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Abstract

Radio Frequency Identification (RFID) is a promising technology for process automation and
beyond that capable of identifying objects without the need for a line-of-sight. However, the
trend towards automatic identification of objects also increases the demand for high quality
RFID applications. Therefore, research on testing RFID systems and methodical approaches
for testing are needed.

This thesis presents a novel methodology for the system level test of RFID applications. The
approach called ITERA, allows for the automatic generation of tests, defines a semantic model
of the RFID system and provides a test environment for RFID applications. The method
introduced can be used to gradually transform use cases into a semi-formal test specification.
Test cases are then systematically generated, in order to execute them in the test environment.

It applies the principle of model based testing from a black-box perspective in combination
with a virtual environment for automatic test execution. The presence of RFID tags in an
area, monitored by an RFID reader, can be modelled by time-based sets using set-theory and
discrete events. Furthermore, the proposed description and semantics can be used to specify
RFID systems and their applications, which might also be used for other purposes than testing.
The approach uses the Unified Modelling Language to model the characteristics of the system
under test. Based on the ITERA meta model test execution paths are extracted directly from
activity diagrams and RFID specific test cases are generated.

The approach introduced in this thesis allows to reduce the efforts for RFID application testing
by systematically generating test cases and the automatic test execution. In combination with
meta model and by considering additional parameters, like unreliability factors, it not only
satisfies functional testing aspects, but also increases the confidence in the robustness of the
tested application. Mixed with the instantly available virtual readers, it has the potential to
speed up the development process and decrease the costs - even during the early development
phases. ITERA can be used for highly automated testing, reproducible tests and because of the
instantly available readers, even before the real environment is deployed. Furthermore, the total
control of the RFID environment enables to test applications which might be difficult to test
manually.

This thesis will explain the motivation and objectives of this new RFID application test method-
ology. Based on a RFID system analysis it proposes a practical solution on the identified issues.
Further, it gives a literature review on testing fundamentals, model based test case generation,
the typical components of a RFID system and RFID standards used in industry.
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1 Introduction

This chapter is concerned with the motivation, explores the research gap and presents the

research questions derived from it. Subsequently, a novel approach for testing RFID applications

is proposed and the objectives of the research are defined. Afterwards, the research strategy

and the research method used during the work is described. Finally, a outline of this thesis is

given.

1.1 Introduction into the Research Topic

New markets, increased volatility, globally operating market participants, fast-moving sales mar-

kets, customer-specific products and demanding manufacturing processes require more flexible

and responsive production systems, logistics and employees. At the same time, it is important to

maintain the same high level of productivity and quality. In response to these developments, the

complexity of industrial processes has increased sharply and continues to increase continuously.

In this context, the question arises as to what the production work of the future will look like?

Current developments, such as the “Industry 4.0”, promise new paths to keep up with the new

demands. Industry 4.0 is a term that goes back to the German Research Union and a project

of the the Federal Government’s High-Tech Strategy [4]. At the same time other countries have

established similar names, whose goals are largely identical but not always the same (e. g.

“Industrial Value-Chain Initiative” in Japan or “Industrie du futur” in France).

The technical background of Industry 4.0 is provided by intelligent and digitally networked

systems. Through intelligent systems, processes between machines should be autonomous and

self-organized. By networking or connecting them, it is possible to optimize not just one pro-

duction step but an entire value-added chain and, hence, keep up with the afore mentioned

challenges.

Industry 4.0 is based on four pillars:

• Networking:

Machines, devices, sensors and people communicate with one another.

• Information transparency:

Sensor data extend classical information systems to create a virtual image of the real world.

1



1 Introduction

• Technical assistance:

Assistance systems support people with aggregated, visualized and understandable infor-

mation to help them to make solid decisions and solve problems faster. In addition, people

should be physically supported at tiring or dangerous work.

• Decentralised decisions:

Cyber-physical systems (CPS) should make decisions autonomously and only transfer tasks

to higher authorities in case of serious problems or disturbances.

However, challenges arise not only in the production processes, but also in the IT systems

managing these and in the way data is gathered, since this establishes the basis on which these

systems decide. One of the ways to capture data is the automatic identification of objects.

In many areas of today’s life automatic identification technology plays an important role. It

allows to identify persons or goods and is necessary to ensure quality, security or improve speed

and reliability of processes. Especially in traditional domains with a lot of competition, like

distribution and logistics, automatic identification systems enable the processes to be more up-

to-date, reliable and cost efficient.

The identification systems frequently used in the logistics sector are the well-known barcode

systems, although they are limited in their use: One of the biggest issues is the need of a direct

line-of-sight to read the data stored on the barcode label attached to the object. Furthermore,

the fact that data stored on a barcode cannot be altered any more, prevents agile business

processes and “smart” products. Beside, its limited data capacity also environmental influences

like physical forces, e.g. scratches or dirt, prevent the correct reading of the stored data. Thus,

there is a strong need for a new technology.

RFID [2] was introduced to overcome shortcomings of these prior systems. RFID technology

uses radio waves to identify objects. The use of radio waves brings several advantages to the

automatic identification process, e.g. a direct line-of-sight is not needed any more. Unlike

optical systems (like barcode), radio waves are capable to penetrate materials. This allows for

the detection of goods even if they are contained inside a box or a container. Even further,

reading over large distances and identification of many items at once (bulk-reading) is possible.

Because of these enormous benefits, it is not surprising that the use of the new technology can

be found in many realms of life and in a wide variety of applications. Today, RFID is used

to optimize processes, improve traceability, ensure authenticity, enable automatic warehouse

management or simplify access control.

With the upcoming demands in the production of the future, RFID is a cornerstone, with it

capabilities of identifying goods without human interaction, bulk reading and no need for a line of

sight. But also many approaches in the context of Industry 4.0 require autonomy of the systems,

autonomous action, knowledge of one’s own position and the position of the surrounding objects.

The communication between the product (e.g. workpiece) and the production plant is part of

this future scenario: the product itself brings its production information in machine-readable
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form. On the basis of this data, the product’s path through the production plant and the

individual production steps are controlled. Another example, where it can be used beneficially

are “smart refrigerators”, which are intelligent systems with embedded computation and RFID

readers, capable to order for themselves or at least detect when they are empty and send a

message to inform that they need to be refilled. For this reason, hardly any other technology is

as suitable as RFID (Radio Frequency Identification) for realising future challenges as outlined

above.

Nevertheless, the use of radio technology brings disadvantages as well, one is the sensitivity to

environmental influences. This leads to the necessity to have robust systems and testing methods

for both physical and software layers, to ensure the quality and reliability of the identification

process. However, this data capturing process still remains error prone, even though the basics

of RFID technology are available since the early 50’s. The technology itself evolved over the

years and research efforts increased, but many questions still remain open. Until today, there

are only a few publications about testing RFID systems. The available literature mainly focuses

evaluating performance aspects of RFID middleware or on testing the physical layer. But RFID

applications, which are essential for providing meaning to the gathered RFID data, have not

been considered, yet. Therefore, this work tries to solve the question if it is possible to define

a methodical approach on testing these applications. Additionally, it composes itself to provide

a solid model to describe the environment, improve the efficiency of test case design and test

execution for RFID applications and its infrastructure.

1.2 Problem Statement

Although RFID already exists for many years, it is still gaining momentum and strives to

compliment or substitute the legacy identification systems in the mid and long run. Today,

big companies like Wall Mart, Target, Best Buy, Department of Defence (USA) [5] and Metro

AG, Kaufhof, Gerry Webber [6, 7] are already using RFID in their supply chain and many

others are currently implementing or evaluating RFID systems for their needs. But small and

medium sized enterprises (SME) are still struggling to adopt this new technology into their

business environment. One of the main reasons for reluctant adoption by SME’s is the immense

investment necessary, which is significantly determined by the related software and the cost of

the RFID tags (item-level) [8].

RFID based systems are mostly highly customized systems, perfectly aligned to fulfil the specific

business needs. The software development process is, therefore, a very customized process

and repetitive for every RFID project. Sometimes this process includes a variety of sensors

and complex design decisions. The customized nature of RFID software raises the need for a

specially tailored software test, which itself is a costly process. However, many RFID projects,

especially, in small and medium sized businesses, already struggle with the economical value of

the RFID solution. This emphasizes the need for cost savings, which might be supported by an
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efficient test methodology. In addition, one of the main drivers for successful RFID projects are

comprehensive system tests [9].

Other obstacles also prevent the technology to be adopted in industry. The following list high-

lights some of the currently existing issues:

Cost for testing and development - In general the costs for software are distributed over

planning, development and testing, while testing takes up to 50% of the overall costs [10]. In

accordance to the World Quality Report 2017-2018 [11] a continued demand in finding efficiencies

at every level of quality assurance and testing is desperately needed. Especially in regard to the

digital innovations like the Internet of Things (IOT), the authors predict a increase of testing cost

up to 40% in 2019. To lower the effort in developing RFID applications it is important to find a

standardised and more sophisticated way of testing, than the manual techniques currently often

used in industry. This would allow for reducing the costs and improve the overall development

process of RFID applications.

Manual testing - A serious problem of today’s practical testing is that most systems are still

tested manually [11]. RFID systems are no exception. However, the testers of these systems are

usually highly trained people, able to identify problems by using their broad in-depth experience

with RFID. Insufficient knowledge transfer capabilities cause enormous efforts for testing, unre-

producible tests and exploding costs. Many of today’s practical RFID testing is unsystematic,

which can lead to an erroneous and costly test process. Despite the costs, it is also too time con-

suming to repeat tests on that basis. When it comes to automated testing, reproducible tests

are not feasible without a virtualized environment within realistic time and cost constraints.

Additionally, it is expensive to fund a dedicated physical RFID test environment.

Change of processes - Most RFID systems are composed of RFID readers and an additional

layer called RFID middleware. Many merchandise management systems, in which barcodes are

used for identification, do not record goods individually but in groups. The electronic product

code of common barcode systems, such as the Global Trade Identification Number (GTIN)

formerly known as Electronic Article Number (EAN), consists of a prefix, a check digit at its

end, a manufacturer code and one product group identifier. With RFID, goods can be uniquely

identified, meaning in addition to the product group identifier it contains a unique serial number

for the item [12]. This not only changes the structure of the warehouse database, previously

aggregating products of the same type, but also often results in a change of the entire process

in the company [5]. So, the introduction of RFID changes the IT systems [13, 12, 14] and in

general requires them to be re-tested.

Increased complexity - A reason for the delayed adoption of RFID systems is the increased

complexity and change of the underlying business processes. This can be seen as a barrier espe-

cially for SME companies. A comparison of RFID systems with Cyber-Physical System (CPS)

[15] shows, that RFID systems can be treated as a subset of CPS’s. Therefore, RFID inherits

the same obstacles from the underlying physical processes. E.g. the continuous progression of
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physical processes, like movements of goods, are computed by computational systems. But the

implementations of the underlying business processes are usually not able to handle continuous

and truly parallel processes [16, 17]. As a result the complexity of the application is significantly

increased by the introduction of RFID systems. The increased complexity can influence software

quality aspects negatively. Hence, a test methodology taking the challenges of these systems

into account is needed.

Robust and fail-proof applications - RFID technology promises to increase the level of

visibility and automation throughout the supply-chain [18], but also implies that automatic

identification and tracking needs to be fault tolerant. One of the biggest benefits of using

RFID is the reduction of labour costs [7]. However, the failures in autonomous automatic

identification systems without human interaction are highly dangerous, because their effects

are usually detected late and lead to missing information. E.g. product movements have not

been recorded and, therefore, the stock information of the warehouse management system is

incorrect. Hence, identification systems increase the demand for robust software applications

with high quality.

Variety of RFID applications - The broad spectrum of RFID application areas, software and

hardware makes it hard to find a unified methodology for testing. For example, RFID is used

with various basis technologies, e.g. High Frequency (HF), Ultra High Frequency (UHF) and

microwave, where each frequency struggles with different physical challenges. A harsh physical

environment with lots of interference, significantly influences the read rate of RFID readers.

Hence, the input of software applications is influenced and it needs to be robust enough to cope

with these unreliable reads of physical processes. Further, the different application classes, e.g.

logistics, access control, billing etc. additionally impair the chances to find a model suitable for

all these systems. Nonetheless, software tests emphasize different test objectives. This leads to

different tests for functional testing, performance testing or robustness testing, to only name a

few.

Software and physical challenges - Additionally, technologies based on radio waves - such

as RFID - are heavily affected by the physical environment. The propagation of radio signals

strongly depends on the physical environment, which, in turn can cause unreliable read rates.

Moreover, the environmental effects or the placement of tags on objects can change over time and

are hard to predict or even to calculate. Hence, testing the reliability of the involved software

systems is important. But there are also challenges for the RFID software in particular. Since

RFID readings are continuous (at least can happen at very short intervals), the RFID reader

will repeatably report all tags, that it senses at every time epoch. This needs to be addressed

by the involved software applications in form of applying filters, aggregation and some times

even more sophisticated methods like Complex Event Processing (CEP) or Artificial Intelligence

(AI).

Missing literature on testing RFID applications - The work is diverse and deals with

different aspects of RFID systems, e.g. how RFID functionality can be distinguished in different
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service sets [19], how the management and monitoring of these systems could look like [20], how

testing of the air-interface can be done [21], how the interference of radio fields can be tuned

[22] or how an integrated development environment could ease application programming [23].

Despite RFID technology being broadly discussed in literature since 2000 and the sheer amount

of recent research in the area of RFID, methodical approaches on testing RFID applications

have not been considered, yet. The few publications existing on testing RFID [24, 25, 26, 27]

focus on performance evaluation, in particular for RFID middleware. Further information on

literature and related work can be found in Section 2.3.5. However, common to all the research

work is that none of the approaches enable software testing of earlier development stages or on

higher levels of RFID applications.

To summarize the challenges, current RFID projects struggle with the following problems:

• methodical approaches to testing RFID applications are still missing

• manual testing is still state of the art and can only be carried out with immense time

investment

• tests are not reproducible due to the changing physical environment

• system tests can only be performed after deployment and thus result in a late test phase

• automatic identification technology needs to be fail proof (reliable / robust)

In conclusion, existing software testing techniques, test tools, test processes and test methodolo-

gies have to be evaluated in order to determine if their use is adequate for the special needs of

RFID software development. A sophisticated environment for testing must be either determined

or developed where the application development can take place with dedicated RFID testing.

RFID readers need to be virtualized so that the application developer can start the software

development before the RFID infrastructure is deployed. Additionally, on larger development

teams it is crucial that they do not conflict with their team members, which can be caused by

configuring the limited amount of hardware differently.

To address the identified issues, testing is of special interest for RFID systems. But testing

increases the development effort and overall costs of the software, contrary to lower the financial

barrier. Thus, efficient solutions for testing, especially for RFID systems with high automation

potentials, need to be found.

For efficient test automation, a framework must provide three core capabilities: describing sensor

input, deriving artificial sensor data, and injecting data into the tested application. Model-

based testing promises to lower the expenses through easily comprehensible test descriptions,

simplicity in building and modifying the models and in particular though automation of test

case generation. A model-based approach also increases the level of abstraction, which leads

to incomplete information and makes it hard to automatically extract test cases. Hence, the

challenge is to find a well balanced solution addressing the afore mentioned problems.
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This work defines a methodical approach on testing RFID systems. Additionally, it provides

a solid model to describe the environment, improve the efficiency of test case design and test

execution for RFID applications.

1.3 Research Question

The general research question is, how to efficiently test RFID applications in a repeatable and

controllable (especially for the environment) manner? In order to answer this question, typical

challenges and the consequences thereof need to be considered, e.g. the implications of missed

tag reads and which data is suited for testing different scenarios.

The development of a better testing methodology for RFID applications, which addresses the

above mentioned issues, raises the question: “How to define a test methodology for RFID

software development?”. This question can be decomposed further:

• How can RFID applications be tested in general?

• Is there a systematic way of choosing test cases?

• How can RFID applications and their input be described in regard to testing?

• How to simulate the interactions between the actors of an RFID system and the Software

under Test (SUT) to allow automated test execution?

1.4 Proposal and Objectives

The basic concept to solve the above mentioned questions is a methodology based on a virtual

RFID environment that enables developers to create efficient, transparent and reusable auto-

mated tests even at very early stages of application development. Furthermore, using virtual

RFID devices helps to reproduce tests in a defined environment, saving time and increasing

quality of the application.

1.4.1 Proposal

The idea of the novel approach proposed in this thesis is to capture a RFID system’s infras-

tructure and additional attributes of the system in regard to the test objectives in a model. To

allow for an easy integration into development processes, it is based on the commonly known

Unified Modelling Language (UML) [28]. The way the models need to be created is supported

by a methodology. For this the requirements of the Software Under Test (SUT) are analysed,

use case models are created and successively refined with test related information. Afterwards,

test cases are generated using these models, enriched with corresponding test data. The re-

sulting tests are used as inputs for a application specific tailored test execution framework and
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supported through a virtual environment of RFID devices. Finally, the virtual environment is

instrumented by the tests generated in this way and the application is evaluated with regard to

its correct functionality. Figure 1.1 shows a schematic model of the approach proposed.

Figure 1.1: Schematic model of the approach

To lower the extra investment for dedicated RFID devices used for testing and enable easily

repeatable test environments, this approach uses an open source virtual RFID framework [29],

capable to emulate virtual RFID devices. The use of a virtual framework also allows to generate

input for the RFID middleware and RFID application in an automated and repeatable manner.

The emulation of the RFID devices is also suitable for black-box testing and helps to cope with

the different vendor-specific RFID equipment through abstraction.

Unlike other approaches [26, 30, 31], this work focuses on testing functional aspects of RFID

applications. It is intended to be used for system testing and only requires the specification as a

prerequisite. As a basis it borrows concepts from black-box testing [10, 32], as usual for system

level testing, combined with model based testing techniques [33, 34]. It defines three different

types of models, which cover the required data for testing. The models themselves are kept

simple, because each model only covers a few well-defined aspects. An accurate description of

the RFID system under test is achieved through partial linking of these models. This keeps each

separate model comprehensible, whilst although allowing to automatically extract test cases

for execution. It reduces the efforts for building test cases, as it makes use of UML, which is

commonly used in software development and thus does not require additional training. Costs for

the test set-up are reduced by using a virtual RFID framework, which allows to execute results

of the model extraction. Using models to build the test cases, in combination with instantly

available virtual readers, speeds up the test creation and enables faster development and test
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cycles - even during the early development phases. The flexibility for adjustments of test cases

and early testing is an important factor for agile methods especially.

To deal with the challenges discussed in Section 3, different aspects of the approach need to be

considered:

Test setup and RFID environment - One approach to testing functional aspects of software

is to provide input data and evaluate the resulting actions of the SUT, commonly known as

black-box testing. In an RFID system the input data consists of RFID events, which are the

result of RFID tags located in the antenna’s field of sight. Once RFID events are generated,

the events are processed by the middleware and finally handed to the RFID application which

executes the business logic.

In today’s practical testing the RFID events are produced by persons moving RFID tags through

the readers field of sight. The resulting effects on the application are then manually evaluated.

This procedure leads to an enormous time effort for the tests, where additional tests significantly

increase this effort even more. Additionally, the RFID devices are already cost intensive, and

building an additional RFID environment for system testing purposes introduces further costs.

With many developers and testers trying to access the same physical RFID devices at the same

time, it is almost impossible to restore the same test environment again. This is a result of

physical interferences and effects on the air interface (radio) which are hard to measure and

non-deterministic.

Model-Based Testing - Model Based testing is a well known approach to systematically

identify test cases and can therefore improve the test process. Here models are used to decrease

the complexity of test case design and allow a simpler description of the system by introducing

a higher level of abstraction. Because of the abstraction, the model covers the system and its

specification only partly. Additionally, these models often lack important information, essential

to generate executable test cases. Increasing the model’s level of detail leads not only to higher

costs during the development of the model but also increases its complexity and the risk of

introducing errors.

Modelling Language and Domain Model - UML is used in this approach to allow for the

use of domain specific terms in the models and as a basis for the models itself. UML also nicely

integrates into most software development processes, since it is already used in many disciplines

of today’s software engineering. Therefore, the effort to set up the models for this test approach

is minimized through the already existing knowledge of UML. The created artefacts may also

be used in other parts of the development process.

This approach uses three different model types: the Domain Model, the Environmental Model

and the Process Models. The Domain Model covers all terms used in the domain, allows to define

application specific constrains and contains the relationship between objects. The Environmental

Model captures the physical layout and processes and, thus, provides essential information on

moving routes and timing behaviour. The Process Models cover the requirements of the software,
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the business processes surrounding them and are used for mapping the input data and expected

outputs of the SUT. These are the most important models of the proposed methodology for

testing RFID applications and are used to automatically extract the test cases. To achieve this,

each Process model is refined in several steps and then transformed into an intermediate form,

representing a abstract test case. Additional parameters from the other models are extracted

and used to complete the abstract test cases which are transformed to executable test code

eventually. The resulting tests are then executed by the test automation framework, consisting

of a virtual RFID environment and application specific drivers. Finally, the test results are

evaluated using the expected outputs of the SUT specified in the tests.

1.4.2 Expected Contribution and Goals

The aim of this work is to contribute to quality assurance methods of the SUT and thus, to

the reduction of failures in complex, application-centered RFID systems by means of a new,

systematic test method - ITERA. RFID systems are strongly influenced by their environments

and usually communicate with RFID tags in this environment via error-prone processes. There

are currently no specialized systematic approaches for this system type that support a thorough

functional test. However, the growing importance and complexity of RFID systems must also

be taken into account in the test. The core contribution of this dissertation is threefold: A

semantic model which allows to describe the RFID system and the application’s requirements, a

methodology and guideline for modelling test cases for RFID applications and a test environment

for automated test execution.

This thesis has the following goals:

Design of an RFID specific test model - Systematic creation of an system model as a

basis for test case modelling, which focuses on the properties of a system, that are relevant for

testing and at the same time forms a technology-independent basis for further processing into

automated test cases. Beside the systems models (e.g. UML class models, UML behavioural

diagrams) an additional meta model to capture the test specific details and its environmental

factors is developed. The successively refined systems models combined with the developed meta

model build the the basis for the transformation of abstract test cases into concrete test cases

and allow for automatic test execution.

Method for generating RFID test cases - For the automatic model-driven generation of

test cases from artefacts of the system design, a method for test case generation is developed.

Generating test cases from artifacts in the system design requires careful modelling, but in

contrast to manual test case creation can ensure that critical components are not neglected.

Method and Environment for automatic execution of RFID based test - A method

and accompanying tool support is being developed for the automatic execution of tests and the

generation of test reports. The execution of test cases is time-consuming and prone to errors.

Automation makes the process reproducible, safe and economical.
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1.4.3 Success Criteria

To evaluate the resulting test methodology, the following objectives need to be reached:

• overall the method needs to provide the possibility to model functional tests

• set of approved test methods for functional testing and robustness evaluation

• the resulting model must be able to express all test relevant aspects as system-internal,

physical, interaction and contextual information

• the requirement specification must be sufficiently formalised or at least as formal as possible

to allow for the derivation of test cases, generation of executable tests which are supported

by the test environment

• increasing the efficiency of the test process with a high degree of automation

• to ensure that users can validate the requirements to the greatest extent possible, the

resulting model must allow the derivation of user-friendly views.

1.5 Research Strategy and Methodology

In order to answer the formulated research questions and achieve the identified goals, the research

has been carried out in five phases:

1. Review of literature and existing approaches for testing RFID application

In a first step, relevant preparatory work is identified on the basis of a literature analysis. In

order to gain a basic understanding of today’s software development and quality assurance,

we first examine the typical software engineering process, followed by software testing

techniques used in modern software development. We also deal with the basics of RFID

technology, as this is the main focus of this work. Subsequently, we conduct a critical

examination and discussion of the relevant work in the field of test case generation and

testing of RFID systems. Finally, we will explain what contribution the related work has

made to the requirements for testing RFID software.

2. Analysis of typical RFID Systems

Through an analysis of the RFID system and its components challenges are examined.

We identify typical sources of error and suggest how these can be taken into account for

testing. We also investigate the strong spatial and temporal relation of RFID data and

derive a first step into a temporal model that takes this into account. Subsequently, a test

environment will be sketched that meets the findings of the analysis.

3. Development of a methodology and suitable models

The focus of this work is on the development of a methodology for creating test models.

The method used is based on reference modelling, which later enables the reuse of the
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developed model as the basis for a customized model that can be used in different domains

and applications. It includes the formal specification of semantics for RFID systems, the

creation of models that can depict the environment, the processes and the attributes to

be tested. As well as the systematic derivation of test cases from these models and the

development of a test environment in order to execute and evaluate the resulting tests.

4. Identification of use cases and feasibility study of the developed method

This involves applying the method to various application scenarios. The goal is to assess

the universality and demonstrate that the developed method is flexible and allows a broad

spectrum of RFID applications. The selection is based on widely used examples of various

commercial applications.

5. Validation of the methodology

The validation shows that the methodology presented here is applicable and assessable

with common metrics that correspond to the state of the art for testing software.

1.6 Thesis Outline

The work conducted during this thesis is structured in six chapters:

Literature Review and Related Work on Testing and RFID - An overview about RFID

and testing fundamentals is given in Chapter 2, as well as related work in the area of software

testing, model based testing and RFID testing.

Challenges of RFID Systems and Testing Requirements Analysis - In Chapter 3 the

structure of typical RFID systems, their components and the interactions between the individual

parts is explored. Furthermore, the challenges of using RFID and the implications for software

testing will be considered. The knowledge gained here will later serve as a basis for creating

appropriate tests and for designing robustness tests.

ITERA Test Methodology and Model Based Testing of RFID Applications - A model

based specification technique to cover different aspects of RFID software in regard to application

testing is introduced in Chapter 4. The formal definition, notation and their semantics are

introduced in the first part of this chapter. Therefore, an abstract model that describes RFID

system is introduced. The definition of time appropriate for RFID systems is followed by a

set-based description of RFID readers and the corresponding RFID events. The same semantics

are then used to describe the states of RFID applications.

The second part of this chapter presents a test methodology to generate test cases. For this pur-

pose use cases are identified and analysed. Each use case is refined by activity diagrams, which

are used as a basis for systematic test case derivation. The combination the activity diagrams of

the use cases, the set-based semantics and the meta model allow to generate executable tests for

RFID applications suitable for automated testing. Additionally, the transformation of modelled

12



1 Introduction

aspects of the RFID application to tests, fulfilling the defined coverage criteria is shown and

considerations for robustness testing are introduced.

ITERA Test Execution Framework - In Chapter 5 a framework to execute the tests ex-

tracted from the test model of the RFID use cases is presented. It is centred around a simulation

environment with virtual RFID devices building the base of the test harness. Additionally the

different parts of the test execution framework are explained.

Evaluation of the ITERA Test Methodology - An evaluation of the proposed solution

and methodology is performed in Chapter 6. The validation of the method with regard to its

practical benefits is the subject of this chapter. The evaluation is concerned with assessing the

methodology on the one hand and the extent to which it meets RFID specific requirements on

the other.

Contributions and Future Work - Chapter 7 summarizes the original work contributed to

the body of knowledge and suggestions for improvements and future work are given.
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2 Literature Review and Related Work on

Testing RFID

In this chapter an overview about RFID and testing fundamentals is given, as well as related

work in the area of software testing, software modelling, requirement analysis and specification.

Common techniques of software testing have been used and incorporated in this work for RFID

application testing. Therefore, the used terms and some principles are explained first (Section

2.1). An overview of the general Model Based Test process, the state of the art and a thematic

classification is discussed in Section 2.2. In order to test RFID systems, it is necessary to under-

stand the fundamental structure and the general functionality of RFID systems, the products

offered on the market, as well as standards used in practice which is presented in Section 2.3.

Section 2.3.1 highlights the basic components of an RFID system, explains the functionality

of RFID middleware and RFID application, and provides a list of today’s RFID hard- and

software. The components of RFID systems are often using standards for communication, which

are presented in 2.3.3. Additionally, an evaluation of the industry standards is conducted and

presented. The knowledge of these standards allows to identify starting points for testing and

test execution and provides a better understanding about possible error sources. Finally, related

work in the area of Testing RFID Systems is presented in Section 2.3.5.

2.1 Testing Fundamentals

According to Myers [10], one of the most important questions in computer science is: “How do

you ensure that all of the software you produce does what it was designed to do and, just as

important, does not what it isn’t supposed to do.”. Even though, the first version of his book

was published in 1979, testing still plays an important role in any software development process.

However, the central difficulty of testing is that it is almost impossible to ensure that there are

no errors left. The testing of even simple programs is not an easy task. Exhaustive testing, such

as demonstrating that there are no errors present any more by executing it with all possible

inputs, is generally impossible. Moreover, exhaustive testing is very costly and therefore only of

theoretical importance. As a result, economic considerations become important for testing, as

testing will never cover all aspects. However, methodical approaches, which try to structure the

test systematic can help to reduce the efforts for testing while still covering relevant parts of the
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input domain. Furthermore, by test automation also economic aspects of software testing can

be addressed.

From a critical point of view, the development of computer software, especially for larger projects,

can no longer be captured in its entirety by the human brain. The growing complexity of systems

and the inability of the brain to correctly grasp and control this complexity inevitably causes

errors. According to this view, a software error is always based on a faulty understanding of

program behaviour by the programmer, tester or reviewer: the human interpretation deviates

from the actual meaning as calculated by the machine.

The main reason for conducting tests on a software product is to improve confidence in the quality

and fulfilment of the system requirements. Errors usually occur during software development.

A developer makes mistakes for many reasons. A mistake can be a conceptual error due to

misinterpretation, simple distraction and much more. Furthermore, errors can arise at every

level of the software development, from requirements engineering up to the implementation and

integration of the software application.

2.1.1 Integration into the development process

Testing is an important aspect in all currently accepted software development methodologies (V-

Model, Spiral model etc.) in terms of quality assurance and detection of undesirable behaviour

in the implemented software or component. Basically, testing can be used for both, validation

by users and customers in the context of the evaluation of prototypes, as well as for verification

of fulfilment in accordance with a given specification. Testing is therefore closely related to the

description of requirements and boundary conditions of the intended future use of the program in

the early phases of software development. On this basis, tests allow the observation and analysis

of the software’s behaviour on planned and unexpected inputs. As described above, tests of

software are the de-facto standard in practice to detect unexpected behaviour by comparison

with the intended behaviour.

There are two basic problems to overcome when testing software:

• Variety of Faults

Incorrect behaviour can be experienced in different forms that require different tests. A

system may not be capable of doing what is expected, e.g. not delivering the expected ex-

penditure or displaying a stock list incorrectly. However, it can also do unexpected things,

such as crashing the entire system, e.g. by undefined input or processing unintentional

events. Depending on the involved components of a system, different aspects such as data

stored in a database, communication with subcomponents, execution of the program logic

or the response of a user interface must be checked. However, the diversity of possible

faults makes it very difficult to assess the complete behaviour of a software system with

an acceptable amount of tests.
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• Complexity of Software

Software systems are usually complex so that not every possible execution sequence can be

explicitly checked for incorrect behaviour. In order to ensure the best possible coverage of

the test space, often metrics are used in static program analysis a type of white-box test, in

order to reduce the number of test cases. Within the framework of so-called black-box tests,

a series of methods are used to generate typical permitted inputs and particularly error-

prone boundary cases as representatives for all possible inputs. However, these methods

have to be applied correctly to reach a good level of quality. The tool support for these

procedures, such as the generation of typical user interactions when testing requirements,

is just as indispensable as a highly automated test execution.

2.1.2 Testing

The activities of the software development process, which focus on ensuring the quality of a

software product, are often mistakenly summarized by the term testing. In a broader definition

of this term, these include planning activities such as the development of a test strategy and the

creation of test plans up to the actual testing, which is the execution of the software under test

with different stimuli.

According to the Myers [10], testing is defined as:

“Testing is the process of executing a program with the intent of finding errors.”

This is similar to the IEEE “Guide to the Software Engineering Body of Knowledge” [35], where

testing is defined as:

“Testing is an activity performed for evaluating product quality, and for improving

it, by identifying defects and problems.”

However, since there are various definitions available in literature, in “The IEEE Standard

Glossary of Software Engineering Terminology” [36] testing is defined more generally without a

explicit focus on finding errors as:

“The process of operating a system or component under specified conditions, observ-

ing or recording the results, and making an evaluation of some aspect of the system

or component.”

In contrast to the definition of Myers et al., the standard glossary of the IEEE must be differ-

entiated to the extent that this refers to a value-neutral assessment of the tested system. Myers

et al. argue that humans act in a target-oriented manner and that the achievement of the goal

is extremely important in the human value model. This effect also occurs when testing software

by subconsciously selecting or creating test cases or test data that are unlikely to detect faults

in the software. Myers et al. assume a psychological paradox here, because the value-adding

activity of software development is the creation of a correct system and not the creation of tests

that do not find defects.
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Patton [32] uses a similar definition of the term testing and postulates quality criteria for a

software tester:

“The goal of a software tester is to find bugs, find them as early as possible, and

make sure they get fixed.”

Targeting early detection of defects is also a more prominent goal here than mere neutral obser-

vation and evaluation of the specification conformity of software. But even though that these

definitions clarify the term they do not propose concrete tasks or processes how to test the

software.

Testing is in most cases aimed at finding faults in a program. Tests can be used to prove that

a program for does not work certain inputs under certain boundary conditions, i.e. that it

contains an error. Since the input space can be very large even for small programs, the program

cannot usually be tested with all possible inputs under all possible conditions for reasons of time

and cost. Due to its incomplete character, testing does not prove the correctness of programs.

Rather, testing increases confidence in the correctness of the program if no errors are detected

during execution of the test cases.

Very well known in this respect is the statement of Edsger Dijkstra in [37]:

“Program testing can be used to show the presence of bugs, but never to show their

absence!”

According to the definitions above, the only purpose of testing is to find errors. If there were

no errors, no tests would be necessary. However, due to the complexity of most systems errors

are inevitable, because the human brain does not capture the complexity well. By dividing a

system into components, this complexity can be reduced to a certain degree that is controllable

by humans; however, the complexity problem remains intact during the definition of the relevant

test cases, since the system must be considered as a whole. For this reason, the test case selection

is one of most important steps for the test and, hence, the main focus of most test methods. In

many cases, if not even in most cases, this is a manual activity. With everything that goes along

with it, such as possible errors in the test that are caused by missing or wrongly interpreted

requirements or by a faulty test case description or an inexperienced tester.

In software development, a distinction is made between different types of software defects [38]:

• A mistake (error) is a mental process that leads to faults.

• A fault (software error, defect) is a deviation between an intended and an actually imple-

mented software product. Every mistake inevitably leads to errors.

• An error (error condition) represents a deviance between the intended and the realized

internal state, e. g. an incorrect variable assignment. A fault can lead to an error, but

does not have to.

• A failure (failure of the program) is a deviation between the intended and the actual output

of the program. An error can lead to a program failure, but does not have to.
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Within the scope of this work, the term testing is used as part of the software process, which

includes all necessary activities to provide a reproducible validation of the software product’s

compliance with its specification within the framework of a defined test strategy. The ITERA

method, developed in this thesis, aims to improve the quality of RFID applications in different

ways.

Inconsistencies between the requirement specification and the test model can be identified and

eliminated when the test models are created. This minimizes the risk that mistakes are made

during the implementation of the requirements. However, the main focus is on providing testable

models, test case generation and the detection of errors by executing the test cases created with

this method and thus reducing the probability of undetected failures.

2.1.3 Testing Terminology

To clarify the terms used in this work, the definitions from [36] have been adopted:

test “An activity in which a system or component is executed under specified condi-

tions, the results are observed or recorded, and an evaluation is made of some aspect

of the system or component.”

test case “A set of test inputs, execution conditions, and expected results developed

for a particular objective, such as to exercise a particular program path or to verify

compliance.”

test bed / test harness “An environment containing the hardware, instrumen-

tation, simulators, software tools, and other support elements needed to conduct a

test.”

test case generator/ test generator “A software tool that accepts as input source

code, test criteria, specifications, or data structure definition; uses these inputs to

generate test input data; and, sometimes, determines expected results.”

test case specification “A document that specifies the test inputs, execution con-

ditions, and predicted results for an item to be tested.”

test criteria “The criteria that a system or component must meet in order to pass

a given test.”

test driver/ test engine “A software module used to invoke a module under

test and, often, provide test inputs, control and monitor execution, and report test

results.”

test phase “The period of time in the software life cycle during which the compo-

nents of a software product are evaluated and integrated, and the software product

is evaluated to determine whether or not requirements have been satisfied.”

18



2 Literature Review and Related Work on Testing RFID

functional testing “Testing that ignores the internal mechanism of a system or

component and focuses solely on the outputs generated in response to selected inputs

and execution conditions.”

structural testing “Testing that takes into account the internal mechanism of a

system or component. Types include branch testing, path testing, statement test-

ing.”

2.1.4 Software Quality

The overall reason for conducting software tests is to have confidence in the quality and fulfilment

of system requirements. According to the ISO25010 [1], there are several quality aspects of

software. A distinction can be made between external and internal quality characteristics:

The external quality refers to the fulfilment of properties that can be evaluated by any user

of the software, such as functionality, usability, reliability, availability.

The internal quality is the fulfilment of attributes that can only be evaluated by people who

have insight into the source code of the component. Examples of such features are maintain-

ability, reusability or portability.

Figure 2.1: ISO/IEC 25010 product quality model (source: [1])

Figure 2.1 shows the quality model of ISO 250101 and its classifications of different quality

aspects of software. However, the quality attributes are of different importance for different

domains; for example, high reliability is particularly important for safety-critical control systems,

whereas high availability is likely to have priority for web applications.

Functional test (also requirements-based test, feature test) is the testing of a functional unit

against its functional requirements and thus shows the correctness and completeness against the

specification. This involves checking the intended behaviour from the specification against the

actual behaviour. However, the behaviour of the system should not only be checked in a positive

1ISO/IEC 25010:2011
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sense, but also the counter test (error test, negative test) should be performed to see whether

erroneous scenarios are processed correctly.

A robustness test (also called a negative test, provocation test) is the testing of the system in

case of incorrect inputs, which do not correspond to the requirements, in order to check whether

the application reacts as intended. This can therefore be seen as an extension of the positive

tests. A robustness test is successful when an error message appears or the application responds

reasonably to the error.

The procedures considered in this thesis are aimed at checking the quality features of a RFID

software system in regard to functionality and robustness. These have been identified as im-

portant aspects for these type of applications, since functionality is important regardless of the

application domain and robustness plays an important role as the technical challenges for RFID

(as shown in Chapter 3) cannot always be solved.

Since errors during development can incur high costs, especially when they are discovered in late

stages of software development, two different approaches to assure quality are used in practice.

These can be divided into analytical and constructive methods:

• Constructive quality assurance tries to avoid errors by taking appropriate measures

during development. Methods, design principles, formal procedures, development tools

and process models are often used for this purpose.

• Analytical quality assurance tries to detect errors as early as possible and thus evaluate

the quality of the artefacts produced. Especially all test activities that assess the achieved

quality in comparison to the required quality are used here.

The procedure examined in this thesis refers primarily to analytical measures.

2.1.5 Test Process

A central aspect of software testing is the embedment in a structured procedure when carrying

out the tests. The ISTQB2 offers a test process suitable for the ITERA methodology. The test

process is divided into five steps as described in [39]: Test Planning and Control, Test Analysis

and Design, Test Implementation and Execution, Test Evaluation and Reporting, Test Closure

Activities.

1. Test Planning and Control

Test planning includes the definition of the test strategy and the extent to which the test

is to be carried out. In order to determine the scope correctly, it is necessary to consider

which software components are to be tested and what the concrete test objectives are.

It is recommended to also establish a timetable and determine the resources required to

schedule them. Furthermore, test planning includes sett-up of test metrics and definition

of input and output criteria.

2International Software Testing Qualifications Board - https://www.istqb.org/
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Test control deals with the tracking of tests. Test results are measured and analysed taking

into account the parameters from test planning. Test progress, test coverage and initial

criteria are also monitored and documented. If deviations from the plan are detected, it

may also be necessary to adjust the plan. In practice, test control should therefore provide

feedback to test planning so that the scenarios that led to the deviation can be taken into

account in the future.

2. Test Analysis and Design

The second phase - test analysis and test design - becomes even more concrete. It exam-

ines the test basis; the goal is to create a test specification. In order to obtain valuable

information for the test, interviews are conducted with the developers, users etc. Further-

more, the testability of the test basis and test objects are evaluated and test conditions are

identified. Based on this information, the design of abstract test cases can begin. These

test cases can even be prioritized at this stage. The issue of traceability should also not

be forgotten, i.e. the reference from test basis to test cases and vice versa. However, not

only the test cases are specified in this phase, but also the test environments are described

in more detail.

3. Test Implementation and Execution In the third phase names “Test Implementation

and Execution”, concrete test cases are derived from the test specification, which contains

abstract test cases. If required, these can be combined in test suites. Prioritization from

the previous phase is largely applied to the test cases and a test execution plan is defined.

In order for the tests to be carried out afterwards, the concrete test data must be created

and made available.

Once all test cases have been created, the test execution can start. Regardless of whether

the test is carried out manually or automatically, the desired and actual results are com-

pared in both variants. If deviations occur, the causes must be analysed. Regardless of

whether there are deviations or not, each test case is recorded in detail so that the test

can be reproduced later.

4. Test Evaluation and Reporting After the test follows, the evaluation of the initial

criteria and the report. The main objective is to assess whether the initial criteria are met

and whether further tests have to be carried out. The outcome of this phase is the final

test report, which is distributed to the relevant decision-makers.

5. Test Closure Activities In the final phase, the test end, mainly finalising work is carried

out. The system checks whether all work results have been created and delivered, and

whether any open errors and deviations must be converted into change requests. A very

important point, which often receives little attention, is the documentation and archiving

of test equipment and test environment. These could be important for follow-up projects

and maintenance, but also facilitate the later reproduction of errors.
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The topics dealt with in this dissertation relate in particular to test specification and test execu-

tion. Of course, test planning and evaluation aspects are also taken into account. Requirements

for the test specification are worked out in Chapter 3. The subsequent design of the test speci-

fication is subject of Chapter 4. Finally, the test execution is described in Chapter 5.

2.1.6 Classifications of Test Methods

There exists numerous ways to classify the available test methods. Depending on literature used,

they are for example classified by the granularity of the test object, the sight on the test object

(black-box vs. white-box) and the property to be demonstrated by test validation. In terms of

the test object views, functional and structural methods can be distinguished, whereby hybrid

forms or hybrid tests are also possible. However, they can also be classified by temporal aspects.

Real-time tests detect temporal properties of the test object, such as the reaction time to an

event or the duration of a particular operation. The concurrency test considers the execution

of the test object together with other competing applications or components. The load test

examines the test object with regard to extreme quantities of certain data, the stress test with

regard to extreme quantities of certain events. With UI-testing, the mapping between internal

states of the test object and the user interface is checked. Usability tests address the ergonomic

adequacy of the test object.

As depicted, there exists a variety of approaches to testing, therefore, to only those with a strong

relationship to this work are further addressed in the following subsections.

Testing Methods

Testing of software is well studied and as it would clearly exceed the limits of this thesis, only a

brief overview will be provided. Further details on the techniques can be found in [35, 10, 40, 36].

The broad variety of testing techniques, can be categorized by the type of execution and based on

the creation of test cases. The most obvious way to differentiate the available testing strategies

is by distinguishing between Dynamic Testing and Static Testing (Static Analysis).

Dynamic Testing - Following the definition in [35] dynamic testing is defined as:

“This means that we execute the program with specific input values to find failures

in its behaviour. In contrast, static techniques (e.g. inspections, walkthroughs,

and static analysis tools) do not require execution of the program. One of the big

advantages of (dynamic) testing is that we are executing the actual program either

in its real environment or in an environment with simulated interfaces as close as

possible to the real environment. So we are not only testing that the design and code

are correct, but we are also testing the compiler, the libraries, the operating system,

and network support and so on.”
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In dynamic software testing, executable test objects are executed systematically with the aim

of proving the correct implementation of the requirements. This reveals the effects of errors and

increases confidence in the test object. At the beginning of the test procedure, selected inputs

and applicable outputs are determined based on the specification. After the execution of the

test, these are then compared with each other. Depending on the test objective, a distinction is

made between functional and non-functional tests. Whereby, non-functional tests check quality

criteria such as performance or usability.

For the specification of dynamic tests it is necessary to define both pre-conditions and post-

conditions in addition to the actual input. These conditions describe the test object’s state or

states of it’s environment. These can also include certain values that are expected in a database

or how they have changed afterwards. This way, the tests are reproducible because they can

always be carried out under the same conditions. The test cases, especially input and expected

output data, are usually derived from the requirement specification.

Static Testing - Static testing or static analysis, in contrast to dynamic testing, is carried

out without the execution of the test object. Typical static methods are code reviews or tool-

supported formal methods, where the source code of an application is checked against a set of

formal rules to identify coding errors. As this type of quality improvement often requires the

source code to be available, which is not a prerequisite of the approach proposed in this thesis,

it will not be considered any further. However, static approaches can also be applied on other

documents, e.g. requirements specifications.

A further distinction is often made in literature (see [10, 41, 32]) between white-box and black-

box test procedures.

White-box Testing - White-box testing or logic-driven testing is a testing technique which

examines the internal structure of a software under test. The test data is derived from the

program logic. One example for white-box testing is a control flow oriented approach. A goal of

this technique might be to execute every statement in the program at least once. Often, these

goals are defined in terms of coverage criteria. Depending on the chosen criteria, in practice

problems arise with loops or through the amount of different conditions.

Black-box Testing - Also referred to as functional testing, data-driven or input-/output-

driven testing. Black-box tests, view the software under test as a black-box. The principle of

this technique is to neglect the knowledge about the internal structure of the system and find

circumstances where the software is not behaving according to the specification. Therefore, the

test data used to stimulate the software is derived solely from the specification and not from

knowledge about the internals of the program. However, this makes it hard for developers of the

software to write the test cases, since they already have a understanding of internal processes.

To counter this issue, a principle of Test Driven Development [42] is, that the tests have to be

created before the actual development of the software.
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Grey-box testing - Grey-box testing or glass-box testing is a combination of both testing

techniques explained before. It involves the knowledge about the internal structure of the

program to allow a better way of selecting input data. However, the tests are executed like

black-box tests. Advantage is, that the tester can choose better test cases since he knows about

details of the implementation. This enables to test such things as exception handling, where

internal knowledge of the SUT is necessary.

The subject of this work is the (dynamic) test, in which the system to be tested is executed.

During test execution, also the SUT is executed and stimulated by inputs, especially through

the use of virtual RFID readers, the expected result is then compared through available system

interfaces (e.g. accessing a database). Misbehaviour is detected if the observed output does

not match the expected output. Further, it uses a black-box approach since the test cases are

extracted from the specification, represented by the business processes and additional informa-

tion on the physical layout and timing. No specific knowledge of the concrete implementation

is needed. The models, which are a result from an analysis of the specification, are transformed

to executable tests. However, for the selection of meaningful input data which allows for auto-

matic execution of the test cases generated might need some insight of the implemented system

in order to evaluate the test result (like a database scheme).

A differentiation with regard to the criterion for selecting test cases is more helpful than the

split between the white-box and black-box test: If the selection of test cases is to be based

primarily on the required functional characteristics of the system, this represents a function-

oriented test. If, on the other hand, it is the goal that the set of test cases, the test suite,

is selected in such a way that the internal structure of the test object is covered to a certain

degree, it is a structure-oriented test. This thesis focuses on the function-oriented test. It is

assumed that the inner structure of the implementation of the test object is not known. With

regard to model-based test case generation it should be noted that the structure of the test

model is known and this structure is also included in the test case selection. However, this

model is an abstract specification of the required functionality of the test object. Furthermore,

no connection between the structure of the test model and the inner structure of the test object

is assumed. Thus, from the perspective of the test object, it is a function-oriented (or black

box) test and not a structure-oriented test.

Test Data Selection - Because of the fact that exhaustive testing is often not feasible in

practice, test-data-selection strategies need to be found. This allows to reduce the number of

test cases and leads to efficient testing saving costs and time. According to [35] these strategies

are called “Input domain-based techniques”.

Different techniques can be used to reduce the amount of test data, which is necessary to gain

the maximal revenue out of the test cases. The following list names some of the techniques

described in literature [32, 39]:

• equivalence partitioning

• pairwise testing
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• boundary-value analysis

• random testing

In the context of this work, however, test-data-selection techniques receive only little attention.

The main focus is on determining test cases by structural properties, in particular by analysing

the control flow of activity diagrams. The resulting test cases, thus, already limit the input

domain as they contain conditions, which are reflected by the generated test paths.

Testing Level and System Test

Tests for software systems can be carried out at different levels. Each level assesses different

artefacts of the system to be tested and they are usually roughly aligned to the phases of software

development. However, the characteristic feature is primarily the object to be examined during

the test procedure. Test stages are usually defined by their proximity to the source code of the

system to be tested or to the respective application level. The range of test levels extends from

component tests to integration tests, system tests, acceptance tests and regression tests. A test

stage is a set of jointly performed test activities that can be assigned to specific abstraction

levels of a software system. However, tests at different test levels are not disjoint. A test level

is a characterization of an individual test or an execution suite, not a hierarchical delimitation.

• Module- & Component Test

A module or component is tested against the specification of the module or component.

• Integration Test

The modules are combined into composite units and tested against the specification of the

technical functional requirements and architecture.

• System Test

The system is tested against the specification of the logical system requirement and archi-

tecture.

• Acceptance Test

The system is tested against the user requirements and specifications.

The system test and acceptance test are very similar in their basic structure, but differ in their

the observers. The acceptance test is intended to show the customer that the required functions

have been implemented. The system test is carried out by the contractor and is meant to

demonstrate that the product meets the requirements and is ready for delivery. As a rule, the

acceptance test is therefore usually carried out in the actual operating environment. In contrast

to this, the system test tries to create a test environment that is as close as possible to the

operating environment.

The identification of defects contributes continuously to product quality, which is the reason

testing should be carried out at all system levels as early as possible. The system test is therefore

embedded between the integration test of a module and the acceptance test. This means that

it is a question of viewing at and testing the assembled modules. Accordingly, the system test
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aims to secure the application before it is integrated into an overall system for the first time.

The focus of the proposed test methodology in this thesis is on the system level. For this reason,

system level tests will be discusses in more detail.

The purpose of the system test is to test the integrated system to verify that the specified

requirements are met by the product. The reason for this is that many functions and system

properties only come from the interdependence of all system components and therefore only

become verifiable there. Main objective of the system test is to detect errors before economic

or physical damage occurs, build up confidence in the system, prove the functionality of the

system for certain boundary conditions (requirements) and achieve a specified test coverage.

The basis for system tests are all software requirements, specifications and documents that

have the entire system as their topic. As the requirements can only be verified on the basis

of externally observable behaviour, the SUT is often considered a black box. Therefore, the

system’s inputs and outputs are mainly used to specify the test cases.

In this thesis the test object is the complete system that is executed in a test environment as

close as possible to the actual system environment. The system environment therefore consists

of hardware (RFID reader, RFID tag), software (RFID middleware, application software) and

the network connecting the individual subsystems. Carrying out RFID tests in the real system

environment is a major challenge, as the physical and temporal effects play a major role. There-

fore, an approach based on virtual readers that are very similar to real readers was chosen in

this thesis. The chosen approach does not correspond to the classical system test, but tries to

come as close as possible to a real system environment. When checking the system functions,

the configuration settings of the individual components are also taken into account. The sys-

tem requirements of an RFID application are therefore related to the interaction with reading

devices, functional requirements and the states of the data associated with RFID tags. Since

RFID systems communicate via error-prone air interfaces, the challenge is to create a suitable

test environment.

2.2 Model Based Testing and Test Case Generation

The creation of software tests is one of the more demanding activities of software development.

However, testing is not usually an activity that directly contributes to the progress of a software

development. In order to reduce the cost of creating software tests and at the same time to

increase test quality, technologies for the automatic generation of tests have been researched for

a long time. The goal is to either reuse existing artifacts of the system design, the implementation

or to generate specific tests from abstract descriptions.
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2.2.1 Automatic Test Case Generation

Compared to the actual test, this activity is performed less frequently, but is strongly oriented to

the specification of the SUT and requires much higher cognitive performance. The regeneration

of test cases is usually necessary whenever the specification of the software system has changed

(e.g. adding or removing requirements by the client or iterating the incremental software devel-

opment) or if defects are observed in the operation of a software whose possible cause has not

yet been covered by test cases.

An economic risk of manually creating test cases results from the increasing complexity of the

test code with progressive development of a software product. Therefore, the generation of

tests can help to control of test complexity and to reduce the effort compared to manual test

case creation. To avoid economic damage from defective software, it is necessary to create high

quality test cases with a risk adequate test coverage. Due to the high test complexity of software

systems, this task is demanding for human actors. For example, functional areas of a software

system can be inadvertently overlooked or their significance for the overall qualitative impression

of a software system could be misjudged. In both cases, it is to be feared that defects in the

test case specification will only be recognised late and a correction of the test case specification

will require unscheduled corrective measures.

On the one hand, there is the potential to minimise human error sources by providing technical

support for test case generation. Also software tools supporting a human actor in his work in

such a way that frequent sources of error (e.g. overlooking requirements due to high software

complexity) become less likely. On the other hand, it is also possible to speed up the revision

of test cases by drawing human actors’ attention to areas of the software, where changes in the

specification require adjustments to tests.

Test Coverage Criteria

Testing software systems requires the execution of the SUT under defined conditions and the

interpretation of the behaviour of the SUT in order to draw conclusions about the correct im-

plementation of the system specification. Software systems generally implement more than just

functionality. In order to fully test a software system, all functional properties must be addressed

during testing. However, this is not possible with respect to the problem addressed in this thesis,

since only the RFID-specific properties of the application are considered. Nevertheless, the same

metrics can be applied to the RFID-specific tests.

Coverage criteria for software tests determine which parts (functions) of a software are addressed

by tests. Coverage criteria usually refer to the control flowchart of a software whose nodes

represent individual statements of the source code. Coverage criteria have already been defined

and examined in the scientific literature (see Patton [32], Myers et al. [10], [39]). These define

four different coverage criteria:
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When speaking of coverage in the context of activity diagrams, it is typically about the sys-

tematic traversal and structural coverage of the directed graph that the activity diagram spans.

Thus, the concrete goal is to cover individual (1) nodes (activity or actions), (2) edges (transi-

tion or flow edges) or (3) paths. The latter can be restricted to certain subclasses if necessary.

E.g. (1) simple paths without inner loops, (2) primary paths (corresponding to simple paths

with maximum length) or (3) semantically meaningful predefined paths describing a certain user

behaviour, so-called scenarios.

Testing by covering all paths is a practically or even theoretically unsolvable task, as loops can

lead to an infinite number of paths. Thus, all practicable methods are based on a limited number

of paths. The special constructs of activity diagrams can also prove to be problematic, which

enable to model concurrency using fork and join concepts. The resulting non-determinism, in

relation to the sequence of events (i. e. interleaving) in the I/O behaviour that can be observed

from outside, may lead to a large number of possible constellations that need to be taken into

account during testing. Sometimes, certain sequences of events can also be considered equivalent.

However, these are not easy to identify without having a corresponding oracle, for example.

Statement coverage testing (C0 tests) fulfils a coverage criterion that requires each statement

contained in the code of the software system to be addressed by at least one test case, i.e.

executed as part of the test execution.

The criterion branch coverage, on the other hand, requires test cases for each possible alter-

native sequence of the control flow at each branch. Branch coverage tests subsumes statement

coverage because this criterion necessarily reaches all statements of the code. In the literature,

branch coverage tests are referred to as C1 tests. Usually, this criterion is regarded as a minimum

test criterion for control flow oriented testing.

The path coverage (C2 tests) criterion requires that all possible paths of the control flow

graphs are covered by a test. However, this category is further divided into C2a, C2b and C2c

tests. C2a tests require a complete path coverage where all possible paths are tested. It is not

feasible in practice to cover C2a, because the control flow graphs may contain cycles that lead

to an infinite number of paths. To avoid this, the C2b coverage defines that cycles in the control

flow graph are executed at most twice. The C2c test coverage criterion extends the C2b in the

sense that here coverage is reached when a specified number of cycle passes are performed.

In contrast to the the previous coverage tests, the condition coverage provides a different view

by examining the logical structure of conditional decisions at control flow branches. These are

often composed of several sub-decisions. In the terms of the C3 test, these are broken down into

atomic decisions and evaluated individually to be true or false. Similar to C2 tests, a distinction

is made between C3a (simple condition coverage), C3b (modified condition coverage) and C3c

(multiple condition coverage). Since the individual consideration of the partial conditions often

leads to a combinatorial explosion, in practice a variation of C3b is applied. This variant, called

minimal conditional coverage, requires that each of the atomic predicates and the composite

condition are evaluated to be true and false.
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2.2.2 General Model Based Testing Process

The approach to generate tests from design documents of a software system has been estab-

lished in science as Model Driven Testing (MDT) [48]. The goal is to generate tests from the

same system models from which the implementation is derived to maximize congruence between

system specification, implementation, and tests. Due to the outstanding position of the Unified

Modelling Notation (UML), MDT technologies are usually based on UML models.

Hartman et al. [33] explicitly distinguish the term Model Based Testing (MBT) from MDT.

According to the authors, MDT mainly originated from the Model Driven Architecture (MDA)

of the Object Management Group (OMG) and therefore describes a specific style of the MBT,

which differentiates between platform independent and place-specific test models according to

the concepts of MDA. In contrast MBT, is also applicable when the tester documents a mental

test case design and uses that model for the derivation of test cases.

Although in other literature the distinction between MDT and MBT is not always clear, the

difference between the two methods is often due to source of the used models. Generally,

MDT uses system models which are created for both the development and testing. In contrast,

MBT does not rely on the availability of system models being used for software development.

Therefore, MBT is a more general term and, depending on the interpretation, encompasses a

whole series of concrete techniques, as can be seen in the reviews by Utting et al. [34], Dias

Neto et al. [49] and Shirole et al. [50].

MBT approaches have in common that the tests are not derived from the actual implementation.

Instead, tests are generated on the basis of a specially developed test model, which ideally

comprises only the information relevant for testing. The overriding goal is always that the

(partial) tests can be generated as automatically as possible. This is the main difference to

classic black box testing.

“Model-based testing is the automation of the design of black-box tests.” [51]

A generic process using MBT techniques is presented by Utting et al. [34]. It is based on the

following steps: (1) First, a model is built based on the specification. Then selection criteria are

defined to describe the test suite. These criteria are then transformed to the test specification

to allow the generation of test cases. (2) Afterwards, the test suite is generated based on the

test specification. (3) Finally, the test are run in two stages: (3a) Bridging the gap between

abstract inputs and actual implementation using an adaptor or test driver. (3b) A verdict is

applied indicating the outcomes: “pass”, “fail”, “inconclusive”.

The generation of the required models in the first step should take place independently of already

existing implementation artefacts, so that possible errors can be recognized and no “blind spots”

arise. The second step in the process is important for the quality and scope of the generated

test quantity, since this requires a selection of the tests to be generated. This assumes that

an appropriate selection criterion is available for automation. Selection criteria of this type
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are usually based on a suitable, possibly problem-specific concept of coverage, which in turn is

defined by the used model types (state coverage, transition coverage, def-use coverage).

Often MBT processes can be supported by the fact that (1) implementation details of the system

are unknown, since the system does not yet exist or development artefacts are not available,

(2) the model results in significant simplifications due to a reduction to the essential system

behaviour, (3) many (generated) tests are required, or (4) a suitable model is already available.

Models offer the possibility of consciously allowing non-determinism due to their potentially

high abstraction. It is possible to model an unpredictable choice between several alternative

executions or unobservable state transitions in the SUT [40]. Thus, design decisions such as the

ones that have to be made within the implementation process do not yet have to be anticipated.

However, this can also impact the automation potential of model based test generation.

2.2.3 Unified Modelling Notation

The Unified Modelling Language (UML), specified by the OMG3, is a graphical modelling lan-

guage for the specification, construction and documentation of software components and other

systems. Today, UML is the dominant language for software system modelling. The first contact

with UML is often during software engineering or development where diagrams in UML are to

be created, understood or evaluated within the a software project. UML primarily determines

which terms and relationships between these terms are used to specify so-called models - dia-

grams in UML usually only show a graphical view of sections of these models. UML also suggests

a format in which models and diagrams can be exchanged between tools. UML diagrams can be

created in different ways. If the notation of the UML is used as a common language to document

the design concept of a software on a whiteboard (or paper) in an analysis team, pencils and

paper are sufficient as a tool. In practice, however, CASE4 tools are often used which support

the creation of UML diagrams.

Just as natural languages describe themselves in lexicons or grammars, UML was conceived as

a language tool that explains itself with some language components [47].

UML’s Profiles language provides a lightweight extension mechanism that can be adapted to

specific areas of application. The mechanism is described as “lightweight” because it leaves the

meta-model of UML unchanged. This can be a decisive advantage, as tools available on the

market for creating and maintaining UML models can often only handle models based on the

standardized UML meta-model.

Important diagram types used in this work are the class diagram (Domain Model) and the

activity diagram (Process Model). Therefore, a brief overview of the diagram types used is

given below:

3Object Management Group - http://www.omg.org/
4CASE - Computer-adided software engineering
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Class Diagram - A Class Diagram is a structure diagram of the UML for the graphical rep-

resentation (modelling) of classes, interfaces and their relationships. In object orientation, a

class is an abstract generic term for describing the common structure and behaviour of objects

(classification). It is used to abstract objects. Interacting with other classes, they enable the

modelling of a delimited system in object-oriented analysis and design.

Activity Diagram - An Activity Diagram is a behavioural diagram of the UML, that graph-

ically represents the cross-linking of elementary actions and their connections with control and

data flows. An activity diagram is usually used to describe the flow of an application case, but

it is suitable for modelling all activities within a system. In UML, the semantics of the activity

diagrams are still close to those of Petri networks and enable the representation of concurrent

systems by integrating additional asynchronous communication mechanisms (signal sending and

receiving, exception handling). An activity diagram is usually used to specify a process.

2.2.4 Activity Diagrams as a Basis for Test Case Modelling

UML activity diagrams can be used to capture the system’s most important behaviours without

being very specific about how they are implemented. They are therefore very suitable for tests at

system level. It might be noted that the UML activity diagram is only a semi-formal specification

of the system. However, in general it is easier to understand than textual descriptions or formal

methods. Therefore, they can be used as an graphical artefact for discussing functionality of the

future application with the stakeholders.

Activity diagrams are used to model the work-flow and behaviour of a system. The diagram

describes the behaviour as a sequence of activities. The basic elements of an UML activity

diagram are activities and transitions. An activity of the system or actuator is represented by

a rectangle with round corners. Each activity diagram has a start and end node. The start

node is represented as a black circle, indicating the beginning of the sequential activities. The

end node represents the end of the process, depicted as a bullseye. Transitions are represented

by directional arrows that relate activities to each other and thus represent the sequential pro-

gression. Activity diagrams can also describe complex processes, as they allow conditional and

parallel activities. Conditions are described by branch and merge nodes, both diamond shapes.

Branch nodes have only one incoming and at least two outgoing transitions which are usually

protected by guards. Parallel processes are represented by a thick synchronisation bar. A fork

has one incoming and at least two outgoing transitions. The end of concurrent activities is a

join that consists of at least two incoming and one outgoing transition. Partitions, also known

as swimlanes, can combine or respectively group related activities. For the interested reader, a

more in depth definition of Activity Diagrams can be found in the UML Specification [47].

The methodology for testing RFID applications examined in this dissertation is based on UML

models and can therefore be classified in the context of UML-based MBT approaches.
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2.2.5 Related Work on Model Based Testing

Model Based Testing has led many researchers to use UML diagrams such as state-chart dia-

grams, use-case diagrams, sequence diagrams, etc. to generate test cases. The major advantage

of these model-based testing techniques is increased productivity and quality by shifting the

testing activities to an earlier stage of the software development process and generating test

cases that are independent of any particular implementation of the design.

Approaches to the generation of representative scenarios for testing often use intermediate rep-

resentations for the activity diagrams to be tested, such as (1) normalized activity diagrams

(reduced to certain constructs)[54], (2) special directed graphs [66, 58], (3) Petri-nets [65] or (4)

test trees [53, 67, 68].

UML Based Test Generation

Briand et al. [71] investigated a UML-based approach to generate tests from system models. The

aim of the approach is to generate functional tests, oracles and so-called test drivers from refined

system models, whereby the artefact test driver refers to test execution. Specifically, Briand et

al. use activity diagrams with descriptions, sequence diagrams, collaboration diagrams and class

diagrams to generate test cases. However, the use of activity diagrams in the authors’ approach

serves only the purpose to derive superordinate system functions that have to be covered by

tests. The activity diagrams only illustrate system functions on a high level of abstraction, but

do not provide information on the permitted execution sequences of individual actions. For this

reason, the authors also analyse the business logic of the application to determine permitted

function sequences based on UML activity diagrams that are assigned to individual user roles in

the system. In addition to the use case diagram, domain experts expertise must be consulted.

In the approach examined by Briand et al., test data is defined by annotating individual actions

in the activity diagrams with informal data objects. The method studied in this dissertation

examines the use of elements from meta models for test case modelling. In contrast to their

approach in this work the model is supplemented with test data and context parameters through

refinement steps.

Cavarra et al. [72] investigated an approach to automatically generate test cases from UML

models. In the studied concept, the authors transform UML models into models that represent

test cases and test data. To integrate test-relevant data into UML models, the authors design

a UML profile that enhances the meta model of UML. The authors base their approach on

the assumption that software quickly achieves complexity that can no longer be fully grasped

by human actors. Modelling should help to abstract from the technical details and reduce

complexity. Cavarra et al. further argue that complexity reduction is necessary, especially in

the field of testing, since the state space of possible combinations of inputs into a software

system is rapidly increasing to an unmanageable extent. Furthermore, the authors argue that

in principle any modelling language could be used for the test generation process. However, the
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decisive criterion for acceptance by the user is that no additional effort is required to learn the

modelling language. Since UML is a standard in software engineering, Cavarra et al. use it as

the basis for their research. However, in contrast to the approach examined in this thesis, state

chart diagrams are used by the author to represent the test model.

In 2003, Robinson [73] addressed the challenges and opportunities of model-based test genera-

tion. The author bases his argumentation for generating tests from models instead of manual

creation on the observation that testers are often less technically oriented than software devel-

opers and are involved in the software process relatively late. A lack of technical involvement

in the software to be tested and a low relation to the project history reduce the quality of tests.

A model-based approach can also help less technically experienced testers to quickly develop an

abstract understanding of the SUT and focus test development on key product features. The

basic idea here is to understand tests no longer as artifacts developed parallel to the software

product, but as executable specifications. The author argues that natural language specifica-

tion documents are often too imprecise for effective test case creation to ensure adequate test

coverage. Robinson also discusses the benefits of model-based test generation in terms of the

number of individual test cases that are used as a metric of productivity from a management

perspective. For complex software, a large number of tests is quickly created. Changing the

specification of the software product may render some or all of these tests obsolete and may

require the creation of new tests. Manual creation may require a lot of work to revise existing

tests, while the effort to generate tests from a model is reduced to modifying the model.

UML activity diagrams basically describe behaviours, especially processes and procedures. Cor-

responding descriptions are therefore particularly relevant for testing, since they can serve as a

test model on the one hand and as a test object on the other hand. In principle, many papers

suggest that activity diagrams are primarily suitable for model-based testing [52, 53, 54, 55, 56,

57, 58, 59, 60, 61, 62, 63].

Some of the mentioned approaches differ considerably, e.g. with regard to the supported language

features or the UML version. There are also works for direct testing of the behaviour described

by the diagrams themselves [64, 65]. Most approaches covered here are very unlikely to be

generalised as they are often based on a very specific scenario and thus are not applicable to

other situations. However, general ideas or techniques can be used.

Algorithms for test case generation

Not only different intermediate representations are used to represent the test model. Also

different algorithms are used to traverse the model in order to extract test cases. Technically,

test generation and optimization methods are usually based on:

1. genetic algorithms [69],

2. optimization heuristics, as

a) ant algorithm [67],
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b) adaptive agents [68],

3. search algorithms [66],

4. model-checking [64, 65],

5. random test generation [70, 55]

The approach chosen in this work also follows the general pattern of model-based testing tech-

niques as defined in Section 2.2.2. For the derivation of test cases, a search algorithm has been

chosen. In contrast to genetic algorithms, which can lead to different test cases, a breath first

search was used to ensure a deterministic behaviour during test case generation. Additionally,

one draw-back of genetic algorithms is that they usually do not scale well with complexity,

which can be very challenging in larger activity diagrams. However, all the afore mentioned

algorithms can also be used, provided that the specific extensions are preserved in terms of the

test execution framework (in particular the virtual RFID environment).

2.2.6 Test Automation

Based on the definition of the IEEE [36], an automation tool refers to a software that expects

a preprocessed representation of the specification of the software to be tested as input and - if

necessary with manual assistance - generates an assessment of the specification conformity of

the software to be tested. Automation can extend to the entire test process or selected parts of

the test process.

Depending on the test level, the development process already includes the regular and frequent

execution of individual tests. Especially for Test Driven Development models, where tests are

implemented before the actual source code, a high number of repetitions of tests can be as-

sumed. The resulting personnel efforts through manual testing can be counteracted by using

test automation tools. For this purpose, tools are used that decouple individual quality assur-

ance activities to varying degrees from human resources. This results in a number of advantages

that improve the testing process both in terms of quality and economy. Aspects in which the

use of test automation is advantageous are (1) speed, (2) efficiency, (3) precision and accuracy

and (4) relentlessness (Patton [32]).

The advantage of higher speed at automated test execution stems from the fact, that computers

are able to run more tests in a shorter period of time than human operators, do not fatigue and

are not dependent on biological factors such as the ability to concentrate. Efficiency benefits

result from the fact that a developer or tester’s manpower is fully utilized during manual testing

and is not available for other activities. The manpower released in this way can then be used

for other activities, e.g. further software development or creation of additional test cases. Fur-

thermore, machines are superior to human beings in terms of precision and accuracy, as they

do not fatigue even in long lasting, monotonous activities. Errors due to lack of concentration,

as can be expected from repeated execution of many tests, can be ruled out in the use of test
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automation. With Relentlessness, Patton describes the property of a machine-based tool to be

able to reliably perform tasks of any size, regardless of the expected duration.

Ramler and Wolfmaier [43] dealt with the question which circumstances tests are recommended

to be automated. The authors critically discuss the validity of the intuitive assumption that

in a software project as many as possible tests should be automated. This contrasts sharply

with Bertolino’s [44] dream of 100% test automation in a future perspective of testing. As a

particular risk to the cost-effectiveness of test automation, Ramler and Wolfmeier identify that

costs for the automation of tests will no longer be amortized if the tested functionality is removed

from the software product late in the project. Bach [45] also provides a critical contribution,

according to which manual testing is superior to automatic testing, especially because of the

high costs arising when creating automated tests. Furthermore, Bach argues that both processes

typically also address different defects. However, Kasurinen et al. [46] investigated projects in

31 software companies with respect to the use and usefulness of test automation tools. They

conclude that test automation is generally suitable for reducing the use of resources for quality

assurance activities. In particular, repetitive tasks have been identified as suitable targets for

automation to focus rare resources, such as cognitive performance of developers and testers, on

more value-added activities.

In this dissertation, iteratively manually refined UML activity diagrams are used as input for an

automated test execution framework. Automated parts of the test process are the generation

of test cases and their execution while simulating certain aspects of the execution context.

Irrespective of the unresolved question whether the increased effort justifies test automation,

other factors must also be taken into account. Unreliable data acquisition of RFID systems,

which are often due to physical effects, make it difficult to repeat tests under the same conditions.

However, the test results should be reproducible and deterministic. This can only be achieved

if environmental conditions can be fully controlled. The test automation in this work includes

a controllable environment and allows to simulate RFID reading events that are difficult or

impossible to generate manually. Thus, test automation in the context of ITERA should not

only be seen as pure automation, but also as necessary means to reproduce repeatable tests.

2.3 RFID Fundamentals

In this section an insight into RFID technology is given and the basic principles of the technology

are explained. First, the basic concepts of RFID systems are introduced. Then, an overview

of the infrastructure and the nature of typical RFID systems and their components is depicted.

Additionally, a non exhaustive list of hardware and software in the area of RFID is provided.

This covers the most well known vendors and tries to find out which components are used in in-

dustry. Finally, the different standards and their adoption in industrial solutions is investigated.

The understanding of the acceptance of standards in industry, as well as the components and
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infrastructure, clarifies how the different components interact and can be used meet the needs

of practitioners and to design a test methodology for testing RFID systems.

2.3.1 RFID Technology

RFID is an enabling technology which allows for the automatic collection of data (e.g. identifica-

tion, location, transaction, and time) quickly and easily without human intervention. Electronic

data labels, comprised of integrated circuits and coupling units, are used to store the data. Con-

trary to similar smart-card systems, where the information is transmitted through a physical

connection, RFID uses radio waves instead. The energy needed for the transmission is drawn

from the magnetic or electromagnetic field of a interrogator. However, since the basics of RFID

technology exist since the 1960’s [74, 75] the technological concepts behind RFID are not new

any more. Most of them have been adopted from radar and radio technology [2].

Figure 2.2 presents the components of an RFID System and their interactions. All of these

systems always consist of at least two components, a RFID reader and a RFID tag. Both are

coupled and use a communication channel to exchange data, beside the transfer of power.

Figure 2.2: Typical RFID System Architecture (source: [2])

Typically, the RFID reader is comprised by a radio module, a control unit and a coupling

part. Additionally, it offers different interfaces for communication with traditional computational

systems. These are often Ethernet, RS232 or other proprietary interfaces, allowing the RFID

application to receive the gathered data or to control the device.

The RFID tag usually consists only of a coupling unit and a microchip. Most RFID tags do not

have an own power supply. Therefore, they are not capable of transmitting data on their own

and stay passive. At least, as long as they are outside of the emitted field of a reader. When a

tag is moved into the electronic or magnetic field of a RFID reader, the tag draws power and

activates the microchip. However, also a few active RFID tags with a power supply, usually

realised by a battery, can be found today.

RFID can be divided into various categories. The most important factors to distinguish between

RFID systems are presented in the following list:

• frequency - LF, HF, UHF, µF

The range, where RFID tags can still be read strongly depends on the used frequency.
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But each frequency has down- and up-sides, determined by the physical interference with

materials in the close surroundings.

• power supply - active, semi-active, passive

Passive tags have no own power source. Therefore, they depend on the electromagnetic or

electric field of the corresponding reader to power them. A semi-active tag uses the power

of a battery to keep its memory. The active tag does not depend on the reader as a power

source.

• memory - 1-bit, multiple-bit

Depending on the memory, the transponder can also be used to store additional informa-

tion. In some cases the size of the memory is just 1-bit, where either a tag is in the field

of the reader or not. As they do not contain a unique identifier it is not possible distin-

guish between different tags. 1-bit transponders are mainly used in anti-theft solutions,

currently used by the majority clothing stores.

• coupling - magnetic, electromagnetic

The maximum range in which the detection of a tag is possible not only depends on

the applied frequency, but also on the used coupling technology. As the range of magnetic

fields is limited by its field strength, which decreases inversely to the square of the distance,

magnetic coupling is only used in close-range scenarios.

Parts of the following subsection have already been published in [29, 120].

2.3.2 RFID System Structure

A RFID system is composed of one or many RFID readers which are connected to a RFID

middleware. Figure 2.3 shows a schematic RFID system and the interaction between the com-

ponents. These RFID readers/devices communicate over radio waves with RFID tags, which are

attached to objects the RFID application is interested in. RFID tags are read by the antenna

of the reader and the tag’s identifiers are reported to the middleware. The RFID middleware

filters redundant data, applies logical evaluations and generates business events for the RFID

application. Additionally, the middleware is providing unified and transparent access to the

collected data for the RFID application. The RFID application, which usually implements the

main part of the business logic, interacts with the user and serves as an endpoint for the data.

RFID Reader

An RFID system consists at least of one transponder with a unique identifier (commonly known

as a RFID tag) which is attached to or contained within an object, and a device for reading it.

The information stored on the tag is continuously read through a RFID reader (or interrogator)

equipped with an antenna. The coupling is realized by magnetic alternating fields generated

by the reader in a small range or by radio waves for increased ranges. Often coupling is not
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Figure 2.3: Schematic RFID system and interaction between components

only used to transfer data but also supplies the transponder with energy. Active transponders,

in contrast to the passive transponders, with their own power supply are used to achieve even

longer ranges, but are associated with higher costs and increased maintenance for the battery

(charging, replacing). The link between RFID tags and RFID readers is often referred to as

“Air-Interface”.

The RFID readers are typically connected to the actual application via a so-called RFID mid-

dleware. Reasons for this three-tiered architecture are, that typical business applications often

struggle with real-time processing and the immense amount of data, which can be generated

through a RFID system. Furthermore, the middleware also provides a unified and device inde-

pendent access to the gathered data. In principle, RFID readers can be operated independently

from the typical RFID infrastructure, however, in industrial practice the benefits of RFID often

arise through the use of multiple readers.

(a) Intermec IPS30 (b) Alien 9800 (c) Feig Crystal Gate

Figure 2.4: Variations of RFID devices: (a) Mobile Reader (b) Fixed Reader (c) RFID Portal

In practice, various types of devices such as mobile readers (see Figure 2.4a), handheld systems

and fixed readers (see Figure 2.4b) are used as gates (see Figure 2.4c) or stand-alone reading

terminals. Although there are different categories of readers, all RFID readers have in common

that they can sense tags in the field of view. The field of sight of RFID readers is often described

as an “interrogation zone” or “read zone”.
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An interrogation zone consists of the RFID reader, antennas, cables, peripherals and the envi-

ronment in which the device is installed. The reliability of an interrogation zone is determined

by its environment. In some cases, unintentional readings may occur or the reading process is

blocked at all. For example, the presence of multiple objects often leads to reflections, absorp-

tion or interference with the original signal. In order to eliminate or overcome the environmental

and business process obstacles and limitations the hardware and its software (firmware) must

be correctly selected and configured.

Peripheral devices can also be connected to the readers. These devices include feedback systems

like light stacks or warning horns, providing information about the system’s state, or sensors

like light barriers to switch the interrogation zone on and off. Peripherals are usually connected

via the General Purpose Input/Output Ports (GPIO ports) of the readers. In addition, they

also feature interfaces with enabling direct or indirect network communication to alert back-end

systems of detected or tracked objects or goods.

According to Floerkemeier et al. [76] there is a wide range of different functionalities provided

by RFID readers. However, it depends on the computing resources or the presence of embedded

operating systems which functionality can be realized. Therefore, it is possible to differentiate

between readers that only provide a basic set of operations and those that are able to execute

custom code.

Generally speaking, depending on their capabilities, the readers are called “intelligent” or

“dumb”. Intelligent interrogators have enough computing power to run software that filters,

aggregates, and analyses data to transform it into meaningful events for the back-end system.

In contrast, a dumb interrogator is only able to read tag data and report detected events to the

back-end system. Especially the later type is heavily dependent on a middleware product that

performs filtering and aggregation functions and converts the read data into a meaningful format

that serves as input for the back-end system. However, most of today’s readers are intelligent

interrogators.

The reading devices often feature a textual interface (Telnet, SSH) or graphical user interface

(GUI) via which they can be administered and configured. Typically, access is provided via a

web interface or a simple configuration program. The configuration settings usually differ from

manufacturer to manufacturer. In the following, some of these configuration parameters are

considered as exemplary settings:

Output power - The transmission power setting of the reader is important for reading tags.

It is crucial to adjust the power level of each RFID reader to avoid overlapping of adjacent

interrogation zones and decrease interference. The power levels are usually given in watts (W),

milliwatts (mW), decibel (dB) or percentage (the maximum permissible power varies greatly

in the various regions of the world). In some devices, the power for writing tags can also be

adjusted independently of the transmission power, since writing operations usually require more

energy.
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Antenna settings - Often antennas can be grouped together. This allows multiple antennas

to act as a single unit. In some cases, it is also possible to set an antenna sequence that allows

several antennas to be operated in a certain order without interfering with the signal of other

antennas.

Filtering - This functionality allows to communicate only with a subset of the tag population.

For example, if there are pallets loaded with several products, a dock door interrogator can filter

out all products and only report the pallet.

Polling - Specifies how often the reader scans for tags, either continuously, at pre-set intervals

or as needed. The scanning of tags on demand is usually triggered by connected sensors (e.g.

light barriers, etc.).

Autonomous and Interactive Mode - This setting specifies how to retrieve read events. In

autonomous mode (sometimes called push mode), the events are passed directly to the software

systems above. Often a repetition count is also configured to specify how often new tags are

searched for in the reading zone before a reading event is generated. In autonomous mode (pull

mode), the reader is queried for new reading events by the subsequent systems.

Read Modes - Some RFID readers sometimes come with pre-set read modes. Although the

manufacturers use different terms to refer to these modes, they are all basically identical for all

interrogators and can be distinguished into two modes: the conveyor mode and the inventory

mode.

Conveyor Mode: The conveyor mode is used in situations with high tag mobility and, therefore,

short visibility time spans. To cope with this short visibility, the interrogator reads at fast

intervals with a short repetitions.

Inventory Mode: The inventory mode is a transition mode, which means the interrogator watches

a number of tags for a period of time. Each loss of already watched tags or gain of a new tag

will be reported to the back-end system.

RFID Middleware

Typical RFID systems found in today’s industry are not only build on a single RFID reader.

Instead, they consist of many RFID readers, to obtain the most benefit from the automatic

identification technology. However, a larger number of readers also increases the complexity and

needs improved maintainability. Nowadays, middlewares are used in many areas to address com-

plexity and allow for a standardised way of accessing the devices. Therefore, the concept of an

additional computational system between the RFID devices and the application was introduced

in RFID as well.

In a survey of RFID middlewares [77] by Forrester Resarch the RFID Middleware is defined

as:
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“Platforms for managing RFID data and routing it between tag readers or other

auto identification devices and enterprise systems.”

A middleware is an application which connects different layers of software in a way that the com-

plexity and infrastructure is hidden. RFID Middleware are also commonly called “Edge Server”

because of the placement at the edges of a RFID network. It is the part of the infrastructure en-

abling the RFID application to communicate with the RFID readers without explicitly knowing

the protocol of the different hardware vendors.

In the context of this thesis the middleware can be seen as a central part of the application

logic, thus, it needs to be addressed during testing as well. This is achieved by integrating the

middleware into the test bed. According to the test execution framework presented in Chapter

5, the real RFID readers are replaced by virtual readers. This preserves the architecture of the

RFID system and the middleware becomes an integral part of the evaluation.

The tasks of RFID middleware are manifold. According to [77] the middleware offers many

different services. Many functions are available across the various vendors. However, as for

the reader, it depends on the solution provider which specific functionality is available. The

following list offers an overview of the common characteristics:

Data Management - A problematic aspect of RFID systems is the significantly increased

data volume. RFID systems generate considerably more data than conventional identification

systems, e.g. barcodes. For barcode systems, for example, a barcode is only scanned if someone

triggers the scanning process. The increased quantity of reading events in a RFID environment

is a result of the near real-time monitoring of goods movements. RFID readers are continuously

reading the tags in their interrogation zone several times during one second. Another reason for

the large data volume is the number of tags in typical RFID systems. RFID makes it possible

to uniquely identify each object, also known as item-level tagging. For example, whole pallets

with up to hundreds of products are scanned at once. In order to cope with the huge amount

of data, almost all middlewares support data capture, allow to filter and aggregate the events

captured from RFID readers. For example, companies like Wal Mart are already recording a

large volume of data with conventional technology. After the planned implementation of RFID,

an additional data volume of several terabytes per day is expected. To cope with such high data

volumes, the necessary hardware must first be provided. However, due to ever more powerful

computers and abstraction of events on every layer of an RFID system, storing data is no longer

regarded to be a problem.

RFID Reader & Application Integration - The tag events collected by the middleware

must be forwarded to the backend systems so that the events can be processed. Especially in

scenarios where several applications need to be informed about events, it is not practical and too

complicated to have a separate connection to each reader for each application. In addition, some

RFID readers use different protocols that are manufacturer-specific. Application and Reader

Integration provides, therefore, a unique interface and enables data to be exchanged between

the participating RFID readers, applications.

41



2 Literature Review and Related Work on Testing RFID

Reader and Device Management - Since RFID is widely used without human interaction

or supervision, the continuous and correct operation of the devices must be ensured. Therefore,

modern RFID middlewares monitor and observe the readers to detect malfunctions or defects.

Process Management and Application Development - Since there is no typical business

process for RFID, each RFID application has an individual aspect. Middleware adjustments

are therefore an important feature. In many cases, the data generated by the RFID system is

related to certain business events. These events must be transmitted to the back-end systems

so that the event can be handled. A good example is the arrival of new supplies. The deliveries

are delivered to the warehouse, which is equipped with RFID readers. The reader identifies the

new goods and generates a report stating that the new products are immediately available in

the warehouse. In addition, it is very useful for the development process if the way how data

is captured can easily be changed. Thus, most RFID middlewares allow for the free design,

especially of data capturing mechanisms, to cope with various business processes.

RFID Applications

The use of RFID promises to solve many issues of today’s identification systems. Furthermore,

improvements and more efficient processes are realisable through the use of it. Therefore, it

is not surprising that RFID is used in various application areas and in a variety of businesses.

The examples given here allow gaining a better understanding of the different applications a

test methodology might need to be suitable for. Additionally, it can be used as a basis for a

classification of the applications and provides a reference point which test aspects need to be

considered.

Ticketing - Payment with smart cards using magnetic strips is state of the art in public trans-

port. Almost every big city use these systems today. However, because of the physical contact

between the smart card and the reading device the wear of the smart cards is enormous. To

solve this RFID is already used as a substitute. Skiing areas and public transport are using

RFID to replace printed tickets and allow the reuse of tickets. In most cases a plastic card with

an embedded RFID tag is read at the turnstiles by a RFID reader to grand access to customers.

The Oyster card in London’s public transport system is one example. Especially for skiing the

contact-less long range access control offers additional convenience for the customers, since it is

not necessary to swipe the card anymore.

Payment - Credit cards or debit cards with embedded RFID circuits are becoming more pop-

ular. With the embedded RFID tag it is possible to use the credit card without sliding the card

through a magnetic reader. But also cafeterias, for example at Universities, are using RFID sys-

tems for payment. An advantage of this system is to reduce the physical wear of the magnetic

sliding cards.
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Access control in cars - Car manufacturers have added security and convenience into auto-

mobiles by using RFID technology for anti-theft immobilizers and passive-entry systems. Al-

ready, almost every remote control in new cars is equipped with a RFID chip to the check the

integrity and allows access prior to start of the engine.

Inventory management & supply chain management - Smart shelves with embedded

RFID readers are used to locate goods. This gives a real-time view of the interior of a warehouse

or libraries. “Out of Stock” situations can be minimized or avoided. Additionally, WalMart,

Target, BestBuy, Metro and other retailers have discovered that RFID technology is helping to

manage the supply chain and can keep inventories at the optimal level, limit shoplifting, and

speed customers through check-out lines. RFID tagged goods can be identified and automatically

checked at dock doors. It is also possible to scan the content of a pallet or box without even

opening it. The automation of the scan progress furthermore reduces human failures and makes

the process more secure.

Logistics - In this area RFID mainly used for tracking products along the distribution chains.

Beside other benefits, monitoring of real-time flow of goods is possible, allowing the customers

to track the status of the delivery. It also decreases the management effort of returns.

Production management - In times of globalisation and increased competition just-in-time

manufacturing gains more attention. The RFID technology helps to set more insight on the

current status of production steps on demand. But, also customization in the production is an

popular use case for RFID. Recently, cyber-physical systems additionally push the use of RFID

in this area.

Maintenance and repair management - Particularly, the repair management and mainte-

nance is a time consuming task. Since, RFID tags are writeable and offer to store additional

data. This can be used to monitor the wear level, but, also expensive utilities can be tracked.

Trade and retail - To improve the availability of products and in consequence increase the

revenue of retail, detailed knowledge of the current products in the shelf’s and sales rooms is

essential. RFID allows providing this information and, therefore, plays an important role in the

trade and retail sector.

Health care & pharmaceutical industry - Correct medication is a crucial procedure which

allows no failures. RFID plays an important role to ensue quality and lowers the risk of errors.

It is self-explanary that the unique identification of patients is a perfect fit of this technology.

Augmented reality - To identify the surroundings RFID tags are placed on objects to provide

additional information. For example this is used in museums to improve guided tours with audio

systems.

These application areas of RFID already demonstrate that RFID is used in a broad variety of

applications. However, the sheer amount of application areas makes it hard to find a unified test
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methodology, suitable for all areas. Nevertheless, the successful application of a test approach

is significantly determined by the abstraction level. Hence, one goal of the proposal should take

this into account and provide a sufficient way to describe the attributes of RFID systems.

In this thesis the various application areas are addressed by the use of UML activity diagrams,

which are widely used and already allow modelling processes in a variety of use cases. Addition-

ally, an extendable and flexible test execution framework is proposed in order to allow the use

of various sensors and different interfaces of the application under test.

RFID Hardware and Software vendors

As shown in the previous section (see 2.3.2), the usage of RFID is very versatile. In order to

develop a test methodology, it is important to know the components used in today’s industrial

applications, since they are part of the test environment. Additionally, the impact and practical

value of a test approach depends on the adoption of standards, protocols and functionality

employed by the different solutions. Therefore, a brief overview of state-of-the-art RFID system

components is given in the following paragraphs. It is divided into hardware and software

components of well known vendors. The software suppliers are split into different categories,

depending on the coverage degree of their products. Even though, that the results of this

investigation are contemporary because of the high fluctuation of vendors in the market, it

allows to determine common features and it is beneficial for the practical use of the proposal.

Nevertheless, it is infeasible to cover the whole market and every RFID solution available,

therefore, only UHF RFID which is said to have the highest impact, is considered here.

Hardware Vendors - Like every market today, the market for RFID is also very diverse. Hence,

it is not surprising that there is a wide variety of vendors providing Electronic Product Code

Class-1 Generation-2 UHF Air Interface Protocol (GEN2) (see Section 2.3.3) compatible RFID

reader devices. To gain better understanding of the readers used in industry, and, thus also to

understand the components under test, the following list shows a non-exhaustive overview of

the most well-known vendors:

• ALIEN Technology (http://www.alientechnology.com)

• AWID (http://www.awid.com/)

• Deister (http://deister.com)

• Intermec Solutions (http://www.intermec.de/)

• Feig (http://www.feig.de/)

• Impinj (http://www.impinj.com/)

• Ident-Pro (http://www.identpro.de/)

• Motorola (http://www.motorola.com/)

• Siemens (hhtp://siemens.com)

• Sirit (http://www.sirit.com/)
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All listed vendors offer UHF Gen2 compatible RFID readers, however, the used communication

interfaces strongly depend on the vendor. Currently, there are no regulations on how the data

has to be exchanged on the physical layer between the reader and the middleware. So, different

interfaces can be found. Most common on is the Ethernet Interface for communication. But

there are also solutions with a RS-232 Interface or others like RS-422. However, each RFID

device is also using a protocol for communication and many vendors have their own proprietary

protocols for the readers. This becomes challenging in regard to application integration and for

testing, since the test would then also become very specific. For example ALIEN technologies

use a “telnet-style” protocol. But there also exist standards in that area. Low Level Reader

Protocol (LLRP) is the successor of the not very successful Reader Protocol (RP), both defined

by EPC Global (more detail on LLRP can be found in Section 2.3.3). Generally, two types of

protocols can be distinguished:

• Text-encoded protocols

• Byte-encoded protocols

Each protocol encoding has advantages and disadvantages. It depends mainly on the use of the

reader. E.g. if a human is interacting with a reader it is much more straight forward to use a

text-encoded protocol than a bit-encoded protocol. On the other hand, a bit wise interpreted

protocol can save bandwidth. Particularly, when it comes down to a basic challenge of RFID

- the huge amount of data generated by the RFID readers - it might be necessary to preserve

network capacities, which is easier achievable when the readers utilise a bit-based encoding.

Software Vendors - The amount of application areas already suggests that there are numerous

vendors in the area of RFID software as well. According to Forrester Research [77], different

categories of software vendors can be identified:

• Platform providers

• RFID pure plays

• Integration specialists

• Supply chain application vendors

Platform Providers - Platform Providers often base their product on bigger platforms, mainly

an application server where the business applications run in any-way. The RFID middleware

can be seen as an extension to this platform.

• Oracle - RFID and Sensor-Based Services

• Microsoft - BizTalk RFID

• IBM - WebSphere Sensor Events
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RFID pure plays - RFID pure plays are usually companies which make all their business with

RFID products. In that category often a new and highly customized RFID middleware is found.

The Software is small and lean. The main use is to completely fulfil the needs of a distinct RFID

use case. Additionally, the companies often have been funded because of RFID business idea.

• GlobeRanger - iMotion Edge Platform

• Reva Systems - RFID Network Infrastructure

• Sybase - RFID Anywhere - archived!

• TrueVUETM RFID Platform

• S3EDGE - Spotlight RFID Server

• OMNITROL - Edge Application and Sensor Engine (EASE)

• OATSystems - Tool zum Designen von RFID Prozessen

• RFID Innovations (Graz) - RFID Framework SmartID

• RF-iT solutions (Graz) - You-R OPEN Middleware

RFID pure plays with open source models - Universities and open-source communities,

sometimes with associated companies, also provide implementations of RFID middleware solu-

tions. The products are available under different open-source software licenses. However, the

business is often based on support only and since the source code of the software is available it

is listed separately.

• CUHK - EPCGlobal RFID Middleware

• logicAlloy - ALE Server RFID Compliance

• Fosstrak - ALE Server RFID Compliance

• Trancends - Rifidi Edge Server Middleware

RFID application vendors - In this category applies for vendors specialized on RFID business.

Their solutions are highly customized and fitted for customers’ needs. They have a standard

framework which is then customized for the special use case. The product is sometimes also

offered as a branch solution (e.g. “Slap-and-Ship”)

• Seeburger AG - RFID Slap & Ship Solution

• Manhattan Associates

• Siemens
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In summary, an overview of the current RFID market was provided. The overview is contempo-

rary, since many companies in this area disappear and new ones appear frequently. Nevertheless,

the knowledge gained here provides a solid basis for the investigation of the common protocols

used by RFID readers, for understanding the acceptance of standards and for finding common

functionalities between the solutions. Further, it is an important aspect of the test approach,

because this is the only way to put practical benefits in the foreground and to find suitable input

generators for the test environment.

2.3.3 RFID Standards

In this section the RFID standards defined by EPCglobal are presented. There exists a frame-

work defined by EPCglobal, providing an overview of the standards. It shows how the standards

interact with each other and defines different layers allowing to group the standards according

to the structure of RFID systems. This framework and the different layers are explained in

the following paragraphs. Starting from the lowest level, the interfaces between RFID tags and

RFID readers, and ending with the application level. Finally, a evaluation of the adoption rate

on standards used in industry is presented.

EPCglobal Architecture Framework - The non-profit organization EPCglobal defined a so

called Architecture Framework [13], shown in Figure 2.5 to provide an overview of the standards.

It frames all standards defined by EPC Global and describes where these standards are applied.

Moreover, the architecture also defines different layers and sorts the standards into these groups.

Figure 2.5: EPCglobal Architecture Overview (source: EPCglobal5)

The Architecture Framework itself is divided into three layers namely Exchange, Capture and

Identify. The Exchange layer is the highest and covers all interaction between Auto-ID Infras-

tructure systems of different participants. The Capture layer covers the interactions between
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the back-end systems and the RFID devices or other sources of automatic identification. In the

Identify layer the air interfaces and over the air communication is defined.

The information on the standards has been taken from EPCglobal5:

Tag Data Standard - The Tag Data Standard (TDS) [78] is part of the Identify layer. It

focuses on the RFID tags and defines the Electronic Product Code (EPC). The EPC is the

unique identifier used to identify objects with attached RFID tags. It is similar to the European

Article Number (EAN) which was super-seeded by the EPC/Global Trade Identification Number

(GTIN) as result of globalisation. The EPC is defined as a unique identifier for all physical

objects, whatever they may be. The allocation of numbers is managed by GS1 which operates

several sub companies in almost every country of the world. Additionally to the EPC itself, it

also defines the user-memory contents of Gen 2 compatible RFID tags.

In more detail, the TDS covers two broad areas [78]:

• The specification of the EPC, including its representation at various levels of the EPCglobal

Architecture Framework and its correspondence to GS1 keys and other existing codes.

• The specification of data that is stored on Gen 2 RFID tags, including the EPC, “user

memory” data, control information, and tag manufacture information.

The EPC is divided in several subgroups, each used for a specific purpose and class of objects.

The GTIN used for identification of trade items, the Global Location Number (GLN) describes

locations, the Serial Shipping Container Code (SSCC) is typically used for pallets and containers

or other logistics load units, the Global Returnable Asset Identifier (GRAI) for returnable and

reusable assets, the Global Individual Asset Identifier (GIAI) for fixed assets, the Global Service

Relation Number (GSRN) for service relations and the Global Document Type Identifier (GDTI)

for documents.

Global Tag Data Translation - The current version of the Tag Data Translation [79], which is

part of the Identify layer, is 1.6. A machine-readable version of the EPC Tag Data Standard and

rules for formatting and translation of EPC identifiers is covered by EPC Tag Data Translation

standard. It can be used for either validating EPC formats or translating between the different

levels of representation in a consistent way.

EPC Class-1 HF RFID Air Interface Protocol - This standard [80] defines the physical

and logical requirements for a passive-backscatter, Interrogator-talks-first, radio-frequency iden-

tification system operating at 13.56 MHz. It is divided in three areas: (1) Physical interactions,

i.e. the signalling layer of the communication link, between interrogators and tags; (2) inter-

rogator and tag operating procedures and commands and (3) the collision arbitration scheme

used to identify a specific tag in a multiple-tag environment.

EPC Class-1 Generation-2 UHF RFID Air Interface Protocol - The “Tag Protocol –

UHF Class 1 Gen 2” [81], or GEN2 for short, is the specification which defines the physical and

5EPCglobal http://www.gs1.org/epcglobal
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logical requirements for passive-backscatter RFID communication in the 860-960 MHz frequency

range. It describes the air-interface used by RFID readers and tags for interaction. Moreover,

it also defines the data on an RFID tag, the used encodings, anti-collision and so on. Most

international and national regulations for RFID technology are based on this standard defined

by EPC Global. In Europe, the Tag Protocol was approved as ISO/IEC 18000-6C.

Low Level Reader Protocol - LLRP [82] is part of the Identify Layer and the successor of the

Reader Protocol (RP) to define a unified protocol RFID reader vendors should use to ease the

communication and make RFID readers more exchangeable. The aim of the LLRP is to enable

communication between an RFID reader and an RFID tag (GEN2) and between an RFID reader

and RFID applications. In addition, RFID readers can also be controlled and configured using

this protocol.

Discovery, Configuration and Initialization Protocol - As part of the Identify layer the

Discovery, Configuration and Initialisation (DCI) [83] specifies an interface between RFID read-

ers, access controllers and the network on which they operate. The purpose is to simplify main-

tainance and deployment of a RFID readers. It is used to initialize the reader, configure the

network settings and to exchange configuration information.

Reader Management - The Reader Management Protocol (RM) [84] is a standard to identify

common functionalities and define a protocol to change settings and configure reader devices. It

also describes some management functionalities readers should provide. It extends the Reader

Protocol which was a first draft to find a standard for reader to application interaction.

Application Level Events - Application Level Events (ALE) [85] specifies an interface through

which clients may obtain filtered, consolidated EPC data. The data sources can be an RFID

middleware or RFID “smart” readers but also other sources like bar-code and legacy identi-

fication systems. The use of this standard provides independence between the infrastructure

components that acquire the raw EPC data, the architectural components that aggregate &

filter the data, and the applications that use the data.

EPC Information Services - The goal of EPC Information System (EPCIS) [86] to provide

a common standard across enterprises to share collected EPC data and the associated busi-

ness events (context). It specifies interfaces for recording and querying so-called EPCIS events

and enables participants to significantly increase transparency and control over their respective

processes.

The EPCIS Data Model includes detailed information of product movements, e.g. the EPC ID,

Event Time, Business Step, Disposition, Read Point, Business Location, and Business Transac-

tion. The standard explicitly allows an to extend of the contained information by the participants

without revising the specification itself. This allows users to supply additional information like

temperature or expiration date, etc.
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2.3.4 Rifidi - Virtual RFID Device Simulator

The Rifidi Toolkit enables the virtualisation of RFID readers of various vendors for flexible and

improved testing of RFID applications. Utilizing virtual RFID readers in this context means less

physical readers need to be available for testing. Therefore, it not only allows for the automatic

execution of tests but also lowers the barrier to enter the RFID world by saving resources and

time. The Rifidi Toolkit is available since 2006 as open source software on SourceForge.net [129]

and already established on the market as a valuable resource for many users, which can be seen

on the number of downloads (over 50,000 since 2006 [130]).

Parts of the following subsection have already been published in [29, 120].

Rifidi Toolkit Overview

The Rifidi Toolkit consists of three software tools; namely the Emulator, the Designer and the

TagStreamer [3]. All previously named tools are based on the Emulator Engine, the central part

of the Rifidi tool-suite which is capable of emulating virtual RFID devices.

Emulator - The Rifidi Emulator is a graphical interface for controlling and interacting with vir-

tual readers. It allows to emulate readers and tags as well as read and write events. Additionally

to this, it provides access to the virtual readers like their physical counterparts.

Designer - The Rifidi Designer is a tool to build custom 3D production environments, that can

be used for visually simulating the RFID data flow. It is also based on the Emulator Engine

and allows the emulation of RFID readers and the interaction with them. It is not maintained

anymore but can still be accessed on the SourceForge.net website.

Tag Streamer - The Rifidi Tag Streamer is a performance testing tool that allows to generate

large numbers of virtual readers and tags to evaluate non-functional requirements of the RFID

system.

The Rifidi Emulator Engine

The Emulator Engine is the core part of the Rifidi Toolkit. It is responsible for managing and

controlling the emulation of the RFID devices. One Instance of the Emulator Engine can control

multiple virtual readers of various vendors at the same time. All parts of the Rifidi Toolkit are

implemented in Java and use different technologies around the Eclipse Framework, e.g Equinox,

JFace and SWT.

The basic tasks of the Emulator Engine are:

• the communication between RFID reader and client

• execute commands issued to the virtual reader
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• management of the antennas and the related field of sight

• to control the reader specific components, like signals on the general purpose input/output

ports (GPIO ports)

Because it uses a Service Oriented Architecture approach, the functionality of the Emulator

Engine is distributed in two core services. These services can be obtained through the Ser-

viceRegistry and used to manage virtual readers, virtual tags and keep track of the tags in the

Rifidi Environment.

ReaderManager - This service is responsible to manage the devices and provides of the fol-

lowing actions:

• create a virtual reader

• delete a virtual reader

• start a virtual reader (power on)

• stop a virtual reader (power off)

• add a virtual tag to a reader’s field of sight

• remove a virtual tag from a reader’s field of sight

• get a list of virtual tags currently in the readers field of sight

IRifidiTagService - This service is used to create and handle virtual tags. It consists of the

following functionality:

• create a virtual tag

• delete a virtual tag

• track virtual tag data changes

All existing Rifidi tools are based on the Emulator Engine and allow an easy, intuitive and

graphical access to the presented functionality. However, the Rifidi Toolkit can also be used

as a basis for other tools, which rely on the emulation of virtual RFID devices, e.g. test data

generators. But to use the capabilities of the tool-suite for improved testing of RFID applications

a deeper insight on the framework is necessary.

Emulator Engine Architecture

This section gives more insight on the architecture of the Rifidi tool-suite and describes how to

use this architectural model as a basis for virtual readers, which can be used for test automation

of the ITERA methodology. It concludes with an overview of the command flow through the

Emulator Engine.

A concrete implementation of a virtual reader is called reader module. To seamlessly integrate

into the framework each reader module implements interfaces of the components, presented

below.
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The architecture of the Emulator Engine is based on the structure of a physical RFID reading

device. The idea was to develop the virtual readers similar to their physical counterparts and

therefore to use the same logical components. Figure 2.6 gives an overview of the different

Figure 2.6: Emulator Engine Architecture Overview [3]

components of the Emulator Engine. Each box represents a logical counterpart of a physical

reader and can be seen as a generally valid abstract component of all virtual readers.

Emulator Engine Components The components of the Emulator Engine are Communica-

tion, Command Processor, Radio, General Purpose Input/Output and Shared Resources. The

different tasks and functionalities of the virtual reader’s components are explained in the fol-

lowing:

Communication - Even though most modern RFID devices use an Internet Protocol (IP)

based protocol for communication, there are still some vendors using other interfaces like serial

link, e.g. RS232, or other proprietary ones. To map these diverse ways of communication to the

framework a generic communication part for each virtual reader needs to be considered. In the

Rifidi environment this is realized through the communication component. It enables receiving

and sending of messages as well as forwarding the encoded messages to or respectively from the

command processor. The communication is divided into two parts:

Protocol Parser: The protocol parser converts the messages received in binary format to a mes-

sage the command handler can deal with. This can be either a reader specific message format or

a plain Java object. The Protocol Parser is also used this way when it converts a message from

the command handler to a binary message, which can be sent through the reader specific com-

munication. With respect to IP-based communication, especially regarding fragmented packets,

the parser is also responsible to determine if a message was received completely.

Buffer: The buffer is used to store messages and enable asynchronous communication from the

communication channels. There is one buffer for incoming and outgoing messages.
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Command Processor - The interaction with common RFID readers is based on command/re-

sponse protocols. Subsequently the issued commands need to be parsed, executed and finally

responded. In the Rifidi environment the command processor can be seen as the central process-

ing unit and is used for this purpose. For each command it invokes the appropriate methods of

the virtual reader. A list of commands and the corresponding actions, implementing the func-

tionality of the command, are defined in a XML file called reader.xml. The Rifidi framework

utilizes Java Reflections[131] to execute the classes and methods specified in this XML file. The

command processing layer is consisting of three parts:

Formatter: As for the buffers there are formatters for each direction of communication. The

incoming formatter is used to strip and decompose the commands. Usually the first parts

of a command determine the command type, all additional information are arguments and

parameters. The outgoing formatter assembles outgoing messages for further processing in the

communication layer.

Controller: The controller, also called command handler, is the central processing unit for

commands. Each command issued to the virtual reader is executed here. The HandlerMethods

are invoked through reflection.

Exception Handler: The exception handler is a special HandlerMethod, which takes care of

unknown, undefined or misspelled commands. Usually error descriptions are send back to provide

feedback.

Radio - The radio component represents the air interaction capabilities of the virtual RFID

device and allows to interact with virtual tags. Via the Rifidi Emulator a user can control when

a tag is added to an antenna or when a tag is removed. Additionally to the user interaction,

the reader can also, depending on the reader capabilities, write or read the tag. Furthermore

it is vendor specific how “tag events” are stored and handled in a reader, therefore each virtual

reader has its own radio component and memory structure. As an example, the Alien 9800 6

RFID reader allows either to list all read events since the last poll or to list just the currently

available tags in the field of sight.

Tag Buffer: The tag buffer implements the memory structure and the over-the-air interaction

capabilities of the virtual reader. The Tag Buffer is associated to the virtual antennas of a

reader. The antennas represent the interfaces for the Emulator Engine to simulate RFID tag

operation events. It has to be distinguished between read and write operations. Reading tags

means a tag’s information was read by the reader and writing tags means the tag was modified

during time the tag was available in the field of sight. An Event is either a tag appears on the

antenna or disappears. In more detail, this means a list of virtual tags is either added to the

Antenna or removed from the antenna.

General Purpose Input/Output - Some RFID devices allow additional sensors to be con-

nected to it. This is as previously mentioned, widely known as General Purpose Input/Output

6Alien Technology Corporation (www.alientechnology.com)
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(GPIO) and realised as small electrical connectors on the RFID reader. The presence of GPIO

ports is also reader specific and the virtual functionality is provided by this part. Currently

only the Low Level Reader Protocol (LLRP) Reader and the Alien 9800 Reader leverage this

functionality in the Rifidi Framework, yet.

Shared Resources - The shared resources are used as a “housekeeping” component for each

virtual reader. It is a central instance holding together the different components and allowing

to transfer data objects from the above described layers in this section.

Overview of the Command Flow

Concluding with the different components of an virtual reader, Figure 2.7 gives an overview of

the command flow through the different parts of the Emulator Engine. It shows a schematic

view of the data exchange and interactions of the different components. The dotted lines around

the components indicate implementation specific parts, which can be different in each virtual

reader module. All incoming commands are received by the IncomingBuffer, encoded in a binary

Figure 2.7: Rifidi Command Flow Overview [3]

format. Once all bytes of the message are read, it is forwarded to the Protocol. The Protocol

decodes the binary messages to a processable format and hands it over to the IncomingMes-

sageBuffer. The IncomingMessageBuffer stores the Message until the CommandProcessor is

available for processing. The CommandProcessor, consisting of the CommandFormatter, the

CommandSearcher and CommandAdapter, is parsing the message and looking up the corre-

sponding HandlerMethod. Finally, the located method is executed and the intended actions are

performed. If there is a response or a result of the previously executed command the data flows

the way reverse. Following the dotted arrows, the reply first goes through the CommandFormat-

ter again. Afterwards it is given to the OutgoingMessageBuffer, then encoded by the Protocol

and finally sent to the OutgoingBuffer.
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2.3.5 Related Work on RFID

This section presents the results of the conducted literature review. Literature which can be

divided into three categories: test data generators, performance evaluation and cyber physical

systems. First, an overview of the literature on test data generators is given. These can be used

to provide input data for the SUT and build the basis for a virtual test environment as envisioned

in this work. Then literature on performance evaluation of RFID is considered with speared

focus on publications is on performance of RFID middleware. Evaluations on RFID applications,

however, on which this work is focused on, can not be found in literature. Finally, an overview

of Cyber-Physical Systems is presented. RFID is often used as one of the technologies in the

context of CPS, especially with regard to “Industry 4.0”. However, it remains unclear if RFID

systems are CPS. Therefore, the definitions found in literature are considered and a comparison

of the components of both systems is given.

Test Data Generators for RFID

In order to allow testing, especially for black-box tests, the input data for the SUT needs to be

generated to stimulate the software. The results of the processing of this data then need to be

compared to the expectations, allowing an evaluation of the test. The test data generators used

for testing RFID applications can be can be divided into virtual and hardware emulators.

Virtual RFID Toolkits

Beside the Rifidi Toolkit [29] (see also 2.3.4) chosen in this approach, other frameworks for

virtual RFID device emulators can be found in literature. The concept behind emulation of real

existing devices is not new. It is a common approach to virtualize these to achieve various goals.

When it comes to testing, the most prominent reason for virtualization is the control over an

environment, which can be influenced as needed by the tester. Therefore, these frameworks are

mainly used as input generators for the test execution.

A definition of the terms used in the following subsection is given below:

emulator “A device, computer program, or system that accepts the same inputs

and produces the same outputs as a given system.” [36]

simulator “A device, computer program, or system that behaves or operates like a

given system when provided a set of controlled inputs.” [36]

Currently, there are two implementations of virtual RFID emulators mentioned in scientific

publications, beside Rifidi. Unfortunately, neither the Virtual Test Toolkit from the Pusan

National University nor the RFID Performance Test Tool from the Feng Chia University have

been available for download and comparison. Hence, the further investigations on those are
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only based on information which could be obtained through publications and not from concrete

experiments.

Virtual Test Toolkit - [89], [24], [90], [91] describe a virtual reader emulator to evaluate a

RFID middleware mainly with the focus on performance. The toolkit is divided into three parts;

the Virtual Application Emulator, the Virtual Device Emulator and the Toolkit Operator. The

Virtual Device Emulator is comparable to the Rifidi Toolkit. It is capable to emulate one or more

virtual RFID readers and virtual RFID tags. The virtual readers can interact with virtual tags,

which are following the EPCglobal TDS. A Toolkit Operator controls the virtual environment

and is the central part of the virtual test toolkit. The Virtual Application Emulator is connected

to the RFID middleware and acts as a RFID application. The purpose of the Virtual Application

Emulator is to collect information regarding the performance of the middleware under test for

evaluation. The toolkit was first published in 2009 [24] and follows similar objectives as the

Rifidi toolkit and the RFID Performance Test Tool. It differs to the Rifidi toolkit mainly in the

emulation’s level of detail. For example, a fine grained access to the virtual readers including

configuring the output format of tag events seems not to be possible. Nevertheless, it can be

used as a basis for testing, but it is not as flexible as the Rifidi Toolkit.

RFID Performance Test Tool - Jongyoung and Naesoo [92] introduce the design and imple-

mentation of a Performance Test Tool for RFID middleware, consisting of a test data generator

and a result data estimator. The test data generator supports different tag data standards and

various reader protocols, e.g. from EPC Global, Alien Technology and Motorola former Matrics.

The data estimation part implements the ALE specification and connects to the RFID middle-

ware, which is the Software Under Test (SUT), as a virtual application. The reader emulator,

which is part of the test generation tool, is controlled via a graphical user interface and allows

to control the amount of tags, that will be generated. In addition to the amount of tag events

the simulation is supposed to generate, it allows to define a pattern for the encoding of the

generated tag data, as well as a timing interval for the events. Once the specified test data

is generated, it is accessible for the RFID middleware through the “result data transmission”-

part. In summary, the introduced tool is similar to the concept of the Rifidi TagStreamer. It is a

performance test tool to exercise RFID middleware and allows the emulation of vendor specific

reader protocols. But, contrast to the TagStreamer, it does not allow fine grained access or

interaction with the virtual readers. Nevertheless, the advantage of the Performance Test Tool

is the result estimation part, which is used the evaluate the performance expectations.

Rifidi Toolkit - The Rifidi Toolkit (see Section 2.3.4) is similar to the other tool-kits listed

before. However, it strives to be a emulator, contrary to a plain input generator. Nonetheless,

it can be used to generate RFID events and thus provide stimuli to the SUT. The virtual RFID

devices provided by this tool behave like their real counterparts, which is achieved through a

full protocol emulation. The principles and concept of Rifidi has been discussed in [29]. But,

there are further publications in literature available using this toolkit:
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Palazzi and Ceriali [93] provided a critical investigation of the capabilities of the Rifidi Toolkit

regarding RFID system testing. For this investigation they use the toolkit in a case study

to demonstrate the current potentials. Siror et al. [94] use Rifidi as a basis to evaluate the

usability of an an automatic evaluation of a customs verification process. In both cases the Rifidi

framework was successfully used to simulate the RFID environment and therefore supported the

fast and easy demonstration of the case studies. Mueller et al. [95] compare different test

data generators and conclude, that the Rifidi Toolkit is an specialized data generator which can

generate RFID events by emulating RFID readers.

Rifidi allows for the emulation RFID tags and enables to control the environmental conditions

of the environment as needed for the test methodology for RFID applications in this thesis.

Furthermore, it fully emulates the RFID reader, which allows a bi-directional communication

between the RFID middleware and the RFID reader, contrary to simple input generators as

chosen in other approaches. Therefore, and because of its availability as open-source software,

it was chosen as a basis for the virtual test environment for the proposed methodology.

Hardware Emulators

Beside software emulators, there are also physical emulators available [21, 96, 97]. The hardware

emulators are mainly used to simulate RFID readers, in order to test new air protocols, modi-

fications to existing protocols and new command sets. However, some of the devices can even

simulate RFID tags [98]. For example, CISC Semiconductors offers the RFID Tag Emulator [99],

a mobile device capable of emulating multiple RFID tags. This tag simulator can be used to

analyse and test RFID reader performance with certain tag populations. But similar to real

RFID readers, these simulators have to cope with limitations regarding high investment costs

compared to virtual readers and are affected by physical environmental conditions. Hence, be-

side economic considerations a full control of the environment in order to allow for reproducible

test is not possible.

Performance Evaluation

There are several publications focusing on the evaluation of RFID middleware performance.

Additionally to the design for a performance test tool, Lee et. al. [92] define parameters for

workload, such as numbers of clients and readers, and determine estimations to evaluate the

performance of a RFID middleware. The test set-up is based on a number of virtual RFID

readers and simulated application clients. During the execution of the performance test, the

number of virtual RFID readers and applications is increased to generate workload for the

middleware. The middleware’s workload and response times are monitored during the test

execution and finally evaluated.
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A similar approach was chosen by Zhang et al. [91], which is also based on virtual RFID readers

and virtual application clients, but the used evaluation monitor, includes different test objec-

tive evaluators. Following objectives are distinguished: robustness, abstraction, performance

and reliability. However, in contrast to the approach chosen in this thesis the application’s

functionality has not been considered.

The tool introduced by Tai Hyun et. al. [100] is not focusing on RFID middleware, but rather

on the performance evaluation of EPC Information Service (EPCIS). The framework is divided

in two parts: data generation and performance test. The Data Generation tool uses an Event

Generator which is used to generate the test data and either store it in a file or a EPCIS database.

The Performance Test tool generates queries to the EPCIS and monitors the response times.

Contrary to this work, the above mentioned literature on performance evaluation of RFID

middleware focuses on different test objectives like: response time, bottleneck identification and

throughput.

Simulation of RFID Supply Chains

There are various publications centring around the simulation of RFID supply chain activities.

Mueller et. al [27] provide realistic test data for a pharmaceutical supply chain, which was

generated using a simulation. The approach is based on the EPC network infrastructure and a

tool called Rockwell Arena for the simulation of the RFID supply chain.

Wang et. al [101] also propose a simulation of RFID supply chains based on EPCIS, which

is presented as a case study of a frozen food chain. PLANT Simulation is used to describe

the logistic processes and generates EPCIS-Events based on XML bindings. EPCIS-Events are

transmitted to the EPCIS database in real time to support testing of applications based on the

EPCIS.

The above mentioned literature on test data generation, based on simulation of RFID supply

chains, underlines the necessity to test RFID software, but all approaches focus on EPCIS

systems and do not consider testing functional aspects of RFID applications as does the approach

presented in this work.

Testing of RFID Middleware

The most advanced and prospective approach in regard to testing RFID applications is presented

by different authors of the Pusan National University (PNU) [90, 30, 102, 31]. First, a virtual

RFID framework is presented, which is similar to the open source software Rifidi. This framework

was enhanced later on and used as a data generator for RFID middleware testing. Additionally,

a monitoring tool was added to allow the evaluation of performance impacts on the middleware.

Finally, the attributes of RFID data, like movement patterns and unreliable data gathering,

have been introduced. The movement pattern used is derived from business processes and
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based on petri-nets. It represents the paths the RFID tags can move along. It is essential to

distinguish between Semantic Valid Data (SVD) and Semantic Invalid Data (SID), where SID

has no semantic meaning encapsulated in the data itself. SID is generated through random RFID

events and can be used for performance evaluations, where it is not necessary that the tag’s data

follow a special numbering scheme. Contrary to SVD, which is generated from business processes

and represents RFID events, where the data of the tags include a semantic meaning, which is

needed to trigger the intended functionality. Therefore, SVD can be used for functional testing.

Nevertheless, an evaluation of the RFID middleware, in regard to functional aspects was not

considered yet. Hence, regardless of the advancements achieved for testing RFID middleware

solutions, also RFID applications can not sufficiently be tested with this test set-up either.

Cyber Physical Systems

Parts of the following subsection have already been published in [15].

Recently, Cyber-Physical Systems gained immense attention in industry as being a technology

enabling a new industrial revolution. Current focus of research in CPS is leading to an increasing

number of scientific approaches and methodologies for the specification of these systems. In

the current literature, however, no clear and consensual definition of what a CPS is has been

agreed upon. Radio Frequency Identification (RFID) systems are often considered a subset of

CPS [103, 16, 17], but a clear analysis in regard to common principles, characteristics and the

topology of CPS and RFID systems has not been conducted, yet. This arises the question: Can

a RFID system be a Cyber-Physical System? Are all RFID systems always CPS’s or not? And

as a consequence, can the techniques used in CPS also be used for RFID systems?

A large number of definitions for cyber-physical systems can be found [103, 16, 17, 104, 105,

106, 107, 108]. In the following the various definitions are revisited, compared, and combined

into a single definition based on the common characteristics for which the main components of

CPS are identified and presented in a schematic overview.

Lee [103, 16, 17] defines CPS as follows:

“Cyber-physical systems are integrations of computation with physical processes.

Embedded computers and networks monitor and control the physical processes,

usually with feedback loops where physical processes affect computations and vice

versa.”

With a focus on the dynamic aspects of CPS and emphasizing the physical behaviour Lee et.al.

[104], postulates CPS furthermore as:

“Cyber-Physical Systems integrate the dynamics of the physical processes with those

of the software and communication, providing abstractions and modelling, design,

and analysis techniques for the integrated whole.”
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Additional to the previous definition the aspect of a detailed software design is moved in the

focus. This is an in interesting point for RFID systems as well. The approach in this work is

based on models trying to bridge the gap between the physical processes and the software.

Rajkumar et al. [105] chose a control-theory oriented definition:

“Such systems that bridge the cyber-world of computing and communications with

the physical world are referred to as cyber-physical systems. Cyber-physical sys-

tems (CPS) are physical and engineered systems whose operations are monitored,

coordinated, controlled and integrated by a computing and communications core.”

In this definition the cooperation of CPS through communication is a major concern.

Tan et al. [106] state that even if a cohesive definition of CPS is missing, all above mentioned

criteria are valid and define CPS as:

“Although the question of ”What is a CPS?“ remains open, widely recognized and

accepted attributes of a CPS include timelines, distributed, reliable, fault-tolerance,

security, scalability and autonomous. [...] Cyber-Physical Systems are a next gener-

ation network connected collection of loosely coupled distributed cyber systems and

physical systems monitored/controlled by user defined semantics laws.”

This definition emphasis on distributed systems, especially on specific algorithms, which are

designed for distributed systems. However, this aspect is also included in the definition of Lee

[103, 16, 17].

Similar to Raijkumar’s work [105], a more control-theory oriented approach has been chosen by

Talcott et al. [107], specifying CPS as:

“Cyber-physical systems (CPS) integrate computing and communication with mon-

itoring and/or control of entities in the physical world. Sensing and manipulation of

the physical world occurs locally, system behaviour emerges as a result of communi-

cation and other forms of interaction.”

Park et al. [108] state that CPS can be seen as an evolution of embedded systems:

“Recently, the convergence of cyber and physical spaces has further transformed

traditional embedded systems into cyber-physical systems (CPS), which are char-

acterized by tight integration and coordination between computation and physical

processes by means of networking. In CPS, various embedded devices with compu-

tational components are networked to monitor, sense and actuate physical elements

in the real world.”

This definition defines the properties of CPS very good. However, it is based on the definition

of embedded systems.

To summarize these definitions, a combination of Lee [103] and Tan [106] has been chosen: A

CPS is defined as a highly networked system of systems with a tight integration of physical
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processes and computational parts. Main cause for increased complexity of CPS is additional

functionality, due to the fact that the used techniques are for distributed applications.

The main challenges in the area of CPS are to find accurate models, that are capable to describe

the physical processes in addition to the computational model, as well as choosing a well-founded

model for temporal aspects. Based on the definition from [17], the key components of CPS can

be identified as:

• Sensors & Actuators

• Computational System

• Communication

Figure 2.8 shows a schematic overview of a cyber-physical system with the identified key com-

ponents. These components are divided into the parts ”physical world”, ”cyber world” and

”communication” and used to group the appropriate components in the CPS.

Figure 2.8: Schematic cyber-physical system

Comparison of CPS and RFID

A generic RFID system is depicted in Figure 2.9, compromised of one or more RFID readers,

with antennas and tags, a RFID middleware and a RFID application. These components already

make it possible to identify the essential parts of a CPS as defined. The physical world of CPS is

comprised of sensors and actuators. One can think of RFID systems as sensing the presence of

objects, which is done through antennas of the RFID readers. In addition, it is also possible to

control physical processes through actuators. This is mostly realised through the use of General

Purpose Input / Output (GPIO) ports. These ports allow to control additional actuators, like

electric motors to open doors and gates. The communication part in RFID systems is intrinsic

and used between the components involved. This can be divided in the communication of

RFID tags with the RFID readers using the air interface and in the communication of the

RFID readers or parts of the application using a network connection. For example, the RFID
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Figure 2.9: Generic RFID System as a CPS

middleware configures the readers and gathers the observed RFID events. These events are then

processed in the middleware and filters are applied. Eventually, the processed data is sent to

the application and accessible for the users. The cyber world is defined by the computational

parts. In a RFID system this can either be the reader, the middleware or the application or

a combination of those. Depending on the logic of the system, more or less components are

involved in the computation.

Nevertheless, the similarities between the central components of CPS and RFID systems already

allows to consider most RFID systems as cyber-physical systems. As a result and in regard to

testing it might be possible to use this knowledge to adopt some of the techniques used in this

area to RFID and vice versa.
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Requirement Analysis

In order to develop a test methodology for RFID systems it is necessary to gain an understand-

ing of the components of such a system and their functionality. For this reason, the individual

components of a RFID system are analysed and corresponding requirements for the test envi-

ronment and test methodology are determined. In relation to the research questions raised in

Section 1.3, the test relevant aspects which must be considered in a test methodology for RFID

application testing are therefore identified in this chapter.

This chapter identifies the missing parts in literature, covers the characteristics of RFID appli-

cations in the context of testing and serves as a basis for the presented method for test case

generation and test automation. First, the architecture of an RFID system is presented and

the functionality of the different components are discussed in relation to the test methodology

examined in this thesis. This includes the effects of RFID reading events, configuration settings

and the interactions of the individual components. Afterwards, the challenges are examined a

physical and software level. In particular, defects are classified with a focus on RFID applica-

tions, which serves as a basis to determine the requirements for a test methodology. Finally, the

various RFID applications are classified in regard to complexity for testing.

3.1 Gaps in Literature

Due to the complexity of software, it is neither technically nor economically possible nor rea-

sonable to test completely considering all possible external circumstances (Patton et al. [32],

Myers [10]). This applies in particular to RFID applications. Due to the high complexity of the

relationship between components of a RFID system, the application behaviour and its execution

context, it is not possible to achieve complete test coverage while taking all possible values of

individual test parameters into account. Therefore, functional and non-functional requirements

are prioritized in practice and checked against a specification in varying degrees of intensity

based on the resulting ranking of individual aspects.

In regard to related work on testing RFID (see Section 2.3.5) an approach which directly ad-

dresses functional testing of RFID applications is missing. As identified during the literature

review, the aim of other approaches is mainly on performance testing or pure test data genera-

tion. Implications of the RFID events on the applications state and, especially, the evaluation
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of the application state after the execution of tests hast not been part of recent work. Addition-

ally, a sophisticated approach which combines the generation of test cases based the application’s

logic including the execution and evaluation of the outcome of the test is also missing.

One reason for missing literature on RFID application testing might be the expectation that

software testing has been redefined over time into an exact science and is an integral part of

software development, but this if far from true. According to [10], software testing seems to

be less known than other aspects of software development. Other publications support this

statement, for example Tassey [87] has shown that software testing and it’s infrastructure is

often still inadequate and far from being satisfactory. A recent study of Beller et al. [88] reveals

that the majority of developers do not test at all and often there are misperceptions of the

amount of time spent for testing.

Especially in the area of RFID, where the main focus still lies on the physical constraints of

RFID systems. And truly, it is essential to ensure the correct reading of RFID tags and achieve

a high detection rate first. An physical evaluation is the prerequisite for the applicability of the

RFID technology and ensures that it can be used in a given business scenario. However, the

efforts for this should not be excessive so that the software cannot be tested any more due to

budget restrictions and test efforts spend here do not substitute RFID application testing on a

system level.

Modelling behavioural aspects of the system is often an integral part of the software development

process and therefore does not represent a particular challenge in the application of the concept

presented here. The chosen model based test approach is a recognized and often used method

for the systematic derivation of test cases. Thus, the basic principle of generating test cases is

not unique. Methods for specifying use cases on the basis of activity diagrams and for deriving

test cases form them have already been considered in other studies (Section 2.2.2).

To improve the quality of RFID applications and at the same time to lower the costs of testing

a systematic test methodology with high automation potential is needed. However, no known

approach covers all the requirements needed for testing RFID applications, such as covering the

time lapse during the data acquisition of an RFID system. Since most of the approaches are

not combinable or extendable, the approach in this work summarise the most interesting ideas

in a flexible, meaningful concept and supplements them with own suggestions for the creation

of RFID-specific test cases.

3.2 RFID System Analysis and Architectural Challenges

A typical RFID system consists of a three layered system architecture. Usually a combination of

serveral RFID readers (1), a RFID middleware (2) and a RFID application (3). The RFID data,

often referred to as RFID event stream, is successively processed on the different layers (1-3).

The RFID readers, located at the lowest level, are capable to communicate with RFID tags and
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therefore build the basis for data capturing. Events collected this way are first processed by the

middleware and then passed on to the application. Two fundamental functions are used on each

layer to process the data: (1) the actual acquisition and (2) application of filters or aggregations.

When looking at an RFID system, different events are created on the various levels. Therefore,

we first divide them into Low Level Events (Tag to Reader), RFID Events (Reader to Mid-

dleware) and Application Level Events (Middleware to Application). The RFID events passed

from the Reader to the middleware contain important information on which tag was read, when

it was read and - depending on the manufacturer’s implementation - how strong the signal was.

It is possible that additional data may be added to the event during data processing on higher

layers of the RFID system. For instance, this could be the name of the RFID reader that has

captured the tag (e.g. Application Level Events). Sometimes, this extra information also adds

an additional semantic meaning to the event. For example, if a tag is detected at the entrance

of the warehouse, this could mean that new goods have been stored.

In order to show a concrete example of an RFID event, an Alien 9800 RFID reader from Alien

Technology will be used to take a closer look at the structure of RFID events. This type of reader

has been chosen, since the proprietary Alien-Protocol is textual and can be easily interpreted

by humans:

Figure 3.1: Example: Alien 9800 Output

Figure 3.1 shows the logon procedure and the execution of the command “t” (abbreviation of

“get taglist”). In this case, several RFID tags are located in the vicinity of the antenna. Each

tag discovered by the RFID reader is displayed as a separate line containing information about

the tag ID, the date on which it was discovered (Disc:) or last detected (Last:), the number of

times it was read within the interval, the ID of the antenna on which the tags are present, and

the RFID tag protocol (in the example Output “Proto:2” stands for the Air-Interface Protocol

EPCC1Gen2).

Even if most RFID systems generate similar data, it depends on the devices used and the

querying application (in terms of configuration of data capturing) which data fields are enabled
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and which functionality is provided. However, a tag event is always a specific RFID tag with

a (usually) unique ID (EPC-ID) that was read at a certain point in time on a specific RFID

reader (combination of reader and antenna).

In general, the most common RFID event data consists of:

• Source (implicit)

• EPC-ID (or appropriate other identification attribute)

• Time of first sight

• Time of last sight

• Vendor-specific information such as signal strength, count, etc.

Therefore, a RFID reading event can be presented in an abstract form as a tuple:

(reader, id, tin, tout)

Typical RFID systems can capture multiple RFID tags simultaneously. For a closer look at the

structure of RFID data streams, the example depicted in Figure 3.2 is considered. It shows a

Figure 3.2: Movements of RFID tags in a schematic warehouse

schematic warehouse with two entrances named “DeliveryEntrance1” and “DeliveryEntrance2”.

Both entrances and the door to the production area are equipped with fixed RFID readers.

The arrows symbolize the forklifts’ movements. At first goods are delivered and recorded by an

RFID reader installed at entrance 2. The goods are temporarily stored in the warehouse and

after a short period of time, brought into production. Here they are scanned by another RFID

reader located at the gate to the production area.

Thus, RFID events are related to place and time. RFID reading events are triggered by objects

equipped with RFID tags that move through the room. The location in which RFID events can

be generated depends on the reading zone of the RFID reader. In case of permanently installed

devices, this location is also fixed. During the acquisition with mobile reading devices which
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may be attached to forklift trucks, the location is variable. The chronological order of generated

RFID events is determined by the route on which the goods equipped with RFID tags move.

When this path intersects with a reading zone, the tags are captured. The first and last capture

of a tag and the time a RFID tag is located inside the interrogator zone of a certain RFID

reader, is determined by the speed of the movement. An RFID event is generated whenever a

reading zone is crossed during this movement. An equivalent description of an RFID event is

therefore:

(id, location, time intervall) = (id, reader, (tin, tout))

In summary, RFID middleware enables the simple integration of sensors, such as RFID Readers,

into enterprise systems and RFID applications and serve both as a filter and aggregation for

the increased data volume. In addition, they support extended configuration options to assist

application programmers in developing RFID applications. Especially, data management and

process management (see 2.3.2) are the essential features that alter the data processed by the

RFID application and, hence, is particularly relevant for the test method presented in this thesis.

Challenges for Testing - It can be deduced that the test methodology must be able to

describe RFID events and generate them during the test execution. The chronological sequence

is determined by movements.

The configuration settings (see Section 2.3.2 and 2.3.2) of the RFID reader and the middleware

changes the way in which RFID tags are recognized and thus has a direct effect on the subsequent

data processing. Whether the selected settings match the overall system can only be shown by

an integration test. A requirement for the test methodology is therefore that the configuration

settings can be taken into account.

3.3 Physical and Technical Challenges

Frequent shortcomings of RFID systems are often due to physical problems [109, 110, 111,

112]. Therefore, successful implementation of RFID projects depends greatly on overcoming the

physical challenges to achieve reliable capturing of tags. Since, this can often only be coped with

by extensive tests and trials before the introduction of RFID, extensive pilot studies are often

carried out before the RFID system is introduced in order to investigate its general feasibility.

A huge number of factors, which have a significant influence on the reading range and signal

quality, can be identified and therefore are relevant for reading RFID tags. Some of these are

listed below:

• frequencies used

• relative position of tags and readers antenna to each other

• polarization of tag and readers antenna
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• shape of tag and readers antenna

• radio power

• material the tag is mounted on

• interference (reader-, tag-density)

• coupling (induction, electromagnetic)

• physical disturbances

• tag detection (polling interval)

• velocity of tags

• air interface protocol (aloha protocol)

Some of the factors listed above may change continuously. For example, the reading probability

may be close to 100% at first, but it may fall sharply due to changing environmental influences.

The insufficient reading rates especially in combination with problematic materials, like metals

and water, can be a deciding factor. But also weather conditions can have an impact. An

experience from a real-life situation will illustrate this: A feasibility study carried out in autumn

revealed a very good reading probability, but it was discovered that several RFID tags could not

be read after putting the system on-line. It transpired, that this odd behaviour was caused by

pallets which were stored outside the warehouse and therefore were soaked with water. Hence,

all sodden pallets could not longer be properly detected.

Currently, there are also limitations with regard to national regulations for international supply-

chain flows. For example, there are no standards for worldwide free frequencies that allow

cross-border networking of product flows. Also, errors occurring during bulk reading must be

eliminated. These reading errors occur particularly frequently when tags and readers from

different manufacturers are combined or a huge tag population has to be scanned.

Of course, many of the physical challenges of RFID systems can only be solved on a technical

level. A feasibility study must be carried out before the start of a project, as the effects of

the radio field are difficult to predict. However, some problems also affect the software level. If

physical challenges are not or cannot be tackled properly, for example, due to incorrectly aligned

antennas or changed environmental conditions, unintentional reading events can occur. This is

probably another reason for the lack of literature on testing RFID applications, since a large

part of the testing effort is already invested in mastering these technical challenges. However,

for the application, this has serious consequences because either no RFID events are captured

or undesired readings are recorded and the corresponding processes (e.g. movement of goods

from the warehouse to the salesroom) loose their trustworthiness.

Challenges for Testing - The uncertainty from the unpredictable physics have serious impact

on the software. This underlines the importance for software testing and inevitably leads to an

increased emphasis on robustness testing. Despite, the fact that unpredictable physical effects

also hinder the reproducibility of manual tests, it is necessary to reduce the effort performing

these tests. Hence, the approach presented in this thesis, needs to consider an environment that
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is reliable and controllable in order to perform robustness tests and is capable of repeating tests

in the same environmental conditions.

3.4 Software and System Challenges

Although the distributed data processing and the physical challenges of the lower-level compo-

nents of an RFID system alone justify a test methodology, a closer look at the effects of those

on RFID applications is necessary.

Despite the fact that robustness tests play an enormous role in testing RFID applications, the

physical challenges also lead to a significant increase in the complexity of RFID applications.

Unreliable readings caused by physical effects do not improve in many cases without the use of

additional sensors/actuators. However, the use of additional hardware inevitably leads to an

even more complex architecture of the overall system.

The fact that the physical challenges cannot always be completely solved is also shown by the

way RFID data is described in literature. According to [91] RFID data consists of a data stream

with the following attributes:

• redundant data

• grouped data

• moving route

• noisy data

Bai et al. [113] identified three typical scenarios for the reliability of RFID readers: “False-

negative” reads are defined as tags that exist but may not be read at all. “False-positive”

reading events result in additional and unexpected RFID events. Additionally, “duplicate”

reading events are characterized by the fact that they are caused by tags in the reader’s field

over a longer period of time (i.e. in multiple reading frames), or that several readers are combined

to cover a larger area. Keller [114] identified similar effects:

“False-Negativ” - A false negative RFID tag is read if an RFID tag within range of the antenna

is not recognized by the reader at all. This corresponds to a pallet that was moved through

the RFID portal and unnoticeable loaded onto the truck. Many reasons can be identified for

this behaviour. For example, the product types on the pallet have a significant influence on the

readability of RFID tags, as water and other liquids (e. g. shampoo) absorb radio waves and

thus greatly reduce the reading range. Other reasons are defective or difficult to read RFID

tags. To overcome this problem, multiple antennae are often installed to increase the chances

of reading a tag. However, this can lead to another problem, the mutual elimination of radio

waves by interference effects.

“False-Positive” - In contrast, the term False-Positive RFID tag read has two different mean-

ings. On the one hand, the phenomenon is similar to false-negatives, since physical effects
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influence the readability of RFID tags. Any metallic material in goods or packaging (e.g. metal

foils and metallic paints), the forklift truck itself or anything else in the area of the antennae

can unintentionally increase the reading range of the antennae considerably. As a result, tags

that are clearly out of reach are read unexpectedly by the reader. On the other hand, the term

false-positives refers to tags that have been read and are clearly within the reading range, but

for whatever reason they should not be read.

The first question is how to deal with false-positive and false-negative events. Often the middle-

ware and its logic can be used to detect RFID events that are captured multiple times. Particular

importance is given to the temporal or location-dependent flow of tags and the associated RFID

reading events. This makes it possible to detect erroneous read operations when a business

process follows a certain sequence that permits the identification of a order in which tag events

occur. For example, lets assume a businesses process which ensures that a tag must be read from

reader R1 at first and then it is allowed to be processed by reader R2. If the system recognizes

a read on R2 but did not on R1 previously, it can be concluded that something went wrong.

Another way to detect errors without the use of additional sensors would be to track results

from business steps [115] at application level. In the business steps “Assembling”, “Packing”,

“Repacking”, etc., several tags are put together into larger groups and from then on move

together. An example of this is the packaging process, in which several products are palletized.

If an RFID tag of a group is now detected, but not all tags belonging to this group, it can be

assumed that the reading process was incorrect.

A large number of researchers present different techniques and algorithms for data processing

and event stream cleaning to solve the above mentioned problems of capturing tags correctly

[113, 116, 117, 118, 119].

Challenges for Testing - Whether the proposed techniques can be applied correctly, becomes

evident only when the individual components are integrated. However, this can only be provided

by quality assurance methods. Hence, functional testing is an important aspect to ensure quality

of the RFID system and needs to be considered for the development of a test methodology.

In addition to data capture, the software architecture of the system plays an important role too.

This is mainly due to the distributed nature of the software components involved in processing

the data stream, such as the reader itself and the middleware. The software, or rather parts

of the application’s logic, of a typical RFID system is distributed over all these components

and different configurations of the filters and aggregation mechanisms might be used. In some

scenarios, in which it is necessary to share the collected data across different companies, even

more additional software such as EPC-IS is needed as well. The resulting software is composed of

multiple components and different configuration options, which need to integrate well to perform

in accordance with the specification. Therefore, it is necessary to carry out an integration test

at system level, since it is the first time all components are assembled. The methodology to

be developed needs to be able to validate the requirements for the entire RFID system, RFID

middleware and RFID application at the system level.
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Since RFID systems aggregate data over time, the test can only be carried out in real time, so

it makes sense to automate the tests for reasons of time and cost alone. However, automation

can only be accomplished if the RFID environment and its changes can be described properly.

Therefore, we derive two requirements for the test methodology: The test methodology must (1)

provide a description of a suitable system environment and (2) be able to simulate it reproducibly.

3.5 Classification of RFID Standards

In order to classify the standards (see Section 2.3.3) a survey on the adoption rate of currently

available RFID software products offered on the market was conducted. Table 3.1 shows the

result of this investigation. Software solutions where no information of supported standards was

publicly available are included nonetheless.

Middleware LLRP RP ALE EPC-
IS

TDS RM DCI

Oracle RFID and Sensor-Based Services X X X X

Microsoft - BizTalk RFID X X X X

IBM - Websphere Sensor Events X X X X

Globranger iMotion Edge Platform

Odin Easy TAP IBM - Websphere Sensor Events X X X X

SAP Auto-ID Infrastructure X X

TrueVUE RFID Platform

S3Edge Spotlight RFID Server X X X X

OATSystems

RFID Innovations

RF-IT solutions YOU-R Open Middleware

Seeburger AG - RFID Slap & Ship Lösung

CUHK EPCGlobal Middleware X X X

logicAlloy ALE Server RFID Compliance X X X X

Fosstrak ALE Server RFID Compliance X X X X

Trancends RIFIDI Edge Server X X X

Aspire RFID Middleware X X X X X

Table 3.1: Adoption of standards in commercially available RFID software solutions

Summarized, in many of the examined RFID middleware solutions an implementation of the

ALE interface can be found. LLRP as a basis for communication with RFID readers is also widely

adopted. But some hardware vendors of RFID devices are still using proprietary proctocols,

however it is anticipated that the adoption of this standard is progressing in the near future.

E.g. Alien Technology, which insisted on using their proprietary protocol for a long time,

implemented LLRP for their palette of readers.

With respect to testing, the GEN2 and TDS standards are especially important because they

describe the identifiers, which represent the data gathered from the RFID readers. For theo-
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retical considerations of a test methodology identifiers can be substituted by abstract variables,

like id1, possessing the same semantic. However, for the generation of input data and validating

concrete RFID events they need to be included. In this approach a black-box test technique

has been chosen. Therefore the only way to interact with the SUT is through these interfaces.

Hence, input data need to be generated following the definitions of LLRP or other proprietary

protocols.

Challenges for Testing - The most important standards in regard to a test methodology are

TDS and LLRP, because these standards are used as a interface between the different components

of a RFID system and the test environment. As a requirement for a test methodology these need

to be considered for the test execution environment in order to allow a practical application.

3.6 Classification of RFID Applications

Depending on the application area of the RFID system, more or less components are involved

in the processing of the collected information. There are three types of RFID applications that

can be distinguished:

• Historically oriented tracking applications - This type usually only stores the data

collected by the RFID system in databases. RFID events have no direct influence on the

systems behaviour. Typical applications are the tracking of products and deliveries. Unlike

the other types, multiple captures of a RFID tag has no direct impact on the application

as the observations are just used by means of a journal of movements.

• Adaptive real-time or control flow & status-based applications - This class of

RFID applications, the data collected by the RFID system changes the state of the system.

In other words, it reacts to the tag movements observed. Typical fields of application

are, for example, production control or warehouse management. To identify this type of

application, it is possible to look at whether it makes a difference if the same RFID tag is

captured more than once. For example, an item that has already been seen when entering

the warehouse cannot enter the warehouse a second time. Or a product which has already

been handled by a certain production step does not need to be processed again.

• Interaction-based applications - In addition to the previous type, not only the state of

the software is influenced by reading events, but there is also a direct interaction with the

environment. An example application can be found in library equipped with RFID. A book

that will be borrowed at a self-checkout terminal with RFID requires direct interaction with

the user. The user must first start the borrowing process by pressing a button, following

several interaction steps between software and user. In regard to the recent trends in the

field of “Industry 4.0”, RFID applications of this category are expected to increase.

In comparison to other approaches which mainly focus on test data generation [26, 30, 31,

91, 102, 101, 27] interaction-based applications in particular have not been addressed properly.
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However, especially this type of RFID application increases the complexity of the tests through

the various interactions. In this thesis a model based test approach is introduced which is

capable to capture these interactions and at the same time can be refined with additional test

data (e.g. test oracles) to test and evaluate such applications.

3.7 Conclusion

Due to the complex and distributed architecture of RFID systems, system level testing can be

seen as an important aspect to improve the quality of the RFID application. Especially as there

are many factors, like configuration settings of the individual readers and the middleware, which

influence the correct interaction of the sub-systems and can only be tested when all components

are finally composed to a complete solution.

RFID systems are unreliable in certain conditions and composed by many components. Timing

and the order of RFID events are essential for distinguishing logical RFID events. The use of

RFID can offer valuable benefits, but also comes along with many challenges the application

needs to be prepared for. Considering the identified issues of the previous chapter in the context

of this thesis, typical effects of RFID on the overall system are:

• False or unintended events (false negatives, false positives)

• Unrecognised events that reappear later need to be handled accordingly (robustness design,

error handling)

• Interaction between the various parts of the RFID System (system testing)

• Suitability of the chosen configuration options (filter, aggregations) in regard to the busi-

ness processes (timing, location)

In this chapter the challenges of RFID applications have been explored and requirements in

regard to a test methodology have been derived based on these observations. Furthermore, dif-

ferent types of RFID applications have been classified which can be tested with the methodology

for testing RFID applications presented in this thesis. The central question remains whether the

software solutions can cope with the numerous challenges at the physical and software level and

at the same time also implements the specified functionality properly. On the knowledge gained

during the analysis of the RFID systems and in regard to the research question how a RFID

application can be tested, a test methodology was developed that is able to meet the identified

challenges.

To achieve this, a semantic model to describe the system environment and the hardware was

created. With this abstract model its possible to describe the components of an RFID system

and the according movements of RFID tags, respectively input data for the SUT. A systematic

method for test case generation including constraint based test data selection and in order

to evaluate the test results a semantic representation of the application back-end is presented.
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Additionally, a automatic test execution environment, capable to simulate the unreliable capture

of RFID tags and control the environmental conditions of an RFID system is proposed.
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Based Testing of RFID Applications

Chapter 3 examined the typical architecture of RFID systems and showed that particularly the

physical challenges have a significant impact on the development, operation and testing of RFID

applications. These effects also manifest themselves in an increased complexity for all quality

assurance measures. So far, however, there are hardly any methods and tools that meet the

special requirements of testing RFID applications (Section 2.3.5, 3). Therefore, a constructive

model-based concept for determining tests, as well as a tool-kit (Section 2.3.4) for automated

test execution including an RFID environment simulation will be presented.

This chapter covers the definition of the semantic model, the ITERA meta-model and the

concrete application of the ITERA method for creating RFID application tests from the speci-

fication.

The formal definition, notation and the semantics of a RFID system as well as a model of the

application are described in the first part of this chapter. An abstract model based on set theory

is introduced that describes the RFID readers, RFID tags and the processes of an RFID system.

The second part of this chapter contains a test methodology to systematically obtain test cases.

For this purpose use cases of a RFID application are identified and analysed. Each use case is

successively refined by activity diagrams, which are used as a basis for augmenting contextual

test data and systematic test case derivation. The combination of both, the semantic notation

and the activity diagrams of the use cases allow the generation of executable tests for RFID

applications suitable for automated testing.

4.1 ITERA Methodology

The introduction of RFID can provide a lot of benefits to businesses, but also comes along with

many challenges. Based on the findings of the RFID system’s analysis in Chapter 3 and in

order to answer the research questions raised in Chapter 1, this chapter presents a novel test

methodology, that not only meets the challenges identified, but also allows for the automatic

and systematic derivation of test cases.

The ITERA method is based on the premise that initially rough business process models can

be created from use cases and successively refined by enriching them with increasingly detailed
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information from the requirements specification and the environment (see Section 4.4). Through

enrichment with test relevant information it allows for the generation of test cases. In the

narrower sense, test relevant information may be user input, system assertions and context

parameters. Technically, the refinement is realised through the integration of test-specific details

using a specially tailored UML profile, called the ITERA meta-model (Section 4.3). The test

model is then used to systematically extract test paths (Section 4.5). Those paths in combination

with test data constitute the tests (Section 4.6). These tests are then supplemented by an

automation tool (see Chapter 5), which can execute the tests in a simulated environment without

the need of manual intervention. This simulation covers the manipulation of the SUT and its

environment, in particular by temporal aspects and the stimulation of the SUT by artificial

RFID events.

Similar methods for test generation have already been investigated in the scientific literature.

While the individual approaches differ in detail, there is agreement on their basic feasibility.

Despite the differences in the individual steps of test case generation, those approaches largely

follow a uniform pattern (Section 2.2.2), on which the methodical approach presented here is

also oriented.

4.1.1 Overview of the ITERA Methodology

Integrative Test-Methodology for RFID Applications (ITERA) is a test method, a semantic

model of the RFID environment and a test environment for RFID applications. The method

presented is used to gradually transform use cases developed in cooperation with stakeholders

into a semi-formal test specification. Test cases are then systematically determined from the

models created, in order to execute them in the test environment eventually. ITERA, thus, not

only enables the specification of RFID tests, but also allows for describing the RFID environment

with the aim of performing automated software tests.

The methodology presented in this thesis is based on three models: The domain model (class

diagram), the test model (activity diagram & meta model) and the physical model. Each model

represents one aspect of the SUT. The most important model in the ITERA context is the process

model (i.e. test model) based on UML activity diagrams. It covers the dynamic processes of the

RFID application and allows for the systematic generation of test cases. The domain model is

a static model that is used to identify domain terms and the dependencies between objects and

helps to identify test data. A UML class diagram is used for this purpose. The environmental

model helps to capture the spatial and temporal aspects of the underlying physical processes.

It is mainly used as a tool to enhance the UML activity diagrams, since these do not allow for

a sufficient description of temporal aspects, as needed for testing RFID applications.

Figure 4.1 provides an schematic overview of the ITERA methodology for RFID application

testing. First, several models representing the different use cases are created and successively

refined using the specification of the SUT. In a second step, test cases are derived which can also
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Figure 4.1: Schematic overview of the ITERA Methodology

be used to determine the test data needed for test execution. Once these steps are performed,

the tests can be executed using an RFID environmental simulation in order to evaluate the SUT.

4.1.2 ITERA Phases

The concept elaborated in this thesis consists of four phases and follows the procedure of Model

Based Testing (MBT) (Section 2.2.2). These comprise of:

1. Modelling of behavioural aspects

In the first step, behavioural aspects of the SUT are modelled. The presented approach

supposes that requirements are available and that these can be transferred into a be-

havioural model in form of an UML activity diagram. This restriction is based on the

concrete implementation of the method in this thesis, but in principle it can also be ap-

plied to other models.

2. Refinement of the models with test-specific details

In a second step, the behavioural model, i.e. the UML activity diagram, is enriched with

test-specific details. These include test-relevant business rules and in particular an RFID

context model. At the technical level, this enrichment is realised by an UML profile,

which extends the UML meta-model with the ITERA context model. This model can

be extended and adapted in order to meet special features of components involved in an

RFID system that are not considered in this work.

3. Transformation of the test model into tests

By applying a model transformation, the UML activity diagram enriched by the ITERA

context is transferred into an abstract test case model, which extracts test-relevant aspects

of the behaviour model in the third step. Thus, it forms the basis for the determination

of concrete test data and for further processing towards executable tests.

4. Automated execution of tests by simulating the RFID environment

Through combination of test cases and test data, concrete test cases are created in the

fourth step. It is not a prerequisite that the abstract test cases are generated from a UML
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activity diagram. Test cases created manually using elements from the ITERA meta-model

are also valid input that allow for creating executable tests.

Figure 4.2: ITERA test case generation process flow

Figure 4.2 exemplary visualises the flow of activities to generate a set of tests within the ITERA

methodology. It starts with the specification, which is used to define a test goal, identify the

different use cases and to determine physical parameters. The definition of a test goal includes

a coverage criteria, which will be used as a parameter for the automatic extraction of test cases

through the path analysis performed for each use case. The context selection captures additional

testing parameters, like timing and run-time specific details of RFID reading devices (e.g. type

of reader, IP address, etc.) needed to set-up the test execution framework. The use cases that

are identified from the specification are used as a basis to model activity diagrams (phase one

of the ITERA methodology). Each activity diagram will then be refined by using the elements

from the meta model as defined in the second phase. The path coverage criteria is used in

the third phase to extract the abstract test cases. Enriched with additional run-time specific

test data each abstract test is converted to an executable test case, which can be used within

the test framework. As each use case might contain several execution paths (test cases), these
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are combined to a test suite. With additional parameters covered in the environmental model

and test data selected by the tester the execution of the tests can be carried out (phase four).

The process to generate test cases in Figure 4.2 is not necessarily linear and should be applied

iteratively to improve the generation of tests.

4.2 Semantic Foundation for Modelling RFID Systems

In order to be able to specify test cases for testing RFID applications later on, a convenient

semantic of the application and the RFID system’s components is required.

The first step towards testing of RFID-based applications is to define this semantics for RFID

applications, RFID readers, RFID tags and their interactions. This semantics for elementary

RFID interactions is based on set theory and a discrete time model. The following chapter

introduces an abstract but formal semantics, in order to describe the different parts of a RFID

system without the need to specifically address the different RFID readers, RFID middleware or

tags used in the actual implementation and realisation. The preliminary work of this subsection

has also been presented in [120, 15].

4.2.1 Discrete Timing Model

To simplify the notation, a model of discrete time is used. So, the sequence T = t0, t1, t2, . . .

describes different time steps, where RFID related actions might happen. An identifier of a

RFID transponder can be described as id and a RFID reader as R. Thus, a certain RFID tag

can also be written as id2 and a distinct reader can be written as R1, where the indices are used

to distinguish multiple readers or tags. This is a sufficient abstraction level for the specifications

used in the test methodology.

Regardless of the continuous progression of time in the underlying physical processes, the RFID

readers are just capable of sensing RFID tags in their field at these discrete points. This

assumption is underlined by the fact, that there are usually no incomplete readings of a tag’s

identifier. Incomplete transmissions are prevented by the air protocols of the RFID readers,

which are using error checking mechanisms [81]. In contrast, considering a continuous model of

time, there could be state changes observed in-between the discrete points of time. However,

this is not the case from a RFID reader’s point of view. Figure 4.3 shows the progression of four

RFID tags id1, id2, id3, id4 through a reader’s radio field over time. The associated changes of

the reader R1 using a polling command to retrieve the captured RFID tags are also depicted.

Regarding the example in Figure 4.3, state changes can be observed at t0−4 and t6−7 only. Time

points without changes, like t5 or t8, can be skipped entirely, since there is no information gain

compared to the time step before (ti−1). Therefore, the use of a discrete time model is reasonable

and sufficient for this approach.
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Figure 4.3: Example progression of tags through the reading field of an RFID Reader

Based on the information presented, only changes of the sets are essential. However, the exact

points of time, where RFID events might happen, still need to be identified. This can be done

by an analysis of the RFID events shown in the example. The result of this analysis shows, that

each time point where a tag enters, respectively leaves, the interrogation zone of a RFID reader

needs to be identified, to build the discrete model of time. Nevertheless, the time passing by

in-between two time points can be variable.

4.2.2 RFID Readers and Tags

The focus of this thesis is to test functional aspects of the software. Generally, it is not possible

to capture the software in every detail, so a more abstract model that still captures the essential

parts is needed. For this purpose, a semantics and notation based on sets is introduced, to be

able to specify the tests.

A generic RFID system is defined as:

Definition 4.2.1 (RFID system)

A RFIDSystem is a tuple of sets containing the physical RFID readers and RFID tags.

RFIDSystem = (Readerssys,Tagssys)

All distinguishable tags of a RFID System are collected in a set of RFID tags and defined

as:

Definition 4.2.2 (RFID tags)

A set of tags Tagssys = {id1, id2, . . . , idn} is a set, of distinct RFID tags with unique iden-

tifiers. n ∈ N is finite and represents the count of RFID tags in this system.
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Following the common definition of a well defined set, a set is a collection of distinct objects. So,

if id2 6= id5, the set {id2, id5} describes two distinguishable RFID tags, which can be separately

read and are placed on two different objects.

A typical RFID system consists of at least one RFID reader, but more commonly more than

one reader can be found in industrial set-ups. Therefore, the set Readerssys is the collection of

all RFID readers the RFID system consists of.

Definition 4.2.3 (RFID Readers)

The set of RFID readers Readerssys = {r1, r2, . . . , rn} is a collection of distinct RFID readers

the system consists of. n ∈ N is finite and represents the count of readers in this system.

E.g. Readerssys = {r1, r2} is a RFID system consisting of two different RFID reading devices, in

this case called r1 and r2. Where the index of r1, r2 denotes the identifier of said RFID reader.

The state of a RFID reader can also be described by a set of RFID tags, which are in the

detection range of the reader.

Definition 4.2.4 (RFID Reader)

Every RFID reader can be described as a function reader mapping the RFID tags a reader

can sense while inside of the reader’s radio field.

reader : Readerssys → P(Tagssys)

reader : rn 7→ ID

• Where rn ∈ Readerssys specifies the RFID reader;

• and ID ⊆ Tagssys is a set of RFID tags which are in the readers sensing range.

E.g. reader(r1) = {id1, id5} denotes reader 1 with two tags in its sensing range. To simplify

this notation, the index n of the reader rn can also be annotated as an index to the function

name, so

reader1 = {id2, id5}

describes the set of RFID tags which are detected by reader1 . In this example, the set contains

the tags id2 and id5.

However, the tags that are present at the time of a so-called inventory operation (reading tags

in the radio field of a reader) can change over time. Hence, the function of a RFID reader is

refined by adding an argument t expressing a distinct point in time to reflect the tags present

at the specified point in time.
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Definition 4.2.5 (Refinement of RFID reader)

The RFID tags present in the reader’s radio field at a certain point in time can be described

by a function mapping the reader and the discrete point of time to a set of tags.

reader : Readerssys × T → P(Tagssys)

reader : (rn , t) 7→ ID

• Where rn ∈ Readerssys specifies the reader;

• t ∈ N denoting the discrete point of time;

• and ID ⊆ Tagssys is a set of RFID tags.

As before, for simplicity we can use the index n of rn as the index of the reader function. E.g.

reader(r1, t3) is equivalent to reader1 (t3). According to this simplification it is possible to write:

reader1 (t3) = {id2, id5}

Here reader1 has two tags present in its detection range at t3, namely id2 and id5. If there is

no RFID tag in range or RFID tags are not detected during a inventory operation, the function

returns an empty set (∅). E.g. if there are no tags present at t0, the result of the function of

reader1 would look like reader1(t0) = ∅.

Since most RFID applications are business based, an abstraction function might be required,

where comparable products have to be identified or certain attributes of an Object might be

needed.

Definition 4.2.6 (Abstraction Function)

A function abstraction allows to identify or obtain certain attributes of a object, and is

defined as:

abstraction : (attribute, object)→ value

Usually, this is realised by a combination of the object’s attributes. E.g.

abstraction(id2, type) = pullover

describes that the tag id2 is attached to an item of type pullover. Or in a more operational way:

type(id2) = pullover

To obtain the RFID identifier of the tag id2, the abstraction function can be used this way:

tagID(id2) = 0001

The identifier of a RFID Tag usually contains an EPC-ID, but for simplicity a simple numeric

description (in the example above 0001) is used to improve readability.
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This simplification is suitable for the testing purpose. But, whenever an identical RFID tag

identifier is used on two different products, the abstraction function does not allow to distinguish

between the products. Hence, problems for the RFID system might occur when trying to

recognise the products solely by their identifiers. However, these kind of problems can only be

solved by additional sensors or human interaction, which is out of the scope of this work and

will not be considered any more in this thesis.

4.2.3 RFID Events

As shown in the previous section, every RFID reader can be described as a set of RFID tags,

which are currently in its reading rage. In typical RFID systems, however, these tags are not

stationary and move from one reader to another. In order to describe so called low-level RFID

events, a consequence of temporal and spatial changes of physical objects, the changes of sets

over time need to be considered in this model as well.

Figure 4.4: Schematic illustration of tag movement

Figure 4.4 shows two RFID readers, reader1 and reader2, and the RFID tags in the reading

range of the antennas at t4. As already presented, the tags, which are in the detection range

of reader1, respectively reader2, at t4 can be described as defined: reader1(t4) = {id1, id2, id4}
and reader2(t4) = {id3}.

Since RFID readers are only capable to sense RFID tags in their reading range, only the occur-

rence of tags in a reader’s field of sight can be used to model the input of RFID systems. E.g.

at the transition between t4 to t6 the tag id4 is moved to reader2. Once it leaves the sensing

range at t5, it disappears and is in neither of the two sets. Eventually, id4 reaches reader2 in t6.

Thus, a tag movement also needs to be modeled by adding or removing elements to the sets.

The arrival of a tag can be expressed by:

id4 /∈ reader2(ti) ∧ id4 ∈ reader2(ti+1)
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Or in a more operational way:

reader2(ti+1) := reader2(ti) ∪ {id4}

Whenever the tag id4 has been in the reading range of reader1 at ti and will not be read at ti+1,

this departure of a tag can be described by:

reader1(ti+1) := reader1(ti) \ {id4}

The low-level RFIDEvent is a combination of both transitions, meaning adding and removing a

RFID tag. In reality, however, time passes while a RFID tag moves through the reading field.

Therefore, a RFID event contains the arrival and the depature of the tag, in relation to the

reading zone.

Definition 4.2.7 (RFID Event)

A low-level RFIDEvent := (reader, tagid, ta, td) can be described as a tuple, where

• reader denotes the reader,

• tagid the identifier of the RFID Tag,

• ta the arrival time

• td the depature time

To describe a RFID event, it is not always necessary to specify both time points explicitly. It

is sufficient if the period of time in which the RFID tag is within the reading field is given, as

this time frame corresponds to duration = td − ta.

RFIDEvent := (reader, tagID, duration)

With this description, it is now possible to describe the dynamic nature of RFID data more

precisely by reading events similar to typical RFID readers. The set-based semantics introduced

here already allow a abstract description of elementary parts of the RFID system that are

necessary for tests. It can be used to describe the RFID systems and its components, consisting

of RFID readers and RFID tags, and whether a tag is within the sensing range of a reader at a

certain point in time. In terms of testing, the reading events play are an important role, because

they represent the input data of the application to be tested. The software components have

not been considered in the first part of this chapter, but will be considered in the next section.

4.2.4 RFID Applications

The application states can be modelled similar to the RFID system by using sets and relational

algebra. In the context of this work the states of an application are considered as something that

is altered by the processing of RFID events. The basic principle behind the states is to identify
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meaningful sets on which the decisions of the business operations can be based on. However,

as these states are usually very application specific there exists no general method of obtaining

them. Nevertheless, an indicator to identify the different states of an application can be to

consider multiple reading processes and their results.

For example, all goods that are currently located in the warehouse or sales-room can be used

to form a set of elements containing all goods (tags) in the warehouse, respectively in the sales-

room. If an object with an attached RFID tag is moved into the sales-room, a RFID event is

processed, which changes the elements of these sets. Another example would be all books in a

library that are borrowed or have already been borrowed. A book that was previously borrowed

cannot be borrowed a second time and would result in an error during RFID event processing.

The relational algebra [121, 122] consisting of e.g. selection, projection, Cartesian product, set

union and set difference is a suitable instrument to describe them. One way to create such sets is

by analysing the database of the application. A simplified example of an application’s database

is given in Table 4.1, taken from a simple retail store.

TagID ProductType State

0001 sweater warehouse
0002 sweater warehouse
0003 sweater salesroom
0004 t-shirt salesroom
0005 t-shirt sold

Table 4.1: Table “stock” of a demo application’s database

An analysis of the table allows to identify representing states (warehouse, salesroom, sold). It

can be used to build the appropriate sets to describe the application’s state. This can be realised

for example by using a selection, which allows for selecting entries in the database and transform

them to a set. Here the previously defined abstraction function is used to build a set of all entries

in the database fulfilling a certain attribute.

state : TagID → State

E.g. the sweater with the TagID 0001 has the attribute warehouse according to Table 4.1:

state(0001) = warehouse

This allows grouping objects (products) with the state warehouse in a set W , which contains

all products in the warehouse. According to this decision, the example database can be divided

into three different sets, namely warehouse, salesroom and sold :

• Items in warehouse:

W := {TagID | state(TagID) = warehouse}
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• Items in salesroom:

S := {TagID | state(TagID) = salesroom}

• Items in sold:

O := {TagID | state(TagID) = sold}

Hence, Table 4.1 can be transformed to the following concrete sets at t0:

W (t0) = {0001, 0002}, S(t0) = {0003, 0004}, O(t0) = {0005}.

Sometimes, however, it is not trivial to identify different states because they can span several

tables or have difficult relationships among each other.

4.2.5 RFID Business Processes

When it comes to RFID applications and their use in industry, business processes are used

to describe the tempo-spatial nature and the dependencies between the movements of objects,

which can be observed by RFID readers, and the expected changes of the application. Business

processes where RFID events change the state of the application are of particular interest. It is

essential to integrate these movements and their meaning into the test models, since they allow

the mapping of observed reading events to status changes in the software. This mapping is an

important aspect of every software test, especially when considering black-box testing and can

be realised by a combination of the reader input model and the application model introduced

earlier.

The changes of the sets, which are a result of RFID events, can be further modelled as operations

on these time based sets, similar to the approach for the RFID reader input. E.g. a product

with the associated tag id1, which was not in the warehouse at ti, but will be added to the

warehouse in ti+1, can be described by

id1 /∈W (ti) ∧ id1 ∈W (ti+1)

Or in a more operational way:

W (ti+1) := W (ti) ∪ {id1}

To be able to describe all state changes of the application, this approach distinguishes three

operations for a generic product p:

• add ≡W (ti+1) := W (ti) ∪ {p}

• remove ≡W (ti+1) := W (ti) \ {p}

• contains ≡ p ∈W (ti) = true
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An example business process delivery could be: Once goods are delivered to the warehouse and

pass a RFID gate (reader1), the detected products need to be added to the warehouse.

If a tag id2 is sensed by reader1 at t4, the discovered product, associated with the tag id2, needs

to be added to the set W . This can be described according to the introduced notation as:

reader1(t4) = {id2} =⇒ W (t4) := W (t3) ∪ {id2}

In this section a novel set-based semantics with a discrete time model was presented. The model

also enables the description of the RFID system, consisting of RFID readers, RFID tags and

RFID application, as well as its current state. These semantics build the foundation for the

ITERA meta model introduced in the next section.

In principle, inputs of an RFID application and their state changes can already be modelled using

this notation. The status changes of the application are triggered by RFID events. These events

originate from business processes that involve physical movements of RFID tags. Essentially it

is already a suitable basis for describing black-box tests.

In the following sections, a closer look at the individual steps of the ITERA test method will

be given. At first, a meta model is presented to further refine the created activity diagram

and to augment it with test-relevant information. Subsequently, an activity diagram is created

based on a example use case. This serves as a starting point for determining test cases in the

following sections. A model transformation of the activity diagram leads to an ActivityGraph.

Through traversing this graph, execution paths of the modelled application case are derived.

Each of these paths is then transferred to a test and manually enriched with test data. Finally,

robustness tests are created based on the existing test cases.

4.3 ITERA Meta Model

The goal of this thesis is to generate test cases for RFID applications from previously created ac-

tivity diagrams of the use cases and then execute them automatically and in a defined operational

environment. This assumes that the model used for test generation contains the necessary con-

text parameters in addition to the domain-oriented test data. However, UML does not provide

corresponding modelling elements. Therefore, it is necessary to define or extend the modelling

language with an appropriate meta model that provides these modelling elements. The following

sections explain the meta model for test modelling and the necessary steps during the refinement

of the system behaviour, which will enable the application of the test methodology later on.

In this thesis the point of view a tester is considered and the system is treated as a black-box.

A test contains precise instructions about required user input and expected results. Based on

this, a tester can check the correct behaviour of the SUT with regard to the realisation of the
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business process. From the tester’s point of view, only process steps that require inputs from

the user or that deliver output to the user are relevant.

4.3.1 Overview of the ITERA Meta Model

The purpose of the ITERA meta-model is to enhance the activity diagram with test-relevant

aspects and to provide a interpretation of the actions modelled within the activity diagram.

This enables the automated execution of test cases derived from the test model and makes it

easier to determine the domain specific test data for a test case.

ITERA supports the modelling of context parameters and test relevant data, including inputs

and expected outputs, within the framework of model based testing. The integration of these

parameters into the test model is part of an iterative refinement of the previously created activity

diagram. This is achieved by using a UML Profile (extending the OMG Meta Object Facility

[47]). For the design of the meta-model, the modelling language UML was chosen, because

it ensures that the test models based on this meta-model can be easily integrated into the

development process of a software system. In addition to test modelling, the meta-model also

bridges the gap between the semi-formal UML activities and the semantic model from Section

4.2.

The ITERA UML profile provides stereotypes that enable a direct modelling of the test relevant

aspects into activity diagrams. This eliminates inconsistencies caused by separate documentation

of additional test data. It is also suited for automated test execution, as all data is available

through the models. The generation process of executable test cases is divided into two stages.

At first the additional information contained in the activity diagram is transferred to abstract

test cases. In the second step input data is provided which manifests itself in the concrete test

cases, which can be used by the test environment.

Currently, UML activity diagrams do not directly provide a suitable way of including addi-

tional test data. This is partly due to insufficient semantics of the activities and their informal

descriptions (e.g. “place book”). The UML specifies the semantics of an action as:

“An Action is a fundamental unit of executable functionality contained, directly or

indirectly, within a Behavior. The execution of an Action represents some transfor-

mation or processing in the modeled system, be it a computer system or otherwise.”

[47, p. 443]

The semantics of the individual activities in regard to testing is not apparent, especially con-

sidering the high abstraction level of the activity diagram created from the use case. Therefore,

it is necessary to clarify these with regard to the derivation of test cases. This is in accordance

with the UML specification, stating that one reason for extending UML with profiles is: “Add

additional semantics to UML or specific metaclasses” [47, p. 252].
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By looking at an application from a black-box perspective, the behaviour is determined by inputs

and outputs. Their type is defined by the interfaces of the SUT and informally described by

the text contained in the activities of an activity diagram. Consequently, an activity diagram

created from the application specification already contains descriptions of inputs and outputs,

but usually in an informal and not computable format.

Common to all RFID systems is that RFID tags are detected when they pass through the

interrogation zone of a RFID reader. However, depending on the implementation, interactions

with other interfaces may also be possible. For example, interaction-based RFID applications

(see Section 3.6) usually also offer a graphical user interface that can be used for interactions

with the system.

As there are numerous different application areas for RFID technology, the number of available

interfaces is difficult to delimit. For example, light barriers, weigh scales or other sensors can

be employed also. However, a comprehensive description of all interfaces is too extensive and

would go far beyond the scope of this work. For this reason a restriction to the aforementioned

graphical user interface was made, in addition to the RFID components. In principle, other

interfaces can be described similarly. An extension of the presented methodology by any input

or output type is allowed, provided that appropriate changes are also made in the subsequent

steps of the methodology and the test automation technology supports it.

An activity diagram also contains decisions that manifest themselves in alternative control flows

and usually result in different execution paths of the SUT. For the transformation of UML

activity diagrams to test cases, the distinction between alternative control flows initiated by

the user or by system-internal functions is decisive. System decisions are often significantly

influenced by user input and reflect the functional requirements of the application to be tested.

However, internal system functions can also completely elude external influence, because they

use parameters that cannot be determined by the user. Automated test case generation for such

systems is expected to generate valid test cases for all alternatives in the control flow of such

decision nodes. From the black-box perspective, the expected behaviour of the SUT can only

be expressed through business rules (including preconditions). In order to influence the control

flow in one direction or another, well selected test inputs must be chosen which either fulfil the

precondition or not. In contrast to the system-internal decision nodes in the control flow graph,

the decision criteria of user inputs are not determined by preconditions, but by alternative ways

of interacting with the system interfaces. User decisions can be non-deterministic but constitute

a fundamental part of the test, as all possible ways the user can interact with the SUT need

to be tested. Likewise, a UML profile must be able to model the dependency of certain control

flow alternatives on arbitrary decisions of the user.

However, the exclusive consideration of the system’s in- and output sequences is not sufficient

to determine RFID specific test cases from activity diagrams. In contrast to other works that

generate test cases from UML activity diagrams, RFID application tests must also consider

activities that only have an indirect correlation to input. These are characterised in particular
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by the temporal sequence of activities. Depending on the technology used and the configuration

of the RFID system, an RFID tag can be read several times and thus results in multiple inputs

to the SUT. Therefore, the test cases created from an activity diagram must provide detailed

information about the temporal aspects (e.g. sequence, duration) and these need to be reflected

by corresponding elements in the activity diagram.

Summarising the deduced requirements for an activity diagram, which can be used as a suitable

test model:

• Requirement 1: The description of business processes modelled with UML activity dia-

grams usually include user-specific and system-specific process steps. User-specific process

steps are all types of decisions or actions and interactions with the system the user can

carry out. From a classical black-box viewpoint, the user can only submit input to the

system or observe the corresponding outputs of the system. Therefore, the meta-model as

basis for the test model must be able to distinguish between actions initiated by users and

actions initiated by the system.

• Requirement 2: Activities within the UML activity diagrams usually have no explicit

semantic. In order to use it as a solid basis for test case determination, the meta-model for

testable activity diagrams needs to be extended with a profile that also provides modelling

elements for the semantics of these activities. These are interactions and decisions for

each user and system.

• Requirement 3: Usually the duration of a sequence of activities is not considered when

using activity diagrams. Therefore, the meta-model must be able to cover timing aspects

as well, especially since it is an important aspect of RFID system testing.

4.3.2 Class Diagram of the ITERA Meta Model

Inputs are provided through user interactions with the system. In contrast, outputs are system

interactions with the user. In the following sections, a separation of actor and system is made.

Thus, interactions can be found in both, the actor actions and in the system actions. From

a black-box point of view, different semantics are applied to inputs and outputs. Interactions

that are assigned to the system are called SystemAssertions. Interactions between the user and

the system are subsequently treated as ActorInteraction. Whether a subtask contains an actor

interaction or system related interaction is immediately apparent from the type of action.

Figure 4.5 shows the ITERA meta-model for test modelling as an UML class diagram. The

meta-model defines a modelling element <<TestAction>> as root element of the context model

and a subclass of UML Action. This serves as an anchor point for the integration into the

activity diagram. As direct subclasses of TestAction, the meta-model provides the stereotypes

<<SystemAction>> and <<ActorAction>>. These help to distinguish between actions that can

be influenced by the user and system actions that cannot be changed, but carry essential infor-

mation on the expected behaviour of the SUT.
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Figure 4.5: Class diagram of the ITERA Meta Model

ActorActions are further divided into <<ActorInteraction>> and <<ContextAction>>. Since

each ActorAction describe a physical behaviour of a user all its subclasses are time-consuming.

ActorInteractions reflect inputs for the SUT. ContextActions capture timing aspects, resulting

from physical movements and processes where no direct interaction with the SUT is performed.

ActorInteractions are strongly connected to the offered interfaces of the system and need to be

extended by subclasses describing the different input types, namely <<RFIDAction>> (including

<<RFIDAddAction>> and <<RFIDRemoveAction>>) and <<GUIInputAction>>. These are con-

crete implementations1 of the meta-model and allow the stimulation of the SUT, by executing

the contained execute() method. All classes shown with dotted lines need to be implemented in

the test automation environment through appropriate technologies. When executing the tests,

these are instantiated via reflections and their methods are executed. For a customisation of

the ITERA method to support different application specific needs, the class ActorInteraction

can be used as a possible extension-point. For example, this can be in form of a concrete

implementation of a simulated light barrier or a weight scale.

SystemActions are divided into the subclasses <<SystemRule>>, reflecting alterations of the

control flow based on bussiness rules, and <<SystemAssertion>> providing oracles for the eval-

uation of the test. Concrete implementations of SystemAssertions are <<DatabaseAssertion>>

1Except for RFIDAction, which is an abstract class and cannot be instantiated. However, the direct subclasses
RFIDAddAction and RFIDRemoveAction realise RFIDAction.
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and <<GUIOutputAssertion>>, both reflecting system specific mechanisms to evaluate the test.

Similar to ActorAction, SystemAction offers another extension point for customisations, but also

needs to be supported by the test execution framework through concrete implementations.

ActorAction

Actor actions are all activities in the use case, respectively in the activity diagram, which have

a direct reference to actors or users of the system. They represent the behaviour of the user, the

inputs made to the system and other activities that occur during processing of the use case. The

superclass to model a user’s behaviour is ActorAction. It incorporates the temporal aspects

of the activities, such as the duration of the activity and is used to delay the test steps in the

automatic test execution later on.

In accordance to the semantics introduced in Section 4.2 it is defined as:

Definition 4.3.1 (ActorAction)

An activity of type <<ActorAction>> is an action performed by an actor, which contains an

attribute duration and results in an advance of time. Therefore, whenever an ActorAction

is traversed (executed) the time is advanced.

ActorActions advance the time an action occurs at by a defined duration. This way the temporal

aspects, which can influence the tag capturing mechanisms of RFID systems, originating from

the physical processes surrounding the activities of a user are taken into account.

A distinction is made between interactions and context actions. Both are defined as subclasses

of ActorAction and thus automatically inherit the timing aspects of its superclass.

ActorInteraction - ActorInteractions describe inputs made by an user via system interfaces.

These include, for example, inserting an RFID tag into the reading field of an RFID reader,

pressing a button via a touch display or triggering a light barrier.

Example: “When the user presses the button ”finish“ the process is completed.” or “For this

purpose, the user places the ID card in the designated compartment.”

In cases where an interaction with a specific element or interface occurs, the corresponding model

element must be able to uniquely identify the relevant element in the form of an interaction

target element. In the meta model this is realized through the attributes of the appropriate

classes, shown as config. For example the attribute config of a RFIDAction references a specific

RFID reading device or a GUIInputApplication specifies the title name of a certain window

of the operating system. If additional information (e.g. RFID tag) is also required, it must be

possible to represent this information by means of a specific test input. In order to map such

inputs in the test model, the subclasses use the parameters of the execute() method. The

manipulation of certain inputs can be modelled by these parameters. However, a prerequisite is
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that the corresponding test automation can simulate the behaviours of these elements in form

of a concrete implementation of a test driver.

The basic element for modelling RFID specific interactions is RFIDAction. It is further divided

into RFIDAddAction, for placing RFID tags into a reader’s read zone, and RFIDRemoveAction,

removing these RFID tags again.

Analogous to the semantics of Section 4.2 a RFIDAction is defined as:

Definition 4.3.2 (RFIDAction)

An activity of type <<RFIDAction>> is an tuple RFIDAction with a reference to an RFID

reader rn ∈ Readerssys and a set of RFID tags {id1, id2, . . . , idn} ⊇ Tagssys.

For example, when a user places an RFID tag inside the interrogation zone of an RFID reader,

this is defined as an activity with the stereotype <<RFIDAddAction>> in the meta model. Akin

to the set-based semantics of a RFID system a RFIDAddAction is defined as:

Definition 4.3.3 (RFIDAddAction)

An activity of type <<RFIDAddAction>> is defined as an action performed by an actor which

results in a change of the tags present in a reader’s sensing range. Therefore, whenever a

RFIDAddAction is traversed (executed) it performs the operation:

readeri(tn+1) = readeri(tn) ∪ {id1, id2, . . . , idj}

Similar, when a user removes an RFID tag from the interrogation zone of an RFID reader,

it is described as an activity with the stereotype <<RFIDRemoveAction>>. It is defined in

conformance of the semantics as:

Definition 4.3.4 (RFIDRemoveAction)

An activity of type <<RFIDRemoveAction>> is defined as an action performed by an actor

which results in a change of the tags present in a reader’s sensing range. Therefore, whenever

a RFIDRemoveAction is traversed (executed) it performs the operation:

readeri(tn) = readeri(tn+1) \ {id1, id2, . . . , idj}

Contextual Actions - ContextActions are used to describe the external behaviour of the busi-

ness process, which have no direct interaction with the application but are essential for the

progress of the use case. For example, movements from one place to another or the selection of

a certain book. ContextActions have in common that time advances during the physical process

they describe, but no state changes of the SUT or the RFID system occurs. This property is

an important aspect that has no semantic equivalent in comparative works, which use activity

diagrams to generate test cases. Usually these approaches just model system functionality and

user behaviours with direct influence on the SUT. However, for the evaluation of RFID appli-

cations timing aspects can play an important role, since many configuration settings, especially

those for tag capturing are often time based.

93



4 ITERA Test Methodology and Model Based Testing of RFID Applications

Example: “The user selects some books from the library stock and goes to the lending terminal.”

In the meta model this is defined as an activity with the stereotype <<ContextAction>>. In

terms of the semantics described in Section 4.2 it is defined as:

Definition 4.3.5 (ContextAction)

An activity of type <<ContextAction>> is defined as an action performed by an actor which

does not change any of the tags present in a reader’s sensing range. However, it advances

the time.

∀ri ∈ Readersys : readeri(tn) = readeri(tn+1)

Within the test execution framework (Section 5.3), reflections are used to create instances of

the stereotyped activities (UML classes implementing the functionality of the meta model). For

each activity contained in the activity diagram, which refines <<ActorAction>>, the parameter

duration is used to execute a sleep function, e.g. System.sleep(duration). No other mod-

ification of the system are performed, thus, the <<ContextAction>> just contains an empty

execute() method as it only consumes time.

SystemAction

In contrast to the ActorActions, SystemActions directly correspond to the requirements of the

specification that are implemented in the system under test. Usually they are described through

(business-)rules, which are supported by the respective application. In the context of the ITERA

test methodology SystemActions are used to map the functional requirements of the system in

the test model, used to select appropriate test data and to evaluate the test results. A distinction

is made between SystemRule and SystemAssertion.

SystemRules - The control flow of an application is significantly determined by decisions of

the user or by the SUT. Unlike the arbitrary decisions of a user, these are defined by the

requirements, in particular by business rules. SystemRules influence the control flow of a RFID

application from the systems perspective. This can be, for example a check for valid entries

or based on certain system statuses. Even though they define logical conclusions, they do not

directly address the specific computations in the final implementation of the SUT. Each of the

conditions (guard conditions in the activity diagram), under which a guarded transfer from one

activity to another can occur is, thus, specified by a corresponding SystemRule.

SystemRules in the context of the ITERA meta model contain a proposition that defines or

limits an aspect of an operation and are used to define the structure or influence or control the

behaviour of the system. In the meta model this is defined as an activity with the stereotype

<<SystemRule>>.

94



4 ITERA Test Methodology and Model Based Testing of RFID Applications

Definition 4.3.6 (SystemRule)

An activity of type <<SystemRule>> is defined as an action performed by the system which

includes a decision and is used as decisionInputFlow for the associated UML::DecissionNode.

The outcome of the SystemRule affects the control flow of the activity diagram. It contains

a predicate to specify an application’s state.

The definition of an SystemRule is in conformance to the specification of activity diagram where

the DecisionNode’s guard condition is directly influenced by an preceding activity. (As a side-

note a UML “Behavior” can be an Activity.)

“If a DecisionNode has a decisionInput, then this must be a Behavior with a re-

turn Parameter and no other output Parameters. This Behavior is invoked for each

incoming (control or object) token, and the result returned from the Behavior is

available in the evaluation of the guards on outgoing edges.” [47, p. 390]

“For use only with DecisionNodes, a predefined guard “else” (represented as an

Expression with “else” as its operator and no operands) may be used for at most

one outgoing edge. This guard evaluates to true only if the token is not accepted by

any other outgoing edge from the DecisionNode.” [47, p. 390]

A template for a SystemRule is then

1 IF [predictate]

2 THEN [guard condition]

3 ELSE ([guard condition])

The modeller of a activity diagram may be advised to consider this first:

“In order to avoid non-deterministic behaviour, the modeler should arrange that at

most one guard evaluate to true for each incoming token. If it can be ensured that

only one guard will evaluate to true, a conforming implementation is not required

to evaluate the guards on all outgoing edges once one has been found to evaluate to

true.” [47, p. 390]

Using the previously introduced set-based semantics of RFID applications introduced in Sec-

tion 4.2.4 the SystemRules can often be directly translated. Some examples for a mapping

of SystemRules to executable semantics from the running example SUT Library are presented

below:

SystemRule “check account status”

IF "[user] exists AND [user].status = valid"

THEN "account valid"

ELSE "account not invalid"
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In the semantics of the set-based RFID application model the predicate of the SystemRule

“check account status” can be described as:

user ∈ ValidUsers

ValidUsers := σstatus=[”valid”](Users)

The application of the selection operation σ defined by the relational algebra [121, 122] on

a test database returns the set of valid users ValidUsers, which fulfil the selection criteria

\status=valid". In terms of testing, any user (e.g. an identifier of a RFID tag corresponding

to this user) of this set represents a valid input in order to execute the path with the guard

condition \user valid".

System Rule “check user authorization”

IF "[user].rentals < 4 AND [user].invoice = 0"

THEN "user authorization approved"

ELSE "user not authorized"

In the semantics of the set-based RFID application model the System Rule “check user autho-

rization” can be described as predicates.

| σuser=[user](Rentals) |< 4 ∧ | σuser=[user](Invoices) |= 0

The applying the selection operations on a test database a set of users is returned which fulfil

the criteria where each user has less than 4 books currently rented and no open invoices.

SystemRule “check book authorization”

IF "[book].status = rentable OR

([book].status = reserved AND [book].reservation.user = [user])"

THEN "book rentable"

ELSE "book not rentable"

In the semantics of the set-based RFID application model the System Rule “check book autho-

rization” can also be described as predicates2:

book ∈ Rentable ∨ (book ∈ Reserved ∧ (user, book) ∈ Reservations)

Rentable := π[book](Library) \ (π[book](Rentals) ∪ π[book](Reserved) ∪ π[book](Reference))

2The projection π is a operation defined by relational algebra [121].
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SystemAssertions - Activities of type SystemAssertion describe the externally visible be-

haviour of the system. As they also reflect the corresponding system output, in the ITERA

context they are used as assertions to ensure that the system has acted correctly. Similar to

ActorActions, the system can offer several interfaces for communication with the environment.

Therefore, an extension of the stereotype by application specific test drivers is possible, but only

under the assumption that appropriate changes have been made to the following steps of the

test methodology.

Typical examples are checking for certain elements of the user interface for specification con-

formity, e.g. comparing the contents of a message dialogue text field with an oracle. Another

possible application is the comparison of the current screen content with a template (screen-

shot) created in advance. But they can also be used for the verification of certain properties,

such as the status of an RFID tag in the database.

Example: “If borrow-ability was successfully evaluated, the rental object is marked as borrowed

in the library system.”

In the meta model this is defined as an activity with the stereotype <<SystemAssertion>>.

Definition 4.3.7 (SystemAssertion)

An activity of type <<SystemAssertion>> is defined as an action performed by the system

which contains a assertion (predicate) and is used to specify an output.

Assertions in the context of the Integrative Test Methodology for RFID Applications (ITERA)

test method help to determine a test input in the following step.

SystemAssertion “mark book rented”

[book].status = rented AND [book].rentals.user = [user]

In the semantics of the set-based RFID application model introduced the SystemAssertion “mark

book rented” can be described as:

(user, book) ∈ Rentals

4.3.3 ITERA Domain Model

The domain model is intended to identify test data in the third step of the ITERA method, test

case generation and the test data determination.

During the analysis of the specification, a UML class model is developed. This model serves

as a DomainModel inside the context of the ITERA test method. Its purpose is to identify

domain terms like RFIDTag and the objects this RFID tag is associated with. In Figure 4.6

both Book and User have an association to an RFID tag. Hence, these classes can be used as
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Figure 4.6: ITERA Domain Model of the example library

input parameters for the stereotyped actions <<RFIDAddAction>> and <<RFIDRemoveAction>>.

Furthermore, the domain model is also used to refine the semantics of <<SystemRule>> and

<<SystemAssertions>>. For example a book was rented (book ∈ Rented ) by an user, can be

described as shown in 4.2.4 using relational algebra.

book ∈ Rented ∧ (user, book) ∈ Rentals

where book is the book rented and user is the user which this was rented to. Using this notation

valid input data for testing could be selected automatically by fulfilling these predicates from a

previously created test database using a transformation into a domain specific language, e.g. a

SQL statement.

4.3.4 ITERA Physical Model

RFID applications rely on the timing of the RFID events, thus, one important aspect for creating

tests for RFID applications is the timing behaviour. The activity diagram can already capture

the movement of RFID tagged objects but significantly lacks timing. Therefore the physical

model is used to define these. There are different ways to determine the duration of activities.

1. Rough time estimation

2. Empirical Time Measurement

3. Simulation of Business Processes (Discrete Event Simulation)

4. Methods Time Measurement (MTM)

However, it depends on the use case which of the afore mentioned methods should be used.

In general each method has it’s advantages and draw-backs. Rough time estimation is easy to

perform, but might result in a divergence to the real world values. In contrast to this Empirical

Time Measurement might be more precise, but is also associated with a bigger invest and

sometimes difficult to perform, as the environment must already prepared with RFID readers
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and tags. Building a Discrete Event Simulation does not require the RFID solution already be

deployed, but might be inappropriate in comparison to the effort developing it. Contrary to

Methods Time Measurement where the biggest hurdle might be the training needed to apply

the method.

As it can be seen, there is no perfect solution that fits all needs, but the decision which method

to choose, should be based on the question: “How critical are timing behaviours?” in the

concrete use-case. If there is a significant time dependency, methods that result in accurate

timing behaviours should be preferred over those with minimal effort in the survey phase.

Rough time Estimation - Discrete points of time are estimated roughly by the tester and

used to refine the ActorActions. This might already be sufficient for processes where timing can

easily be estimated. However, in some circumstances where the overall process time and the

reading polling interval of an RFID reader is quite similar problems may arise as this method

might be too general.

Empirical Time Estimation - Measurement of the process times can also be achieved by using

a stop watch. By repeated measurement, the average duration of an activity can be determined.

The intervals that are determined in this way are usually more accurate than by a mere estimate.

However, this presupposes that the process to be analysed already exists in this form and that

a measurement can be performed.

Simulation of Business Processes - Often Discrete Event Simulation (DES) is used to predict

the outcome of changes in business processes. The same applies for the timing of these processes.

A time estimation via DES can be realised using a physical model of the system’s environment.

Figure 4.7 shows a prototype of a physical model, which was used in order to determine the

Figure 4.7: Simulation model for determination of time between RFIDActions

99



4 ITERA Test Methodology and Model Based Testing of RFID Applications

duration of the processes in a warehouse. Here a mapping of the real world environment into

a the coordinate system of the model has been used to reflect distances. Each RFID tag has

a movement operator which determines the direction and the speed. At each step intersection

tests are performed. Once a RFID tag intersects with the polygon of a RFID reader’s antenna

a RFID Event and the duration of the movement can be recorded.

Methods Time Measurement - Methods Time Measurement (MTM) [125] is a system of

predetermined motion times, which captures the basic movements of humans when performing

tasks.

When MTM is used, all movements performed by humans are traced back to certain basic

movements for which the required time is known. The smallest movement elements are recorded

in MTM-1, which divides the work process into movement patterns such as “reach”, “grasp”,

“release”, “apply pressure”, “disengage” etc. supplemented by movement elements such as

“walking”, “turn”, “visual control” and so on.

In addition to the aggregation of motion elements, these procedures systematically compress

data in such a way that, on the one hand, the double-hand analysis practised in MTM-1 (left

and right hand are analysed separately according to fixed rules) and, on the other hand, the

accuracy of parameters such as gripping distance and joining accuracy can be reduced to a

minimum.

With these higher-level methods, the duration of more complex workflows can be determined

relatively quickly. Due to the larger and perhaps not always exactly suitable modules, the

accuracy of the system is only sufficiently statistically secured if a certain analysis scope is

reached. This results from the compensation of the individual errors according to the Gaussian

Law on Error Compensation, according to which the total error is lower than the sum of the

individual errors.

4.4 Application of the ITERA Methodology

After the definition of the semantic model in Section 4.2 and introduction of the ITERA meta

model in the previous section (4.3), a concrete example application of the ITERA methodology

is given in the following subsections. Analogous to the four phases defined in the ITERA

Methodology (see Section 4.1.2), first a use case from the specification will be transferred into

a activity diagram in Section 4.4.1. Subsequently in Section 4.4.2, this activity diagram will be

refined by the stereotypes defined in the ITERA meta model. In the next section the test model

obtained this way will then be used to extract test cases.
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4.4.1 From use case to activity diagram

The first phase (see Section 4.1.1) of the ITERA methodology is the systematic creation of an

activity diagram derived from the specification. First of all, use cases are determined on the

basis of use case diagrams. The aim is to identify RFID relevant use cases and convert them

step-by-step into activity diagrams. In the following steps, this process is illustrated by example

of a RFID equipped library.

It is assumed that requirement specifications are available, which informally reflect the require-

ments of the system to be tested or the system to be developed. These documents should identify

a number of individual functional aspects, which at least partially describe the desired target

behaviour of the system.

In the approach presented in this thesis, functional tests are carried out from a purely black-box

perspective. Hence, the model is merely intended to describe the system’s black-box behaviour

as perceived by the system environment. Therefore, a specification that describes the functional

and process-related requirements of the system, i.e. the behaviour perceptible by the users or

the system environment is required. The resulting model should not describe details of the

technical implementation, which are insignificant from the viewpoint of system tests.

Example Use Case

In a first step, it is necessary to identify the components that are functionally related to each

other in the requirement documents. A use case diagram can be created to obtain an overview of

the various functions that the system is going to implement. The content of the use case diagram

is the desired, externally visible system behaviour. Thus it is a part of the requirements that the

system is supposed to meet. In use case diagrams, however, the activities within the individual

uses are not considered. The aim is to identify the core functionality of the RFID application

and the relationships between the application and its actors.

Figure 4.8 shows the use case diagram created during requirements analysis. In this example, it

contains eight use cases and two actors. Every actor in the diagram has an association to a use

case when he takes over tasks in the particular use case.

Use cases where first described by Ivar Jacobson [123] in 1987 as “a special sequence of transac-

tions, performed by a user and a system in a dialogue”. Use cases often serve not only as a tool

for designing the software, but can also serve as a basis for selecting test cases. In general, a use

case contains steps and interactions of external actors with the system to perform a particular

task. It is possible that an application may also contain alternative execution paths that are

bound to certain conditions, as well as some exceptions where it is no longer possible to complete

the task.

Use cases are often written in natural language and must therefore be refined in order to achieve

detailed instrumentation for tests. For this reason, the initially informal descriptions of the
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Figure 4.8: Example Use Case Diagram of a library

individual use cases are broken down by their functions in order to divide them into individual

steps. Use cases can and should be continually adapted during discussions with stakeholders

and by analysing other sources of demand. For simplification, the creation can be carried out in

two steps: Initially, only the essential steps for a successful completion are covered. In a second

step, these are then refined by adding exceptional cases.

Obviously, the most complete, detailed and consistent specifications of requirements at the

beginning of a development project are desirable. In early phases of software development,

however, it is not always possible to produce such precise documents - be it for lack of time or

because of uncertainties about the exact design of the system to be developed. Therefore, the

prerequisite that the original requirements documents must be complete or free of contradictions

is waived. However, the activity diagram created in the following steps should be complete and

consistent.

The table 4.2 shows the use case “check out books” of a sample library. According to Cockburn

[124], use cases always contain a target that is contained in the description. The basic steps

(also called main success scenario) describe the easiest way to achieve this goal. One step is an

elementary action, which means that it cannot be broken down any further.

The pre-condition specifies the minimum requirements with which the described task can be

started. The post-condition specifies possible effects or the result of the execution. Different

conditions of can be linked with OR or AND to display possible results or exception handling

during task processing.
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Name check out books

Description The use case describes which checks are neces-
sary in which order, so that a customer can bor-
row a book from the library. The outcome is
that the user successfully rented a book.

actors user, self-checkout terminal

pre-condition the user has chosen some books to rent AND the
self-checkout terminal is ready

post-condition the book was marked as borrowed

basic steps
1. identify user
2. check user authorisation
3. identify rental object
4. check borrow-ability
5. save loan and mark book as rented
6. finish rental process

alternative
steps 2.a identification failed (Exception / Condi-

tion)
3.a book could not be borrowed (Exception /

Condition)
6.a user wants to borrow more than one book

(Real alternative / Condition)

Table 4.2: Use Case: “check out books”

Since in practice individual requirements often do not completely satisfy the above pattern, an

illustrative breakdown of the use case is shown. To illustrate this, the textual description of the

“check out book” use case is used. In order to allow for a better understanding of the use case

and to supplement the textual description, the self checkout terminal is shown in Figure 4.9.

Use Case “check out book”: “The user selects some books from the library stock and

moves to the self checkout terminal. After the start of the rental process, the terminal requires

the user’s identification with the library card (ID card). For this purpose, the user places the

ID card in the designated compartment. The system then checks the user’s authorisation. If

the authorisation was successful, the user is asked to place the books to be borrowed on the

designated shelf space. A RFID reader embedded in the shelf then records the books. If the

borrow-ability has been successfully evaluated, the book is marked as ”rented“ in the library

system and the terminal display is updated accordingly. When the user presses the finish button

a summary is displayed and the process is complete.”
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Figure 4.9: Self checkout terminal of the example library

Example Activity Diagram

For each use-case with relevance to the RFID system test, an activity diagram is created. Since

it is often not possible to automatically transfer the use cases into activity diagrams, this step

must be carried out manually. Figure 4.10 shows the derived activity diagram of the use case

“check out books”.

It should be noted that when modelling process flows using activity diagrams, several test cases

are modelled together for a given test problem. An activity diagram thus defines an entire

test suite. For this reason, the individual test cases are initially not displayed in isolation,

but in combination of different possible execution paths of the modelled application. Since the

activity diagram is to be used as a basis for determining the test cases, it is necessary that the

individual requirements are so fine-grained that a typical concrete execution scenario (sequence

of context steps and interaction steps) is visible. If not, it may be necessary to further refine

the requirements.

The activity diagram created this way should be lightweight and retain the natural language to

be used as a communication medium between the requirements engineer and the customer. In

order for the model to be suitable for the test purpose, the semantics of the individual activities

must be clearly defined. Inputs and outputs should be clearly visible. User and system activities

must be clearly separable. Alternative paths or their conditions must be explicitly listed and

evaluable for the test.

The concept of model-based test automation for RFID application examined in this thesis is

designed to generate added value through the systematic generation of specific test cases in
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Figure 4.10: Example Activity Diagram derived from the use case refinement of “rental process”

software processes that do not force system modelling. Therefore, the test execution examined

in Chapter 5 explicitly allows the manual creation of test cases.
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4.4.2 Application of the ITERA Meta Model

In Section 4.3.2, the UML profile for test case modelling was introduced and the individual

stereotypes have been discussed. Here the application of the UML profile is explained in detail

using the previous example.

The second phase of the ITERA method (see Section 4.1.1) is concerned with the refinement

of UML models with test-specific data before they are transformed to abstract test cases. This

refinement manifests itself by specifying actions using elements of the Action type defined in the

meta model.

Figure 4.11 shows a rudimentary activity diagram for the rental process of a RFID equipped

self-checkout terminal in the running example library. The ITERA profile has been applied to

the Activity Diagram and each activity has been stereotyped successively.

The first action (1) in the control flow of the activity diagram describes the user’s actions, in

particular the selection of books and a movement. There is no direct interaction with the system.

However, it is important to note that time passes in each of these activities. Basically, these

activities represent the flow of RFID tags through the business process. As already explained,

timing events can have an influence on the capturing of RFID tags. Therefore, they are marked

as <<ContextActivity>> in the test model. However, the actual flow of RFID tags does not have

to be realized, as all RFID tags are globally available in the subsequent simulation environment.

Step 2 is the user’s first interaction with the system. Here, the rental process is started by

pressing the “rent books” button. As the user’s interaction happens with the graphical user

interface of the SUT it is marked with the stereotype <<GUIInputAction>>.

After the rental process has been started, the system prompts the user to identify themselves.

Since all outputs of the system are test relevant, as they are part of the test evaluation process

for black-box testing techniques, an assertion of type GUIOutput (<<GUIOutputAssertion>>)

is used in step 3.

The authentication of the user (4) is carried out, by means of an user-id-card equipped with

a RFID chip, so here the first interchange via a RFID reader takes place. The placement

of an RFID tag in the reading zone of a RFID reader can be described by the stereotype

<<RFIDAddAction>>.

The RFID tag read by the RFID system is then assigned to a user and the status of the

user account is checked. Step 5 is therefore a system rule and can be specified by the type

<<SystemRule>> as defined in the meta-model. Depending on the evaluation of this system rule,

a case distinction is made. Either the user has a valid account and the system prompts the user to

place the books to be borrowed on the corresponding area (7 - <<GUIOutputAssociation>>) or

the transaction is acknowledged by displaying an error message (6 - <<GUIOutputAssertion>>).

In step 6, the user takes the user id-card, which is of type <<RFIDRemoveAction>>. As a

side-note, a <<RFIDAddAction>> always has to be followed by an <<RFIDRemoveAction>> or
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Figure 4.11: Application of the ITERA Profile on the example library “rental process”

an UML end node of type FinalNode (21,22), eventually. Once the user has been successfully

identified, he can start borrowing books by placing the them on the designated area. The books
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are detected by an antenna of a RFID reader integrated in the shelf compartment. Hence,

stereotype <<RFIDAddAction>> (9) is used for the test parametrization.

The detected books are now processed by the system. This is done by two checks (10,12). Two

business rules are applied for validation: check user authorisation for ensuring the user has

the right to borrow books and check book authorisation to ensure the book can be borrowed.

Since these are system decisions, both are stereotyped by <<SystemRule>>. Depending on the

outcome of each check, different paths are selected in the activity diagram.

In action 12, if the preceding checks were successful, the books are marked as borrowed and

the corresponding entries are made in the library software database. Since the database can be

used as an interface to check the test output, the type <<DatabaseAssertion>> is used here.

The approach to testing RFID applications presented in this thesis presupposes the verifiability

based on databases. This requirement is based on the fact that RFID applications can be used

without user interactions. Therefore, a testability is only given if an appropriate interface (here

the database) is available.

The successfully borrowed books are now also displayed via the output of the software at the

input terminal (15). The use of the <<GUIOutputAssertion>> stereotype makes sense here as

for the previous outputs.

The user now has the possibility to borrow further books (16), whether or not this is a decision

that the user has to make now. Since it is a decision that is independent of the system, this

action is marked as <<ContextAction>>.

The following steps are similar to the ones used before. Therefore, it should be obvious which

stereotypes can be applied to these.

4.5 Automatic Test Case Generation

In the previous sections, the method for model-based test case specification was presented. For

this purpose, a meta model has been introduced that allows test relevant aspects to be considered

during the modelling of RFID specific test cases and to encapsulate test data in the activity

diagram.

In this section the fundamental steps of the ITERA test methodology, that allow for the deriva-

tion of test cases are described. In particular how transformation is used to convert activity

diagrams to a graph in a first step and how the test cases or potential execution paths of the

activity diagrams are computed.

The central tool for transferring models between different abstraction levels is the model trans-

formation, which uses specific transformation rules to map a source model to a target model.

Model transformation is a process that removes or adapts elements of the source model or creates

elements in the target model that might be aggregated from elements of several source models.
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The aim of model transformation is to preserve those aspects of the system that are particularly

relevant in the target model while irrelevant aspects are removed.

Test cases are ordered sequences of individual actions that are processed during the execution of

tests. Since activity diagrams may contain cyclic and concurrent control flow structures, direct

application of deep-first or breadth-first search algorithms is not suitable for calculating such

ordered sequences of test-relevant actions. To avoid this problem, the approach to generate test

cases from UML activity diagrams investigated in this thesis follows the path of modifying the

breadth-first search algorithm so that valid paths are also generated from activity diagrams with

concurrent and cyclic structures.

A particular challenge when testing software is to find suitable test cases. Test case determi-

nation should therefore be performed through a systematic and structured process. For this

reason, this section introduces a procedure that allows to extract them directly from the activ-

ity diagram created in the previous section. In order to ensure adequate coverage of the RFID

application by tests, different coverage criteria for activity diagrams are also defined in this

section.

The procedure for determining the test case is carried out in three steps: At first, the UML

activity diagram is transformed into an intermediate representation (activity graph). In a further

step, a search algorithm is then applied in such a way that the previously defined coverage

criterion is fulfilled. Subsequently, test cases are created based on these paths, including test

parameters from the meta-model. The obtained test cases also provide the starting point for

the test data determination in the next section.

4.5.1 ITERA Test Coverage Criteria

Coverage criteria (see 2.2.1) can be applied at different levels of abstraction. On a level of

abstraction close to implementation, they are usually based on source code. Nodes of the

control flow graph reference individual statements in the source code. At the level of system

testing, tests are concerned with the testing of a software against its specification, without the

knowledge of the source code (black box test). Accordingly, the nodes of the control flow graph

reflect the activities of the user with the SUT. This allows the SUT to be tested from the user’s

perspective to see whether the SUT complies with the specification when using defined stimuli,

e.g. RFID events.

A direct application of the existing test coverage criteria to system testing is not possible. System

tests ensure that every function of the SUT that can be reached by the user is addressed at least

by one test. However, this does not guarantee that every single statement in the source code

is also checked by this set of tests. Consequently, statement coverage (C0 coverage, analogous

to C1 and C2-coverage), focused on statements in the source code of the application, cannot be

used in its original meaning for system tests. In the context of this thesis, the activity diagrams
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created in the previous steps are interpreted as a control flow graph and build the basis for the

coverage metric.

To define coverage criteria at the abstraction level of UML activity diagrams, UML activity

diagrams are defined as:

Definition 4.5.1 (Activity Diagram)

A activity diagram is a defined as a tuple AD = (N,C, nI , NF , F ) where

• N = {n1, n2, . . . , an} is a finite set of activities of type ActivityNodes

• T = {t1, t2, . . . , tm} is a finite set of transitions of type ControlNode

• C = {c1, c2, . . . , cm} is a finite set of guard conditions, where ci is related to ti and

depends on ni.

• nI ∈ N is the start node of the activity diagram of type InitialNode

• NF ⊂ N is a finite set of end nodes of the activity diagram of type ActivityFinalNode

• F ⊆ {N × T} ∪ {T ×N} is the flow relation between the activities and transitions of

type ActivityEdge

An activity diagram based on the plain meta-model of UML does not clearly show which nodes

represent interactions with the user, depict outputs of the SUT or are context relevant. For

this reason, the UML profile (Section 4.3.2) has been defined, providing stereotypes that allow

for assigning corresponding attributes to elements of an activity diagram and include concrete

semantics.

Within the scope of this thesis, the activities of the activity model are considered as elementary

test steps. Therefore, the definition of the coverage criteria listed below refers to activities that

are relevant to the execution of the test. Test relevant activities are in this sense direct subclasses

of the meta-model defined in the previous section. These are in particular based on the stereo-

types <<SystemAction>> or <<ActorAction>>, such as RFIDAddAction or RFIDRemoveAction

(derived from ActorInteraction). Based on the definition of the Activity Diagram and in

regard to elementary test steps five coverage criteria are defined:

Definition 4.5.2 (activity coverage)

An activity coverage test (C0AD test) for an activity diagram AD is defined as a test, during

which all test-relevant activities are executed at least once. C0AD tests are therefore based

on the classical definition of C0 tests, whereby the activity diagram of the SUT is used as

the control flow graph.

Definition 4.5.3 (activity branch coverage)

A C1AD branch coverage criterion for an activity diagram AD is defined as a coverage crite-

rion that requires all test-relevant branch alternatives (i.e. outgoing edges to DecisionNode

elements) in the activity diagram to be covered by at least one test case.
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Definition 4.5.4 (activity path coverage)

Path coverage C2AD criterion for an activity diagram is defined in analogy to the classical

C2 test as a test covering criterion, which requires that each path is covered by a test case

in the activity diagram AD.

Analogous to the classic C2 coverage criterion, however, the problem arises in practice that

even for models with relatively low complexity, the number of possible paths quickly increases

to a level that is not manageable even when using computers. This problem was identified in

the literature as a state-explosion-problem (combinatorial explosion) (cf. Valmari [126], Peled

[127]). The approach examined in this thesis avoids this problem by not considering the C2

criterion, but the C2cAD criterion discussed below.

Definition 4.5.5 (activity basis path coverage)

A C2cAD baseline path coverage test for an activity diagram AD, is defined as a C1AD

test which, analogous to the classical C2c test, executes each cycle in the activity diagram

during test execution with at least a given number of passes, whereby concurrent control

flow structures contained in the path are removed.

(a) cyclic structure (b) concurrent structure

Figure 4.12: Concurrent and cyclic structures of UML Activity Diagrams

The UML Activity Diagrams provide modelling elements that allow both cyclic and concurrent

structures (see Figure 4.12). The classical definitions of the test coverage criteria are based on a

control flow graph that does not contain concurrent structures. However, the activity diagram

of the SUT is used as a control flow graph, in which concurrent structures are allowed. Whereas

a test case intentionally does not include branch nodes, contain cyclic or concurrent structures

to guarantee deterministic execution. In order to achieve this, the concurrent activities and

loops must be interleaved when they are converted to test cases. If elements exist on concurrent

control flow structures, only sequences of permitted permutations of these elements should be

reflected by tests, assuming that a user can carry out exactly one interaction with the SUT at

any given point in time.
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Definition 4.5.6 (concurrent activity path coverage)

A Concurrent Activity Path CCAD is defined as a C2cAD (basis path coverage) test that

passes through each cycle at least once and additionally tests permitted sequences of per-

mutations of test-relevant elements on concurrent control flow structures. A sequencing

of elements of concurrent control flow structures by permutation is permitted if elements

modelled on the same control flow structure are not interchanged with elements of concur-

rent control flow structures in their execution sequence after permutation. To avoid the

state explosion problem, the CCAD criterion is met if at least one permissible sequencing is

covered by a test.

The method examined in this thesis for generating system tests from activity diagrams implies

that concurrent control flows in applications are described from the user’s point of view and can

thus represent sequences of adjacent individual actions. The rationale is that a human actor is

not able to interact concurrently with multiple components of an application at the same time.

Due to human capabilities, there is are always an implicit sequential ordering. However, when

multiple actors perform the same activity, as it might be the case in e.g. a warehouse, this is

not modelled in the activity diagram directly, rather this is covered during the execution of the

tests by running multiple tests at the same time.

In order to take a closer look at the path explosion and to explain the interleaving of the actions,

the diagram shown in Figure 4.12b can be considered. Assuming that R ⊆ A×A is the partial

order relation of two activities ai ∈ A and aj ∈ A. Precedence of activities, that is activity ai

has occurred before aj , is referred to as ai ≺ aj . The example shown in Figure 4.12b contains

4 concurrent activities and has the order relation R = {A1 ≺ A2, A1 ≺ A4, A2 ≺ A3, A4 ≺
A5, A3 ≺ A6, A5 ≺ A6}. This results in 24 permutations of which 6 are valid (permitted)

activity paths (denoted Pi):

P1 = A1→ A2→ A3→ A4→ A5→ A6

P2 = A1→ A2→ A4→ A3→ A5→ A6

P3 = A1→ A2→ A4→ A5→ A3→ A6

P4 = A1→ A4→ A5→ A2→ A3→ A6

P5 = A1→ A4→ A2→ A3→ A5→ A6

Note that if these would been test cases, every single (test-)path (P1 − P6) already fulfils the

CCAD criterion, as only one valid sequence of the concurrent activities is required.

4.5.2 Transformation from an activity diagram to an ActivityGraph

In order to generate the test cases, the UML activity diagram is transformed into an activity

graph in a first step. This graph is then traversed using an algorithm. The traces of the traversal

form a set of valid sequences of actions that represent possible execution paths. By combining
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the resulting paths with data from the original activity diagram, the so-called abstract test cases

are obtained which have to be enriched with test data by the tester.

To apply the algorithm for test case generation an ActivityGraph (AG) is created. The nodes

and transitions of the AG directly correspond to those in the activity diagram, except that

multiple UML FinalNodes are combined to one FinalNode in the activity graph. A modified

Breadth First Search (BFS) algorithm is then used to traverse the graph and to obtain the test

cases. This creates paths that represent the sequences of actions in the activity diagram. In

the semantics of the activity diagram, each node visited means that the associated action is

executed.

An AG is defined as shown below:

Definition 4.5.7 (Activity Graph)

An ActivityGraph AG = (N,E) is defined as a directed graph, where

• N = {n1, n2, . . . , nn} is a finite set of nodes and

• E ⊆ {(ni, nj) | ni, nj ∈ N, i 6= j} is a finite set of ordered pairs, called directed edges.

Each node n ∈ N has a structure (nodeId,nodeType,nodeStereoType,nodeName), where

• nodeId is an unique identifier attached,

• nodeType = {I, E,A,D,M,F, J} as defined by the mapping rules (Table 4.3),

• nodeStereoType is the textual description of the stereotype of the activity and

• nodeName is a textual description of the node in correspondence to the activity.

During the transformation, an activity graph is generated from an activity diagram in accordance

with the transformation rules defined below:

Transformation Rule 4.5.1 (UML Activity Node → ActivityGraph Node)

Let AD = (NAD, T, C, nI , NF , F ) be a Activity Diagram and AG = (NAG, E) an ActivityGraph.

During the transformation, each node n ∈ NAD creates a corresponding node m ∈ NAG. If there

is more than one node n ∈ NF of type ActivityFinalNode only one m ∈ NAG of type F is created.

Transformation Rule 4.5.2 (UML ActivityEdge → ActivityGraph Edge)

Let AD = (NAD, T, C, nI , NF , F ) be a Activity Diagram and AG = (NAG, E) an ActivityGraph.

During transformation each control flow t ∈ T creates an directed edge e ∈ E such that, ni → nj

corresponds to an ordered pair (ni, nj) in the ActivityGraph.

Table 4.3 describes the mapping rules of the UML ActivityNode to the corresponding types in

the activity graph.

An example of an AD-to-AG transformation is presented in Figure 4.13. It shows the application

of the previously defined transformation rules on an example activity diagram. The transforma-

tion rule 4.5.1 transforms each of the individual elements of the UML activity diagram to nodes

in the ActivityGraph (illustrated with dashed arrows). Additionally, each type of the UML Ac-

tivityNode is also mapped to the corresponding nodeTypes in the ActivityGraph in accordance

113



4 ITERA Test Methodology and Model Based Testing of RFID Applications

Rule UML ActivityNode Activity GraphNode

1 InitialNode Node of type I
2 ActivityFinalNode Node of type E
3 ActivityNode Node of type A
4 DecissionNode Node of type D
5 MergeNode Node of type M
6 ForkNode Node of type F
7 JoinNode Node of type J

Table 4.3: Rules for mapping UML ActivityNodes to ActivityGraph nodes

Figure 4.13: Example transformation of an activity diagram to an ActivityGraph

to Table 4.3. Transformation rule 4.5.2 created edges in the activity graph analogous to the

control flow in the activity diagram.

The ActivityGraph shown in Figure 4.13 is a representation of the original activity diagram. If

the graph is traversed, the transitions between the nodes correspond to the control flow in the

activity diagram. Traversing a node is semantically equivalent to executing the corresponding

activity. The graph created is the basis for the derivation of the test cases and thus reflects

possible execution sequences of the modelled use case of the application.

4.5.3 Traversal of the Graph and Extraction of Test Cases

Test cases are ordered sequences of individual actions that are processed during the execution

of tests. Since activity diagrams can contain cycles and concurrent control flow structures, a

direct application of a plain search algorithm, like Depth First Search (DFS) or BFS, is not

suitable for calculating such ordered sequences of individual actions. Therefore, the creation of

execution paths takes place in several steps:

In a first step, the ActivityGraph is traversed by a modified breath-first search algorithm (listing

4.1), starting from node I, ending at node F and visiting each node in the graph exactly once.
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In the semantics of the activity diagram, the resulting paths correspond to the execution of the

corresponding activities. Therefore, execution paths generated in this way already fulfil C0AD,

since it is ensured that every action modelled in the activity diagram is included. If concurrent

structures or cycles are discovered during traversal, either a new instance of the DFS or another

version of the modified BFS (SequentialBFS, listing 4.2) is called.

Concurrent activities have to be interleaved, since they prevent the useful application of the

original traversal algorithm (listing 4.1) and would result in impermissible test cases. The CACD

criterion requires that only one reasonable permutation must be included, i. e. one valid sequence

of concurrent activities, therefore the modified sequential breadth-first search algorithm (listing

4.2) can be utilised here.

However, the paths created this way do not yet contain cycles and do not necessarily end at an

end point (ActivityFinalNode) of the control flow within the activity diagram. Therefore, the

next step is to complete the generated execution sequences through cycles and then complete

each path in such a way that it ends at an end point of the activity diagram. To achieve this,

the BFS search is called recursively. Contrary to the initial call, this time the start node is the

beginning of the cycle, the end node remains F. To control the path generation and to provide

a termination condition a additional argument depth is used. This not only allows to avoid test

path explosion, but also enables the tester to define boundaries by controlling how often cycles

are traversed. A depth of 1 means cycles are traversed at least once, correspondingly a depth

of 2 means each cycle is taken twice. Afterwards the supplemented paths fulfil both the C2cAD

and the CCAD coverage criterion.

Activity diagrams can be hierarchically structured using the UML Call-BehaviorAction element,

so that subordinate activity diagrams are referenced from parent ones. To generate test cases

from activity diagrams, such dependencies must be taken into account during test case gener-

ation. Hence, in a final step, these dependencies are resolved by inserting the corresponding

execution paths of the referenced activity diagram at these locations. This way, the complexity

of determining test paths is kept low. This can otherwise be problematic especially in very large

activity diagrams.

Like in comparative test case generation algorithms based on UML activity diagrams [66],

a restriction on the model is needed. Nested control structures (such as DecisionNode and

MergeNode) are not allowed in between concurrent sections. Here the modeller has to create a

subordinate activity diagram containing the nested activities. The test paths of this subordi-

nate activity diagram will be substituted at the corresponding places (original activity) similar

to UML Call-BehaviorAction. However, in comparison to [66] nested cycles can be handled

properly by the proposed algorithm (see Section 6.3).

The generated paths from the ActivityGraph represent different execution paths of the modelled

use-case in the activity diagram, each of these paths represent a future test case.

Listing 4.1 shows modified algorithm used during traversal of the ActivityGraph:
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Listing 4.1: ITERA Modified BFS (normal mode)

1 def bfs(graph, start, goal, depth):

2 paths = []

3 queue = [(start, [start])]

4 while queue:

5 (vertex, path) = queue.pop(0)

6 if nodeType[vertex] == goal:

7 paths.append(path)

8 continue

9 if nodeType[vertex] == "FN":

10 # Concurrent section detected

11 seq_path = sequencer_bfs(graph,vertex,[goal,"JN"])

12 last_node = seq_path[-1]

13 for next_vertex in graph[last_node]:

14 queue.append((next_vertex, path + seq_path + [next_vertex]))

15 continue

16 for next_vertex in graph[vertex]:

17 if next_vertex in path:

18 ## Cycle detected

19 if depth > 0:

20 for cpath in bfs(graph,next_vertex,goal,depth-1):

21 paths.append(path + cpath)

22 else:

23 queue.append((next_vertex, path + [next_vertex]))

24

25 return paths

Listing 4.2 is referred to as sequential BFS and mainly used for traversing concurrent structures

inside the activity diagram. It differs in the way it keeps track of visited nodes.

Listing 4.2: ITERA Modified BFS (concurrent sections)

1 def sequencer_bfs(graph,start,goal):

2 queue = [start]

3 visited = []

4 while queue:

5 vertex = queue.pop(0)

6 for next_vertex in graph[vertex]:

7 if nodeType[next_vertex] in goal:

8 continue

9 if nodeType[next_vertex] == ’FN’:

10 visited.append(next_vertex)

11 path = sequencer_bfs(graph,next_vertex,goal)

12 last_node = path[-1]

13 visited.extend(path)

14 for next_vertex in graph[last_node]:

15 path.append(next_vertex)

16 continue

17 visited.append(next_vertex)

18 queue.append(next_vertex)

19 return visited

Figure 4.14 shows the ActivityGraph of the continuously used example library “rental process”

(shown in Figure 4.11) after the application of the mapping rules defined in Table 4.3. For

comprehensibility the numbers of the activities have been conserved to make it easier to follow

the transformation. Every activity within the activity diagram annotated with the stereotype

<<ActorAction>> has been denoted A, respectively the activities of type <<SystemAction>>

are denoted with S. Merge nodes (M), decision nodes (D) and the InitialNode (I) have been

denoted following mapping rules. In accordance to the transformation rule 4.5.1 the nodes of
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Figure 4.14: ActivityGraph of the example “rental process”

type ActivityFinalNode of the activity diagram have been combined to one node (denoted E).

The application of the proposed test case generation algorithm on the ActivityGraph “rental

process” yields six test cases. The complete path of of Test Case 3 including the conditions

(guard conditions at the UML Decision Nodes) of the corresponding decisions from the library

example is shown below:

TC3: I → A1 → A2 → S3 → A4 → S5 → D[account valid] → S7 → A8 → M → A9 → S10 →
D[user authorized] → S12 → D[book rentable] → S14 → M → S15 → A16 → D[no more books] → A17

→ S18 → A19, → A20 → E

Due to the length of the individual sequences, the generated test paths are not completely

depicted here. For simplicity, only the decision nodes and their conditions during the traversal

are shown below:

TC Conditions

1 [account not valid]

2 [account valid] → [user not authorized]

3 [account valid] → [user authorized] → [book rentable] → [no more books]

4 [account valid] → [user authorized] → [book not rentable] → [no more books]

5 [account valid] → [user authorized] → [book rentable] → [more books] → [user authorized] → [book
rentable] → [no more books]

6 [account valid] → [user authorized] → [book not rentable] → [more books] → [user authorized] →
[book rentable] → [no more books]

Table 4.4: Shortened test paths generated during traversal of the ActivityGraph of the “rental
process”

There are two cycles in the used example “rental process”. As it can be seen in Table 4.4 cyclic

paths, both zero loop and loop once, are contained in the generated paths:

• loop zero time:

TC5: I → A(place user id-card) → D[account valid] → A(place book) → D[user authorized] → D[book rentable] →
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D[no more books] → E

• loop once:

TC6: I → A(place user id-card) → D[account valid] → A(place book) → D[user authorized] → D[book rentable] →
A(place book) → D[user authorized] → D[book rentable] → D[no more books] → E

Since there are no concurrent structures in the example and each loop is run through at least

once, the test cases generated fulfill the coverage criterion CACD defined in the previous section.

The resulting paths are now processed into abstract test cases and serve the tester to determine

the test data. For this purpose, additional information from the classes of the meta model and

of the individual nodes of the ActivityGraph are analysed and presented in a table. Figure 4.15

shows an excerpt of the prepared test cases of the used example library “rental process”.

Figure 4.15: Excerpt from generated test cases

4.6 Test Data Determination for System Testing

When testing software systems, it is necessary to supply the SUT with input data. Since testing

is not only intended to mimic a productive use of the system, special demands are imposed on

the test data used. While test data should adequately represent the average (or typical) use

case, it is also important to stimulate the SUT with input data that does not represent any

typical use case. This includes, for example, data that is very close to or even exceeds the limits

of validity. The selection of test data is therefore a demanding task.

The method presented in this thesis generates test cases based on a previously defined coverage

criterion out of the control flow of the refined activity diagrams. Although some requirements

for the selection of test data are already given by the generated test cases, these should be

systematically selected as well. Automatic test input data selection seems therefore promising

to even further assist the tester.
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4.6.1 Automatic Test Data Derivation

The primary goal of automated test data generation is to reduce the time required to manually

create the test data. For this reason, it is also useful to automatically generate test data for

RFID application tests. Especially for this type of software, the complexity of possible input

parameters quickly becomes unmanageable for a human actor (e.g. inherent state of objects

with attached RFID tags, continuous read events, timing and physical challenges). To reach

that goal, the question is whether the complexity of human actors can be managed and if the

test input space can be divided such a way that meaningful representatives can be selected, so

that a satisfactory solution can be achieved in terms of test quality. However, the necessary

prerequisites for a systematic generation of test data for RFID applications are not fulfilled.

This is partly due to the fact that input data, in this case RFID tags, only contain a minor

part of the system’s data, such as the identifier of an RFID tag. The identifier only serves as a

reference to an existing data record of the application.

This can easily be seen by an example from the library application used in the previous sections.

E.g. the book titled “Test Driven Development: by Example” by Kent Beck contains extensive

entries in the database such as: TagID, title, author, ISBN, publisher, year of publication, etc.

Even if this information (book title, author, etc.) would be reflected by the test model, it would

still not be sufficient to automatically determine systematic test input data. Objects stored in

the database used as input might also have complex relationships with other entries or hidden

states. As an example, a certain book could have been borrowed or reserved by a specific

user. Hence, the test model would also be suitable for capturing these relationships between the

different data sets of the application.

4.6.2 Test Data Derivation

The identifier of an RFID tag often only serves as reference to an already existing data record.

Therefore, the approach for testing RFID applications presented in this thesis assumes that a

corresponding database with test data already exists. If not, a suitable database needs to be

created by the tester first. To create such a database, data can either be pulled from production

systems or generated by database generators. Examples for automatic generation of database

populations can be found in various professional tool suites for testing.

Similar to comparable model-based test approaches, the assignment of test data in the ITERA

test method is a manual process, too. However, a certain path generated from the activity

diagrams can only be executed if the input data fulfils the criteria defined by the guard conditions

along the traversed path. These can be used as the starting point for choosing valid test data

from the test database. For example the generated test case 3 (see Section 4.5.3) contains two

RFIDAddActions in addition to the GUIInputActions. The input data thus requires two RFID

tags and corresponding identifiers. The conditions from test case 3 shown in Figure 4.15 are

listed below:
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1. Condition: [account valid]

2. Condition: [user authorized]

3. Condition: [book rentable]

4. Condition: [no more books]

Including the predicates from the associated test steps of stereotype <<SystemRule>> assigned

to these conditions, the following (business-)rules are obtained:

• SystemRule for [account valid]:

(user.exits) AND (user.status = valid)

• SystemRule for [user authorized]:

(user.rentals < 4) AND (user.invoice = 0)

• SystemRule for [book rentable]:

(book.status = borrowable) OR

((book.status = reserved) AND (book.reservation.user = user))

Condition 4 “no more books” does not contain a associated rule, since it is a decision the user

of the application made. Nonetheless, considering the rules and the conditions it should be

obvious which explicit entries the tester needs to select as test input from the test database

in order to allow the execution of the appropriate test case (here test case 3 from the running

example). E.g., a valid user who has less than 4 books borrowed and no outstanding invoices

will be selected from the database. Accordingly, a book is chosen that can be borrowed. Since

the input data from the corresponding objects only contain to the identifier of an RFID tag, the

tester needs to select the identifiers of the corresponding RFID tag from the test database and

insert them in the template of the abstract test cases.

Since the formal description of the conditions is based on sets and relational algebra (see Section

4.2.4), an automatic selection of the test data is also conceivable. In order to achieve a technical

implementation, the predicates would need to be converted into database-specific expression

such as SQL. The result of the database query then provides a choice of valid input data. A

representative should be selected and assigned to the test case. Although this approach seems

to be clear, it was not further considered in this thesis, but is part of future work.

The model of the “rental process” use case illustrated in the previous section was transformed by

means of a prototype implementation of ITERA the test case generation method and augmented

with appropriate test data. The test case generation algorithm extracted several test cases. Each

test case has been refined by the tester by providing the corresponding test data. The final test

of test case 3 (see Figure 4.15) from the example library is presented in Listing 4.3. The test

case consists of eight test steps (lines 12-19) that correspond to stereotyped input activities of

the actor in the activity diagram. Lines 2-9 show the selected test data and additional inputs

derived from the ActorAction’s class attributes. Lines 3-4 represent the tag identifiers of an

user-id card and a book, which fulfil the criteria needed to execute the test case.
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The automatic test execution framework uses virtual RFID tags, which are provided by the Rifidi

toolkit (see Section 2.3.4). Beside the selected identifiers from the test database (parameter id

in the listing), additional toolkit specific parameters are needed in order to create the virtual

tags (type and tagtype). Analogous to these, virtual RFID readers are defined in lines 6-7. The

Rifidi toolkit supports readers from different vendors with various configuration options. These

are defined in a separate configuration file referenced through the config parameter.

To evaluate the test, application specific test drivers have been supplied for the GUI and the

database (defined in Lines 8-9). In this example these are AutoIT, a framework for GUI au-

tomation and SQLite database connector.

Listing 4.3: TestCase 1 - Example Library “process rental”

1 @SetUp

2 TestData:

3 userId1 = {type="RifidiTag", tagtype="EPCG1C2", id="3074257bf7194e4000001a85"}

4 book1 = {type="RifidiTag", tagtype="EPCG1C2", id="6056257bf8194e4000011b99"}

5 TestEnvironment:

6 RFIDReaderConfig1 = {type="RifidiReader",name="UserIDReader",config="reader1.config"}

7 RFIDReaderConfig2 = {type="RifidiReader",name="LibraryShelfReader",config="reader2.config"}

8 AppplicationConfig1 = {type="AutoIT",name="LibraryGUI",config="libraryApp.config"}

9 DatabaseConfig1 = {type="SQLLite",name="LibraryDBConnector",config="libraryDB.config"}

10

11 @Test diagram="ad_rentalprocess" name="tc1_rentalprocess"

12 TestAction GUIInputAction("rent books")

13 TestAction RFIDAddAction([userId1])

14 TestAction RFIDRemoveAction([userId1])

15 TestAction RFIDAddAction([book1])

16 TestAssertion DataBaseAssertion("[book1].status = rented AND [book1].rentals.user = [userId1]")

17 TestAction GUIInputAction("finish")

18 TestAction GUIInputAction("OK")

19 TestAction RFIDRemoveAction([book1])

The lines 12-19 are show the sequence of test steps which are applied to the SUT. According

the the test path different inputs in form of GUIInputAction and RFIDADDAction (respec-

tively RFIDRemoveAction) are listed. The concrete input parameters needed for executing the

execute() method from the classes in the ITERA meta model (see Section 4.3.2) have been

referenced accordingly.

4.6.3 Robustness Tests

Robustness tests presented here are not intended to exercise extreme cases, but rather to demon-

strate fault-free operation of the application under modified environmental conditions. These

are mainly due to the technical challenges involved in the operation of RFID systems, including

unreliability of tag capture as identified in Chapter 3.

Most of the challenges stem from the physical effects that have to be addressed on the phys-

ical layer, however, some can also be handled by software, in particular through tag filtering

and smoothing mechanisms. In order to provoke these effects and thus test correct filter and

aggregation functionality, the derived tests cases need to be modified accordingly to reflect the
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modified environmental conditions and thus allow for an evaluation of robustness aspects. Cur-

rently, techniques used to eliminate unintended duplicate tag reads are often based on timing

aspects and through changes of tags inside a interrogation zone, like first time appearances and

disappearances.

Starting-point for the creation of RFID specific robustness tests are the test cases created in the

previous section. These already represent valid use cases of the SUT and are therefore well suited

to validate the correct implementation of the application with regard to the unreliability of the

underlying RFID system. Goal of the robustness tests is to reduce the chance of unintentional

multiple tag reads.

In the following, three classes of robustness test are defined by which the test cases are adapted.

In principle, the modification of the test cases to reflect the input for an robustness test can

be automated, but additional parameter boundaries of the individual modifications must be

determined by the tester. These boundaries are described in the different robustness classes.

1. validity of filter and aggregation functionality

a) temporal based event aggregation

b) semantic based event aggregation

2. validity of bulk reading functionality

The first two classes (1a, 1b) examine the filter and aggregation functions used in the different

components of the RFID system. A distinction is made between aggregations with temporal

and aggregations with semantic relationships. In the case of time based aggregation, the reading

events continuously generated by the presence of an RFID tag in the reading field of the RFID

reader are aggregated over specified time frames (e.g. sliding window). With semantic based

aggregations, the logical events are determined by the first appearance or disappearance of the

RFID tag in the reading field. The third class (2) deals with the possibility of processing several

RFID tags simultaneously, “as a bulk”.

Temporal based event tag aggregation

The key characteristic of this test case modification is that the temporal dimension of individual

activities on the test path is changed by the tester.

The aim of this class of robustness tests is to validate the filtering mechanisms used in the

complete system, e.g. the RFID reader or middleware or application. Time-based filtering and

aggregation techniques are often used to combine the continuous stream of RFID events into

separate logical events and thus enable them to be assigned to distinct processes. The central

question of this test is whether the filters and aggregation functions are able to reliably generate

logical events from the raw data stream of an RFID reader even under changing conditions.

Since all components and their interactions are already controlled by the test environment in

the presented approach, this can be considered as a valid concept. The time course of the test,

is determined by the individual test steps (in particular all subclasses of type ActorAction).
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The test case’s total duration is determined by the sum of individual intervals in the previously

specified activities.
aF∑

a=aI

(duration(a))

Where a ∈ ActorAction, aI is the start of node, aF denotes the end node of the test path and

a are all successor nodes traversed along the path.

The duration of a RFID tag inside the reading field can thus be determined by summing

up all test steps between an (inclusive) RFIDAddAction and the corresponding (exclusive)

RFIDRemoveAction.
aj∑

a=ai

(duration(a))

Where ai is of type RFIDAddAction and aj of type RFIDRemoveAction.

Figure 4.16: Determination and modification of the duration a tag is inside a reader’s field

Figure 4.16 shows the procedure schematically. The duration between the two nodes and the

proposed modification of timing aspects is depicted. To verify a reliable assignment of the RFID

event to logical events, the retention time t is now changed according to a factor n defined by

the tester. However, the necessary prerequisite for implementation is an exact specification to

which extend the temporal boundary conditions may be violated. This can often be realized by

means of a percentage value.

Semantic based event tag aggregation

The unintentional multiple reading of RFID tags without a temporal examination represents a

further variant of robustness tests. In this case, the raw events generated by a RFID reader

are not generated on the basis of temporal aspects, but by the first recognition of a RFID tag.

Similar to the first occurrence of the RFID tag, the departure of a tag can also be used for

distinguishing logical read events from the RFID data stream. Here, incorrect aggregation is

caused by physical effects such as shadowing of RFID tags or interference in the radio field,

often defined in the literature as “whitespots”.

In contrast to the method for testing RFID applications presented in this thesis, manual test-

ing with the aim to reproduce this effect is very difficult to perform. However, as the RFID
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environment can be completely controlled and manipulated by the test framework presented in

Chapter 5, the system can be supplied with erroneous input that might result in multiple logical

RFID events. To simulate these effects by means of a robustness test, a RFID tag is added and

removed from the virtual reader several times. Figure 4.17 shows the procedure schematically.

The central characteristic of this test class is that the underlying test case is complemented

by additional test steps. The previously specified test path is manipulated so that between

Figure 4.17: Robustness testing of semantic based aggregations

the original RFIDAddAction and RFIDRemoveAction, one or more repetitions of these activities

are inserted. However, a prerequisite is that the tester specifies a maximum number of these

repetitions.

Bulk reading

One of the fundamental advantages of RFID systems is the ability to capture multiple objects

simultaneously. This is often referred to as bulk reading in literature. In contrast to other

auto-identification technologies such as barcodes, this allows, for example, the scanning of entire

pallets at dock doors. Subject of the third robustness test is therefore the examination whether

the developed application copes with processing several RFID tags that are simultaneously in

the reading field correctly.

The central characteristic of this modification of the test cases is that the number of input data

of the RFID specific activities is changed in such a way that several RFID tags are in the reading

field simultaneously.

Figure 4.18: Robustness modifications for the validation of bulk reading
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To check whether the application correctly implements this functionality, the RFIDAddAction (or

RFIDRemoveAction) contained in the test path is executed with multiple RFID tags. However,

testers must provide appropriate test data, i.e. valid RFID identifiers, in order to carry out

the test. These can be either (semantically) valid or invalid entries, however, they still need to

fulfil the input constraints (guard conditions) of the test obtained during test path generation.

Figure 4.18 shows a schematic example test path generated through the test case generation

algorithm. Here, the activities RFIDAddAction and RFIDRemoveAction are identified and the

corresponding inputs are modified. These changes of the input data corresponds to the semantics

introduced in Section 4.2:

reader(tn) = {id1} ∪ {id2, . . .}

where {id1} is the original input data set and the set {id2, . . .} the additional bulk tags of this

robustness test.

In contrast to manual testing procedures, the ITERA method also allows very large tag popu-

lations to be inserted into the reader’s interrogation zone. This enables not only the evaluation

of bulk processing, but also provides the basis for performance tests. However, performance

aspects have not been considered in the present thesis, but can be subject for further research.

4.7 Conclusion

A model based approach for testing functional requirements of RFID applications has been

introduced. The key contributions of this thesis are comprising of a semantic model, a meta

model to refine activity diagrams used for specifying tests, an algorithm to generate test cases

and suggestions to select appropriate test data. Based on the foundation of a semantic model

to describe the behaviour of the RFID system, a meta model which allows for refining activity

diagrams to capture the intended functionality and bridging the gap between test model and

RFID environment has been presented. The created models are transformed into directed graphs

and traversed by a specially prepared algorithm that can cope with specific constructs of activity

diagrams to create the test cases. Considering the constraints on the traversed execution paths

appropriate test data is selected. In combination of the test cases and the test data executable

test are derived which can be used as input for the test automation framework described in the

next chapter.

In comparison to other MBT approaches 2.2.2, the unique aspect of the test approach examined

here is the additional enrichment of the model with context parameters, which are a prerequisite

for test execution. The test case generation examined in this thesis is based on the assumption

that context factors, like timing, have to be taken into account. This applies in particular to

testing, where test execution and the understanding of the impact of temporal behaviour is

essential for the correct evaluation of RFID systems. The transformation of the resulting test

models into test cases is a well known procedure, but with the special feature of integrating

context parameters in the creation of RFID specific test cases and applying them during test
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execution. In addition, robustness tests are considered for the first time during the creation of

the tests and are thus a novelty and a decisive contribution of this work.
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In the previous chapters the specific characteristics of RFID systems, in particular the unreliable

detection, and the effects on development and operation have been explored. These effects also

manifest themselves in an increased complexity of all quality assurance activities, from test

modelling to test execution. So far, however, there are hardly any methods and tools that meet

the special requirements for testing RFID applications.

A systematic way of creating test cases has been introduced. Systematically identified test cases

are the fundamental prerequisite for high failure detection and effective testing. The aim is to

test a large number of potential errors with the lowest possible number of test cases. From a

theoretical point of view, test case identification is therefore the most important test activity.

In practice, however, test execution is usually much more important than the determination of

test cases, since the test execution process has a decisive influence on the efficiency of the test.

The total cost of the test is divided into two main areas: the cost of determining the test case and

the cost of carrying out or evaluating the test. While the first part is “only” dependent on the

complexity of the test object and the number of relevant test cases, the second part also grows

almost linearly with the number of necessary tests and test repetitions. The number of these

repetitions depends on the type of development process and not on the test methodology used.

In iterative processes, such as those frequently occurring in practical RFID deployments, due to

the gradual introduction of RFID systems into different areas of a business, the number of test

repetitions required is naturally very high. In such cases, the testing effort for execution can only

be minimized by automation. Furthermore, also the fact that some physical parameters cannot

be influenced when testing in a real environment and that RFID tests have to be carried out

in (near) real-time, in order to detect failures in the filtering of RFID data streams, emphasizes

the great importance of test automation.

It was shown how abstract test cases can be generated from UML activity diagrams by model

transformation and an algorithm to derive test paths using the ITERA methodology for testing

RFID applications. Now it is to be shown that tests generated by this method can be supported

by a test automation technology. The distinguishing feature of automated testing of RFID

applications compared to traditional applications is, that - in addition to test data - a context

environment (timing constraints from physical processes, unreliable tag capturing and the RFID

readers) must be provided in the test environment during testing. The UML extension discussed

in the previous section enables this data to be mapped in the test case model. Therefore, for
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their actual use in test execution, an automation tool must be able considering these parameters

and provide the SUT with the artificial RFID events considering these context parameters.

In principle, different approaches can be used to simulate the context in which tests are carried

out. One option for simulating these context parameters is based on providing a laboratory

environment, that is capable of producing physical interferences (whitespots, erroneous read

events) and is suitable for interacting with physical RFID readers. However, it can be assumed

that this approach is generally uneconomical and technically challenging for some context pa-

rameters. Moreover, this approach would only be suitable for a limited number of testers, as

such a laboratory environment is only available for a very small number of testers.

By extending the ITERA methodology with a virtual RFID environment, laboratories for the

simulation are not needed for testing and thus the introduced approach becomes accessible

for every tester of an RFID system. Therefore, the ITERA test methodology uses Rifidi to

accomplish this task and allows for an automated test execution of the previously created test

cases.

Parts of the subsequent sections have already been presented in [29].

5.1 Virtual RFID System

To improve the test processes the real world RFID devices can be substituted by a virtual

RFID environment, with virtual readers from the Rifidi Toolkit [128]. This allows an otherwise

unchanged tool chain and creates a test environment as close as possible to the actual system en-

vironment. Being able to create such an environment is an essential prerequisite for system level

testing (see Section 2.1.6). In Figure 5.1a the original system is shown, contrary to Figure 5.1b

which shows the changed RFID system enhanced with virtual RFID readers. In the latter case,

all RFID devices are substituted by virtual readers. This way a tester can now place virtual

tags on the virtual readers, and generate the same input as with the real environment. But even

further, this can also be used to reproduce the conditions while a test was carried out and to

automate the test execution for the abstract test cases derived from the test model.

From the perspective of the RFID middleware and application the simulated system cannot be

distinguished from a real system. This test environment can even be a system composed of

randomly mixed real and virtual devices. However, then only the virtual RFID parts can be

used for instrumentation through the extracted test cases.

5.2 Test Set-Up

As already shown in Section 3, in typical RFID systems the application logic is distributed

between the RFID middleware and RFID application itself. Most of the logical parts are im-

plemented in the application itself, but some filters, aggregations and evaluations are applied
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(a) RFID System (b) Virtual RFID System

Figure 5.1: RFID System vs. Virtual RFID System

on the reader’s raw RFID events, before the events are processed by the application. RFID

raw-events are reports the reader sends to the middleware. There are two modes, which can be

distinguished, pull and push mode. In push mode it sends an raw-event every time a RFID tag

leaves the RFID field, contrary to a RFID reader which is polled at a certain timing interval.

The mode used depends on the configuration of the middleware.

In this approach the knowledge about how raw RFID events are created can be neglected, because

the virtual RFID readers used are fully emulated RFID devices, which can be configured either

way. Furthermore, the middleware is treated as part of the SUT, which allows to execute tests

on system level. To achieve this, the Test Harness presented in Figure 5.2 is build around the

middleware and application. A virtual RFID framework called Rifidi Emulation, which generates

virtual RFID events as input for the middleware, is located inside of the Test Harness. It is

instrumented by the instructions generated out of the test model. The evaluation of the test

results is done through the Evaluation Monitor, which checks the RFID application’s actions

and results.

Figure 5.2: Schematic RFID Test Set-UP
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The actual test execution is carried out by a so-called test engine, which serves as an instrumen-

tation tool for the test procedure and takes over the execution of the test cases. It incorporates

so called test drivers which connect to specific interfaces of RFID application.

5.3 ITERA Test Execution Framework

Tests above the component test level are performed by simulating the actual use of a software

system or a component by the potential user. From a purely technical point of view, the process

of carrying out the test is limited to manipulating the SUT by using tools in the same way

as would be done by a human actor. Thus, the workflow has to be supported by a suitable

simulation technology to provide corresponding inputs. Such technology is often called a test

driver (see Patton [32]) in the terminology of software testing.

In the fourth step of the ITERA methodology the test cases that have been created from the

activity diagram are executed. This is realized through application specific implementations

of the classes from the ITERA meta model, so called test drivers, which are used in combi-

nation with a technical solution to stimulate and evaluate the SUT. As already pointed out,

the test automation examined here does not make any concrete assumptions regarding the tar-

get technology and offers extension points, that allow other technologies to be used. The only

requirement is that the test back-end technology to be used (such as Rifidi, AutoIt, SQlite)

provides entry points in the meta model in form of subclasses of <<TestAction>>, explicitly

<<ActorInteraction>> or <<SystemAssertion>>. If these requirements are met, they can be

integrated into the automation tool during test execution.

In practice the test automation is of great importance, since the effort of testing is determined by

the efficiency of the test execution to a large extent. In order to ensure automatic test execution,

executable semantics have already been emphasized during the modelling of the test cases. All

information necessary for the execution of test cases is already contained inside the test model in

the form of stereotyped activities. Each <<TestAction>> represents one test step and contains

test driver specific parameters to create the test environment, execute the different test steps or

evaluate the results after their execution.

It is not a prerequisite that the test cases have been generated from a UML activity diagram.

Therefore, manually created abstract tests (test scripts) can also be used as valid input for the

test execution framework.

During the transformation of the activity diagram to test cases, the procedure discussed in Sec-

tion 4.5.3, a set of execution paths were generated for each activity diagram. These paths consist

of sequences of TestAction elements, each containing an executable method that allows the test

execution module to execute the test step. The source code listing 5.1, shown below, shows the

abstract test case generated during the example library “rental process” used throughout the

introduction of the ITERA Method in Chapter 4.
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Listing 5.1: Abstract TestCase 1 - Example Library “rental process”

1 @SetUp

2 TestData:

3 userId1 = {type="RifidiTag", tagtype="EPCG1C2" id="3074257bf7194e4000001a85"}

4 book1 = {type="RifidiTag", tagtype="EPCG1C2" id="6056257bf8194e4000011b99"}

5 TestEnvironment:

6 RFIDReaderConfig1 = {type="RifidiReader",name="UserIDReader",config="reader1.config"}

7 RFIDReaderConfig2 = {type="RifidiReader",name="LibraryShelfReader",config="reader2.config"}

8 AppplicationConfig1 = {type="AutoIT",name="LibraryGUI",config="libraryApp.config"}

9 DatabaseConfig1 = {type="SQLLite",name="LibraryDBConnector",config="libraryDB.config"}

10

11 @Test diagram="ad_rentalprocess" name="tc1_rentalprocess"

12 TestAction GUIInputAction("rent books")

13 TestAction RFIDAddAction([userId1])

14 TestAction RFIDRemoveAction([userId1])

15 TestAction RFIDAddAction([book1])

16 TestAssertion DataBaseAssertion("[book1].status = rented AND [book1].rentals.user = [userId1]")

17 TestAction GUIInputAction("finish")

18 TestAction GUIInputAction("OK")

19 TestAction RFIDRemoveAction([book1])

The ITERA test execution framework is divided into three components, namely the TestPre-

processor, the TestEngine and several TestDrivers. The TestPreprocessor and TestEngine are

essential parts of the ITERA test methodology and thus must not be customized. In contrast

to the TestDrivers, which might be very application specific as they are build on a concrete

technology like Rifidi or a SQL Library.

ITERA Test Preprocessor - The TestPreprocessor does not execute the test cases them selves,

but translates the abstract test case description into an executable form for the test engine. For

each stereotype defined in the ITERA meta model it creates an appropriate instance of an object,

which can then be executed by the ITERA test engine. In the prototype implementation this

functionality is realized by using reflections1.The generated test cases (see: source code listing

5.1) are provided as input and parsed to create instances of the classes for each stereotyped test

step accordingly.

ITERA Test Engine - The TestEngine is the actual execution part of the test automation

framework of ITERA. It uses the results of the TestPreprocessor and executes each test step by

calling either the method ActorInteraction.execute() or SystemAssertion.assert(). Each

test step is implemented as a TestDriver in an application specific test automation technology,

like “Rifidi” or “SQL”. This way the TestEngine is kept simple and does not need to know

application specific details. Furthermore, it is independent from the actual tests and can be

used for various test scenarios.

Test Driver - The TestDriver is a concrete implementation of of either a ActorInteraction or

SystemAssertion. Each class provides an entry point, where functionality of the test automa-

tion technology can be realized. The ITERA methodology does not restrict the test execution

to predefined interfaces, therefore, several TestDrivers can be used. Each is executing a certain

1Reflections are the ability of an programming language, like Java, to inspect classes during runtime, which can
be used to dynamically create instances of these. This way not all details of the program need to be available
during compile time.
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test action and utilizes application specific simulation toolkits, e.g. “AutoIT” or “Rifidi”. The

evaluation of the test is handled similar by including specific interfaces to the SUT, like “SQL”.

Some concrete implementation examples of these TestDriver’s are shown in Section 5.4.

5.4 Test Drivers and integration of the virtual RFID

environment

The Rifidi Emulator was integrated into the ITERA test execution framework in order to sup-

port the RFID specific execution of test cases derived using the ITERA method. The virtual

RFID readers emulated by the Rifidi Environment allow to create a fully controllable RFID

environment, which is not only capable to stimulate the SUT with artificial RFID events as

needed for testing RFID applications, but is also suitable for system testing as the readers can

hardly be distinguished from real readers. Therefore, the Rifidi Toolkit was chosen to create

the virtual RFID system as introduced in Section 5.1. The core functionality is provided by the

Emulator Engine, which enables the creation of virtual RFID readers, RFID tags and thus also

artificial RFID events. However, in order to perform RFID application tests using this virtual

RFID system, the newly created virtual environment needs to be instrumented by the test cases

generated previously.

Rifidi is capable to emulate different reader protocols (like AlienProtocol or LLRP) and the

functional behaviours of physical RFID readers. The subclasses of stereotype RFIDAction are

used to model the interactions with RFID readers. Each RFIDAction can also be represented

as a tuple RFIDEvent := (RFIDReader, T ime,RFIDTags). Whenever a RFIDAction is

executed during testing, Rifidi is instrumented to emualte the raw RFID events. The raw-

events generated depend upon the current configuration of the RFID reader. In this approach

the reader is configured by the RFID middleware. This conception is valid, since the RFID

middleware is part of the SUT.

The abstract test cases derived from the test model can be used to interact with the RFID

environment, as they already contain sequences of activities with explicit semantics, in particular

where RFID tags are placed inside a reader’s interrogation zone. In order to achieve this, the

virtual environment is integrated into the ITERA test methodology and realized in the form of

a specific Rifidi test driver. This test driver is an implementation of <<ActorInteraction>>

and provides the functionality of the <<RFIDADDAction>> and <<RFIDRemoveAction>> (in the

meta model in Section 4.3.1 as a generalisation of <<RFIDAction>>).

As a general example, the implementation of the RFID-specific sterotypes using the Rifidi Toolkit

as RFID specific back-end is shown in 5.2 and 5.3:

Listing 5.2: Example source code of the TestDriver RifidiAddAction

1 public class RFIDAddAction extends RFIDAction
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2 {

3 RifidiConfig config;

4 RifidiReader reader;

5

6 public RFIDAddAction(TestConfig config)

7 {

8 this.super(config);

9 this.config = (RifidiTestConfig) config;

10 reader = ReaderManager.getInstance().getReader(config.readerName);

11 }

12

13 public void execute(RifidiTestData input){

14 RifidiTag rfidTag = input.getRifidiTag();

15 reader.add(rfidTag);

16 }

17 }

Listing 5.3: Example source code of the TestDriver RifidiRemoveAction

1 public class RFIDRemoveAction extends RFIDAction

2 {

3 RifidiConfig config;

4 RifidiReader reader;

5

6 public RFIDAddAction(TestConfig config)

7 {

8 this.super(config);

9 this.config = (RifidiTestConfig) config;

10 reader = ReaderManager.getInstance().getReader(config.readerName);

11 }

12

13 public void execute(RifidiTestData input){}

14 RifidiTag rfidTag = input.getRifidiTag();

15 reader.remove(rfidTag);

16 }

17 }

Beside the advantages of being able to simulate the RFID environment, something which is

barely realizable in reality, the extension of the methodology by using Rifidi also allows a de-

tailed logging of test execution. All communication between the RFID system (application and

middleware) and the RFID readers can be logged and analysed. In comparison to manual test-

ing this can be a huge advantage. Furthermore, it also allows for debugging of the SUT, as

all information and the exact communication between the components, usually hidden as most

RFID readers are embedded devices, is available for inspection.

It is challenging to evaluate the application due to the diverse variety of RFID application

areas. Compared to RFID middleware systems, where the ALE [85] standard can be used to

communicate and evaluate the test results, for each application a distinct evaluation monitor

adapter needs to be implemented. In addition to the missing interface for the evaluation of the

test results in applications, even more complexity is introduced by the nature of RFID systems

(see Chapter 3).

The evaluation function of the appropriate test steps SystemAssertion.assert() can be real-

ized by a simple query on the database. In the library example, the predicate defined through
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test case refinement and test input data determination to ensure that a book is rentable, in the

set-based semantics defined as book ∈ rentable, is translated into an SQL statement like:

SELECT status FROM library WHERE BookID=\3074257bf7194e4000001a85";

In this case, since the book is supposed to be in the table, the result set needs to be identical

to rentable. So, the different process models are analysed and the corresponding test steps of

stereotype SystemAssertion are used to generate the required test code for the test case. After

the execution of the test case the reports of the TestEngine can be checked to validate the

correct functionality of the SUT.

An example of a concrete implementation of a SystemAssertion as subclass DatabaseAssetion

is shown in listing 5.4:

Listing 5.4: Exmaple source code of the TestDriver DataBaseAssertion

1 public class DataBaseAssertion extends SystemAssertion

2 {

3 DatabaseConfig config;

4 String predicate;

5 Connection conn = null;

6

7 public DatabaseAssertion(DataBaseConfig config, String predicate)

8 {

9 this.config = (DataBaseConfig) config;

10 this.predicate = predicate;

11 try{

12 String url = config.getDBURL();

13 conn = DriverManager.getConnection(url);

14 }catch(SQLException e)

15 e.printStackTrace();

16 }

17

18 }

19

20 public boolean assert()

21 {

22 String sql_predicate = Helper.parsePredicate(predicate);

23 try{

24 Statement stmt = conn.createStatement();

25 ResultSet rs = stmt.executeQuery(sql_predicate);

26 if(rs.next()){

27 return true;

28 }else

29 {

30 return false;

31 }

32 }catch(SQLException e){

33 e.printStackTrace();

34 }finally

35 {

36 if ( conn != null )

37 try { conn.close(); } catch ( SQLException e ) { e.printStackTrace(); }

38 }

39

40 }

41 }
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5.5 Conclusion

To conclude the ITERA test framework, most importantly a virtual RFID environment has been

incorporated to allow for the generation of RFID specific stimuli for the SUT. The evaluation

of the test outcome has been realized through the implementation of appropriate interfaces, like

SQLLite. Similar test drivers are used to instrument and evaluate the graphical interface.

The test execution framework can be easily extended by including corresponding technologies

and concrete implementations of the ActorInteraction or SystemAssertion of the ITERA

meta model. This enables the tester to extend the use of the ITERA test methodology to

application areas with additional sensors or actors, which have not been considered during the

development of the approach in this thesis.

The executable semantics of the test model, i.e. the refined activity diagram with the stereotyped

activities, provide an straight forward method to execute the tests. The TestPreprocessor and

the TestEngine can also be used by manually created tests. If appropriate technologies have been

supplied, the test execution and evaluation can be performed automatically. This way efforts

for test execution can be decreased and more time can be spend on the design and specification

of the tests.
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Methodology

The previous chapters introduced the ITERA test methodology which is used to create activ-

ity diagrams, refine the semantics of the activities and include test data, generate test cases

and execute tests derived this way in an automatic fashion, mainly by using an virtual RFID

environment.

The evaluation of the ITERA method with regard to the research questions, its feasibility

and practical benefits is now the subject of this chapter. In the beginning the evaluation is

concerned with assessing the methodology in regard to the research questions raised in Section

1.3. Afterwards a feasibility study is carried out to demonstrate the applicability of the method.

In addition, the algorithm (see Section 4.5.3) used to generate test cases will be validated in

terms of the ability to produce valid test cases which fulfil the defined coverage criteria. Finally,

the extent to which the ITERA methodology meets RFID specific requirements and an inventory

of past experience will be carried out to determine whether something can be done better in a

different way.

6.1 Evaluation of the ITERA Methodology in regard to the

Research Questions

An evaluation of ITERA method should be based on the research question raised at the beginning

(see Section 1.3): “How can RFID Applications be tested?”. With regard to the approach

presented in this thesis, there is a clear answer: A systematic creation of RFID-specific tests

was discussed in detail in Chapter 4 and the subsequent execution of these tests in Chapter 5.

The research questions subordinated to this question can also be answered clearly.

• How can RFID applications and their input be described in regard to testing?

• Is there a systematic way of choosing test cases?

• How to simulate the interaction between the actors of an RFID System and the Software

Under Test to allow automated test execution?
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RFID specific challenges were identified in Chapter 3, a semantic model and a systematic way

to derive test cases was introduced in Chapter 4 and a suitable test automation, desperately

needed for testing, especially in regard to reproducible test and cost efficiency was presented in

Chapter 5.

6.1.1 How can RFID applications and their input be described in regard to

testing?

The challenges of RFID systems considering requirements for testing RFID applications, as well

as, methodical and technical solutions for test case generation and automation were considered

during the investigation of the RFID system analysis (see Chapter 3). This way, a test method

was developed that not only meets the needs of RFID system level testing, but also addresses

the usual set-ups in terms of RFID hardware and software solutions used in practice.

In addition to address related work, a distinction was made between conceptual and technical

problems of testing RFID applications:

The conceptional challenges include the absence of appropriate test methodologies suitable for

testing RFID applications and the typical infrastructure of RFID systems. Due to the complex

and distributed architecture of RFID systems, system level testing can be seen as an important

aspect to improve the quality of the RFID application. Especially as there are many factors,

like configuration settings of the individual readers and the middleware, which influence the

correct interaction of the sub-systems and can only be tested when all components are finally

composed to a complete solution. In the proposed methodology, these have been taken into

account by providing a suitable test harness surrounding the complete system and through the

systematic generation of test cases based on the specification. As needed for system level testing

the derivation of tests is based on functional requirements which can be modelled sorely on the

basis of the requirements specification and without the a insight on the concrete implementation.

The test harness provided by the virtual RFID environment and extendable test execution

framework in order to execute the tests in a black box fashion, including simulated interactions

between the user and the SUT has been presented.

Technical challenges include factors that make it difficult or impossible to methodically test

RFID applications. These include physical issues each RFID system faces, as the unreliability

RFID event capturing. In particular the provision of an reproducible execution context which

includes factors that cannot be controlled with reasonable effort, like false positive and false

negative tags reads. By using the ITERA methodology, the challenges are addressed through the

fully controllable RFID environment embedded in the test execution framework and by providing

a systematic way to modify tests to reflect robustness aspects that provoke unintentional tag

readings. This way the RFID application can also be evaluated in regard whether these technical

challenges can be coped with properly.
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Although a large number of papers already consider model-based testing of applications (see

Section 2.2.2), a comparatively comprehensive solution that considers modelling in the concrete

context of RFID systems, has not yet been the subject of research. Unlike currently available

RFID related literature with focus on testing (see Section 2.3.5), the approach presented in

this thesis enables system level testing of RFID applications, which has not been addressed

yet. These publications mainly focus on testing RFID middleware, performance evaluation, or

simulation of supply chains. In contrast, the approach developed during this thesis, provides

systematic derivation of test cases and addresses test specific challenges of RFID application

testing, including test-relevant context parameters and oracles for the evaluation of the SUT.

6.1.2 Is there a systematic way of choosing test cases?

Beside the semantic set-based model for RFID systems, a UML-based meta model for the spec-

ification of RFID tests has been presented. The use of this meta model does not only allow for

modelling tests and provide semantics to the test models, but also takes parameters into account

with relevance to testing during test specification in a common document. The presented meta

model is an essential part of modelling RFID specific tests and integrates smoothly into the de-

velopment process through the use of notations like UML, which is widely adopted in practice.

In addition to the integration of test data in to the model, a executable semantics of the activity

diagrams, which are used to describe the use cases, has been emphasised. Thus this does not

only enable to execute the tests automatically, but also provides extension points to integrate

other test technologies which have not been subject in this thesis.

A method for generating test cases from UML activity diagrams has been presented. It is based

on the transformation of UML activity diagrams to directed graphs, that are used to extract

possible execution paths through the activity diagram. During the test generation it is ensured

that the generated test cases cover the defined coverage criteria, i. e. each modelled activity

is executed by at least one test case, and thus systematic tests are derived. Furthermore, it

is also ensured that every cycle contained in the test model is run at least once and actions

on concurrent control flows are interleaved in such a way, that they represent a permissible

execution sequence from a perspective of a human user interacting with the RFID application.

6.1.3 How to simulate the interaction between the actors of an RFID System

and the Software Under Test to allow automated test execution?

An RFID toolkit, which lowers the efforts during test execution, allows for cost savings in

both development and testing and enables testing of RFID applications was integrated into

the ITERA methodology. The Rifidi Emulator not only provides virtual RFID devices from

different vendors and but also supports common standards used in today’s RFID middleware

solutions. The combination of the proposed test methodology and the virtual RFID environment

not only supports testing of RFID applications in various ways, but also enables test automation.
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Especially for RFID, the need for automatic test execution is high, because often the tests have

to be carried out in real-time. Due to the unpredictable nature of the radio field, the integration

of the virtual RFID environment allows for reproducible conditions during testing. Which can

otherwise only be achieved through tremendous efforts or with a controllable environment, like

a dedicated laboratory equipment. Moreover, the approach presented enables to test RFID

applications, that could previously only be tested manually, supports agile development and

eases the testing by supplying a instantly available test environment without conflicting with

the development of the application.

6.1.4 Summary and Results

A novel methodology for the system level test of RFID applications has been proposed. The

approach called ITERA, allows for the automatic generation of tests, defines a semantic model

of the RFID system and provides a test environment for RFID applications. The method

introduced can be used to gradually transform use cases into a semi-formal test specification.

Test cases are then systematically generated, in order to automatically execute them in the test

environment.

RFID specific requirements for testing have been analysed and identified. The system level test

approach uses the principle of separation of concerns and black-box testing in combination with

a virtual environment for test execution. The models used for the test cases are specified with

UML, which allows for an exchange between tester, requirements engineer and stakeholders.

The physical nature of processes in reality which build the basis of RFID event generation

have been considered. The presence of RFID tags in an area, monitored by an RFID reader,

can be modelled by time-based sets using set-theory and discrete events. The test execution

can be realized through test drivers, which implement concrete interfaces to the application,

e.g. a simple SQL query. Additional application specific needs can be integrated through the

executable semantics of the meta model and the resulting test model. Furthermore, the proposed

model based test method and the semantics of the appropriate test steps can be used to specify

RFID system and their applications in regard to testing providing a comprehensive procedure,

starting with the test specification up to the automated test execution.

The approach introduced in this thesis allows to reduce the efforts for RFID application testing

by systematically generating test cases and the automatic test execution. In combination with

the developed meta model and by considering additional parameters, like unreliability factors, it

not only satisfies functional testing aspects, but also increases the confidence in the robustness

of the tested application. Mixed with the instantly available virtual readers, it has the potential

to speed up the development process and decrease the costs - even during the early development

phases. ITERA can be used for highly automated testing, reproducible tests and because of the

instantly available readers, even before the real environment is deployed. Furthermore, the total

control of the RFID environment enables to test applications which might be difficult to test

manually.
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6.2 Applicability and feasibility of the ITERA Method

In the following sections the presented approach will be examined with regard to the applicability

of the method on the basis of two feasibility studies as well as the correctness of the test case

creation.

The applicability of the presented approach to modelling RFID specific test models was already

addressed during the description of the methodology in Chapter 4. This was done implicitly

on the basis of the continuously used example “rental process” in the RFID-equipped library.

To demonstrate that the approach presented can also be applied in other applications, two case

studies are presented in Section 6.2. The selection of applications was based on the classification

of RFID applications presented in Section 3.6. The aim is to evaluate the model creation on the

basis of the description of further use cases.

It is not a claim of the proposed method that it can be used to determine test cases which

guarantee a higher level of error detection. The quality criterion considered is the suitability of

the test cases and test suites for testing the specified individual requirements. In this context,

“suitability” is to be understood in particular in such a way that the number of test cases is

suitable for demonstrating the testing of individual requirements to stakeholders, and in partic-

ular that the proposed procedure is advantageous compared to other test methods. The goal

of the presented method is the systematic and structured derivation of test cases. As with all

other constructively applicable test methods and model-based approaches to the generation of

test cases, it is not possible to make a direct statement as to whether parts of the system to

be tested that are particularly faulty are given priority in the test. The specified use cases are

representative examples of the requirements for an RFID application defined by the specifica-

tion. Considering this, systematic test cases fulfilling a coverage metric can be an indicator for

“suitability”. Therefore, it is to be shown that the algorithm proposed generates test cases,

which fulfil the defined coverage criteria.

In the following sections, two application examples will be examined to show the applicability

of the ITERA method. For this the continuously used example “Library” and a “Retail Store”

serve as the basis for the case study. The examples examined during the evaluation correspond

to the categories identified in Section 3.6:

• Historically oriented tracking applications (retail shop example)

• Adaptive real-time or control flow & status-based applications (retail shop example)

• Interaction-based applications (library example)

The feasibility studies investigate the practical application of ITERA on real-world oriented

scenarios. Its aim is to show that, real-world application can be modelled using the ITERA. For

this, a challenging subset of the use cases from “Library” and “Retail Store” are used.
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6.2.1 Feasibility Study: “Retail Store”

In this section a case study, in a retail clothing shop, is shown to evaluate the proposed methodol-

ogy on testing RFID applications. First the example application is explained, then the different

models are created and finally the test code is generated from the extracted models. The work

presented here is partly published in [120].

Use Case Description

The store, presented in Figure 6.1, consists of two rooms, a warehouse and a salesroom. The

shop sells t-shirts and sweaters. The products for sale are delivered directly to the warehouse. A

delivery truck arrives and unloads the goods to the warehouse, where they are placed until they

are available for selling in the salesroom. During the delivery, all goods are moved through RFID

Gate 1, located at the warehouse’s entrance. To refill the stock of the salesroom, products are

picked up from the warehouse and moved into the salesroom. RFID Gate 2, located at the door

of the salesroom, monitors the goods transported into the salesroom. Eventually, a customer

wants to buy a product, the chosen product is moved to the sales counter (RFID Reader 3 )

and sold to the customer. The customer leaves the store, with the newly vested goods, through

the exit/entrance of the salesroom, where an anti-theft system, consisting of RFID Gate 4, is

located.

Figure 6.1: Use Case: Retail Store Layout

Data Model

The RFID application itself, is based on a database. A snapshot is presented in Table 6.1. Each

row represents exactly one stock item in the store. There are two product-types: sweaters and

t-shirts. Each product contains an ID, which is equivalent to the RFID Tag’s identifier, attached

to the physical item.

As it can be seen in Table 6.1, each product has an associated state:
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TagID ProductType State

0001 sweater warehouse
0002 sweater warehouse
0003 sweater salesroom
0004 t-shirt salesroom
0005 t-shirt sold

Table 6.1: Demo Application’s Database Snapshot

• warehouse: the product is currently in the warehouse

• salesroom: the product is currently in the salesroom

• sold: the product was sold (kept in DB for accounting purposes)

The abstraction function id defined as shown in Section 4. E.g. The State of the product

with the TagID = “0001” is warehouse State(0001) = warehouse and ProductType is sweater

ProductType(0001) = sweater.

In this approach UML class diagrams are used to formally represent the business domain. The

Domain Model contains two types of products: T-Shirt and Sweater. Each product has a

RFIDTag attached to it, which contains a unique identifier. The stock of goods of each room

is represented in the class model by the Warehouse, respectively the Salesroom. The Sales

class is used to collect all sold items for accounting purposes. After a accounting year, the sold

products will be removed from the system’s database. The stereotype RFIDEnabled is used to

detect RFID Tag information and allows automatic generation of test code.

Figure 6.2: UML-class model of the retail shop application

Business Processes

The application is based on four business processes:

1. delivery: Once goods are delivered to the warehouse and pass RFID Gate 1, the products

detected need to be added to the warehouse.
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2. refill salesroom: Once goods are monitored at the RFID Gate 2, the RFID application

is supposed to remove them from the warehouse’s stock and add them to the salesroom’s

stock to represent the current location of the goods and give an accurate view on the

stocks.

3. sell: Once products are sold at the sales counter (RFID Reader 3), they need to be marked

sold (the product’s state changes to sold) by the application.

4. anti theft: When goods are detected at RFID Gate 4, the application is supposed to

check if the product is sold. If not the alarm of the exit gate needs to be activated.

Process Models

As demonstrated in Section 4.1 the processes of an use case can be used to derive systematic test

cases. A Process Model, which is a UML activity diagramm, describes a combination of user

and system interactions. The user interaction generates the input and the system interactions

describe the changes of the SUT. The following Process Models are modelled accordingly to the

business processes presented in Section 6.2.1. The basic principle is to refine the processes and

make the in- and outputs explicit. Afterwards, the activities are refined using the stereotypes

using the ITERA meta model.

Process delivery - The application’s input in process delivery, presented in Figure 6.3, is

described by a stereotyped action <<RFIDAddAction>>, which is created by the activity “move

products to warehouse”. The new item which will be put in the warehouse is denoted by p, which

is of type Product. In this example each product has a RFID tag attached to it. Therefore,

the class is an valid input for the subclasses of RFIDAction and allows to select the identifier

for a virtual RFID tag and enables test code generation. The RFID reader RFIDGate1 is

associated with the business process delivery and is used to refine the <<RFIDAddAction>>.

The resulting change of the RFID application is described by the activity “update warehouse

stock” stereotyped <<DatabaseAssertion>>. In the semantics defined in 4.2.4 this is equivalent

to W (ti+1) := W (ti) ∪ {p}. All other sets, if not explicitly listed, remain unchanged (e.g.

S(ti+1) := S(ti)).

By applying the ITERA test case generation algorithm on the activity diagram (shown in Figure

6.3) the following test cases are extracted:

TC1: I → A1 → A2 → S1 → D → S3 → M → A4 → F

TC2: I → A1 → A2 → S1 → D → S2 → A3 → M → A4 → F

Depending on the conditions traversed ([product ordered] and [product unknown]), two different

RFID tags have to be selected by the tester. One tag which is known by the SUT and represents

a product that has been ordered and one identifier which corresponds to a product that has not

been ordered.
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Figure 6.3: Process Model “delivery”

Process refill salesroom - The application’s input of process refill salesroom, shown in Figure 6.4,

is described by a stereotyped action <<RFIDAddAction>>, which is shown as “products are moved

to salesroom”. Before the generation of the test cases appropriate identifiers of product, in this

case p of type Product, need to be selected to extract the TagID which serves as input for

the test execution framework. Assuming that the actions of the previous business process has

been successful completed, it can be assumed p ∈ W (ti). The occurrence of the Product with

it’s attached RFID tag triggers the execution of the corresponding activity “update database

stock” of type <<DatabaseAssertion>>. This is semantically equal to: W (ti+1) := W (ti) \ {p},
S(ti+1) := S(ti) ∪ {p}

Figure 6.4: Process Model “refill salesroom”

Similar to the first business process the ITERA algorithm for test case generation is applied on

the activity diagram shown in Figure 6.4. TC1 : I → A1 → A2 → S1 → D → S3 → M → A4

→ F

TC2 : I → A1 → A2 → S1 → D → S2 → A3 → M → A4 → F
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Here again, test input data fulfilling the conditions [product unknown] and [product in ware-

house] is selected by tester to complete the abstract test cases which allow to execute the tests

in the ITERA test execution framework.

Process sell - In this process the customer wants to buy some products from the shop. After

some goods have been selected, he proceeds to the sales counter. The application’s input gener-

ated by the process sell, shown in Figure 6.5, is represented by the activity “place items on the

sales counter”, therefore the stereotype <<RFIDAddAction>> was applied. From a process point

of view, the customer places the products on the sales counter and pays for them. The changes

within the SUT are reflected by the activities “calculate price”, “display amount”, “amount

correct” and “update salesroom stock”. The activity “calculate price” is not really test relevant

as the focus is only on testing RFID specific details of the application under test, therefore no

stereotype from the meta model was applied to it. However, other activities have influence the

test. The system needs to assure that the correct amount was paid. Therefore, the activity

“amount correct” is of type <<SystemRule>>. If the transaction was successful the database

of the shop is modified and the appropriate products are marked “sold”. The activity “update

salesroom stock” of type <<DatabaseAssertion>> reflects the changes in the database. In the

set based semantics of this can be described as: S(ti+1) := S(ti) \ {p}, O(ti+1) := O(ti) ∪ {p}.
If the amount was not correct the process is either repeated or cancelled.

Figure 6.5: Process Model “sell”

The algorithm generated two test cases, as expected:

TC1: I → A1 → A2 → S1 → S2 → A3 → A4 → F

TC2: I → A1 → A2 → S1 → S2 → A3 → S3 → S4 → A4 → F

In test case 1 the calculated amount could not be paid by the customer. Therefore the process

was aborted. Test data is selected by the tester according to this guard condition. Test case 2,

on the other hand, corresponds to the successful scenario in which the products selected by the

customer were sold. Appropriate test input is supplied by the tester.
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Process anti theft - The RFID input generated by the process anti theft, shown in Figure 6.6,

this is reflected by the activity “customer leaves store” stereotyped with <<RFIDAddAction>>.

Depending on the successful completion of the previous business process, the product p is in the

set salesroom or in sold. Equally to p ∈ S(ti) or p ∈ O(ti). The actions during this business

process can be modelled as: {p} ∈ S(ti) =⇒ S(ti+1) := S(ti)\{p}. The implication allows to dis-

tinguish the actions the SUT is supposed to execute depending on the set p is in. The evaluation

of additional actors, like the activation of the alarm, is part of future work and not considered in

this approach. In order to achieve this, an extension of the class <<SystemAssertion>> would

allow to extend the functionality.

Figure 6.6: Process Model “anti theft”

The extracted test paths are listed below.

TC1: I → A1 → A2 → S1 → D → C [items sold] → M → A3 → F

TC2: I → A1 → A2 → S1 → D → C [else] → S2 → M → A3 → F

S2 in test case 2 represents the functionality of the alarm. To evaluate the activation of the

alarm, a product that has not been sold has to be selected by the tester in test case 2.

6.2.2 Feasibility Study: “Library”

In this section a case study, in a RFID equipped library, is performed to demonstrate the

applicability of the proposed methodology on testing RFID applications. First, the general

set-up of the library example use case is explained, then an already refined activity diagram

representing an use case of the RFID application with increased complexity is presented.

Starting point of this case study is a library equipped with RFID readers and RFID tags. Beside

the RFID tags used in books, user ID cards with embedded RFID tags were also issued. To
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decrease the efforts of the library staff and simplify the rental and return process several self-

checkout terminals, with embedded RFID readers, were purchased. In this thesis, especially the

interactions with these terminals serve as the basis to introduce the concepts and evaluate the

applicability of the ITERA test methodology. The first example use case “rental process” was

already used throughout the introduction of the methodology. The “return process” is presented

in this section and illustrates the usability of the method presented.

Figure 6.7: Process Model “return processes”

Figure 6.7 shows the activity diagram of the return processes which already contains the stereo-

typed activities defined by ITERA meta model. In addition, the meta model has been extended

by <<ConveyorAction>> to meet special needs of the SUT. Following the control flow of the

activity diagram, two GUI interactions have been applied first. These start the return process

and display the corresponding message that the terminal is ready. Depending on the actuator of

the activity, <<GUIInputAction>> (user) or <<GUIOutputAction>> (system) was used. The first
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interaction with the RFID system of the terminal (“place book on conveyor”) was typed with

<<RFIDAddAction>>. Here an RFID equipped book is placed on the shelf of the terminal. The

next activity in the control flow represents special feature that was not present in the previous

example “rental process” in Section 4.4.2.

Figure 6.8: 24h-return terminal of the library example

The return terminal (shown in Figure 6.8) is open 24-hours and open to the public. To prevent

misuse it can open, respectively close, a return box and uses an conveyor belt. The conveyor

belt is used to move the book to the sorting system. In order to model the additional sys-

tem functionality an second <<Actor>> “self-checkout terminal” was used. This is due to the

fact that the components of the terminal involve physical activities which consume time. To

cover the new components the previously presented ITERA meta model was extended by a

stereotype <<ConveyorAction>>. This class implements corresponding mock-ups that map the

functionality of the actuator within the automatic test environment.

After the RFID reader identified the returned book the lid of the return box is opened and the

system performs a check whether the book is overdue or not. Depending on the outcome of this

check sometimes a fee has to be paid. This is represented by the activity “check book status”.

As it contains a decision, the type <<SystemRule>> was used here. If a fee has to be paid,

additionally the balance of the user’s account is checked. Similar to the previous activity the

stereotype <<SystemRule>> is used and alternative branches of the control flow are modelled.

If the balance check was successful, the fee is deduced from the account and the new balance

is stored in the database in activity “new account balance” (<<DatabaseAssertion>>). If the

balance was insufficient the user is asked the proceed to a counter (<<GUIOutputAssertion>>)

and the book is removed from the shelf “take book from conveyor” (<<RFIDRemoveAction>>).

The process cannot be completed any more, therefore the process is finished at this point.

Contrary to the other example of the library, used in this thesis, the book is only not removed

from the read zone of the RFID reader by the user. If a valid book has been detected, which is not

overdue or the balance is sufficient, the system starts the conveyor belt and thus removes the book

from the interrogation zone of the RFID reader itself. Therefore, a RFIDRemoveAction is located

between the “start conveyor belt” and “close lid” activities, both of type <<ConveyorAction>>.

As a virtual RFID environment is used, this physical movement does not need be directly

148



6 Evaluation of the ITERA Test Methodology

implemented by the additional actor and it’s mock classes. Similar to the other movements of

RFID tags, the virtual RFID environment can be instrumented to cover this activity.

Finally, the book is marked as returned in the database. <<DatabaseAsseertion>> was used in

the activity “update book list”, to enable the test execution framework to evaluate the outcome

of the test. If more books are to be returned, depicted through the activity “more books?”

(<<ContextAction>>), the sub-process starting with the acivity “place book on conveyor” is

repeated. This is modelled as an cycle in the activity diagram. If not, the process ends by

selecting the button “finish” by the user (<<GUIInputAction>>).

Figure 6.9: ActivityGraph of the return process from the case study library

Figure 6.9 shows the ActivityGraph of the transformed use case “return process” (see Figure

6.7). By traversing the graph with the algorithm introduced in Section 2.2.1 nine test paths are

generated. Each of these represent one test case. The textual descriptions of the activities were

replaced by A1 to A16. Additionally, the UML guard conditions are shown in the graph on the

corresponding edges in square brackets.

TC1: I → A1 → A2 → M3 → A3 → A4 → A5 → D1 → A6 → D2 → A7 → A8 → A9 → F

TC2: I → A1 → A2 → M3 → A3 → A4 → A5 → D1 → M1 → A11 → A12 → A13 → A14 →
A15 → A16 → D3 → A17 → F

TC3: I → A1 → A2 → M3 → A3 → A4 → A5 → D1 → A6 → D2 → A10 → M1 → A11 →
A12 → A13 → A14 → A15 → A16

→ D3 → A17 → F

TC4: I → A1 → A2 → M3 → A3 → A4 → A5 → D1 → M1 → A11 → A12 → A13 → A14 →
A15 → A16 → D3 → M3 → A3 → A4 → A5 → D1 → A6 → D2 → A7 → A8 → A9 → F

TC5: I → A1 → A2 → M3 → A3 → A4 → A5 → D1 → M1 → A11 → A12 → A13 → A14 →
A15 → A16 → D3 → M3 → A3 → A4 → A5 → D1 → M1 → A11 → A12 → A13 → A14 →
A15 → A16 → D3 → A17 → F

TC6: I → A1 → A2 → M3 → A3 → A4 → A5 → D1 → A6 → D2 → A10 → M1 → A11 →
A12 → A13 → A14 → A15 → A16 → D3 → M3 → A3 → A4 → A5 → D1 → A6 → D2 → A7

→ A8 → A9 → F

TC7: I → A1 → A2 → M3 → A3 → A4 → A5 → D1 → M1 → A11 → A12 → A13 → A14 →
A15 → A16 → D3 → M3 → A3 → A4 → A5 → D1 → A6 → D2 → A10 → M1 → A11 → A12

→ A13 → A14 → A15 → A16 → D3 → A17 → F
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TC8: I → A1 → A2 → M3 → A3 → A4 → A5 → D1 → A6 → D2 → A10 → M1 → A11 →
A12 → A13 → A14 → A15 → A16 → D3 → M3 → A3 → A4 → A5 → D1 → M1 → A11 →
A12 → A13 → A14 → A15 → A16 → D3 → A17 → F

TC9: I → A1 → A2 → M3 → A3 → A4 → A5 → D1 → A6 → D2 → A10 → M1 → A11 →
A12 → A13 → A14 → A15 → A16 → D3 → M3 → A3 → A4 → A5 → D1 → A6 → D2 → A10

→ M1 → A11 → A12 → A13 → A14 → A15 → A16 → D3 → A17 → F

To improve readability and comprehensibility a compact representation of the generated test

cases, only containing the guard conditions, is given in Table 6.2.

TC Conditions

1 [overdue] → [insufficient balance]

2 [else] → [no more books]

3 [overdue] → [balance sufficient] → [no more books]

4 [else] → [more books] → [overdue] → [insufficient balance]

5 [else] → [more books] → [else] → [no more books]

6 [overdue] → [balance sufficient] → [more books] → [overdue] → [insufficient balance]

7 [else] → [more books] → [overdue] → [balance sufficient] → [no more books]

8 [overdue] → [balance sufficient] → [more books] → [else] → [no more books]

9 [overdue]→ [balance sufficient]→ [more books]→ [overdue]→ [balance sufficient]→ [no more books]

Table 6.2: Shortened test paths generated during traversal of the ActivityGraph of the “return
process”

Test case 2 represents the main success scenario of the use case. Here only one book which is

not overdue is returned by the user. Accordingly, test case 5 can be treated as an extension of

the main success scenario through a cycle. In this test case two books are returned successfully.

All of the other test cases represent alternative execution paths with variations of the normal

process, where the book to be returned is overdue and either the account balance is sufficient

to cover the fee or not.

It is easy to see, that the coverage criteria CACD has been fulfilled by the generated test cases.

As a reminder, the Activity Concurrent Coverage Criteria requires that at least one permissible

sequence of concurrent activities is contained and that every cycle is run at least once. Con-

current activities are not part of the original activity diagram (see Figure 6.7) and every cycle

contained is traversed at least once (see test case 4-9).

Considering the given conditions for each test case, the tester can now select appropriate test

input data. For example, in test case 1 a book that is already over the loan period as well as

a user who does not have enough credit on his account to cover the fee in full. Accordingly, a

book whose loan period has not yet been exceeded is selected for test case 3.
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6.2.3 Summary and Results

Due to the use case scenarios of the example application “retail store”, examined in the first

feasibility study, the test generated from the model consists of only a few instructions. However,

the ability to model different use cases is limited only by the power of the description by UML

activity diagrams. These have been applied in a wide range of different software applications, so

it is to be expected that much more complex use cases can also be modelled with the methodology

presented in this thesis.

The advantage of automatically generating the test cases for the application case recedes in the

first case study performed behind the advantages of automating test execution. The test could

have been created manually in this form with small effort. However, the aim of the feasibility

study was to demonstrate applicability of the methodology and that the technology for test

automation with simulation of the RFID environment presented in this thesis is supported by

the creation of systematic tests for RFID applications. Especially the test automation technology

proposed in this thesis allows for an efficient test process or even makes it possible to test the

application examined in the case study adequately and automatically.

During the execution of the feasibility study some weaknesses of the ITERA methodology have

been discovered. These can be divided into 3 categories:

• Contradicting conditions

The conditions at the DecisionNodes of the Activity Diagram specified during test case

design may be mutually exclusive. Currently, the methodology does not verify the satisfi-

ability of nested conditions. As a result the test case generation algorithm might produce

invalid test paths that have to be resolved manually. However, this already hints at possible

misconceptions during the specification of the application under test.

• Consistency

The test data and test cases are strongly depended on each other. If either the test case,

respectively the activity diagram, or the test data is altered, the tester needs to manu-

ally check if the consistency between both is conserved. However, adding a traceability

attribute might enable a fast detection of inconsistencies.

• Undetectable tags and probabilistic reads

Test including scenarios where RFID tags can not be read, cannot be designed with the

proposed methodology. Currently, a tag moves along an activity flow until the end node is

reached. Situations where tags might stay undetected at a reader or can only be read with

a certain probability can not be constructed. However, this might be solved by extending

the methodology to reflect probabilities through a property of the <<RFIDAddAction>>.

However, the evaluation of the applicability of the proposed method showed that typical RFID

Applications can be modelled with the ITERA method. Although the first two classes of RFID

applications generate simplistic test cases, the example library shows that more complex RFID

application scenarios exist. However, the investigation of test case generation in the second
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feasibility study clearly demonstrates that the principles of method presented in this thesis can

also be used for much more complex use cases. It is to be expected, that the complexity of RFID

use cases will experience strong growth with regard to application scenarios in the context of

Industry 4.0.

6.3 Evaluation of the modified Algorithm

Subject of this validation is the modified BFS algorithm for test case generation (see Section

4.5). It provides evidence that the algorithm satisfies the Concurrent Activity Coverage criteria

and produces valid test cases.

To perform a validation, UML activity diagram fragments with low complexity were created

and successively assembled into complex models. The algorithm for generating test cases was

applied to these models and fragments and results were checked for completeness and correctness.

The result was also checked with regard to the CCAD coverage criterion (Concurrent Activity

Coverage). The aim of this procedure is to provide evidence that the test case generation

algorithm generates correct test cases from the UML activity diagrams refined through the

ITERA meta-model. Criteria for the evaluations are on the one hand the fulfilment of the

required coverage criterion CACD and on the other hand the completeness and correctness of

the resulting test cases by manual inspection. This will be subject in Section 6.3.

The test method for RFID applications investigated in this thesis comprises several steps, which

are roughly divided into the phases of test case modelling, test case generation and test case ex-

ecution. This section is intended to provide evidence that the algorithm for generating abstract

test cases (see Section 4.5.3) generates valid test cases, i.e. test cases in which simulated inter-

actions with the SUT only take place in a valid sequence and which also satisfy the concurrent

activity coverage criterion CCAD defined in Section 2.2.1.

Even for activity diagrams with relatively low complexity, tests can be created that make it

difficult to check the correctness of the results by manual checking. This is due to concurrent

and cyclic structures in the control flow and successive mutually exclusive conditions specified

during refinement of the test case specification. Nevertheless, it is possible to manually check

whether the generated execution paths are valid sequences in the sense of the underlying activity

diagram. For this it has to be checked if the contained test steps occur in exactly the order

specified in the activity diagram for each test case. For complex models, however, it is no longer

possible to check whether all generated execution paths are actually covered by the corresponding

sequence in the activity diagram by manual inspection.

One strategy for validating complex models is to identify modelling patterns of low complex-

ity for which manual inspection can be used to confirm their correctness. This assumes that

complex models are composed of model fragments of lower complexity, each of which can be

assigned to a individual modelling pattern. Inversely, complex models can then be broken down
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into components of lower complexity. If it can be shown that model fragments (patterns) of

low complexity are correctly translated by the algorithm and it can be shown that even the

combination of simple patterns to more complex models is correct, it is obvious that the output

is valid even for models of any complexity. Thus, the validation of the algorithm and its im-

plementation is based on the demonstration that fragments of UML activity diagrams with low

complexity are correctly converted into test cases in accordance with the coverage criterion. In

a second step, the basic model fragments are successively combined into more complex models

and it is shown that these more complex models are also produce correct test cases.

The aim is therefore to demonstrate that only valid sequences of individual test steps are gen-

erated, i.e. that there are no interchanges between two test steps compared to their original

sequence in the UML activity diagram. Accordingly, it should be shown that concurrent se-

quences are mapped to non-concurrent sequences and cycles in the control flow of the UML

activity diagram are also traversed in accordance with the coverage criterion defined in Section

2.2.1.

Staines [132] and Wohed ed. al [133, 134] identify possible atomic modelling patterns that can be

used to validate the test case generation algorithm. The authors identify the following modelling

patterns for UML activity diagrams (1) activity sequence, (2) activity parallelization/synchro-

nisation, (3) alternative branching, (4) merging alternative branches, and (5) iteration. Staines

also supports the thesis that complex UML activity diagrams can be created by repeatedly

combining (i.e. refining) these patterns.

6.3.1 Activity Sequence

The simplest modelling pattern that can be identified for activity diagrams is a sequence of

activities. Embedding a sequence of length one into the empty activity diagram defines the

minimum syntactically correct, non-empty activity diagram (Figure 6.10), which specifies only

one activity in addition to start (UML InitialNode) and end (UML ActivityFinalNode) nodes.

This minimal model is the starting point for combining complex activity diagrams by repeatedly

applying replacement operations of the modelling pattern sequence of length one with complex

modelling patterns.

Figure 6.10: Activity diagram and AG of pattern sequence (length one)

Applying the proposed algorithm, of the ITERA method, the following test path is generated:

TC1 : I → A1 → F
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The correctness of the minimum UML activity diagram to an execution path is thus validated,

since it can be easily seen that the algorithm generates exactly the execution sequence of test

steps required by the coverage criterion CACD for this activity diagram.

Similar to the extraction of the minimum activity diagram from the modelling pattern activity

sequence of length one, activity diagrams can also be derived from the modelling pattern activity

sequence of any length, which model several activities in a clearly defined execution sequence.

Figure 6.11 shows an activity diagram that adds exactly one more activity to the minimum

activity diagram.

Figure 6.11: Activity diagram and AG of pattern sequence (length two)

Using the introduced algorithm on the ActivityGraph of this activity diagram the following test

path is generated:

TC1 : I → A1 → A2 → F

When creating the execution path, this activity diagram also only requires the correct sequence

of activities, which confirms the correctness of the result of the test case generation for activity

sequences of length two. In the spirit of inductive reasoning, the pattern activity diagram of

length one defines the initial premise, the activity diagram of length two is the induction step,

whereby the correctness is also justified for activity diagrams of any length.

6.3.2 Activity Branch

Another modelling pattern in UML activity diagrams is the disjunctive control flow branching.

Similar to the modelling pattern activity sequence, a minimal activity diagram using the mod-

Figure 6.12: Activity diagram and AG of pattern branch

elling pattern activity branch was created for the purpose of validating the model transformation
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and the algorithm for generating the test cases was applied to it:

TC1 : I → A1 → D → A2 → F

TC2 : I → A1 → D → A3 → F

Analogous to the modelling pattern activity sequence, the results were checked by manual

inspection of the generated test cases. Here, too, the inspection of the paths confirmed the

correctness of the test case generation through the proposed algorithm. It was found that the

corresponding execution paths were created in accordance to the CACD coverage criteria for the

minimum activity diagram shown in Figure 6.12.

The minimum activity diagram from the activity branch model 6.12 is limited to two alternative

control flow paths after the decision node. The meta model of UML allows any number of

alternative control flow sequences. A model that maps more than two control flow alternatives

at a decision node can be traced back to a sequence of several modelling patterns of the type

activity branching.

Similar to the already provided plausibility check of the of the modelling pattern activity se-

quence (Section 6.3.1), the correctness of the algorithm is indirectly demonstrated, as N -decision

nodes can be modelled through the use of n decisions nodes in sequence. However, for complete-

ness the algorithm was also used on a model with three alternative control flows:

TC1 : I → A1 → D → A2 → F

TC2 : I → A1 → D → A3 → F

TC3 : I → A1 → D → A4 → F

6.3.3 Activity Merge

The counterpart to the modelling pattern activity branch, identified by Wohed et al. is a

disjunctive merge. It continues different control flows on a common control flow path. The aim

of the validation of the test case algorithm is to provide evidence that correct test cases are

generated from the disjunctive merge in the sense of the coverage criterion. Figure 6.13 shows

Figure 6.13: Activity diagram and AG of pattern merge
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the modelling pattern activity merge. The UML MergeNode is characterized by the fact that,

unlike the UML JoinNode modelling element (see Section 6.3.4), the control flow does not block.

According to the semantics of UML, a MergeNode does not have to wait until there are tokens

on all incoming edges. Similar to the modelling pattern of disjunctive branching, it is possible

to unite more than just two control flow sections using a UML MergeNode element.

TC1 : I → A1 → D → A2 →M → F

TC2 : I → A1 → D → A3 →M → F

The evaluation of the generated test cases shows, that the correct number of paths in the right

sequence of activities have been generated, thus the algorithm for traversing the activity graph

containing the modelling element activity branch is implemented correctly.

6.3.4 Activity Concurrency

Another modelling pattern is conjunctive branching, which is modelled as ForkNode in the

UML syntax. In the semantics of test execution, the use of this modelling pattern means

that activities on the concurrent control flows are mixed but not swapped in sequence. The

prerequisite for fulfilling the coverage criterion is the assumption that a user is not able to

interact with several components of an application at the same time. During testing, concurrent

test steps are therefore interleaved. According to the restriction of the activity diagram in this

thesis, this modelling element may only occur in pairs with a conjunctive union. To model

this pattern, UML provides the JoinNode element. In the semantics of activity diagrams, this

pattern represents a synchronization of concurrent control flows, whereby the continuation of

the control flow is blocked until a token is present at all incoming control flows.

In the semantics of testing an application, the use of this modelling pattern in the control flow

diagram means that up to a UML JoinNode element, activities modelled in parallel may occur

mixed but not reversed in their sequence, and the control flow after the UML ForkNode element

is preceded in a single strand without local concurrency. The purpose of the validation of the

transformation of UML activity diagrams based on the modelling pattern concurrency is to

demonstrate that only those execution sequences of activities are generated that are permitted

according to the coverage criterion defined in Section 2.2.1. In particular, it must be shown

that no execution sequences are generated, in which activities originally on concurrent control

flows before the JoinNode, occur in the execution path generated by the transformation after

the JoinNode.

The activity pattern concurrency is shown in Figure 6.14 by the corresponding activity diagram.

A special aspect of the chosen validation sample is the odd number of nodes in the concurrent

section, due to the algorithm’s preference for shorter paths. It must be checked whether the

test case generation generates exclusively permissible execution sequences in the sense of the

coverage criterion.
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Figure 6.14: Activity diagram and AG of pattern concurrency

The application of the introduced algorithm generated the following test case:

TC1 : I → A1 → FN → A2 → A3 → A4 → JN → A5 → F

Through manual evaluation respecting the precedence rules (see Section 2.2.1), it is shown that

a correct sequence of activities has been derived. Thus, the algorithm for traversing the activity

graph containing the modelling element activity concurrency produces correct test cases.

Similar to the previous patterns, an element of type ForkNode can have more than two outgoing

control flows. As with the other patterns, this situation can be modelled as disjunctive branching

by connecting several ForkNode elements in series, each with two outgoing edges. To ensure

that only permissible permutations of concurrent elements are contained in the set of generated

execution paths, a precedence test routine was used to ensure that no impermissible partial

sequences are contained.

Figure 6.15: Activity diagram and AG of pattern nested concurrency

Applying the proposed algorithm on the nested concurrency pattern (Figure 6.15) the following

execution path was generated:

TC1 : I → A1 → FN1 → FN2 → A4 → A5 → A6 → A7 → JN2 → A2 → JN1 → A8 → F

Similar to the previous evaluations it was ensured through manual inspection, that the prece-

dence rules of the output are maintained. In particular, that the generated execution path

does not contain any invalid sequences, in which activities of the concurrent control flow occur

in reversed order before the join. Furthermore, the verification ensured that only permissible
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execution sequences were generated from the UML activity diagram shown in Figures 6.14 and

6.15 according to the concurrent activity path coverage criterion CCAD defined in Section 2.2.1.

6.3.5 Validation of composite models

The strategy for validating the transformation algorithm is based on the premise that complex

models can always be interpreted as combinations of models of lower complexity. The following

sections demonstrate that higher models can be generated by combining the modelling patterns

defined in the preceding section. In addition, it is shown that the algorithm presented in Section

4.5.3 also correctly converts complex models into valid test cases. The combination of atomic

modelling patterns to complex models is based on substitutions, that replace individual activities

within an activity diagram by a sub-model or vice versa a sub-model of an activity diagram by

an activity of type UML CallBehaviorAction.

Basic Cycle

The cycle, which has already been identified by Staines, also belongs to the composite modelling

patterns. The pattern structures the atomic modelling patterns disjunctive branching (Section

6.3.2) and disjunctive merge (Section 6.3.3) in such a way that a cycle arises in the control flow.

The cycle can be realized as a while-do or do-while variant, with the difference of the direction of

the control flows at the merge or branch nodes. Except the possibility, that a do-while structure

can also be iterated zero times, the cycles structurally correspond to each other. However, the

evaluation is a comparatively challenging task as the cycles must be executed multiple times,

which means that the complexity of the generated test paths quickly increases to a level that

can no longer be mastered by a human, especially for nested cycles.

The coverage criterion defined in section 2.2.1 requires that the algorithm for generating tests

from UML activity diagrams generates execution paths, such that each cycle in the control flow

is executed at least once. The validation of the algorithm therefore aims to demonstrate that it

generates correct results (execution paths) for this requirement. Analogous to the validation of

Figure 6.16: Activity diagram and AG of an basic cycle

the atomic modelling patterns, a minimal activity diagram is created for the validation of the
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modelling pattern cycle (Figure 6.16). Here a variant of the activity diagram was deliberately

chosen, in which an activity is in the front (node A1) and after the cycle (node A4). This activity

diagram is used to show the correctness for different variations where the nodes A2 and A3 are

refined by other modelling patterns, in particular by further cycles.

The activity diagram shown in Figure 6.16 was used to validate the test case generation algo-

rithm. For the coverage criterion concurrent activity path, two execution paths are expected

from the activity diagram: one that evaluates the branch at node D so that the cycle is not

traversed, and one that evaluates the branch so that the cycle is executed.

TC1 : I → A1→M → A2→ D → A4→ F

TC2 : I → A1→M → A2→ D → A3→M → A2→ D → A4→ F

An inspection of the activity diagram shown in Figure 6.16 has confirmed that the algorithm

generates correct execution paths in accordance to the concurrent activity path coverage cri-

terion. The execution paths illustrated show that the algorithm has actually generated two

execution paths for the activity diagram. Test Case TC2 represents the cycle initiated at node

D, which returns the control flow via node A3 to node M, so that node A2 is executed several

times. The result meets the requirement of the coverage criterion, which shows the correctness

of the transformation for the base variant modelling pattern cycle.

The example of a cyclic activity diagram shown initially only covers the base case on which only

a single activity is modeled. The aim of validation is to provide evidence that models of any

complexity based on the pattern cycle are also transformed to test cases in conformity with the

coverage criterion. Figure 6.17 shows the modified activity diagram. By refining node A3, the

Figure 6.17: Complex activity diagram and AG of a cycle with a sequence

original activity diagram in Figure 6.16 has been extended to a more complex model. The model

has been extended by a sequence whose correct test case generation has already been shown.

To still meet the coverage criterion, two execution paths must be created for this model, each

representing an execution path with or without cycle execution. Furthermore, the execution

paths generated from the model in Figure 6.17 may only differ at the point of the refinement of

the model, i.e. specifically only at the path where the added sequence is modelled.
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TC1 : I → A1→M → A2→ D → A4→ F

TC2 : I → A1→M → A2→ D → S1→ S2→ S3→M → A2→ D → A4→ F

Ihe result is compliant with the coverage criterion, the algorithm has generated two execution

paths, each representing a run with and without a cycle. Test case 2 shows that the node

sequences S1, S2, S3 were also correctly placed and, compared to the simple cycle, the execution

paths differ only in the area where the activity diagram was refined by inserting a sequence.

Nested Cyle

It has already been shown that the algorithm for simple cycles produces correct results. The

atomic modelling patterns of disjunctive branching and disjunctive union can also be used in

such a way that nested cycles are constructed. Figure 6.18 shows the activity diagram already

Figure 6.18: Complex activity diagram and AG of nested cycles

shown in Figure 6.16 again, but the nodes A2 and A3 have been refined with another instance

of the activity diagram shown in Figure 6.16. Analogous to the procedure for validating the

modelling pattern activity concurrency, the approach of refining the model to be validated with

itself was also chosen here.

The algorithm for generating test cases was applied to this model and the results were subjected

to a manual inspection. The generated execution paths are listed below:

TC1 : I → A1→M → S4→M2→ S5→ D2→ S6→ D → A4→ F

TC2 : I → A1→M → S4→M2→ S5→ D2→M2→ S5→ D2→ S6→ D → A4→ F

TC3 : I → A1→ M → S4→ M2→ S5→ D2→ S6→ D → S1→ M3→ S2→ D3→ S3→
M → S4→M2→ S5→ D2→ S6→ D → A4→ F

TC4 : I → A1→M → S4→M2→ S5→ D2→ S6→ D → S1→M3→ S2→ D3→M3→
S2→ D3→ S3→M → S4→M2→ S5→ D2→ S6→ D → A4→ F
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It can be seen that all cycles, also in combination with each other, are in conformity with the

coverage criterion and thus covered by an execution path in the activity diagram, which supports

the correctness of the test case generation in terms of the coverage criterion.

Figure 6.19: Complex activity diagram and AG with multiple nested cycles

To ensure that the test case generation algorithm generates correct results even for multiple

nested cycles, another variant of the activity diagram shown in Figure 6.19 was created in a

further validation step. Here the algorithm was applied two times with different depths, which

allows to specify how often cycles are traversed.

Nested depth 1:

TC1 : I → A1→M1→ A2→M2→ A3→M3→ A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

TC2 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → M3 → A4 → D3 → A5 → D2 →
A6→ D1→ A7→ F

TC3 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → M2 → A3 → M3 →
A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

TC4 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → A6 → D1 → M1 →
A2→M2→ A3→M3→ A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

Nested depth 2:

TC1 : I → A1→M1→ A2→M2→ A3→M3→ A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

TC2 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → M3 → A4 → D3 → A5 → D2 →
A6→ D1→ A7→ F

TC3 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → M3 → A4 → D3 → M3 → A4 →
D3→ A5→ D2→ A6→ D1→ A7→ F

TC4 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → M2 → A3 → M3 →
A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

TC5 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → M3 → A4 → D3 → A5 → D2 →
M2→ A3→M3→ A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

TC5 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → M2 → A3 → M3 →
A4→ D3→M3→ A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

TC6 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → A6 → D1 → M1 →
A2→M2→ A3→M3→ A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

TC7 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → M3 → A4 → D3 → A5 → D2 →
A6→ D1→M1→ A2→M2→ A3→M3→ A4→ D3→ A5→ D2→ A6→ D1→ A7→ F
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TC8 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → M2 → A3 → M3 →
A4→ D3→ A5→ D2→M2→ A3→M3→ A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

TC9 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → A6 → D1 → M1 →
A2→M2→ A3→M3→ A4→ D3→M3→ A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

TC10 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → M2 → A3 → M3 →
A4 → D3 → A5 → D2 → A6 → D1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 →
A6→ D1→ A7→ F

TC11 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → A6 → D1 → M1 →
A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 →
A6→ D1→ A7→ F

TC12 : I → A1 → M1 → A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → A6 → D1 → M1 →
A2 → M2 → A3 → M3 → A4 → D3 → A5 → D2 → A6 → D1 → M1 → A2 → M2 → A3 → M3 →
A4→ D3→ A5→ D2→ A6→ D1→ A7→ F

Especially the traversal with increased depth represents a special cognitive performance for a

human tester, both in manual test case creation and in its execution. It contains the run-through

of all cycles occurring in the model, if necessary in combination with each other. The tester

must create the valid preconditions in each step, perform a number of test steps (i.e. enter test

data, place the corresponding RFID tags in the reading field) and then check the postconditions.

A comparison of the results with the activity diagrams depicted in Figure 6.19 shows that,

the transformation algorithm is stable against nested embedding of cycles. In particular, all

execution paths (double and triple nested cycles) that were generated are in accordance with

the concurrent activity coverage criteria CACD.

Overlapping cycles

The atomic modelling patterns of disjunctive branching and disjunctive merge can also be linked

together in such a way that overlapping cycles occur, shown in Figure 6.20. Here, a superficially

simple model can quickly rise to a complex set of alternative execution paths through the

modelled system, each of which must be addressed in an individual test.

Figure 6.20: Complex activity diagram and AG with overlapping cycles
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In a similar procedure to the previous samples, the algorithm for generating test cases produces

the following results:

TC1 : I → A1→M1→ A2→M2→ A3→ D1→ A4→ D2→ A7→ F

TC2 : I → A1 → M1 → A2 → M2 → A3 → D1 → M1 → A2 → M2 → A3 → D1 → A4 → D2 →
A7→ F

TC3 : I → A1→M1→ A2→M2→ A3→ D1→ A4→ D2→M2→ A3→ D1→ A4→ D2→ A7→
F

By manual inspection it can be seen that the transformation algorithm generates correct results

in terms of the coverage criterion for the model shown in Figure 6.20. This demonstrates that

the algorithm is also correct for overlapping cycles.

Interlinked cycles

Another driver for complexity is based on the pattern interlinked or concatenated cycles. Figure

6.21 shows an example of of this pattern. In order to evaluate the algorithm it was also applied

to this model.

Figure 6.21: Complex activity diagram and AG with interlinked cycles

Figure 6.21 shows a modification of the activity diagram already introduced in Figure 6.16.

Specifically, the activity diagram depicted here is also a variant of the modelling pattern sequence

(see Section 6.3.1 in Figure 6.11) of length two, were both activities have been refined by a cyclic

structure.

The execution sequences generated from the activity diagram shown in Figure 6.21 are shown

below. All three execution paths run through the activity diagram from the start node to the

end node and all activities are represented by test cases in the modelled order. As required by

the coverage criterion, all existing cycles in the model are run at least once and thus fulfil the

CACD.

TC1 : I → A1→M1→ A2→ D1→ A3→M2→ A4→ D2→ A7→ F

TC2 : I → A1→M1→ A2→ D1→M1→ A2→ D1→ A3→M2→ A4→ D2→ A7→ F

163



6 Evaluation of the ITERA Test Methodology

TC3 : I → A1→M1→ A2→ D1→ A3→M2→ A4→ D2→M2→ A4→ D2→ A7→ F

6.3.6 Summary and Results

In the preceding sections, the identified atomic modelling patterns were combined to more

complex modelling patterns. With the UML CallBehaviorAction modelling element, the UML

meta model offers the possibility of coarsening partial models of UML activity diagrams or

refining individual activities by partial models, whereby each non-atomic activity diagram can

be reduced to a single activity on the discussed atomic modelling patterns.

Based on this feature of the UML meta model, the previous sections showed that the algorithm

for systematic test case determination developed in this thesis also generates correct results for

complex models in terms of the coverage criterion.

A validation for complex models by manual inspection of the generated test paths can usually

only barley be performed because the complexity of the test cases quickly becomes unmanageable

for humans. Therefore, the generation of test cases was exercised with models that were specifi-

cally constructed in such a way that the resulting test cases are simplistic and allow conclusions

to be drawn about the behaviour of the test case generation in more complex models.

In all cases, correct execution paths were generated from the activity diagrams according to the

coverage criterion CCAD. Due to the traversal of the presented algorithm it is concluded that

the test case generation generates correct results even if models are further refined.

6.4 Discussion

The evaluation of the ITERA test method is one of the most challenging tasks of this research.

As Dijkstra already stated, testing a program can be a very effective way to detect faults, but it

is not suitable for showing the absence of faults. Thus, the ratio of the absolute number of faults

to the faults detected by the test within a program can generally hardly be used as a benchmark

for evaluating a test method. In addition, due to the enormous variety of RFID applications, it

is difficult to evaluate the test method using some example applications, since it is generally not

possible to infer from the test results of one application to another. Furthermore, during the

study of the method presented here, not enough case studies were available to make a significant

statistical statement. A comparison with other RFID test methods is likewise not possible due

to the absence of adequate approaches.

However, an evaluation in regard to practical benefits in terms of an subjective evaluation of the

impacts was carried out to demonstrate the benefits of using the proposed test methodology:
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• RFID specific challenges

The specific requirements for testing RFID applications (Chapter 3) have been considered

during the development of the methodology. To cope with these specific needs an enhance-

ment of the acticity diagram has been proposed in order to include RFID specific details,

like timing and test input data, through the ITERA UML profile (meta model, see Section

4.3.1). Additionally, a systematic method to determine test cases, which also considers

the unreliable nature of RFID applications in form of robustness tests have been presented

(see Section 4.6.3 ). The costs that arise during test execution, are addressed by the use of

a virtual RFID test environment, which not only allows to execute the tests automatically,

but, also makes the use of laboratory environments unnecessary. Moreover it provides

instantly available RFID readers, whose counterparts might not be deployed in the final

RFID system, yet. Furthermore, the method presented in this dissertation enabled the

automation of tests, that would otherwise have been impossible to perform in regard to

test reproducibility and could only have been carried out in a laboratory environment with

great manual effort.

• Variety of RFID applications

The applicability of the methodology is largely dependent on two factors. (1) Applicability

of the activity diagram to describe the use case and the (2) variety of interfaces of the

system under test, e.g. additional sensors to complement the RFID system. With regard

to the evaluation of the method presented, it is therefore necessary to examine whether

these factors have been sufficiently taken into account.

The variety of different application areas of RFID technology (Section 2.3.2) are taken

into account through the build-in possibility to extent the presented meta-model. This

allows the application of the methodology in other scenarios as described in the example

use cases and supports the integration of additional sensors, for example light barriers or

weight scales, as far as other back-ends for evaluation of the SUT. The applicability of

the activity diagram has not been addressed specific, however, it is widely used to design

a variety of software and moreover also is barely restricted to computer science topics.

Therefore, it can be assumed, that it allows to describe a wide range of RFID application

scenarios and can thus be used for test modelling.

• Evaluation of test case generation

The model-based method used to determine the test cases using a control flow is generally

widely used. The group of control flow-oriented test methods belongs to the structure-

oriented test methods and are not just used in black-box tests, but are also employed in

the area of white box tests (based on the source code). Therefore, it can be assumed

for an the evaluation of the presented test methodology, that the procedure is basically

suitable to systematically create test cases. However, the quality of control flow oriented

test procedures depends decisively on the selected test data. Thus, sorely by fulfilling

the CCAD overlap criterion, which the test cases created in this work meet, a reliable

statement about the correctness of a software cannot be made. However, it is generally
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accepted that a structured systematic approach to test creation is better suited than the

random selection of test cases.

• Comparison to other approaches

The approach to testing RFID applications presented in this thesis combines the systematic

model-based generation of tests with the automated execution of tests and the simulation

of RFID environmental parameters in a common concept. The approach therefore offers

an advantage over other technologies, as they do not cover the full range of functions.

With regard to the functionality this advantage is objectively measurable: the presented

methodology enables an automation of test case creation, its automated execution and

the simulation of RFID environments within a consistent and coherent toolbox (i.e. UML

profile for modelling context and test data, transformation tool for test case generation,

adapted RFID environment model). The approaches examined in the chapters 2.2.2 and

2.3.5 differ either fundamentally with regard to the objective (RFID test data generation,

physical effects, etc.) or in their applicability to RFID specific Testing (UML test case

generation). A comparable concept does not exist at present. The approaches on test data

generation are only based on models describing the flow of RFID tags. The application

and especially the state of the RFID application is not considered at all. However, by

using the ITERA methodology, not only the flow of RFID tags through a system can be

modelled, but also the semantic implications for the software. Therefore, the approach

presented here can be treated as an superset of the RFID test data generation approaches.

• Comparison to manual testing

The approach examined in this thesis aims to increase the quality and reduce the complex-

ity of test activities in the scope of effort and systematic testing. The holistic approach

presented here, from modelling the SUT, modelling test data, test case creation to test

execution with simulation of context parameters, is mostly opposed by manual methods,

if they exist at all. Manual testing of RFID applications is, beside that it is very labor

intensive, sometimes not even possible. E.g. regarding the uncertainty of RFID tag cap-

tureing or that white spots can not be tested reliable or only with enormous efforts and a

suitable laboratory environment.

The advantages over the prevailing manual test execution are objectively measurable, since

the presented ITERA concept for the first time provides a methodology for testing RFID

applications, which allows to reproduce context information, in particular RFID events,

for test execution, which in reality is difficult or not possible at all. In concrete terms, this

has the advantage that the simulation of RFID readers enables reliable reproduction of test

cases, which makes it possible to generate meaningful test results, especially for regression

tests. On the other hand, there is the advantage that tests can be performed with lower

costs, since a automated test execution usually works more economically than manual test

execution, does not require recovery phases and can be scaled by use of parallelization.

• Target audience
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Furthermore, the methodology investigated for the creation and execution of RFID appli-

cation tests at system level meets the needs of the target group of this work. The target

group is the general audience of developers and testers who are involved in the development

of RFID applications as part of their work. The desire for methods and tools to decouple

testing activities from human labour manifests itself in the desire to increase efficiency on

the one hand, and to ensure the quality of testing activities on the other.

Changing requirements are a common phenomenon in software development. If a change in

the requirements for an application occurs, this change can be reflected in an application

model with relatively little effort. By using the method and technology for test case

generation presented in this thesis, the effort required to adapt test cases as a consequence

of changing requirements is limited to the effort required to adapt the model and regenerate

the test cases. This contrasts with the great effort of manually adapting all test cases.

• Model review

During the creation of the model, a implicit review of the software under test is performed.

Even though this is only a side-effect of the proposed test methodology, it helps to identify

misconceptions of the use cases and resulting test cases. This has been experienced during

the development of the library example: A book which is reserved usually cannot be rented,

however, it is possible to rent this book if the user is the one with the reservation. In the

initial test case description this was not included, but it became present when the activity

diagram was created.
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RFID is a promising technology with a high potential to improve many of today’s business pro-

cesses. Especially with the upcoming demands of Industry 4.0, RFID allows for the realization

of a highly customized and autonomous production. Big companies already benefit using this

technology, but many SME still struggle to adopt RFID in their businesses, mainly because of

economic considerations. To cope with the challenges of RFID in regard to system level testing,

a test methodology for systematic test case generation with high automation potentials was

presented in this thesis. By using the proposed test methodology costs during development and

testing can be decreased. At the same time confidence in the quality of the RFID application

can be increased. Both factors have a significant impact on the use of the technology in partic-

ular for SME’s. But even further, the integrated virtual RFID environment also enables testing

without the need of a specialized laboratory equipment and thus enables SME’s with limited

resources to carry out RFID specific tests.

This chapter will summarize the original work contributed to the body of knowledge and point

out suggestions for improvements and future work.

7.1 Contribution

During the development of the individual solutions, a number of topics from software engineering,

to modelling and testing RFID applications, have been investigated in detail. The concrete topics

of modelling RFID-specific test cases and the derivation of test data, the generation of test cases

and their automated execution within a simulated RFID environment have been examined in

depth with the focus on a systematic method of deriving tests and suitable technologies to

support test automation for RFID applications.

Testing in general - and especially in the context of RFID systems - is the most important activity

of analytical quality assurance in practice. On the other hand, however, testing is usually a

pragmatic and less systematic activity compared to other disciplines of software engineering. In

order to remedy this discrepancy, a novel test procedure - ITERA - was developed, which allows

testing of RFID systems in a systematic and transparent way.

A fundamental concept of ITERA is the common modelling of a set of test cases. Test cases are

not considered independently of each other. Instead, they are can be modelled in a more general

way using UML activity diagrams, which are perfectly suited to describe the process oriented
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input flow of RFID applications. In combination with the introduced meta model it makes the

test specification simple and understandable, even for untrained domain experts. Moreover, it

simplifies the clarity and transparency of the overall test process and test coverage achieved.

A common method to evaluate the overall extent of a test suite is a coverage metric. Such

measurements at least ensure that essential parts and their functionality have been included in

the test to a certain minimum extent. In this thesis such coverage criteria especially tailored for

activity diagrams have been proposed. Furthermore, using the ITERA methodology to generate

systematic test cases the fulfilment of a coverage metric is already self-contained. The algorithm

developed for traversing the test model, does not only allow for automatic test case generation

which fulfil the defined coverage criteria, but also addresses challenging tasks during test design

such as concurrent activities and complex structures like nested loops.

In order to meet practical requirements, an executable semantics of the test model was empha-

sized in the development of ITERA. By combining the semantic modelling language for RFID

systems, the ITERA meta model and the activity diagram, not only test cases can be derived

automatically, but also the prerequisites for executable tests are met. When supported by appro-

priate test drivers, fully modelled tests can then be executed automatically, which significantly

improve the efficiency of the test execution. Furthermore, the test automation helps to shift

the focus of examination and testing RFID applications to the creative task of test case design,

which is essential for test quality.

The introduction of the RFID systems is often iterative and thus many repeated tests are neces-

sary. With the support of test automation, using Rifidi, it contributes in considerable decrease

of time needed for testing and thus increases the acceptance of the test approach. Furthermore,

the use of a virtual RFID environment is often the only way to perform a test of RFID applica-

tions on a system level, especially in regard to the unpredictable physical environment and the

unstable radio field.

In contrast to related work focusing on performance evaluation of RFID middleware [92, 91, 102,

24] and realistic test data generation for EPC-IS [101, 27] a novel test methodology for functional

testing of RFID applications on a system level has been presented. Unlike the approach presented

in [26, 30, 31], where tests are derived sorely on the movement routes of RFID tagged goods,

the work in this thesis also considers the application’s state and the implications of the resulting

RFID events of the movement routes. Thus, the ITERA test methodology not only allows for

systematically deriving tests including test data based on constraints imposed by the execution

path, but also considers oracles in order to evaluate the outcome of the test. The test execution

framework, including the virtual RFID environment, enhances similar approaches like [92, 89,

90, 91] by the tight integration of the virtual RFID emulator into a test environment which

can be easily extended by other mock-up frameworks to support a wide spectrum of RFID

application areas.
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7.2 Future Work

As part of the research and development of the ITERA method, using UML activity diagrams

to develop test case models, derive systematic test cases and the integration of an virtual RFID

environment for automated test execution, a number of research questions have arisen that can

improve or complement the ITERA methodology.

7.2.1 Enhanced Tool Support

The prototype implementation of the test case generation algorithm developed in this thesis

is implemented in Python. Currently, UML activity diagrams which are exported in Graph

Modelling Language (GML) [135] format are used as valid input for the generation of the test

executions paths. Nonetheless, the diagrams can still be created in any UML editor that is

capable of exporting the diagram in this format. However, GML is very restricted in comparison

the the widely used XMI export format, which also offers a better integration, in particular for

the associated class model of the meta model. As part of future work, this could be realized

with XMI and a corresponding implementation of the test case generation algorithm.

Additionally, a sophisticated integration of the test case generation algorithm and the mod-

elling of the activity diagram including the UML meta model into a Integrated Development

Environment (IDE) would be beneficial to ease the development and testing.

Furthermore, the integration of the ITERA methodology into CI environments such as Jenkins1

can help to supplement the automation process of software provisioning from the IDE to the

finished deployment routine including model-based test automation and simulation of the RFID

environment. Manual activities could, thus, be reduced to the creation of a model of the SUT

and the determination of test data. Manual test procedures, which are necessary to evaluate

the specification conformity of different releases of an RFID application, could then be omitted.

7.2.2 Extension of the ITERA Method

The method for model-based test case determination presented in Chapter 4 aims at generating

test cases from UML activity diagrams. Determining the appropriate test data to adequately

address the system-specific aspects of an SUT, however, is still a semi-automatic activity. During

the discussion on test data determination in Section 4.6, the option to generate test data from

the predicates (using relational algebra) was already partially addressed. Of particular interest

here, could be boundary tests in which the RFID application is specifically stimulated with test

data, whose values are at the input range limits. Or even further, a sophisticated method to

systematically cover condition coverage in terms of input data could improve the quality of the

tests significantly. An efficient strategy to identify or generate such test data is a research area

1Jenkins (https://jenkins.io) is an open source automation server, for continuous integration and continuous
delivery.
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that can further promote the automation of test activities and thus contribute to a optimization

of the use of resources in the field of quality assurance.

While the generation of test cases guarantees that all relevant activities and control flows are

addressed in tests, there is no guarantee that adequate test coverage is also achieved with regard

to the test data. Future research should look how test case modelling must be designed to map

different test data for test execution. An open research question here is: “How to efficiently select

test data to improve condition coverage for RFID application testing?”. For example, it would

make sense for an activity that is executed more than once due to a cycle to be automatically

parametrized with different test data for each run. However, this problem cannot be solved

trivially, especially for nested cycles and conflicting alternative control flows, because it may be

relevant for a concrete test to consider the current state of the application and how often a cycle

is executed.

Another field of research that was not considered in this thesis, but is relevant in the field of

RFID applications, is the generation of even more realistic environmental conditions of the RFID

system. The deviation of simulated physical conditions of the RFID tags captured by the virtual

reader would offer the possibility to test other innovative application areas of RFID technology.

RFID tag aggregation mechanisms that use the Returned Signal Strength Indicator (RSSI) to

evaluate the validity of the RFID event or applications using real-time localization could be con-

sidered. Probabilistic test methods could prove to be a suitable extension to integrate these into

the ITERA methodology. For example test data could be selected according to the predicates

of the test case and extended by a random distribution taking into account the unreliability of

the radio field.

7.2.3 Extensions with Formal Methods

The formal semantics of RFID systems presented in this thesis are based on time dependent sets.

In order to be used as a basis for formal methods, it is necessary to extend the model with a

solid logic. This can provide a more accurate representation of operations such as the placement

of RFID tags in a RFID readers interrogation zone and the implications for the application’s

current state. The extension would allow for reasoning of the model itself and could provide a

basis to derive well founded assumptions about the consistency of the specification and serve as

a foundation for proving correctness.

An interesting approach for further research is therefore the extension of the semantic model

of RFID systems presented in Section 4. This raises the question of whether the set-based

description can be extended by a formal specification, such as Event B (or the UML-B spin-off)

or the Z notation. The use of temporal logic, such as interval temporal logic (ITL), could also

be investigated. Starting points are the temporal sets that would receive a formal basis around

predicate logical expressions or temporal aspects. If such an extension can be realized, the

verification and validation of the model itself or runtime verification could be possible.
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[14] C. Bornhövd, T. Lin, S. Haller, and J. Schaper, “Integrating automatic data acquisition

with business processes experiences with sap’s auto-id infrastructure,” in Proceedings of

the Thirtieth International Conference on Very Large Data Bases - Volume 30, VLDB ’04,

pp. 1182–1188, VLDB Endowment, 2004.

[15] A. Huebner, C. Facchi, M. Meyer, and H. Janicke, “Rfid systems from a cyber-physical

systems perspective,” in WISES 2013, the Workshop on Intelligent Systems and Embedded

Systems 2013, 2013.

[16] E. A. Lee, “Cyber physical systems: Design challenges,” in Object Oriented Real-Time

Distributed Computing (ISORC), 2008 11th IEEE International Symposium on, pp. 363

–369, may 2008.

[17] E. A. Lee, “Cps foundations,” in Proceedings of the 47th Design Automation Conference,

pp. 737–742, ACM, 2010.

[18] M. Attaran, “Rfid: an enabler of supply chain operations,” Supply Chain Management:

An International Journal, vol. 12, no. 4, pp. 249–257, 2007.

[19] C. Floerkemeier and E. Fleisch, “Rfid applications: Interfacing with readers,” Software,

IEEE, vol. 25, pp. 67–70, May 2008.

[20] H. Chen, P. Chou, S. Duri, J. Elliott, J. Reason, and D. Wong, “A model-driven ap-

proach to rfid application programming and infrastructure management,” in e-Business

Engineering, 2005. ICEBE 2005. IEEE International Conference on, pp. 256–259, 2005.

[21] V. Derbek, C. Steger, R. Weiss, J. Preishuber-Pflügl, and M. Pistauer, “A uhf rfid measure-
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