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“Science is wonderfully equipped to answer the question ”How?” but it gets terribly

confused when you ask the question ”Why?”

Erwin Chargaff
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This thesis reports the work of using simulated annealing to design more efficient fuzzy

logic systems to model problems with associated uncertainties. Simulated annealing is

used within this work as a method for learning the best configurations of type-1 and

type-2 fuzzy logic systems to maximise their modelling ability. Therefore, it presents

the combination of simulated annealing with three models, type-1 fuzzy logic systems,

interval type-2 fuzzy logic systems and general type-2 fuzzy logic systems to model

four bench-mark problems including real-world problems. These problems are: noise-

free Mackey-Glass time series forecasting, noisy Mackey-Glass time series forecasting

and two real world problems which are: the estimation of the low voltage electrical

line length in rural towns and the estimation of the medium voltage electrical line

maintenance cost. The type-1 and type-2 fuzzy logic systems models are compared in

their abilities to model uncertainties associated with these problems. Also, issues related

to this combination between simulated annealing and fuzzy logic systems including

type-2 fuzzy logic systems are discussed.

The thesis contributes to knowledge by presenting novel contributions. The first is

a novel approach to design interval type-2 fuzzy logic systems using the simulated

annealing algorithm. Another novelty is related to the first automatic design of general

type-2 fuzzy logic system using the vertical slice representation and a novel method

to overcome some parametrisation difficulties when learning general type-2 fuzzy logic

systems. The work shows that interval type-2 fuzzy logic systems added more abilities

to modelling information and handling uncertainties than type-1 fuzzy logic systems but

with a cost of more computations and time. For general type-2 fuzzy logic systems, the

clear conclusion that learning the third dimension can add more abilities to modelling

is an important advance in type-2 fuzzy logic systems research and should open the

http://www.dmu.ac.uk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


doors for more promising research and practical works on using general type-2 fuzzy

logic systems to modelling applications despite the more computations associated with

it.
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Chapter 1

Introduction

1.1 Overview

This thesis presents a novel combination of fuzzy logic systems (mainly type-2 fuzzy

logic systems) with the simulated annealing algorithm to design high performing sys-

tems to model uncertainties. The combination is applied in cases where the exact

systems are difficult to acquire by experts due to the lack of knowledge and the ex-

istence of uncertainties associated with these problems. Simulated annealing is used

within this work as a method for learning the best configurations of fuzzy logic sys-

tems to maximise their modelling ability. For this purpose, it presents the combination

of simulated annealing with three models, type-1 fuzzy logic systems, interval type-2

fuzzy logic systems and general type-2 fuzzy logic systems to model four bench-mark

problems including real-world problems.
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1.2 Context

The main methods used in this work are concerned with type-1 fuzzy logic systems,

type-2 fuzzy logic systems and simulated annealing. To introduce the context of this

thesis, the three methods are highlighted here followed by the research motivation.

1.2.1 Fuzzy logic systems

Fuzzy logic systems are rule-based systems that use the theory of fuzzy sets and fuzzy

logic proposed by Zadeh in (Zadeh, 1965). It is one of the most important areas of fuzzy

set theory. Nowadays, many applications are using fuzzy logic systems to represent

knowledge in a closer way to how human are thinking. In a fuzzy set, any element in

the set is given a degree of membership of this set as opposed to the ordinary crisp set

where its membership is characterised by two values only (0 or 1). The most used form

of fuzzy logic systems is based on using type-1 fuzzy sets and so that it is called type-1

fuzzy logic system. In general, a fuzzy logic system is a process involves fuzzifying input

crisp values followed by inference engine to apply fuzzy rules and ends by defuzzifying

the results into crisp values as outputs.

1.2.2 Type-2 fuzzy logic systems

Type-2 fuzzy logic systems are rule-based fuzzy systems that are similar to type-1 fuzzy

logic systems in terms of the structure and components (Karnik et al., 1999). The only

differences are that type-2 fuzzy logic system uses type-2 fuzzy sets and it has an extra

output process component called the type-reducer before defuzzification. In type-2

fuzzy sets, the memberships are type-1 fuzzy sets rather than a crisp value between 0

and 1. There are two main forms of type-2 fuzzy sets: interval and general type-2 fuzzy

sets. In the interval form, the third dimension is fixed to normality for the whole fuzzy

set that is used as a membership function. On the other form, the third dimension is free
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fuzzy set and so that it is called general. In practice, the interval form is the most used

form in type-2 fuzzy sets due to its simplicity and ease of computations compared to the

generalised form. Type-2 fuzzy logic systems normally require more computations than

type-1 fuzzy logic systems but they offer more flexibilities and freedom in representing

knowledge. Both interval and general type-2 fuzzy logic systems models (IT2FLS and

GT2FLS) will be used in this thesis.

1.2.3 Simulated Annealing

The simulated annealing algorithm is a simple and general optimisation algorithm for

finding global minima introduced in (Kirkpatrick et al., 1983). It has been used widely

to search for optimal or nearly optimal solutions in a wide range of optimisation prob-

lems. In this work, it acts as a learning algorithm to automatically design fuzzy logic

systems by searching for the best configurations of these systems.

1.3 Motivation

Fuzzy logic systems have been applied successfully to a broad range of problems in

different application domains. One such type of applications is concerned with using

fuzzy logic systems for system modelling and approximation where a fuzzy inference

system is used to model human knowledge or to approximate non-linear and dynamic

systems. However, existence of uncertainties and lack of information in many real

world problems makes it difficult to model such problems using expert knowledge only.

Examples of such problems include identifying systems with no known rule-base and

systems with only historic data observation. It becomes clear that when designing a

simple fuzzy logic system with few inputs, the experts may be able to provide efficient

rules but as the complexity of the system grows, the rule base and membership functions

become difficult to acquire. Therefore, some automated tuning and learning methods
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are often used to cope with such situations. The objective of these methods is to get

parametrised functions that best model these problems according to chosen criterion.

The use of automated methods to design fuzzy logic systems helped to model many

real world problems that are difficult to understand by experts and becomes one of the

well known methodologies for modelling and approximation applications.

Although, type-1 fuzzy logic systems are the most well known model of fuzzy logic

systems that have been given attention for decades, the advancement on research of

type-2 fuzzy sets and systems and their reported success over type-1 fuzzy logic systems

encouraged many researchers to apply type-2 fuzzy logic systems to model problems.

In fact, the type-1 fuzzy logic approach has problems when faced with environments

that have some kinds of uncertainties which exist in a large number of real world

applications. All these uncertainties translate into uncertainties about membership

functions (Mendel and John, 2002). Type-1 fuzzy Logic can not fully handle these

uncertainties because type-1 fuzzy logic is precise in nature and for many applications

it is unable to model knowledge adequately where type-2 fuzzy logic offers a higher

level of imprecision (John and Coupland, 2006). The extra dimension and parameters

in type-2 fuzzy sets are supposed to provide more design freedom and flexibility than

type-1 fuzzy sets. To benefit from this feature, the use of some automated learning

methods becomes a valuable choice as complexity grows when designing type-2 fuzzy

logic systems. In consequence, finding good learning methods for learning type-2 fuzzy

logic systems helps to improve their performance in modelling difficult problems.

The ability of fuzzy logic systems to be hybridised with other methods extended the

usage of fuzzy logic systems in many application domains. Many approaches have been

proposed to learn and tune fuzzy logic systems including using search algorithms such

as genetic algorithms and simulated annealing as well as many local search algorithms

and classical learning methods such as the least-squares method. Although optimisation

search algorithms such as genetic algorithms were not specifically designed for learning,
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they can offer some advantages for machine learning (Herrera, 2005). In fact, genetic

algorithms are one of the most common search algorithms used with fuzzy logic systems

that has been applied to a wide range of problems such as control system design, decision

making, classification, modelling and information retrieval (Hoffmann, 2001). On the

other hand, fewer number of researchers have studied the use of simulated annealing

to learn type-1 fuzzy logic systems (Drack and Zadeh, 2006). Amongst those who have

studied this combination are (Huyghe and Hamam, 1995; Garibaldi and Ifeachor, 1999;

Liu and Yang, 2000; Cordón et al., 2000; Drack and Zadeh, 2006; Yanar and Akyrek,

2011). For type-2 fuzzy logic systems, to the author’s knowledge, no work was reported

in the open literature using simulated annealing to design type-2 fuzzy logic systems,

despite that many of the search and learning algorithms have been used with interval

type-2 fuzzy logic systems. Accordingly, the questions of how far simulated annealing

can assist designing type-2 fuzzy logic systems and how they are combined worth being

investigated.

Another motivation comes from the lack of applications using general type-2 fuzzy logic

systems. Although, type-2 fuzzy logic is a growing research topic with much evidence of

successful applications (John and Coupland, 2007), up to now, almost all developments

of type-2 fuzzy logic systems were based on interval type-2 fuzzy logic systems with

some exceptions related to different representations of type-2 sets and systems other

than the first and main representation known as vertical-slices. The heavy computations

associated with the generalised form of type-2 sets is the main driver for the lack of

applications of general type-2 fuzzy sets and systems compared to the interval model.

In fact, learning and optimisation of general type-2 fuzzy logic systems is an open area

for more research as well as the ongoing research on how to reduce the complexity of

general type-2 fuzzy logic systems especially on the type-reduction phase of the system.

Hence, the large number of methods used to design type-1 and interval type-2 fuzzy

logic systems can be potential candidates for general type-2 fuzzy logic systems and

some of them might uncover the potential for general type-2 fuzzy logic systems in

5



Chapter 1. Introduction

modelling more uncertainties. However, in the last few years, some advances in general

type-2 fuzzy logic systems research achieved more steps towards practicality. These

advances includes new representations, optimised operations and faster type-reduction

methods. Despite the higher amount of computations associated with general type-

2 fuzzy sets, its extra free dimension can bring more abilities to modelling than the

restricted uniform dimension in interval type-2 fuzzy sets. This ability can be unveiled

using automated designing methods rather than being chosen by the designer manually.

Although, automated methods can add more fine tuning to expert designs, there is no

rational basis for choosing secondary membership functions in general type-2 fuzzy

sets (Mendel, 2001, p.302). This issue enforces the need for automated methods in such

designs. The other factor affecting the usage of general type-2 fuzzy logic systems is the

lack of parametrisation methods to handle the third dimension in general type-2 fuzzy

sets. In general, the general type-2 fuzzy logic system has a potential to model more

uncertainties despite the large amount of computations associated with it especially

when applied to non real-time applications. In consequence, the question of how much

general type-2 fuzzy logic systems can add to modelling performance over interval type-

2 fuzzy logic systems is another issue that worths investigation.

1.4 Objectives

The main aim of this investigation is to use simulated annealing to design high perform-

ing type-2 fuzzy logic systems automatically to model information with uncertainties.

This aim is fulfilled by achieving the following objectives :

1. Firstly, to design and evaluate the combination of simulated annealing with type-1

fuzzy logic systems to model uncertain information. Although, this combination

(simulated annealing and type-1 fuzzy logic systems) has been applied before,

this objective has been chosen to show how the combination between simulated
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annealing and fuzzy logic systems is achieved. Also, to ground the basic rela-

tionships and issues of this combination before using higher types of fuzzy logic

systems.

2. To design interval type-2 fuzzy logic systems automatically using simulated an-

nealing to model uncertain information. In order to get reliable conclusions, the

applications of modelling four bench-mark problems including real-world data

have been chosen. These problems are: noise-free Mackey-Glass time series fore-

casting (Mackey and Glass, 1977), noisy Mackey-Glass time series forecasting

(Mackey and Glass, 1977) and two real world problems which are the estimation

of the low voltage electrical line length in rural towns and the estimation of the

medium voltage electrical line maintenance cost (Cordón et al., 1999).

3. To design general type-2 fuzzy logic systems automatically using simulated an-

nealing to model uncertain information. This means that the third dimension in

general type-2 fuzzy sets should be exploited in the learning process. The four

problems mentioned above will be applied to test this model.

4. To develop a practical approach to design the third dimension of general type-2

fuzzy sets easily and with reasonable computational cost.

5. To compare type-1 and type-2 models of fuzzy logic systems in their abilities to

model uncertainties associated with problems. This objective helps to answer the

question of weather interval and general type-2 fuzzy logic systems can add extra

abilities to modelling.

1.5 Thesis Contribution

The thesis presents a novel design of fuzzy logic systems mainly type-2 fuzzy logic

systems using simulated annealing algorithm to model problems with higher levels of
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uncertainty. The combination of simulated annealing with three models: type-1 fuzzy

logic system, interval type-2 fuzzy logic system and general type-2 fuzzy logic sys-

tem have been applied. These three models are applied in modelling four bench-mark

problems. The three models are compared in their abilities to model uncertainties asso-

ciated with these problems. Also, issues related to this combination between simulated

annealing and fuzzy logic systems are discussed.

Regarding contribution to knowledge, this thesis presents three kinds of novelties. The

first is a novel approach to design interval and general type-2 fuzzy logic systems using

simulated annealing as no work has been reported in the open literature using such

combination. The second one is the automatic design of first general type-2 fuzzy

logic system using the vertical slice representation. In addition, the thesis proposed a

new novel method to overcome some parametrisation difficulties when learning general

type-2 fuzzy logic systems. This thesis helps to open the doors for more practical work

in general type-2 fuzzy logic systems. The clear conclusion that learning the third

dimension can add more abilities to modelling is an important advance in type-2 fuzzy

logic system research and should open the doors for more promising research on using

general type-2 fuzzy logic systems. Hence, the proposed parametrisation method allow

other learning methods used to design interval type-2 fuzzy logic systems to be potential

candidates for general type-2 fuzzy logic systems design.

Parts of this thesis have been published or submitted to a number of publications

(Almaraashi, 2010; Almaraashi et al., 2010; Almaraashi and John, 2011b, 2010, 2011a;

Almaraashi, John and Ahmadi, 2012b,a; Almaraashi, John and Coupland, 2012). One

of these publications has won the best student paper award in a conference (Almaraashi

and John, 2011a). These publications are attached in the thesis appendices.
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1.6 Thesis Structure

The rest of the thesis is divided into six chapters as follows:

Second Chapter reports the literature of the methods and concepts used within the

thesis. The most relevant aspects of these methods are concerned with type-

1, type-2 fuzzy logic systems, learning of fuzzy logic systems and the simulated

annealing algorithm as a method that carries out the learning.

Third Chapter presents the work of learning type-1 fuzzy logic systems using sim-

ulated annealing with two fuzzy logic systems models (Mamdani and Takagi-

Sugeno-Kang (TSK)) and under two fuzzification models (singleton and non-

singleton fuzzifications). Theses models are used to predict the well known

Mackey-Glass time series with six different noise levels. The results of the pro-

posed methods are compared by their ability to handle uncertainty as well as

comparing the noisy free time series with other works in the literature. In this

chapter, a description of the problems applied in the thesis including next chap-

ters is presented. Another work on type-1 fuzzy logic systems will be presented

in the fourth chapter for comparison and consistency purposes.

Fourth Chapter presents the work of learning interval type-2 fuzzy logic systems

using simulated annealing . This chapter discusses some of the issues of this

combination. The proposed method is applied on four bench-mark problems

including real world problems. These are noise-free and noisy Mackey-Glass time

series forecasting (Mackey and Glass, 1977) and two real world problems which

are the estimation of the low voltage electrical line length in rural towns and the

estimation of the medium voltage electrical line maintenance cost (Cordón et al.,

1999). The results of the interval type-2 fuzzy logic systems are compared to the

results of a type-1 fuzzy logic systems in these experiments.
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Fifth Chapter presents the work for designing general type-2 fuzzy logic systems with

the aid of interval type-2 fuzzy logic systems and simulated annealing. Issues and

difficulties of manual and automatic design of general type-2 fuzzy logic systems

are discussed as well as proposing a practical solution to some parametrisation

issues of the third dimension in general type-2 fuzzy logic systems. The proposed

method is applied on the four bench-mark problems mentioned above and their

results and analysis are discussed.

Sixth Chapter reports the work for learning all parameters of general type-2 fuzzy

logic systems using simulated annealing . The proposed method is applied on

the four bench-mark problems mentioned above and their results and analysis are

discussed.

Seventh Chapter provides the conclusion and some potential future work. It sum-

maries the contribution achieved in this work and its impacts on the field. Then,

a potential future work is suggested based on what achieved in this thesis.

10



Chapter 2

Background

2.1 Introduction

This chapter presents needed literature for the methods and concepts that are used

within the thesis. The most relevant aspects of these methods and concepts are con-

cerned with type-1 and type-2 fuzzy logic systems, learning of fuzzy logic systems and

the simulated annealing algorithm as a method that carries out the learning. The chap-

ter presents a description of these components that are needed to understand the work

in the following chapters in three sections. Firstly, it starts by reviewing the main parts

in the theory of type-1 fuzzy sets and systems where they are used in chapter 3 and

4. In the second section, type-2 sets and systems are defined. The literature of type-2

fuzzy sets and systems is needed in chapter 4,5 and 6. The third section explains some

aspects related to the learning of fuzzy logic systems including the issues linked to the

combination of both fuzzy logic systems and learning and optimisation methods. Next,

simulated annealing is described with detailed description of its components.
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2.2 Type-1 Fuzzy Sets and Systems

2.2.1 Type-1 fuzzy sets

Fuzzy logic is a branch of many-valued logic uses the theory of fuzzy sets proposed by

Zadeh in 1965 in his paper “Fuzzy sets” (Zadeh, 1965). In a fuzzy set, any element in

the set is given a degree of membership of this set as opposed to the ordinary crisp set

where its membership is characterised by two values only. For example, if set A is a

crisp set in the universe of discourse X, then the membership function of set A (also

called a characteristic function ) is defined as :

µA(x) =

 1 if x ∈ X

0 if x /∈ X

Fuzzy sets of type-1 are normally known as fuzzy sets. Fuzzy sets are fully described by

their membership functions. For example, for a fuzzy set A in the universe of discourse

X, the membership function for A is defined as :

µA(x) : X → [0, 1]

Where each element in the set is given a number between zero and one as a membership

grade. When the set A is discrete, the notation is adopted as follows :

A = µA(x1)/x1 + µA(x2)/x2 + · · ·+ µA(xn)/xn

When the fuzzy set A is continuous, it is defined as follows :

A =

∫
x
µA(x)/x

In both cases, x1, x2, .., xn are members of the set A and µA(x1), µA(x2), . . . µA(xn) are

their membership grades respectively. Figure 2.1 shows an example of a type-1 fuzzy
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Figure 2.1: Type-1 fuzzy set “About 10”.

set called “About 10”. In this example, crisp values are given memberships based on

how close they are from 10. For example, µA(5) = 0.2 and µA(8) = 0.7.

2.2.2 Type-1 fuzzy sets operations

In fuzzy set theory, there are many ways to define fuzzy operations. Operations of

fuzzy sets can be defined using their membership functions by extending the crisp

sets operations where the operation result is another fuzzy set. There are many ways

proposed in the literature to model these operators. For example, fuzzy union of two

fuzzy sets A and B using maximum operator is a fuzzy set defined by the membership

function (Dubois and Prade, 1980):

µA∪B(x) = max[µA(x), µB(x)] = µA(x) ∨ µB(x)
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while fuzzy intersection operation of two fuzzy sets A and B using minimum operator

is defined as :

µA∩B(x) = min[µA(x), µB(x)] = µA(x) ∧ µB(x)

and using product operator:

µA?B(x) = prod[µA(x), µB(x)] = µA(x) ∗ µB(x)

The general name for these operations is t-norm and t-conorm when satisfying some

mathematical properties. T-norm and t-conorm are defined as follows (Dubois and

Prade, 1980):

• T-norm (Triangular Norms) : is the name for the general form of intersection

functions in fuzzy sets. The most common t-norm used in fuzzy systems are the

minimum operator min(a, b) and the product operator product(a, b).

• T-conorm (Triangular Conorms) : is the name for the general form of union

functions in fuzzy sets. The most common t-conorm used in fuzzy systems is the

maximum operator max(a, b).

2.2.3 Type-1 fuzzy logic systems

A type-1 fuzzy system is a rule based system which can be viewed as a process that

maps crisp inputs to outputs by using the theory of fuzzy sets (Negnevitsky, 2002,

p. 106). The well-known Mamdani fuzzy model (Mamdani, 1974) contains four com-

ponents: fuzzifier, rules, inference engine and output processor (defuzzifier) (Mendel,

2001, p. 6). The Takagi-Sugeno-Kang fuzzy model (TSK) model (Takagi and Sugeno,

1985) is different from the Mamdani model in the inference engine and the output

processor. Figure 2.2 shows these components which are (Mendel, 2001, p. 6):
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TYPE-1 FUZZY LOGIC SYSTEM

Inference Engine DefuzzificationFuzzification

Fuzzy sets Rule base

T1
SETS

T1
SETS

CRISP
INPUT

CRISP
OUTPUT

Figure 2.2: Type-1 fuzzy logic system

2.2.3.1 Fuzzifier

Fuzzifier maps crisp inputs to fuzzy sets by evaluating the crisp inputs x = (x1, x2, . . . , xn)

based on the antecedents part of the rules and assigns each crisp input a degree of mem-

bership µAi(xi) in its input fuzzy set. There are two types of fuzzifiers, singleton and

non-singleton. The singleton fuzzifier maps crisp inputs to fuzzy sets by evaluating the

crisp inputs x = (x1, x2, . . . , xn) based on the antecedents part of the rules and assigns

each crisp input to its fuzzy set A(x) in X with its degree of membership in each fuzzy

set. The non-singleton fuzzifier maps each given input xi into a fuzzy set (known as

variability set) with a unity membership grade for xi while their neighbours values are

given lesser membership values as they move away from xi (Mouzouris and Mendel,

1994). In this case the fuzzifier considers xi as the most likely correct value among its

neighbours values and normally is the centre of the fuzzy set (Mendel, 2001, p. 188).

Non-singleton fuzzification allows better modelling of input uncertainties (using the

variability set) and linguistic uncertainties (using antecedent fuzzy sets) in two stages

(Wagner and Hagras, 2010b). Figure 2.3 shows how these two fuzzifiers fuzzify crisp

inputs.
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Figure 2.3: The fuzzification of a crisp input x using singleton (left) and non-
singleton (right) fuzzification

2.2.3.2 Rules

A fuzzy rule is a conditional statements in the form of IF-THEN where it contains two

parts, the IF part called the antecedent part and the THEN part called the consequent

part. For example :

IF job risk is high THEN salary is high.

These rules are written in fuzzy forms using words such as high, short and slow. To

acquire these rules, many methods can be used such as getting them from experts or

using data driven methods.

2.2.3.3 Inference engine

The inference engine in the Mamdani model maps the input fuzzy sets into the output

fuzzy sets then the defuzzifier converts them to a crisp output. The rules in the Mam-

dani model have fuzzy sets in both the antecedent part and the consequent part. For
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example, the ith rule in the Mamdani model can be described as follows:

Ri : IF x1 is Ai
1 and x2 is Ai

2... and xp is Ai
p

THEN y is Bi

Where x1, x2, ..., xp are the input variables to the fuzzy systems and Ai
1, A

i
2, .., A

i
p are

input fuzzy sets in the antecedent part. The consequent part consists of output variable

y and its output fuzzy set Bi. The operation “and” is normally modelled by a t-norm

operator.

2.2.3.4 Defuzzifier

Defuzzifier in Mamdani model converts the output fuzzy sets that have been produced

by inference engine into crisp values. Defuzzification can be done by many methods

that have been proposed in the literature such as centroid defuzzifier, centre of sets

defuzzifier, height defuzzifier and centre of sums defuzzifier. The inference and defuzzi-

fication processes in Takagi and Sugeno model (Takagi and Sugeno, 1985) are different

from the Mamdani model as the rules in TSK model are based on input fuzzy sets in

the antecedent part and a mathematical linear function in the consequent part. The

ith rule in the first-order TSK model is described as follows:

Ri : IF x1 is Ai
1 and x2 is Ai

2... and xp is Ai
p

THEN yi(x) = ci0 + ci1 ∗ x1 + ci2 ∗ x2...+ cip ∗ xp

Where i represents the rule number and ci0, c
i
1, c

i
2 and cip are the the coefficients of the

consequent part of the fuzzy system rules. The final control value Y is computed as

follows:

Y =

∑n
i=1 αi ∗ yi∑n

i=1 αi

17
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Where αi is known as the firing level for the ith rule which is derived by using a t-

norm operator such as minimum or product. It is important to mention that while

the Mamdani model can handle uncertainty in both antecedent and consequent parts,

TSK can handle uncertainty only in the antecedent part where fuzzy sets are used

which limits its applicability in situations either where there is no uncertainty or the

uncertainty exists only in the antecedent part (Mendel, 2001, p. 188).

2.3 Type-2 Fuzzy Sets and Systems

2.3.1 Fuzzy sets and uncertainty

The existence of uncertainties and the lack of information in many real world problems

makes it difficult to model some real-world problems. Uncertainty in fuzzy set theory

has been recognised and divided into three types (Klir and Wierman, 1998, p. 43-44)

which are:

• Fuzziness (or vagueness): This results from the imprecise boundaries of fuzzy sets.

• Non-specificity (or imprecision): It is linked to relevant sets of alternatives when

some alternative belongs to a specific set of alternatives but we do not know which

one in the set it is.

• Strife (or discord): which expresses conflicts among the various sets of alterna-

tives.

Type-1 fuzzy logic has been used successfully in a wide range of problems such as

control system design, decision making, classification, system modelling and informa-

tion retrieval (Ross, 2004; Hoffmann, 2001). However, type-1 approach is not able to

directly model uncertainties and minimise its effects (Mendel and John, 2002). These
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uncertainties exist in a large number of real world applications. It can be a result of un-

certainty in inputs, uncertainty in outputs, uncertainty that is related to the linguistic

differences, uncertainty caused by the change of conditions in the operation and un-

certainty associated with the noisy data when training the fuzzy logic system (Mendel,

2001, p.68). All these uncertainties translate into uncertainties about fuzzy sets mem-

bership functions (Mendel and John, 2002). Therefore, existence of uncertainties in the

majority of real world applications makes the use of type-1 fuzzy logic inappropriate

in many cases especially with problems related to inefficiency of performance in fuzzy

logic control (Hagras, 2007). Also, it is arguable weather human brain uses crisp images

of membership functions (Zimmermann, 2001, p. 24). Problems related to modelling

uncetainity using crisp membership functions of type-1 fuzzy sets have been recognized

early and (Zadeh, 1975) introduced higher types of fuzzy sets called type-n fuzzy sets

including type-2 fuzzy sets (Mendel, 2003)(Zimmermann, 2001, p. 24). Type-2 fuzzy

logic systems might have many advantages compared with type-1 fuzzy logic systems.

These advantages include (Hagras, 2007):

• Type-2 fuzzy set can handle numerical and linguistic uncertainties because its

membership function is fuzzy and has a footprint of uncertainty (FOU) while

type-1 fuzzy sets membership function is precise.

• Using type-2 fuzzy sets to represent inputs and outputs results in using less rules

compared with using type-1 fuzzy sets as a result of the wider coverage obtained

by footprint of uncertainty (FOU).

• Type-2 fuzzy sets embed a large number of type-1 fuzzy sets to describe variables

with a detailed description adding extra levels of smooth control surface and

response.

• The extra dimension provided by the FOU enables a type-2 fuzzy logic system to

produce outputs that cannot be achieved by type-1 fuzzy logic system using the

same number of membership functions (Wu and Tan, 2005a).
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Two factors should be considered regarding the widespread perception that general

type-2 fuzzy logic system should outperform the interval form which also should out-

perform type-1 fuzzy logic system (Wagner and Hagras, 2010b). These two factors are

the dependence of performance on the choice of the model parameters as well as on the

variability of uncertainty within the application (Wagner and Hagras, 2010b). There-

fore, a good choice of the model’s parameters using automated methods is desired to

get more clearer conclusions regarding this comparison. Type-2 fuzzy logic is a growing

research area with much evidence of successful applications (John and Coupland, 2007;

Mendel, 2007).

2.3.2 Type-2 fuzzy sets

A type-2 fuzzy set (Mendel and John, 2002), denoted by Ã, is characterized by a type-2

membership function µÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1]. For example :

Ã = {((x, u), µÃ(x, u)) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]}

where 0 ≤ µÃ(x, u) ≤ 1. Set Ã also can be expressed as:

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u), Jx ∈ [0, 1]

where
∫

denotes union. When universe of discourse is discrete, Set Ã is described as :

Ã =
∑
x∈X

∑
u∈Jx

µÃ(x, u)/(x, u), Jx ∈ [0, 1]

When all the secondary grades µÃ(x, u) equal 1, then, Ã is an interval type-2 fuzzy

set. Interval type-2 fuzzy sets are easier to compute than general type-2 fuzzy sets.

See figures 2.4 and 2.5 for examples of a general and an interval type-2 fuzzy sets and

figure 2.6 for a 2D representation of type-2 set called footprint of uncertainty (FOU)
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Figure 2.4: Interval type-2 fuzzy set “About 10“.

which represents the union of all primary membership grades and can be described

easily by a lower and upper membership functions. The ease of computation and

representation of interval type-2 fuzzy sets is the main driver for their wide usage in

real world applications. A well known simple form of type-2 fuzzy sets is based on the

principal membership function. When at each secondary membership function of type-

2 set there is only one secondary grade equals to 1, Then, the principal membership

function is the union of all points with unity membership grades (Mendel, 2001, p.86).

Therefore:

µprincipal(x) =

∫
x∈X

u/x where fx(u) = 1 (2.1)

2.3.3 Type-2 fuzzy sets representation

There are some representations for type-2 fuzzy sets have been proposed in the literature

such as vertical-slice representation (Mendel and John, 2002), wavy-slice representation
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Figure 2.5: General type-2 fuzzy set “About 10“.

(Mendel and John, 2002), geometric representation (Coupland and John, 2007), alpha-

planes (Mendel et al., 2009), alpha cuts (Hamrawi et al., 2010) and Z-slices (Wagner

and Hagras, 2010a). Here we focus on the first known representations which are:

• Vertical-Slice representations (Mendel and John, 2002): which represents fuzzy

sets by using secondary sets in a vertical-slice manner where :

Ã = {(x, µÃ(x)) | ∀x ∈ X} (2.2)

This representation is very useful for computation.

• Wavy-Slice representations (Mendel and John, 2002): In wavy-slice representa-

tion, Type-2 fuzzy set is represented as a union of embedded type-2 fuzzy sets

where each embedded type-2 fuzzy set Ãe has the same domain of type-2 fuzzy
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Figure 2.6: Footprint of uncertainty (FOU) for type-2 fuzzy set “About 10“.

set Ã. Type-2 embedded set Ãe has been defined by (Mendel and John, 2002) as

follows:

For discrete universes of discourse X and U , an embedded type-2

set Ãe has N elements, where Ãe contains exactly one element from

Jx1 , Jx2 , ..., JxN , namely u1, u2, ..., uN , each with associated secondary

grade, namely fx1(u1), fx2(u2), ..., fxN (uN )

For example:

Ãe =
N∑
i=1

[fxi(ui)/ui]/xi, ui ∈ Jxi ⊆ U = [0, 1]. (2.3)

As we see in this definition, the embedded set contains N number of elements

represented using the primary memberships ui ∈ Jxi that is linked to its secondary
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membership grades fxi(ui) in ordered pairs. So that type-2 fuzzy set A can be

shown as a union of embedded type-2 fuzzy sets as follows:

Ã =

n∑
j=1

Ãj
e (2.4)

where the total number of type-2 embedded sets in type-2 fuzzy set A is calculated

using the number of discretised points in the primary domain N and the secondary

domain M as follows:

n =
N∏
i=1

Mi (2.5)

And Ãj
e denotes the jth type-2 embedded fuzzy set in type-2 fuzzy set Ã. Wavy-

slice representation known as Mendel-John Representation Theorem (RT) has

been proposed by (Mendel and John, 2002). It is useful for theoretical derivations

but not useful for practical use because of the astronomical number in the union

of embedded sets. However, it is very useful when dealing with interval type-2

fuzzy sets due to the ability of using type-1 fuzzy mathematics which is easy to

deal with (Mendel et al., 2006).

2.3.4 Type-2 fuzzy sets operations

Based on Zadeh extension principle (Zadeh, 1975), type-2 fuzzy sets operations can be

derived as follows (Mizumoto and Tanaka, 1976; Karnik and Mendel, 2001b): Let A and

B be two type-2 fuzzy sets in universe X while µÃ(x) and µB̃(x) are their membership

grades respectively where µÃ(x) =
∫
u fx(u)/u and µB̃(x) =

∫
w gx(w)/w while the

primary membership of x are u,w ∈ Jx, Jx ⊆ [0, 1] and secondary membership grades

of x are fx(u), gx(w) ∈ [0, 1]. Using Zadeh extension principle, union, intersection

and complement can be defined as (Mizumoto and Tanaka, 1976; Karnik and Mendel,

2001b) :
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• Union:

Ã ∪ B̃ ⇔ µÃ∪B̃(x) = µÃ(x) t µB̃(x) =

∫
u

∫
w

(fx(u) ? gx(w))/(u⊕ w) (2.6)

• Intersection:

Ã ∩ B̃ ⇔ µÃ∩B̃(x) = µÃ(x) u µB̃(x) =

∫
u

∫
w

(fx(u) ? gx(w))/(u ? w) (2.7)

where ? represents a t-norm which is called meet operation and ⊕ represents the

max t-conorm that is called join operation. Karnik (Karnik and Mendel, 2001b)

has proposed a method to calculate meet and join operations when all secondary

membership functions are normal and convex. Coupland (Coupland and John,

2007) has presented an extension to this formula to allow the use of non-normal

secondary membership functions. Suppose that there are two type-2 fuzzy sets Ã

and B̃ where all the secondary membership functions in Ã and B̃ are convex. The

apex is the point at maximum value in the secondary membership function. Let

v1 and v2 be real numbers such that v1 6 v2 and µÃ(x, v1) is the apex of Ã and

µB̃(x, v1) is the apex of B̃. Then, the join and meet operations under minimum

t-norm and maximum t-conorm are given by (Coupland and John, 2007):

µÃtB̃(x, u) =


µÃ(x, u) ∧ µB̃(x, u), if u < v1

µÃ(x, v1) ∧ µB̃(x, u), if v1 6 u < v2

(µÃ(x, u) ∨ µB̃(x, u)) ∧ (µÃ(x, v1) ∧ µB̃(x, v2)), if u > v2

µÃuB̃(x, u) =


(µÃ(x, u) ∨ µB̃(x, u)) ∧ (µÃ(x, v1) ∧ µB̃(x, v2)), if u < v1

µÃ(x, u) ∧ µB̃(x, v2), if v1 6 u < v2

µÃ(x, u) ∧ µB̃(x, u), if u > v2

(2.8)
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2.3.5 Type-2 fuzzy logic systems

A type-2 fuzzy logic system is a rule based system that is similar to a type-1 fuzzy logic

system in terms of its structure and components. The only differences are that a type-2

fuzzy logic system uses at least one type-2 fuzzy set and it has an extra output process

component called the type-reducer before defuzzification as shown in figure 2.7. The

type-reducer reduces output type-2 fuzzy sets to type-1 fuzzy sets then the defuzzifier

reduces it to a crisp output. The components of a type-2 Mamdani fuzzy system are

(Karnik et al., 1999):

2.3.5.1 Fuzzifier

Fuzzifier maps crisp inputs into type-2 fuzzy sets by evaluating the crisp inputs x =

(x1, x2, . . . , xp) based on the antecedents part of the rules and assigns each crisp input

to its type-2 fuzzy set Ã(x) with its membership grade in each type-2 fuzzy set. The

resulting fuzzified value is a type-1 fuzzy set representing the secondary grades for each

input. When using interval type-2 fuzzy logic systems, the resulting value is an interval

type-1 fuzzy set.

2.3.5.2 Rules

A fuzzy rule in type-2 fuzzy logic system is also a conditional statement in the form

of IF-THEN where it contains two parts, the IF part called the antecedent part and

the THEN part called the consequent part. The only difference from type-1 fuzzy logic

system rules is that rules in type-2 fuzzy logic system use type-2 fuzzy sets and can

use type-1 fuzzy sets. Using one type-2 fuzzy set is enough to consider the system as a

type-2 fuzzy logic system.
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2.3.5.3 Inference Engine

Inference Engine maps input type-2 fuzzy sets into output type-2 fuzzy sets by applying

the consequent part where this process of mapping from the antecedent part into the

consequent part is interpreted as a type-2 fuzzy implication which needs computations

of union and intersection of type-2 fuzzy sets. The inference engine in a Mamdani type-

2 fuzzy logic system maps the input type-2 fuzzy sets into the output type-2 fuzzy sets.

The rules in Mamdani model have type-2 fuzzy sets in both the antecedent and the

consequent parts. For example, the ith rule in a Mamdani rule base can be described

as follows:

Ri : IF x1 is Ãi
1 and x2 is Ãi

2... and xp is Ãi
p (2.9)

THEN y is B̃i (2.10)

2.3.5.4 Output Processor

There are two stages in the output process:

1. Type-Reduction: Type-reducer reduces type-2 fuzzy sets that have been pro-

duced by the inference engine to type-1 fuzzy sets by performing a centroid calcu-

lation (Mendel, 2001). For example, the centre of sets type-reducer replaces each

rule type-2 consequent set by its centroid which is a type-1 set and then calculate

a weighted average of these centroids to get a type-1 fuzzy set (Karnik et al.,

1999). This is the bottleneck of the type-2 fuzzy logic systems as this process

requires expensive computations especially when using non-interval type-2 sets.

(a) Type-reduction in interval type-2 fuzzy sets: For interval type-2 fuzzy

sets, (Karnik and Mendel, 2001a) developed an algorithm that calculates the

centroid of an interval type-2 fuzzy set which is widely known as Karnik-

Mendel (KM) iterative algorithm followed by an improved version called
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Enhanced Karnik-Mendel Algorithm in (Wu and Mendel, 2009). (Greenfield,

Chiclana, Coupland and John, 2009) presented another method for the same

purpose known as the collapsing method with some variants of the directions

used when collapsing (Greenfield, Chiclana and John, 2009). Other works to

type-reduce interval type-2 fuzzy sets have been reported on the literature

such as uncertainty bounds (Wu and Mendel, 2002), WuTan (WT) method

(Wu and Tan, 2005b) and Nie-Tan (NT) method (Nie and Tan, 2008). Such

methods encouraged researchers to use interval type-2 fuzzy logic systems in

practical applications. Here we explain the collapsing method.

As interval type-2 fuzzy set can be seen as a blurred form of type-1 fuzzy

set, the collapsing method carries out the reversal of the blurring process

(Greenfield, Chiclana, Coupland and John, 2009). It converts an interval

type-2 fuzzy set into a type-1 representative embedded set (RES), whose

defuzzified values approximates the defuzzified value of type-2 fuzzy sets.

Therefore, it reduces the computational burden of interval type-2 fuzzy set

defuzzification. The membership of the type-1 representative embedded set

(RES) R that is derived from a discretised interval type-2 fuzzy set F̃ is

calculated from the following approximation formula (Greenfield, Chiclana,

Coupland and John, 2009):

µR(xi) = µL(xi) + ri

Where

ri =
(‖L‖+

∑i−1
j=1 rj) + bi

2 + (‖L|+
∑i−1

j=1 rj) + bi

Where L is the lower membership function, U is the upper membership func-

tion, bi is the blur size for vertical-slice i and ri is the amount that needed to

add to the y-value of the lower membership function L to get the value of R.

This approximation iteratively collapses vertical slices and it is reffered as the
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“Simple Representative Embedded Set Approximation (RESA)”. The order

of slice collapsing can be carried out in many variant: forward, backward,

inward, outward, the composite variants of forward-backward and outward

right-left (Greenfield, Chiclana and John, 2009).

(b) Type-reduction in general type-2 fuzzy sets: In general type-2 sets,

the type-reduction is more complicated and computationally expensive. A

brute-force highly computationally expensive type-reduction strategy was

described by (Mendel, 2001, p.248-254) is the first known method. This

method computes the union of all the centroids of all the embedded type-2

fuzzy sets involved in the general type-2 fuzzy set. This is impractical in real

world applications as the number of embedded sets are normally astronomi-

cal. Recently, a recursive algorithm was introduced by (Gafa and Coupland,

2011) includes some interesting ideas to reduce these computations but the

complexity is still very high and no practical results have been published

yet. The more closer type-reducers to practicality on the open literature are

the geometric defuzzifier based on the geometric representation (Coupland

and John, 2007), the sampling algorithm which uses a random samples of

these embedded sets to find an approximation to the exact value (Green-

field et al., 2005) followed by the importance sampling defuzzifier (Linda

and Manic, 2010) and a centroid defuzzifier based on the alpha-plane rep-

resentation (Liu, 2008). Another way apart from using the embedded sets

is to use the centroids of all the vertical slices. The vertical slice centroid

type-reducer (VSCTR) which was initially proposed by (John, 2000) then

detailed by (Lucas et al., 2007) does not calculate the union for all the em-

bedded sets involved in the general type-2 fuzzy sets. Although, this method

does not depend on the concept of embedded sets, it is a good approach for

practical usage. (Lucas et al., 2007). Therefore, this is an approximation

of the centroid as long as the operation of union of all embedded type-2
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Figure 2.7: The components of a type-2 fuzzy logic system (adapted from (Mendel,
2001))

fuzzy sets involved in the general type-2 fuzzy set has not been carried out.

When using other representation methods, there are few proposed methods

that have been used for this purpose. For example, a type-reducer proposed

by (Starczewski, 2009b) using triangular type-2 fuzzy sets which uses fuzzy

truth numbers where all the secondary membership functions are normal

for a unique entity in the secondary domain and convex. This type-reducer

uses the iterative KM algorithm and some interpolation operations to get an

approximate centroid for triangular type-2 fuzzy sets. Other methods that

use other representations include the one proposed in (Liu, 2008) which uses

the iterative KM algorithm under the alpha-plane representation and the

one based on z-slices in (Wagner and Hagras, 2009).

2. Defuzzification: Defuzzifier maps the reduced output type-1 fuzzy sets that

have been reduced by the type-reducer into crisp values exactly as the case of

defuzzification in type-1 fuzzy logic systems. Any defuzzification methods of

type-1 fuzzy sets can be used here.
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2.4 Learning of Fuzzy Logic Systems

2.4.1 Fuzzy Logic System Learning

One of the features of fuzzy logic systems is their ability to be built by a large number

of choices. For example, fuzzy systems can be designed to give the best output by

adapting fuzzy system structure components such as rules, inference operators, fuzzi-

fication and defuzzification methods or by adapting the numeric values of the fuzzy

system parameters. This feature enforces the need to research for the best configura-

tion of fuzzy systems to best suit specific problems. In fact, this is the area where soft

computing is applied with a wide range of methods and applications. Although optimi-

sation search algorithms such as genetic algorithms were not specifically designed for

learning, they can offer some advantages for machine learning (Herrera, 2005). When

designing a system that operates in stable conditions, there is no need for further learn-

ing or tuning as the exact mathematical model can be used while this necessity arises

in uncertain condition situations where parameters should be changed depends on the

situation (Reznik, 1997, p.153).

Many machine learning methodologies are based on a search for a good model within a

space of possible models such as the space of rule sets allowing these types of methodolo-

gies to model the learning process as a search problem (Herrera, 2005). These methods

try to get the best configuration that gives a high performance by minimising an error

function which is defined by the system behaviour or the evaluation of training example

sets (Alcala et al., 1999). In general, fuzzy systems can be seen as a system with two

components (Alcala et al., 1999):

1. The inference system which is concerned with the fuzzy inference process and

inference operators.
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2. The knowledge base (KB) which represents the knowledge about the problem

such as rules and membership values. It can be divided into two parts (Herrera,

2005):

• Data base (DB): This part contains the definitions of the fuzzy sets associated

to the linguistic terms that are involved in linguistic rules (Alcala et al.,

1999).

• Rule base (RB): This contains a collection of linguistic rules that are fired

simultaneously for the same input (Herrera, 2005).

To distinguish between learning and tuning problems, in the learning process, an elab-

orated search in the space of possible rule base (RB) or the whole knowledge base (KB)

to design the fuzzy system automatically starting from scratch and does not depend

on a predefined set of rules (Cordon et al., 2004). In the tuning “adaptation” process,

the focus on optimising the existing fuzzy system while the predefined rule base (RB)

and the preliminary data base (DB) are used within the process of finding the best

set of parameters to define the data base (DB) (Alcala et al., 1999). The tuning and

learning processes of fuzzy systems are different depending on the kind of fuzzy system

used whether it is an approximate or descriptive (linguistic) (Cordón, Herrera, Hoff-

mann and Magdalena, 2001, p.22-29). In the first approach, local semantics are used

rather than referring to common linguistic variables and each rule in the approximate

approach defines its fuzzy sets while the descriptive approach “uses linguistic labels

to refer to a common set of membership functions defined in the data base” (Cordón,

Herrera, Hoffmann and Magdalena, 2001, p.114). As a result of this, the rules in the

linguistic model normally are derived from experts and might have some restrictions

to preserve the interpretability of the rules. Some authors refers to the approximate

model as fuzzy logic systems with independent membership functions as opposed to

the conventional model (Dadone, 2001). An example of adapting (learning or tuning)

a type-1 fuzzy set defined by a Gaussian membership function is depicted in figure 2.8
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Figure 2.8: Tuning type-1 Gaussian membership function.

Figure 2.9: Tuning interval type-2 Gaussian membership function.

where the parameters of the fuzzy set are the mean and standard deviation while an

example adapting an interval type-2 set is shown in figure 2.9 where the membership

function is described by two means and one standard deviation.
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2.4.2 Methods used for learning of type-1 fuzzy logic systems

Many hybrid approaches of fuzzy systems have been proposed and researched in the

framework of soft computing. These approaches have been proposed because of the lack

of learning capabilities of the fuzzy systems (Alcala et al., 1999; Cordon et al., 2004).

Fuzzy systems are good at explaining how they reached a decision but can not auto-

matically acquire the rules or membership functions to make a decision (Goonatilake

and Khebbal, 1995, p.2). On the other hand, learning methods such as neural networks

can not explain how a decision was reached but have a good learning capability while

hybridisation overcomes the limitations of each method in one approach such as neuro-

fuzzy systems or genetic fuzzy systems (Goonatilake and Khebbal, 1995, p.2). Two of

the most known approaches for adding learning capability to fuzzy systems are genetic

algorithms and neural networks. Genetic algorithms techniques are called genetic fuzzy

systems when hybridised with fuzzy systems (Liska and Melsheimer, 1994; Hoffmann,

2001; Herrera, 2005; Kim and Kim, 2002; Cordon et al., 2004) while neural networks

techniques are known as neuro-fuzzy systems (Jang and Sun, 1995; Horikawa et al.,

1992; Jang et al., 1997; Shann and Fu, 1995). In fact, genetic algorithms are one of the

most common search algorithms used with fuzzy systems that has been applied to a wide

range of problems such as control system design, decision making, optimisation classifi-

cation, modelling and information retrieval (Hoffmann, 2001). On the other hand, fewer

researchers have studied the use of simulated annealing to learn fuzzy systems (Drack

and Zadeh, 2006). Amongst those who studied this combination (Huyghe and Hamam,

1995) who applied Simulated Annealing to optimise fuzzy logic controllers, (Garibaldi

and Ifeachor, 1999) applied simulated annealing to tune a medical fuzzy expert system,

(Liu and Yang, 2000) presented a study of using simulated annealing for learning and

tuning the membership functions, (Cordón et al., 2000) presented a method to obtain

a uniform fuzzy partition granularity that improves the fuzzy system performance by

using simulated annealing, (Drack and Zadeh, 2006) applied simulated annealing to two

complex problems in aerospace design problems for aircraft propellers and manoeuvre
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control of a satellite. (Guely et al., 1999) studied the use of simulated annealing to op-

timize the membership functions of Takagi-Sugeno membership functions and (Yanar

and Akyrek, 2011) has used Wang and Mendel algorithm and fuzzy c-means clustering

algorithm with simulated annealing to tune a linguistic Mamdani model for predicting

Mackey-Glass time series. There are a wide range of other methods used to design fuzzy

systems from other optimisation techniques to ad-hoc methods where the learning of

fuzzy rules are guided by covering criteria of the data in the training set (Alcala et al.,

1999). In 1992 and 1993, three articles appeared in the literature about designing fuzzy

logic systems parameters by using the numerical training data rather than using fixed

parameters chosen by the designer arbitrarily (Mendel, 2001, p.157). These works are

Wang-Mendel algorithm (Wang and Mendel, 1992), a neuro-fuzzy system called ANFIS

(Jang, 1993) and fuzzy neural networks with the back-propagation algorithm (Horikawa

et al., 1992). All these works reported above were based on using type-1 fuzzy sets to

build type-1 fuzzy logic systems. Many other methods used to learn fuzzy logic systems

including local search algorithms such as gradient decent (Musikasuwan et al., 2004)

and classical learning methods such as least-squares method (Mendel, 2001, p.162).

The next section will present some attempts to design type-2 fuzzy logic systems.

2.4.3 Methods used for learning of type-2 fuzzy logic systems

The advancement on research in type-2 fuzzy sets and systems encouraged many re-

searchers to apply some learning methods to type-2 fuzzy logic systems. For example:

• Type-2 fuzzy logic controllers for autonomous robots were evolved using genetic

algorithms (Wagner and Hagras, 2007).

• Type-2 fuzzy logic controllers used for a coupled-tank liquid-level control system

and evolved using genetic algorithms (Wu and Wan Tan, 2006).
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• A type-2 fuzzy system was trained by particle swarm algorithm to estimate the

blood pressure mean (Al-Jaafreh and Al-Jumaily, 2007).

• Type-2 fuzzy logic systems were designed using orthogonal least-squares and back-

propagation (Méndez and de los Angeles Hernandez, 2009).

• Type-2 fuzzy logic systems were tuned using gradient descent to predict the

Mackey-Glass time series with various levels of added noise (Musikasuwan et al.,

2004).

• Type-2 fuzzy logic systems were designed using back-propagation method to pre-

dict the Mackey-Glass time series with added noise (Mendel, 2001, p.336).

• Type-2 fuzzy logic systems were tuned using genetic algorithms to design a tra-

jectory tracking controller (Martinez et al., 2009).

There are many other research using some kind of learning or tuning to type-2 fuzzy

logic systems reported in the literature (e.g. see (Mendel, 2007)). To the best of author

knowledge, no work has been reported in the literature using simulated annealing to

design type-2 fuzzy logic systems, despite that many other search algorithms have been

used. (Miller et al., 2011) applied simulated annealing to model inventory management

using supply chain model and interval type-2 fuzzy sets but no learning or optimisation

has been carried out to these sets. In some other experiments, some manual tuning

and settings of interval or general type-2 fuzzy logic systems were used as reported by

(Coupland et al., 2006; Wagner and Hagras, 2009; Sepúlveda et al., 2007). It is indicated

from above works and many others that interval type-2 fuzzy logic system can add more

abilities to handle the uncertainties than type-1 fuzzy logic system. Although, the

manual tuning of interval type-2 fuzzy logic systems can bring some success over type-1

fuzzy logic system where the third dimension is fixed, the automatic design of interval

type-2 fuzzy logic systems can add extra fine tuning to model problems. Although,

automated methods can add more fine tuning to expert designs, there is no rational
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basis for choosing secondary membership grades (the third dimension ) in general type-2

fuzzy sets (Mendel, 2001, p.302). This issue reinforces the need for automated methods

in such designs which will be discussed in more details in Chapters 5 and 6.

Although, type-2 fuzzy logic is a growing research topic with much evidence of successful

applications (John and Coupland, 2007), up to now, almost all developments type-

2 fuzzy logic systems were based on interval type-2 fuzzy logic systems with some

exceptions related to some works using different representations of type-2 sets and

systems such as geometric type-2 fuzzy logic systems (Coupland and John, 2007), alpha-

planes (Mendel et al., 2009), alpha cuts (Hamrawi et al., 2010) and Z-slices (Wagner and

Hagras, 2010a; Christian Wagner, 2009). The ease of computation associated with the

interval form of type-2 sets is the main driver for the wide usage of interval type-2 set and

systems compared to the generalised form. One attempt to design general type-2 sets

based on zSlices representation was proposed in (Christian Wagner, 2009) where survey

data and device characteristics were used to build zSlices sets automatically. Another

attempt to learn general type-2 fuzzy logic systems using alpha-plane representation has

been introduced in (Mendel et al., 2009). Some other works using some neural networks

concepts or classification algorithms such as: type 2 Adaptive Network Based Fuzzy

Inference System (ANFIS) (John and Czarnecki, 1998), general type-2 fuzzy neural

network (GT2FNN) (Jeng et al., 2009) and fuzzy C-means algorithm with a model

known as “efficient triangular type-2 fuzzy logic system” (Starczewski, 2009b). To the

best of the author’s knowledge, no attempt to employ a learning method on general

type-2 fuzzy logic systems using the vertical-slice representation has been made. The

next section will introduce the simulated annealing algorithm.

2.5 Simulated Annealing Algorithm

The concept of annealing in the optimisation field was introduced by Kirkpatrick et

al in (Kirkpatrick et al., 1983). The simulated annealing algorithm is a simple and
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general algorithm for finding global minima by simulating behaviours of some physical

processes (Salamon et al., 2002, p.6). It uses a randomised search method based on

the Metropolis algorithm. With some restraints, many comparative studies for solving

problems such as job shop scheduling and travelling salesman suggest that simulated

annealing can outperform most other local search algorithms in terms of effectiveness

and can find good solutions for a wide range of problems but normally with the cost of

higher running costs (Aarts and Eikelder, 2002).

We now define the simulated annealing algorithm. Let s be the current state and

N(s) be a neighbourhood of s that includes alternative states. By selecting one state

s′ ∈ N(s) and computing the difference between the cost of the current state and the

cost of the selected state as d = f(s′)− f(s), s′ is chosen as the current state based on

Metropolis criterion in two cases:

• d 6 0 means the new state has a smaller or equal cost, then s′ is chosen as the

current state as down-hill and equal moves are always accepted.

• d > 0 and the probability of accepting s′ is larger than a random value Rnd such

that e−d/T > Rnd then s′ is chosen as the current state. T is a control parameter

known as Temperature which is gradually decreased during the search process

making the algorithm more greedy as the probability of accepting uphill moves

decreases over time. Rnd is a randomly generated number where 0 < Rnd < 1.

Accepting uphill moves is important for the algorithm to avoid being stuck in a

local minima.

In the third case where d > 0 and the probability is lower than the random value

e−d/T 6 Rnd, no moves are accepted and the current state s continues to be the cur-

rent solution. When starting with a large cooling parameter, large deteriorations can

be accepted. Then, as the temperature decreases, smaller deteriorations are accepted

until the temperature approaches zero when no deteriorations are accepted. Therefore,
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adequate temperature scheduling is important to optimise the search. Simulated an-

nealing can be implemented to find the optimal solution by allowing infinite number of

transitions or can be implemented to find a nearly optimal value within a finite time

where the cooling schedule is specified by four components (Aarts and Eikelder, 2002):

1. Initial value of temperature.

2. A function to decrease temperature value gradually.

3. A final temperature value.

4. The length of each homogeneous Markov chains. A Markov chain is a sequence

of trials where the probability of the trial outcome depends on the previous trial

outcome only and called homogeneous when the transition probabilities do not de-

pend on the trial number (Aarts and Lenstra, 2003, p.98). Homogeneous Markov

chains are used to model the cooling schedule where the temperature is updated

for each Markov chain. Therefore, at each Markov chain, a specific number of

iterations is carried out.

The choice of good simulated annealing parameters is important for the success of

simulated annealing. For example, small initial temperatures could cause the algorithm

to get stuck in local minimas as the first stages of the search are supposed to aim

for exploration of solution space while large ones could result in random search and

excessive running times. In addition, an appropriate cooling schedule is important

for the same reason as fast cooling causes getting stuck in local minimas and slow

cooling make the algorithm very slow. Although, simulated annealing has been used

in combinatorial optimisation where the search space is discrete, it can be used with

continuous search spaces which require some form of discretisation of the search space

(Ingber, 1993). In fuzzy systems, membership function parameters are continuous and

the search space is discretised when optimising these parameters. Choosing the form of

discretisation of these parameters constitutes the neighbourhood representation which
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is another important issue when using simulated annealing. One of the criticisms of the

simulated annealing approach is the difficulty of fine tuning the simulated annealing

parameters (Ingber, 1993). For example, large step sizes allow for more exploration

capabilities and help finding the optimal region but then the algorithm behaves badly

and never reaches the peak of the optimum (Nolle et al., 2001). On the other hand,

small step sizes are used to avoid this oscillatory behaviour in the final stages of the

optimisation but this affects the convergence speed of the algorithm (Dadone, 2001). In

addition, if the initial state is too far from the global optima, the algorithm might not

reach the global optima before the temperature freezes the algorithm to the nearest local

optima (Nolle et al., 2001). While there are some solutions to this problem by increasing

the length of the Markov chains, this is impractical in some real-world applications

with time constraints (Nolle et al., 2001). In the fuzzy system optimisation literature,

few researchers have used adaptive step sizes such as (Jang, 1993) for type-1 fuzzy

systems. The most of the approaches reported in the literature use small fixed step

sizes (Dadone, 2001). In continuous optimisation problems, the adjustment of the

neighbourhood range for simulated annealing might be important (Miki et al., 2002).

The step sizes should not be all equal for all inputs rather they should be chosen based

on its effects to the objective function (Locatelli, 2002). One of the methods used to

determine the step size during the annealing process was proposed by (Nolle et al., 2001)

which starts by using large step sizes and decrease them gradually. One of the methods

to determine the initial temperature value proposed by (White, 1984) is to choose the

initial temperature value within the standard deviation of the mean cost of a number of

moves. When using finite Markov chains to model simulated annealing mathematically,

the temperature is reduced once for each Markov chain while the length of each chain

should be related to the size of the neighbourhood in the problem (Aarts and Eikelder,

2002).
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2.6 Summary

This chapter introduced the existing literature on the methods and concepts discussed

within the thesis. Four main methods and concepts are described. We first presented an

introduction to the theory of fuzzy sets and fuzzy logic systems of type-1. Then, type-2

fuzzy logic systems were introduced as an extension to type-1 fuzzy logic systems. Both

models of type-2 fuzzy sets, interval and general type-2 fuzzy sets and systems have

been described with an overview of the last advances of research that tackled some of

their issues. These issues include some attempts to reduce the computations needed

for representation, operations and type-reduction of type-2 fuzzy sets. The issue of

uncertainty handling between type-1 and type-2 fuzzy logic systems has been discussed.

The third part highlighted some of the learning issues of fuzzy logic systems and how

learning and optimisation methods can contribute to the design of type-1 and type-2

fuzzy logic systems. An overview of some of the well known learning methods of type-1

and type-2 fuzzy logic systems has been drawn. The final part explained the simulated

annealing algorithm and some of its configuration issues. The next chapter will show

the work carried out using simulated annealing and type-1 fuzzy logic systems.
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Learning Type-1 Fuzzy Logic

Systems using Simulated

Annealing

3.1 Introduction

This chapter presents the work for learning type-1 fuzzy logic systems using simulated

annealing to forecast time-series. It will describe some issues related to this combination

and shows how the combination is working. Many of these issues are needed for the next

chapters as type-1 fuzzy logic system is very similar to type-2 fuzzy logic system in its

structure and components. In addition, the experimentation settings and results for the

use of simulated annealing with two fuzzy logic systems models (Mamdani and Takagi-

Sugeno-Kang (TSK)) and under two fuzzification models (singleton and non-singleton

fuzzifications ) are detailed. These models are used to predict the well known Mackey-

Glass time series with six different measurement noise levels representing different levels

of uncertainties. The results of the proposed methods are compared by their ability to
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handle uncertainty as well as comparing the noise-free time series with other works in

the literature. Extra experiments and analysis on type-1 fuzzy logic systems will be

presented in the third chapter for comparison and consistency.

3.2 Issues Related to The combination of Fuzzy Logic Sys-

tems and Simulated Annealing

This thesis compares across type-1, interval and general type-2 fuzzy logic systems with

one optimisation algorithm which is simulated annealing. One of the motivations for

using simulated annealing with fuzzy systems is that they do not require the existence

of mathematical properties such as differentiability in the problem which allows the

possibility of using all fuzzy structure components choices including non-differentiable

t-norms and non-differentiable membership functions. Also, simulated annealing has

the ability to avoid getting trapped in local optima and find global optima due to

its mechanism of accepting higher-cost states with some probability. Although, the

combination might have more complexity and longer search time than local search

algorithms, it is likely to find the global or near global optima of the configuration of

fuzzy logic systems using simulated annealing more than local search approaches. This

is due to the ability of simulated annealing to avoid local optima by accepting some

bad moves in order to explore the problem space. In addition, simulated annealing

can suit high dimensionality problems as it scales well with the increase of variable

numbers which allows simulated annealing to be a good candidate for fuzzy logic systems

optimisation (Drack and Zadeh, 2006). Also, it is able to handle cost functions with

different degrees of non-linearities, discontinuities, and stochasticity (Ingber, 1993).

The problem of optimising membership functions of the fuzzy logic system in order to

minimise the objective function is a complex problem due to the following (Guely et al.,

1999):
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• The object function is not derivable everywhere. For example due to the use of

minimum t-norm or triangular membership functions.

• The object function is not continuous everywhere. For example when membership

functions do not overlap.

• The number of parameters are large, increasing the dimensionality of the solution

space. For example a fuzzy logic system with 8 rules and 4 inputs and one output

might have 80 − 160 parameters when two to four parameters are used for each

fuzzy set.

As a result of these issues of complexity, a global search method such as simulated

annealing is desired for this problem. Among global optimisation algorithms, two main

classes of algorithms are known (Oliveira et al., 2012, p.22). The first is the single-

point optimisation algorithms where the algorithm maintains one solution at a time.

The other class is population-based optimisation algorithms where a population of in-

dividuals are maintained in an instantaneous time. The basic and well known form of

simulated annealing is an example of the single-point optimisation algorithms while ge-

netic algorithms and particle swarm optimisation are examples of the population-based

optimisation algorithms. The first class has the property of describing a trajectory in

the search space during the whole optimisation process (Oliveira et al., 2012, p.22).

Although, the second class can exploit parallel computing, some forms of simulated an-

nealing provide this ability using parallel simulated annealing techniques (Ram et al.,

1996)(Onbaşoğlu and Özdamar, 2001). Unfortunately, due to the higher complexity

in type-2 fuzzy logic systems especially when using general type-2 fuzzy sets, the use

of parallel computing algorithms require more computations than single-point algo-

rithms at each instantaneous time due to the need to compute the whole population

rather than one individual. Therefore, single-point optimisation algorithms can suit

some cases with on-line learning better than parallel computing. In addition, the use of

single-point optimisation algorithms is considered as a wise choice in some cases when
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tuning an existing linguistic expert fuzzy logic system. This is due to the need to pre-

serve interpretability and the global structure of the experts fuzzy logic system which

is difficult to maintain by population-based algorithms compared to the first class. To

exploit parallel computing in other cases to reduce the whole experimentation time,

parallel simulated annealing techniques can be used.

On the other hand, the simulated annealing convergence normally requires an expo-

nential time which causes the algorithm to be impractical in some cases (Aarts and

Lenstra, 2003, p.14). Also, the difficulty of determining suitable simulated annealing

parameters such as a temperature scheduling and a good representation of the prob-

lem neighbourhood could cause the algorithm to yield undesired performance. One of

the criticisms of simulated annealing is the difficulty to fine tune simulated annealing

parameters and therefore quite time-consuming for developers to find an optimal fit

(Ingber, 1993). The formalisations and configurations for simulated annealing to de-

sign fuzzy logic systems can be chosen from a large number of choices proposed on

the literature. Here, we show some of these configurations when designing fuzzy logic

systems parameters as stated in these points:

3.2.1 Neighbourhood representation

The parameters of the optimised fuzzy logic system when optimising its data-base

(DB) are the parameters of the fuzzy sets included within rules. An example of these

parameters are the mean and standard deviation of a Gaussian fuzzy set. Therefore,

the neighbourhood representation is defined by moving one or more of these parameters

to one or more directions by a defined move class. For example, by adding a defined

step size to one or more of the current parameter’s values to a specific direction. When

doing so, the outputs of the fuzzy logic system might be changed which then affects the

objective function value. However, the change depends on many factors including input

variables, fuzzification methods, the number of rules, other rules firing levels, inference
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engine operators and the defuzzification method. These factors can affect outputs in

which the output might not change and both states have the same objective function

value. The use of move constraints in neighbourhood representation including left and

right bounds of membership functions can be helpful in cases where some linguistic

properties such as interpretation have to be preserved. (De Oliveira, 1999) presented a

methodology to achieve this objective and proposed some of these constraints. However,

in cases where no predefined linguistic rules exist, the so called approximate fuzzy logic

system, the use of these constraints might be in less need.

As stated in the previous chapter, the move class defined using a step size has an

important role in the simulated annealing search. In fuzzy logic system optimisation

literature, few researchers have used adaptive step sizes such as (Jang, 1993) for type-1

fuzzy systems. The most of the approaches reported in the literature were using small

fixed step sizes (Dadone, 2001). The step sizes should not be all equal for all inputs

rather it should be chosen based on its effects on the objective function (Locatelli,

2002). One way to apply this in data-driven fuzzy logic systems is to have a step size

proportional to each input space in which all its fuzzy sets having a step size which

might be different from the other inputs of the fuzzy logic system. The same issue is

applied to the output fuzzy sets. Some of the issues related to step sizes of simulated

annealing in continuous space have been discussed in (Locatelli, 2000) and (Miki et al.,

2002).

3.2.2 Initial solution

Simulated annealing requires an initial solution to start with. The initial solution should

be different each time simulated annealing is applied to the same fuzzy logic system to

allow more explorations to take place especially when the first configurations of simu-

lated annealing are dependent on the initial solution such as the initial temperature.
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However, in general, the settings of simulated annealing should allow exploring the so-

lution space in the first stages of the search. This objective can be achieved by allowing

enough search before getting to small temperature values where no wide exploration is

allowed. Some researchers used some quick algorithms to build the initial fuzzy logic

systems before applying simulated annealing search. For example, (Yanar and Akyrek,

2011) has used the Wang and Mendel algorithm and fuzzy c-means clustering algorithm

to get initial fuzzy logic systems before applying simulated annealing to tune a linguis-

tic Mamdani model for predicting Mackey-Glass time series. However, these techniques

normally can bring local minima solutions requiring simulated annealing initial config-

urations to account for this issue. Another way of getting the initial input membership

functions for an approximate fuzzy logic system is to divide the input space for each

input variable into partitions and allow enough overlapping between them (Guely et al.,

1999). The initial output membership functions can be chosen randomly (Guely et al.,

1999) (Mendel, 2001, p.171).

3.2.3 Objective function

In general, any objective function represents how the fuzzy logic systems’ outputs are

close to the optimal outputs can be used. In some cases, an error function is chosen

as an objective function. Error functions are calculated from the outputs of the fuzzy

logic systems compared to the optimal desired outputs (targets) using statistical metrics

such as; MSE (mean square errors), RMSE (root mean square error) and SMAPLE

(symmetric mean absolute percentage error). RMSE is desired in some cases because

it is measured in the same scale as the data (Hyndman and Koehler, 2006). The RMSE

as the objective function is defined as follows:

RMSE =

√√√√ 1

n

n∑
i

(f(x)− f̂(x))2 (3.1)
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Where n is the number of data samples in the observed data set, f(x) is the output of

the trained fuzzy logic system and f̂(x) is the target output that the trained system

aims to approach.

3.2.4 Initial Temperature

Small initial temperatures could cause the algorithm to get stuck in a local minima as

the first stages of the search is supposed to aim for exploration of solution space while

large ones could result in random search and excessive running times when accompanied

with a slow cooling process. One of the methods to determine the initial temperature

value proposed in (White, 1984) is to choose the initial temperature value within the

standard deviation of the mean cost of a number of moves. This is achieved by moving

to another state and evaluating its cost and returning to the initial state for a number

of times. Then, the standard deviation of these states costs is calculated and assigned

to the initial temperature.

3.2.5 Cooling schedule and cooling rates

An appropriate cooling schedule is important for the the success of simulated anneal-

ing as fast cooling causes getting stuck in a local minima and slow cooling make the

convergence very slow. Having a suitable static or dynamic cooling rate will help simu-

lated annealing converge to a global minima and avoid getting stuck in a local minima.

Normally, practitioners use a static cooling rate ω normally chosen between 0.8− 0.99

(Aarts and Eikelder, 2002) such that :

Ti+1 = Ti ∗ ω. (3.2)

Static cooling values close to 1 allow more exploration for the search space while smaller

values allow more greedy search and might not explore the whole search space.
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InitialState = InitialiseParameters()
BestState = InitialState
for 1 to MarkovChainsNumber do

for 1 to MarkovChainLength do
s′ = MoveToNighbour(FuzzySysParameters)
if cost(s′) ≤ cost(BestState) then
BestState = s′

else
if exp((cost(s′)− cost(s))/Temperature) ≥ Rnd) then
BestState = s′

end if
end if

end for
Temperature = Temperature ∗ CoolingRate

end for

Figure 3.1: pseudocode of simulated annealing algorithm to design fuzzy systems

3.2.6 Markov chains configurations

When using Markov chains to model simulated annealing iterations mathematically, the

temperature is reduced once for each Markov chain. The length of each chain should

be related to the size of the neighbourhood in the problem (Aarts and Eikelder, 2002).

The neighbourhood size in our case is the number of all fuzzy logic systems parameters

involved in the optimisation process multiplied by two directions.

3.2.7 Stopping criterion

Typical stopping criterion of simulated annealing includes, stopping at small objective

function values, stopping at lower temperature values, stopping after enough number of

iterations or Markov chains and stopping when the changes of energy in the objective

function are sufficiently small. The choice of stopping criterion is difficult as the optimal

objective function is unknown in many practices (Garibaldi and Ifeachor, 1999).

The pseudocode of simulated annealing algorithm configurations to design fuzzy logic

systems is shown in Figure 3.1.
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3.3 Experimental Data

3.3.1 Mackey-Glass time series

The Mackey-Glass Time Series is a chaotic time series proposed in (Mackey and Glass,

1977). It is obtained from this non-linear equation :

dx(t)

dt
=

a ∗ x(t− τ)

1 + xn(t− τ)
− b ∗ x(t)

Where a, b and n are constant real numbers, t is the current time and τ is the difference

between the current time and the previous time t − τ . To obtain the simulated data,

the equation can be discretised using the Fourth-Order Runge-Kutta method. In the

case where τ > 17, it is known to exhibit chaos and has become one of the benchmark

problems in soft computing (Mendel, 2001, p.116).
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3.3.2 Mackey-Glass time series with added noise

Adding some noise to the time series produces more challenges to the prediction job. In

this experiment, noisy time series will be used to test our models. The noisy Mackey-

Glass time series will be generated by adding noise to Mackey-Glass time series that

are generated as described above. The amount of noise will be in different levels added

to all inputs. The noise is measured by signal-to-noise ratio (SNR).

3.4 Methodology

The experiment can be divided into four steps; generating time series, adding noise to

the time series, constructing the initial fuzzy logic system and learning the fuzzy logic

system parameters. The experiment is more illustrated by the flowchart in figure 3.3.

3.4.1 Generating data sets

• The noise-free time series is generated with the following parameters : a = 0.2

, b = 0.1 , τ = 17 and n = 10. The Runge-Kutta method is used to obtain the

values of x(t) at each time point with a time step of 0.1 and the initial condition

x(0) = 1.2 where x(t) = 0 for t < 0. For comparative purposes, these settings

for generating the time series are the same as (Jang, 1993). The input-output

samples are extracted in the form x(t − 18), x(t − 12), x(t − 6) and x(t) where

t = 118 to t = 1117 using a step size of 6. A sample of the generated noise-free

data are depicted in figure 3.2. Using a step size of 6, the input values to the

fuzzy system are the previous data points x(t − 18), x(t − 12), x(t − 6) and x(t)

while the output from the fuzzy system is the predicted value x(t + 6). Four

initial input values x(114) and x(115) and x(116) and x(117) are used to predict

the first four training outputs.
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• The noisy time series is generated using the same procedure above followed by

adding different levels of measurement noise. This noise is added to each of the

four inputs and no noise added to the outputs. The noise is measured by signal-

to-noise ratio (SNR) which is used to measure the amount of noise compared to

the original data. Therefore, the smaller SNR means larger noise. The different

levels of noise are :

level 1 : SNR=0 db (decibel).

level 2 : SNR=10 db.

level 3 : SNR=20 db.

level 4 : SNR=30 db.

level 5 : SNR=40 db.

level 6 : noise-free.

Samples of the generated noisy data are depicted in figures 3.4,3.5,3.6,3.7 and 3.8 where

a sample of the free-noise data is depicted in figure 3.2. Then the generated data are

divided into 500 data points for training and the remaining 500 data points for testing.

3.4.2 Designing and learning of fuzzy logic systems

The fuzzy logic system has four-inputs and one-output. Both Mamdani and first-

order Takagi-Sugeno-Kang (TSK) models consist of four dependent input fuzzy sets

A1, A2, A3 and A4. Unlike TSK model, Mamdani model has one independent output

fuzzy set Bl for each rule. Gaussian membership functions were chosen to define the

fuzzy sets. Any other types of membership functions can be chosen but we are interested

in reducing the rule-base complexity and computations time as Gaussian type has only

two parameters instead of three in triangular type or four as the case in trapezoidal

type. The parameters of the Gaussian membership functions are the mean m and the
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Figure 3.3: A flowchart of the method of using simulated annealing with fuzzy logic
system in modelling applications
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Figure 3.4: The first input of the time series when SNR=0 (Level 1)

standard deviation σ which is defined as follows:

f̃(x) = exp−(
x−m
2σ

)2 (3.3)

All the means and standard deviations are initially set for all the input fuzzy sets by

dividing the input space into four fuzzy sets and enabling enough overlapping between

them. The fuzzification process is based on the minimum t-norm. In the singleton fuzzi-

fication, the first operation is the fuzzification followed by the implication where both

using minimum t-norm. The non-singleton fuzzification needs a pre-filtering process

using a variability fuzzy set to model the input measurements for each input (Mendel,

2001, p. 188). The variability set is defined using a Gaussian membership function with

a standard deviation (spread) proportional to the noise level as suggested by (Mendel,

2001, p. 188). The standard deviation for the variability set for each input is equal to
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the standard deviation for all noisy input data related to that input and stays fixed

during the run. The minimum t-norm is chosen for pre-filtering, non-singleton fuzzi-

fication and implication. The training procedure aims to learn the parameters of the

antecedent parts and the consequent parts of the fuzzy system rules. Then, the found

parameters are used to predict the next 500 testing data points. By using four inputs

and two fuzzy sets for each input, we end up with 16 rules and 8 input fuzzy sets rep-

resenting all possible combinations of input values with input fuzzy sets. In Mamdani,

each rule is linked with 1 output set while TSK model has 5 coefficients c0, c1, c2, c3

and c4 in each rule. Therefore, there are 8 means and 8 standard deviations in the an-

tecedent part linked with all these rules as well as one mean and one standard deviation

for Mamdani model. The total number of optimised parameters in Mamdani model is

8 + 8 + (16 ∗ 2) = 48 while in TSK is 8 + 8 + (5 ∗ 16) = 96. The objective is to find the

best set of parameters for all the rules.
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The optimisation process is done using simulated annealing that searches for the best

configuration of the parameters by trying to modify one parameter each time and

evaluate the cost of the new state which is measured by Root Mean Square Error

(RMSE). The simulated algorithm is initialised with a temperature that equals to the

standard deviation of mean of RMSE’s for 100 runs for the 500 training points. The

cooling schedule is based on a cooling rate of 0.999 updated for each Markov chain

which allows a slow cooling process. Each Markov chain has a length related to the

number of variables in the search space. The search ends after 3 hours of time or if the

changes of the energy in the objective function are sufficiently small meaning that no

improvements appeared for a large number of iterations. The neighbouring states for

a current state are chosen randomly by :

• TSK : Adding a small number 0.002 to one of the 80 coefficients (consequent
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Figure 3.7: The first input of the time series when SNR=30 (Level 4)

part parameters) in the current state or adding a small number to one of the 16

antecedent parameters. This value is related to the difference between maximum

and minimum values in the input data and = max-min/300.

• Mamdani : Adding a small number to one of the 16 antecedent parameters or the

32 consequent parameters. This value is related to the maximum and minimum

value in the data and = max-min/300.

Then, the new state is evaluated by examining the 500 data points outputs. The exper-

iment has been carried out 24 times for Mamdani model and 24 times for TSK model.

Among them 24 times for each fuzzification method (singleton and non-singleton). The

average RMSE’s for the testing samples have been calculated.
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Figure 3.8: The first input of the time series when SNR=40 (Level 5)

3.5 Results and Discussion

It is shown from the results in Table 3.1 and Figure 3.9 that non-singleton systems

handled the noisy data better than the singleton systems in the majority of cases

except one case in the third level when singleton Mamdani was better than TSK non-

singleton while the worse results for noisy cases were obtained by singleton systems in

the majority of cases. On the other hand, in the absence of noise, the singleton system

performs better than the non-singleton system. This might be explained by the fact

that the non-singleton models still account for the input measurement uncertainty which

does not exist in this case. Therefore, the best way to handle such situations by the non-

singleton models is to change the standard deviation of the variability fuzzy set to zero

which exactly converts it to a singleton system. These findings agree with some previous

findings about the ability of non-singleton type-1 systems to handle uncertainty better
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than the singleton systems in uncertain inputs situations (Mouzouris and Mendel, 1994)

(Mendel, 2001, p. 186) and (Musikasuwan et al., 2004). Also, it is observed that the

Mamdani non-singleton performance outperforms TSK in the higher noise levels from

1 to 4 while TSK performs well as the noise reduced especially for singleton systems.

However, the non-singleton models require more computations than singleton models

due to the extra operation in the fuzzification stage. It is important to mention that

these experiments are based on one random generation of the added noise as another

generation will produce different data which makes it difficult to compare the results

of the prediction by simulated annealing and fuzzy systems with other methods for

noisy Mackey-Glass time series (levels 1-5). In level 6 where no noise has been added,

we can compare our results with some of the literature results. To show how good

the combination, the comparison between our models results with others in Table 3.2

shows that our result of (RMSE)= 0.009−0.0138 have achieved good results compared

to the best results which were obtained by ANFIS,GEFREX and Kukolj despite the

general structure that our method has using a simple combination of a general search

algorithm and a fuzzy system compared to the more complicated structures for ANFIS,

Kukolj and GEFREX methods. Note that the fuzzy system model and structure has

a notable impact on the performance of the fuzzy system and normally it is chosen

heuristically. The comparison provided here is to show how good simulated annealing

can be with fuzzy logic systems but not valid for an accurate comparison due to the

differences between the the fuzzy system models and structures.

3.6 Summary

In this chapter, the work of learning type-1 fuzzy logic systems using simulated anneal-

ing has been presented and applied to a forecasting problem. The chapter discussed

some issues related to this combination in more details. These issues include; the ratio-

nale for choosing this combination, the problem of learning fuzzy logic systems from an
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Table 3.1: The forecasting results for Mackey-Glass time series with different levels
of added noise

Fuzzy Model Fuzzification Level SNR RMSE average

Mamdani non-singleton 1 0 0.2039

TSK non-singleton 1 0 0.2081

Mamdani singleton 1 0 0.2104

TSK singleton 1 0 0.3273

Mamdani non-singleton 2 10 0.1334

TSK non-singleton 2 10 0.1387

Mamdani singleton 2 10 0.1394

TSK singleton 2 10 0.1549

Mamdani non-singleton 3 20 0.0665

Mamdani singleton 3 20 0.0670

TSK non-singleton 3 20 0.0694

TSK singleton 3 20 0.0777

Mamdani non-singleton 4 30 0.0342

TSK non-singleton 4 30 0.0349

TSK singleton 4 30 0.0352

Mamdani singleton 4 30 0.0401

TSK non-singleton 5 40 0.0157

Mamdani non-singleton 5 40 0.0197

Mamdani singleton 5 40 0.0326

TSK singleton 5 40 0.0435

TSK singleton 6 free 0.0090

Mamdani singleton 6 free 0.0093

TSK non-singleton 6 free 0.0104

Mamdani non-singleton 6 free 0.0138

optimisation perspective, how the two methods are combined in practise and some of

the configurations of simulated annealing to suit fuzzy logic systems optimisation. In

addition, the experiments for the use of simulated annealing with two fuzzy logic sys-

tems models (Mamdani and Takagi-Sugeno-Kang (TSK)) and under two fuzzification

models (singleton and non-singleton fuzzifications ) are carried out followed by their

results and analysis. Theses models are used to predict the well known Mackey-Glass

time series with six different noise levels representing different levels of uncertainties.

The results of the proposed methods are compared by their ability to handle uncertainty

as well as comparing the noisy free time series with other works in the literature. The
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Table 3.2: Results comparison for predicting Mackey-Glass time series

Method RMSE

Wang and Mendel (Lin and Lin, 1997) 0.08
Lin and Lin/FALCON-ART (Lin and Lin, 1997) 0.04
Kim and Kim/ GA Ensemble (Kim and Kim, 2002) 0.026
Juang and Lin/SONFIN (Juang and Lin, 1998) 0.018
Lo and Yang/TSK model (Lo and Yang, 1999) 0.0161
Russo / GEFREX (GA + NN) (Russo, 2000) 0.0061
Kukolj / Fuzzy cluster + LS + WRLS (Kukolj, 2002) 0.0061
Jang / ANFIS (Jang, 1993) 0.0015
This Model (TSK-singleton) 0.0090
This Model (Mamdani-singleton) 0.0093
This Model (TSK-non-singleton) 0.0104
This Model (Mamdani-non-singleton) 0.0138

combination exhibited good performance compared to other methods on the literature.

In addition, both Mamdani and TSK models have been compared in their ability to

handle uncertainty in the form of uncertain inputs using singleton and non-singleton

fuzzification. The results show the ability for non-singleton systems to handle noisy

data better than the singleton systems in the majority of cases while the worse results

for noisy data were obtained by singleton systems in the majority of cases. In this chap-

ter, a description of the Mackey-Glass time series problems with and without noise that

were applied in this chapter is presented which will be needed in next chapters. Extra

experiments and analysis on type-1 fuzzy logic systems will be presented in the Chapter

4 with interval type-2 fuzzy logic systems for comparison and consistency purposes.
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Figure 3.9: The forecasting results of simulated annealing with fuzzy logic systems
for all noise levels.
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Chapter 4

Learning Interval Type-2 Fuzzy

Logic Systems Using Simulated

Annealing

4.1 Introduction

This chapter will report the work of using simulated annealing and interval type-2 fuzzy

logic system to provide more efficient systems to model uncertainty. In addition, both

interval type-2 fuzzy logic system and type-1 fuzzy logic system are used to model four

problems. These are noise-free and noisy Mackey-Glass time series forecasting (Mackey

and Glass, 1977) and two real world problems which are the estimation of the low

voltage electrical line length in rural towns and the estimation of the medium voltage

electrical line maintenance cost (Cordón et al., 1999). Simulated annealing searches for

the best configuration of the type-1 and interval type-2 fuzzy logic system parameters

of the antecedent and the consequent parts of the rules for a Mamdani model. Detailed

analysis and conclusions for the accuracy, speed and convergence of both models are
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drawn. The results of using interval type-2 fuzzy logic systems are compared to the

results of using type-1 fuzzy logic systems where it shows encouraging results for interval

type-2 fuzzy logic systems. The chapter starts by explaining the differences when using

simulated annealing with both fuzzy models followed by the experimental data and

methodology. Then, the results are analysed and conclusions are drawn.

4.2 Issues Related to The Combination of Type-2 Fuzzy

Logic Systems and Simulated Annealing

Interval type-2 fuzzy logic system is a rule based system that is similar to a type-1 fuzzy

logic system in terms of its structure and components as described in Section 2.2.3.

The only differences are that an interval type-2 fuzzy logic system uses type-2 fuzzy

sets with its operations and has an extra output process component called the type-

reducer before defuzzification. Therefore, the optimisation (learning) process is mainly

the same as the one used with type-1 fuzzy logic systems. However, due to the extra

parameters and computations needed when using interval type-2 fuzzy sets and systems,

the time needed for the search process is normally longer. The problem of optimising the

membership functions of interval type-2 fuzzy logic systems is more complex than type-

1 fuzzy logic systems due to the extra parameters associated normally with its fuzzy

sets. For instance, a triangular type-1 fuzzy set is defined using 3 parameters where it

is defined using 5 or 6 parameters in interval type-2 fuzzy set. The extra parameters

add extra dimensions to the solution space and require more searching process to find

a good solution. The differences in the operations and the defuzzification stage do not

affect the way that simulated annealing is used but they add more computations inside

the evaluation process for the objective function every time the interval type-2 fuzzy

logic system is evaluated. The other details for using simulated annealing with interval

type-2 fuzzy logic systems are the same as those reported in Chapter 3 including how

the whole combination is used to model problems. Therefore, this information is not
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repeated here. The rest of the chapter will report the experimentation data, settings

and results of using both systems to model four problems.

4.3 Methodology

In these experiments, simulated annealing will be used to design type-1 and interval

type-2 fuzzy logic systems. The proposed method will be applied to four bench-mark

problems. The experiment can be divided into three steps : preparing data, construct-

ing the initial fuzzy system and optimising the fuzzy system parameters.

4.3.1 Experimental data

4.3.1.1 Mackey-Glass time series

The Mackey-Glass time series is a chaotic time series proposed in (Mackey and Glass,

1977). It has been described in section 3.3.1. To create the time series, firstly, the

noise-free time series is generated with the following parameters : a = 0.2 , b = 0.1

, τ = 17 and n = 10. The Runge-Kutta method is used to obtain the values of

x(t) at each time point with a time step of 0.1 and the initial condition x(0) = 1.2

where x(t) = 0 for t < 0. For comparative purposes, these settings for generating

the time series are the same as other authors such as (Jang, 1993; Russo, 2000; Kim

and Kim, 2002; Kukolj, 2002). The input-output samples are extracted in the form

x(t − 18), x(t − 12), x(t − 6) and x(t) where t = 118 to t = 1117 using a step size

of 6. A sample of the generated noise-free data are depicted in figure 3.2. Then

the generated data are divided into 500 data points for training and the remaining

500 data points for testing. Using a step size of 6, the input values to the fuzzy

system are the previous data points x(t − 18), x(t − 12), x(t − 6) and x(t) while the

output from the fuzzy system is the predicted value x(t+ 6). Four initial input values
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x(114) and x(115) and x(116) and x(117) are used to predict the first four training

outputs.

4.3.1.2 Mackey-Glass time series with added noise

Adding some noise to the time series produces more difficulties to model time-series. In

this experiment, a noisy time series will be used to test our models. The noisy Mackey-

Glass time series will be generated by adding noise to Mackey-Glass time series that

are generated as described above. The amount of noise will be 20 db added to all inputs

and outputs. The noise is measured by signal-to-noise ratio (SNR). A sample of the

noisy data is depicted in figure 4.1.
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Figure 4.1: A sample Mackey-Glass time series when SNR=20 with the original
signal.
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4.3.1.3 Estimation of the low voltage electrical line length in rural towns

This problem and the next one are bench-mark real world problems in fuzzy logic

community proposed in (Cordón et al., 1999). The first is concerned with finding a

model that estimates the total length of low voltage line installed in a rural town using

some available information. The data consists of 495 samples in which the real data was

measured by a Spanish company. Each sample has two inputs which are the number of

inhabitants in the town and the mean of the distances from the centre of the town to the

three furthest clients in it while the output is the estimated length of low-voltage line.

The data set has been taken from (Casillas, 2011). The data samples were randomly

divided into two sets labelled training and testing sets which are randomly selected

from the whole sample as reported in (Cordón, Herrera and Villar, 2001) and (Cordón

et al., 2002). As with other authors, 396 samples are used for training while the other

99 samples are used for testing.

4.3.1.4 Estimation of the medium voltage electrical line maintenance cost

The aim of this application is to estimate the minimum maintenance costs of the

medium voltage electrical line based on a model of the optimal electrical network for

some Spanish towns (Cordón et al., 1999). The problem has four input variables: sum

of the lengths of all streets in the town, total area of the town, area that is occupied by

buildings, and energy supply to the town while the output is the minimum maintenance

cost. The data set consists of 1056 samples and has been taken from (Casillas, 2011).

The data samples were randomly divided into two sets labelled training and testing sets

which are randomly selected from the whole sample as reported in (Cordón, Herrera

and Villar, 2001) and (Cordón et al., 2002). As with other authors, 845 samples are

used for training while the other 211 samples are used for testing.
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4.3.2 The initial fuzzy logic systems

Two fuzzy systems have been chosen: a type-1 fuzzy logic system and an interval type-2

fuzzy logic system. The fuzzy model consists of a number of independent input fuzzy

sets and one independent output fuzzy set for each rule. For the maintenance cost and

Mackey-Glass problems, there are 16 rules while each rule is characterised by 5 fuzzy

sets (4 antecedent fuzzy sets and one consequent fuzzy set) where it is 16 rules with

3 fuzzy sets for the low voltage problem. However, the number of rules was chosen

heuristically and any number of rules can be chosen. The fuzzy sets of type-1 are

described by Gaussian membership functions which is defined as :

f̃(x) = exp−(
x−m
2σ

)2

where the parameters of the Gaussian membership functions are the mean m and the

standard deviation σ. Any other types of membership functions can be chosen but

we are interested in reducing the number of parameters as Gaussian type has only

two parameters instead of three in triangular type or four as the case in trapezoidal

type. All the means and standard deviations for all the input fuzzy sets and the output

fuzzy sets are initialised randomly. For a type-2 system, the system is built from

scratch rather than using the optimised type-1 system to initialise the fuzzy sets. Using

optimised type-1 fuzzy logic system might restrict the design to some local minimas

when designing interval type-2 fuzzy logic system. In addition, each interval type-

2 fuzzy set is described by Gaussian primary membership functions with uncertain

means represented by two means and one standard deviation as follow (Mendel, 2001,

p.91):

f̃(x) = exp−(
x−m
2σ

)2 m ∈ [m1,m2]
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Therefore the upper µÃ(x) and lower µ
Ã

(x) membership functions are defined by fol-

lowing mathematical functions:

µÃ(x) =


exp−(

x−m1
2σ

)2 if x < m1

1 if m1 ≤ x ≤ m2

exp−(
x−m2

2σ
)2 if x > m2

µ
Ã

(x) =

 exp−(
x−m2

2σ
)2 if x ≤ m1+m2

2

exp−(
x−m1

2σ
)2 if x > m1+m2

2

All the means and standard deviations are initialised for all the input fuzzy sets by

partitioning each input space into 16 dependent fuzzy sets and enabling enough over-

lapping between them while the output fuzzy sets are initialised randomly. The conjec-

tion of fuzzified values process is based on the product t-norm while the centre-of-sets

has been chosen for defuzzification. Hence, for type-1 sets, this is the same as height

defuzzification method because all sets are convex, symmetric and normal (Mendel,

2001, p.148). In type-2 defuzzification, the collapsing method proposed in (Greenfield,

Chiclana, Coupland and John, 2009) has been used to calculate the centroids of the

interval type-2 sets that needed to compute centre-of-sets. This is done by using the

composite outward right-left variant of the collapsing method (Greenfield, Chiclana and

John, 2009) as it is described in Chapter 2. The training procedure aims to optimise

the parameters of the antecedent parts and the consequent parts of the fuzzy system

rules. Then, the found parameters are used to predict the next testing data points.

The standard deviations of the consequent sets are not included in the optimisation

process as they have no effects on the output when using type-1 centre-of-sets defuzzi-

fication. The total number of optimised parameters for the low voltage problem when

using type-1 FLS is 16 ∗ 2 ∗ 2 + 16 ∗ 1 = 80 and it is 16 ∗ 2 ∗ 3 + 16 ∗ 2 = 128 for interval

type-2 fuzzy logic system. For the maintenance cost and Mackey-Glass problems, the

number is 16 ∗ 4 ∗ 2 + 16 ∗ 1 = 144 and 16 ∗ 4 ∗ 3 + 16 ∗ 2 = 224 respectively. It is

calculated as (number of rules * number of antecedent fuzzy sets in each rule * number
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of parameteres in each antecedent fuzzy set) + (number of rules * number of consequent

fuzzy sets in each rule(=1) * number of parameteres in each consequent fuzzy set).

4.3.3 The learning of the fuzzy logic systems

The optimisation process is done using simulated annealing that searches for the best

configuration of the parameters by trying to modify one parameter each time and

evaluate the cost of the new state which is measured by a cost function which is Root

Mean Square Error (RMSE) defined as follows:

RMSE =

√√√√ 1

n

n∑
k=1

[f(k)− f(k∗)]2

The only constraint to the variables of the optimisation problem is that all standard

deviations in Gaussian functions of all fuzzy sets must be ≥ 0. The simulated annealing

algorithm is initialised with a temperature that equals to the standard deviation of mean

of RMSE’s for 1000 runs for the 500 training points as proposed in (White, 1984). The

cooling schedule is based on a static cooling rate of 0.9 updated for each Markov chain.

Each Markov chain has a long length related to the number of variables in the search

space which equals to the power of the number of parameters. The search ends after

a number of Markov chains namely 100 Markov chains. The new states are chosen

from neighbouring states randomly by adding a small number (step size) to one of the

antecedent parameters or the consequent parameters. The step size value is calculated

using the maximum and minimum value for each input space and = max-min/200 while

the direction of the search is chosen randomly. After that, the new state is evaluated by

examining the RMSE of the 500 data points outputs. The experiment has been carried

out 20 times and the average and the minimum of the cost function of the training and

testing results have been calculated. Also, the way that SA is applied in these models

tries to get a global or nearly global solution to unveil the potential for type-1 and
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type-2 systems to capture the uncertainties without time constraints. This is done by

using long Markov Chains with a slow cooling process where the acceptance ratios in

the first Markov Chains are over 90%.

4.4 Results

4.4.1 Mackey-Glass time series results

The results of predicting noise-free Mackey-Glass time series by simulated annealing

with type-1 fuzzy logic system (SA-T1FLS) and interval type-2 fuzzy logic system (SA-

IT2FLS) are shown in Table 4.1 while the prediction accuracies and errors for the

best runs are depicted in Fig 4.2 and 4.3. The results show good accuracies for both

SA-T1FLS and SA-IT2FLS. However, Table 4.1 shows that SA-IT2FLS outperforms

SA-T1FLS in both the average RMSE and the best minimum RMSE in the testing phase

indicating that SA-IT2FLS was able to capture more information and uncertainties than

SA-T1FLS with an improvement on the average RMSE about 43% from the SA-T1FLS

average RMSE. In addition, the standard deviation for the 20 RMSE’s in SA-IT2FLS

was small compared to the one achieved by SA-T1FLS. Figure 4.4 shows the average

error curves for both models during the training phase taken at the end of each iteration

sequence (Markov Chain) where SA-IT2FLS shows stable smaller errors where the

increase of iterations in SA-T1FLS does not help SA-T1FLS to outperform SA-IT2FLS.

The smoothness in theses curves is a result of computing the average RMSE for each

Markov Chain for all the 20 runs instead of drawing the best runs performances. On

the other hand, the time taken to learn SA-IT2FLS was long compared to SA-T1FLS.

This is expected due to the extra computations associated with T2FLS especially in

the defuzzification phase.
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Table 4.1: Forecasting results for noise-free Mackey-Glass time series by simulated
annealing with T1FLS and T2FLS

Type-1 FLS

Statistics TrainRMSE TestRMSE TimeSeconds
Average 0.007848 0.007040 1,218.9

Standard Deviation 0.004501 0.003431 9.09294

Minimum 0.003996 0.00396 1,198

Type-2 FLS

Average 0.003978 0.0039889 18,274.3

Standard Deviation 0.001221 0.001429 261.62

Minimum 0.002864 0.002763 17,774
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Figure 4.2: The prediction results and prediction error for noise-free Mackey-Glass
time series problem by SA-T1FLS. The predicted data are difficult to distinguish from

the target data which shows the accuracy of the method

4.4.2 Mackey-Glass time series with added noise results

The results of predicting noisy Mackey-Glass time series by SA-T1FLS and SA-IT2FLS

are shown in Table 4.2 while the prediction accuracies and errors for the best runs are

depicted in Fig 4.5 and 4.6. Table 4.2 shows that SA-IT2FLS yields smaller errors in

both the average RMSE and the best (minimum) RMSE in the testing phase indicating

that SA-IT2FLS was able to capture more information and uncertainties than SA-

T1FLS with an improvement on the average RMSE about 2% from the SA-T1FLS

average RMSE. In addition, the standard deviation for the 20 RMSE’s in SA-IT2FLS
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Figure 4.3: The prediction results and prediction error for noise-free Mackey-Glass
time series problem by SA-IT2FLS. The predicted data are difficult to distinguish from

the target data which shows the accuracy of the method
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Figure 4.4: The average convergence of SA-T1FLS and T2FLS for noise-free Mackey-
Glass time series problem.

was small compared to the one achieved by SA-T1FLS. Figure 4.7 shows the average

error curves for both models during the training phase where SA-IT2FLS shows smaller

errors in the majority of iterations. Again, the time taken to tune SA-IT2FLS was long

compared to SA-T1FLS where this is expected due to the extra computations associated

with T2FLS.
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Table 4.2: Forecasting results for Mackey-Glass time series with added noise by
simulated annealing with T1FLS and T2FLS

Type-1 FLS

Statistics TrainRMSE TestRMSE TimeSeconds
Average 0.1082247 0.1590716 1,226.65

Standard Deviation 0.003445 0.014258 19.25

Minimum 0.098845 0.144805 1,191

Type-2 FLS

Average 0.098651 0.155815 13,896

Standard Deviation 0.003392 0.009098 206.88

Minimum 0.0918268 0.142193 13,552
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Figure 4.5: The prediction results and prediction errors for noisy Mackey-Glass time
series problem by SA-T1FLS

4.4.3 Estimation of the low voltage electrical line length in rural towns

results

The results of the estimation of lines length by SA-T1FLS and SA-IT2FLS are shown

in Table 4.3 While the estimation accuracies and errors for the best runs are depicted

in Fig 4.8 and 4.9. Table 4.3 shows that SA-IT2FLS obtained smaller errors in both

the average RMSE and the best (minimum) RMSE in the testing phase indicating that

SA-IT2FLS was able to capture more information and uncertainties than SA-T1FLS

with an improvement on the average RMSE about 5% from the SA-T1FLS average
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Figure 4.6: Prediction results and prediction errors for noisy Mackey-Glass time
series problem by SA-IT2FLS.
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Figure 4.7: The average convergence of SA-T1FLS and T2FLS for noisy Mackey-
Glass time series problem.

RMSE. In addition, the standard deviation for the 20 RMSE’s in SA-IT2FLS was

small compared to the one achieved by SA-T1FLS. Figure 4.10 shows the average error

curves for both models during the training phase where SA-IT2FLS shows a stable

smaller errors during training iterations. On the other hand, the time taken to tune

SA-IT2FLS was long compared to SA-T1FLS due to the extra computations associated

with T2FLS.
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Figure 4.8: Estimation results and estimation errors for low voltage line problem by
SA-T1FLS
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Figure 4.9: Estimation results and estimation errors for low voltage line problem by
SA-IT2FLS

76



Chapter 4. Learning Interval Type-2 Fuzzy Logic Systems using Simulated Annealing

Table 4.3: Etimation results for low voltage electrical line length by simulated an-
nealing with T1FLS and T2FLS

Type-1 FLS

Statistics TrainRMSE TestRMSE TimeSeconds
Average 535.62 699.16 258.1

Standard Deviation 40.12 77.95 6.69

Minimum 480.5 587.37 247

Type-2 FLS

Average 490.17 663.23 1,679.15

Standard Deviation 8.95 12.12 12.12

Minimum 445.79 540.89 1,584
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Figure 4.10: The average convergence of SA-T1FLS and T2FLS for low voltage line
problem

4.4.4 Estimation of the medium voltage electrical line maintenance

cost results

The results of the estimation of the medium voltage electrical line maintenance cost

by SA-T1FLS and SA-IT2FLS are shown in Table 4.4 While the estimation accura-

cies and errors for the best runs are depicted in Fig 4.11 and 4.12. Although, this is

a real data problem, the results show how accurate both SA-T1FLS and SA-IT2FLS

where the predicted data are difficult to distinguish from the target data. Table 4.4
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Table 4.4: Estimation results for the maintenance cost problem by simulated an-
nealing with T1FLS and T2FLS

Type-1 FLS

Statistics TrainRMSE TestRMSE TimeSeconds
Average 129.39 141.51 2,192.1

Standard Deviation 51.19 35.12 72.6

Minimum 81.78 103.39 2,092

Type-2 FLS

Average 87.45 133.87 13,333

Standard Deviation 36.49 69.03 325.67

Minimum 60.04 75.24 12,806

shows that SA-IT2FLS obtained smaller errors in both the average RMSE and the best

(minimum) RMSE in the testing phase indicating that SA-IT2FLS was able to capture

more information and uncertainties than SA-T1FLS with an improvement on the aver-

age RMSE about 5% from the SA-T1FLS average RMSE. Although, SA-IT2FLS has

the best average and minimum RMSE in all the four problems and smaller standard

deviations in the previous three problem, the standard deviation for the 20 RMSE’s

in SA-IT2FLS was bigger in the testing phase compared to the one achieved by SA-

T1FLS. On the training phase, Figure 4.13 shows the average error curves for both

models where SA-IT2FLS shows smaller errors in the majority of iterations. On the

other hand, the time taken to tune SA-IT2FLS was long compared to SA-T1FLS due

to the extra computations associated with T2FLS.

4.4.5 Results summary

The result of using the two models to solve the four problems show that interval type-2

fuzzy logic system was able to handle more of the uncertainties and information of

theses problems by providing the best accuracy results for all the four problems with

different amount of improvements over type-1 fuzzy logic system. The only drawback

reported for using interval type-2 fuzzy logic system is the amount of time needed to

employ it due to the extra computations associated with interval type-2 fuzzy logic
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Figure 4.11: Estimation results and estimation errors for maintenance cost problem
by SA-T1FLS
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Figure 4.12: Estimation results and estimation errors for maintenance cost problem
by SA-IT2FLS
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Figure 4.13: The average convergence of SA-T1FLS and T2FLS for maintenance
cost problem

system compared with type-1 fuzzy logic system. As the aim of this work is to unveil

the potentials for type-1 and type-2 systems without time constraints, a relatively long

simulated annealing search was applied. Future work might look to reduce the time

taken by SA-T2FLS by using some other variants of simulated annealing to allow them

to be used in problems with on-line learning or with real-time problems.

4.5 Summary

In this chapter, simulated annealing is used with type-1 and interval type-2 fuzzy logic

systems to provide models to solve two bench-mark time series and two real world

electrical problems. Simulated annealing searches for the best configuration of the

type-1 and interval type-2 fuzzy logic system parameters of the antecedent and the

consequent parts of the rules for a Mamdani model. In addition, the issues related to

the combination of simulated annealing and type-2 fuzzy logic systems and how they

are combined have been discussed. The results of using the interval type-2 fuzzy logic

system are compared to the results of using type-1 fuzzy logic system where it shows

that interval type-2 fuzzy logic system was able to handle more of the uncertainties and
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the information of theses problems by providing better accuracy results for all the four

problems with different amount of improvements over type-1 fuzzy logic system. The

only drawback reported for using interval type-2 fuzzy logic system is the amount of

time needed to employ it due to the extra computations associated with interval type-2

fuzzy logic system compared with type-1 fuzzy logic system. As the aim of this work is

to unveil the potentials for type-1 and interval type-2 fuzzy logic system without time

constraints, a relatively longer simulated annealing search was applied. Future work

might look to reduce the time taken by this combination by using some other variants

of simulated annealing to allow them to be used in problems with on-line learning or

with real-time problems. The next chapter will report the work of using simulated

annealing with general type-2 fuzzy logic system.
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Chapter 5

Designing General Type-2 Fuzzy

Logic Systems using Interval

Type-2 Fuzzy Logic Systems and

Simulated Annealing

5.1 Introduction

In this chapter, simulated annealing algorithm is used to design general type-2 fuzzy

logic systems (GT2FLS) with the aid of interval type-2 fuzzy logic systems (IT2FLS).

The proposed practical design methodology aims to reduce computations needed to get

the best footprint of uncertainty (FOU) using interval type-2 fuzzy logic systems. Sim-

ulated annealing is used to learn interval type-2 fuzzy logic systems followed by learning

the secondary membership functions (SMFs) in general type-2 fuzzy logic systems using

a novel parametrisation method. In addition, the proposed method can help to answer

the question of whether the third dimension (SMF) can add more capabilities to handle
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uncertainties and model more information over interval type-2 fuzzy logic systems pa-

rameters. The justification needed for the choice of the defuzzification method used in

this thesis will be discussed including its effects on the learning process. The proposed

methodology has been applied to four bench-mark problems. some practical issues have

been discussed and some analysis of the results obtained by interval and general type-2

fuzzy logic systems have been drawn.

5.2 Learning the third dimension in general type-2 fuzzy

logic systems

Type-2 fuzzy logic is a growing research topic with much evidence of successful appli-

cations (John and Coupland, 2007). However, up to now, almost all developments of

type-2 fuzzy logic systems have been based on interval type-2 fuzzy logic systems with

some exceptions related to using different representations of type-2 sets and systems

such as geometric T2FLS (Coupland and John, 2007), alpha-planes (Mendel et al.,

2009), alpha cuts (Hamrawi et al., 2010) and Z-slices (Wagner and Hagras, 2010a;

Christian Wagner, 2009). The ease of computation associated with the interval form

of type-2 sets is the main driver for the wide usage of interval type-2 set and systems

compared to the generalised form. However, the third dimension in a general type-2 set

offers extra degrees of freedom over interval type-2 fuzzy sets (Mendel and John, 2002).

A main drawback of an interval type-2 set is that the uncertainty is spread equally across

the FOU which prevents modelling of variations of the uncertainty (Christian Wagner,

2009). Hence, interval type-2 is a simplified and restricted form of general type-2 set.

In 2001, Mendel stated the three areas where the complication of GT2FLS come from

compared to IT2FLS (Mendel, 2001, p.302):

• The prohibitive computations to calculate the meet operation.

• The prohibitive computations to do type-reduction.
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• There is no rational basis for choosing secondary membership functions.

Ten years after this statement, some research has been carried out in the first two ar-

eas. Examples of the first area including geometric meet and join (Coupland and John,

2007), optimised meet and join (Greenfield and John, 2007) and extended t-norms

(Starczewski, 2009a). For type-reduction area, the geometric defuzzifier (Coupland

and John, 2007), the sampling defuzzifier (Greenfield et al., 2005) followed by impor-

tance sampling defuzzifier (Linda and Manic, 2010) and a centroid defuzzifier based

on the alpha representation (Liu, 2008) have been proposed. In addition, modern pro-

cessors allow far more computational capability than ten years ago. The third area

can be resolved by using some learning approaches or experts opinions to design a

good IT2FLS to initialize GT2FLS. Then, choosing the best secondary membership

functions by learning approaches. One attempt to design general type-2 sets based

on zSlices representation was proposed in (Christian Wagner, 2009) where survey data

and device characteristics were used to build zSlices sets automatically. Another work

using alpha-planes representation has applied a learning method to the SMF in the

GT2FLS to forecast Mackey-Glass time-series (Mendel et al., 2009). The latter showed

a better performance of general type-2 fuzzy logic systems using a simpler model known

as “triangle quasi-type-2 fuzzy logic system” first presented in (Mendel and Liu, 2008).

Some other researchers used some neural networks concepts or classification algorithms

such as: type 2 Adaptive Network Based Fuzzy Inference System (ANFIS) (John and

Czarnecki, 1998), general type-2 fuzzy neural network (GT2FNN) (Jeng et al., 2009)

and fuzzy C-means algorithm with a model known as “efficient triangular type-2 fuzzy

logic system” (Starczewski, 2009b). To the best of the author knowledge, no attempt to

employ a learning method to general type-2 fuzzy logic systems using the vertical-slice

representation was reported. To achieve this objective, apart from using a practical

type-reducer, some kinds of parametrisation are needed for general type-2 sets to al-

low learning or optimisation techniques to deal with these parameters easily rather

than having all the secondary grades or membership functions to be chosen manually.
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The parametrisation method should preserve the most of the freedom associated with

GT2FLS. For example, interval type-2 fuzzy set is a parametrised form of general type-2

set.

5.3 A practical choice for general type-2 fuzzy set

To have a good practical form of general type-2 set, the chosen form should :

• Have a low computational burden.

• Preserve the most of the freedom associated with general type-2 sets.

These two objectives normally are in conflict as more freedom requires more computa-

tions. Therefore, some trade-offs are needed using some parameterisation mechanisms.

One way to do this is to have parameterised secondary membership functions that are

asymmetric and convex. For example, a triangular secondary membership function

with an apex in the area between the lowest and the highest FOU points (FOUlower

and FOUupper) primary memberships for each x in the domain. We mean by the apex

the point in the secondary domain that represents the highest secondary membership

grade for x. The asymmetry is preferred to allow optimising the apex location of the

SMF when their primary memberships are fixed. The other preferred property is to

have a convex SMF to allow quick meet and join operations when using these sets in

GT2FLS. To allow learning the best location for the apex for each SMF, a function

to determine the SMF’s apexes locations in FOU for each x in the primary domain is

needed. The apexes locations values must be bounded by the highest and the lowest

FOU points (FOUupper and FOUlower) for each x in the domain. A possible approach

is to have a piecewise linear function or a smooth piecewise-polynomial function and

to use some interpolation methods. However, it could be possible to ensure this con-

dition of boundaries when designing the first model of the general type-2 set but this
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is very difficult to trace and ensure for each x in the continuous domain when learning

SMFapex(x) as the interpolation might define some apexes domains out of the FOU

boundaries. Therefore, a new parametric formula is proposed here that normalises the

FOU apexes locations to be within FOU(x) for each x in the primary domain. This is

done by defining the SMFapex(x) as following:

SMFapex(x) = h(x)/(FOUlow(x) + g(x)× (FOUup(x)− FOUlow(x))). 0 6 g(x) 6 1.

(5.1)

Where g(x) is a parameter called “apex factor” that is used as an apex location indi-

cator for each x and h(x) is the height (the secondary grade) of the apex for each x.

This parameter can be used to change the apex location without the need to check for

the boundaries condition. For example when g(x) = 0.5, the location of apex is in the

middle between FOUupper(x) and FOUlower(x) and the resulting SMF is symmetrical.

Therefore, this parameter is acting as a variable representing the apexes locations when

doing some optimisation or learning for the general type-2 set. An example of using

this parameter is to use a piecewise linear function to determine this parameter for all

x in the primary domain such as: suppose that k1, k2, ......, kn are ordered points in the

x domain and g(k1), g(k2), ......, g(kn) are their apexes factors which both defining the

piecewise linear function, then:

g(x) =


0.5, x < k1

g(ki) + x−ki
ki+1−x × (g(ki+1)− g(ki)), ki 6 x 6 ki+1

0.5, x > kn

(5.2)
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Another similar function to determine the height of the apexes when non-normal SMF

are used can be designed by the same way. For example:

h(x) =


1, x < k1

h(ki) + x−ki
ki+1−x × (h(ki+1)− h(ki)), ki 6 x 6 ki+1

1, x > kn

(5.3)

This form is not identical to the principal function described in equation 2.1 or the fuzzy

truth numbers proposed in (Starczewski, 2009b) because for each x value, the SMF

can be non normal. The lowest and highest FOU points (FOUlower and FOUupper) for

each x can be defined by another functions such as trapezoidal, Gaussian or triangular

functions or any other functions used to define interval type-2 sets. An example of

the proposed method is shown in figure 5.1 and an example of learning the secondary

membership functions is shown in figure 5.2. The chosen form is based on the last

general type-2 literatures using the vertical-slice representation and the novel method

we proposed here to determine the apexes locations and heights of SMFs. Although,

this is not a new representation and can not be generalised for all forms of general

type-2 sets, the aim of this method is to have general type-2 fuzzy sets simplified for

practical usage.

5.4 A proposed methodology to design general type-2 fuzzy

logic systems

The GT2FLS can be designed using the method described above to build general type-2

sets used in GT2FLS. The first choice is to build GT2FLS directly without the need to

initialise it from a good IT2FLS design. This choice is more computationally expensive

due to the higher computations needed for GT2FLS. The next chapter will investigate

this choice. The second choice is to design GT2FLS using IT2FLS in three steps:
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Figure 5.1: General type-2 fuzzy Set defined by its FOU (using two piecewise linear
functions) and a triangular SMF (using linear interpolation for its apexes indicators).
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Figure 5.2: An example of learning a triangular SMF by adapting the apex location.
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• The first step is to get a good or optimal FOU. This is done using IT2FLS as each

interval type-2 set is bounded by two functions for the lower and upper member-

ship functions that bound the FOU in the secondary memberships domain. To

get a good IT2FLS, experts opinions or automated learning can be applied.

• Using the optimal interval type-2 sets to design general type-2 sets by converting

them into general type-2 sets. This stage might be called the conversion stage

where each general type-2 set is initialised using the same FOU brought by interval

type-2 sets and a chosen initial SMF.

• Learning the best location for the apexes of each SMF by fixing the optimal FOU

to get the best secondary membership functions.

This three stages method seems to be logical as the definition of the uncertainty bound-

aries (primary memberships) should precede the definition for how much secondary

membership grades (uncertainty distribution) will be given to each primary member-

ship. In addition, the conversion stage proposed reduces the computations needed to

get the best FOU using IT2FLS mathematics. The third choice is to start by apply-

ing the first step followed by the conversion stage, learning the FOU using GT2FLS

mathematics and then, learning the SMF . This chapter’s work is based on the second

choice.

5.5 The choice for the defuzzification method

As mentioned in Chapter 2, the bottleneck part of the general type-2 fuzzy logic system

is the defuzzification phase. This is due to the high computational burden associated

with the type-reduction process. Therefore, special attention should be given to the

choice of such methods. The aim of this section is to highlight this issue and its effects

on the learning process. Based on our choice for the representation of general type-2

fuzzy sets using vertical-slices, the available defuzzification options are :
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1. The exhaustive brute-force highly expensive type-reduction method which com-

putes the union of all the centroids of all the embedded type-2 fuzzy sets involved

in the general type-2 fuzzy set. Now, we explain how this method is impractical

to use for our purpose.

The exhaustive method calculates the type-reduced set by the following procedure

(Mendel, 2001, p.250):

(a) Discretise the x-domain into a suitable number of pointsN i.e. x1, x2, . . . , xN .

(b) Discretise each secondary membership domain into a suitable number of

points Mj(j = 1, . . . , N).

(c) Enumerate all embedded sets involved in the general type-2 fuzzy set. The

number of embedded sets will be p =
∏N

j=1Mj as described in (2.3).

(d) For each embedded set Ãe, calculate its centroid ( a type-1 fuzzy set CÃe
)

using the following steps:

• Assign the minimum secondary membership grade of the embedded set

min(z1, z2, . . . , zn) to its centroid membership grade.

• Assign the centroid of the primary memberships of the embedded set to

its centroid domain value x. The calculation of this part is based on the

centre of area (centroid) of type-1 fuzzy sets. Therefore, the centroid of

each embedded set can be calculated as follows:

CÃe
= min(z1, z2, . . . , zn)/(

∑n
i=1 xi · zi∑n

i=1 zi

(e) For each x-domain value for the resultant type-1 fuzzy sets, the maximum

membership grade found for each x-domain value is paired with its x-domain

value. The resultant set of pairs is a type-1 fuzzy set represents the exact

type-reduced set.
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Table 5.1: The number of centroid operations needed to type-reduce general type-2
fuzzy sets that are needed to get outputs in case of iterative evaluations for optimisation

X domain
points

Y domain
points

Number of
embedded
sets

FLS sam-
ples num-
ber

SA itera-
tions

Number of
centroid op-
erations for
embedded
sets

25 5 3e+17 200 10,000 6e+23

25 9 7.2e+23 200 10,000 1.44e+30

50 9 5.2e+47 200 10,000 1.04e+54

101 9 2.4e+96 200 10,000 4.8e+102

In practice, the number of embedded sets is normally astronomical and above the

current data structure. For instance, for a general type-2 fuzzy sets discretised

into our choice of 101 x-domain points and each vertical slice into 9 points, the

number of embedded sets are 2.39 × 1096 which is -by far -above current data

structure. In our chosen language (C++), the longest data structure size can

be allocated is unsigned integer = 2, 14 × 109. In addition, this astronomical

computations are not the end of the story in our case. This number of embedded

sets are unioned to get ONE sample output in ONE fuzzy logic system evaluation

in ONE iteration of the optimisation process. Table 5.1 shows how type-reduction

complexity evolves in our problem with some reasonable choices of fuzzy logic

system input samples and reasonable number of simulated annealing iterations.

Note that table 5.1 is for the type-reduction operations only (i.e. does not include

fuzzification and other fuzzy logic system operations ). Therefore, this choice is

impractical to choose for our models in this thesis.

2. The recursive algorithm introduced by (Gafa and Coupland, 2011). It includes

some interesting ideas to reduce these computations but the complexity is still

very high and no practical results were published yet.

3. The sampling defuzzifier (Greenfield et al., 2005). As stated in Chapter 2, this

is a practical approach that improves the speed of type-reduction with a little

loss in accuracy (Greenfield et al., 2012). It approximates the type-reduced sets
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using a sample of the embedded sets rather than using all embedded sets. The

approximation of some centroids of general type-2 fuzzy sets reported in (Green-

field et al., 2012) shows no significant loss of accuracy. However, this might affect

the learning process by a some degrees as will be explained later. The sampling

method is working the same as the exhaustive method described above apart from

the third step as follows:

(a) Discretise the x-domain into a suitable number of pointsN i.e. x1, x2, . . . , xN .

(b) Discretise each secondary membership domain into a suitable number of

points Mj(j = 1, . . . , N).

(c) Enumerate a suitable number of embedded sets involved in the

general type-2 fuzzy set randomly.

(d) For each embedded set Ãe, calculate its centroid (a type-1 fuzzy set CÃe
)

using the following steps:

• Assign the minimum secondary membership grade of the embedded set

to its centroid membership grade z.

• Assign the centroid of the primary memberships of the embedded set to

its centroid domain value x. The calculation of this part is based on the

centre of area (centroid) of type-1 fuzzy sets:

CÃe
=

∑n
i=1 xi · zi∑n

i=1 zi

(e) For each x-domain value in the type-1 fuzzy set, the maximum membership

grade found for each x-domain value is paired with its x-domain value. The

resultant set of pairs is a type-1 fuzzy set represent an approximate

type-reduced set.

4. The vertical slice centroid type-reducer (VSCTR) which initially proposed by

(John, 2000) then detailed by (Lucas et al., 2007). It does not calculate the union
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for all the embedded sets involved in the general type-2 fuzzy sets. Although, this

method does not depend on the concept of embedded sets, it is a good approach

for practical usage. This method works as follows:

• For each vertical slice, the centroid of each vertical slice is calculated exactly

as type-1 set centroid calculation.

• The type-reduced set domain is the same as the vertical slices values. The

membership grades of the type-reduced set are the centroids of these vertical

slices in the type-reduced set.

When optimising the FOU’s and SMF’s parameters using the non-deterministic sam-

pling defuzzifier, the learning process is affected -by some degree- by the random errors

and the fluctuations of the evaluation of the objective function. The effects come from

the fact that the evaluation of one state will differ each time the sampling method ap-

proximate the type-reduced sets. Consequently, the outputs of the fuzzy logic system

will be changed causing the objective function (RMSE) to get different energy values for

the same state each time the evaluation is carried out. Whatever the objective function

is, the outputs from the fuzzy logic system will affect that objective function. In fact,

these random errors are small compared to the scale of the fuzzy logic system outputs

and the scale of the objective function but affects the learning performance as will be

shown later in this chapter. These effects can be ignored in the first exploration stages

of the search when moves from a state to a state can bring relatively large differences

but this noise can deteriorate the search at the last stages when small effects of the

objective function can be affected by this noise. In optimisation, noise associated with

the objective function has some effects on the quality of the solution. This is illustrated

in these points :

1. In all optimisation problems, the criteria used by the search algorithm to decide

the quality of a state is very important for the success of the search algorithm.
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This criteria should be precise and should avoid stochastic measurements or ap-

proximation as possible. However, in real-world, this condition is difficult in many

cases. Reasons for using noisy objective functions include cases where no precise

and numeric measurements available as well as cases where the evaluation of the

precise objective functions is computationally expensive (Branke et al., 2008). In

fact, our problem here falls under the second case where the computation for one

state using the precise algorithm is impractical. Therefore, the use of sampling

method is highly acknowledged in practice.

2. In the simulated annealing literature, many papers have tackled the problem of

noisy objective functions. All solutions proposed in simulated annealing literature

fall under these three categories (Branke et al., 2008):

(a) Solutions adapt the convergence properties to allow better handling of noisy

objective functions. These methods rely on storing all visited states and

their evaluations or increasing the number of iterations according to a known

schedule. This type of solutions adds extra computations and needs larger

memories to be executed.

(b) Solutions rely on revisiting each state a number of times to improve the

approximation to the true objective function values. Then, using some sta-

tistical approaches to calculate approximated objective functions. Again,

this is computationally expensive depends on the number of evaluations n

needed for each state. Hence, the computations will be multiplied by n.

(c) Solutions adapt the acceptance function to maintain an adequate thermody-

namic equilibrium. Unfortunately, the three solutions require more compu-

tations and do not guarantee the exact objective functions.

In general, when dealing with noisy objective functions, we are not interested in

exact best solutions, rather, we are interested in alternatives to the best energy

value that are nearly equally good (Salamon et al., 2002, p.64). Therefore, the
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use of these methods adds another computational burden and does not lead to

more accurate solutions. In order to get a fair comparison with interval type-2

fuzzy logic system, the use of such methods is not the best choice for our purpose.

Therefore, a solution can be sought from the general type-2 fuzzy logic system

side. This is by using a deterministic approach to get the type-reduced set such

as the vertical slice centroid type-reducer (VSCTR). As our aim in this chapter

is to apply the learning process only on the third dimension of general type-

2 fuzzy sets, the choice of sampling method is applicable for this purpose as no

comparison will be applied between interval type-2 fuzzy logic system and general

type-2 fuzzy logic system where the third dimension learning will be applied in

a separate stage as described in previous subsection. The comparison of the two

models will be reported in the next chapter where a full learning of all parameters

of both systems will be tested.

5.6 Methodology

The experiment can be divided into five steps : preparing data, constructing the initial

interval type-2 fuzzy system, learning the interval type-2 fuzzy system parameters,

constructing the initial general type-2 fuzzy system using the proposed conversion and

learning the secondary membership functions.

5.6.1 Data

5.6.1.1 Mackey-Glass time series

The Mackey-Glass time series has been described in section 3.3.1 but it is used here with

different number of samples. To get the time series, firstly, the noise-free time series

is generated with the following parameters : a = 0.2 , b = 0.1 , τ = 17 and n = 10.
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Table 5.2: The time needed for learning GT2FLS to predict Mackey-Glass time series
by simulated annealing

The number of training samples 200 500 1,000

One sample evaluation time (Seconds) 0.000373 0.000373 0.000373

Time needed for one evaluation of all samples 0.0746 0.1865 0.373

Time needed for a Markov chain (3000) 223.8 559.5 1,119

Time needed for 40 Markov chains 8,952 22,380 44,760

Time needed for 20 runs 179,040 447,600 895,200

Time needed for all problems (80 runs) 716,160 1,790,400 3,580,800

Time needed in days 8.288889 20.722222 41.44

The Runge-Kutta method is used to obtain the values of x(t) at each time point with

a time step of 0.1 and the initial condition x(0) = 1.2 where x(t) = 0 for t < 0. The

input-output samples are extracted in the form x(t − 18),x(t − 12),x(t − 6) and x(t)

from t = 118 to t = 417 using a step size of 6. A sample of the generated noise-free

sample is depicted in figure 5.3. Then the generated data are divided into 200 data

points for training and the remaining 200 data points for testing. Using a step size of 6,

the input values to the fuzzy system are the previous points x(t− 18),x(t− 12),x(t− 6)

and x(t) while the output from the fuzzy system is the predicted value x(t+ 6). Four

initial input values x(114),x(115),x(116) and x(117) are used to predict the first four

training outputs. This number of training samples used here (200) is different from the

previous chapters (500). The reason behind this reduction on the number of samples

is the impractical computational time that needed for the 500 samples as discussed in

previous subsections. Therefore, we choose to reduce the number of samples in order

to get the learning process in an acceptable time. To have a look at this issue, table

5.2 can highlight this problem. This table was built based on the experiments times

of learning GT2FLS for Mackey-Glass time series that will be presented later in this

chapter. It is clear from the table how difficult to choose more training samples.
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Figure 5.3: A sample of Mackey-Glass time series points values used in this experi-
ment

5.6.1.2 Mackey-Glass time series with added noise

In this experiment, a noisy time series will be used to test our models. The noisy

Mackey-Glass time series will be generated by adding noise to Mackey-Glass time series

that are generated as described above. The amount of noise will be 20db added to all

inputs and outputs. The noise is measured by signal-to-noise ratio (SNR). Again, the

number of training samples used here is 200 which is different from the previous chapters

(500) as explained above. A sample of the generated noise-free and noisy data that used

in this experiment is depicted in figure 5.4.

5.6.1.3 Estimation of the low voltage electrical line length in rural towns

This problem has been introduced in section 4.3.1. The data samples were randomly

divided into two sets labelled training and testing sets which are randomly selected

from the whole sample as reported in (Cordón, Herrera and Villar, 2001) and (Cordón

et al., 2002). As with other authors, 396 samples are used for training while the other
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Figure 5.4: A sample of the noisy Mackey-Glass time series points values used in
this experiment

99 samples are used for testing. The number of samples was chosen the same as others

without a reduction due to the smaller number of inputs involved in this problem (2

instead of 4) which reduces the computational burden.

5.6.1.4 Estimation of the medium voltage electrical line maintenance cost

This problem has been introduced in section 4.3.1. In order to reduce the training

computations and time, the number of samples has been reduced from the one used in

Chapter 4. 400 data samples from the whole set were divided into two sets labelled

training and testing sets with 200 samples for each set. Therefore, 400 samples have

been used instead of 1056 samples.

5.6.2 The initial interval type-2 fuzzy logic systems

The fuzzy model consists of a number of independent input fuzzy sets and one indepen-

dent output fuzzy set for each rule. There are 8 rules while each rule is characterised

98



Chapter 5. Designing GT2FLS using IT2FLS and SA

by a number of fuzzy sets equals to the inputs number (i.e. 4 antecedent fuzzy sets

and one consequent fuzzy set). However, the number of rules was chosen heuristically

where we are interested in reducing complexity. However, any number of rules can be

chosen as the model is not a linguistic fuzzy system. The system is built from scratch

rather than using the optimised type-1 system to initialise the fuzzy sets. Each type-2

fuzzy set is described by Gaussian primary membership functions with uncertain means

represented by two means and one standard deviation as follow (Mendel, 2001, p.91):

f̃(x) = exp−(
x−m
2σ

)2 m ∈ [m1,m2] (5.4)

Therefore the upper µÃ(x) and lower µ
Ã

(x) membership functions are defined by fol-

lowing mathematical functions (Mendel, 2001, p.91):

µÃ(x) =


exp−(

x−m1
2σ

)2 if x < m1

1 if m1 ≤ x ≤ m2

exp−(
x−m2

2σ
)2 if x > m2

(5.5)

µ
Ã

(x) =

 exp−(
x−m2

2σ
)2 if x ≤ m1+m2

2

exp−(
x−m1

2σ
)2 if x > m1+m2

2

(5.6)

Where the upper µÃ(x) and lower µ
Ã

(x) membership functions in this equation are

used to define FOUlower and FOUupper. All the means and standard deviations are

initialised for all the input fuzzy sets by partitioning each input space into 4 fuzzy

sets and enabling enough overlapping between them while the output fuzzy sets are

initialised randomly around the average value of training outputs. The fuzzification

process is based on the minimum t-norm while the centre-of-area has been chosen for

type-reduction. The collapsing method proposed by (Greenfield, Chiclana, Coupland

and John, 2009) has been used to calculate the centroids of the type-2 sets that needed

to compute centre-of-area. This is done by using the composite outward right-left

variant of the collapsing method as it is described in (Greenfield, Chiclana and John,
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2009). The training procedure aims to learn the parameters of the antecedent parts

and the consequent parts of the fuzzy system rules. Then, the found parameters are

used to predict the next testing data points. The total number of the parameters

is 8 ∗ 4 ∗ 3 + 8 ∗ 3 = 120 in all problems except the line length problem where it is

8 ∗ 2 ∗ 3 + 8 ∗ 3 = 72 parameters.

5.6.3 The learning of the interval type-2 fuzzy systems

The learning process of the interval fuzzy systems is done using simulated annealing

that searches for the best configuration of the parameters by trying to modify one

parameter each time and evaluate the cost of the new state which is measured by a cost

function which is Root Mean Square Error (RMSE) that is defined as follows:

RMSE =

√√√√ 1

n

n∑
k=1

[f(k)− f(k∗)]2 (5.7)

The only constraint on the variables of the optimisation problem is that all new values of

standard deviations of all fuzzy sets must be ≥ 0. The simulated annealing algorithm is

initialised with a temperature that equals to the standard deviation of mean of RMSE’s

for 1000 runs for the training samples as proposed by (White, 1984). The cooling

schedule is based on a static cooling rate of 0.9 updated for each Markov chain. Each

Markov chain has a length related to the number of variables in the search space which

equals to 30 times the number of variables. The search ends after a finite number of

Markov chains namely 100 Markov chains. The new states for a current state are chosen

from neighbouring states randomly by adding a small number (step size) to one of the

antecedent parameters or the consequent parameters. The step size value is related to

the maximum and minimum values for each variable space and = max-min/200 while

the direction of the search is chosen randomly. After that, the new state is evaluated
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by examining the training samples outputs. Then, the average and the minimum of the

cost function of the training and testing data results have been calculated.

5.6.4 The initial general type-2 fuzzy logic systems

The initial general type-2 fuzzy logic system is built by using the structure described

in sections 5.3 and 5.4 using the optimal configuration for IT2FLS as follows:

1. The general type-2 set definition The FOU is defined by the two Gaussian

membership functions that define the interval type-2 sets. Our choice for the

SMFs in this work is to use a triangular SMF with a normal apex initialised in

the middle between (FOUlower and FOUupper) for k1, k2, ...kn points (n = 7) by

choosing their apexes locations indicators g(k1) = g(k2) = ...... = g(kn) = 0.5 and

then calculating the apex locations for other x points using linear interpolation

as described by Equation 5.2. The other two SMF triangular points are defined

by FOUlower(x) and FOUupper(x) points which are taken from the two Gaussian

functions that define the interval type-2 sets. Therefore, apex location values are

constrained by FOUlower(x) and FOUupper(x).

2. Fuzzification The fuzzification process will fuzzify each x value into a type-1

fuzzy set (SMF) which is a triangular function as described above. The fuzzified

SMF is described by FOUupper and FOUlower which are derived from the two

Gaussian functions for x and its apex location indicators. The output from each

fuzzification process is a triangular SMF.

3. Combination of antecedents The combination between all antecedent fuzzified

values is done using the meet operation proposed by (Coupland and John, 2007)

and explained in equation 2.8. This operation is chosen because all SMF’s are

convex. Therefore, reducing unneeded computations. The output from this phase

is a convex SMF that might be non-normal.
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4. Implication To do the implication phase, firstly, the consequent sets space is

discretised into n = 101 points y1, y2, ..., yn in Y domain. Then the implication is

done using the same meet operation proposed by (Coupland and John, 2007). The

third step is to do a join between all secondary membership grades for each y ∈ Y

using the join operation proposed in (Coupland and John, 2007) and explained

in equation 2.3.4. Again this join operation is chosen to reduce the computations

as all the SMFs in this phase are convex.

5. Type-Reduction The sampling method (Greenfield et al., 2005) has been used

to calculate an approximate centre of area (centroid). Although, this method

showed a good approximation to the centroid (Greenfield et al., 2005), we prefer

to increase the number of samples of the embedded sets to get extra precision.

We use 100 samples of the embedded sets. The output from this phase is a type-1

fuzzy set.

6. Defuzzification Any defuzzification method for type-1 fuzzy sets can be chosen

in this phase. Our choice in this experiment is to use the centre of area (centroid)

defuzzification.

7. Approximation and descretisation issues To get a good approximation to

the interval type-2 fuzzy logic systems outputs, the discretisation used to get

the centroid of type-2 sets should be the same in both systems. The more finer

discretisations can help get more accurate outputs but increase the computations

required to calculate the centroid. Hence, it is a trade-off between accuracy and

speed. The configurations of IT2FLS and GT2FLS used in this experiment are

detailed in Table 5.3.

5.6.5 The learning of the secondary membership functions

The learning process in this stage aims to get the optimal location for all the SMF’s

parameters where two points for each triangular SMF are fixed. The parameters in this
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Table 5.3: The configurations of IT2FLS and GT2FLS

Stage IT2FLS GT2FLS

Membership Function Gaussian Gaussian + triangular SMF

Number of parameters (four inputs) 120 360

fuzzification singleton singleton

Antecedent combination t-norm minimum minimum using Coupland’s meet

Implication t-norm minimum minimum using Coupland’s meet

Join t-conorm maximum maximum using Coupland’s join

SMF discretised points not needed 9

Type-reduction method collapsing method sampling method

Defuzzification method centroid centroid

Y Descritisation points 101 101

case are the apexes location factors g(k1), g(k2), ......, g(kn) for each general type-2 set

involved in the system. The learning is done using simulated annealing algorithm with

the same configuration used when learning IT2FLS apart from the following :

• The constraints for optimised variables (apexes factors) for each ki are their

(FOUlower(ki) and FOUupper(ki)) points (the secondary domain boundaries) for

each ki.

• The step size is the value that changes the apex location indicator. The new

value must be between [0, 1] and the step size should be large enough to make a

difference in the cost function as small values might not change the outputs when

it does not overcome the next descretisation step in SMF. The chosen step size is

0.15.

• The length of each Markov chain is equal to 10 times the number of variables in

the search space. The search ends after 40 Markov chains.

The number of all parameters being adapted in this stage for each fuzzy set is n =

9. Therefore, The total number of all parameters being adapted in this stage is

(the number of fuzzy sets ∗ n which is 40 ∗ 9 = 360 in all problems except the line

length problem where it is 24 ∗ 9 = 216 parameters.
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5.7 Results and discussion

The experiment has been developed using the C++ language and has been carried

out on a number of PCs with an equal CPU speed of 3 GH’z and a memory of 4GB.

After repeating the experiment for 20 times, the average and the minimum of the

training and testing data results have been calculated. The results are shown for the

three stages, SA-IT2FLS learning , the conversion stage and SA-GT2FLS learning for

the four problems. The results of the predictions and the estimations for the four

problems by simulated annealing with interval type-2 fuzzy logic systems (SA-IT2FLS)

and general type-2 fuzzy logic systems (SA-GT2FLS) are shown in Tables 5.4, 5.5, 5.6

and 5.7. The average RMSE’s during the search are depicted in figures 5.6, 5.8, 5.10

and 5.12. The main observations from these tables are :

1. The conversion process has caused some small losses in accuracy when converting

the optimal IT2FLS to GT2FLS in both training and testing samples. This

loss over the IT2FLS accuracies are between −0.36% and 3.78% of the average

RMSE’s in the training samples and between +0.14% and −2.47% of the average

RMSE’s in the testing samples. These losses were negative in the majority of

times while it improves the accuracy in one case only in the testing phase in

the noisy Mackey-Glass problem. Figure 5.5 shows one example for the results

obtained by IT2FLS and the initial GT2FLS for the testing samples in Mackey-

Glass time series problem. These losses caused by the conversion process might

be due to two factors :

• The difference in the fuzzy logic systems components in both systems. This

is mainly in defuzzification stage where the collapsing method is used in

IT2FLS and the sampling method is used in GT2FLS.

• The difference between the unity secondary membership functions in IT2FLS

and their approximated triangular shaped secondary membership functions
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in GT2FLS. Therefore, the resulted outputs will differ because of the dif-

ferent numbers yielded by the t-norms and t-conorms operations in the sec-

ondary membership functions. However, the approximation still preserves

the 97-98% of the IT2FLS outputs which might be a good approximation

in some applications. Although, the proposed method of apex factors can

be extended easily to trapezoidal membership functions by using two apex

factors for the two unity endpoints to get a better approximation, the opti-

mised operations used for join and meet are not applicable to use. As this

work is mainly interested in designing GT2FLS in a practical manner and

not investigating the best approximation methods from IT2FLS to GT2FLS,

this issue is worth investigating in the future.

2. The learning of the secondary membership functions has improved the results over

the initial general type-2 sets. The improvements are shown in all the training

samples and in three out of four testing samples. However, the effects of the accu-

racy losses in the conversion stage were larger than these improvements brought

by SMF’s learning in some cases resulting in close results to the IT2FLS in some

cases. However, these improvements are small compared to the scale of the values

and the impacts of the FOU’s learning. Also, the effects of using a stochastic

defuzzification method can be seen from the unpleasant smaller acceptance ratios

during the learning of SMFs as shown in the right sides of figures 5.7, 5.9, 5.11 and

5.13. Acceptance ratio is defined as the number of accepted moves divided by the

number of all moves (accepted and rejected moves). In typical implementations

of simulated annealing , acceptance ratios start at values close to 1 (the majority

of moves) and gradually decrease to values close to 0 at the last iterations. The

smaller acceptance ratios during the learning of SMFs were close to 0 in less than

10 Markov chains which means no improvements or equal moves were obtained

in the rest of iterations as a result of noisy objective function values. However,

the learning of SMFs brought these small improvements despite these effects. In
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the next chapter, another defuzzification method which is not stochastic will be

used to compare the full learning process of general type-2 fuzzy logic systems

with interval type-2 fuzzy logic systems.

3. The average time for one evaluation of one sample of inputs is 0.00009 seconds in

IT2FLS and 0.000323 seconds in GT2FLS in which the GT2FLS time is only 3.6

times the IT2FLS time. This reduction in time for GT2FLS is a good indicator

of the practicality of the work.

We conclude from the above that the the proposed method reduced computation time.

Although, the comparison between IT2FLS and GT2FLS is not accurate due to the

accuracy losses in the conversion stage, the learning of the SMFs brought extra improve-

ments over the initial converted sets which enforces the idea that the third dimension

in GT2FLS adds extra ability to model uncertainty over IT2FLS (Mendel and John,

2002) (Christian Wagner, 2009). Although, the learning of the FOUs parameters has

not been tried after the conversion stage in this work, we can expect a good improve-

ment of the results when applying the learning to all general type-2 set parameters

(FOU and SMF).

5.8 Summary

This work has proposed a methodology to design GT2FLS using a three stages method-

ology to reduce computations needed to get the best footprint of uncertainty (FOU).

The first stage is to design IT2FLS using simulated annealing algorithm until getting

good results then a conversion process will convert interval type-2 sets into symmetrical

general type-2 sets followed by the learning of the secondary membership functions us-

ing simulated annealing. A novel parametrisation method has been proposed to allow

learning the SMFs in GT2FLS easily. The results showed that the conversion process

brought a good approximation to the IT2FLS outputs with small losses in accuracies
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Figure 5.5: An example of the results obtained by IT2FLS and the initial GT2FLS
for the testing samples in Mackey-Glass time series problem

Table 5.4: The forecasting results for noise-free Mackey-Glass time Series by Simu-
lated Annealing with IT2FLS and GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS

Training 0.013602776 0.004321 0.00899988

Testing 0.017396815 0.004442 0.0112539

Training time 5,233.95 412.341 4,670

One evaluation average time 0.000114 - -

Initial GT2FLS (after conversion)

Training 0.01403025 0.004426 0.00874

Testing 0.01782675 0.004627 0.011498

Loss in accuracy (Training) -3.142550% - 2.887594%

Loss in accuracy (Testing) -2.471343% - -2.169026%

GT2FLS

Training 0.013941433 0.0043457 0.00871978

Testing 0.017707055 0.004528 0.011564

Time 8,597.85 258.264 8,137

One evaluation time 0.000373 - -
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Figure 5.6: The average convergence of SA-IT2FLS (left) and GT2FLS (right) for
noise-free Mackey-Glass time series problem.
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Figure 5.7: The average acceptance ratios of SA-IT2FLS (left) and GT2FLS (right)
for noise-free Mackey-Glass time series problem.
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Table 5.5: The forecasting results for Mackey-Glass time series with added noise by
simulated annealing with IT2FLS and GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS

Training 0.10810335 0.002666 0.102858

Testing 0.14300835 0.008324 0.131141

Time 5,575.85 1,094.793 4,677

One evaluation time 0.000121 - -

Initial GT2FLS (after conversion)

Training 0.10907035 0.0033947 0.103387

Testing 0.1427435 0.0084819 0.130855

Loss in accuracy (Training) -0.894514% - -0.514301%

Loss in accuracy (Testing) 0.1851989% - 0.218086%

GT2FLS

Training 0.10900475 0.003254 0.103773

Testing 0.14293815 0.008373 0.131414

Time 8,104.5 449.260 7,110

One evaluation time 0.000352 - -
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Figure 5.8: The average convergence of SA-IT2FLS (left) and GT2FLS (right) for
noisy Mackey-Glass time series problem.
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Figure 5.9: The average acceptance ratios of SA-IT2FLS (left) and GT2FLS (right)
for noisy Mackey-Glass time series problem.

Table 5.6: The estimation results for low voltage electrical line length by simulated
annealing with IT2FLS and GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS

Training 576.9342 22.333 541.9515

Testing 593.3093 19.616 570.534

Time 2,134.7 156.7076 1,740

One evaluation time 0.000023 - -

Initial GT2FLS (after conversion)

Training 579.0371 24.3067 541.9057

Testing 597.16694 26.9358 570.1701

Loss in accuracy (Training) -0.364496% - 0.008451 %

Loss in accuracy (Testing) -0.650190% - 0.063782%

GT2FLS

Training 576.758885 24.415 540.3895

Testing 593.23235 21.8277 570.464

Time 9,772.65 435.998 8,746

One evaluation time 0.000214
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Figure 5.10: The average convergence of SA-IT2FLS (left) and GT2FLS (right) for
low voltage line problem
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Figure 5.11: The average acceptance ratios of SA-IT2FLS (left) and GT2FLS (right)
for low voltage line problem

111



Chapter 5. Designing GT2FLS using IT2FLS and SA

Table 5.7: The estimation results for the maintenance cost problem by simulated
annealing with IT2FLS and GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS

Training 116.03324 22.0599 86.4411

Testing 256.6648 68.899 188.883

Time 4,613.5 287.8408 4,042

One evaluation time 0.000100 - -

Initial GT2FLS (after conversion)

Training 120.4245465 29.0607 86.45081

Testing 264.132 65.5867 201.2441

Loss in accuracy (Training) -3.784525% - -0.011233%

Loss in accuracy (Testing) -2.909320% - -6.544316%

GT2FLS

Training 120.030435 29.1178 86.3157

Testing 260.954005 67.0748 197.0781

Time 8,099.3 406.836 7,303

One evaluation time 0.000352 - -
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Figure 5.12: The average convergence of SA-IT2FLS (left) and GT2FLS (right) for
maintenance cost problem
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Figure 5.13: The average acceptance ratios of SA-IT2FLS (left) and GT2FLS (right)
for maintenance cost problem

and reduced the computations time. Although, the comparison between IT2FLS and

GT2FLS is not accurate due to the accuracy losses in the conversion stage, the learning

of the SMFs brought extra improvements over the initial converted sets which enforces

the idea that the third dimension in GT2FLS adds extra ability to model uncertainty

over IT2FLS (Mendel and John, 2002) (Christian Wagner, 2009). The next chapter

will investigate the design of GT2FLS directly without the need to use IT2FLS.
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Chapter 6

Learning of General Type-2

Fuzzy Logic Systems using

Simulated Annealing

6.1 Introduction

This chapter reports the work for learning general type-2 fuzzy logic systems using

simulated annealing. Unlike the previous chapter, the learning process in this chapter

does not depend on optimised interval type-2 fuzzy logic systems to initialise general

type-2 fuzzy logic systems. Therefore, the learning process starts from scratch and aims

to optimise all parameters involved in the general type-2 fuzzy set in two stages. This

is a novel approach as no work has been reported on learning general type-2 fuzzy logic

systems using the vertical-slices representation as reported in Chapters 1 and 2. The

proposed parameterisation method presented in Chapter 5 has been used to design two

models of general type-2 fuzzy logic systems. These two models use two type-reduction

techniques. The first is non-deterministic (the sampling method). The second technique
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is deterministic (the vertical-slices centroid type-reduction VSCTR). The use of the two

type-reduction techniques have been justified in Chapter 5. In addition, both models

as well as interval type-2 fuzzy logic system model have been applied to model the four

problems presented in previous chapters. The results of modelling these problems using

the three models have been analysed and discussed. The question of whether general

type-2 fuzzy logic systems can provide abilities to handle more information than interval

type-2 fuzzy logic systems has been tackled. The results showed promising results for

the general type-2 fuzzy logic systems when using deterministic defuzzification methods.

6.2 The Proposed Method of Learning

Using the proposed form of general type-2 set presented in Chapter 5, we can design

GT2FLS using the following two stages procesdure:

• The first step is to design the FOU of the general type-2 set while fixing the

secondary membership function. This is done by defining FOU using any func-

tion used to define interval type-2 fuzzy sets. The lower and upper membership

functions that bound the FOU in interval type-2 fuzzy sets can bound the FOU

in general type-2 fuzzy sets. To get a good FOU, experts opinions or automated

learning can be applied exactly as the case when dsigning IT2FLS.

• Learning of the secondary membership functions of general type-2 sets. By fixing

the optimal FOU, the secondary membership functions can be optimised. This is

done by adapting the apex location indicators by a suitable value.

This two stages method seems to be logical as the definition of the uncertainty bound-

aries (primary memberships) should precedes the definition for how much secondary

membership grades (uncertainty distribution) will be given to each primary member-

ship. The other choice is to start by learning the primary and the secondary grades
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together but this seems excessive, computationally expensive and might be impossible

to have a SMF without defining its FOU.

6.3 Methodology

The whole experiment can be divided into four steps : preparing data, constructing

the initial interval and general type-2 fuzzy systems, learning the FOU parameters and

learning the secondary membership functions.

6.3.1 Data

6.3.1.1 Mackey-Glass time-series

The Mackey-Glass time series is a chaotic time series proposed in (Mackey and Glass,

1977). It has been described in section 3.3.1 and 5.6.1.1. To get the time series, the

same configurations used in section 5.6.1.1 were used here. A sample of the noisy data

has been shown in last chapter in figure 5.3.

6.3.1.2 Mackey-Glass time-series with added noise

A noisy time series will be used to test our models in this experiment. The noisy

Mackey-Glass time series will be generated by adding noise to Mackey-Glass time series

as described in section 5.6.1.1. A sample of the noisy data has been shown in last chapter

in figure 5.4.

6.3.1.3 Estimation of the low voltage electrical line length in rural towns

This problem has been introduced in section 4.3.1. The data samples were randomly

divided into two sets labelled training and testing sets which are randomly selected
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from the whole sample as reported in (Cordón, Herrera and Villar, 2001) and (Cordón

et al., 2002). As with other authors, 396 samples are used for training while the other

99 samples are used for testing as described in section 5.6.1.3.

6.3.1.4 Estimation of the medium voltage electrical line maintenance cost

This problem has been introduced in section 4.3.1. In order to reduce the training

computations and time, the number of samples has been reduced from the one used

in Chapter 4. Only 400 data samples from the whole set were divided into two sets

labelled training and testing sets with 200 samples for each set. Therefore, 400 samples

have been used instead of 1056 samples as described in section 5.6.1.4.

6.3.2 The initial interval type-2 fuzzy logic systems

The fuzzy model consists of a number of independent input fuzzy sets and one indepen-

dent output fuzzy set for each rule. There are 4 rules while each rule is characterised by

a number of fuzzy sets equals to the inputs number (i.e. 4 antecedent fuzzy sets and one

consequent fuzzy set). The system is built from scratch rather than using the optimised

type-1 sets to initialise the interval type-2 fuzzy sets. Each type-2 fuzzy set is described

by Gaussian primary membership functions with uncertain means represented by two

means and one standard deviation as follow (Mendel, 2001, p.91):

f̃(x) = exp−(
x−m
2σ

)2 m ∈ [m1,m2] (6.1)
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Therefore the upper µÃ(x) and lower µ
Ã

(x) membership functions are defined by fol-

lowing mathematical functions (Mendel, 2001, p.91):

µÃ(x) =


exp−(

x−m1
2σ

)2 if x < m1

1 if m1 ≤ x ≤ m2

exp−(
x−m2

2σ
)2 if x > m2

(6.2)

µ
Ã

(x) =

 exp−(
x−m2

2σ
)2 if x ≤ m1+m2

2

exp−(
x−m1

2σ
)2 if x > m1+m2

2

(6.3)

Where the upper µÃ(x) and lower µ
Ã

(x) membership functions in this equation are

used to define FOUlower and FOUupper. All the means and standard deviations are

initialised for all the input fuzzy sets by partitioning each input space into the chosen

number of fuzzy sets and enabling enough overlapping between them while the output

fuzzy sets are initialised randomly around the average value of training outputs. The

fuzzification process is based on the minimum t-norm while the centre-of-area has been

chosen for type-reduction. The collapsing method proposed by (Greenfield, Chiclana,

Coupland and John, 2009) has been used to calculate the centroids of the interval type-

2 sets that needed to compute centre-of-area. This is done by using the composite

outward right-left variant of the collapsing method as it is described in (Greenfield,

Chiclana and John, 2009). The training procedure aims to learn the parameters of the

antecedent parts and the consequent parts of the fuzzy system rules. Then, the found

parameters are used to predict the next testing data points. The total number of the

parameters is 4 ∗ 4 ∗ 3 + 4 ∗ 3 = 60 in all problems except the line length problem where

it is 4 ∗ 2 ∗ 3 + 4 ∗ 3 = 36 parameters. Hence, only FOU’s parameters are optimised in

interval type-2 fuzzy sets.
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6.3.3 The initial general type-2 fuzzy logic system

The initial general type-2 fuzzy logic system is built by using the proposed parametri-

sation method described in section 5.3. The fuzzy model consists of a number of inde-

pendent input fuzzy sets and one independent output fuzzy set for each rule. There are

4 rules while each rule is characterised by a number of antecedent fuzzy sets equals to

the inputs number (4 antecedent fuzzy sets and one consequent fuzzy set). However,

the number of rules was chosen heuristically and any number of rules can be chosen

but we are interested in reducing the system’s complexity and saving computations and

time. The work in this chapter requires more computations than previous chapter as all

FOU’s and SMF’s parameters will be optimised. Therefore, we reduced the rules num-

ber to 4 instead of 8. The system is built from scratch rather than using an optimised

type-1 or interval type-2 fuzzy sets to initialise general type-2 fuzzy sets.

6.3.3.1 The General type-2 Sets

The general type-2 sets are defined using its FOU ′s and SMF ′s functions as follows:

1. FOU : The same membership functions used to define interval type-2 fuzzy sets

in previous subsection (6.3.2) are used to define FOU parameters. The upper

µÃ(x) and lower µ
Ã

(x) membership functions in this equation are used to define

FOUlower and FOUupper. All the means and standard deviations are initialised for

all the input fuzzy sets by partitioning each input space into the chosen number

of fuzzy sets and enabling enough overlapping between them while the output

fuzzy sets are initialised randomly around the average value of training outputs.

2. SMF : Our choice for the SMFs in this work is to use a triangular SMF with

a normal apex initialised in the middle between (FOUlower and FOUupper) for

k1, k2, ...kn points (n = 9) by choosing their apexes locations indicators g(k1) =

g(k2) = ...... = g(kn) = 0.5 and then calculating the apex locations for other
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x points using the linear interpolation function proposed in section 5.3. This

method to parametrise the general type-2 set is shown in figure 5.1.

6.3.3.2 The initial general type-2 fuzzy logic system componenets

The configurations of IT2FLS and GT2FLS used in this experiment are detailed in

Table 6.1. The initial general type-2 fuzzy logic system stages will be as follows:

1. Fuzzification The fuzzification process will fuzzify each x value into a type-1

fuzzy set (SMF) which is a triangular function as described above. The fuzzified

SMF is described by its FOUupper and FOUlower which are derived from the two

Gaussian functions for x and its apex location indicator. The output from each

fuzzification process is a triangular SMF.

2. Combination of antecedents The combination between all antecedent fuzzified

values is done using the meet operation proposed by (Coupland and John, 2007)

and explained in equation 2.8. The output from this phase is a convex SMF that

might be non-normal.

3. Implication To do the implication phase, firstly, the consequent sets space is

discretised into n = 101 points y1, y2, ..., yn in Y domain. Then the implication is

done using the same meet operation proposed by (Coupland and John, 2007). The

third step is to do a join between all secondary membership grades for each y ∈ Y

using the join operation proposed in (Coupland and John, 2007) and explained

in equation 2.3.4.

4. Type-Reduction Two methods for type-reduction have been used. The em-

bedded sets based sampling method and VSCTR method. In sampling method,

we used 100 samples of the embedded sets. The rationale for using two type-

reduction methods is to test the true effects of learning SMF in general type-2
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Table 6.1: The configurations of IT2FLS and GT2FLS used in this experiment

Stage IT2FLS GT2FLS

Membership Function Gaussian Gaussian + triangular SMF

Number of parameters (with four inputs) 60 60+180=240

fuzzification singleton singleton

Antecedent combination t-norm minimum minimum using Coupland’s meet

Implication t-norm minimum minimum using Coupland’s meet

Join t-conorm maximum maximum using Coupland’s join

SMF discretised points none 9

Type-reduction method centroid by collapsing method centroid by sampling and VSCTR

Defuzzification method centroid centroid

Y Descritisation points 101 101

fuzzy sets without been distracted by the stochastic evaluation using sampling.

The output from this phase is a type-1 fuzzy set.

5. Defuzzification The centre of area (centroid) defuzzification has been used in

this part.

6.3.4 Learning of FOU parameters

The training procedure aims to get the best parameters of the antecedent parts and

the consequent parts of the fuzzy system rules. Then, the found parameters are used

to predict the next testing data points. The total number of FOUs parameters is

4∗4∗3+4∗3 = 60 in all problems except the line length problem where it is 4∗2∗3+4∗3 =

36 parameters. The learning process is done using simulated annealing algorithm that

searches for the best configuration of the parameters by trying to modify one parameter

each time and evaluate the cost of the new state which is measured by a cost function

which is Root Mean Square Error (RMSE) that is defined as follows:

RMSE =

√√√√ 1

n

n∑
k=1

[f(k)− f(k∗)]2 (6.4)

From an optimisation perspective, the only constraint to the variables of the optimisa-

tion problem is that all standard deviations of all fuzzy sets must be ≥ 0. The simulated
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annealing algorithm is initialised with a temperature equals to the standard deviation

of the mean RMSE’s for 1000 runs for the training samples as proposed by (White,

1984). The cooling schedule is based on a static cooling rate of 0.9 updated for each

Markov chain. Each Markov chain has a length related to the number of variables in

the search space which equals to 5 times the number of variables. The search ends after

40 Markov chains. The new states for a current state are chosen from neighbouring

states randomly by adding a small number (step size) to one of the antecedent param-

eters or the consequent parameters. The step size value is related to the maximum

and minimum value for each input space and = max-min/25 while the direction of the

search is chosen randomly. After that, the new state is evaluated by examining the 200

data points outputs. Then, the average and the minimum of the cost function of the

training and testing results have been calculated.

6.3.5 The learning of the secondary membership functions

The learning process in this stage aims to get the optimal locations of apexes for all the

SMF’s parameters where the other two points for each triangular SMF are fixed. The

optimised parameters in this case are the apexes locations factors g(k1), g(k2), ......, g(kn)

for each general type-2 set involved in the system. The learning is done using simulated

annealing algorithm with the same configuration used above apart from the following :

1. The constraints for each variable (apexes factors g(ki) for each ki) are defined

by their (FOUlower(ki) and FOUupper(ki)) points which constitue the secondary

domain boundaries for each ki.

2. The step size is the value that changes the apex location indicator. The new

value must be between [0, 1] and the step size should be large enough to make a

difference in the cost function as small values might not change the outputs when

it does not overcome the next discretisation step in the secondary domain. The

chosen step size is 0.225.
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3. The length of each Markov chain is equal to 5 times the number of variables in the

search space. The search ends after 10 Markov chains. These choices to reduce

the experiment’s time.

The number of all parameters being optimised in this stage for each fuzzy set is n = 9.

Therefore, the total number of all parameters being optimised in the system in this

stage is ( the number of fuzzy sets ∗ n) parameters. That is 4 ∗ 5 ∗ 9 = 180 parameters

in problems with 4 inputs and 4 ∗ 3 ∗ 9 = 108 parameters in the length line problem.

The experiment has been carried out 20 times and the average and the minimum of the

cost function of the testing data results have been calculated.

6.4 Results and Discussion

The experiments were developed using C++ language and have been carried out 20

times on a number of PCs with an equal CPU speed of 3 GH’s and a memory of 4GB.

Results are shown for each problem in a number of points in next paragraphs. The

results are summarised for all problems in table 6.6. Extra insights into the convergence

behaviours and acceptance ratios in both stages will be discussed to explain some new

results.

6.4.1 Mackey-Glass time series results

The results of learning Mackey-Glass time series are detailed in table 6.2 where the

average RMSEs curves and the acceptance ratios during search are depicted in figures

6.1 and 6.2 respectively. The main observations are :

1. The best average RMSE in testing samples was obtained by general type-2 fuzzy

logic system with VSCTR defuzzification (GT2FLS-VSCTR) followed by interval

type-2 fuzzy logic system (IT2FLS).
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2. The best average RMSE in training samples was obtained by general type-2 fuzzy

logic system with VSCTR defuzzification followed by IT2FLS.

3. The average RMSEs curves when learning FOUs (training samples) have exhibited

similar performances by the three models. However, IT2FLS obtained the best

average RMSEs in testing phase followed by GT2FLS-VSCTR which was the best

in training phase followed by IT2FLS.

4. The learning of SMFs using GT2FLS-VSCTR adds about 11.7% to the average

testing RMSEs and about 17.7% to the average training RMSEs over the FOU’s

learning best results. The learning of SMFs using GT2FLS-Sampling adds about

0.86% to the training RMSEs but worsened the testing RMSEs by about −0.059.

5. The learning curves of SMFs showed a clear difference in performance between

GT2FLS-VSCTR and GT2FLS-Sampling models. GT2FLS-VSCTR shows con-

tinuous improvements compared to very small improvements obtained by GT2FLS-

Sampling.

6. The acceptance ratios curves when learning FOUs show similar behaviours be-

tween GT2FLS-VSCTR and IT2FLS better than the narrower acceptance be-

haviour obtained by GT2FLS-Sampling. The last one shows unpleasant behaviour

where it converges to values close to 0% quickly in less than 30 Markov chains

which means no improvements were observed in the rest of iterations.

7. The acceptance ratios curves when learning SMFs show a clear difference in be-

haviours between GT2FLS-VSCTR and GT2FLS-Sampling models. The GT2FLS-

Sampling shows unpleasant very narrow acceptance behaviour compared to GT2FLS-

VSCTR. Interestingly, the acceptance ratios curves of GT2FLS-Sampling model

show narrower behaviour when learning SMFs from its behaviour with FOUs.

However, as mentioned above, the initial temperatures were set separately in

each stage to be proportional to the objective function differences brought by
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these moves in the two parameters groups (FOU and SMF). This is important

to avoid starting with very large or very small initial temperatures and to have

acceptable curves of best results and acceptance ratios. In other words, the ob-

served acceptance behaviours for GT2FLS-Sampling model are not related to the

settings of simulated annealing. This behaviour can be easily explained by the

effects of the defuzzification method which is the only difference between the two

models of GT2FLS. As explained in section 5.5, the effects of the stochastic ob-

jective function when using sampling method can be ignored when moves from

a state to a state can bring relatively large differences compared to the random

noise but this noise can deteriorate the search when moves bring improvements

comparable to that noise. In other words, when learning FOU, the differences

brought by moves are large enough to accept very small errors of approximated

objective functions due to the larger contributions of FOU’s parameters on the

objective functions compared to the SMF contributions. Hence, we do not expect

large contribution from learning SMF’s parameters compared to FOU’s learning

due to the fact that SMF is dependent on FOU and bounded by its endpoints.

This behaviour of acceptance ratios when using GT2FLS-Sampling have been

observed with all problems and this explanation is applied to them.

8. The time taken by IT2FLS was the shortest by 5.8 times faster than GT2FLS-

VSCTR and by 21.8 times faster than GT2FLS-Sampling. Therefore, IT2FLS is

preferred in terms of speed.

6.4.2 Mackey-Glass time series with added noise results

The results of learning Mackey-Glass time series with added noise are detailed in table

6.3 where the average RMSE’s curves and the acceptance ratios during search are

depicted in figures 6.3 and 6.4 respectively. The main observations from the results are

:
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Table 6.2: The forecasting results for noise-free Mackey-Glass time series by simu-
lated annealing with GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS

Training 0.04980955 0.0200348 0.026242

Testing 0.0433439 0.010239 0.027117

Time 332.55 21.027488 295

GT2FLS with Sampling Defuzzification

After FOU’s Learning

Training 0.0553228125 0.01243 0.03761027

Testing 0.0518645455 0.0107249 0.03617023

After SMF’s Learning

Training 0.0548446 0.0119293 0.0372725

Improvement by SMF 0.86% - -

Testing 0.051895285 0.010721 0.0362123

Improvement by SMF -0.059269 % - -

Time 7,259.9 992.126 5,724

GT2FLS with VSCTR Defuzzification

After FOU’s Learning

Training 0.0483079765 0.01089 0.03428513

Testing 0.0446682685 0.0121448 0.02823214

After SMF’s Learning

Training 0.03975027 0.0115896 0.0240021

Improvement by SMF 17.7% - -

Testing 0.03943346 0.0116557 0.024325

Improvement by SMF 11.7% - -

Time 1,945.45 368.392 1,217
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Figure 6.1: The average convergence of the three models for noise-free Mackey-Glass
time series problem when learning FOU (left) and SMF (right).
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Figure 6.2: The average acceptance ratios of the three models when learning FOU
(left) and SMF (right) for noise-free Mackey-Glass time series problem.
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1. The best average RMSE in testing samples was obtained by GT2FLS-VSCTR

followed by GT2FLS-Sampling.

2. The best average RMSE in training samples was obtained by GT2FLS-VSCTR

followed by GT2FLS-Sampling.

3. The average RMSE’s curves for learning FOUs (training samples) have exhibited

similar performances by the three models. However, GT2FLS-VSCTR model ob-

tained best average RMSEs in training and testing followed by GT2FLS-Sampling.

4. The learning of SMFs using GT2FLS-VSCTR adds about 1% to the average

testing RMSEs and about 3% to the average training RMSEs over the FOU’s

learning best results. The learning of SMFs using GT2FLS-Sampling adds about

0.32% to the training RMSEs but worsened the testing RMSEs by about −0.1.

5. The learning curves of SMFs showed a clear difference in performance between

GT2FLS-VSCTR and GT2FLS-Sampling models. GT2FLS-VSCTR shows con-

tinuous improvements compared to relatively small improvements obtained by

GT2FLS-Sampling.

6. The acceptance ratios curves when learning FOUs show similar behaviours be-

tween GT2FLS-VSCTR and IT2FLS better than the narrower acceptance be-

haviour obtained by GT2FLS-Sampling. The last one converges to acceptance

ratios close to 0% in less than 25 Markov chains.

7. The acceptance ratios curves when learning SMFs show a clear difference in be-

haviours between GT2FLS-VSCTR and GT2FLS-Sampling models. The GT2FLS-

Sampling shows very narrow acceptance behaviour compared to GT2FLS-VSCTR.

8. The time taken by IT2FLS was the shortest by 6.3 times faster than GT2FLS-

VSCTR and by 20 times faster than GT2FLS-Sampling.
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Table 6.3: The forecasting results for Mackey-Glass time series with added noise by
simulated annealing with IT2FLS and GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS

Training 0.1468528 0.02459 0.125778

Testing 0.1525942 0.014847 0.126217

Time 350 57.217 285

GT2FLS with Sampling Defuzzification

After FOU’s Learning

Training 0.13835616 0.00835 0.1282838

Testing 0.14152867 0.008688 0.1242401

After SMF’s Learning

Training 0.13790745 0.008148 0.128318

Improvement by SMF 0.32% - -

Testing 0.1416725 0.0086397 0.124408

Improvement by SMF -0.1% - -

Time 6,999.45 1,107.276 4,645

GT2FLS with VSCTR Defuzzification

After FOU’s Learning

Training 0.132636905 0.0045462 0.123189

Testing 0.138335225 0.004243 0.1287115

After SMF’s Learning

Training 0.12860905 0.004316 0.120457

Improvement by SMF 3% - -

Testing 0.136965 0.0043126 0.128493

Improvement by SMF 1% - -

Time 2,197.5 426.4706 1,460
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Figure 6.3: The average convergence of the three models for noise-free Mackey-Glass
time series with added noise problem when learning FOU (left) and SMF (right).
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Figure 6.4: The average acceptance ratios of the three models when learning FOU
(left) and SMF (right) for noisy Mackey-Glass time series problem.
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6.4.3 The low voltage electrical line length results

The results of the learning low voltage electrical line length problem are detailed in

table 6.4 where the average RMSEs curves and the acceptance ratios during search are

depicted in figures 6.5 and 6.6 respectively. The main observations from the results are

:

1. The best average RMSE in testing samples was obtained by GT2FLS-VSCTR

followed by GT2FLS-Sampling.

2. The best average RMSE in training samples was obtained by GT2FLS-VSCTR

followed by GT2FLS-Sampling.

3. The average RMSE’s curves for learning FOUs (training samples) have exhibited

similar performances by the three models. However, GT2FLS-VSCTR model

obtained best average RMSEs in training and testing. The second in testing was

GT2FLS-Sampling while IT2FLS was the second in training.

4. The learning of SMFs using GT2FLS-VSCTR adds about 0.88% to the average

testing RMSEs and about 4.9% to the average training RMSEs over the FOU’s

learning best results. The learning of SMFs using GT2FLS-Sampling adds about

0.05% to the testing RMSEs and about 3.15% to the training RMSEs after FOU’s

learning.

5. The learning curves of SMFs showed a clear difference in performance between

GT2FLS-VSCTR and GT2FLS-Sampling models. GT2FLS-VSCTR shows con-

tinuous improvements compared to relatively small improvements obtained by

GT2FLS-Sampling.

6. The acceptance ratios curves when learning FOUs show similar behaviours be-

tween GT2FLS-VSCTR and IT2FLS better than acceptance behaviour obtained

131



Chapter 6. Learning of GT2FLS using Simulated Annealing

R
M
S
E

585

590

595

600

605

610

615

Iteration

0 2 4 6 8 10 12

GT2FLS-SAMPLING

GT2FLS-VSCTR

R
M
S
E

500

600

700

800

900

1,000

1,100

1,200

1,300

1,400

Iteration

0 10 20 30 40

GT2FLS-SAMPLING

GT2FLS-VSCTR

IT2FLS

Figure 6.5: The average convergence of the three models for low voltage electrical
line length problem when learning FOU (left) and SMF (right).

by GT2FLS-Sampling. The last one converges to acceptance ratios close to 0%

in less than 25 Markov chains.

7. The acceptance ratios curves when learning SMFs show a clear difference in be-

haviours between GT2FLS-VSCTR and GT2FLS-Sampling models. The GT2FLS-

Sampling shows very narrow acceptance behaviour compared to GT2FLS-VSCTR.

8. The time taken by IT2FLS was the shortest by 3.8 times faster than GT2FLS-

VSCTR and by 17.3 times faster than GT2FLS-Sampling.

6.4.4 The maintenance cost problem results

The results of learning the maintenance cost problem are detailed in table 6.5 where the

average RMSE’s curves and the acceptance ratios during search are depicted in figures

6.7 and 6.8 respectively. The main observations are :
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Table 6.4: The estimation results for low voltage electrical line length by simulated
annealing with IT2FLS and GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS

Training 627.816 64.10956 580.319

Testing 606.84075 62.6282 568.15

Time 530.8 47.5987 463

GT2FLS with Sampling Defuzzification

After FOU’s Learning

Training 632.080425 50.4127 595.8498

Testing 594.33905 16.46317 562.3377

After SMF’s Learning

Training 612.13475 10.24457 593.864

Improvement by SMF 3.15% - -

Testing 594.02365 16.2959 560.929

Improvement by SMF 0.05% - -

Time 9,162.3 2,521.752 4,377

GT2FLS with VSCTR Defuzzification

After FOU’s Learning

Training 618.412695 52.09535 577.1892

Testing 596.185465 19.2559 571.3894

After SMF’s Learning

Training 588.01895 11.6174 564.773

Improvement by SMF 4.9% - -

Testing 590.90565 18.40509 559.914

Improvement by SMF 0.88% - -

Time 2,005.65 367.299 1,474
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Figure 6.6: The average acceptance ratios of the three models when learning FOU
(left) and SMF (right) for low voltage line problem

1. The best average RMSE in testing samples was obtained by GT2FLS-VSCTR

followed by interval type-2 fuzzy logic system.

2. The best average RMSE in training samples was obtained by GT2FLS-VSCTR

followed by interval type-2 fuzzy logic system.

3. The average RMSE’s curves for learning FOUs (training samples) have exhib-

ited similar performances by the three models. Again, GT2FLS-VSCTR model

obtained best average RMSEs in both training and testing followed by IT2FLS.

4. The learning of SMFs using GT2FLS-VSCTR adds about 6.9% to the average

testing RMSEs and about 14.9% to the average training RMSEs over the FOU’s

learning best results. The learning of SMFs using GT2FLS-Sampling adds about

3.35% to the training RMSEs but worsened the testing RMSEs by about −0.05%.

5. The learning curves of SMFs showed a clear difference in performance between

GT2FLS-VSCTR and GT2FLS-Sampling models. GT2FLS-VSCTR shows con-

tinuous improvements compared to relatively very small improvements obtained

by GT2FLS-Sampling.
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Figure 6.7: The average convergence of the three models for the maintenance cost
problem when learning FOU (left) and SMF (right).

6. The acceptance ratios curves when learning FOUs show similar behaviours be-

tween GT2FLS-VSCTR and IT2FLS better than acceptance behaviour obtained

by GT2FLS-Sampling. The last one converges to acceptance ratios close to 0%

in less than 25 Markov chains.

7. The acceptance ratios curves when learning SMFs show a clear difference in be-

haviours between GT2FLS-VSCTR and GT2FLS-Sampling models. The GT2FLS-

Sampling shows very narrow acceptance behaviour compared to GT2FLS-VSCTR.

8. The time taken by IT2FLS was the shortest by 3.77 times faster than GT2FLS-

VSCTR and by 14.4 times faster than GT2FLS-Sampling.

6.4.5 Results summary

The main conclusions from the results for the four problems are :
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Table 6.5: The estimation results for the maintenance cost problem by simulated
annealing with IT2FLS and GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS

Training 304.8366 92.320619 145.985

Testing 353.99755 106.36379 207.672

Time 410.95 44.00535 341

GT2FLS with Sampling Defuzzification

After FOU’s Learning

Training 347.56075 93.88004 172.6323

Testing 424.139295 107.8478 230.5775

After SMF’s Learning

Training 335.91655 81.6298 172.514

Improvement by SMF 3.35% - -

Testing 424.3692 108.0096 229.275

Improvement by SMF -0.05% - -

Time 5,936.6 937.4517 4,037

GT2FLS with VSCTR Defuzzification

After FOU’s Learning

Training 281.416145 96.938 124.3031

Testing 341.1021 112.5648 155.5801

After SMF’s Learning

Training 239.4284 76.2998 109.223

Improvement by SMF 14.9% - -

Testing 317.43325 104.8642 145.222

Improvement by SMF 6.9% - -

Time 1,556.25 183.7191 1,260
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Figure 6.8: The average acceptance ratios of the three models when learning FOU
(left) and SMF (right) for maintenance cost problem

1. GT2FLS-VSCTR model obtained the best results in all cases for both training

and testing results (average RMSEs).

2. GT2FLS-Sampling and IT2FLS were overlapping the second position and there-

fore showing similar results. However, the learning of SMF when using sam-

pling defuzzification was distracted by the stochastic behaviour for the objective

function. In fact, it is unfair to compare a model with a stochastic evaluation

(GT2FLS-Sampling) with a model with a deterministic evaluation (IT2FLS) of

the objective function. Therefore, the question of weather general type-2 fuzzy

logic systems or IT2FLS is better in handling uncertainties should not be based

on such case.

3. When learning FOU, GT2FLS-VSCTR obtained the best results in all training

cases and most testing cases (three out of four) against IT2FLS. This might be

explained by the common sense that the uncertainties in practice are centred

and distributed around some points in the SMF. In interval type-2 fuzzy set, all

uncertainties are given the same amount of possibilities in their SMF. Therefore,
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in general, general type-2 fuzzy sets should be able in practice to handle more

information than interval type-2 fuzzy sets even without learning their SMF.

4. The learning of SMFs using GT2FLS-VSCTR adds between 0.88% and 11.7% to

the average testing RMSEs and between 3% to 17.7% to the average training RM-

SEs over the FOU’s learning best results. The learning of SMFs using GT2FLS-

Sampling adds between 0.32% and 3.35% to the training RMSEs and up to 0.5%

to the testing RMSEs but also worsen some results by up to −1%. Again, the

comparison against GT2FLS-Sampling should not be tackled between such mod-

els. In other words, the learning of SMFs has brought a noticeable improvements

when allowing deterministic method of evaluate objective functions meaning that

general type-2 fuzzy logic systems add more abilities and flexibilities to modelling

than interval type-2 fuzzy logic systems. The problem of type-reduction in gen-

eral type-2 fuzzy logic systems should be more investigated to find embedded sets

based, practical and stable methods to help designing general type-2 fuzzy logic

systems automatically.

5. The stochastic evaluations of centroids using sampling method affects the learning

performance of general type-2 fuzzy logic systems especially when learning SMF.

These effects are shown through their learning and acceptance behaviours curves.

6. The time taken by interval type-2 fuzzy logic system was the shortest by 3.77−6.3

times faster than GT2FLS-VSCTR and by 14.4−21.8 times faster than GT2FLS-

Sampling. Therefore, in terms of speed, IT2FLS is preferred followed by GT2FLS-

VSCTR.

6.5 Summary

The work for learning general type-2 fuzzy logic systems using simulated annealing

has been reported. The learning to configure all general type-2 fuzzy logic systems
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Table 6.6: The results summary for all problem by the three models to model testing
samples ordered by their accuracies (1= the best)

Model Mackey-Glass Noisy Mackey-Glass Line length Maintenance cost

Training Testing Training Testing Training Testing Training Testing

IT2FLS 2 2 3 3 3 3 2 2

GT2FLS-Sampling 3 3 2 2 2 2 3 3

GT2FLS-VSCTR 1 1 1 1 1 1 1 1

parameters in two stages has been applied in both FOU and SMF parts. The learn-

ing process starts from scratch rather than using optimised interval type-2 fuzzy logic

systems to initialise general type-2 fuzzy logic systems. The novel parametrisation ap-

proach presented in Chapter 5 has been used to design two models of general type-2

fuzzy logic systems. These two models using two type-reduction techniques; one is

non-deterministic (the sampling method). The other technique is deterministic (the

vertical-slices centroid type-reduction VSCTR). The rationale for using the two type-

reduction techniques have been described. In addition, both models as well as interval

type-2 fuzzy logic system model have been applied to model the four problems presented

in previous chapters. The question of weather general type-2 fuzzy logic systems can

provide more abilities to handle information has been tackled. The stochastic defuzzifi-

cation method of sampling embedded sets affects the learning performance in both FOU

and SMF learning stages. However, general type-2 fuzzy logic systems with sampling

defuzzification have achieved similar performance to interval type-2 fuzzy logic systems

but in a very long time. The best results achieved in all problems have been accredited

to general type-2 fuzzy logic systems with VSCTR defuzzification. The results showed

that when using the deterministic defuzzification method (VSCTR), the learning of

general type-2 fuzzy logic systems can provide extra abilities to handle more informa-

tion and uncertainties than interval type-2 fuzzy logic systems that use uniform SMF’s.

Although, the use of VSCTR is not based on the concept of using embedded sets to

calculate the exact centroids of type-2 sets, the method allows the learning process to

be carried out in a practical manner. This achievement opens the doors to using other

learning methods to get more modelling capabilities from the general type-2 fuzzy logic
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systems in real-world.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Through this thesis, the combination of simulated annealing with type-2 fuzzy logic

systems has been proposed and examined for modelling uncertainty. The interval and

generalised models of type-2 fuzzy logic systems have been used as well as using type-1

fuzzy logic systems model. The three models have been analysed in their abilities to

handle information in problems with associated uncertainties. The main conclusions

are :

• Simulated annealing exhibited a good candidate for fuzzy logic system amongst

other combinations.

• Interval type-2 fuzzy logic systems added more abilities to modelling informa-

tion and handling uncertainties than type-1 fuzzy logic systems but require more

computations and time.

• The learning of general type-2 fuzzy logic systems can provide extra abilities

to handle more information and uncertainties than interval type-2 fuzzy logic

141



Chapter 7. Conclusions and Future Work

systems especially when using a deterministic defuzzification method. This is a

result of exploiting the freedom in the third dimension in general type-2 fuzzy

sets.

After the introduction and the literature review in Chapters 1 and 2, the simulated

annealing algorithm was applied with variants of type-1 fuzzy logic system models and

fuzzification methods in Chapter 3. Two models (Mamdani and TSK) models and two

fuzzification methods (singleton and non-singleton) methods have been applied to fore-

cast Mackey-Glass time series with different levels of added noise. This was presented

in the third chapter alongside a discussion on issues related to this combination. The

main conclusions from this work is :

• Simulated annealing exhibited a good candidate for fuzzy logic systems among

other combinations. Its ability to handle different kinds of functions and to suit

higher dimensionality allows simulated annealing to be a good choice for this

purpose.

• In higher noise levels, the Mamdani model with non-singleton fuzzification showed

more modelling abilities than other models.

• In the absence of noise, the singleton system performs better than the non-

singleton system.

• TSK performs well as the noise reduced especially with singleton systems.

The novel combination of simulated annealing and interval type-2 fuzzy logic systems

has been applied in the fourth chapter where it is compared with type-1 fuzzy logic

systems. Four problems have been used to examine the modelling abilities for both

combinations. These are noise-free and noisy Mackey-Glass time series forecasting

(Mackey and Glass, 1977) and two real world problems which are the estimation of

the low voltage electrical line length in rural towns and the estimation of the medium
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voltage electrical line maintenance cost (Cordón et al., 1999). The analysis of their

results showed that:

• Interval type-2 fuzzy logic systems added more abilities to modelling information

and handling uncertainties associated with these problems than type-1 fuzzy logic

systems.

• type-1 fuzzy logic system was preferred in terms of computations time.

The fifth and sixth chapters proposed the novel work for learning general type-2 fuzzy

logic systems using simulated annealing in two different methodologies. The fifth chap-

ter was concerned with learning the third dimension (SMF) using simulated annealing

and with the aid of interval type-2 fuzzy logic systems to model the four problems

mentioned above. The use of interval type-2 fuzzy logic systems is proposed to get a

quick optimised interval type-2 fuzzy sets that are converted to general type-2 fuzzy

sets before applying simulated annealing again to learn the best SMF’s parameters. In

order to achieve the objective of learning SMF, a novel parametrisation method was

proposed. Although this method is not a new representation of general type-2 fuzzy

sets, it helps much in getting a practical and simple way for SMF’s parametrisation.

Such parametrisation is needed for learning general type-2 fuzzy logic systems. In

addition, the problem of type-reduction bottleneck in general type-2 fuzzy sets and

its effects on learning performance has been discussed and a rationale for the chosen

methods has been drawn. The exhaustive method for type-reduction is very difficult to

use in practice so that the sampling defuzzifier has been chosen instead. After getting

the best FOU from the optimised interval type-2 fuzzy sets, an approximation conver-

sion process has been conducted to convert them to general type-2 fuzzy sets. Then,

simulated annealing was used to learn the best SMF’s parameters only to get better

modelling. The main observations in this part are :

143



Chapter 7. Conclusions and Future Work

• Although, the conversion process has caused some losses in modelling accuracies,

the learning of SMF added some improvements to the best converted FOU’s

results. However, these improvements are very small compared to the scale of the

problem and to the improvements brought by FOU. This issue is a result of the

stochastic evaluations of the exact type-reduced sets using sampling as proved in

the sixth chapter when another deterministic type-reducer has been applied.

• Learning the third dimension can add extra abilities to modelling information

over interval type-2 fuzzy logic systems.

The sixth chapter reported the novel work for learning all parameters of general type-

2 fuzzy sets to design general type-2 fuzzy logic systems. The designed systems are

initialised from scratch rather than using optimised interval type-2 fuzzy sets to start

with. The four problems mentioned above were used to examine the proposed system’s

performance in modelling. Two methods for type-reduction have been used to avoid

the distracted evaluations of objective functions when using the sampling defuzzifier.

Both type-reducers, the non-deterministic sampling and the deterministic vertical-slices

centroid type-reducer (VSCTR) have been used and compared with interval type-2

fuzzy logic systems. The experimentation for the three models showed interesting

results as follows:

• Firstly, the results showed that when using the deterministic defuzzification method

(VSCTR), the learning of general type-2 fuzzy logic systems can provide extra

abilities to handle more information and uncertainties than interval type-2 fuzzy

logic systems that use uniform SMFs. Improvements between 0.88% and 11.7%

were added to the average testing results when learning SMFs using general type-2

fuzzy logic systems with the deterministic type-reducer.
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• The stochastic defuzzification method of sampling embedded sets affects the learn-

ing performance in both FOU and SMF learning stages especially when learning

SMF.

• The longer computations time needed for general type-2 fuzzy logic systems con-

stitutes a trade-off between the speed brought by interval type-2 fuzzy logic sys-

tems and the extra accuracies brought by general type-2 fuzzy logic systems.

This is the first work on learning general type-2 fuzzy logic systems using vertical-slices

representation. The clear conclusion that learning the third dimension can add more

abilities to modelling is an important advance in type-2 fuzzy logic system research and

should open the doors for more promising research on learning general type-2 fuzzy logic

systems. Hence, the proposed parametrisation method allow other learning methods

used to design interval type-2 fuzzy logic systems to be potential candidates for general

type-2 fuzzy logic systems design.

7.2 Limitations and Future Work

The main obstacle encountered through this research is the lack of a practical type-

reducer to calculate the exact type-reduced sets. At current time, the only method

that can calculate the exact type-reduced sets is the exhaustive method. However,

the astronomical computations associated with this method prevent practitioners from

using it in practice. Although sampling method helps to get a practical solution to

get approximated centroids, its stochastic behaviour caused some deteriorations on the

learning performance. On the other hand, while VSCTR is more practical and does

not affect learning process, it is not based on the concept of embedded sets that used

to build up type-2 fuzzy set.

Considering the impacts of the work reported in this thesis, many research opportunities

with great potential can be tackled. Some of these opportunities are :
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• Using other variants of simulated annealing to best suit type-2 fuzzy logic sys-

tems. Examples of such variants include Adaptive Simulated Annealing (ASA)

(Ingber, 1993), Very Fast Simulated Re-Annealing (Ingber, 1989) and Basin Hop-

ping (Wales and Scheraga, 1999).

• Using different components of simulated annealing to improve simulated anneal-

ing search for type-2 fuzzy logic systems parameters. Examples of different com-

ponents include using adaptive step sizes, dynamic cooling schedules and other

acceptance rules.

• Extending the parametrisation method proposed in this work to other member-

ship function shapes such as trapezoidal, s-shaped and z-shaped membership func-

tions. In this direction, extending the method to serve different cases such as

handling more than one apex in SMF.

• Regarding the type-2 fuzzy sets and systems side, a high priority should be given

to propose a type-reducer that is practical, deterministic and based on the concept

of embedded sets as pointed out above. In addition, there is a need for fast meet

and join operations to handle cases where more than one apex exists in SMF

such as in trapezoidal function. Fast meet and join operations will help speed

up type-2 fuzzy logic systems inference but the type-reduction stage is the most

computationally expensive part and should be given priority.

• Using other learning methods other than simulated annealing to design general

type-2 fuzzy logic systems automatically. There is a large number of such methods

that have been used with type-1 and interval type-2 fuzzy logic systems with dif-

ferent performances. Therefore, the start with the less computationally expensive

methods might be a preferable direction.

• Investigating for robust approximation methods to convert between interval type-

2 fuzzy sets and general type-2 fuzzy sets. Such method will help getting the best
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optimised FOU without using the most computationally expensive mathematics

of general type-2 fuzzy logic systems.

• Using the proposed combination in this thesis to model other real-world problems

especially problems with no time constraints.

This thesis has shown a successful development of an enhanced modelling using a novel

hybrid approach. The work has opened the doors for more research opportunities with

great potential and for promising practical applications.
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