication“. In: 2015 IEEE Military Communications Conference
(MILCOM), pp. 1311–1316. DOI: 10.1109/MILCOM.2015.7357626 (cit. on pp. 14, 15, 21,
22, 25).

Schölkopf, B., R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt (2000). „Support
vector method for novelty detection“. In: Advances in neural information processing systems
(NIPS), pp. 582–588. URL: http://papers.nips.cc/paper/1723-support-vector-
method-for-novelty-detection.pdf (visited on Apr. 9, 2019) (cit. on p. 36).

98 Bibliography

https://doi.org/10.1109/JIOT.2018.2851185
https://doi.org/10.1109/JIOT.2018.2851185
https://doi.org/10.1109/BTAS.2016.7791155
https://doi.org/10.1109/BTAS.2016.7791155
http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://doi.org/10.1109/ACCESS.2016.2557846
https://tel.archives-ouvertes.fr/tel-01470466
https://csrc.nist.gov/glossary/term/authorization
https://csrc.nist.gov/glossary/term/authorization
https://doi.org/10.1109/ISBA.2018.8311460
https://doi.org/10.1109/MSP.2016.2555335
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1109/MILCOM.2015.7357626
http://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection.pdf
http://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection.pdf

Schölkopf, B., J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson (2001).
„Estimating the Support of a High-Dimensional Distribution“. In: Neural computation 13.7,
pp. 1443–1471. DOI: 10.1162/089976601750264965 (cit. on p. 36).

Schuckers, M. E. (2009). „Test Sample and Size“. In: Encyclopedia of Biometrics. Ed. by S. Z.
Li and A. Jain. Boston, MA: Springer, pp. 1328–1332. DOI: 10.1007/978-0-387-73003-
5_113 (cit. on p. 51).

Shen, C., Y. Li, Y. Chen, X. Guan, and R. A. Maxion (2018). „Performance Analysis of Multi-
Motion Sensor Behavior for Active Smartphone Authentication“. In: IEEE Transactions on
Information Forensics and Security 13.1, pp. 48–62. DOI: 10.1109/TIFS.2017.2737969
(cit. on pp. 14–17, 20–22, 25, 26, 44, 82).

Shepard, C., A. Rahmati, C. Tossell, L. Zhong, and P. Kortum (2011). „LiveLab: Measuring
Wireless Networks and Smartphone Users in the Field“. In: SIGMETRICS Perform. Eval. Rev.
38.3, pp. 15–20. DOI: 10.1145/1925019.1925023. URL: http://livelab.recg.rice.
edu/traces.htm (cit. on p. 14).

Shi, W., J. Yang, Yifei Jiang, Feng Yang, and Yingen Xiong (2011). „SenGuard: Passive user
identification on smartphones using multiple sensors“. In: 2011 IEEE 7th International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
pp. 141–148. DOI: 10.1109/WiMOB.2011.6085412 (cit. on p. 14).

Shoaib, M., S. Bosch, O. D. Incel, H. Scholten, and P. J. M. Havinga (2016). Complex
Human Activities Dataset. Pervasive Systems group, University of Twente. URL: https:
//www.utwente.nl/en/eemcs/ps/research/dataset/ (visited on Jan. 21, 2019) (cit.
on p. 13).

Sitová, Z., J. Šeděnka, Q. Yang, et al. (2016). „HMOG: New Behavioral Biometric Features
for Continuous Authentication of Smartphone Users“. In: IEEE Transactions on Information
Forensics and Security 11.5, pp. 877–892. DOI: 10.1109/TIFS.2015.2506542 (cit. on
pp. 6, 14, 15, 17, 18, 21, 25, 26, 31, 32, 44, 46).

VanderPlas, J. (2016). Python Data Science Handbook. Sebastopol, CA: O’Reilly (cit. on
pp. 20, 36).

Včelák, J., P. Ripka, and A. Zikmund (2015). „Precise Magnetic Sensors for Navigation and
Prospection“. In: Journal of Superconductivity and Novel Magnetism 28.3, pp. 1077–1080.
DOI: 10.1007/s10948-014-2636-7 (cit. on pp. 9–11).

W3C (2019). Motion Sensors Explainer. URL: https://www.w3.org/TR/motion-sensors/
(visited on Jan. 5, 2019) (cit. on pp. 8–12).

Wang, Z., W. Yan, and T. Oates (2016). „Time Series Classification from Scratch with Deep
Neural Networks“. In: arXiv: http://arxiv.org/abs/1611.06455v4 [cs.LG] (cit. on
pp. 67, 69).

Wikipedia contributors (2018). Earth’s magnetic field – Wikipedia, The Free Encyclopedia.
URL: https://en.wikipedia.org/w/index.php?title=Earth%27s_magnetic_field&
oldid=873551045 (visited on Dec. 21, 2018) (cit. on p. 9).

WISDM Lab (2012). WISDM: WIreless Sensor Data Mining - Dataset Home About Datasets
Resources Members. Fordham University, Bronx, NY. URL: http://www.cis.fordham.edu/
wisdm/dataset.php (visited on Jan. 21, 2019) (cit. on p. 13).

Bibliography 99

https://doi.org/10.1162/089976601750264965
https://doi.org/10.1007/978-0-387-73003-5_113
https://doi.org/10.1007/978-0-387-73003-5_113
https://doi.org/10.1109/TIFS.2017.2737969
https://doi.org/10.1145/1925019.1925023
http://livelab.recg.rice.edu/traces.htm
http://livelab.recg.rice.edu/traces.htm
https://doi.org/10.1109/WiMOB.2011.6085412
https://www.utwente.nl/en/eemcs/ps/research/dataset/
https://www.utwente.nl/en/eemcs/ps/research/dataset/
https://doi.org/10.1109/TIFS.2015.2506542
https://doi.org/10.1007/s10948-014-2636-7
https://www.w3.org/TR/motion-sensors/
http://arxiv.org/abs/http://arxiv.org/abs/1611.06455v4
https://en.wikipedia.org/w/index.php?title=Earth%27s_magnetic_field&oldid=873551045
https://en.wikipedia.org/w/index.php?title=Earth%27s_magnetic_field&oldid=873551045
http://www.cis.fordham.edu/wisdm/dataset.php
http://www.cis.fordham.edu/wisdm/dataset.php

Yang, Q., G. Peng, D. T. Nguyen, et al. (2014a). „A Multimodal Data Set for Evaluating
Continuous Authentication Performance in Smartphones“. In: Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems (SenSys), pp. 358–359. DOI: 10.1145/
2668332.2668366 (cit. on p. 40).

– (2014b). H-MOG Data Set: A Multimodal Data Set for Evaluating Continuous Authentication
Performance in Smartphones. URL: http://www.cs.wm.edu/~qyang/hmog.html (visited
on Jan. 21, 2019) (cit. on pp. 14, 40).

Zhang, X. (2017). „Support Vector Machines“. In: Encyclopedia of Machine Learning and Data
Mining. Ed. by C. Sammut and G. I. Webb. Boston, MA: Springer, pp. 1214–1220. DOI:
10.1007/978-1-4899-7687-1_810 (cit. on p. 21).

Zhu, J., P. Wu, X. Wang, and J. Zhang (2013). „SenSec: Mobile security through passive
sensing“. In: 2013 International Conference on Computing, Networking and Communications
(ICNC), pp. 1128–1133. DOI: 10.1109/ICCNC.2013.6504251 (cit. on p. 14).

100 Bibliography

https://doi.org/10.1145/2668332.2668366
https://doi.org/10.1145/2668332.2668366
http://www.cs.wm.edu/~qyang/hmog.html
https://doi.org/10.1007/978-1-4899-7687-1_810
https://doi.org/10.1109/ICCNC.2013.6504251

List of Figures

2.1 EER as trade-off between FAR and FRR . 7
2.2 Schematic of an accelerometer . 8
2.3 Schematic of a capacity based MEMS accelerometer 9
2.4 Schematic of a vibrating gyroscope . 9
2.5 Bosch SensorTech BMI263 IMU . 10
2.6 Smartphone’s absolute orientation . 12

3.1 Comparison of original Clockwork RNN and Dense Clockwork RNN 19
3.2 Architecture of Siamese LSTM . 19
3.3 Autoencoder architecture with one hidden layer 24

4.1 Schematic of the enrollment phase . 28
4.2 Schematic of the authentication phase . 28
4.3 Example of an SVM classifier fitted to data with two classes 36
4.4 Example for the influence of OCSVM’s hyperparameters ν and γ 37
4.5 Architecture of a Siamese network . 38

5.1 Distribution of sample counts among subjects of H-MOG dataset 40
5.2 Histogram of the durations of all sessions in the H-MOG dataset 41
5.3 Distribution of sensor values of all subjects of the H-MOG dataset 42
5.4 Exemplary distributions of magnetometer values along z-axis 42
5.5 Process for initial data preparation mapped to corresponding Python files . . 43
5.6 Sessions of H-MOG dataset per subject . 45
5.7 Implemented process for the OCSVM approach 47
5.8 Schema of data splitting for training and testing 48
5.9 Best combinations of OCSVM hyperparameters per owner during random search 49
5.10 Implemented process for the Siamese CNN approach 52
5.11 Architecture of the Siamese CNN . 53
5.12 Slightly imbalanced distributed subjects in generated pairs 55
5.13 Euclidean distance of pairs during training. 56
5.14 Loss of training and testing sets during the epochs of training. 56
5.15 EERs of samples per owner – OCSVM (naive approach). 59
5.16 EERs of samples per owner – OCSVM (valid approach). 59
5.17 EERs of samples per owner – Siamese CNN (naive approach). 59
5.18 EERs of samples per owner – Siamese CNN (valid approach). 59
5.19 Training delay – All approaches. 60
5.20 Confidence Intervals – OCSVM (naive approach). 61
5.21 Classification results – mean of all tested owners. 62
5.22 Distribution of raw sensor data for random subjects. 64
5.23 Distribution of sensor data for random subjects after min-max normalization. 64
5.24 Classification results – original scaler (min-max) vs. robust scaler. 65
5.25 Architecture of the Siamese CNN with 1D filters 68

101

5.26 Architecture of the Siamese FCN . 69
5.27 Siamese FCN (robust) – Euclidean distance of pairs during training. 71
5.28 Siamese FCN (robust) – Loss of training and testing sets during the epochs of

training. 71
5.29 Principal Componentent Analysis of deep features. 72
5.30 Siamese FCN (robust, valid approach) – EERs of samples per owner. 73
5.31 Siamese FCN (robust, valid approach) – Confidence intervals of mean EER

expanding over seconds. 73
5.32 Siamese FCN (robust, valid approach) – Training delay. 73
5.33 Classification results - Comparison of major variants. 73

A.1 Accuracy of samples per owner – OCSVM (naive approach). 85
A.2 Accuracy of samples per owner – OCSVM (valid approach). 85
A.3 Accuracy of samples per owner – Siamese CNN (naive approach). 85
A.4 Accuracy of samples per owner – Siamese CNN (valid approach). 85
A.5 Confidence intervals – OCSVM (valid approach). 86
A.6 Confidence intervals – Siamese CNN (naive approach). 86
A.7 Confidence intervals – Siamese CNN (valid approach). 86
A.8 Euclidean distance of pairs during training with robust scaled data. 87
A.9 Loss of training and validation sets (robust scaled) after epochs of training data. 87
A.10 Results of varying CNN architectures. 88
A.11 Results of varying features. 89
A.12 Results of varying window sizes. 90
A.13 Results of varying sampling rate. 91
A.14 Results of varying scenario selection. 92

102 List of Figures

List of Tables

2.1 EERs reached with biometric features . 7

3.1 Key-Studies in the field of CA using mobile phone sensors 14

5.1 Variations of parameters tested for Siamese CNN approach 67
5.2 Parameter search for model improvement. 70

A.1 Studies related to CA not matching the relevance criteria for this thesis. . . . 81
A.2 Commonly computed features . 82
A.3 Best parameters used for OCSVM baseline model and open questions 83
A.4 Best parameters used for Siamese CNN model and open questions 84

103

List of Equations

2.1 False Acceptance Rate (FAR) . 6
2.2 False Rejection Rate (FRR) . 6
2.3 Acceleration as change in distance . 7
2.4 Velocity as integration of acceleration; Position as integration of velocity . . . 8
2.5 Angle of gyroscope derived from angular velocity and time span 9

5.1 Error bound for a population mean (EBM) . 50
5.2 Number of samples for a certain margin of error and confidence level 50
5.3 Distance function for Siamese CNN . 54
5.4 Contrastive loss function . 54
5.5 Contrastive loss function, as implemented for Keras 54

105

Acronyms

AMR Anisotropic Magnetoresistance. 9, 10

ANN Artificial Neural Network. 2, 18, 22, 23, 38, 98

CA Continuous Authentication. 1–3, 5, 6, 13–16, 18, 20, 23, 24, 27, 29–34, 38, 39, 69, 73,
75, 76, 81

CHAD Complex Human Activities Dataset. 13, 14

CNN Convolutional Neural Network. 2, 14, 18, 19, 25, 37, 45, 47, 49, 50, 52, 55–59,
61–64, 66, 67, 69, 70, 73, 77, 83, 84, 91, 92, 94–96, 107, 108

CSV Comma-separated values. 46

CV Cross Validation. 50, 51, 53, 58, 61, 76

CVG Coriolis Vibratory Gyroscope. 8

CWRNN Clockwork Recurrent Neural Network. 18, 38

DCWRNN Dense Clockwork Recurrent Neural Network. 14, 18, 21

DT Decision Tree. 21

EER Equal Error Rate. 6, 7, 14, 21, 22, 24, 33, 53, 54, 62, 64, 65, 67

FAR Falsse Acceptance Rate. 6, 7, 14, 25, 26, 33

FCN Fully Convolutional Network. 70, 71

FFT Fast Fourier Transform. 16

FPR False Positive Rate. 14

FRR False Rejection Rate. 6, 7, 14, 25, 26, 33

GMM Gaussian Mixture Model. 14, 18, 20, 21

GMR Giant Magnetoresistance. 9, 10

H-MOG Hand Movement, Orientation and Grasp. 14, 17, 26, 33, 37, 39–41, 46–50, 76

HDF Hierarchical Data Format. 39, 46, 48

HMM Hidden Markov Model. 14, 20–22

IMU Inertial Measurement Unit. 10

IQR Interquartile Range. 82

ISROS Inertial Sensordata from Real-World Office Setting. 39, 41

k-NN k-Nearest Neighbors. 21, 81

107

KRR Kernel Ridge Regression. 14, 21

LLT LiveLab Traces. 14

LSTM Long Short-Term Memory. 14, 18, 19, 25, 38, 77

MEMS Microelectromechanical System. 8, 9, 11

MI Mutual Information. 17

MLP Multilayer Perceptron. 22, 81

MR Magnetoresistance. 9

OCSVM One Class Support Vector Machine. 2, 14, 19, 21, 22, 25, 37, 38, 45, 47, 49–52,
55, 56, 59, 61, 62, 64–66, 69–71, 77, 83, 84, 107

PCA Principal Component Analysis. 18

RBF Radial Basis Function. 21, 37, 50

ReLU Rectified Linear Unit. 57, 70, 71, 84

RF Random Forest. 14

RNN Recurrent Neural Network. 18

ROC Receiver Operating Characteristic. 24

SED Scaled Euclidean Distance. 21

SMA Signal Magnitude Area. 82

SMD Scaled Manhattan Distance. 14, 21

SVM Support Vector Machine. 14, 21, 22, 36, 37, 81

TAR True Acceptance Rate. 14, 25

TPR True Positive Rate. 14

UBM Universal Background Model. 20, 21

108 Acronyms

Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by Ricardo
Langner. The design of the Clean Thesis style is inspired by user guide documents from Apple
Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

	Titlepage
	Declaration
	Abstract
	1 Introduction
	2 Basics
	2.1 Access Control and Authentication
	2.1.1 Access Control Process
	2.1.2 Information Sources for Authentication
	2.1.3 Frequency of Authentication
	2.1.4 Authentication Metrics (FAR, FRR, and EER)

	2.2 Sensors
	2.2.1 Accelerometer
	2.2.2 Gyroscope
	2.2.3 Magnetometer
	2.2.4 IMU
	2.2.5 Constraints regarding Sensor Data

	3 Related Work
	3.1 Datasets
	3.2 Data Preprocessing
	3.2.1 Noise Filtering
	3.2.2 Manual Feature Construction
	3.2.3 Data Reduction
	3.2.4 Deep Features
	3.2.5 Context Information

	3.3 Classifiers
	3.3.1 Gaussian Mixture Model
	3.3.2 One Class Support Vector Machine
	3.3.3 Hidden Markov Model
	3.3.4 Artificial Neural Networks

	3.4 Evaluation Settings

	4 Concept
	4.1 General Idea
	4.2 Use Case
	4.3 Design Decisions
	4.3.1 Active vs. Passive
	4.3.2 One Class vs. Binary Classification
	4.3.3 Sensor Selection
	4.3.4 Manual Feature Construction vs. Deep Features

	4.4 Evaluation Criteria
	4.4.1 Authentication Reliability
	4.4.2 Training Delay
	4.4.3 Detection Delay
	4.4.4 Evaluation Setting

	4.5 Model Selection
	4.5.1 One Class Support Vector Machine
	4.5.2 Siamese Network

	5 Experiments
	5.1 Project Setup
	5.2 Dataset
	5.3 Initial Data Preparation
	5.4 Modeling OCSVM
	5.5 Modeling Siamese CNN
	5.6 Evaluation Results
	5.6.1 Authentication Reliability
	5.6.2 Training Delay
	5.6.3 Detection Delay
	5.6.4 Interpretation

	5.7 Improvement of Modeling
	5.7.1 Test Parameters
	5.7.2 Results of Parameter Search

	5.8 Final Evaluation

	6 Discussion
	6.1 Considerations
	6.2 Recommendations

	7 Conclusion
	A Appendix
	A.1 Further related studies
	A.2 Commonly computed Features
	A.3 Parameters for OCSVM Approach
	A.4 Parameters for Siamese CNN Approach
	A.5 Authentication Accuracy
	A.6 Detection Delay
	A.7 Pair Distances during Training
	A.8 Parameter Search Results
	A.9 Minor Learnings

	Bibliography
	List of Figures
	List of Tables
	List of Equations
	Acronyms
	Colophon

