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ABSTRACT
Reliable and accurate crop classification maps are an important
data source for agricultural monitoring and food security assess-
ment studies. For many years, crop type classification and mon-
itoring were focused on single-source optical satellite data
classification. With advancements in sensor technologies and pro-
cessing capabilities, the potential of multi-source satellite imagery
has gained increasing attention. The combination of optical and
radar data is particularly promising in the context of crop type
classification as it allows explaining the advantages of both sensor
types with respect to e.g. vegetation structure and biochemical
properties. This review article gives a comprehensive overview of
studies on crop type classification using optical and radar data
fusion approaches. A structured review of fusion approaches,
classification strategies and potential for mapping specific crop
types is provided. Finally, the partially untapped potential of radar-
optical fusion approaches, research gaps and challenges for
upcoming future studies are highlighted and discussed.
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1. Introduction

According to the United Nations, the world population in 2030 and 2050 is expected to
reach 8.6 billion and 9.8 billion people, respectively (UN 2017). In other words,
every year, around 83 million people are added to the world’s total population. The
continuous increase in the human population and the concurrently increasing global
demand for food will become major challenges for mankind that will influence the
future actions towards food security and nature conservation (FAO 2009). Several studies
including Godfray et al. (2010) and Foley et al. (2011) discussed the need for a global
strategy to ensure future food security, where agriculture plays one of the active roles.

Crops such as rice, wheat, corn and barley are major food resources in many parts of
the world, thus information on their spatial distribution and condition are significantly
important at regional, national and even global level. To acquire such information on

CONTACT Aiym Orynbaikyzy aiym.orynbaikyzy@dlr.de German Aerospace Center (DLR), German Remote
Sensing Data Center (DFD), Wessling 82234, Germany

Supplemental data for this article can be accessed here

INTERNATIONAL JOURNAL OF REMOTE SENSING
https://doi.org/10.1080/01431161.2019.1569791

© 2019 Informa UK Limited, trading as Taylor & Francis Group

https://doi.org/10.1080/01431161.2019.1569791
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2019.1569791&domain=pdf


croplands over large agricultural regions, satellite Earth Observation (EO) data is an
essential data source. Traditionally, remote sensing for agricultural applications has
been focused mainly on optical data, acquired at the visible and near-infrared part of
the electromagnetic spectrum. Nowadays, with the advancement in sensor technology
and processing capability, it becomes possible to expand methodological approaches
and use new complementary data sources for simultaneous analysis of multi-source
data. As a result, in the last two decades, multi-source image analysis is gaining
increasing attention from the remote sensing community.

Remote sensing image fusion is a valuable tool for processing and analyzing
multi-source satellite images. It allows detecting in more detail the qualities and
properties of sensed objects on the ground which cannot be identified in the
respective individual image sources (Pohl and van Genderen 1998). A number of
studies have shown that the synergetic use of various spatial data sources can
increase the classification accuracy (e.g. Solberg 2006; McNairn, Champagne, and
Shang 2007; McNairn et al. 2009; Qiao et al. 2014). Particularly, for land use and
crop type classification the necessity of multi-sensor data analysis is becoming more
and more obvious, e.g. for the separation of crop types that resemble each other in
one data source, or in regions with frequent cloud cover. The opportunity to
simultaneously utilize information from a broader range of the electromagnetic
spectrum than it is typically offered by individual sensor systems has opened new
perspectives for remote sensing.

Multi-sensor image fusion provides broader information content about target
objects from different perspectives of spatial, spectral and temporal characteristics.
The review of Pohl and van Genderen (1998) was one of the first studies discussing
the advantages and techniques of remote sensing data fusion, which was then
followed by a second review (Pohl and van Genderen. 2015) where the authors
categorize and explain various fusion approaches. In literature, different aspects of
data fusion such as its influence on classification accuracy (Colditz et al. 2006),
advances in applications (Dong et al. 2009), current challenges and opportunities
(Mura et al. 2015) can be found. A recent paper by Joshi et al. (2016) gave an
extensive overview of studies which used optical and radar data fusion approaches
for land use mapping purposes. Among current studies on data fusion, approaches
combining optical and radar data for the agricultural land monitoring are consider-
ably increasing.

There are only a few review studies focusing on the application side of satellite data
fusion methods. The review of Joshi et al. (2016) is the first overview of the application of
satellite data fusion for land monitoring and classification. However, a review of optical
and radar data fusion focusing on the potential for crop type classification and monitor-
ing is still missing.

The overall goal of this review paper is to give a comprehensive overview of the current
state-of-the-art of synergetic use of optical and radar remote sensing data for crop type
classification. The paper thus aims to give (1) an overview of research studies focusing on
crop type classification using multi-sensor (optical and radar) data; (2) identify common
patterns and trends in the choice of fusion level, methods and classification approaches; (3)
summarize common findings and conclusions of the reviewed studies; and to (4) identify
research gaps and possible future development directions.
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2. Reviewed studies: overview and general characterization

The Scopus abstract and citation database was chosen to search for the relevant
literature. This choice was motivated by the extensive breadth of peer-review journal
and conference proceeding coverage as well as advanced literature analysis tools.
Query statements covering all possible combinations of terms (Table 1) related to
optical and radar remote sensing, agriculture and crop classification were used. For
each of the main search terms several synonyms were chosen and used in the query.
This was necessary since authors may refer to ‘data fusion’ using various analog
words such as ‘combination’, ‘mixture’, ‘union’, ‘synergy’, ‘merge’ etc. The same is
true for all four search terms. The search query consisted of four parts each repre-
senting one search term (see Table 1). Within each query part the logical operator
‘OR’ was used to make sure that at least one of the synonym words is present in title,
abstract or key words of a paper. These four query parts were combined in one
search query using the ‘AND’ logical operator, which ensures the appearance of
representatives of each of the four parts in the paper. No time limits were applied
in the search process (the query was done on 4 July 2018). From the resulting list
only those publications that match the topic of data fusion (optical-radar) for crop
type classification were individually selected. The list of selected studies can be
found in the supplementary materials S1.

Optical and radar synergistic studies on land use and land cover classification without
discriminating crop types were not considered since this topic was recently reviewed by
Joshi et al. (2016). On the whole, 73.3% of the publications were from peer-reviewed
international journals and 26.7% from conference proceedings. Only peer-reviewed
conference proceedings were considered in this review such as International
Geoscience and Remote Sensing Symposium (IGARSS) and The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

As a result, this review considers 75 publications. Main sources of peer-reviewed
publications included in this review are the journals: International Journal of Remote
Sensing (14 papers), Remote Sensing (8 papers) and Canadian Journal of Remote
Sensing (6 papers). The full list of the literature sources could be found in the supple-
mentary materials S2.

Most of the reviewed articles are case studies on the topic of crop type classification
using optical and radar data. Additionally to the reviewed case studies, literature on data

Table 1. Main search words and their analogs used in the Scopus search query.
Main search
words Scopus search query

Logical operator
between query parts

Fusion (TITLE-ABS-KEY (synerg*) OR TITLE-ABS-KEY (fusi*) OR TITLE-ABS-KEY
(*comb*) OR TITLE-ABS-KEY (*mix*) OR TITLE-ABS-KEY (*uni*) OR TITLE-
ABS-KEY (merg*))

AND
Optical data (TITLE-ABS-KEY (‘optical’) OR TITLE-ABS-KEY (‘vegetation ind*’))

AND
Radar data (TITLE-ABS-KEY (‘SAR’) OR TITLE-ABS-KEY (radar) OR TITLE-ABS-KEY

(microwave))
AND

Crop type (TITLE-ABS-KEY (agricultur*) OR TITLE-ABS-KEY (crop*) OR TITLE-ABS-KEY
(agro*) OR TITLE-ABS-KEY (phenolog*))

INTERNATIONAL JOURNAL OF REMOTE SENSING 3



fusion theory and recent advancements (Ehlers 1991; Pohl and van Genderen. 2016),
pixel level image fusion techniques (e.g. Harris, Murray, and Hirose 1990; Hong, Zhang,
and Mercer 2009) and application of radar remote sensing in agriculture (McNairn and
Brisco 2004; Steele-Dunne et al. 2017) were analyzed. These research and review pub-
lications were mainly used as information sources to describe the methodological
context and background of the above mentioned topics but were not included in the
systematic review.

The reviewed papers on crop type discrimination were published between 1978
and 2018. Five out of these studies are dated before 1990 (e.g. Ahern et al. 1978; Li,
Ulaby, and Eyton 1980; Ulaby, Li, and Shanmugan 1982; Brisco, Brown, and Manore
1989; Fiumara and Pierdicca 1989). As it is shown in the upper part of Figure 1, an
overall increase in the number of research publications on this topic can be observed
over time, particularly since 2014. The lower part of Figure 1 relates the lifetime of
optical and radar earth observation satellites to the publication of respective syner-
gistic studies. The citations number taken from Scopus increased simultaneously as
highlighted in Figure 2.

With regard to crop type discrimination, the reviewed studies have mainly con-
centrated on cereals, oilseed and sugar crops. Cereals (corn – 35 studies, wheat – 31
studies, barley – 16 studies, oats – 9 studies, rye – 5 studies), which are important
food crops and a significant source of protein, are the most commonly examined
crop types (Figure 3). Nine studies were exclusively devoted to the identification of
rice, a crop type which is of high relevance for global food and nutrition security.
Root, tuber crops (potatoes – 6 studies, yams – 1 study) and leguminosas (peas – 9
studies, beans – 5 studies, lentils – 4 studies, lupins – 1 study) are less frequently
studied. Chapter 5 will provide more detailed information on the studied crop types
and suitable discrimination approaches.

2.1. Study sites and their extent

Study sites are distributed among 30 countries, as illustrated in Figure 4. When
considering the United Nations geoscheme for defining sub-continental regions,
more than half of the studies focus on Asia (Eastern Asia – 11 studies, South-East
Asia – 7 studies, Western-Asia – 5 studies, South-Asia – 4 studies) and Europe
(Western Europe – 9 studies, Southern Europe – 8 studies, Eastern Europe – 4 studies
and Northern Europe – 3 studies) followed by North America (22 studies), Africa
(West Africa – 3 studies), South America (2 studies) and Australia (1 study). Four of
the reviewed studies conducted their research in two different countries (Ghana and
Burkina Faso (Forkuor et al. 2015), South Korea and USA (Park and Im 2016; Park
et al. 2018), Japan and USA (Qi et al. 2003)). The studies conducted in Canada, the
USA, China and Italy cover approximately 40% of all publications. To some extent,
the global spatial arrangement and distribution of study sites show spatial similarity
with croplands distribution across the world. But despite the fact that Central Asia,
Southern America and Africa have extensive amounts of croplands, these regions
were subject to only five of the reviewed studies. Please note again, that qualitative
and quantitative analysis of the literature is purely based on the 75 studies which
were selected using the search queries shown in the Table 1.
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Almost half of the studies conducted their research on areas of less than
1,000 km2. As it can be noted from Figure 5, with the increasing size of study
areas, the number of publications is decreasing. Only one study, conducted by
Torbick et al. (2017), was performed at the national level, covering all territory of
Myanmar (676,578 km2). Relatively large study sites (20,000 km2 –50,000 km2) are
associated with countries with extensive cropland areas such as Canada, China,
Australia and Ukraine.

Figure 1. Temporal distribution of reviewed studies (top) and availability of relevant Earth
Observation satellites (bottom). Five papers, published between 1978 and 1990 are not displayed
for improving visualization. Since the final number of publications from the current year 2018 cannot
be presented yet, this year was excluded from the diagram. All studies conducted before 1990
utilized combination of Landsat-5 and Airborne radar systems.
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2.2. Combination of sensors and aspects of multi-temporal information

In total, data from ten optical and ten radar sensors were synergistically used in the
reviewed studies. Tables 2 and 3 list these sensors and their technical characteristics. The
majority of the studies (57 publications) examined data from one radar and one optical
sensor, whereas the rest of the reviewed publications used image data from one optical
and two radar (9 studies), two optical and one radar (5) or two optical and two radar
satellites (3). Only one study utilized data of one optical and three radar satellites (Shang
et al. 2008). Figure 6 shows all sensor combinations and their frequency of use in the
reviewed publications.

Figure 2. Number of citation per year of reviewed literature.

Figure 3. Number of studies focusing on particular crop types.
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The dominant combinations of sensors, representing half of the studies, are Landsat +
RADARSAT (12 studies), Landsat + Sentinel-1 (8), Landsat + ASAR (7) and Landsat + ERS (7).
Optical images of the Landsat serieswere used in themajority of studies (47out of 75) followed
by sensors of the SPOT (11) and RapidEye (9) missions. The most frequently involved radar
sensor is RADARSAT, which contributed to 27 studies. The use of other radar sensors such as
ERS (12 studies), Sentinel-1 (11), ALOS PALSAR (10) and ASAR (10) was distributed relatively
equally. Additionally to a combination of optical and radar images, auxiliary information such
as field boundaries e.g Larrañaga, Álvarez-Mozos, and Albizua (2011) and topographic or land
cover maps e.g. Pinheiro, Carrao, and Caetano (2007) were used in some cases.

Figure 4. Number of studies conducted per country and region on synergistic use of optical and
radar remote sensing data for crop type classification.

Figure 5. Spatial extent of study sites of the reviewed articles focusing on synergetic use of optical
and radar remote sensing data for crop type classification. Twelve reviewed articles, which did not
provide study extent information, are not included in this diagram.

INTERNATIONAL JOURNAL OF REMOTE SENSING 7



Ta
bl
e
2.

M
ai
n
ch
ar
ac
te
ris
tic
s
of

ra
da
r
re
m
ot
e
se
ns
in
g
sa
te
lli
te
s
us
ed

in
th
e
re
vi
ew

ed
st
ud

ie
s
(e
xc
lu
di
ng

ai
rb
or
ne

se
ns
or
s)
.

M
is
si
on

Li
ve

tim
e

O
pe
ra
to
r

Fr
eq
ue
nc
y

(b
an
d)

Ce
nt
re

fr
eq
ue
nc
y

(G
H
z)

Sw
at
h
w
id
th

(k
m
)

Im
ag
e
re
so
lu
tio

n
(m

)
Po
la
riz
at
io
n

In
ci
de
nc
e

an
gl
e
(°
)

Re
pe
at

ra
te

(d
ay
s)

EN
VI
SA

T
AS

AR
20
02
–2
01
2

Eu
ro
pe
an

Sp
ac
e
Ag

en
cy

C
5,
33
1

56
–4
0

30
,0
00
–1
,0
00

Q
ua
d.

14
to

45
35

ER
S-
1

ER
S-
2

19
91
–2
00
0

19
95
–2
01
1

Eu
ro
pe
an

Sp
ac
e
Ag

en
cy

C
5,
3

5–
50
0

10
,0
00
–5
0,
00
0

VV
18

to
47

35

RA
D
AR

SA
T-
1

19
95
–2
01
3

Ca
na
di
an

Sp
ac
e
Ag

en
cy

C
5,
3

50
–5
00

8–
10
0

H
H

10
to

59
24

RA
D
AR

SA
T-
2

20
07
-a
ct
.

Ca
na
di
an

Sp
ac
e
Ag

en
cy

C
5,
40
5

18
–5
00

3–
10
0

Q
ua
d.

10
to

60
24

Se
nt
in
el
-1

20
14
-a
ct
.

Eu
ro
pe
an

Sp
ac
e
Ag

en
cy

C
5.
40
5

20
–4
00

5–
40

D
ua
l.

18
.3

to
47

12
SI
R-
C/
X-
SA

R
19
94
–1
99
4

N
AS

A
L/
C/
X

1.
25
/5
.3
/9
.6

15
–9
0

10
–3
0

L/
C:

Q
ua
d,

X:
VV

15
to

55
–

AL
O
S
PA

LS
AR

20
06
–2
01
1

Ja
pa
ne
se

Sp
ac
e
Ex
pl
or
at
io
n

Ag
en
cy

L
1.
27

70
–3
50

10
–1
00

Q
ua
d.

8
to

60
46

JE
RS
-1

19
92
–1
99
8

Ja
pa
n
Ae

ro
sp
ac
e
Ex
pl
or
at
io
n

Ag
en
cy

L
1.
27
5

75
18

H
H

35
.2
1

44

CO
SM

O
-S
ky
M
ed

20
07
-a
ct
.

Ita
lia
n
Sp
ac
e
Ag

en
cy

X
9.
65

10
–2
00

1–
10
0

Q
ua
d.

18
to

59
.9

16
Te
rr
aS
AR

-X
20
07
-a
ct

G
er
m
an

Ae
ro
sp
ac
e
Ag

en
cy

X
9.
65

5–
15
0

1–
16

Q
ua
d.

20
to

55
11

8 A. ORYNBAIKYZY ET AL.



Ta
bl
e
3.

M
ai
n
ch
ar
ac
te
ris
tic
s
of

op
tic
al
re
m
ot
e
se
ns
in
g
sa
te
lli
te
s
us
ed

in
th
e
re
vi
ew

ed
st
ud

ie
s
(e
xc
lu
di
ng

ai
rb
or
ne

se
ns
or
s)
.

M
is
si
on

Li
ve

tim
e

O
pe
ra
to
r

Ba
nd

s
W
av
el
en
gt
h

ra
ng

e
(µ
m
)

Sp
at
ia
lr
es
ol
ut
io
n
(m

)
Sc
en
e
si
ze

(k
m
)

Al
tit
ud

e
(k
m
)

Re
pe
at

ra
te

(d
ay
s)

La
nd

sa
t*
7

19
72
-a
ct
.

U
SG

S1
&
N
AS

A2
8M

S3
+
1P
an
.4
+
2T
er
.5

0.
43
–1
2.
51

M
S:
30
;P

an
:1
5;

Te
r:1
00
.

17
0
x
18
5

70
5

16

SP
O
T*

5
19
86
-a
ct
.

Sp
ac
e
Ag

en
cy

of
Fr
an
ce

3M
S3

+
1P
an

4
+
1S
W
IR
5

0.
49
–1
.7
5

M
S:
10
;P

an
:5
;

SW
IR
:2
0.

60
x
60

83
2

26

Ra
pi
dE
ye

20
08
-a
ct
.

Bl
ac
kB
rid

ge
AG

5M
S3

0.
44
–0
.8
5

M
S:
5

77
x
77

63
0

5.
5

IR
S*
1C

19
88
-a
ct
.

In
di
an

Sp
ac
e

Re
se
ar
ch

O
rg
an
iz
at
io
n

4M
S3

+
1P
an

4
+
2S
W
IR
5

0.
52
–1
.7
0

M
S:
23
.5
;P

an
:5
.8
;

SW
IR
:7
0.

14
1
x
14
1

81
7

24

Te
rr
a
M
O
D
IS

19
99
-a
ct
.

N
AS

A2
4M

S3
+
3S
W
IR
5

Ba
nd

1–
7:

0.
45
–2
.1
5

Ba
nd

1–
2:
25
0;

Ba
nd

3–
7:
50
0.

10
x
10

70
5

16

Q
ui
ck
Bi
rd

20
01
–2
01
5

D
ig
ita
lG
lo
be

4M
S3

+
1P
an

4
0.
45
–0
.9

M
S:
2.
90
;

Pa
n:
0.
65
.

16
.8

x
16
.8

45
0

3,
5

Th
ai
ch
ot
e

20
07
-a
ct
.

Th
ai
M
in
is
tr
y
of

Sc
ie
nc
e
an
d

Te
ch
no

lo
gy
’s

Sp
ac
e
Ag

en
cy

4M
S3

+
1P
an

4
0.
45
–0
.9

M
S:
15
;

Pa
n:
2.

22
x
22

82
2

ov
er

Th
ai
la
nd

–
3

Ko
m
ps
at
*2

19
99
-a
ct
.

Ko
re
a
Ae

ro
sp
ac
e

Re
se
ar
ch

In
st
itu

te
4M

S3
+
1P
an

4
0.
45
–0
.9

*2
M
S:
1;

Pa
n:

4.
15

x
15

68
5

3

Se
nt
ie
nl
-2

20
15
-a
ct
.

Eu
ro
pe
an

Sp
ac
e

Ag
en
cy

10
M
S3

+
3S
W
IR
5

0.
44
3–
2.
19

4
ba
nd

s
–
10
;

6
ba
nd

s
–
20
;

3
ba
nd

s
–
60
.

Ti
le
:1

00
x1
00

78
6

5

*n
–
nu

m
be
rs
ar
e
gi
ve
n
fo
r
th
e
n-
th

sa
te
lli
te

se
rie
s
of

th
e
m
is
si
on

;
1 U
SG

S
=
U
ni
te
d
St
at
es

G
eo
lo
gi
ca
lS

ur
ve
y;

2 N
AS

A
=
N
at
io
na
lA

er
on

au
tic
s
an
d
Sp
ac
e
Ad

m
in
is
tr
at
io
n;

3 M
S
=
M
ul
ti-
sp
ec
tr
al
;

4 P
an

=
Pa
nc
hr
om

at
ic
;

5 S
W
IR

=
Sh
or
t-
w
av
e
in
fr
ar
ed
.

INTERNATIONAL JOURNAL OF REMOTE SENSING 9



The majority of the radar and optical synergistic studies report an advantage of using
satellite image time series (SITS). A combination of optical and radar SITS allows to
reduce temporal gaps (mostly occurring due to clouds) and gives the possibility to
monitor the growing cycle of crops (McNairn et al. 2009). (Inglada et al. 2016) examined
the impact of SAR SITS on the classification results by fusing time series of eleven
Landsat scenes with nine Sentinel-1 scenes. In this study, significant improvements in
accuracy were reported showing that land cover maps in agricultural areas can be
generated early in the growing season with satisfactory accuracy. Shang et al. (2008)
demonstrated that acceptable accuracy might be achieved already in the early growing
season even if only one Landsat image was complemented by two ASAR (VV/VH
polarization) images. Zhou et al. (2017) concluded that in case of winter wheat classifi-
cation, when an optical image cannot be utilized due to considerable cloud cover, it can
be replaced by a SAR image without any adverse influence to the quality of the
classification. Nonetheless, the combination of optical and SAR time series showed
superior performance (F1 measure = 98.06%) for winter wheat detection compared to
single source image classifications.

Figure 6. Combination of optical and radar sensors used in studies for crop type classification
covered by this review. Studies which used two sensors (1 optical + 1 radar) are shown in green,
whereas studies which used three or more sensors are shown in blue colour.
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Nowadays, the increasing availability of Earth Observation (EO) data triggers the
elaboration of scientific approaches for multi-source data analysis. Specifically, the
Sentinel satellite missions of the Copernicus program and the Landsat mission
provide a unique set of free and open access EO data of unprecedented spatial-
temporal resolution that are highly suited for agricultural applications. Thus, Sentinel
data has been increasingly used in the recent multi-sensor data analyses for agricul-
tural applications (e.g. Kussul et al. 2018; Mansaray et al. 2017; Lussem, Hütt, and
Waldhoff 2016; Kussul et al. 2016b; Sonobe et al. 2017).

3. Data fusion concepts and categories in remote sensing

Methods that integrate data from different sources for combined analysis are called
data fusion, but also multi-temporal change detection and pan-sharpening can be
assumed as remote sensing data fusion methods. Data fusion is being used not only
in remote sensing but also in a wide range of other research fields such as ocean
surveillance, medical diagnosis, strategic warning defence and robotics (Hall and
McMullen 2004). Depending on the scientific field, the definition of data fusion may
vary considerably but even the definitions used in the field of remote sensing are
not consistent. In remote sensing, the term data fusion has different variations such
as information fusion (Sun et al. 2003), remote sensing image fusion (Pohl 2016),
image fusion (van der Meer 1997) and multi-sensor image fusion (Franklin and
Blodgett 1993). All these variants are focused on EO image fusion, image interpreta-
tion or used in the context of pan-sharpening (Schmitt and Zhu 2016). Table 4
provides examples of most cited data fusion definitions in remote sensing literature
including the most frequently used definition by van Genderen and Pohl (1994).

Multi-sensor data fusion approaches belong to the remote sensing ‘multi’ concept
which conceptually describes the combined use of diverse datasets. This concept covers
multi-sensor, multi-temporal, multi-spectral or multi-frequency, multi-polarization and
multi-scale image analysis aspects (Solberg 2006). Pohl and van Genderen (1998) listed

Table 4. Examples of the most cited definitions of the data fusion terms in remote sensing domain
(adapted from Schmitt and Zhu (2016)).
Data fusion definition Reference

‘Image fusion is the combination of two or more different images to form a new image by
using a certain algorithm’

van Genderen and Pohl
(1994)

‘Data fusion is a formal framework in which are expressed means and tools for the alliance
of data originating from different sources. It aims at obtaining information of greater
quality; the exact definition of “greater quality” will depend upon the application’

Wald (1999)

‘Multi-sensor data fusion is a process of combining images, obtained by sensors of different
wavelengths to form a composite image’

Dong et al. (2009)

‘Remote sensing data fusion aims to integrate the information acquired with different
spatial and spectral resolutions from sensors mounted on satellites, aircraft and ground
platforms to produce fused data that contains more detailed information than each of
the sources definition’

Zhang (2010)
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categories of remote sensing data synergy which are utilized for various research
purposes. The main focus of this review paper is on multi-sensor (radar-optical) image
analyses. Nevertheless, multi-temporal and multi-resolution aspects of satellite image
fusion are also relevant for most of the reviewed studies.

The actualmethods that are used for image fusion are drawn from awide range of research
areas such as artificial intelligence, pattern recognition, statistical approaches, formation
theory, etc. (Zeng, Zhang, andvanGenderen2006). Table 5presents the image fusionmethods
that aremost commonly employed in the reviewed studies. This table also structures the data
fusion methods into three categories according to the processing level at which fusion is
performed: pixel level fusion, feature level fusion and decision or symbol level fusion. A fourth
fusion level refers to the combination of signals coming from dissimilar sensors into a new
signal with an enhanced signal-to-noise ratio than previous signals (Solberg, Taxt, and Jain
1996). Data fusion at signal level was however not used in any of the reviewed studies and is
thus not further discussed in this review paper.

The fusion at pixel level impliesmerging the individual pixel values of each input dataset to
new fused pixel values using various fusion techniques. Feature level fusion merges features
(also named ‘variables’) extracted from raw data at intermediate processing levels (Solberg,
Jain, and Taxt 1994). For instance, a simple layer combination of optical features such as
spectral reflectance, vegetation indices etc. and radar features such as texture information,
backscattering coefficient, polarization ratio etc. is an example of feature level fusion. Decision
or symbol level fusion combines the outcomes of individual classifications to produce a final
map (Zhang 2010). The initial pre-classification of each input dataset is followed by
a knowledge-based weighting of the individual classification results leading to a final classi-
fication. Figure 7 graphically illustrates the pixel, feature and decision fusion levels. Image
fusion at feature levelwas performedby themajority of reviewed studies (54 studies), followed

Table 5. Commonly used data fusion methods in the reviewed literature.
Fusion level Fusion methods Reference (example)

Simple band combinations Blaes, Vanhalle, and Defourny (2005)
Principal component analysis (PCA) Vescovi and Gomarasca (1999)
Intensity, Hue and Saturation (IHS) Feingersh, Gorte, and van Leeuwen (2001)

Pixel-level fusion Discrete Wavelet Transform (DWT) Gibril et al. (2017)
Brovey Transform (BT) Firouzabadi and Sadidy (2006)
Ehlers fusion (EF) Abdikan et al. (2015)
High Pass Filter (HPF) Abdikan and Sanli (2012)

Feature-level fusion

Separability measures

Dusseux et al. (2014),
McNairn et al. (2002),
Michelson, Liljeberg, and
Pilesjö (2000)

Feature layer combinations Zhou et al. (2017)
Maximum separability and
minimum dependency (MSMD)

Khosravi, Safari, and
Homayouni (2018)

Decision-level
fusion

Bayesian formulation Solberg, Jain, and Taxt (1994)

Voting strategy Waske and van der Linden (2008)
Heuristic class allocation Hill et al. (2005)
Contextual fusion Ban, Hu, and Rangel (2010)
Dempster Shafer theory Betbeder et al. (2014)
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Figure 7. Fusion of optical and radar data for crop type classification at pixel-, feature- and decision
levels.

INTERNATIONAL JOURNAL OF REMOTE SENSING 13



by pixel level fusion (13 studies) and decision level fusion (8 studies). More information about
fusion levels and applied techniques are given in the following sub-chapters.

3.1. Pixel level fusion

Pixel level image fusion is conducted at a low processing level, where the input is
usually pre-processed optical and radar channels. The purpose of pixel fusion
varies from case to case, but it is mainly focused on the improvement of spatial
resolution, structural and textural details and preservation of a spectral fidelity of
the original multispectral imagery (Zhang 2010). Like with other fusion methods,
input raster are geocoded and/or co-registered before the fusion. Pixel level fusion
methods vary from simple colour composition techniques to more complex hybrid
methods which utilize the combination of two or more algorithms at once.
A number of studies perform comparative research where the performance of
different pixel level fusion techniques is evaluated. Among the reviewed studies,
the most frequently applied optical-radar fusion methods are principal component
analysis (8 studies), intensity-hue-saturation (7), discrete wavelet transform (5),
Brovey transform (4), Ehlers fusion (4 studies) and high pass filter (4 studies).
Figure 8 shows the frequency of different pixel level fusion methods as used in
the reviewed studies. Methods such as the adjustable SAR-MS and Bayesian data
fusion (Abdikan et al. 2015) were examined by single studies only. The Dempster
Shafer theory of evidence was utilized in two studies (Le Hegarat-Mascle et al.
2000; Betbeder et al. 2014).

Taxt and Schistad Solberg (1997) grouped pixel level fusion approaches into
three categories which are statistical methods, Dempster-Shafer theory and neural
networks. Pohl and van Genderen (2015) revised this categorization with the aim
to adapt it to the availability of novel fusion approaches and suggested five broad
groups of image fusion techniques:

Figure 8. Pixel level fusion methods used in the reviewed literature on combination of optical and
radar remote sensing data for crop type classification.
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(1) Component substitution methods;
(2) Numerical and statistical image fusion;
(3) Modulation-based techniques;
(4) Multi-resolution approaches,
(5) Hybrid techniques.

These groups of fusion techniques are described in detail in the following sub-
chapters except for numerical and statistical image fusion, as it was not used in the
reviewed literature.

3.1.1. Component substitution techniques
Component substitution techniques transform selected input bands of the original
images to new data space with new substituted images (Pohl and van Genderen
2015). In the reviewed studies, the most utilized component substitution techniques
are principal component analysis (PCA) and intensity, hue and saturation (IHS)
transform.

PCA is one of the widely used methods of pixel level data fusion, which allows
reducing redundancy within data, but at the same time, keeping the most relevant
information (Chavez Jr and Kwarteng 1989). In case of optical-radar data fusion, this
method converts a set of inter-correlated optical and radar variables into a set of
uncorrelated variables by merging the original information (Sukawattanavijit and Chen
2015). PCA is a tool to reduce large data amounts with redundant information and may
thus reduce the required processing power (Vescovi and Gomarasca 1999).
Sukawattanavijit and Chen (2015) deduced that results of PCA demonstrated better
performance compared to other pixel level fusion methods because of the ability to
compress large amounts of spectral and backscattering information without major loss
of vital information. Moreover, Abdikan and Sanli (2012) concluded that spatial char-
acteristics acquired from SAR images as well as spectral information of optical images
were better conserved in PCA than in IHS.

Feingersh, Gorte, and van Leeuwen (2001) reported that fused optical-radar fea-
tures produced with PCA result in better classification accuracy for crop type classi-
fication compared to features produced by IHS. Adverse to this, the study of Sanli
et al. (2017) highlighted that even though PCA improved the accuracy of the
detection of particular crops the overall accuracy of the classification did not improve
considerably compared to classification results from other pixel-level fusion methods.
Also, Sukawattanavijit and Chen’s (2015) results showed remarkable improvement of
classification for herbaceous crops when using PCA method, but the quality of
delineation of other land cover classes such as forest, river and urban areas did
not change significantly. The study of Haldar et al. (2012) which was specifically
focused on jute and tea delineation showed that an overall accuracy of 94% for jute
and 92% for tea could be achieved by using PCA fusion of four optical and two SAR
images (HH and HV).

Compared to PCA, IHS allows the fusion of a limited amount of input bands. The
IHS transform technique was initially conceived for combining high resolution radar
data with other remote sensing images to provide a unique set of high spatial and
spectral resolution colour imagery (Harris, Murray, and Hirose 1990). Hong et al.
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(2011) for instance used IHS and wavelet integration to fuse low-resolution multi-
spectral information from MODIS with high-resolution RADARSAT-2 imagery. While
Raghavswamy et al. (1996) found that IHS transformation works better than combi-
nation of co-registered data sets of SAR and optical data for the delineation of
plantations like casuarina, coconut etc. Abdikan and Sanli (2012) concluded that
IHS shows worst statistical results in agricultural areas compared to other fusion
methods such as HPF, DWT and PCA. Sanli et al. (2017) concluded that multi-sensor
data combination considerably improves the final accuracy of wheat and vineyard
classes, but among all tested pixel level fusion methods IHS showed the worst results
in qualitative and quantitative respects.

3.1.2. Modulation-based techniques
The modulation-based fusion techniques are centred on the idea of integrating high-
resolution spatial information into multispectral images (Zhang 2010). An example could
be the fusion of normalized multispectral bands and higher-resolution SAR imagery.
Among reviewed articles, Brovey transform (BT) and high pass filter (HPF) are the mostly
used modulation-based methods.

BT, also known as colour normalization transform, merges data from different sensors
and tries to keep spectral fidelity of inputs but replace the brightness information with
the high-resolution band (Vrabel 1996; Pohl and van Genderen 1998). Firouzabadi and
Sadidy (2006) mentioned that fused images from Landsat and RADARSAT show more
details of the sensed scene than each dataset separately and particularly BT technique is
able to provide an image with better visual separation between forest and cultivated
rice areas. Haldar et al. (2012) study showed that BT presented highest classification
accuracy for the identification of jute and tea fields using single date images of IRS-1C,
RADARSAT and Envisat ASAR.

HPF inject textural and spatial details of the high resolution dataset into the lower
resolution dataset (Schowengerdt 1980; Gangkofner, Pradhan, and Holcomb 2007).
Sukawattanavijit and Chen (2015) concluded that for maize PCA and HPF fusion meth-
ods outperform IHS and BT with regard to the overall classification accuracy. In addition
to above-said, Abdikan and Sanli (2012) stated that the HPF fusion performs best
compared to all other pixel-level fusion methods for agricultural area. Sanli et al.
(2017) pointed out that the use of the HPF method positively effects to the classification
accuracy of wheat but not vineyards.

3.1.3. Multi-resolution analysis
The multi-resolution based image fusion method decomposes input images into several
channels and forms a multi-scale image pyramid (Nunez et al. 1999). Each pyramid level
corresponds to a coarser resolution channel with corresponding spatial details (Zhang 2010).
The most used multi-resolution analysis techniques include wavelets and curvelets. In the
wavelet-based fusion approach, spatial information extracted from SAR imagery is injected
into optical images, which allows minimizing the deformation of spectral information.

The wavelet-based fusion approach was used in three reviewed studies. The study of
Gibril et al. (2017) showed that the performance of the discrete wavelet transform (DWT)
method was slightly lower compared to other investigated methods when classifying oil
palm, coconut and rice. Abdikan and Sanli (2012) pointed out that it can be a very
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promising approach for urban areas if PALSAR data is investigated, but not for agricultural
areas. Although DWT improves the accuracy of wheat field identification from other land
cover classes such as residential or pasture, it does not significantly affect the overall
accuracy compared to other pixel-level fusion methods (Sanli et al. 2017; Gibril et al. 2017).

3.1.4. Hybrid pixel level fusion techniques
As the name implies, hybrid methods involve the incorporation of two or more data
fusion techniques and thus allow utilizing the advantages of each input method (Pohl
and van Genderen. 2015). One of the well-known hybrid fusion techniques is the Ehlers
fusion method (Klonus and Ehlers 2007). This method uses IHS and inverses IHS methods
that conserve the spectral information of input optical data, which can be useful to
conduct visual classification. Comparative studies of Abdikan and Sanli (2012) on the
discrimination of agricultural area and Abdikan et al. (2015) on the classification of
cotton and corn showed that the Ehlers method outperformed all other pixel-level
fusion methods and demonstrated better visual and statistical outcomes. Hong et al.
(2014) compared the layer stacking method to the hybrid method developed by Hong,
Zhang, and Mercer (2009) to classify alfalfa fields and grassland. This hybrid fusion
approach uses IHS and wavelet integration to combine high spatial resolution SAR
data with low-resolution optical images. Results showed that the hybrid method allows
fusing optical and SAR data in an optimal way and improve the classification accuracy of
alfalfa significantly compared to stacked channels.

3.2. Feature level fusion

Feature level fusion is performed by merging original or delineated image layers (so-
called features or variables) features such as spectral bands and indices, textural
information, backscattering data etc. of optical and radar satellite datasets. This
approach allows utilizing the most relevant features of each data source and thus
advances the classification accuracy. In this high-level fusion method (Zhang 2010),
feature layers extracted from original images are combined to form a new multi-layer
dataset containing the most significant information for classification.

Fourteen of the reviewed studies gave a preference to a simple and straightfor-
ward approach of band combination without conducting any prior feature extraction
and feature selection steps (e.g. Torbick et al. 2017; Parks 2012; Fiumara and
Pierdicca 1989). Other studies performed band selection e.g. based on Jeffries-
Matusita (J-M) distance (e.g. Michelson, Liljeberg, and Pilesjö 2000; Erasmi and
Twele 2009), in order to select the most promising combination of channels for
increasing classification accuracy. Feature level fusion does not always imply the
combination of spectral bands and radar backscattering data. The majority of the
reviewed studies (30 studies out of 54) combined not only original optical or radar
channels but also features extracted from these datasets (Sheoran and Haack 2013;
de Alban et al. 2018). For instance, Park et al. (2018) merged 10 input datasets which
consisted of original Landsat bands, vegetation indices (NDVI, NDWI) and SAR back-
scattering information. Mansaray et al. (2017) stacked five Sentinel-1A images with
NDVI, MNDWI images using the bilinear interpolation techniques. The study of Gibril
et al. (2017) compared the performance of pixel level fusion methods such as BT,
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DWT and Ehlers fusion with a simple combination of optical and SAR layers for palm
oil, coconut and rice fields classification. Results showed that the stacked dataset of
Landsat-8 and RADARSAT-2 improves the classification of crops compared to single
source images as well as other pixel level fusion techniques, and gives the highest
accuracy when using the SVM classification in contrast to other fusion methods. The
feature level combination of SAVI extracted from two dates of Landsat images and
RADARSAT SAR data resulted in an overall classification accuracy of 90% when
classifying corn, soybeans, peanut, and cotton fields (Xu et al. 2004). . But also
other studies showed that the integration of optical or radar features as separate
layers in a stacked dataset boosts the performance of classification by providing
additional information (e.g. Mansaray et al. 2017, who investigated rice; Forkuor et al.
2014 – cotton, maize, millet, sorghum, rice, yam; Torbick et al. 2017 – rice). The
following sub-chapters give an overview on optical and SAR features and feature
selection approaches commonly used in feature level fusion approaches for crop
type mapping.

3.2.1. Optical features
Spectral features extracted from optical data can serve as indicators of vegetation
condition, chlorophyll content, plant water content and phenology by providing infor-
mation about the reflective and emissive characteristics of crops at the visible and near-
infrared wavelengths. Spectral reflectance values of remotely sensed targets contain
valuable information for the class discrimination; nevertheless, the distinction of two
crop types with similar spectral characteristics, phenologies and crop calendars is
challenging based on surface reflectance only. Lu and Weng (2007) stated that addition
of various features improves the performance of the classifiers. In the following para-
graphs, we discuss the inclusion of vegetation indices (VI), biophysical variables and
texture variables, which were hypothesized to provide broader and more suitable
information for classification of crop types.

Among the commonly used optical features, vegetation indices (VI) play a major role.
As a qualitative measure of vegetation cover, VIs are simple and effective. VIs were
involved in the classification process in almost all reviewed studies. Indices such as the
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index
(NDWI), Simple Ratio (SR) and Enhanced Vegetation Index (EVI) are most frequently
used compared to other indices. Zhou et al. (2017) indicated that the highest separ-
ability between winter wheat and rapeseed in Jiangsu province (China) could be
observed from the time series of SR and NDVI values. The results of the Maximum
Separability and Minimum Dependency (MSMD) feature selection method proposed by
Khosravi, Safari, and Homayouni (2018) showed that the Soil-Adjusted Vegetation Index
(SAVI) was the optimal VI used to classify wheat, canola, soybeans, oats, corn and peas in
the south-west district of Winnipeg (Manitoba, Canada). Park and Im (2016) highlighted
that NDWI and NDVI appeared more contributing than the other variables for the
success of paddy rice classification. For example, Inglada et al. (2015) concluded that
NDVI and NDWI together with surface reflectance and brightness values are the most
suitable optical features which grasp almost all vital information for crop type classifica-
tion, which on this study were maize, sorghum, cow peas and cotton.
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Additionally to vegetation indices, Dusseux et al. (2014) extracted biophysical vari-
ables, namely Leaf Area Index (LAI) and the fraction of vegetation cover (fCOVER) from
optical satellite images. The transformed divergence (TD) measure indicated that tem-
poral profiles of LAI have higher importance for winter wheat, maize and grassland
classification than temporal profiles of fCOVER and NDVI. The changes in temporal
profiles provide important information for successful crop type classification. Salehi,
Daneshfar, and Davidson (2017) highlighted the importance of multi-temporal imagery
for crop type (e.g. cereals, oilseed crops) classification compered to mono-temporal data.

Texture information extracted from optical images can also contribute to improve
crop type discrimination. Khosravi, Safari, and Homayouni (2018) reported that, in
a classification of wheat, soybeans, corn, canola, oats and peas, indicators of textural
homogeneity, variance and contrast had the most important positive influence on the
classification accuracy. These variables, in addition to pixel-based spectral reflectance
values, provide advanced information about the target objects under investigation. The
top part of Table 6 lists optical features commonly used in the reviewed studies.

3.2.2. Radar features
In the reviewed feature level fusion studies, variables extracted from SAR data were
mainly used in a role of complementary information to optical data. SAR data generally
contains valuable information about physical and structural properties of the land sur-
face. The majority of the conducted feature selection studies showed that SAR variables
such as backscattering coefficient, interferometric coherence, texture and polarization
are able to grasp the most important information of a SAR time series for crop type
mapping. The SAR features which were commonly extracted for crop type classification
purposes are listed in Table 6 (bottom).

The backscattering coefficient, as the main indicator of crop structure at different
phenological stages, is one of the primary SAR variables which was frequently used in

Table 6. Optical and radar features employed in feature level fusion.
Family Feature name References

OPTICAL FEATURES
Vegetation indices Normalized Difference Vegetation Index (NDVI) Mansaray et al. (2017), Qi et al. (2003)

Normalized Difference Water Index (NDWI) Wang et al. (2015b)
Spatial Ratio (SR) Zhou et al. (2017)
Enhanced Vegetation Index (EVI) Torbick et al. (2011)
Normalized Difference Flood Index (NDFI)

Red Green Ratio Index (RGRI)
Simple Vegetation Index (SVI)

Villa et al. (2015)
Fontanelli et al. (2014)
Haldar and Patnaik (2010)

Spectral reflectance Red, NIR and MIR Haldar and Patnaik (2010)
Biophysical variables Leaf Area Index (LAI), fCOVER Dusseux et al. (2014)
Texture variables Homogeneity, variance, contrast Khosravi, Safari, and Homayouni (2018)

RADAR FEATURES
Haralik textures Energy, Entropy, Inverse Difference Moment Inglada et al. (2016)
Polarization Polarization ratio

Polarization intensity Li, Ulaby, and Eyton (1980)
Circular polarization ratio

Polarimetric
decomposition

Freeman–Durden and Cloude–Pottier Dusseux et al. (2014)

Backscattering Backscattering coefficient Ahern et al. (1978)
Coherence Repeat-pass interferometric coherence (γ) Villa et al. (2015)

INTERNATIONAL JOURNAL OF REMOTE SENSING 19



the reviewed studies. The intensity of the backscatter coefficient significantly varies
depending on crop canopy structure. But also the incidence angle of the radar system
and the moisture content of the land surface considerably influence the strength of the
backscattering value. Thus, backscattering coefficients of crop types with resembling
canopy structure are similar, which leads to difficulties in the distinction between crop
types of similar physiognomic properties. For instance, McNairn et al. (2002) reported
difficulties in the separation of broadleaf crops due to similar backscattering coefficients.

Moreover, the changes in backscattering intensity over time give additional informa-
tion for distinguishing crop types, because of the individual development properties
(phenological stages) each crop type has. The number of SAR images required for
building informative temporal backscattering profiles highly depends on the complexity
of a cropping system (Steele-Dunne et al. 2017). Skakun et al. (2016) explored the effect
of backscattering coefficients on winter and summer crop classification. The results of
these experiments showed that addition of backscattering intensity data leads to better
separation of sunflower, soybeans and maize compered to single-source classification,
and increases the classification accuracy from 86.01% to 90.10%. In addition, the inclu-
sion of backscatter features of TerraSAR-X data turned out to be an important feature for
the separation of rice and yam as well as for cotton and maize in West Africa (Forkuor
et al. 2014). The results of Zhou et al. (2017) feature selection approach suggest that the
backscattering intensity was more important for classification of winter wheat than
texture and coherence information.

Along with the backscattering coefficient, polarization information was engaged in
the classification process in almost all reviewed studies. Multi- or cross-polarized images
provide information which tends to improve the crop type separability and crop
diversity compared to single polarization data (Wang et al. 2015a). Polarimetric data
can provide information about vegetation height, shape, distribution and geometric
structure which positively affects the classification accuracy. However, Gebhardt et al.
(2012) concluded that full polarized data (in this case TerraSAR-X Quadpol mode) does
not substantially facilitate rice fields discrimination, while dual-polarized mode VV/VH is
able to grasp the most significant information. Forkuor et al. (2014) and Inglada et al.
(2016) agreed that VV polarization appears more important than VH polarization which
contains volume scattering (see supplementary material S1 for crop types). This was
explained by the fact that NDVI and VH polarization can be correlated which leads to
data redundancy. Erasmi and Twele (2009) expressed the idea that only polarization
ratios (e.g. Normalized Difference Polarization Ratio, Spatial Homogeneity) can lead to
notable improvements of rice and cocoa separability compared to local statistics of co-
cross-polarized data.

In conjunction with polarization information, different textural SAR measures were
considered in the reviewed studies. Texture is an important attribute of SAR images with
strong ability to distinctly characterize target objects in the image. Several factors such
as orientation, scale and the spatial relation between texture elements affect the surface
texture of target objects (Kandaswamy, Adjeroh, and Lee 2005). Image texture analysis
methods like grey level co-occurrence (Ban, Hu, and Rangel 2010) and Markov random
fields (Sandholt 2001) are widely used approaches to delineate texture metrics from SAR
data. Ulaby et al. (1986) pointed out that textural variables retrieved by the grey level co-
occurrence method are the most useful way of examining the content of remotely
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sensed images. Most of the studies reported that the SAR texture information in
combination with optical data can provide superior classification results compared to
the case when optical or radar data are used alone (Presutti et al. 2001; Zhou et al. 2017).
Inglada et al. (2016) calculated three families of texture measures, namely local
moments, Haralik textures (Haralik 1979) and the Structural Feature Set (Huang,
Zhang, and Li 2007). The results of a feature selection algorithm showed that Haralik
textures (energy, entropy and inverse difference moment) together with other SAR
features such as polarization ratio, local mean and VV imagery could provide most of
the information for a successful classification of crops such as corn, sunflower, rapeseed,
alfalfa, soybean, and wheat/barley. An experiment of Kurosu et al. (1999) showed that
integration of textural statistics to the original SAR images significantly improves rice
classification accuracy. In contrast, Sheoran and Haack (2013) indicated that texture data
did not prove beneficial for classification of almonds, cotton, alfalfa and fallow crops.

Coherence is another SAR feature where cross-channel correlation can be used as
a helpful source of information for target object classification (Touzi et al. 1999). The test
of Zhou et al. (2017) showed that adding coherence and texture information to the
classification of winter wheat improves the accuracy.

3.2.3. Feature selection methods
At feature level fusion, special attention has to be given to the feature selection process.
The selection of best-performing features helps to reduce the number of attributes and
thus the requirements with regard to data storage and processing power. These aspects
are particularly relevant as some features of optical and radar data can have high inter-
correlation, which leads to data redundancy. Nonetheless, many machine learning
methods are less affected by data redundancy compared to parametric methods
(Maxwell, Warner, and Fang 2018). Another aspect is that some features have low or
even misleading information content for the envisaged classification purpose.

Half of the reviewed studies, which used feature level fusion, pre-selected input
features based on expert knowledge or through trial and error. Several studies selected
commonly used optical and SAR variables such as vegetation indices, texture informa-
tion and backscattering coefficients based on previous knowledge from literature (e.g.
Presutti et al. 2001; Fontanelli et al. 2014; Wang et al. 2015; Park and Im 2016;).

Statistical or automated feature selection approaches were carried out by half of the
feature level fusion studies. Inglada et al. (2016) for example selected the most relevant
SAR features based on the variable importance estimated within the Random Forest
classifier. The optical features were selected based on previous research conducted by
Inglada et al. (2015). The classification accuracy using random permutations of each SAR
feature was compared to the case without permutations. The decrease and/or increase
in classification error is so-called variable importance value for each feature.
A straightforward approach to identify best performing combination of variables was
presented in Zhou et al. (2017). Ten possible combinations of SAR and optical features
were classified separately in order to identify the feature set combination which shows
highest classification accuracy for winter wheat. The performance of selected individual
optical and radar features for crop type classification was mentioned in previous sub-
chapters 3.2.1. and 3.2.2. .
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Several studies employed tests which allow measuring the spectral separability
between two classes in order to assess best performing feature sets. In the reviewed
literature, the most frequently used separability measures were TD and J-M distance
measures. The indices of separability, their properties and limitations in the context of
crop type classification were closely discussed in Thomas et al. (1987). Dusseux et al.
(2014) and McNairn et al. (2002) exploited the TD measure in order to assess and
compare the ability of temporal profiles of optical and radar features to distinguish
grassland from winter wheat and maize. The most discriminative features extracted
from optical and SAR data were selected based on the TD analysis results.
J-M distance measure was also widely used in order to determine which combination
of channels contained the most valuable information for classification (e.g. Michelson,
Liljeberg, and Petter 2000; Hill et al. 2005; Sonobe et al. 2017; Lobo, Chic, and
Casterad 1996). The J-M distance provides a measure of the average distance
between class density functions (Richards and Richards 1999). Based on the results
of J-M distance, Michelson, Liljeberg, and Petter (2000) concluded that SAR time series
data contained more information to separate, general land cover classes than optical
data, but the highest separability between agricultural sub-classes (e.g. sugar beet,
potato, rapeseed, wheat, rye, barley, oats) was achieved when optical and SAR data
were combined.

A recent study of Khosravi, Safari, and Homayouni (2018) introduced a feature selec-
tion method called maximum separability and minimum dependency (MSMD) approach.
The proposed technique is designed to select the most relevant features and remove
redundant features. The MSMD method consists of two main parts, namely a distance-
based measure (highest separability value of radar features) and a correlation-based
measure (lowest correlation among optical features). The most commonly selected and
used optical and radar features of this review are illustrated in Figure 9.

3.3. Decision level fusion

At decision level fusion, first individual classifications are performed using each input
data source separately and the results are then combined based on decision rules which
result in a deliberate decision (Solberg 2006). Decision level fusion approaches can take
advantage of the best classification results from both optical and radar images, thereby
increasing the quality of the final classification (Ban, Hu, and Rangel 2010).

Decision level fusion was performed in eight of the reviewed studies. The majority of
these studies introduced their own frameworks for fusion of the individual single source
classification results. The standard framework of decision level fusion methods is a rule-
based combination of the classification results acquired from optical and SAR images
(Soria-Ruiz, Fernandez-Ordoñez, and Woodhouse 2010). The knowledge-based decision
fusion of optical and SAR classification results presented in Ban, Hu, and Rangel (2010)
showed significant improvement over the results achieved only by optical data. The
additional use of SAR backscatter information increased the accuracy of several classes
such as rapeseed and soybean from ~70% to ~90%. The study of Okamoto (1999) is an
example of a sequential decision level fusion, wherein iterative classification results of
each prior classification are sequentially used for the decision process. First, classification
results, achieved from the optical data, were used to identify arable lands, when
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afterwards result of SAR backscatter thresholding was used to spot rice-plated areas
within the previously identified arable lands in Indramayu Province, Indonesia. Hill et al.
(2005) used optical and radar data individually to classify grass crops and pasture (for
more specific crop information see supplementary material S1) properties in a simple
and straightforward approach where SAR data was used to classify canopy height and
optical data was used to quantify greenness. The fusion of these classification results
produced better accuracy than classifications by each sensor alone.

Figure 9. Frequency (size of connection lines) of the usage of optical and radar features for crop
type (colour of connection lines) classification.
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Waske, Menz, and Benediktsson (2007) applied SVMs to classify optical and SAR data
individually. The SVM approach was used once more and trained on the rule images of
previous classification results. The authors pointed out that the major reason for success
was the use of optical and radar data in a combination since the individual sensor data
was not equally reliable.

The work of Waske and van der Linden (2008) addressed the problem of multi-sensor
image classification using a multi-level segmentation approach by considering not only
spectral or backscattering information but also the spatial context on different scales.
Dataset from Landsat-5, Envisat ASAR and ERS-2 were classified separately using SVM.
Then, the results were used in a decision fusion to perform final classification of cereals,
rapeseed and root crops. The combination of the two classifiers, namely SVM and RF was
another advantage of the fusion framework which allowed utilizing the strengths of both
algorithms.

4. Image classification approaches

Along with the appropriate selection and pre-processing of satellite input data, the
selection of a suitable classification approach is an important step towards a successful
synergetic classification of crop types. Figure 10 displays the classification methods
which were used more than once in the reviewed literature between 1990 and 2017.
Classification approaches such as the ISODATA algorithm (Hong et al. 2014),
Mahalanobis Distance (MD)-based classification (Cheng et al. 2016), Kernel-based
extreme learning machine (KELM) (Sonobe et al. 2017) and Gaussian Mixture class
(Sandholt 2001) classification were tested by single studies only.

4.1. Parametric vs non-parametric classification methods

The choicebetweenparametric andnon-parametric classificationmethodswas also oneof the
major topics which were investigated in the reviewed literature. Different to non-parametric

Figure 10. Temporal distribution of classification approaches which were used in the reviewed
literature on combination of optical and radar remote sensing data for crop type classification.
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approaches, parametric classification approaches draw statistical assumptions on the data e.g.
on normal distribution. Many research papers motivate their choice of a classifier based on
popularity and frequency of appearance in previous publications e.g. Abdikan et al. (2015),
which however does not imply the superiority of a technique. Theparametric classifierwhich is
most frequently utilized approach in the reviewed studies is Maximum Likelihood Classifier
(MLC). However, Pinheiro, Carrao, and Caetano (2007) reported that the parametric Maximum
Likelihood classifier are not flexible enough to work with complex muliti-modal distinctions,
which leads to poor classification results. Particularly, for multi-source data with heteroge-
neous information, the parametric classifiersmay not be the best choice. Thus non-parametric
classifiers such as support vector machines, random forest and decision trees which do not
make any statistical assumption on data distribution are gaining more attention in the recent
years (Figure 10). A comparison between a parametric (MLC) and a non-parametric (RF)
classifier was for example conducted by Salehi, Daneshfar, and Davidson (2017). Results
showed very close accuracy outcomes for cereals, soybeans, canola and corn crops; however,
a slight outperformance of the non-parametric RF classifier was reported.

4.2. Supervised vs unsupervised classification methods

The majority of the reviewed studies gave preference to supervised (69 studies) rather
than unsupervised (6 studies) classification methods. A number of studies chose super-
vised classification approaches based on the results of earlier studies which came up
with the conclusion that supervised methods outperform the results of unsupervised
methods e.g. Larrañaga, Álvarez-Mozos, and Albizua (2011) . Nevertheless, several stu-
dies have reported the advantages of applying unsupervised classification methods on
multi-source data (Okamoto 1999; Le Hegarat-Mascle et al. 2000; Hong et al. 2011; Hill
et al. 2005; Kussul et al. 2016a; Hong et al. 2014). Hong et al. (2014) claimed that the
unsupervised classification had more advantages compared to supervised methods for
differentiating grassland and alfalfa, as prior information is not necessary and as super-
vised methods allow to discover unknown classes. It was also pointed out that classifica-
tion of the scene into several homogenous clusters is very useful for radar related
classification. The study of Hill et al. (2005) which is focused on grass crops and pasture
classification in Western Australia, gave preference to an unsupervised classification
approach. The reasoning behind was that continious changes in the structure and
composition of grasslands make a selection of trusthworthy training data impracticable,
thus unsupervised method seemed to be better suited of this case studies. Le Hegarat-
Mascle et al. (2000) focus on unsupervised classifications of mono-source and multi-
source data. The classifications were performed using a Bayesian model (mono-source)
and the Dempster-Shafer evidence theory framework (multi-source) where unsupervised
classification results showed that fusion of Landsat and ERS provided the most robust
classification of wheat, maize, barley etc. (for full list of the crops please check supple-
mentary material S1). It is worth mentioning the existance of hybrid approaches, where
initial unsupervised classification is followed by data analysis and interpretation or by
supervised classification (e.g Thenkabail, Schull, and Turral 2005).

As it was mentioned above, the majority of the reviewed studies utilized super-
vised classification methods. One of the conventional classification approaches that is
also available in most of the commonly used commercial software packages is the
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Maximum Likelihood Classifier (MLC). This method was used in 29 of the reviewed
studies and did not lose popularity from 1990ies until today (Figure 9). Since MLC is
a parametric method, it is highly depending on the suitability of the probability
model and in the quality of training data (Iannini, Molijn, and Hanssen 2013). Despite
the fact that parametric MLC was used in almost half of the reviewed studies, Waske,
Menz, and Benediktsson (2007) claim that this classification approach is not adequate
for classifying fused images and suggest that non-parametric supervised methods are
more suitable. The study of Pinheiro, Carrao, and Caetano (2007) confirmed and
supported this statement.

Supervised machine learning classification approaches such as Random Forest (RF),
Support Vector Machines (SVMs), k-Nearest Neighbour (kNN), Neural Networks (NN) and
Decision Tree (DT) were utilized by 47 of the reviewed studies. For example, Abdikan
et al. (2015) compared the performance of SVM, RF and kNN on the fused (TerraSAR-X
and RapidEye) and single source (RapidEye imagery) EO data to classify corn and cotton
fields. In both cases, classification accuracy exceeded the 90% threshold.

The quality of training samples is an important aspect that influences the results and
accuracy of supervised classification procedures. In the reviewed studies, ground truth
data were mainly gathered during field trips e.g. Presutti et al. (2001), McNairn et al.
(2002), Inglada et al. (2016), Torbick et al. (2017), accessed from farmer’s declarations e.g.
Abdikan et al. (2015), derived through visual interpretation of very high resolution
optical imagery e.g. Park and Im (2016) or provided by governmental agricultural
organizations or ministries e.g. Lussem, Hütt, and Waldhoff (2016). Ground truth data
contained information about crop types and condition, growth stage, height, soil
temperature and water content e.g. Raghavswamy et al. (1996), Hill et al. (2005).

4.3. Pixel-based vs object-based classification

Pixel-based approaches are classical image analysis methods for remote sensing based
classifications. Object-based approaches have rapidly gained popularity over last two

Figure 11. A number of studies using pixel-based and object-based image analysis approaches
focusing on synergetic use of optical and radar remote sensing data for crop type classification
(since 1990).
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decades but interestingly, in the reviewed literature, they are less frequently used during
the last three years (Figure 11). Compared to pixel-based methods, object-based classi-
fications have the advantage of including of landscape objects such as shape, area,
boundary length or relation to neighbouring objects into the classification process. For
instance, major roads can be easily differentiated from an agricultural field with bare soil
by considering shape characteristics of the respective object (Ban, Hu, and Rangel 2010).
One of the critical tasks in object-based classification approaches is the segmentation.
Segments or objects are the smallest units of a segmented image and are composed of
spectrally or texturally homogenous pixels. The importance of spectral and spatial
homogeneity components in identifying cereal fields was highlighted by Qiao,
Daneshfar, and Davidson (2017). Salehi, Daneshfar, and Davidson (2017) discussed the
issue of over-segmentation and under-segmentation. They also supported the idea of
using average spectral or backscattering values of objects (crop fields) rather than single
pixel values, since fields with single crop types usually have relatively homogenous
radiometric characteristics. Many studies came up with the conclusion that object-based
classification approaches are superior to pixel-based approaches (e.g. Gibril et al. 2017;
McNairn et al. 2002; Larrañaga, Álvarez-Mozos, and Albizua 2011; Erasmi and Twele
2009). Ban, Hu, and Rangel (2010) reported on the effectiveness of object-based classi-
fication approaches for decision level fusion. The performance of decision level fusion
using object-based classification results could grasp advantages of both optical
(QuickBird) and SAR (RADARSAT) classifications and showed good classification accuracy
for crop types such as soybeans and rapeseed. Nonetheless, the results of the object-
based classification are highly dependent on the quality of the segmentation approach
(Shackelford and Davis 2003). The small-scaled complexity of agricultural landscapes and
the spatial and spectral inhomogeneity of agricultural fields in some study regions can
hinder satisfactory segmentation results (Forkuor 2015). On the other hand Hong et al.
(2011) deduced that the fused images contain more spatial detail rather than optical or
radar images alone, which gives an opportunity to successfully identify field boundaries
using object-based segmentation methods. An observation of Lobo, Chic, and Casterad
(1996) was that adding radar variables increases the accuracy of both pixel-based and
field-based classification results of rice, alfalfa, sunflower and maize, but the positive
effect was larger to field-based classification rather than pixel-based classification.

A combination of pixel-based and object-based classification (see supplementary
materials S1 for crop types) was used by Forkuor et al. (2014) in their study in the
north-western part of the Republic of Benin. Initial pixel-based classification using RF
classifier was combined with field boundaries derived from segmentation which
allowed overcoming an issue of high spectral within-field heterogeneity. As it was
mentioned in earlier studies, the main drawback of the pixel-based classification is
the ‘salt and pepper’ effect caused by a number of misclassified pixels within a single
agricultural field. However, a case study by Hong et al. (2011) showed that even if
object-based classification is utilized, some fields may appear heterogeneous, e.g.
due to intercropping of different crop types within one field.
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5. Separability of crop types based on optical and radar data

Optical and radar data reflect various properties of crops with respect to their spectral,
structural, biophysical or agronomic characteristics. Several studies reported that SAR data
show better performance in distinguishing certain crops but are not as well suited for
distinguishing others (e.g. McNairn et al. 2002; Ban, Hu, and Rangel 2010; Inglada et al. 2016).
The same is true for optical images. For instance, it was reported that optical images from
Landsat are not able to provide good separability between flax – sunflower and canola –
cereals, but adding one radar RADARSAT or ASAR image to the classification procedure
considerably improves the classification accuracy for these crops (McNairn et al. 2009). The
following sub-chapters give an overview of commonly studied crop groups and features of
each data source which were found to be valuable for their classification.

5.1. Cereals

Cereals are a group of crops that are widely cultivated throughout the world and were
subject to almost all reviewed publications. Among cereals, the most frequently studied
crops were maize (33 studies), wheat (31 studies), rice (18 studies) and barley (16
studies). Compared to other crops, rice was the only crop on which eight individual
studies were focused exclusively. Due to the high similarity of spectral reflectance, plant
structure and dielectric properties of different sub-types of cereals, their differentiation is
a difficult task for both optical and SAR datasets (Larrañaga, Álvarez-Mozos, and Albizua
2011). Since often times strong misclassifications occur among cereal crops, several
studies decided to group these crops into one class ‘cereals’ e.g. Feingersh, Gorte, and
van Leeuwen (2001), Forkuor et al. (2015).

As it was stated by Blaes, Vanhalle, and Defourny (2005), for distinguishing cereal
crops from non-cereals, SAR time series can be actively injected into processing stages.
SAR backscatter is responsive to the changes in canopy structure of wheat crops
(McNairn et al. 2002). The results of Sonobe et al. (2017) show that identification of
wheat fields was straightforward because of the large difference in phenological stages
which can easily be identified using Sentinel-1 and Sentinel-2 time series.

The cultivation areas of maize are growing due to the increasing use of corn for
ethanol fuels in the world market (Soria-Ruiz et al. 2007). Skakun et al. (2016) reported
that SAR images alone produce reliable classification results of corn using dual-
polarization data with producer (PA) and user accuracies (UA) exceeding 90%.
Nonetheless, addition of optical images to SAR images was critical in producing
early season maps. Identification of corn was subject to many research studies,
which showed that it is possible to successfully classify corn fields with the help of
optical or SAR data only (Zhong et al. 2016). Nevertheless, when using only optical
data, a high level of confusion between maize and grassland was reported by Soria-
Ruiz, Fernandez-Ordoñez, and Woodhouse (2010). The classification results based on
a classification of Landsat and RADARSAT-1C demonstrated acceptable accuracy for
Central Mexican agricultural zones (Soria-Ruiz, Fernandez-Ordoñez, and Woodhouse
2010). Additionally to backscattering intensity, the combination of the HH/VV ratio
and LAI values derived from optical data was shown to positively affect maize
delineation (Dusseux et al. 2014).
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Rice is one of the main crop types in many regions around the world. A recent study of
Park et al. (2018) proposed the Paddy Rice Mapping Index (PMI) which takes into considera-
tion spectral and phenological aspects of paddy rice. PMI is calculated using NIR and SAR
backscattering information without any need of training data. Nonetheless, the perfor-
mance of SVM and RF classifiers based on Landsat and RADARSAT combination outper-
formed the results obtained using PMI. The potential of the combined use of optical and
weather independent SAR datasets in cloud-prone tropics and subtropical regions was
discussed by Mansaray et al. (2017). With the integration of NDVI and modified NDWI
with Sentinel-1 data, considerable increase in rice field identification was reported.
Onojeghuo et al. (2018) could achieve a classification accuracy of 96.7% for paddy rice by
using the RF classifier and a combination of multi-temporal VH polarization and NDVI data.

5.2. Oilseed crops

Oilseeds are widely cultivated crops all over the world, primarily for the oil contained in
their seeds. Oilseeds are important for human diets and are used for various industrial
products. Among oilseed crops, soybeans (15 studies), rapeseed (13 studies) and sun-
flower (9 studies) were the most frequently explored crop types in the reviewed
literature. A number of studies arrived at the conclusion that adding SAR data increases
the accuracy of oilseed identification (e.g. Ban, Hu, and Rangel 2010; Qiao et al. 2014;
Villa et al. 2015; Salehi, Daneshfar, and Davidson 2017). Ban, Hu, and Rangel (2010)
reported that an improvement of classification accuracy from 71% to 90% was possible
for soybean crops after fusion of optical and SAR data at decision level. The classification
of optical images showed a high degree of misclassification between soybeans and
pastures, but adding of SAR data, which can easily separate these two agricultural
classes based on their canopy structure, considerably improved final results.
Furthermore, several studies highlighted the importance of polarization information
for the classification of oilseeds. The result of Qiao et al. (2014) showed that the use of
Freeman-Durden (FD) decomposition of RADARSAT-2 and RapidEye optical images
improved classification of soybeans (UA = 100%, PA = 96.3%) compared to the combi-
nation of original quad-polarized images with optical data (UA = 96.2%, PA = 96.2%).
The significant importance of polarization information (VV/VH polarization ratio) for the
classification of soybeans was pointed out by McNairn, Champagne, and Shang (2007).
Dissimilar plant structure of broad-leafed rapeseed and thin-leafed cereals results in
different backscatter patterns in polarization, which in its turn heavily contribute to the
distinction of these two classes (Lussem, Hütt, and Waldhoff 2016). Nevertheless, the
results of Skakun et al. (2016) showed that Landsat-8 data alone can successfully
discriminate winter rapeseed mainly because of image availability at rapeseed flowering
stage, which provides specific color information.

Several studies found that sunflower classification results can be enhanced after
adding SAR information to the classification chain (Lobo, Chic, and Casterad 1996;
Larrañaga, Álvarez-Mozos, and Albizua 2011; Skakun et al. 2016). For large and dense
sunflower canopies HH polarization has been reported to work much better than ratio-
or cross-polarized images (McNairn et al. 2009).
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5.3. Sugar crops

As a main source of sugar and fundamental element of alcohol and ethanol production,
sugar crops are widely cultivated around the world. Sugar beet was subject to 11 of the
reviewed studies. The majority of studies came to the common conclusion that SAR data
in addition to optical data boosted the accuracy of sugar beet classification significantly
(e.g Blaes, Vanhalle, and Defourny 2005; McNairn et al. 2009; Kussul et al. 2016a, 2016b).
McNairn, Champagne, and Shang (2007) suggested that among optical and SAR features
VV/HH dual polarization mode is the best suitable choice for classification of sugar beets.
Controversially, the study of Ok and Akyurek (2012) showed that the addition of SAR
data (Envisat ASAR) to multispectral Kompsat-2 data did not lead to significant improve-
ments in the classification accuracy of sugar beet.

5.4. Vegetables, nuts and tuber crops

Studies on classification and mapping of vegetables, nuts and tuber crops were less than
other crop types mentioned above. Tomatoes (Ok and Akyurek 2012) and asparagus
(Larrañaga, Álvarez-Mozos, and Albizua 2011) were studied by a single study each.
Classification of vegetables is a challenging task due to the constant human management
interactionswhichmay cause different responses. For instance, identification of asparagus is
complex because of the deep furrows and application of plastic cover to protect plants from
weeds and keep suitable temperature. This may lead to changes in reflectance or back-
scattering values which leads to misclassification (Larrañaga, Álvarez-Mozos, and Albizua
2011). The dramatic improvement (~25.55%) in classification accuracy of tomato class was
observed when Envisat ASAR SAR data were integrated to Kompsat-2 optical segment-
based classification approach (Ok and Akyurek 2012).

Classification of almonds performed by Sheoran and Haack (2013) showed 100%
prodicer’s accuracy when using radar texture and six Landsat bands. Fused optical
data (Landsat TM) and radar texture (ALOS PALSAR) information produced the highest
overall accuracy for all studied crops and land use types including alfalfa, fallow and
almonds.

Among tuber or root crops, potatoes (6 studies) and yams (1 study) were the
subjects of seven reviewed studies. Presutti et al. (2001) reported that adding radar
texture derived from RADARSAT to Landsat optical data increases the classification
accuracy by 25% of row crops such as potatoes and corn. The study of McNairn et al.
(2009) conducted on test sites located across Canada, showed that multi-temporal VV
polarization contained most relevant information for the discrimination of potato
fields. This conclusion was also supported by Forkuor et al. (2014) where VV polar-
ization data derived from TerraSAR-X was better suited for discrimination yams
than VH.

6. Discussion

The approaches of a crop type classification with combined information from optical
and radar remote sensing data were presented in the previous chapters. Advantages
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and drawbacks, current trends and possible future research directions together with the
exciting knowledge gaps will now be discussed.

The increasing amounts of EO data, particularly time series data from optical and
radar sensors, accelerating advanced computational capacities as well as emerging
availability of cloud-based geospatial platform are the main triggers for the devel-
opment of crop type mapping research in the direction of multi-sensor analysis.
A continuous growth of research publications on the synergetic use of optical and
radar data for crop type discrimination reflects the great advantage of multi-sensor
and multi-temporal data analysis with respect to their information content for crop
delineation. This interest might be also associated with the launch of several high
and very high resolution optical and radar satellite data such as Landsat-7/8 (1999/
2013), RADARSAT-1/2(1995/2007), SPOT 4–7 (starting in 1998), ERS-1/2 (1991/1995)
and TerraSAR-X (starting from 2007). Given the limitations, with respect to spatial,
temporal resolutions and frequencies a number of studies highlighted expectations
about the future use of freely available satellite images with high temporal and
spatial coverage from Sentinel-1 (starting from 2014) and Sentinel-2 (starting from
2015) missions. The open data policy of these missions expected to boost methodo-
logical developments and creation of new scientific approaches and techniques in
various applications as it was the case with opening archives of Landsat data in 2008
(Wulder et al. 2012). Nonetheless, it has to be considered that the limitations in data
storage and processing capabilities of big Earth Observation data are still a challenge
in many countries with lower standards of technological equipment. Geoprocessing
platforms such as Google Earth Engine or DIAS can help to at least partly overcome
this issue.

The longest-running optical satellite mission Landsat was combined with radar data
by more than half of the reviewed studies. The familiarity of the remote sensing
community with Landsat datasets and their wide application could be a reason for
this fact. Since the end of 2015, Sentinel-1 images, in combination with optical data were
utilized by half of the reviewed studies. This shows the high interest in open access, high
temporal and spatial resolution radar datasets. As it is shown in Figure 6, optical data
was mainly combined with C-band radar data. After the launch of L-band ALOS POLSAR,
X-band TerraSAR-X and COSMO-SkyMed they were actively used in the studies.
Nevertheless, the combination of optical data with multi-frequency radar data was not
fully covered by the reviewed studies. The study of Shang et al. (2008) demonstrated
that combination of radar data with similar polarization but different frequencies
(C-band and L-band) provides more information on the canopy structure and increases
the classification accuracy. The vast majority of the studies used data from one radar
satellite and concentrated more on the optical-radar data fusion aspect of the study.

Besides remote sensing data availability, one of the most important aspects in a crop
type classification is the presence of trustworthy reference data. The majority of the
studies performed field surveys in order to obtain the needed amount of training and
validation data, which are expensive with regards to budget and time. This obstacle of
field data absence could be taken to the next step with the support from governments
and international organizations. Examples of such effective movements include the
initiative of European Union Land Use and Coverage Area frame Survey (LUCAS) data,
CropScape – cropland data layer from United States Department of Agriculture, Land
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Parcel Identification System (LPIS) data collected in the European Union for distributing
subsidies in the framework of the Common Agricultural Policy (CAP), etc. These datasets
might lead to considerable improvement and new developments in methodological
approaches in a crop monitoring and classification tasks.

Crowdsourcing as a source of ground reference data has to be also taken into
account. Recent crowdsourcing compaign by Geo-Wiki showed the great potential of
such activities which resulted in a global reference data set on croplands (Laso Bayas
et al. 2017). Especially, in view of recent studies on advancement of the quality of geo-
crowdsourced data (e.g. Foody et al. 2018) such data can assists global cropland
mapping tasks.

It was observed that the study sites that up to now were covered by optical and radar
data fusion studies for crop type mapping are on average still relatively small. More than
one-third of the reviewed studies worked on study areas of less than 1,000 km2. Almost
all of the reviewed studies (73 studies out of 75) conducted their research in a particular
region around the world, with no comparison of the performance of their methodology
over spatially and climatically different regions. This fact might reflect that the handling
and processing of large data amounts (multi-sensor, high spatial resolution and multi-
temporal data) are challenging for the research community. The differences in agro-
nomic practices, field sizes, climatic dissimilarity etc. are the major challenges for large
scale mapping tasks. Another reason, however, could also be that training data avail-
ability for large areas and spatial transferability of classification models is still an issue.
The spatial and temporal transferability of the models were not considered by the
reviewed papers. However, recent articles with single source optical data show promis-
ing results when classifying a target agricultural crop year by a model trained on
reference data of previous years (Tardy, Inglada, and Michel 2017; Cai et al. 2018). The
study of Nelson et al. (2014) with SAR-based automated processing combined with
knowledge-based parameter specification could achieve accurate classification of rice
fields across multiple environments and managements types. Extending such
approaches to the case of multi-sensor data would be particularly interesting. Spatial
model transferability is not yet (sufficiently) addressed explicitly in the research com-
munity but is an interesting topic especially because of the previously mentioned
limited reference data availability over larger areas.

Nonetheless, with open and free access to high resolution satellite data from
Sentinel-1 and Sentinel-2 missions and open government data for agriculture
together with available and upcoming EO data processing platforms such as Earth
Engine and Copernicus Data and Information Access Services (DIAS), it is expected
that synergetic multi-source (optical-SAR) data analysis approaches will be applied in
large geographical areas. All of the reviewed studies reported the advancement of the
classification accuracy using optical and radar data combination with different levels
of improvement. The leading motivation for the majority of reviewed studies was
performing multi-sensor fusion in order to identify if the fusion of optical and radar
data can outperform the ‘traditional’ optical classification approach. Almost all the
studies performed a comparison of optical alone, SAR alone and optical-SAR data
classifications. The main drawback in the classification of data only from optical data
is low quality due to extensive cloud cover. The cloud-free scene-based analysis was
the main approach for the vast majority of the reviewed studies. However, in the
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context of large area mapping there is a need to create spatially contiguous data over
large areas for analysis. This can be done by building best-available-pixel (BAP) (White
et al. 2014; Frantz et al. 2017), spectro-temporal statistical metrics or interpolating
data to fill missing data gaps (Inglada et al. 2015) can open up new opportunities in
the crop type classification tasks.

Studies conducting fusion at the pixel level was mainly comparative studies (11
studies out of 13) which assessed the performance of various pixel level fusion techni-
ques mentioned in sub-chapter 3.1. The choice of pixel level fusion techniques was not
reasoned. In feature fusion level, combing original optical and radar datasets in stacked
raster data was one of the main approaches (24 studies out of 54). Nonetheless, another
half of the studies performed extraction of the features and included them to the
stacked data cube. Random or pre-defined selection of optical and radar features was
the case in many studies. The chaotic preferences and choice of features in the feature
fusion approaches for all kind of crop classes and land use types indicates the lack of
appropriate guidance or literature on this topic.

The performance of fusion at pixel, feature and decision levels was not compared in
a reviewed literature. A comparative evaluation was performed by Gibril et al. (2017)
which concludes that stacked-layers (fusion of features from two sensors) of optical and
radar data outperforms in classification accuracy compared to pixel levels fusion tech-
niques such as Brovey, Wavelet and Ehlers fusion.

Studies performing comparatively complex pixel level fusion in many cases gave
preference to the parametric classifier as Maximum Likelihood (9 studies out of 13).
The use of parametric classifiers for multi-source data which have different character-
istics can be arguable choice. The existence of the conflict in the nature of input data
and the choice of classification strategy shows the need for more studies on this topic.

As a classical approach of remote sensing image classification, pixel-based methods
were mostly used. However, the interest in the object-based image analysis was present
in reviewed studies. All studies which utilized advances of per-object or per-field
classification reported better accuracy compared to the pixel-based approach. The
effectiveness of object-based classification approach was proved by several studies
(Ban, Hu, and Rangel 2010; Gibril et al. 2017; Salehi, Daneshfar, and Davidson 2017).
But at the same time, the quality of the object-based classification strongly depends on
the quality of the initial segmentation results. Since object-based approaches homo-
genize all pixel values inside an ‘object’ or prospective crop field if field or object
boundaries were not properly defined this may lead to significant misclassifications.
Another important point is a spatial resolution of input data. An object-based image
analysis can be a powerful tool when using high resolution or very high resolution
optical and radar images, but not for data with coarser spatial resolution. If the size of
the pixel covers all agricultural field or half of the field, object-based classification
methods cannot be applied. The study of Ban, Hu, and Rangel (2010) is a good example
where all advantages of very high-resolution input data were successfully used in an
object-based and rule-based classification approach. Nonetheless, the information pre-
sented in Figure 10 shows that a pixel-based classification is still the leading approach.

The reviewed studies reporting an advancement of the classification accuracy mainly
highlighted the importance of using SAR data as complementary information about the
physical and structural parameters of crops.
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The collective ability of optical and radar data to classify crops found to be
complementary, which allows using information about different perspectives of
crops. In Table 7, we centralized all information about abilities and limitation of each
sensor type with regards to crop type identification.

Each sensor type has its advantages and strength which are in many cases comple-
mentary to each other. It is particularly important in the studies of crop type classifica-
tion and monitoring as the combination of optical and radar data allows to discriminate
at the same time crops with differences in leaf type (e.g. broadleaf crops form herbac-
eous crops) using radar data and also enable to grasp information about pigments (e.g.
flower color, chlorophyll content) using optical data. Additionally, information about
crucial phases of agricultural management phases (e.g. tillage) and soil surface structure
(e.g. water coverage in rice cropping) can also considerably improve the accuracy of
crop type classification.

However, the most challenging issue is the variability of the cropping systems
worldwide. The case studies underline that there an ‘overall solution’ in terms of data
type, feature type or mapping approach, for all possible crop combinations that
occur in reality under different management and ecological conditions is missing.
One crop can be grown under completely different conditions. For instance, the
discrepancies in the usefulness of features for detecting the same crop, or in separ-
ability studies underpin that one future direction for achieving transferability or
standardization of mapping agricultural land may be the stratification of agricultural

Table 7. An overview of the partly complementary capabilities (+) and limitations (-) of
optical and SAR data in the context of crop type classification and monitoring.
Crop characteristics Optical data SAR data

Canopy structure
– Leaf type - +

– HEIGHT - +

– density + +

– Geometry - +

Water content + +
Biomass estimation + +
Yield prediction + +
Spectral properties + -
– Pigments + -

– Flower colouring + -

– NIR reflc. strength + -

Phenological stages + +
Soil surface characteristics (e.g. ploughing lines, roughness) - +

Sources of data gap or noise

Weather condition
– Cloud cover - +

– Wind effect on canopy + -

– Atmospheric effects - +

Soil moisture/dry effect + +
Terrain variations effect + -
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ecosystems. Do separation improvements of a combination of crop types, when
including multi-source data, still hold for the neighbored cropping system, if only
one crop is missing or added in the crop portfolio? Considerations are required if
only major crops should be distinguished or if the entire cropping system should be
analyzed.

Nonetheless, the majority of researchers worldwide still give preferences to ‘tradi-
tional’ single source image classification methods. But the growing number of pub-
lication in the topic of optical and radar data fusion for crop type classification is the
best indicator of positively increasing interest to this approach.

7. Conclusion

In this review article, an overview of studies on crop type classification using integrated
information from optical and radar data was given. Remote sensing image fusion methods
and data classification strategies were described and presented. The key finding of this
review can be summarized in the following five points. First, the interest towards optical
and radar data fusion is rapidly growing. Second, the main motivation in using multi-sensor
approaches was the advancement of crop classification accuracy. The majority of studies
reported that fusion of optical and radar data remarkably improved the results of classifica-
tion. From the findings of the reviewed studies, we can conclude that addition of radar and
optical features (radar texture, vegetation indices, polarization ratio, etc.) to original bands
increases the accuracy of classification. Many studies gave preference to the simple and
straightforward approach of layer-stacking of optical and SAR bands. Third, comparative
studies analyzing the performance of fusion levels and methods on the same input data are
missing. Fourth, all studies performed classification on comparatively small study areas.
Large area mapping was never the case. Fifth, the spatial and temporal transferability of the
models was not covered and still remains as one of the main issues.

With all the upcoming and available open data resources and powerful processing
and analyzing platforms there is great potential in fusing optical and radar data for crop
type mapping.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Abdikan, S., and F. B. Sanli. 2012. “Comparison of Different Fusion Algorithms in Urban and
Agricultural Areas Using Sar (Palsar and Radarsat) and Optical (Spot) Images.” Boletim de
Ciências Geodésicas 18: 509–531. doi:10.1590/S1982-21702012000400001.

Abdikan, S., G. Bilgin, F. B. Sanli, E. Uslu, and M. Ustuner. 2015. “Enhancing Land Use Classification
with Fusing Dual-Polarized TerraSAR-X and Multispectral RapidEye Data.” Journal of Applied
Remote Sensing 9 (1). doi:10.1117/1.JRS.9.096054.

Ahern, F. J., D. G. Goodenough, A. L. Grey, R. A. Ryerson, R. J. Vilbikaitis, and M. Goldberg. 1978.
“Simultaneous Microwave and Optical Wavelength Observations of Agricultural Targets.”
Canadian Journal of Remote Sensing 4 (2): 127–142. doi:10.1080/07038992.1978.10854975.

INTERNATIONAL JOURNAL OF REMOTE SENSING 35

https://doi.org/10.1590/S1982-21702012000400001
https://doi.org/10.1117/1.JRS.9.096054
https://doi.org/10.1080/07038992.1978.10854975


Ban, Y., H. Hu, and I. M. Rangel. 2010. “Fusion of Quickbird MS and RADARSAT SAR Data for Urban
Land-Cover Mapping: Object-Based and Knowledge-Based Approach.” International Journal of
Remote Sensing 31 (6): 1391–1410. doi:10.1080/01431160903475415.

Betbeder, J., M. Laslier, T. Corpetti, E. Pottier, S. Corgne, and L. Hubert-Moy, eds. 2014. Multi-
Temporal Optical and Radar Data Fusion for Crop Monitoring: Application to an Intensive
Agricultural Area in BRITTANY(France). 2014 IEEE Geoscience and Remote Sensing Symposium,
Quebec, Canada, July 13-18.

Blaes, X., L. Vanhalle, and P. Defourny. 2005. “Efficiency of Crop Identification Based on Optical and
SAR Image Time Series.” Remote Sensing of Environment 96 (3): 352–365. doi:10.1016/j.
rse.2005.03.010.

Brisco, B., R. J. Brown, and M. J. Manore. 1989. Early Season Crop Discrimination with Combined
SAR and TM Data. Canadian Journal of Remote Sensing 15: 44-54.

Cai, Y., K. Guan, J. Peng, S. Wang, C. Seifert, B. Wardlow, and L. Zhan. 2018. “A High-Performance
and In-Season Classification System of Field-Level Crop Types Using Time-Series Landsat Data
and a Machine Learning Approach.” Remote Sensing of Environment 210: 35–47. doi:10.1016/j.
rse.2018.02.045.

Chavez, P. S., Jr, and A. Y. Kwarteng. 1989. “Extracting Spectral Contrast in Landsat Thematic
Mapper Image Data Using Selective Principal Component Analysis.” Photogrammetric
Engineering and Remote Sensing 55 (3): 339–348.

Cheng, Y., L. Yu, A. P. Cracknell, and P. Gong. 2016. “Oil Palm Mapping Using Landsat and PALSAR:
A Case Study in Malaysia.” International Journal of Remote Sensing 37 (22): 5431–5442.
doi:10.1080/01431161.2016.1241448.

Colditz, R. R., T. Wehrmann, M. Bachmann, K. Steinnocher, M. Schmidt, G. Strunz, and S. Dech. 2006.
“Influence of Image Fusion Approaches on Classification Accuracy: A Case Study.” International
Journal of Remote Sensing 27 (15): 3311–3335. doi:10.1080/01431160600649254.

de Alban, D. J., M. G. Connette, P. Oswald, and L. E. Webb. 2018. Combined Landsat and L-Band
SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical
Landscapes. Remote Sensing 10 (2): 306.

Dong, J., D. Zhuang, Y. Huang, and F. Jingying. 2009. Advances in Multi-Sensor Data Fusion:
Algorithms and Applications. Sensors 9 (10): 7771-7784.

Dusseux, P., T. Corpetti, L. Hubert-Moy, and S. Corgne. 2014. “Combined Use of Multi-Temporal
Optical and Radar Satellite Images for Grassland Monitoring.” Remote Sensing 6 (7): 6163–6182.
doi:10.3390/rs6076163.

Ehlers, M. 1991. “Multisensor Image Fusion Techniques in Remote Sensing.” ISPRS Journal of
Photogrammetry and Remote Sensing 46 (1): 19–30. doi:10.1016/0924-2716(91)90003-E.

Erasmi, S., and A. Twele. 2009. “Regional Land Cover Mapping in the Humid Tropics Using
Combined Optical and SAR Satellite Data—A Case Study from Central Sulawesi, Indonesia.”
International Journal of Remote Sensing 30 (10): 2465–2478. doi:10.1080/01431160802552728.

FAO. 2009. How to Feed the World in 2050. Rome: FAO.
Feingersh, T., B. G. H. Gorte, and H. J. C. van Leeuwen, eds. 2001. “Fusion of SAR and SPOT

Image Data for Crop Mapping 2. IGARSS 2001. Scanning the Present and Resolving the
Future”. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium
(Cat. No.01CH37217), Sydney, Australia, July 9-13.

Firouzabadi, P. Z., and J. Sadidy, eds.. 2006. Paddy Rice Mapping of the Caspian Sea Coast Using
Microwave and Optical Remotely Sensed Data. Remote Sensing for Agriculture, Ecosystems, and
Hydrology VIII 6359: 63591A.

Fiumara, A., and N. Pierdicca. 1989. “Evaluation of Classification Results Obtained with Combined
Multitemporal Optical and Microwave Data.” Geoscience and Remote Sensing Symposium,
1989. IGARSS'89 12th Canadian Symposium on Remote Sensing, 2: 787–790. Vancouver,
Canada, July 10-14.

Foley, J. A., N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. Mueller,
et al. 2011. “Solutions for a Cultivated Planet”. Nature 478: 337 EP. doi:10.1038/nature10452.

Fontanelli, G., A. Crema, R. Azar, D. Stroppiana, P. Villa, and M. Boschetti, eds.. 2014. Agricultural
Crop Mapping Using Optical and SAR Multi-Temporal Seasonal Data: A Case Study in Lombardy

36 A. ORYNBAIKYZY ET AL.

https://doi.org/10.1080/01431160903475415
https://doi.org/10.1016/j.rse.2005.03.010
https://doi.org/10.1016/j.rse.2005.03.010
https://doi.org/10.1016/j.rse.2018.02.045
https://doi.org/10.1016/j.rse.2018.02.045
https://doi.org/10.1080/01431161.2016.1241448
https://doi.org/10.1080/01431160600649254
https://doi.org/10.3390/rs6076163
https://doi.org/10.1016/0924-2716(91)90003-E
https://doi.org/10.1080/01431160802552728
https://doi.org/10.1038/nature10452


Region. Italy. IEEE International Geoscience and Remote Sensing Symposium, Quebec, Canada,
July 13–18.

Foody, G., L. See, S. Fritz, I. Moorthy, C. Perger, C. Schill, and D. Boyd. 2018. Increasing the Accuracy
of Crowdsourced Information on Land Cover via a Voting Procedure Weighted by Information
Inferred from the Contributed Data. ISPRS International Journal of Geo-Information 7 (3): 80.

Forkuor, G. 2015. Agricultural Land Use Mapping in West Africa Using Multi-Sensor Satellite
Imagery: Kartierung Landwirtschaftlicher Landnutzung Unter Verwendung Multi-Sensoraler
Satellitendaten. PhD diss., University of Würzburg.

Forkuor, G., C. Conrad, M. Thiel, T. Landmann, and B. Barry. 2015. “Evaluating the Sequential
Masking Classification Approach for Improving Crop Discrimination in the Sudanian Savanna of
West Africa.” Computers and Electronics in Agriculture 118: 380–389. doi:10.1016/j.
compag.2015.09.020.

Forkuor, G., C. Conrad, M. Thiel, T. Ullmann, and E. Zoungrana. 2014. “Integration of Optical and
Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West
Africa.” Remote Sensing 6 (7): 6472–6499. doi:10.3390/rs6076472.

Franklin, S. E., and C. F. Blodgett. 1993. “An Example of Satellite Multisensor Data Fusion.”
Computers and Geosciences 19 (4): 577–583. doi:10.1016/0098-3004(93)90083-H.

Frantz, D., A. Röder, M. Stellmes, and J. Hill. 2017. “Phenology-Adaptive Pixel-Based Compositing
Using Optical Earth Observation Imagery.” Remote Sensing of Environment 190: 331–347.
doi:10.1016/j.rse.2017.01.002.

Gangkofner, U. G., P. S. Pradhan, and D. W. Holcomb. 2007. “Optimizing the High-Pass Filter
Addition Technique for Image Fusion.” Photogrammetric Engineering and Remote Sensing 73
(9): 1107–1118. doi:10.14358/PERS.73.9.1107.

Gebhardt, S., J. Huth, L. D. Nguyen, A. Roth, and C. Kuenzer. 2012. “A Comparison of
TerraSAR-X Quadpol Backscattering with RapidEye Multispectral Vegetation Indices over Rice
Fields in the Mekong Delta, Vietnam.” International Journal of Remote Sensing 33 (24):
7644–7661. doi:10.1080/01431161.2012.702233.

Gibril, M. B. A., S. A. Bakar, K. Yao, M. O. Idrees, and B. Pradhan. 2017. “Fusion of RADARSAT-2 and
Multispectral Optical Remote Sensing Data for LULC Extraction in a Tropical Agricultural Area.”
Geocarto International 32 (7): 735–748. doi:10.1080/10106049.2016.1170893.

Godfray, H. C. J., J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty,
S. Robinson, S. M. Thomas, and C. Toulmin. 2010. “Food Security: The Challenge of Feeding
9 Billion People.” Science. doi:10.1126/science.1185383.

Haldar, D., and C. Patnaik. 2010. “Synergistic Use of Multi-temporal Radarsat SAR and AWiFS Data
for Rabi Rice Identification.” Journal of the Indian Society of Remote Sensing 38 (1): 153–60.
doi:10.1007/s12524-010-0006-x.

Haldar, D., C. Patnaik, S. Mohan, and M. Chakraborty. 2012. “Jute and Tea Discrimination through
Fusion of Sar and Optical Data.” Progress In Electromagnetics Research B 39: 337–354.
doi:10.2528/PIERB11123011.

Hall, D. L., and S. A. H. McMullen. 2004. Mathematical Techniques in Multisensor Data Fusion.
Artech House.

Haralik, R. М. 1979. “Statistical and Structured Approaches to the Description of Textures.” TIIRE
5: 98–118.

Harris, J. R., R. Murray, and T. Hirose. 1990. “IHS Transform for the Integration of Radar Imagery with
Other Remotely Sensed Data.” Photogrammetric Engineering and Remote Sensing 56 (12):
1631–1641.

Hill, M. J., C. J. Ticehurst, J.-S. Lee, M. R. Grunes, G. E. Donald, and D. Henry. 2005. “Integration of
Optical and Radar Classifications for Mapping Pasture Type in Western Australia.” IEEE
Transactions on Geoscience and Remote Sensing 43 (7): 1665–1681. doi:10.1109/
TGRS.2005.846868.

Hong, G., A. Zhang, F. Zhou, and B. Brisco. 2014. “Integration of Optical and Synthetic Aperture
Radar (SAR) Images to Differentiate Grassland and Alfalfa in Prairie Area.” International Journal of
Applied Earth Observation and Geoinformation 28: 12–19. doi:10.1016/j.jag.2013.10.003.

INTERNATIONAL JOURNAL OF REMOTE SENSING 37

https://doi.org/10.1016/j.compag.2015.09.020
https://doi.org/10.1016/j.compag.2015.09.020
https://doi.org/10.3390/rs6076472
https://doi.org/10.1016/0098-3004(93)90083-H
https://doi.org/10.1016/j.rse.2017.01.002
https://doi.org/10.14358/PERS.73.9.1107
https://doi.org/10.1080/01431161.2012.702233
https://doi.org/10.1080/10106049.2016.1170893
https://doi.org/10.1126/science.1185383
https://doi.org/10.1007/s12524-010-0006-x
https://doi.org/10.2528/PIERB11123011
https://doi.org/10.1109/TGRS.2005.846868
https://doi.org/10.1109/TGRS.2005.846868
https://doi.org/10.1016/j.jag.2013.10.003


Hong, G., A. Zhang, F. Zhou, L. Townley-Smith, B. Brisco, and I. Olthof. 2011. “Crop-Type
Identification Potential of Radarsat-2 and MODIS Images for the Canadian Prairies.” Canadian
Journal of Remote Sensing 37 (1): 45–54. doi:10.5589/m11-026.

Hong, G., Y. Zhang, and B. Mercer. 2009. “A Wavelet and IHS Integration Method to Fuse High
Resolution SAR with Moderate Resolution Multispectral Images.” Photogrammetric Engineering
and Remote Sensing 75 (10): 1213–1223. doi:10.14358/PERS.75.10.1213.

Huang, X., L. Zhang, and P. Li. 2007. “Classification and Extraction of Spatial Features in Urban
Areas Using High-Resolution Multispectral Imagery.” IEEE Geoscience and Remote Sensing Letters
4 (2): 260–264. doi:10.1109/LGRS.2006.890540.

Iannini, L., R. A. Molijn, and R. F. Hanssen, eds. 2013. Integration of Multispectral and C-Band SAR
Data for Crop Classification. Remote Sensing for Agriculture, Ecosystems, and Hydrology XV 8887:
88871D.

Inglada, J., A. Vincent, M. Arias, and C. Marais-Sicre. 2016. Improved Early Crop Type
Identification by Joint Use of High Temporal Resolution SAR and Optical Image Time
Series. Remote Sensing 8 (5): 362.

Inglada, J., M. Arias, B. Tardy, O. Hagolle, S. Valero, D. Morin, G. Dedieu, et al. 2015. Assessment of
an Operational System for Crop Type Map Production Using High Temporal and Spatial
Resolution Satellite Optical Imagery. Remote Sensing 7 (9): 12356-12379.

Joshi, N., M. Baumann, A. Ehammer, R. Fensholt, K. Grogan, P. Hostert, R. M. Jepsen, et al. 2016.
A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use
Mapping and Monitoring. Remote Sensing 8 (1): 70.

Kandaswamy, U., D. A. Adjeroh, and M. C. Lee. 2005. “Efficient Texture Analysis of SAR Imagery.”
IEEE Transactions on Geoscience and Remote Sensing 43 (9): 2075–2083. doi:10.1109/
TGRS.2005.852768.

Khosravi, I., A. Safari, and S. Homayouni. 2018. “MSMD: Maximum Separability and Minimum
Dependency Feature Selection for Cropland Classification from Optical and Radar Data.”
International Journal of Remote Sensing 39 (8): 2159–2176. doi:10.1080/
01431161.2018.1425564.

Klonus, S., and M. Ehlers. 2007. “Image Fusion Using the Ehlers Spectral Characteristics
Preservation Algorithm.” GIScience and Remote Sensing 44 (2): 93–116. doi:10.2747/1548-
1603.44.2.93.

Kurosu, T., S. Uratsuka, H. Maeno, and T. Kozu. 1999. “Texture Statistics for Classification of Land
Use with Multitemporal JERS-1 SAR Single-Look Imagery.” IEEE Transactions on Geoscience and
Remote Sensing 37 (1): 227–235. doi:10.1109/36.739157.

Kussul, N., G. Lemoine, F. J. Gallego, S. V. Skakun, M. Lavreniuk, and A. Y. Shelestov. 2016b. “Parcel-
Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data.” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 9 (6): 2500–2508. doi:10.1109/
JSTARS.2016.2560141.

Kussul, N., L. Mykola, A. Shelestov, and S. Skakun. 2018. “Crop Inventory at Regional Scale in
Ukraine: Developing in Season and End of Season Crop Maps with Multi-Temporal Optical and
SAR Satellite Imagery.” European Journal of Remote Sensing 51 (1): 627–636. doi:10.1080/
22797254.2018.1454265.

Kussul, N., M. Lavreniuk, A. Shelestov, and B. Yailymov, eds. 2016a. “Along the Season Crop
Classification in Ukraine Based on Time Series of Optical and SAR Images Using Ensemble of
Neural Network Classifiers.” 2016 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Beijing, China, July 10-15.

Larrañaga, A., J. Álvarez-Mozos, and L. Albizua. 2011. “Crop Classification in Rain-Fed and Irrigated
Agricultural Areas Using Landsat TM and ALOS/PALSAR Data.” Canadian Journal of Remote
Sensing 37 (1): 157–170. doi:10.5589/m11-022.

Laso Bayas, J. C., M. Lesiv, F. Waldner, A. Schucknecht, M. Duerauer, L. See, S. Fritz, et al. 2017.
“A Global Reference Database of Crowdsourced Cropland Data Collected Using the Geo-Wiki
Platform”. Scientific Data 4: 170136 EP. doi:10.1038/sdata.2017.136.

Le Hegarat-Mascle, S., A. Quesney, D. Vidal-Madjar, O. Taconet, M. Normand, and C. Loumagne.
2000. “Land Cover Discrimination from Multitemporal ERS Images and Multispectral Landsat

38 A. ORYNBAIKYZY ET AL.

https://doi.org/10.5589/m11-026
https://doi.org/10.14358/PERS.75.10.1213
https://doi.org/10.1109/LGRS.2006.890540
https://doi.org/10.1109/TGRS.2005.852768
https://doi.org/10.1109/TGRS.2005.852768
https://doi.org/10.1080/01431161.2018.1425564
https://doi.org/10.1080/01431161.2018.1425564
https://doi.org/10.2747/1548-1603.44.2.93
https://doi.org/10.2747/1548-1603.44.2.93
https://doi.org/10.1109/36.739157
https://doi.org/10.1109/JSTARS.2016.2560141
https://doi.org/10.1109/JSTARS.2016.2560141
https://doi.org/10.1080/22797254.2018.1454265
https://doi.org/10.1080/22797254.2018.1454265
https://doi.org/10.5589/m11-022
https://doi.org/10.1038/sdata.2017.136


Images: A Study Case in an Agricultural Area in France.” International Journal of Remote Sensing
21 (3): 435–456. doi:10.1080/014311600210678.

Li, R. Y., F. T. Ulaby, and J. R. Eyton. 1980. Crop Classification with a Landsat/Radar Sensor
Combination. Machine Processing of Remotely Sensed Data Symposium, West Lafayette, IN,
June 3-6.

Lobo, A., O. Chic, and A. Casterad. 1996. “Classification of Mediterranean Crops with Multisensor
Data: Per-Pixel versus Per-Object Statistics and Image Segmentation.” International Journal of
Remote Sensing 17 (12): 2385–2400. doi:10.1080/01431169608948779.

Lu, D., and Q. Weng. 2007. “A Survey of Image Classification Methods and Techniques for
Improving Classification Performance.” International Journal of Remote Sensing 28 (5):
823–870. doi:10.1080/01431160600746456.

Lussem, U., C. Hütt, and G. Waldhoff, eds.. 2016. Combined Analysis of Sentinel-1 and RapidEye Data
for Improved Crop Type Classification: An Early Season Approach for Rapeseed and Cereals.
International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 41:
959–963.

Mansaray, L. R., W. Huang, D. Zhang, J. Huang, and J. Li. 2017. “Mapping Rice Fields in Urban
Shanghai, Southeast China, Using Sentinel-1A and Landsat 8 Datasets.” Remote Sensing 9 (3).
doi:10.3390/rs9030257.

Maxwell, A. E., T. A. Warner, and F. Fang. 2018. “Implementation of Machine-Learning Classification
in Remote Sensing: An Applied Review.” International Journal of Remote Sensing 39 (9):
2784–2817. doi:10.1080/01431161.2018.1433343.

McNairn, H., and B. Brisco. 2004. “The Application of C-Band Polarimetric SAR for Agriculture: A
Review.” Canadian Journal of Remote Sensing 30 (3): 525–542. doi:10.5589/m03-069.

McNairn, H., C. Champagne, and J. Shang, eds. 2007. “The Value of SAR Multi-Polarization Data
in Delivering Annual Crop Inventories.” 2007 IEEE International Geoscience and Remote
Sensing Symposium, Barcelona, Spain, July 23-27.

McNairn, H., C. Champagne, J. Shang, D. Holmstrom, and G. Reichert. 2009. “Integration of Optical
and Synthetic Aperture Radar (SAR) Imagery for Delivering Operational Annual Crop
Inventories.” ISPRS Journal of Photogrammetry and Remote Sensing 64 (5): 434–449.
doi:10.1016/j.isprsjprs.2008.07.006.

McNairn, H., J. Ellis, J. J. van der Sanden, T. Hirose, and R. J. Brown. 2002. “Providing Crop
Information Using RADARSAT-1 and Satellite Optical Imagery.” International Journal of Remote
Sensing 23 (5): 851–870. doi:10.1080/01431160110070753.

Michelson, D. B., B. M. Liljeberg, and P. Pilesjö. 2000. “Comparison of Algorithms for Classifying
Swedish Landcover Using Landsat TM and ERS-1 SAR Data.” Remote Sensing of Environment
71 (1): 1–15. doi:10.1016/S0034-4257(99)00024-3.

Mura, M. D., S. Prasad, F. Pacifici, P. Gamba, J. Chanussot, and J. A. Benediktsson. 2015. “Challenges
and Opportunities of Multimodality and Data Fusion in Remote Sensing.” Proceedings of the IEEE
103 (9): 1585–1601. doi:10.1109/JPROC.2015.2462751.

Nelson, A., T. Setiyono, B. A. Rala, D. E. Quicho, V. J. Raviz, J. P. Abonete, A. A. Maunahan, et al. 2014.
Towards an Operational SAR-Based Rice Monitoring System in Asia: Examples from 13
Demonstration Sites across Asia in the RIICE Project. Remote Sensing 6 (11): 10773-10812.

Nunez, J., X. Otazu, O. Fors, A. Prades, V. Pala, and R. Arbiol. 1999. “Multiresolution-Based Image
Fusion with Additive Wavelet Decomposition.” IEEE Transactions on Geoscience and Remote
Sensing 37 (3): 1204–1211. doi:10.1109/36.763274.

Ok, A. O., and Z. Akyurek. 2012. “A Segment-Based Approach to Classify Agricultural Lands by
Using Multi-Temporal Optical and Microwave Data.” International Journal of Remote Sensing 33
(22): 7184–7204. doi:10.1080/01431161.2012.700423.

Okamoto, K. 1999. “Estimation of Rice-Planted Area in the Tropical Zone Using a Combination of
Optical and Microwave Satellite Sensor Data.” International Journal of Remote Sensing 20 (5):
1045–1048. doi:10.1080/014311699213091.

Onojeghuo, A. O., G. A. Blackburn, Q. Wang, P. M. Atkinson, D. Kindred, and Y. Miao. 2018.
“Mapping Paddy Rice Fields by Applying Machine Learning Algorithms to Multi-Temporal

INTERNATIONAL JOURNAL OF REMOTE SENSING 39

https://doi.org/10.1080/014311600210678
https://doi.org/10.1080/01431169608948779
https://doi.org/10.1080/01431160600746456
https://doi.org/10.3390/rs9030257
https://doi.org/10.1080/01431161.2018.1433343
https://doi.org/10.5589/m03-069
https://doi.org/10.1016/j.isprsjprs.2008.07.006
https://doi.org/10.1080/01431160110070753
https://doi.org/10.1016/S0034-4257(99)00024-3
https://doi.org/10.1109/JPROC.2015.2462751
https://doi.org/10.1109/36.763274
https://doi.org/10.1080/01431161.2012.700423
https://doi.org/10.1080/014311699213091


Sentinel-1A and Landsat Data.” International Journal of Remote Sensing 39 (4): 1042–1067.
doi:10.1080/01431161.2017.1395969.

Park, S., and J. Im, eds.. 2016. Classification of Croplands through Fusion of Optical and Sar Time
Series Data 41: 703-704.

Park, S., J. Im, S. Park, C. Yoo, H. Han, and J. Rhee. 2018. Classification and Mapping of Paddy Rice
by Combining Landsat and SAR Time Series Data. Remote Sensing 10 (3): 447.

Parks, S. M., ed.. 2012. Synthetic Aperture Radar (SAR) and Optical Imagery Data Fusion: Crop Yield
Analysis in Southeast Asia. International Archives of the Photogrammetry, Remote Sensing &
Spatial Information Sciences 39: B7.

Pinheiro, A., H. Carrao, and M. Caetano, eds. 2007. “Evaluation of ASAR and Optical Data Synergy
for High Resolution Land Cover Mapping in Portugal.” 2007 IEEE International Geoscience and
Remote Sensing Symposium, Barcelona, Spain, July 23-27.

Pohl, C. 2016. “Multisensor Image Fusion Guidelines in Remote Sensing.” IOP Conference Series:
Earth and Environmental Science 34 (1): 12026. doi:10.1088/1755-1315/34/1/012026.

Pohl, C., and J. van Genderen. 2015. “Structuring Contemporary Remote Sensing Image Fusion.”
International Journal of Image and Data Fusion 6 (1): 3–21. doi:10.1080/19479832.2014.998727.

Pohl, C., and J. van Genderen. 2016. Remote Sensing Image Fusion: A Practical Guide. Crc Press.
Pohl, C., and J. L. van Genderen. 1998. “Review Article Multisensor Image Fusion in Remote

Sensing: Concepts, Methods and Applications.” International Journal of Remote Sensing 19 (5):
823–854. doi:10.1080/014311698215748.

Presutti, M. E., S. E. Franklin, L. M. Moskal, and E. E. Dickson. 2001. “Supervised Classification of
Multisource Satellite Image Spectral and Texture Data for Agricultural Crop Mapping in Buenos
Aires Province, Argentina.” Canadian Journal of Remote Sensing 27 (6): 679–684. doi:10.1080/
07038992.2001.10854910.

Qi, J., C. Wang, Y. Inoue, R. Zhang, and W. Gao, eds.. 2003. Synergy of Optical and Radar Remote
Sensing in Agricultural ApplicationsEcosystems' Dynamics, Agricultural Remote Sensing and
Modeling, and Site-Specific Agriculture 5153: 153-159.

Qiao, C., B. Daneshfar, A. Davidson, I. Jarvis, T. Liu, and T. Fisette, eds.. 2014. Integration of Optical
and Polarimetric SAR Imagery for Locally Accurate Crop Classification. Geoscience and Remote
Sensing Symposium (IGARSS), 2014 IEEE International, Quebec, Canada, July 13-18.

Qiao, C., B. Daneshfar, and A. M. Davidson. 2017. “The Application of Discriminant Analysis for
Mapping Cereals and Pasture Using Object-Based Features.” International Journal of Remote
Sensing 38 (20): 5546–5568. doi:10.1080/01431161.2017.1325530.

Raghavswamy, V., N. C. Gautam, M. Padmavathi, and K. V. S. Badarinath. 1996. “Studies on
Microwave Remote Sensing Data in Conjunction with Optical Data for Land Use/Land Cover
Mapping and Assessment.” Geocarto International 11 (4): 25–31. doi:10.1080/
10106049609354558.

Richards, J. A., and J. A. Richards. 1999. Remote Sensing Digital Image Analysis (Vol. 3). Berlin:
Springer.

Salehi, B., B. Daneshfar, and A. M. Davidson. 2017. “Accurate Crop-Type Classification Using
Multi-Temporal Optical and Multi-Polarization SAR Data in an Object-Based Image Analysis
Framework.” International Journal of Remote Sensing 38 (14): 4130–4155. doi:10.1080/
01431161.2017.1317933.

Sandholt, I. 2001. “The Combination of Polarimetric SAR with Satellite SAR and Optical Data for
Classification of Agricultural Land.” Geografisk Tidsskrift-Danish Journal of Geography 101 (1):
21–32. doi:10.1080/00167223.2001.10649448.

Sanli, F. B., S. Abdikan, M. T. Esetlili, and F. Sunar. 2017. “Evaluation of Image Fusion Methods Using
PALSAR, RADARSAT-1 and SPOT Images for Land Use/Land Cover Classification.” Journal of the
Indian Society of Remote Sensing 45 (4): 591–601. doi:10.1007/s12524-016-0625-y.

Schmitt, M., and X. X. Zhu. 2016. “Data Fusion and Remote Sensing: An Ever-Growing
Relationship.” IEEE Geoscience and Remote Sensing Magazine 4 (4): 6–23. doi:10.1109/
MGRS.2016.2561021.

Schowengerdt, R. A. 1980. “Reconstruction of Multispatial, Multispectral Image Data Using Spatial
Frequency Content.” Photogrammetric Engineering and Remote Sensing 46 (10): 1325–1334.

40 A. ORYNBAIKYZY ET AL.

https://doi.org/10.1080/01431161.2017.1395969
https://doi.org/10.1088/1755-1315/34/1/012026
https://doi.org/10.1080/19479832.2014.998727
https://doi.org/10.1080/014311698215748
https://doi.org/10.1080/07038992.2001.10854910
https://doi.org/10.1080/07038992.2001.10854910
https://doi.org/10.1080/01431161.2017.1325530
https://doi.org/10.1080/10106049609354558
https://doi.org/10.1080/10106049609354558
https://doi.org/10.1080/01431161.2017.1317933
https://doi.org/10.1080/01431161.2017.1317933
https://doi.org/10.1080/00167223.2001.10649448
https://doi.org/10.1007/s12524-016-0625-y
https://doi.org/10.1109/MGRS.2016.2561021
https://doi.org/10.1109/MGRS.2016.2561021


Shackelford, A. K., and C. H. Davis. 2003. “A Hierarchical Fuzzy Classification Approach for
High-Resolution Multispectral Data over Urban Areas.” IEEE Transactions on Geoscience and
Remote Sensing 41 (9): 1920–1932. doi:10.1109/TGRS.2003.814627.

Shang, J., H. McNairn, C. Champagne, and X. Jiao, eds. 2008. “Contribution of Multi-Frequency,
Multi-Sensor, and Multi-Temporal Radar Data to Operational Annual Crop Mapping.”
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International, Boston,
USA, July 8-11.

Sheoran, A., and B. Haack. 2013. “Classification of California Agriculture Using Quad Polarization
Radar Data and Landsat Thematic Mapper Data.” GIScience and Remote Sensing 50 (1): 50–63.
doi:10.1080/15481603.2013.778555.

Skakun, S., N. Kussul, A. Y. Shelestov, M. Lavreniuk, and O. Kussul. 2016. “Efficiency Assessment of
Multitemporal C-Band Radarsat-2 Intensity and Landsat-8 Surface Reflectance Satellite Imagery
for Crop Classification in Ukraine.” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 9 (8): 3712–3719. doi:10.1109/JSTARS.2015.2454297.

Solberg, A. H. S. 2006. “Data Fusion for Remote Sensing Applications.” In Signal and Image
Processing for Remote Sensing, edited by C. H. Chen, 249–271. CRC Press, Taylor and Francis
Group.

Solberg, A. H. S., A. K. Jain, and T. Taxt. 1994. “Multisource Classification of Remotely Sensed Data:
Fusion of Landsat TM and SAR Images.” IEEE Transactions on Geoscience and Remote Sensing 32
(4): 768–778. doi:10.1109/36.298006.

Solberg, A. H. S., T. Taxt, and A. K. Jain. 1996. “A Markov Random Field Model for Classification of
Multisource Satellite Imagery.” IEEE Transactions on Geoscience and Remote Sensing 34 (1):
100–113. doi:10.1109/36.481897.

Sonobe, R., Y. Yamaya, H. Tani, X. Wang, N. Kobayashi, and K.-I. Mochizuki. 2017. “Assessing the
Suitability of Data from Sentinel-1A and 2A for Crop Classification.” GIScience and Remote
Sensing 54 (6): 918–938. doi:10.1080/15481603.2017.1351149.

Soria-Ruiz, J., Y. Fernandez-Ordonez, H. McNairm, and J. Bugden-Storie, eds. 2007. “Corn
Monitoring and Crop Yield Using Optical and RADARSAT-2 Images.” 2007 IEEE International
Geoscience and Remote Sensing Symposium, Barcelona, Spain, July, 23-28.

Soria-Ruiz, J., Y. Fernandez-Ordoñez, and I. H. Woodhouse. 2010. “Land-Cover Classification Using
Radar and Optical Images: A Case Study in Central Mexico.” International Journal of Remote
Sensing 31 (12): 3291–3305. doi:10.1080/01431160903160777.

Steele-Dunne, S. C., H. McNairn, A. Monsivais-Huertero, J. Judge, P. W. Liu, and K. Papathanassiou.
2017. “Radar Remote Sensing of Agricultural Canopies: A Review.” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing 10 (5): 2249–2273. doi:10.1109/
JSTARS.2016.2639043.

Sukawattanavijit, C., and J. Chen, eds. 2015. Fusion of Multi-Frequency SAR Data with THAICHOTE
Optical Imagery for Maize Classification in Thailand. Geoscience and Remote Sensing Symposium
(IGARSS), 2015 IEEE International, Milan, Italy, July 26-31.

Sun, W., V. Heidt, P. Gong, and G. Xu. 2003. “Information Fusion for Rural Land-Use Classification
with High-Resolution Satellite Imagery.” IEEE Transactions on Geoscience and Remote Sensing 41
(4): 883–890. doi:10.1109/TGRS.2003.810707.

Tardy, B., J. Inglada, and J. Michel. 2017. Fusion Approaches for Land Cover Map Production Using
High Resolution Image Time Series without Reference Data of the Corresponding Period.
Remote Sensing 9 (11): 1151.

Taxt, T., and A. H. Schistad Solberg. 1997. “Information Fusion in Remote Sensing.” Vistas in
Astronomy 41 (3): 337–342. doi:10.1016/S0083-6656(97)00036-6.

Thenkabail, P. S., M. Schull, and H. Turral. 2005. “Ganges and Indus River Basin Land Use/Land
Cover (LULC) and Irrigated Area Mapping Using Continuous Streams of MODIS Data.” Remote
Sensing of Environment 95 (3): 317–341. doi:10.1016/j.rse.2004.12.018.

Thomas, I. L., N. P. Ching, V. M. Benning, and J. A. D’Aguanno. 1987. “Review Article A Review of
Multi-Channel Indices of Class Separability.” International Journal of Remote Sensing 8 (3):
331–350. doi:10.1080/01431168708948645.

INTERNATIONAL JOURNAL OF REMOTE SENSING 41

https://doi.org/10.1109/TGRS.2003.814627
https://doi.org/10.1080/15481603.2013.778555
https://doi.org/10.1109/JSTARS.2015.2454297
https://doi.org/10.1109/36.298006
https://doi.org/10.1109/36.481897
https://doi.org/10.1080/15481603.2017.1351149
https://doi.org/10.1080/01431160903160777
https://doi.org/10.1109/JSTARS.2016.2639043
https://doi.org/10.1109/JSTARS.2016.2639043
https://doi.org/10.1109/TGRS.2003.810707
https://doi.org/10.1016/S0083-6656(97)00036-6
https://doi.org/10.1016/j.rse.2004.12.018
https://doi.org/10.1080/01431168708948645


Torbick, N., D. Chowdhury, W. Salas, and J. Qi. 2017. “Monitoring Rice Agriculture across Myanmar
Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2.” Remote Sensing 9 (2).
doi:10.3390/rs90201019.

Torbick, Nathan, William Salas, Xiangming Xiao, Pete Ingraham, Matthew Fearon, Chandrashekhar
Biradar, Delong Zhao, Ying Liu, Peng Li, and Yonglin Zhao. 2011. “Integrating SAR and Optical
Imagery for Regional Mapping of Paddy Rice Attributes in the Poyang Lake Watershed, China.”
Canadian Journal of Remote Sensing 37 (1): 17–26. doi:10.5589/m11-020.

Touzi, R., A. Lopes, J. Bruniquel, and P. W. Vachon. 1999. “Coherence Estimation for SAR Imagery.”
IEEE Transactions on Geoscience and Remote Sensing 37 (1): 135–149. doi:10.1109/36.739146.

Ulaby, F. T., F. Kouyate, B. Brisco, and T. H. L. Williams. 1986. “Textural Infornation in SAR Images.”
IEEE Transactions on Geoscience and Remote Sensing GE-24, no. 2: 235–245. doi:10.1109/
TGRS.1986.289643.

Ulaby, F. T., R. Y. Li, and K. S. Shanmugan. 1982. “Crop Classification Using Airborne Radar and
Landsat Data.” IEEE Transactions on Geoscience and Remote Sensing GE-20, no. 1: 42–51.
doi:10.1109/TGRS.1982.4307519.

UN. 2017. World Population Prospects: The 2017 Revision. New York: United Nations.
van der Meer, F. 1997. “What Does Multisensor Image Fusion Add in Terms of Information Content

for Visual Interpretation?” International Journal of Remote Sensing 18 (2): 445–452. doi:10.1080/
014311697219187.

van Genderen, J. L., and C. Pohl. 1994. Image Fusion: Issues, Techniques and Applications. Intelligent
Image Fusion, Proceedings EARSeL Workshop, Strasbourg, France, September 11.

Vescovi, F. D., and M. A. Gomarasca. 1999. “Integration of Optical and Microwave Remote Sensing
Data for Agricultural Land Use Classification.” Environmental Monitoring and Assessment 58 (2):
133–149. doi:10.1023/A:1006047906601.

Villa, P., D. Stroppiana, G. Fontanelli, R. Azar, and A. P. Brivio. 2015. In-Season Mapping of Crop
Type with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal
Features. Remote Sensing 7 (10): 12859-12886.

Vrabel, J. 1996. “Multispectral Imagery Band Sharpening Study.” Photogrammetric Engineering and
Remote Sensing 62 (9): 1075–1084.

Wald, L. 1999. “Some Terms of Reference in Data Fusion.” IEEE Transactions on Geoscience and
Remote Sensing 37 (3): 1190–1193. doi:10.1109/36.763269.

Wang, D., Y. Su, Q. Zhou, and Z. Chen, eds. 2015a. “Advances in Research on Crop Identification
Using SAR.” 2015 Fourth International Conference on Agro-Geoinformatics (Agro-
geoinformatics), Istanbul, Turkey, July 20-24.

Wang, J., X. Xiao, Y. Qin, J. Dong, G. Zhang, W. Kou, C. Jin, Y. Zhou, and Y. Zhang. 2015b. “Mapping
Paddy Rice Planting Area in Wheat-Rice Double-Cropped Areas through Integration of
Landsat-8 OLI, MODIS, and PALSAR Images.” Scientific Reports 5: 10088.

Waske, B., G. Menz, and J. A. Benediktsson, eds. 2007. “Fusion of Support Vector Machines for
Classifying SAR and Multispectral Imagery from Agricultural Areas.” 2007 IEEE International
Geoscience and Remote Sensing Symposium, Barcelona, Spain, July 23-28.

Waske, B., and S. van der Linden. 2008. “Classifying Multilevel Imagery from SAR and Optical
Sensors by Decision Fusion.” IEEE Transactions on Geoscience and Remote Sensing 46 (5):
1457–1466. doi:10.1109/TGRS.2008.916089.

White, J. C., M. A. Wulder, G. W. Hobart, J. E. Luther, T. Hermosilla, P. Griffiths, N. C. Coops, et al. 2014.
“Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science.”
Canadian Journal of Remote Sensing 40 (3): 192–212. doi:10.1080/07038992.2014.945827.

Wulder, M. A., J. G. Masek, W. B. Cohen, T. R. Loveland, and C. E. Woodcock. 2012. “Opening the
Archive: How Free Data Has Enabled the Science and Monitoring Promise of Landsat.” Remote
Sensing of Environment 122: 2–10. doi:10.1016/j.rse.2012.01.010.

Xu, W., B. Wu, Y. Tian, J. Huang, and Y. Zhang, eds. 2004. “Synergy of Multitemporal Radarsat SAR
and Landsat ETM Data for Extracting Agricultural Crops Structure 6.” IGARSS 2004. 2004 IEEE
International Geoscience and Remote Sensing Symposium, Anchorage, Alaska, USA, September
20-24.

42 A. ORYNBAIKYZY ET AL.

https://doi.org/10.3390/rs90201019
https://doi.org/10.5589/m11-020
https://doi.org/10.1109/36.739146
https://doi.org/10.1109/TGRS.1986.289643
https://doi.org/10.1109/TGRS.1986.289643
https://doi.org/10.1109/TGRS.1982.4307519
https://doi.org/10.1080/014311697219187
https://doi.org/10.1080/014311697219187
https://doi.org/10.1023/A:1006047906601
https://doi.org/10.1109/36.763269
https://doi.org/10.1109/TGRS.2008.916089
https://doi.org/10.1080/07038992.2014.945827
https://doi.org/10.1016/j.rse.2012.01.010


Zeng, Y., J. Zhang, and J. L. van Genderen, eds. 2006. Comparison and Analysis of Remote Sensing
Data Fusion Techniques at Feature and Decision Levels. ISPRS Commission VII Mid-term
Symposium" Remote Sensing: From Pixels to Processes, Enschede, The Netherlands, May 8-11.

Zhang, J. 2010. “Multi-Source Remote Sensing Data Fusion: Status and Trends.” International
Journal of Image and Data Fusion 1 (1): 5–24. doi:10.1080/19479830903561035.

Zhong, L., H. Lina, L. Yu, P. Gong, and G. S. Biging. 2016. “Automated Mapping of Soybean and
Corn Using Phenology.” ISPRS Journal of Photogrammetry and Remote Sensing 119: 151–164.
doi:10.1016/j.isprsjprs.2016.05.014.

Zhou, T., J. Pan, P. Zhang, S. Wei, and T. Han. 2017. “Mapping Winter Wheat with Multi-Temporal
SAR and Optical Images in an Urban Agricultural Region.” Sensors (Switzerland) 17 (6).
doi:10.3390/s17061210.

INTERNATIONAL JOURNAL OF REMOTE SENSING 43

https://doi.org/10.1080/19479830903561035
https://doi.org/10.1016/j.isprsjprs.2016.05.014
https://doi.org/10.3390/s17061210

	Abstract
	1.  Introduction
	2.  Reviewed studies: overview and general characterization
	2.1.  Study sites and their extent
	2.2.  Combination of sensors and aspects of multi-temporal information

	3.  Data fusion concepts and categories in remote sensing
	3.1.  Pixel level fusion
	3.1.1.  Component substitution techniques
	3.1.2.  Modulation-based techniques
	3.1.3.  Multi-resolution analysis
	3.1.4.  Hybrid pixel level fusion techniques

	3.2.  Feature level fusion
	3.2.1.  Optical features
	3.2.2.  Radar features
	3.2.3.  Feature selection methods

	3.3.  Decision level fusion

	4.  Image classification approaches
	4.1.  Parametric vs non-parametric classification methods
	4.2.  Supervised vs unsupervised classification methods
	4.3.  Pixel-based vs object-based classification

	5.  Separability of crop types based on optical and radar data
	5.1.  Cereals
	5.2.  Oilseed crops
	5.3.  Sugar crops
	5.4.  Vegetables, nuts and tuber crops

	6.  Discussion
	7.  Conclusion
	Disclosure statement
	References



