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Abstract 

A novel efficient differential pulse voltammetric (DPV) method for determination gallic acid 
(GA) was developed by using an electrochemical sensor based on [Cu2tpmc](ClO4)4 immobilized 
in PVC matrix and coated on graphite (CGE) or classy carbon rod (CGCE). The proposed 
method is based on the gallic acid oxidation process at formed [Cu2tpmcGA]3+ complex at the 
electrode surface. The complexation was explored by molecular modeling and DFT calculations. 
Voltammograms for both sensors, recorded in a HNO3 as a supporting electrolyte at pH 2 and 
measured in 2.5 �  10-7 to 1.0 �  10-4 M of GA, resulted with two linear calibration curves (for 
higher and lower GA concentration range). The detection limit at CGE was 1.48 �  10-7 M, while 
at CGCE was 4.6 �  10-6 M. CGE was successfully applied for the determination of the 
antioxidant capacity based on GA equivalents for white, rosé and red wine samples. 

 

Keywords: gallic acid, dinuclear copper(II) octaazamacrocyclic complex, PVC matrix, 

voltammetric sensor 

 



1. Introduction 

Gallic acid, a type of phenolic acid, is occurring in plants in the form of free acids, esters, 

catechin derivatives and hydrolysable tannins [1]. As one of the most biologically-active 

phenolic compounds of plant origin, gallic acid is commonly used in the pharmaceutical and 

food industry. Plant polyphenols are multifunctional and can be reducing agents, hydrogen 

donating antioxidants, singlet oxygen quenchers and in some cases metal chelating agents [2]. 

Gallic acid is used as a standard for determining the phenol content of various analytes by the 

Folin-Ciocalteau spectrophotometric method and the results are reported in gallic acid 

equivalents. The measurement of “total phenols” is a good indication of the level of antioxidants 

present in the sample [3]. 

 The importance of the phenolic compounds has led to the development of various 

methods for their determination in various types of samples, including chemiluminescence [4] 

spectrophotometry [5] and capillary electrophoresis [6,7] as well as chromatography [8]. 

Electrochemical methods were also employed for this purpose. Gallic acid and other phenolic 

compounds were determined in wine samples and plant extracts at a glassy carbon electrode [9-

13], at hanging mercury drop electrode [14,15] and at carbon paste electrode modified with 

nanotubes [16,17]. Electrodes with polyphenols at carbon-polyvinil chloride [18], 

polyepinephrine modified glassy carbon electrode [19] and a natural bentonite, modified with 

different quaternary ammonium cations [20] have also been described and successfully 

analytically applied. Cyclyc, diferential pulse and adsorptive stripping voltammetric techniques 

were mostly used in those reported works [21]. Recently, a photoelectrochemical sensor applied 

to sense gallic acid has been designed with polyaniline–reduced graphene oxide–titanium 

dioxide [22], while a voltammetric electronic tongue system (ET) made from an array of 



modified graphite-epoxy composites plus a gold microelectrode was used in qualitative and 

quantitative analysis of polyphenols found in wine [23]. 

 Bearing in mind the most of past research in electrochemical determination of GA and 

other phenols, the main disadvantage of GCE was polymerization and adsorption of investigated 

and other species on the electrode itself. Therefore, GCE should be polished to provide new 

active surface before any electrochemical measurement. Inability for determination of more 

samples in a row with the same electrode without previous preparation and better electrode 

sensitivity were the reasons for the taken electrode modifications [16-20]. Polymer modified 

electrodes however, have many advantages such as improved electro catalysis, absence of 

surface fouling and prevention of undesirable reactions competing kinetically with the desired 

electrode process. On the other hand, DPV technique has many advantages compared with 

conventionally used CV, e.g. a better sensitivity, selectivity and response [24]. 

 It is important to mention biosensors as powerful specific analytical devices that also 

have been used for the detection of phenolic compounds. Biosensors based on several types of 

copper-containing enzymes which catalyze the oxidation of a wide range of phenolic compounds 

by utilizing molecular oxygen, such as tyrosinase [25,26] and laccase [27,28] were coupled to 

electrochemical or optical techniques for this purpose.  

The general idea of this work was to examine application possibility of simple and 

efficient sensor for rapid differential pulse voltammetric determination of GA at low 

concentrations, based on previously synthesized [Cu2tpmc](ClO4)4 complex immobilized in a 

PVC matrix. To the best of our knowledge, there is no report which relates to the application of 

complexation agent immobilized in PVC matrix as a modifier for graphite or classy carbon rod 

and the determination of gallic acid or antioxidant capacity of real samples. Similarly as in the 



case of copper containing enzymes, it could be very useful and interesting to examine the 

possibility of polyphenols oxidation in a presence of synthetic copper macrocyclic complex. 

Also, modification of the electrode surface should prevent polymerization on the electrode itself. 

Furthermore, the probability of formation of GA sensitive reversible [Cu2tpmcGA]3+ complex 

could be investigated by molecular modeling and Differential Function Theory (DFT) 

calculations. The determination of structural parameters obtained by molecular modeling is a 

powerful tool to add chemical and physical information to those obtained by other techniques.  

  

2. Experimental 

2.1. Chemical and reagents

The initial macrocyclic ligand N,N’,N’’,N’’’-tetrakis(2-pyridylmethyl)-1,4,8,11-

tetraazacyclotetradecane (tpmc) (Scheme 1) and the next synthesized [Cu2tpmc](ClO4)4 complex 

which was electroactive sensor material, were prepared by the procedure described in literature 

[29,30]. 1,4.8.11-tetraaza-cyclotetradecane 98%, as a starting compound, was used as received 

from Aldrich Chemical Company. The purity of synthesized ligand and complex were tested by 

elemental analyses performed by standard micromethods (Anal. Calcd. for (C34H44N8) (%): C, 

72.30; H, 7.85; N, 19.84. Found: C, 72.48; H, 7.89; N, 19.68). Poly(vinyl chloride), PVC, was 

used as Pevicon made by Fostatbolaget, Sweden. Dibutyl phthalate (DBP) and gallic acid (GA) 

were used as received from Fluka. Nitrite and sulfuric acid, potassium nitrate (all p.a.) and 

appropriate mixture of acetic acid and sodium hydroxide for acetate buffer, all purchased from 

Merck and Sigma-Aldrich, were used in supporting electrolyte investigations. Tetrahydrofuran 

(THF) was available from Merck and distilled before use and high purity water (Millipore, 18 

M� cm resistivity) were used as solvents. 



 

Scheme 1. N,N’,N’’,N’’’-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc). 

 

2.2. GA standard 

Gallic acid (p.a) was used for preparation test solutions and as standard for measurement of the 
antioxidant capacity. The stock solution of gallic acid (1 �  10-3M) was prepared in methanol 
(HPLC grade). Once prepared standard was protected from light with aluminum foil and kept in 
refrigerator. It was stable for at least 1 month. The working standards were prepared freshly from 
the stock solutions for each new measurement.  

 

2.3. Electrode preparation 

 The PVC membrane contained 5 % (w/w) [Cu2tpmc](ClO4)4, 38 % PVC and 57 % 
dibutyl phthalate. A total of 0.270 g of these reagents was mixed with 2.5 mL THF. A glassy 
carbon (GC) rod (�  3 mm) (Sigardur-Sigri Electrographite, GmbH, Germany) was directly 
coated by dipping two times in the mixture. The same procedure was used for coating graphite 
rod (�  6 mm) made by Sigma Aldrich. The formed coating bead on the GC and graphite was 
allowed to dry in air over night and then, electrode was kept in 10-4 M GA solution for about 24 
h. This modified GC and graphite electrodes were finally used as voltammetric sensors for 
determination of GA. The voltammetric responses of the electrodes were measured in the series 
of standard GA solutions within the range of 2.5 �  10-7 to 1.0 �  10-4 M in a 10-2 M solution of 
HNO3 as a supporting electrolyte. 

 



2.4. Electrochemical measurements 

Cyclic and differential pulse voltammetric measurements were recorded on a Metrohm 

797 VA Computance instrument (Herisau, Switzerland). The triple-electrode system was 

consisted of a working electrode, GC or graphite electrode modified with PVC membrane with 

activated dinuclear Cu(II)/tpmc complex as sensor component, a reference Ag/AgCl, KCl (3 M) 

(Model 6.0728.010) and anauxiliary separate platinum rod electrode (Model 6.0340.000). The 

cyclic and the differential pulse voltammograms of standard GA solutions were recorded in the 

potential range from 0.0 to 1.0 V, using a scan rate of 100 mV/s (for CV) and 10 mV/s (for 

DPV). A modulation time was varied from 20 to 80 ms, and pulse amplitude was changed in 

range of 10 to 90 mV. The measurements were performed in unaerated solutions. The pH 

measurements were carried out using a Hanna Instruments pH-meter with a Hanna Instruments 

combined pH reference electrode. All of the experiments were done at room temperature (250C). 

 

2.5. Sample preparation 

Determination antioxidant capacity presented as mg/L of GA in white, rosé and red wine 

samples were done using an extremely simple procedure involving the direct addition of a 

sample aliquot in the electrochemical cell without any sample pretreatment. The wine samples in 

triplicate, commercially available in Serbia were analyzed by the proposed voltammetric method 

used as a standard for determination of antioxidant capacity. An aliquot of 1mL of wine was 

added to 9 mL of 10-2 M HNO3 solution in electrolytic cell and homogenized with a magnetic 

stirrer before voltammetric measures described in previous section. 

 

2.6. Spectrophotometric determination of total phenolic content 
 



 The total phenolic content (TP) of the wines was determined using the Folin –Ciocalteu 

micro method (F–C) as adapted for wine analysis [31]. Gallic acid was used to obtain the 

calibration curve and results were expressed as mg gallic acid equivalents per litre of wine (mg/L 

of GA). Red and rosé wine samples required dilution.  

 

2.7. Computation details 

Based on Cambridge Structural Database search published in our previous paper [32] 

starting structure for optimization copper complexes with tpmc ligand were chosen. Geometries 

of all structures were fully optimized with DFT (Differential Function Theory) method, 

according to procedure described before [32]. Reaction energies were calculated as a difference 

between ZPE corrected electronic energies of reaction products and reactants [33].  

 

3. Results and Discussion 

For better understanding the general idea of this work, the attention should be drown to 

several issues regarding the construction and operation of working electrode. Polymer modified 

electrodes are often prepared by casting solution droplet containing dissolved polymer onto the 

surface and allowing the solvent to evaporate, by dip or spin coatings, or via 

electropolymerization in the presence of the dissolved monomer. The purpose of polymer film, 

from the chemical point of view is to immobilize sensor component, promote electron transfer 

and to prevent electrode surface contamination by other species presented in the sample [34]. 

This electrode was prepared by simple coating technique using PVC matrix as carrier of active 

component. The more conductive polymer nafion was not compatible with [Cu2tpmc](ClO4)4 

complex, so less conductive but more durable polymer matrix consisted from PVC and DBP as 



plasticizer was used instead. Membrane was coated on a GCE and graphite for comparison. 

[Cu2tpmc](ClO4)4 complex immobilized in PVC matrix is activated by GA solution. The 

probable operation mechanism of the sensor involved complexation between dinuclear 

Cu(II)/tpmc complex immobilized in membrane and GA determined in the solution, and two step 

electrochemical oxidation of captured GA, probably in the complex ion [Cu2tpmcGA]3+.  

A number of dinuclear metal(II) complexes with tpmc and additional bidentate ligand are 

known [35,36], but there is no evidence of dinuclear copper tpmc complex with GA. Assuming 

that reversible formation of this complex on the surface of the membrane is sensitive to different 

concentration of GA in solution, the next step was to investigate formation possibility of 

proposed dinuclear copper tpmc complex with GA.  

 

3.1 Structure of [Cu2tpmcGA]3+ complex ion and DFT calculations 

Based on the results of the extensive CSD search [32] and molecular modeling, the 

structure of optimized [Cu2tpmcGA]3+ complex ion was obtained (Figure 1). Details are given in 

supplementary materials. This structure is in agreement with other structures found in CSD [30, 

37- 39]. 



 

Figure 1. Optimized structure of [Cu2tpmcGA]3+ complex ion. Colors: yellow-copper; red-

oxygen; blue-nitrogen; grey-carbon. Hydrogen atoms are omitted for clarity. 

 

Complex stability was examined by calculation of value for the energy of reaction (please 

see supplementary material) which is 10.4 kcal/mol in favor of [Cu2tpmcGA]3+complex. The 

results of energy calculations clearly indicated that gallic acid would have high preference for 

binding to [Cu2tpmc]4+ complex in aqueous solution, and that the [Cu2tpmcGA]3+complex will 

be formed even in the case of very low concentration of gallic acid. 

 

3.2. Electrochemical investigation  

Electrochemical behavior of GA on the surface of bare and coated glassy carbon and 

graphite electrode was investigated by CV technique. Cyclic voltammograms of 10-4M GA in 

HNO3 solution as supporting electrolyte (pH about 2) at graphite a) and glassy carbon electrode 

b) (GE and GCE) are presented in Fig. 2. CV at modified both electrodes with activated 

[Cu2tpmc](ClO4)4 complex immobilized in PVC matrix (CGE and CGCE) (Fig. 3) were recorded 
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Figure 4. Differential pulse voltammograms of 10-5 M GA in 10-2 M HNO3, H2SO4 and 0.1 M 

acetate buffer as supporting electrolyte at CGE (a); The influence of the pH on peak potential 

and peak current obtained from differential pulse voltammograms of 10-6 M GA in aqueous 

solution of different concentrations of HNO3 (b). 

3.4. DPV study with different electrodes 

 In order to investigate impact of PVC matrix and different electrode material on 

voltammetric response, DPV was recorded at coated graphite and GC with and without complex 

in the polymer matrix (Fig. 5). It was obvious that supporting electrolyte in absence of GA gave 

a good baseline and electrode coated with PVC matrix without sensory component - 

[Cu2tpmc](ClO4)4 respond barely even to large amounts of GA in the standard solution. In such 

way, DPV response of the CGE and also CGCE came only from the dinuclear copper/tpmc 

complex immobilized in a polymer matrix. The peaks were now well-defined (Fig. 5). The origin 

of forego peak as a consequence of oxidation of obtained nitrate bridged dinuclear copper 

complex itself, made by complexation of [Cu2tpmc](ClO4)4 and nitrate from supporting 

electrolyte, is confirmed due to  absence of this peak in voltammogram of CGE coated only with 

PVC matrix. The first oxidation peak of GA on both electrodes was recorded on 0.50 V, while 

second less expressive oxidation peak appeared on 0.87, but it was lost for GA concentrations 

smaller than 10-6 M for CGE and 10-5 M for CGCE. Although CGCE exhibited higher peak 

current, it was found that faster loses its response to GA concentrations (limit was about 10-6 M), 

while with CGE it was possible to detect concentrations of 10-7 M order of magnitude. Larger 

surface and porosity of the graphite electrode could be a possible reason for that behavior. 



 

Figure 5. . Comparison of voltammetric responses provided by GC and graphite electrodes 

modified with/without copper complex: [Cu2tpmc](ClO4)4 complex incorporated in polymer 

matrix, recorded in 10-4 M GA and supporting electrolyte (solid line); [Cu2tpmc](ClO4)4 complex 

incorporated in polymer matrix, recorded only in a HNO3 as a supporting electrolyte, pH about 2 

(dash line); polymer matrix without [Cu2tpmc](ClO4)4 complex, recorded in 10-4 M GA (doth 

line); scan rate, 10 mV/s. 

 

3.5. Construction of the calibration curve 

 Differential pulse voltammograms of various concentrations of GA from 2.5 �  10-7 to 1.0 
�  10-4 M recorded on more sensitive CGE (compared with CGCE) were shown in Fig.6 (a). The 
first anodic peak of GA was chosen for quantification of GA due to its reversibility, very good 
reproducibility and linear dependence on current density of this peak vs. the concentration of 
gallic acid. The calibration curve was constructed by plotting the current density of first anodic 
peak vs. the concentration of GA. There were two resulting calibration linear plots (Fig.6, (b)). 
The higher concentration range is described by the regression equation: Ip (10-7 A) = 5.06 �  104 

�  CGA + 6.8209, where Ip is the current density of first anodic peak and CGA is the concentration 
of gallic acid expressed in mol/L. The lower concentration range is expressed by the relationship: 
Ip (10-7 A) = 3.895 �  CGA + 1.14 �  106 (R = 0.9857), and with detection limit (LOD) of GA 
determination of 1.48 �  10-7 M. Detection limit was estimated from three times the standard 
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Table 1. Some response characteristics of different modified electrodes for GA determination  

 
Electrode 

 
Technique 

Supporting 
electrolytes and 

working pH 
 

 
Linear range 

 

Detection 
limit 

(LOD) 
Ref 

 
CPE modified with 
carbon nanotubes 

 

DPV phosphate buffer 
solution, pH 2.5 

15–0.5 �M 
 0.3 �M [16] 

CPE modified with 
multi-walled carbon 

nanotubes 
 

DPV Britton-Robinson buffer 
solution, pH 2 1.00–6.25 �M, 0.27 nM [17] 

Carbon – Poly(vinyl 
chloride) composite 

electrode 
 

DPV phosphate buffer 
solutions, pH 5.0 

29 μg/L –0.45 
mg/L 

 
0.16 μg/L [18] 

polyepinephrine/GCE AdSV phosphate buffer 
solution, pH 1.88 1.0–20.0 �M 0.663 �M [19] 

Graphite modified 
with 

[Cu2tpmc](ClO4)4 
immobilized in PVC 

matrix 

DPV Nitric acid, pH 2 
0.25–1 �M 

5 �M–0.1 mM 
 

0.148 �M Proposed 
electrode 

 

3.6. Interference study 

 The potential interfering agents for electrochemical determination of gallic acid are 

phenolic acids, flavonoids and other organic molecules in minor amounts such as ascorbic acid. 

The studied compounds (ascorbic acid-AS, naringin-NA, p-coumaric acid-COU, vanillin-VA, 

caffetic acid-CAF and quercetin-QUE) were chosen due to differences and complexity in 

structure. The influence of possible interfering compound was examined by comparing peak 

current produced by GA and peak current of GA and studied compound mixture (1:1, 

concentrations of 10-5 M). Higher interferences were obtained in presence of caffeic acid and 

quercetin while the other substances (vanillin, naringin, ascorbic and p-coumaric acid) produced 



smaller change of the signal (Fig.7). According to the literature [3,10], the first anodic peak 

could be ascribed to the oxidation of different polyphenolic compounds that had a structure with 

orthodiphenol (catechol) groups at B-ring, like catechin, gallic, caffeic, quercetin and some 

others. 

 

Figure 7. Histogram of the influence of interfering compounds on current obtained for 

determination of GA under optimized experimental conditions. Some molecule structures are 

with and without electroactive OH- groups. 

 

3.7. Determination of the antioxidant capacity of the wine samples 

 In the present study, the estimation of the antioxidant capacity of the wine samples was 

based of gallic acid current oxidation using DPV technique. As the first anodic peak could be 

ascribed to the oxidation of different polyphenolic compounds present in wines that had a 

structure with orthodiphenol groups at B-ring, thus, these compounds were the major 

contributors to the antioxidant capacity in wine determined by electrochemical method. Five 



different wine samples were analyzed with proposed CGE. The results of antioxidant properties 

of the wine samples were presented as mg/L of GA calculated from calibration curve and 

presented in Table 2. The same wine samples were determined at a bare GCE by CV technique. 

The surface of GC was refreshed before each experiment because surface polymerization, while 

the same CGE electrode was used for all determinations. The total phenols were determined by 

Folin–Ciocalteu method and results were not comparable with those obtained by the 

electrochemical methods. The reason is detection of all phenols by spectrophotometric method 

(not only polyphenols with orthodiphenol groups at B-ring). Furthermore, F–C reagent may react 

with many non-phenolic organic substances (sugars, proteins, ascorbic acid, etc.) and inorganic 

substances (Fe(II), metabisulfite, sodium phosphite, etc.), giving an overestimation of the 

phenolic content [41]. 

 

Table 2. The antioxidant capacity of wine samples determined by electrochemical and 

spectrophotometric methods 

Samples DPV on CGE 
(mg/L of GA) 

CV on GCE 
(mg/L of GA) 

F–C 
(mg/L of GA) 

White wine 406.58 437.38 748.34 
Rosé wine 406.58 445.20 671.75 
Red wine 1 420.17 448.37  534.19 
Red wine 2 365.76 368.99 578.88 
Red wine 3 581.81 611.41 701.42 

 

Conclusion 

The application of complexation agent [Cu2tpmc](ClO4)4 immobilized in PVC matrix as a 

modifier for coating graphite or classy carbon rod and the determination of gallic acid and 

antioxidative capacity of wine samples was presented in this paper. Electrode with synthesized 

macrocyclic complex showed the same effect on oxidation of polyphenols as a biosensors based 



on natural macrocycles in copper-containing enzymes. Electroactive [Cu2tpmcGA]3+ was used as 

a sensor material for determination of low concentrations of GA at simple coated CGE and 

CGCE by sensitive DPV technique. The practical usefulness of the CGE was demonstrated by 

the estimation of the antioxidant capacity, expressed as gallic acid equivalents, in white, rosé and 

red wine samples, using an extremely simple procedure without any sample pretreatment. 

The proposed electrode had advantages such as simple preparation, good reproducibility and 
electrochemical surface stability. Its detection limit is quite comparable with reported modified 
and unmodified electrodes for determination of GA. CGE was chosen for real sample analysis 
due to better voltammetric response and lower LOD, which is 1.48 �  10-7 M. Still, we rightly 
assumed that application of more conductive polymer matrix coated on transducer surface could 
provide lower LOD of the electrode. Hence, the next task would be to find suitable and 
compatible CP for better adopting of complexation agent [Cu2tpmc](ClO4)4 and to provide 
electrode which might have better analytical characteristics.
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Highlights: 

� Synthesized copper/macrocyclic complex is sensitive to detect gallic acid 

� Voltammetric sensor based on copper/macrocyclic complex is developed 

� The lower detection limit is recorded at modified graphite then glassy carbon electrode 

� Sensor was applied for the determination of the antioxidative capacity of wine samples   

� Copper macrocyclic complex is explored by molecular modeling and DFT calculations 

�
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