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Abstract

Circular observations pose special problems for time series mod-

eling. This article shows how the score-driven approach, developed

primarily in econometrics, provides a natural solution to the diffi cul-

ties and leads to a coherent and unified methodology for estimation,

model selection and testing. The new methods are illustrated with

hourly data on wind direction.
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1 Introduction

Directional variables are circular. If the starting point is due south then

moving through 180 degrees ends up at due north. The same point is reached

by moving 180 degrees in the opposite direction. In terms of radians the

points −π and π meet up and this poses a challenge for directional time

series modelling.

A number of ways for modelling circular time series have been proposed

in the literature. The most widely used is based on transformations, the aim

of which is to try to put the data in a form that lends itself to conventional

autoregressive (AR) or autoregressive moving average (ARMA) modeling.

A second method uses transformations but to formulate an autoregressive

model in which the conditional distribution of the next observation is circu-

lar. By contrast, the approach proposed is also based a circular conditional

distribution, but the dynamics are formulated so as to be consistent with the

circularity of the data. It draws on recently developed procedures for dealing

with non-Gaussian conditional distributions in a wide variety of situations,

primarily in economics and finance. The defining feature of the new class of

circular time series models, which turns out to be crucial for performance as

well as theoretical properties, is that the dynamics of the time-varying pa-

rameter are driven by the score of the conditional distribution. Score-driven

models are known as Dynamic Conditional Score (DCS) or Generalized Au-

toregressive Score (GAS) models; see, for example, Harvey (2013) and Creal,

Koopmans and Lucas (2013).

Harvey and Luati (2014) show how the score-driven model may be used

for modeling changing location when the conditional distribution is Student’s

t. The score automatically handles observations that would be classed as

outliers for a normal distribution by making them less influential. The same

methodology applied to directional data deals with the problem of circular-

ity. The asymptotic distribution of the maximum likelihood (ML) estimator

can be derived for a first-order model and general principles can be used for
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testing and model selection. A nonstationary model is also feasible. There-

fore although circular data have special features that need to be explicitly

recognized, their overall treatment follows from a well-developed time series

approach. A score-driven autoregressive model is also proposed. A model of

this kind has not yet appeared in the dynamic score literature but it turns

out to be particularly attractive here.

Many scientific fields have applications in which directions are collected

and statistically analysed. In particular, modeling wind direction is becom-

ing increasingly important as energy generation by means of wind power

increases. The score driven models developed in this paper are applied to

wind direction data from the Black Mountain in Canberra. This is a rela-

tively short time series and is chosen mainly for comparative purposes with

previous studies. Our models will, however, generalize to handle many of the

issues raised by longer time series.

The plan of the paper is as follows. Sections 2 and 3 review the von

Mises distribution and existing methods for modeling circular time series.

Score-driven models are described in Section 4. The small sample properties

of these models are investigated by Monte Carlo experiments in Section 5.

Model selection methods are discussed in Section 6, while Section 7 applies

the new models to data on wind direction and highlights their advantages

over existing methods. The last section concludes and points to future de-

velopments.
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2 Circular data and the von Mises distribu-

tion

A (continuous) circular probability distribution (PDF) which depends on a

vector of parameters θ, denoted f(y;θ), must satisfy the following conditions:

(i) f(y;θ) ≥ 0

(ii)
∫ π

−π
f(y;θ)dy = 1

(iii) f(y ± 2πk;θ) = f(y;θ),

where k is an integer. General classes of distributions are proposed in Jones

and Pewsey (2005) and Fernandez-Duran (2004). The latter is able to capture

multi-modality as well as skewness. Provided the derivatives of the log-

density with respect to elements of θ are continuous, they are circular in the

sense that the periodicity condition (iii) is satisfied.

Given circular data measured in radians, a common assumption is that

the data have a von Mises (vM) distribution (also called the circular normal

or Tikhonov distribution) with PDF given by

f(y;µ, υ) =
1

2πI0(υ)
exp{υ cos(y − µ)}, −π ≤ y, µ < π, υ ≥ 0, (1)

where Ik(υ) denotes a modified Bessel function of order k, µ denotes location

(directional mean) and υ is a non-negative concentration parameter that is

inversely related to scale. When υ = 0 the distribution is uniform and when

υ is large, y is approximately N(µ, 1/υ). The normal distribution is generally

considered a good approximation for υ > 2.

The (circular) variance of the von Mises distribution is

1− I1(v)/I0(v) = 1− A(v). (2)
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Note that

A(υ) = E cos(y − µ),

which defines the mean resultant length and that A(υ) → 1 as υ → ∞,
whereas A(0) = 0.

The score with respect to the location parameter is

∂ ln f

∂µ
= υ sin(y − µ), (3)

with variance υA(υ). The score with respect to the concentration parameter

is
∂ ln f

∂υ
= cos(y − µ)− A(υ). (4)

3 Existing time series models

Data generated by a Gaussian time series model over the real line, that is

−∞ < xt <∞, can be converted into wrapped circular time series observa-
tions in the range [−π, π) by letting

yt = xt mod(2π)− π, t = 1, ..., T. (5)

Fitting such models can be seen as a missing data problem because the

unwrapped observations can be decomposed as

xt = yt + 2πkt, t = 1, ..., T,

where kt is an integer that needs to be estimated; see Breckling (1989) and

Fisher and Lee (1994, p 329). The diffi culty with this approach is computa-

tional. Estimation is usually by the EM algorithm, but, as Fisher and Lee

(1994, p 333-4) observe, this can become complicated for all but the simplest

models. Coles (1998) shows how Markov chain Monte Carlo can be used to

fit wrapped autoregressive models, denoted WAR(p).
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An alternative approach is to transform a circular variable y, where −π <
y − µ < π, to a variable x in the range −∞ < x < ∞ by means of a link

function, x = g−1(y−µ). There are then two ways to proceed. The first is to

fit a linear time series model to x and then transform back to y. The model

for x is sometimes called a direct or linked linear process. When the time

series model is an ARMA(p, q) process it is called LARMA(p, q) or, more

commonly, CARMA(p, q), where the C denotes ‘circular’as opposed to the

L for ‘linked’. In the second class of models, which are nonlinear, the inverse

form is an autoregression, denoted IAR(p), whereby the conditional mean,

µt|t−1, of a circular distribution, such as vM , is specified as

µt|t−1 = µ+g{φ1g
−1(yt−1−µ)+...+φpg

−1(yt−p−µ)}, −π < y−µ < π. (6)

The IAR(1) model with α close to one can be approximated without the

transformation so

µt|t−1 ' µ+ α(yt−1 − µ). (7)

When α is equal to one, µt|t−1 = yt−1, so yt is a random walk. There seems

to be no IARMA(p, q) model.

The aim of the transformations is have x close to being Gaussian. Fisher

and Lee (1994) prefer the probit transformation to the commonly used tan(y/2)

transformation as they argue that the latter can give rise to fat tails whereas

the former is closer to a normal distribution. More precisely, the probit

transformation yields a normal distribution when the circular observations

are uniform. On the other hand, if the variance is small, the untransformed

observations can be treated as normally distributed.

4 Score-driven models

When the conditional distribution is continuous and circular, letting the

score drive a dynamic equation for the conditional mean, µt|t−1, solves the
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circularity problem because the score function is also circular and continuous.

Unlike the CARMA and IAR approaches, which set up a barrier for yt − µ
at π and −π and thus ignore the proximity of observations on either side, in
the proposed approach a value of yt slightly bigger than −π is treated in the
same way as if it were slightly bigger than π.

The conditional score, ut, enters into a dynamic equation such as

µt|t−1 = (1− φ)µ+ φµt−1|t−2 + κut−1, |φ| < 1, (8)

where the conditional distribution of a variable xt defined over the real line,

has location µt|t−1 so that

xt = µt|t−1 + εt, t = 1, ...., T, (9)

in which εt has location zero. An observation falling outside the range µ± π
can be wrapped, as in (5), so that yt lies in the range [−π, π). The score-

driven data generating process is invariant to this wrapping of the observa-

tions. Hence the question of how to estimate k′t defined below (5) does not

arise. Note that there is no need to wrap µt|t−1 but if it is reset neither the

data generation process nor estimation is affected.

The conditional score is a martingale difference sequence with mean zero.

In the case of the von Mises distribution, that is εt ∼ vM(0, υ) in (9), dividing

the score, (3) by its information quantity gives sin(yt−µt|t−1)/A(υ) but there

is a good case for dropping A(υ) because then the filter is not dependent on

υ. Hence the forcing variable in an equation such as (8) is

ut = sin(yt − µt|t−1), ut ∼ i.i.d.(0, A(υ)/υ). (10)

It follows that xt and yt are strictly stationary.

Figure 1 contrasts the score variable for a vM with a linear response when

µ = 0. The score starts to downweight observations beyond π/2 and −π/2,
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Figure 1: Score functions for vM and normal. Dots denote vM with µ = 2.

reflecting the fact that, like the score for a t−distribution, it is a redescend-
ing function. However, for small deviations from the mean, the score is

approximately linear; the MacLaurin expansion shows that sin(yt−µt|t−1) '
yt − µt|t−1. If the concentration is large, so that a Gaussian conditional dis-

tribution is a reasonable approximation, then yt − µt|t−1 is the score and the

model corresponds to the steady-state innovations form of the Kalman fil-

ter from a Gaussian unobserved components model made up of a first-order

autoregressive process and white noise.

The dots in Figure 1 illustrate the critical role played by the score when

µt|t−1 is close to π. Suppose µt|t−1 = π−a, where a is small and positive. (In
the figure it is π − 2.) Suppose the next observation is negative at −π + b,

where b is small and positive. The distance between µt|t−1 and yt is only a+b,

but yt− µt|t−1 = −2π+ b+ a. However, sin(yt− µt|t−1) = sin(−2π+ b+ a) =

sin(b+ a). Thus the impact of the negative observation on µt|t−1 is positive.
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4.1 Maximum likelihood estimation

The log-likelihood function when the observations have a von Mises condi-

tional distribution is

lnL(υ,ψ) =T ln(2πI0(υ)) + υ
T∑
t=1

cos(yt − µt|t−1),

where ψ denotes the parameters in the dynamic equation for µt|t−1. In a

stationary model it is convenient to assume that µ1|0 is given by the uncon-

ditional mean µ. When υ = 0 the observations are uniformly distributed

on the circle and so cannot be predicted because the probability of the next

observation falling in any equal width interval on the circle is the same. It

will therefore be assumed that υ > 0.

Asymptotic results for the stationary first-order DCSmodel are as follows.

Proposition 1 Define ψ = (κ,φ, µ)′ in the stationary first-order dynamic

equation (8). For a single observation, the information matrix for ψ and υ

is

I

(
ψ

υ

)
=

[
υA(υ)D(ψ) 0

0′ 1− A(υ)2 − A(υ)/υ

]
(11)

where

D(ψ) = D

 κ

φ

µ

 =
1

1− b


A(υ)/υ

aκA(υ)/υ

1− aφ 0

aκA(υ)/υ

1− aφ
κ2A(υ)(1 + aφ)/υ

(1− φ2)(1− aφ)
0

0 0
(1− φ)2(1 + a)

1− a


with

a = φ− κA(υ) (12)

b = φ2 − 2φκA(υ) + κ2(1− A(υ)/υ) < 1. (13)
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The information matrix for a vM distribution with parameters µ and υ

is given in Mardia and Jupp (2000, p 86, 350). The derivation of D(ψ) is in

Appendix A.

Proposition 2 Provided b < 1 and κ 6= 0, the ML estimator, (ψ̃
′
υ̃)′, is con-

sistent and asymptotically normal with mean (ψ′ υ)′ and covariance matrix

given by the inverse of (11).

The proof follows from Lemma 1 in Jensen and Rahbek (2004) and Harvey

(2013). The conditions b < 1 and κ 6= 0 are needed for the information

matrix to be positive definite. Third derivatives associated with the mean

are bounded because they depend only on sines and cosines. Derivatives with

respect to concentration are also bounded because

∂A(υ)

∂υ
= 1− A(υ)2 − A(υ)

υ
.

When υ → ∞ the condition b < 1 leads to (φ − κ)2 < 1 which corresponds

to the familiar condition for invertibility in an ARMA(1,1) model and the

asymptotic distribution for estimators in a Gaussian model is obtained; see

Harvey (2013, p 67-8). On the other hand, as υ → 0 the information on µ

tends to zero, as do all elements in the I(ψ) matrix.

The ML estimates, ψ̃ need to satisfy the condition

T∑
t=1

sin(yt − µt|t−1) = 0,

which is achieved by maximizing

S(ψ, µ) =
T∑
t=1

cos(yt − µt|t−1)

with respect to ψ and µ. This may be done independently of υ. Once ψ̃ has
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been computed, the ML estimate of υ may be obtained by solving

A(υ̃) = S(ψ̃, µ̃)/T.

Unfortunately there is no exact solution; see Mardia and Jupp (2000, pp

85-6).

Remark 1 An initial estimate of µ is given by the sample mean direction,
defined as yd = arctan(S/C), where S =

∑
sin yt/T and C =

∑
cos yt/T ; if

C < 0 then π is added. The ML estimator of µ in the DCS model is, like yd,

equivariant under rotation and it does not matter whether the data given by a

particular cut are over [−π, π) or [0, 2π); see Mardia and Jupp (2000, p 17).

Furthermore the estimates of the other parameters are unchanged1. Fitting

a CARMA or IAR model, on the other hand, requires that the data be ad-

justed so as to be in the range yd±π and if observations are not re-categorized
for updated estimates of µ, there is the potential for a large positive trans-

formed observation switching to becoming a correspondingly extreme negative

observation.

Remark 2 Blasques, Gorgi, Koopman and Wintenberger (2018) draw at-
tention to the importance of ensuring the invertibility of a nonlinear time

series model. They show that a suffi cient condition for invertibility of a sta-

tionary and ergodic model is E ln Λt(ψ) < 0, where Λt(ψ) := sup |zt| , with
zt = dµt+1|t/dµt|t−1 = φ + κ(∂ut/∂µtpt−1) and the supremum is over all ad-

missible ψ. Thus a suffi cient condition for invertibility of the first-order DCS

circular model is κ < 1− φ and κ < 1 + φ. The result is obtained by noting

that ∂ut/∂µtpt−1 = − cos(y − µtpt−1) which lies between -1 and 1. The first of

these conditions is almost certainly too restrictive; compare the situation for

a t-distribution as analysed in Blasques et al. (2018, p 1041). There is the

option of computing an estimate of E ln Λt(ψ). However, in the usual case

1If a constant is added to all the observations, the likelihood is maximized simply by
adding the same constant to the estimate of µ.
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when both κ and φ are positive and, in addition, κ ≤ φ, it follows that zt ≥ 0

and so |zt| = zt. Since E(zt) = φ − κA(υ), Jensen’s inequality shows that

E ln Λt(ψ) < 0.

4.2 Non-stationarity

The non-stationary first-order DCS model is

µt|t−1 = δ + µt−1|t−2 + κut−1, (14)

where δ is a drift term and µ1|0 is fixed. The conditional mean can, in

principle, travel all the way round the circle; see the footnote below (5).

Such situations can arise in practice. For example, Fisher (1993, p 249) gives

a data set of weekly observations at a location in England where the wind

direction moves round the full circle every quarter.

Because var(µt|t−1) → ∞ as t → ∞ in (14), we have the following prop-

erty.

Proposition 3 The unconditional distribution for wrapped observations, (5),
generated by (14) is uniform.

We cannot initialize µ1|0 with the directional mean because it does not

exist. The best option is to start off the recursion in (14) with µ2|1 = y1 and

compute estimates of the other parameters. These provide starting values for

full ML estimation with µ1|0 treated as a fixed parameter. The transformation

µ1|0 = 2 arctan(ω), where ω is unconstrained, may be employed to ensure∣∣µ1|0
∣∣ < π.

The asymptotics still hold for (14), as in Harvey (2013, p 45-6), so for a

conditional vM distribution, κ̃ is asymptotically normal with mean κ and

avar(κ̃) =
1

T

2κA(υ)− κ2(1− A(υ)/υ))

A(υ)2
. (15)
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Estimating the initial value, µ1|0, makes no difference to avar(κ̃) because the

asymptotic variance is O(1). The equation for b, that is (13), now implies

κ > 0 and κ < 2A(υ)υ/(υ − A(υ)). Note that κ → 0 as υ → 0 whereas for

υ → ∞, 0 < κ < 2. However, for υ = 2, κ < 2.16. The result in Remark 4

suggests2 that invertibility is guaranteed by κ ≤ 1.

4.3 Score-driven circular autoregression

A score-driven circular autoregression (SCAR) for a conditional vM distrib-

ution can be formulated, not with the conditional mean, defined as in (10),

but rather as

µt|t−1 = µ+φ1 sin(yt−1−µ)+ ...+ φp sin(yt−p−µ), −π ≤ y, µ < π, υ > 0,

(16)

where µ is the unconditional mean. Unlike the IAR(p) model in (6), the

SCAR(p) model is invariant to translation and like the DCS model it is

invariant to wrapping: hence (16) is written in terms of yt rather than xt to

simplify the discussion. It is assumed that the SCAR model is stationary,

although it is not clear what conditions3, if any, need to be imposed on the

autoregressive parameters to ensure that this is the case.

Estimation is best carried out by starting at t = p+ 1 rather than setting

pre-sample values equal to zero. Some restrictions on the parameters may

be desirable. For example, when p = 1, the fact that |sin(yt−1 − µ)| ≤ 1,

means that
∣∣µt|t−1 − µ

∣∣ ≤ π for |φ| ≤ π. In any event, the model satisifies the

conditions of Lemma 1 in Jensen and Rahbek (20014) and so the following

result holds; see Appendix B.

Proposition 4 Assuming that in the SCAR(p) model, (16), the ML esti-

mator, φ̃, is consistent, the limiting distribution of
√
T (φ̃−φ) is multivariate

2Blasques et al. (2018) assume stationarity when stating their result.
3The variance is finite for finite values of the parameters because |sin(yt − µ)| ≤ 1.The

process can, in principle, be initialized by drawing the pre-sample observations from the
unconditional distribution.

13



normal with mean 0 and covariance matrix, (1/υA(υ))Q−1, where the ij− th
element of Q is the circular autocovariance of order |i− j| , as defined in
the numerator of (21). Given that sin(yt − µ) is stationary, the matrix Q

will be positive definite. The ML estimators of µ and υ are similarly as-

ymptotically normal, being distributed independently of φ̃ and of each other.

The limiting distribution of
√
T (µ̃− µ) is normal with mean 0 and variance

1/[υA(υ)(1−
∑

k φkE cos(yt−µ))2/T ]. The asymptotic distribution of υ̃ is as

implied by (11).

Corollary 1 The large-sample covariance matrix of φ̃ can be estimated as

avar(φ̃) =
1

υ̃A(υ̃)

[
T∑

t=p+1

sts
′
t

]−1

, (17)

where the k-th element of the p× 1 vector st is sin(yt−k− µ̃), k = 1, ..., p; see

(28). As regards µ,

avar(µ̃) =
1

υ̃A(υ̃)
∑T

t=p+1(1−
∑

k φk cos(yt−k − µ̃))2
(18)

' 1

υ̃A(υ̃)(T − p− {
∑

k φk}
∑T

t=p+1 cos(yt − µ̃))2
.

Remark 3 The ML estimates could be computed by a (modified) Newton-
Raphson algorithm4, independent of υ; see Appendix B. Upon convergence the

ML estimate of υ is obtained as υ̃ = A−1(S(φ̃, µ)/T ). The initial estimates

are given by regressing sin(yt − yd) on its lags, but these estimates are also
obtained from the circular autocorrelations using the Yule-Walker equations.

The SCAR(p) model, (16), can be extended so as to become a SCARMA(p, q)

4Fisher and Lee (1994, p 331) observe that for IAR(p), ML estimation with exact
derivatives becomes complicated for p greater than 2 or 3.

14



by adding lagged scores as defined in (10). Thus

µt|t−1 = µ+φ1 sin(yt−1−µ)+...+ φp sin(yt−p−µ)+θ1ut−1 +...+θqut−q, (19)

where −π < y, µ ≤ π. The DCS component model is a parsimonious way of

modeling SCMA(∞).

5 Monte Carlo experiments

A series Monte Carlo experiments were carried out in order to evaluate the

finite sample properties of the estimated score driven circular model. The

data were generated from the model summarised in equations (8), (9) and

(10) with εt ∼ vM(0, υ). The first fifty observations were discarded in

order to remove the effect of initialisation and time series of length T =

{250, 500, 1000, 2000} were used for estimation. The parameter values are as
follows:

µ = π/4, φ = {0.7, 0.9, 0.98}, κ = {0.2, 0.5, 1}, υ = {0.5, 2, 4} .

Although the value of µ is set at π/4, experimentation with other values

for µ indicates that, as theory suggests, the value of µ has no bearing on

the results. The parameter values cover an empirically plausible range and

include values similar to those reported below in the study of wind direction

for Black Mountain. After generating the data, the circular DCS model was

estimated by ML with the conditional mean initialised at µ0 = µ. The whole

process was replicated 10,000 times and the resulting mean square errors

(MSEs) of the estimates reported in Table 1.

For φ = 0.7 and φ = 0.9, the asymptotic MSEs are quite close to the

simulated MSEs when T = 1000 or more. For smaller samples, the MSEs for

φ are not always close to the asymptotic values. In particular, when φ = 0.98

the asymptotic MSEs for φ and µ are not a good guide to the sample MSEs,
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even for T = 2000. Given the proximity to the unit root this may not be

surprising. Overall, the sample MSEs for κ and υ are much closer to the

asymptotic MSEs. Finally, note that, in accordance with the theory, a lower

υ means a higher MSE.

Table 2 shows the results of Monte Carlo experiments, again based on

10,000 replications, for the nonstationary model (14) with no intercept. The

MSEs are close to the values given by the asymptotic theory.

6 Model selection and forecasting

Circular sample autocorrelations can be used to suggest possible dynamic

specifications and to check on their effectiveness in handling dependence.

Goodness of fit criteria can be used to choose the best model. Section 7

provides an illustration.

6.1 Testing for uniformity

The Rayleigh test of the null hypothesis of a uniform distribution is based

on the square of the mean resultant length, that is

R2 =
(
T−1

T∑
t=1

cos yt

)2

+
(
T−1

T∑
t=1

sin yt

)2

.

The asymptotic distribution of 2TR2 is χ2
2 under the null hypothesis of a

uniform distribution; see Mardia and Jupp (2000, p 94-5). In the present

context, failure to reject the null hypothesis indicates no serial correlation

or, as was shown in sub-section 4.3, a unit root. A test of independence based

on the circular autocorrelations of (20) below should indicate the possibility

of a nonstationary time series; see the discussion in Fisher (1993, p 184).
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Table 1:

Mean square errors of the maximum likelihood estimates of the score driven
model for circular data based on the von Mises distribution. Asymptotic

standard errors are shown in brackets.

φ κ υ T µ φ κ υ
0.9 0.5 2 250 0.916 0.033 0.062 0.264

500 0.309 (0.272) 0.011 (0.008) 0.031 (0.029) 0.125 (0.122)
1000 0.139 0.004 0.015 0.062
2000 0.068 (0.068) 0.002 (0.002) 0.008 (0.007) 0.031 (0.030)

0.98 0.5 2 250 14.83 0.012 0.071 0.330
500 11.45 (4.543) 0.004 (0.001) 0.036 (0.024) 0.170 (0.122)
1000 7.752 0.002 0.018 0.083
2000 3.390 (1.136) 0.001 (0.0002) 0.007 (0.006) 0.039 (0.030)

0.7 0.5 2 250 0.127 0.132 0.077 0.260
500 0.064 (0.064) 0.056 (0.045) 0.038 (0.037) 0.128 (0.122)
1000 0.032 0.024 0.018 0.062
2000 0.016 (0.016) 0.012 (0.011) 0.009 (0.009) 0.030 (0.030)

0.9 1 2 250 3.432 0.017 0.075 0.278
500 1.134 (0.756) 0.007 (0.004) 0.035 (0.033) 0.131 (0.122)
1000 0.477 0.003 0.017 0.064
2000 0.222 (0.189) 0.001 (0.001) 0.008 (0.008) 0.032 (0.030)

0.9 0.2 2 250 0.196 0.211 0.048 0.262
500 0.082 (0.081) 0.051 (0.019) 0.023 (0.022) 0.130 (0.122)
1000 0.040 0.014 0.011 0.062
2000 0.020 (0.020) 0.006 (0.005) 0.006 (0.005) 0.031 (0.030)

0.9 0.5 0.5 250 1.470 0.328 0.374 0.094
500 0.656 (0.574) 0.068 (0.016) 0.158 (0.123) 0.046 (0.044)
1000 0.306 0.014 0.070 0.022
2000 0.151 (0.143) 0.005 (0.004) 0.033 (0.031) 0.011 (0.011)

0.9 0.5 4 250 0.603 0.026 0.045 1.137
500 0.204 (0.162) 0.009 (0.007) 0.022 (0.022) 0.541 (0.520)
1000 0.084 0.004 0.011 0.265
2000 0.041 (0.040) 0.002 (0.002) 0.005 (0.005) 0.131 (0.130)

17



Table 2:

Scaled Mean square errors of the maximum likelihood estimates of the score
driven model for the nonstationary model (14). Asymptotic standard errors

are shown in brackets.

κ υ T κ υ
0.5 2 250 0.052 (0.044) 0.260 (0.244)

500 0.026 (0.022) 0.128 (0.122)
1000 0.017 (0.011) 0.062 (0.062)
2000 0.010 (0.005) 0.032 (0.030)

1 2 250 0.066 (0.061) 0.255 (0.244)
500 0.032 (0.031) 0.127 (0.122)
1000 0.017 (0.015) 0.062 (0.062)
2000 0.009 (0.008) 0.030 (0.030)

6.2 Circular autocorrelation functions

The circular ACF for a uniform distribution is defined as

ρ∗c(τ) =
γCCτ γSSτ − γCSτ γSCτ
γSS0 γCC0 − (γSC0 )2

, τ = 1, 2, ... (20)

where γCCτ = E[cos yt cos yt−τ ] and similarly for γSSτ , γCSτ and γSCτ . Both

sin yt and cos yt have zero means because of a uniformity assumption; see

Holzmann, Munk, Suster and Zucchini (2006). An alternative form is in

(6.36) of Fisher (1993, p 151). Fisher and Lee (1994, p 333) write down the

corresponding correlogram.

When the distribution is not uniform, the directional mean needs to be

subtracted; see Fisher (1993, p151-2). The circular correlation coeffi cient

proposed by Jammalamadaka and SenGupta (2001, p176-9) is formulated

somewhat differently and it implies a circular ACF given by

ρc(τ) = γSSτ /γSS0 , τ = 0, 1, 2, ... (21)

where γSSτ = E[sin(yt − µ)(sin(yt−τ − µ)], τ = 0, 1, 2, ...
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The sample5 circular ACF corresponding to (21) is

rc(τ) =

∑
sin(yt − yd) sin(yt−τ − yd)∑

sin2(yt − yd)
, τ = 1, 2, ... (22)

The limiting distribution when the observations are independent and iden-

tically distributed (IID) is standard normal, that is
√
Trc(τ) → N(0, 1); see

Brockwell and Davis (1991, Theorem 7.7.2).

The Lagrange multiplier (LM) test against serial correlation in location

is based on the portmanteau or Box-Ljung statistic constructed from the

autocorrelations of the scores; see Harvey (2013, p 52-4) and Harvey and

Thiele (2016). For a vM distribution with υ > 0, the scores are proportional

to the sines of the angular observations measured as deviations from their

directional mean, so the autocorrelations are the circular autocorrelations

as defined in (21). The derivation can be based on the SCAR or SCMA

models, the latter being a special case of (19) with no lagged unconditional

scores. When the Q-statistic in the portmanteau test is based on the first P

sample autocorrelations, it is asymptotically distributed as χ2
P under the null

hypothesis of serial independence. Once a dynamic model has been fitted, a

formal test requires that the degrees of freedom be adjusted by subtracting

the number of estimated dynamic parameters from P . This is the Box-Pierce

test. An alternative is to carry out an LM test; see the discussion in Harvey

and Thiele (2016).

For the purposes of initial model identification it is helpful to know

something about the behaviour of the CACF in (21) for wrapped models.

From Jammalamadaka and SenGupta (2001, p 180), the circular ACF for a

wrapped Gaussian model, constructed as in (5), is

ρc(τ) =
sinh(2γx(τ))

sinh(2γx(0))
, τ = 0, 1, 2... (23)

5There appears to be a typographical error in the sample correlation given in (8.2.5)
of Jammalamadaka and SenGupta (2001, p178) because it is not consistent with the
theoretical definition.

19



The wrapping diminishes the autocorrelations, the more so the bigger is

the variance of the unwrapped series, γx(0). On the other hand, as γx(0)

→ 0, ρc(τ) → ρx(τ), that is the ACF of ρc(τ) is close to that of xt. Thus

whereas the ACF of unwrapped observations, were they available, could be

interpreted in the usual way for linear data, this is no longer true for the

wrapped observations unless the variance is small. For a score-driven model,

the issues are somewhat different because sin(yt − µd) = sin(xt − µ) and so,

since µd = µ, the dynamic properties of the wrapped and unwrapped series

are the same. The challenge is therefore to determine the properties of the

unwrapped series.

6.3 Goodness of fit of the distribution

The residuals are given by

νt = min
∣∣yt − µt|t−1, yt − µt|t−1 ± 2π

∣∣ (24)

There is no closed form CDF for the vM distribution, but probability inte-

gral transforms (PITs) can be computed by approximations as detailed in

Mardia and Jupp (2000, p 41). An LM test against a class of exponential

distributions, given in Mardia and Jupp (2000, p 142-3), can be carried out.

A rejection of the vM distribution may lead one to consider a more general

class of distributions, such as the one proposed by Jones and Pewsey (2005).

When a model has been fitted, the most informative diagnostic plot is

one where yt is adjusted, by adding or subtracting 2π, so as to be in the

range µt|t−1 ± π. In this way observations close to ±π no longer appear at
both the top and bottom of the graph.

Goodness of fit may be assessed by the dispersion (circular variance)

D = 1−
T∑
t=1

cos(yt − µt|t−1)/T (25)
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or the circular standard deviation, s =
√
−2 ln(1−D), a measure whose

square is most comparable to the prediction error variance; see Mardia and

Jupp (2000, pp 18-19, 30). In time series forecasting the random walk often

provides a useful benchmark. The equivalent benchmark for dispersion is

D∆ = 1−
∑T

t=2 cos(yt− yt−1)/(T − 1). Hence goodness of fit for a particular

model might be characterized by A∆ = 1−D/D∆; with a perfect fit A∆ = 1.

Alternatively we could use B∆ = 1 − s2/s2
∆, where s

2
∆ = −2 ln(1 − D∆). A

negative value for A∆ or B∆ indicates that the model is worse than a forecast

given by the last observation.

6.4 Forecasts

When a forecast of the next observation, that is µt+1|t, falls outside the range

it can be reset, as in (5), to give ỹt+1|t in the range [−π, π). The conditional

distribution for yt+1 is vM(ỹt+1|t, υ).

The conditional distribution of yt+` may be obtained by simulation with

the accuracy measured by D(`) = 1−
∑`

j=1 cos(yt+j − µt+j|t)/`.

7 Wind direction on Black Mountain

Fisher and Lee (1994) consider T = 72 hourly measurements of wind direction

taken over a period of four days on Black Mountain, ACT, Australia. The

data can be found in Fisher (1993) and are in degrees from 0 to 360. We

converted to radians, subtracted the directional mean, yd = 5.083 and added

2π to some observations 6 so that they are all in the range [−π, π).

Figure 2 shows the circular correlogram based on sines. This is very

similar to the circular correlogram in Figure 2a of Fisher and Lee (1994, p

336). At first sight the pattern casts doubt on the AR(1) specification in that

6This means that once a model has been fitted, the observations need to be transformed
back to what they were originally. In the DCS model no transformations are needed prior
to model fitting.

21



ACF­sinW indBMd

0 1 2 3 4 5 6 7 8 9 10 11 12

­0 .75

­0 .50

­0 .25

0 .00

0 .25

0 .50

0 .75

1 .00
ACF­sinW indBMd

Figure 2: Circular correlogram (sines) for Black mountain observations. The
horizontal lines are ±2/

√
T .

the structure is more indicative of ARMA(1, 1). However, given the damping

affect on circular autocorrelations highlighted by (23), an AR(1) model may

not be unreasonable. The ambiguity shows that circular correlograms need

to be interpreted with care.

The histogram of the circular observations, which is shown in Figure 3,

suggests that a transformation may be neither necessary nor desirable. A

probit would produce a normal distribution if the original distribution were

uniform - which it clearly is not. As it is, the excess kurtosis for a probit

transformation is 3.02. The tan(y/2) transformation is even more extreme

in this respect with excess kurtosis of 13.51; it is perhaps not surprising that

the estimate of φ in the CAR(1) model is only 0.35.

Table 3 shows the results of fitting various models. The first model ignores

circularity by assuming a conditional Gaussian distribution. The other mod-

els take it to be von Mises. The benchmark given by the circular variance

for first differences is D∆ = 0.258 implying s2
∆ = 0.597. Standard errors are
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Figure 3: Histogram of Black mountain data

shown for the DCS(1) model - the first-order filter of (8) - and the SCAR(1)

model. For DCS(1) these were obtained from (11).

The score-driven models give the best fit. Furthermore the circular cor-

relogram of the best-fitting model, SCAR(1), shows very little evidence of

residual serial correlation; see Figure 4. Note however, that the superior fit

of the SCAR model over the DCS is due to the first 18 observations which

lie mainly below the others. If these observations are dropped, DCS(1) is the

better model.

Figure 5 shows the filtered conditional mean for the DCS model and

compares it with the IAR(1) filter given by the tan(y/2) transformation.

The DCS filter is much less variable; the SCAR filter behaves in a similar

way. A plot for the probit IAR(1) lies between the IAR tan(y/2) and the

DCS. If the data are not centred by subtracting the directional mean, the IAR

filters behave differently whereas the score filters are basically unaffected.
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Figure 4: Circular correlogram of residuals from SCAR(1) model.
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Figure 5: Filters for DCS and IAR tan models
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Table 3:

Estimates and goodness of fit measures for Black Mountain data.
Standard errors are shown in parentheses.

Model µ φ κ υ D s2 A∆

Gaussian AR(1) −0.02 0.52 - - 0.243 0.557 0.057
(0.10) (0.14)

IAR(1) Probit −0.03 0.68 - 2.46 0.239 0.547 0.071
(0.26) (0.14) - (0.35)

IAR(1) tan 0.08 0.67 - 2.44 0.242 0.555 0.060
(0.27) (0.15) - (0.35)

SCAR(1) −0.60 1.24 - 3.00 0.190 0.421 0.263
(0.13) (0.13) - (0.43)

DCS(1) −0.11 0.66 0.64 2.54 0.231 0.526 0.103
(0.20) (0.16) (0.15) (0.36)

Fisher and Lee (1994) also estimated a CAR(1) model with parameter

φ̃ = 0.52 after a probit transformation. The CAR models do not give one-

step ahead forecasts with a vM distribution and so are diffi cult to compare

directly with IAR models. In any case they are a much less attractive option.

8 Conclusions

This article shows how the score-driven approach provides a natural solution

to the diffi culties posed by circular data and leads to a coherent and unified

methodology for estimation, model selection and testing. The data generat-

ing process is unaffected by any wrapping of the observations and the models

estimated by maximum likelihood are unaffected by the way the data is cut.

Two classes of models are introduced, one based on a filtered component and

the other taking an autoregressive form. An asymptotic theory is developed

and Monte Carlo experiments examine small sample performance. Diagnos-

tic checks for serial correlation follow straightforwardly. The new models are
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fitted to hourly data on wind direction and are shown to provide a better fit

than existing methods.

The score-driven approach may be extended in a number of directions.

Firstly conditional distributions other than von Mises are easily accommo-

dated. Secondly heteroscedasticity can be modeled with dynamic equations

driven by the score with respect to concentration. Thirdly dynamic seasonal

and diurnal effects (for hourly data) can be handled and finally the approach

can be used to formulate models for circular-linear data. These issues will

be addressed in later work.
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Appendix A: Information matrix for the DCS model
The information matrix for the ML estimator of ψ is, from Harvey (2013,

p 37),

D(ψ) = D

 κ

φ

µ

 =
1

1− b

 A D E

D B F

E F C

 (26)

with

A = σ2
u = A(υ)/υ, B =

κ2σ2
u(1 + aφ)

(1− φ2)(1− aφ)
, C =

(1− φ)2(1 + a)

1− a ,

D =
aκσ2

u

1− aφ, E =
c(1− φ)

1− a and F =
acκ(1− φ)

(1− a)(1− aφ)
.

Now

a = φ− κA(υ)

b = φ2 − 2φκA(υ) + κ2(1− A(υ)/υ)

because E (∂ut/∂µ)2 = E
(
cos2(yt − µt|t−1)

)
and we know from the informa-

tion quantity for υ that E[
(
cos(yt − µt|t−1)− A(υ)

)2
] = 1−A(υ)2 −A(υ)/υ.

Finally c = −κE
(
sin(yt − µt|t−1) cos(yt − µt|t−1)

)
= −κE

(
sin{2(yt − µt|t−1)}

)
/2 =

0. Thus E = F = 0.

There are no extra terms because the off-diagonals in the information

matrix, (11), are zero and ut = sin(yt − µt|t−1) does not depend on υ; see

http://www.econ.cam.ac.uk/DCS/docs/Lemma10.pdf for further details on

the issues involved.

Appendix B: The SCAR(p) model and the Newton-Raphson algo-
rithm
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Note that the normal equations for φ are

∂ lnL

∂φj
= υ

T∑
t=p+1

sin(yt − µt|t−1) sin(yt−j − µ) = 0, j = 1, ..., p. (27)

Differentiating again gives

∂2 lnL

∂φj∂φk
= −υ

T∑
t=p+1

cos(yt−µt|t−1) sin(yt−j−µ) sin(yt−k−µ), j, k = 1, ..., p

Taking conditional expectations at time t− 1 yields

−Et−1
∂2 ln f

∂φj∂φk
= υA(υ) sin(yt−j − µ) sin(yt−k − µ), j, k = 1, ..., p (28)

at the true parameter values. The unconditional expectation gives the circu-

lar autocovariances. Furthermore

∂2 lnL

∂φj∂µ
=− υ

T∑
t=p+1

cos(yt − µt|t−1)[1−
∑
k

φk cos(yt−k − µ)] sin(yt−j − µ)

− υ
T∑

t=p+1

sin(yt − µt|t−1) cos(yt−j − µ), j = 1, ..., p

so

Et−1
∂2 lnL

∂φj∂µ
= −υA(υ)

T∑
t=p+1

[1−
∑
k

φk cos(yt−k − µ)] sin(yt−j − µ).

The unconditional expectation is zero because sine is odd and cosine is even

and so cos(yt−k − µ) sin(yt−j − µ) is odd and its (unconditional ) expec-

tation is zero. As regards υ, taking conditional expectations shows that

E(∂2 lnL/∂φj∂υ) = 0, j = 1, ..., p and E(∂2 lnL/∂µ∂υ) = 0.
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The result for µ follows because

∂ lnL

∂µ
= υ

T∑
t=p+1

sin(yt − µt|t−1)[1−
∑
k

φk cos(yt−k − µ)]

and

∂2 lnL

∂µ2
=− υ

T∑
t=p+1

cos(yt − µt|t−1)[1−
∑
k

φk cos(yt−k − µ)]2

− υ
T∑

t=p+1

sin(yt − µt|t−1)
∑
k

φk sin(yt−k − µ)

Taking conditional expectations removes the last term.

A Newton-Raphson algorithm is an option because if cos(yt − µ̂t|t−1) is

dropped, the computations reduce to repeated regressions of sin(yt−µ̂t|t−1) on

sin(yt−j−µ̂), j = 1, ..., p, with the estimate of φ updated by adding the latest

regression coeffi cients to it. Alternatively, expression (28) suggests that it

could be replaced by Â(υ) =
∑T

t=p+1 cos(yt− µ̂t|t−1)/(T −p) in what amounts
to the method of scoring. By a similar argument, a regression of sin(yt−µ̂t|t−1)

on 1−
∑

k φ̂k cos(yt−k − µ̂) with Â(υ) included as a divisor, could be used to

update µ̂. If cos(yt−µ̂t|t−1) is retained in the Hessian its role is to downweight

observations far from the conditional mean (a heteroscedasticity correction).

29



References

Blasques, F., Gorgi, P., Koopman, S.J. and O. Wintenberger (2018).

Feasible invertibility conditions and maximum likelihood estimation for

observation-driven models. Electronic Journal of Statistics, 12, 1019—1052.

Breckling, J. (1989). The Analysis of Directional Time Series: Applications

to Wind Speed and Direction. Berlin: Springer.

Brockwell, P. J. and R. A. Davis (1991). Time Series: Theory and Methods.

Springer Series in Statistics. Berlin: Springer.

Coles, S. G. (1998). Inference for circular distributions and processes. Sta-

tistical Computing, 5, 108—13.

Creal, D., Koopman, S. J. and A. Lucas (2013). Generalized autoregressive

score models with applications. Journal of Applied Econometrics, 28, 777—
95.

Fernandez-Duran, J.J. (2004) Circular distributions based on nonnegative

trigonometric sums. Biometrics, 60, 499—503.

Fisher, N. I. (1993). Statistical Analysis of Circular Data. Cambridge: Cam-

bridge University Press.

Fisher, N.I. and A.J. Lee (1992). Regression models for an angular response.

Biometrics, 48, 665—77.

Fisher, N.I. and A.J. Lee (1994). Time series analysis of circular data. Jour-

nal of the Royal Statistical Society, B, 70, 327—332.

Harvey, A.C. (2013) Dynamic Models for Volatility and Heavy Tails: with

Applications to Financial and Economic Time Series. Econometric Society

Monograph, New York: Cambridge University Press.

30



Harvey, A.C. and A. Luati. (2014). Filtering with heavy tails. Journal of

the American Statistical Association, 109, 1112—1122.

Harvey, A.C. and S. Thiele (2016). Testing against changing correlation.

Journal of Empirical Finance, 38, 575—89.

Holzmann, H., Munk, A., Suster, M. and W. Zucchini (2006). Hidden

Markov models for circular and linear—circular time series. Environmental

and Ecological Statistics, 13, 325—347.

Jammalamadaka, S.A. and A.S. SenGupta (2001). Topics in Circular Sta-

tistics. New York: World Scientific Publishing Co.

Jensen, S. T. and A. Rahbek (2004). Asymptotic inference for nonstationary

GARCH. Econometric Theory, 20, 1203—26.

Jones, M.C. and A. Pewsey (2005) A family of symmetric distributions on

the circle. Journal of the American Statistical Association, 100,1422—1428.

Mardia, K. V. and P.E. Jupp (2000). Directional Statistics. Chichester: Wi-

ley.

31


	CWPE1971 Coversheet
	Wind13

