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Abstract 23 

The main aim of this study was to develop rice starch (RS), ι-carrageenan (ι-car) based film. 24 

Different formulations of RS (1-4%, w/w), ι-car (0.5-2%, w/w) was blended with stearic acid 25 

(SA; 0.3-0.9%, w/w) and glycerol (1%, w/w) as a plasticizer. The effect of film ingredients on 26 

the thickness, water vapour permeability (WVP), film solubility (FS), moisture content (MC), 27 

colour, film opacity (FO), tensile strength (TS), elongation-at-break (EAB) of film was 28 

examined. Interactions and miscibility of partaking components was studied by using Fourier 29 

transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Hydrocolloid 30 

suspension solution of mix polysaccharides imparted a significant impact (p<0.05) on the 31 

important attributes of resulting edible film. TS and EAB of film were improved significantly 32 

(p<0.05) when ι-car was increased in the film matrix. Formulation F1 comprising 2% ι-car, 2% 33 

RS, 0.3% SA, Gly 30% w/w and 0.2% surfactant (tween®20) provided film with good 34 

physical, mechanical and barrier properties. FT-IR and XRD results reveal that molecular 35 

interactions between RS-ι-car have a great impact on the film properties confining the 36 

compatibility and miscibility of mixed polysaccharide. Results of the study offers new 37 

biodegradable formulation for application on fruit and vegetables.  38 

Keywords: Biopolymers; Biodegradable; Edible film. 39 
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1. Introduction 46 

Edible film and coatings are the future of packaging industries. Ability of edible biopolymers 47 

to reduce the serious environmental concerns by minimizing the usage of plastic packaging has 48 

provided the solution for many packaging issues. Hence it is important to explore the potential 49 

of natural biopolymers for the shelf life extension of fresh produce.  50 

Starch is a complex polysaccharide biopolymer and a material of choice for the development 51 

of edible films. Due to low cost and good film forming properties it is often used in the blending 52 

combinations with other biopolymers to develop a strong film with improved properties. 53 

Composite matrices with different blending combinations have been reported to have desirable 54 

functional properties by combining the advantage of each component while overcoming their 55 

potential limitations [1]. Combinations of polysaccharides with high molecular weight 56 

compounds have provided excellent miscibility and interactions with improved mechanical 57 

properties [2]. However, detailed study is required to understand the mechanism of interactions 58 

influencing the physical, mechanical and barrier properties of film. 59 

ι-carrageenan is water soluble biopolymers [3] extracted from certain species of red seaweed 60 

of the family Rhodophyceae. The hydrophilic linear sulphated galactan constitutes alternating 61 

galactopyranosyl units linked by β (14) and α (13) glycosidic bonds.  Commercially ι-cars 62 

are classified in to three different types: kappa (κ), iota (ι) and lambda (λ)-ι-carrageenan where 63 

OSO3
- group numbers configuration defines the rheological properties of these sulphated 64 

compounds [4].  65 

High flexibility and low WVP are the desired properties of edible films which are achieved by 66 

using plasticizers. Glycerol is the most commonly studied plasticizer with starch based edible 67 

coatings. [5]. However being hygroscopic, it affects the permeability properties of film while 68 

providing it flexibility [6, 7]. Fatty acids, due to their hydrophilic and hydrophobic nature  have 69 
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also been studied as plasticizers [8]. Hydrophobic substances (fatty acids, waxes and oils) in 70 

combination with other components are helpful in controlling the permeability properties of 71 

edible films. Stearic acid, palmitic acid, essential oils are most widely used plasicizers in the 72 

edible coatings currently [9].  73 

Other components with potential capacity to improve film properties are surfactants. These are 74 

amphiphilic compounds used to improve the wettability and adhesion of film [10] and act as a 75 

emulsifiers. The hydrophobic tail of a surfactant affect the mechanical properties of starch film 76 

[11]. 77 

Improving the preservation efficiency of edible films by tailoring the mechanical and barrier 78 

properties have been conducted by using different formulations of biopolymers-ingredients 79 

combinations for instance, tapioca starch-protein [12], rice starch-lipid [13], pea starch-80 

cellulose [14], manioc starch-gelatine [15], and yam starch-cassava starch [16]. 81 

However, to the best of our knowledge no attempt has been made to study the characterisation 82 

of edible film based on rice starch-ι-carrageenan formulations. The aim of this work was, 83 

therefore, to develop rice starch, ι-car and steric acid based edible film, evaluate the effect of 84 

interactions at different ratios of ingredients on the properties of developed film. Fourier 85 

transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) was used to highlight 86 

the interactions and miscibility between polymer-polymer and polymer with other ingredients. 87 

2. Material and Methods 88 

2.1 Materials 89 

Rice grains (Oryza sativa, cv Doongara) were obtained from Sunrice (Sun Rice, Leeton 90 

Australia). HCl, NaOH were purchased from Merck Pty Ltd, Germany. Acetic acid, stearic 91 

acid and Tween®20 were obtained from Sigma Aldrich, USA. Glycerol was from Ajax 92 
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Finechem Pty. Ltd, Australia and used as a plasticizer. The ι-car (Chondrus crispus) was 93 

purchased from Melbourne Food Ingredient Depot, Australia.   94 

2.2 Extraction of starch  95 

Starch was extracted following a previously developed method [17] with some modifications. 96 

Rice grains were steeped overnight and then grounded at low speed for 5 min using a multi 97 

blender. The slurry was filtered through the muslin cloth and centrifuged at 2000 × g for 10 98 

min using Beckman coulter, Allegra X-15R centrifuge. The supernatant was collected and 99 

washed five times with excess 0.1 M NaOH to completely remove any proteins. Resultant 100 

slurry was mixed with water and filtered through 125µm and 63 µm pore size sieves. The 101 

mixture was dried at 50ºC for 48 hrs and finally ground into powder and stored at a dry place 102 

for the further experiments. 103 

2.2.1 Physiological analysis of starch 104 

Content of proteins, moisture, ash and fat of the rice starch was determined according to AOAC 105 

methods AOAC (1990). Content of amylose in the rice starch was analysed using iodine 106 

colorimetric reaction as reported previously [18]. 107 

2.3 Polysaccharide suspension solution   108 

Polysaccharide suspension solution was prepared from rice starch, ι-car, fatty acid, glycerol 109 

and tween®20 as shown in Table 1. Gelatinization of rice starch was obtained by mixing rice 110 

starch (2-4%) with water at 85ºC for 15 min. The ι-car (0.5-2%) was added and heated at 80ºC 111 

to a clear solution. Starch-ι-car mixture was then mixed and stirred with melted stearic acid 112 

(0.3-0.9%) and 0.2% of tween®20. Finally, glycerol was added and stirred for 15 min. To 113 

prepare the film, 20 ml of mixture solution was poured in to petri plates and dried in oven for 114 

24 hrs at 35ºC. Films were peeled off and conditioned at 27ºC, relative humidity (RH) 60% for 115 

72 hrs prior to testing.  116 
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2.4 Swelling power (SP) and leached amylose (LA) 117 

SP and LA was determined by previously developed method [19] with some modifications. 118 

Starch suspension solutions in different ratios (RS: ι-car -2:2%, 2.5:1.5%, 3:1%,4:0.5%, pure-119 

4 % RS) were heated in water bath at 90°C for 5-30 min. Suspension solution was cooled in 120 

ice before centrifugation at 15000 rpm for 30 min. Supernatant was used for LA determination 121 

using iodine colorimetric method [20]. LA was calculated by dividing the amylose content in 122 

supernatant to original weight of starch. Residue was weighed and dried at 110°C for 24 hrs 123 

for SP determination and calculated by ratio of wet weight of residue to its dry weight. 124 

2.5 Film Characterisation  125 

2.5.1 Physical Properties 126 

2.5.1.1 Film thickness (FT)  127 

FT was measured using a digital micro-meter (Mitutoyo, Co., Code No. 543-551-1, Model ID-128 

F125, 139 Japan; sensitivity= 0.001 mm). Measurements were taken randomly from 10 129 

different points for individual film samples and average value was calculated. Results from 130 

thickness measurement were used to assess the water vapour permeability and opacity of edible 131 

film. 132 

2.5.1.2 Film solubility (FS) 133 

FS was measured according to previously reported method [21] with some modifications. Film 134 

strips (15 x 50 mm) were placed in 50 ml of distilled water with subsequently shaking at 30 135 

rpm for 24 hrs at room temperature. Undissolved portion was then collected and dried at 110ºC 136 

for 24 hrs to a constant weight. FS was determined according to Eq. 1.  137 

   𝐹𝐹𝐹𝐹(%) = 𝑆𝑆(𝑖𝑖)−𝑆𝑆(𝑓𝑓)

𝑆𝑆(𝑖𝑖)
 ×  100               (1)      138 
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𝐹𝐹(𝑖𝑖)= initial weight of film sample. 𝐹𝐹(𝑓𝑓) = weight of film sample after drying. 139 

2.5.1.3 Film Moisture content (MC) 140 

MC of the film samples (1.5 x 4.0 cm) was determined gravimetrically by measuring water 141 

removed from the initial mass. The film samples were dried at 110ºC for 24 hrs to attain a 142 

constant weight. MC of the films was calculated according to Eq. 2.  143 

𝐹𝐹𝐹𝐹𝐹𝐹 (%) =  𝑀𝑀𝑀𝑀(𝑖𝑖)−𝑀𝑀𝑀𝑀(𝑓𝑓)

𝑀𝑀𝑀𝑀(𝑖𝑖)
  × 100 (2) 144 

𝐹𝐹𝐹𝐹(𝑖𝑖)= initial weight of film sample. 𝐹𝐹𝐹𝐹(𝑓𝑓) = weight of film sample after drying 145 

2.5.2 Barrier Properties 146 

2.5.2.1 Water vapour permeability (WVP) 147 

WVP was determined using gravimetric method, ASTM E96 procedure [22], as described in 148 

previous study [21]. Briefly, permeation cells (cup containing anhydrous CaCl2 granules with 149 

0% RH) were sealed tightly by the sample film and placed under controlled RH conditions 150 

(NaCl saturated solution; 75 % RH) at 25ºC. Water vapour transport was determined using the 151 

weight gain of the cell at a steady state of transfer. Changes in the weight of the cell were 152 

recorded and plotted as a function of time. The slope of each line was evaluated by linear 153 

regression (R2 > 0.99), and the water vapour transmission was calculated through the slope of 154 

the straight line (g/s) divided by the test area (m2). After the permeation tests, the film thickness 155 

was measured and WVP (g Pa−1s−1m−1) was calculated as:  156 

WVP = ∆𝑚𝑚
𝐴𝐴 ∆𝑡𝑡

𝑋𝑋
∆𝑃𝑃

(3) 157 
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∆𝑚𝑚/∆𝑡𝑡 = weight of moisture gain per unit time (gs-1) and can be calculated by the slope of the 158 

graph. A= area of the exposed film surface (m2), T = thickness of the film (mm), ∆𝑃𝑃= represents 159 

the water vapour pressure difference inside and outside of the film (Pa) [23].   160 

2.5.3 Optical properties 161 

2.5.3.1 Film opacity  162 

FO measurements were performed according to previously described method  [24] with some 163 

modifications.  Rectangular film samples were placed in the cuvette loaded to the 164 

spectrophotometer (Cary 50 Bio UV-Visible spectrophotometer) and a blank cuvette was used 165 

as a reference. Absorbance was recorded at 560 nm. Low value of opacity corresponds to high 166 

transparency. Opacity was calculated using Eq. 4. 167 

O = Abs560/x           (4) 168 

O = opacity of the film, Abs 560 = Absorbance of the film at 560 nm, x = thickness of the film 169 

in mm.  170 

2.5.3.2 Colour measurement 171 

Film colour was determined by using Minolta colorimeter (Minolta CR-300 Japan). The colour 172 

profile was expressed as L=100 (white) to L=0 (black), -a = (greenness) to +a = (redness) and 173 

-b = (blueness) to +b = (yellowness). Total colour difference was calculated by the equation 174 

given below [25]. Ten readings of three different replicates were recorded and mean was 175 

calculated. 176 

ΔE = [(∆𝐿𝐿)2 +  (∆𝑎𝑎 )2 +  (∆𝑏𝑏2)]1 2�                  (5) 177 

Where,∆𝐿𝐿,  ∆𝑎𝑎 and ∆𝑏𝑏 are changes in the values of colour parameters. 178 

2.5.4 Mechanical properties 179 
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2.5.4.1 Tensile strength (TS) and elongation at break (EAB) 180 

Tensile strength (TS) and elongation at break (EAB) were determined by Texture Analyzer 181 

(LLOYD Instrument LTD, Fareham, UK) using previously developed method [21]. 182 

Preconditioned (60% RH) films (15 x 40 mm) were placed in the tensile grip with initial grip 183 

distance 40 mm and 1 mm/s crosshead speed. Eight samples from every formulation were 184 

studied for the mechanical properties of the film. TS and EAB were expressed in MPa and 185 

N/mm.   186 

2.5.5 Characterization of bio composite 187 

2.5.5.1 Fourier transform infrared spectroscopy (FT-IR) 188 

FTIR spectra of starch-ι-car films were studied using infrared spectrometer (Thermo scientific 189 

Nicolet iS10 FT-IR, USA). Spectral measurements were performed in the absorbance mode. 190 

Each spectrum was recorded at the range of 400-4000 cm-1 with complete 32 scans at a 191 

resolution of 4cm-1 [2]. 192 

2.5.5.2 X- ray diffraction 193 

X-ray diffraction pattern of film compositions was obtained by using x-ray diffractometer 194 

(PANanalytical, X’pert PRO Multi-purpose X-ray diffractometer, Almelo, Netherland) under 195 

the following instrumental conditions: 40 mA, 40 kV, angle 2θ: 5.0° and 59.9°, step size = 196 

0.0130°, using Kα/K cu radiations (λ = 1.54/1.39 A). X-ray diffraction pattern for rice starch, 197 

ι-car and stearic acid was also analyzed to understand the crystalline behavior of the individual 198 

compounds.  199 

2.5.6 Statistical analysis 200 
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Statistical analysis was performed using SPSS 23.0.0 statistical software for windows (SPSS 201 

IBM, USA). One way ANOVA was used to analyse the data. The mean values were evaluated 202 

using Tukey's multiple comparison test and Duncan test with p< 0.05 denoted statistical 203 

significance.  204 

 205 

3. Results and discussion 206 

3.1 Content of rice starch 207 

Amylose, proteins, ash, fat and moisture of starch was reported to affect the properties of starch 208 

[26]. Starch extracted from rice showed amylose 11.33%, lipid 0.01%, protein 0.71%, moisture 209 

11.64% and ash 4.9% respectively.  210 

3.2 Swelling power (SP) and Leached amylose (LA) 211 

SP is the indication of water absorption index of granules. Variations in the SP and LA are 212 

shown in the Fig. 1. SP of the RS-ι-car blend increased with decrease in the starch concentration 213 

and varies between 9.0-17.75 g/g and significantly affected by ι-car concentration (p<0.05). 214 

High concentration of starch inhibited the swelling of starch granules due to increased amylose 215 

content. High absorption capacity of ι-car and low amylose content provided the formulation 216 

F1 with high swelling power which decreases subsequently with increase in starch 217 

concentration from F1-F4. The reason could be explained on the basis inhibition effect of 218 

amylose on swelling capacity. Similar explanation is provided in the previous study based on 219 

composite starch combinations [19, 26]. Furthermore, high absorption of ι-car with rice starch 220 

could minimizes the chances of phase separation which thus improving the permeability and 221 

mechanical properties of the film. 222 

Simultaneously it is important to know the optimum time-temperature combination for 223 

effective gelatinization of starch in combination with other blending material. Starch reaches 224 
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to its gelatinized temperature in between 80-90°C and similar range has been reported to be 225 

suitable for ι-car to form a gelling mixture [19]. Findings of present study revealed that time 226 

has a significant impact (p<0.05) on the gelatinization mechanism as it reflects the amount of 227 

leached amylose (apparent amylose). At low time-temperature combination (5min/90°C) the 228 

amount of leached amylose was low (0.7-4.5 g/g) however it increased significantly when 229 

formulations (F1-F4) were heated continuously for 10 minutes. It is important to note that 230 

further increase in heating time reduces the amount of leached amylose content. Reason can be 231 

explained on the basis of partial gelatinization in which leached out amylose prevent the further 232 

amylose from leaching out. Thus the availability of free amylose reduces for interaction with 233 

the carrageenan and affects the mechanical and barrier attributes of film [27]. 234 

3.3 FTIR spectra 235 

Infrared spectroscopy is a powerful tool widely used for the characterization of polysaccharides 236 

to study the molecular interactions characterised by the shifting of absorption bands [28]. 237 

Influence of different ingredient ratios on shifting of IR characteristic bands is shown in Fig. 238 

2. Changes in the absorption bands stretching indicates the possible structural interactions 239 

between the partaking components in the coating matrix [29]. FT-IR spectra of composite film 240 

showed some common characteristics absorption bands at different wave numbers. 2851cm-1 -241 

3050cm-1 represents the C-H stretching vibrations. 2912 cm-1 corresponds to -OH functional 242 

group formed due to the vibrational stretching associated with free inter and intra molecular 243 

bonds in -OH groups. The assignment of these bands are in line with previous reported results 244 

with konjac-glucomannan/curdlan [30], k-carrageenan and locust bean [31], carboxymethyl-245 

gellan and pullulan [2]. It is also important to mention about smaller bands at the wavenumber 246 

ranges from 700-1000 cm-1 representing the fingerprinting region denoting the characteristic 247 

signatures of each polysaccharide. Spectral region between 800-950 cm-1 corresponds to C-O-248 

SO3 on C2 of 3,6-anhydrogalactosen, C–O–SO3 on C4 of galactose, C–O–SO3 on C2 of 3,6-249 
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anhydrogalactose, C–O of 3,6-anhydrogalactose respectively [32]. Similar bands were 250 

observed in the RS-ι-car spectra at wavenumbers 740 cm-1 (3, 6-anhydro-D-galactose), 800 cm-251 

1 representing anomeric configuration (α-D-galactopyranose unit). The wavenumbers, 852 cm-252 

1 (galactose-4-sulphate) and 933 cm-1 (3, 6- anhydro galactose or 3, 6- anhydro-galactose-2-253 

sulphate) attributed to the presence of ester sulphate groups which are the characteristics of 254 

sulphated polysaccharide compounds. Film formulation F1-F4 showed bands stretching at 255 

1200-1300 cm-1, shifting of bands in this region is due to interactions between the charged 256 

functional groups between the polysaccharides. The additional major peak at 1652 cm-1 257 

observed in the infrared spectra of RS-ι-car film could be assigned for water.  Formation of 258 

inter- molecular interactions in RS-ι-car film influences the interactions and miscibility 259 

between these two polysaccharides can be observed in the stretched regions. Finding of this 260 

work are in line with previous work based on the characterization of k-car-LBG film [31, 33].  261 

3.4 X- ray diffraction 262 

A semicrystalline pattern of blended film compared with pure ingredients is shown in the Fig. 263 

3. XRD curve shows broad and sharp peaks comprising amorphous and crystalline region 264 

respectively. Amorphous-crystalline structural transitions induced as a result of molecular 265 

interactions between polysaccharides are responsible for their varying functional properties and 266 

favours the amorphous structure [31].  A typical A-type polymorphic form was observed for 267 

pure rice starch with unresolved peaks (2θ =17°& 18°) and separate peaks (2θ =15°& 23°). The 268 

XRD pattern is similar to the previously reported results conducted on native and modified rice 269 

starch [34]. Pattern showed some small peaks in the region 2θ=7°-15° and two broad peaks at 270 

2θ =22°& 24° probably due to the presence of stearic acid crystallites. From the XRD profile 271 

it is clear that miscibility of blended formulation (F1-F4) affected by the varying concentration 272 

of ingredients. As it could be seen from the XRD profile that intensity of crystallite peaks 273 
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decreases with the increase in ι-car concentration from F4 (0.50%) to F1 (2%), indicating that 274 

crystallinity of RS-ι-car-stearic acid films were strongly influenced by the presence of 275 

carrageenan. The interaction mechanism between starch-carrageenan may be correlated to the 276 

adsorption of carrageenan molecules on starch surface which destroy the crystalline domain of 277 

the biopolymers [35]. The possible interactions between these moieties which has led to the 278 

broadening of peak area, is a good indicator of miscibility between the partaking ingredients.  279 

Furthermore, it is worth noting that sharp peaks at 2θ~22° & 24° varied with stearic acid 280 

content and higher for F4 formulation (0.9%) than F1 formulation (0.3%). The possible reason 281 

could be due to the agglomeration of stearic acid content over the film surface after drying 282 

signifies that there exists some phase separation between two biopolymers. Similar behaviour 283 

regarding the accumulation of stearic acid crystals (lipid agglomeration) on the cassava starch 284 

based film was also observed in previously reported by Chiumarelli and Hubinger [6]. 285 

In conclusion, results of XRD study explained the compatibility of starch and carrageenan in 286 

combination with other components however, accurate concentrations of stearic acid is 287 

necessary to improve the barrier properties of film while maintaining the other important 288 

attributes.  289 

3.5 Thickness (FT) 290 

FT greatly influences the WVP and transparency of the film. Precise and accurate measurement 291 

of this parameter is really important to avoid the effect to barrier properties. Thickness of rice 292 

starch-ι-car films varied between 0.084 and 0.114 mm respectively. FT corresponding to 293 

different formulations is summarized in Fig. 4a. Formulation F1, comprising 2% rice starch 294 

and 2% ι-car with 0.3% stearic acid gives a film of minimum thickness. Increase in starch 295 

concentration from the formulation F1-F4 made it possible to have a significant impact on the 296 
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film thickness (p<0.05). Similar results were reported in the previous study where starch 297 

concentration had a profound effect on the thickness of biopolymer film [36]. 298 

3.6 Moisture content (MC) 299 

Interactions between the hydrocolloids affect the film affinity for water. Table 2 describes the 300 

variations in the MC of composed film. Polysaccharides-lipid ratio significantly affect (p<0.05) 301 

the moisture content of film. To the formulation F1, higher concentration of galactans (2%) 302 

minimizes the moisture content of edible film (8.48%). MC was maximum at 3% starch, 1% ι-303 

car and 0.7% stearic acid. Results of this study are consistent with the previously reported data 304 

where increased concentrations of ι-car lower the moisture content of the edible film [31]. The 305 

most probable reason for this behaviour could be due to the lack of interactions sites, possibly 306 

because of entrapment of starch molecules in the ι-car double helices structure. Another 307 

possible reason for this trend could be due to the crosslinking interactions between the 308 

polymers. The availability of free OH groups diminishes as a result of anionic sulphate and 309 

starch -OH group interactions at higher galactan concentration. Moreover, as the availability 310 

of OH group increases polysaccharide – water interaction dominated accordingly. Similar 311 

explanation was provided in the previous study based on galactans [37]. It is worth noting that 312 

the further increase in stearic acid (0.7-0.9%) and starch concentration (3-4%) resulted to the 313 

declines in film moisture content (p<0.05). This could be due to increased fatty acid content 314 

which increased the hydrophobicity of the film matrix which affect the moisture content of 315 

film. 316 

3.7 Film solubility 317 

Solubility ranged from 43.35% to 63.22% which are good values for fruit applications (Fig. 318 

5b). Solubility values were affected significantly (p<0.05) with the increase in ι-car 319 

concentration. Formulation F1 (2% rice starch: 2% ι-car: 0.3% stearic acid) showed the 320 
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maximum solubility value (63.22%) which decreases gradually from formulation F1 to F4. ι-321 

car undergoes structural modifications (coil to double helix) when combines with excess water 322 

[38]. Moreover, these structural transitions were largely dependent on the content of ester 323 

sulphate, type of carrageenan, temperature and concentration [39]. Solubility was lowest 324 

(p<0.05) at formulation F4 consisting of 0.5% ι-car with high starch (4%) and fatty acids 325 

(0.9%) concentrations. Most probable reason associated with this trend could be due to increase 326 

in the lipid content of film suspension solution from formulation F1-F4. The findings of this 327 

study are in line with the previous study where increased concentration of lipids affected the 328 

solubility of edible film [40]. 329 

3.8 Water vapour permeability (WVP)  330 

Minimum WVP of edible films describes the better barrier properties. Polysaccharide based 331 

edible coating including ι-car has low permeability values [41]. Film formulation F1, 332 

containing 2% rice starch and 2% ι-car with 0.3% stearic acid showed the minimum WVP (3.55 333 

x 10-11 gs-1m-1Pa-1) values (p<0.05) as compared to formulation F2 (4.22 x 10-11 gs-1m-1Pa-1) 334 

and F3 (4.57 x 10-11 gs-1m-1Pa-1). Formulation F1and F4 presented no significant statistical 335 

difference (p>0.05) showing better WVP values, however it was found to be statistically 336 

different (p<0.05) with F1 & F3 formulations (Fig.4b). Similar results were reported in the 337 

previous study where WVP value substantially decreased as the concentration of ι-car was 338 

increased from 0 to 100% [31]. The differences in the permeability with in the formulations 339 

may be due to the interactions between the film components.  ι-car acts as a protector for starch 340 

granules [42]. Double helical structure of carrageenan acts as a protector for the starch molecule 341 

and trap it in the coiled structure (graphical abstract). Strong networking interactions with rice 342 

starch gives a compact crystalline structure which strengthens the polymeric chain integrity of 343 

film. Interactions study between starch-ι-car complexes using confocal scanning laser 344 

microscopy provided the similar explanation for such type of behaviour of these 345 
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polysaccharides [35] however, comprehensive detail future study is required to understand the 346 

mechanism thoroughly. 347 

It is also worth mentioning that in spite of lowering the level of ι-car (0.5%), WVP 348 

unexpectedly decreased at F4 with higher level of lipid content. Similar behaviour was 349 

observed in the cassava starch based edible films using lipid as a hydrophobic component 350 

where the rate of permeate transfer was higher at lower concentration of oleic acid and 351 

decreased sequentially. [6]. This could be due to the hydrophilic-hydrophobic ratio in the film 352 

structure. Fatty acid in film matrix imparts the hydrophobic character resulting in to 353 

morphological alterations in the film structure [43, 44]. At low fatty acid concentration water 354 

molecules permeate the hydrophilic matrix through a straight path however permeation 355 

becomes difficult at high fatty acid concentration with dominated hydrophobicity of film. 356 

Moreover, Low rate of permeate migration at higher starch concentration could also be 357 

explained on the basis of thickness of film. Thickness of film increases (p<0.05) with the 358 

increase in starch concentration (2-4%) and was maximum at F4 (0.114 mm). Thickness of the 359 

film matrix is straightly related to starch concentration which describes the increasing solid 360 

density of film matrix and promoted the resistance to the water vapour permeability [45]. 361 

3.9 Opacity and colour 362 

Opacity of film ranged from 0.5 to 1.0% (Table 2). Lowest opacity value corresponds to high 363 

transparency which is prerequisite for the fruit packaging. Minimum and maximum opacity 364 

values were recorded for F1 and F4 respectively (p<0.05). ι-car  also forms a transparent gel 365 

solution on heating and  gives less opacity than starch solution [43]. The RS-ι-car mixture was 366 

clear for the formulation F1 and becomes turbid with the increase in starch (2-4%) and fatty 367 

acid (0.3-0.9%) concentration. Results are in line with the previous study where fatty acids 368 

provided the less transparency to the resulting film [46]. In term of colour there exists no 369 
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statistical differences in the ΔE value of F1, F2 and F4 formulations however ΔE value was 370 

slightly higher in case of F3 which may be probably due to higher MC (Table 2). More MC 371 

might affect the reflection pattern of light passing through the film surface thus increasing the 372 

b* value (yellow-blue shade). Similar behaviour was reported in the previous study where 373 

presence of moisture affected the colour properties of film [31]. 374 

3.10 Mechanical properties-TS and EAB 375 

Tensile strength describes the maximum stress developed on the film material. TS and EAB 376 

values of different blends (F1-F4) of starch-ι-car film are presented in Fig. 6 (a, b) with 377 

significantly different values (p<0.05). Formulation F1 (2% ι-car) presented the high tensile 378 

strength (116.5 N/m2) which has contributed to the formation of stronger structure. Mechanical 379 

properties gradually decreased with the lowering in galactan concentration (0.5%) and was 380 

minimum (31.6 N/m2) at F4 with 0.5% ι-car and 0.9% stearic acid.  Finding of this study are 381 

similar to previous results where mechanical properties of the film improved with the escalation 382 

in ι-car concentration [19] and decreased with the increase in fatty acid concentration [47]. It 383 

is interesting to note that EAB for F1 was surprisingly higher (45.60 mm) than other 384 

formulations and follow the same trend as TS (p<0.05). EAB for formulations F1-F4 ranged 385 

from (15.7 to 45.60 mm). Formulation F4 showed the lowest value of TS and EAB (p<0.05). 386 

This trend finds the possible explanation on the basis of interactions and compatibility of rice 387 

starch with ι-car. The ι-car helices associations in the film matrix presented a more compact 388 

matrix when sample reaches to its gelation temperature and forms 3D structure as a result of 389 

chain pairing with the adjacent ι-car and rice starch. Similar explanation is provided in the 390 

previous study about the interaction of these biopolymers [39]. 391 

Conclusion 392 
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RS-ι-car blends provided the film with different varying properties. Coating formulation F1 393 

composed of 2% rice starch and 2% ι-car concentration provided the film with minimum 394 

thickness, better solubility, WVP and enhanced mechanical properties. However selection and 395 

concentration of fatty acid is important to control the harm to film properties. FT-IR, XRD 396 

study reveals that there exists compatibility and miscibility between the biopolymers and can 397 

be a suitable alternative for fruits coatings applications with accurate addition of hydrophobic 398 

component. Results of this study indicates that increased concentration of carrageenan with 399 

low stearic acid is effective in improving the physical, mechanical and barrier properties of 400 

film. However further study involving interactions between starch and carrageenan along with 401 

different fatty acids will be of great interest.  402 
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Graphical Abstract 

                                 

 

                                     Graphical representation of mechanism of interaction between rice starch-carrageenan and stearic acid. 



Captions 

 

Fig. 1. Swelling power and leached amylose content of RS-ι-car formulations (F1-F4) at 90°C. 

Fig. 2. FT-IR spectra of rice starch-ι-car film samples (F1-F4) in the region 400-3050 cm-1. 

Fig. 3.  X-ray diffraction pattern of film matrix. (a) ι-carrageenan, (b) stearic acid, (c) rice 

starch, (d) RS-ι-car-stearic acid blended film formulation F1-F4. Where F1=RS/ι-car/SA (2%, 

2%,0.3%), F2=(2.5%,1.5%,0.5%), F3=(3%,1%,0.5%), F4=(4%,0.5%,0.7%). 

Fig. 4.  Thickness (a), WVP (b) of rice starch-ι-car film blended with fatty acid, glycerol and 

surfactant. For (b) Values are multiplied by 1 x 10-11. Values denotes the means of replicates ± 

Standard error. a-c represents the difference between mean values.   

Fig. 5.  Opacity (a), Solubility (b) of rice starch-ι-car film blended with fatty acid, glycerol and 

surfactant. Values denotes the means of replicates ± Standard error. a-c represents the difference 

between mean values.  

Fig. 6.  Change in (a) Tensile strength (TS), (b) Elongation at break (EAB) of rice starch-ι-car 

film blended with fatty acid, glycerol and surfactant. Values denotes the means of replicates ± 

Standard error. a-c represents the difference between mean values. The values with the same 

letter are not significantly different according to Duncan's multiple range test (p>0.05). 

Graphical abstract: Graphical representation of mechanism of interaction between rice 

starch-carrageenan and stearic acid. 
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Fig. 6 (a, b) 

 



 

Table 1 

The different coating formulations containing rice starch (RS), ι-car (CR), stearic acid (SA), 

glycerol (Gly) and Tween®20 used for the experiments. 

     Variables Formulations (F) 
 

F1              F2 F3 F4 
RS (% w/w) 2% 2.50% 3% 4% 
CR (% w/w) 2% 1.50% 1% 0.50% 
 SA (% w/w) 0.30% 0.50% 0.70% 0.90% 
 Gly (% w/w) 30% (w/w) 30% (w/w) 30% (w/w) 30% (w/w) 

Tween®20 (% w/w) 0.20% 0.20% 0.20% 0.20% 
 

 



 

Table 2 

Colour and moisture content of rice starch-ι-car film blended with fatty acid, glycerol and 
surfactant. 

 

• Values denotes the Means of replicates ± Standard error.  

• a-c represents the difference between mean values. The values with the same letter are 

not significantly different according to Duncan's multiple range test (p>0.05). 

 

 

RS: CR: FA: 
Gly: Tween®20 

(% w/w) 

L a b ΔE Moisture 

Formulations      
F1 95.52±0.25a -0.31±0.00b 5.03±0.25b 5.33±0.2a 8.48±0.571b 
F2 96.227±0.32a -0.16± 0.01a 4.31±0.03c 5.09±0.01a 9.51±1.56b 
F3 95.448±0.40a -0.36±0.08b 6.34±0.19a 6.49±0.0b 17.06±0.21a 
F4 95.897±0.06a -0.37±0.00b 4.92±0.10b 5.43±0.02a 11.00±0.64b 
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