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Abstract-This paper presents a 1D distributed electro-thermal li-
ion cell model. The model is intended to give accurate 
representation of cell thermal and electrical characteristics in 
response to current application, highlighting distributions of these 
parameters across the cell. It is also designed to be compact and 
fast simulating. A generalized parameterization approach allows 
the model to be easily adaptable to different cell designs and 
chemistries. The model achieves this by combining a thermal 
model based on thermal laws, with an electrical equivalent circuit 
model, both populated by empirical data accessible through simple 
individual cell testing. In this paper, the model is explained, and 
simulation results are correlated against a Nickel Manganese 
Cobalt (NMC)/graphite cell cycled under constant current and 
also dynamic conditions without cooling. It was found that the 
model provides accurate results when compared to a constant 
current discharge and representative drive test cycle. 
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I.  INTRODUCTION  

Electrical/hybrid vehicles are demonstrating a continual and 
accelerating growth of automotive market share [1]. With this 
comes the increased need for development and verification of 
robust, compact and effective battery packs, which are 
becoming significant vehicle components. A key aspect of any 
modern design/verification strategy is simulation, creating a 
need for accurate cell level models.  These models may also be 
used for BMS development. In this work there has been the 
development of an electro-thermal cell model, which with its 
efficient, compact approach, can achieve fast simulation times 
while still achieving sufficiently accurate information about cell 
thermal/electrical characteristics and their distribution across 
cell thickness/diameter. It is designed to be easily adapted to 
different cell geometries and chemistries, through intelligent 
development of model parameters from of easily acquired test 
data. While there are many papers which model thermal [6]–
[11]  and electrical [9], [12], [13] distributions across a cell, are 
compact [14], [15], adaptable to different conditions [8], and 
optimized [9], there is room for developing a model that 
achieves all of these aspects. The model developed as 
described in this paper achieves these goals. This paper 
explains the model, and presents the results of a correlation 
exercise against constant current and dynamic cell discharge 
tests. 

II. MODEL RATIONALE AND STRUCTURE 

The model has been designed to have all required parameters 
to estimate performance, and eventually to inform models on 
cell aging. A thermal model is included, as it has well known 
that cell internal temperatures impact available capacity[18]–
[20], impedance [20], [21], and lifetime [11]. An electrical 
model is also developed, giving cell voltage as a function of cell 
energy and response to current. It also estimates State-of-
Charge (SoC) and emulates its effects on cell characteristics 
such as 
internal resistance [12]. Due to the strong interactions 
between the thermal and electrical characteristics of a cell, 
both models will be coupled in a closed loop, illustrated in Fig. 
1. 
An observed phenomena in large, energy dense cells, is that 
electrical and thermal conditions can vary throughout the cell 
thickness [3]–[6], [13], [14], which in extreme cases can lead to 
differences in lithiation across the active material ‘jellyroll’ 
[15], affecting cell performance and lifetime [5] [14]. To 
account for this, a 1D nodal distribution has been incorporated 
into the electrical and thermal models, with different possible 
interpretations dependent on cell geometry. For 
prismatic/pouch cells, the nodal distribution occurs along the 
thickness of the cell i.e. the direction in which the jelly roll 
components are stacked, as shown in Fig. 2. For cylindrical 
cells, the nodes are evenly spaced across the radial dimension, 
as shown in Fig. 3. For prismatic cells, nodes 1 and N have 
interactions with the surface, with other nodes interacting 
with each other. For cylindrical cells, the nodes are spaced in 
the radial direction, as shown in Fig. 4. Additional nodes are 
also used to represent the cell positive and negative terminals, 
which have conduction with all cell layers. 
The model platform is Matlab/Simulink. This was chosen for its 
versatility in conditions such as sample time and solver 
selection, and its ability to allow implementation of a bespoke 
model construct, while still allowing for fast simulation times. 
 

 
Fig. 1 Model interactions and interface 



 
Fig. 2 Modal Nodal Structure Prismatic Cells 

 
Fig. 3 Modal Nodal Structure Cylindrical Cells 

III. THERMAL MODEL 

The thermal model contains temperature states for each node. 
It quantifies heat generation during each timestep, calculating 
heatflow both between nodes and between the cell model and 
the external system. It does this by taking in the relevant 
electrical and external inputs, as shown in Fig. 4, and applying 
the heat balance equation shown in (1).  
(1) shows temperature distribution of active material, as a 
function of the 4 main contributions to thermal power 
transfer: irreversible heating 𝑞̇𝑞𝑖𝑖𝑖𝑖, reversible entropic power 
transfer 𝑞̇𝑞𝑒𝑒, convection between the cell and environment 𝑞̇𝑞𝑐𝑐 
and power transfer due to external cooling 𝑞̇𝑞𝑒𝑒𝑒𝑒. Thermal power 
transfer is converted into temperature change via the cell mass 
and specific heat capacity. These characteristics are individual 
to each cell, and are taken from either manufacturer data or 
reliable literature sources [37], [38].  

 

 
Fig. 4 Thermal Model Interfaces 

Irreversible heat generation is due to inefficiencies resulting 
from lithium-ion cell resistance to charge transfer [16]. This 
can be modeled as the resistance dependent voltage deviation 
from open circuit voltage multiplied by applied current[4], [5], 
[10], [17], [18], commonly expressed as in (2). 
There is also reversible thermal power transfer due to the 
phase changes that occur in cell active materials during cycling. 
This is dependent on cell temperature, applied current, and 
entropic coefficient, as shown in (3) [10], [13], [18]. The 
entropic coefficient is unique to each cell, and is usually 
empirically calculated  by analysing the change in open circuit 
voltage with temperature across the usable capacity range [2], 

[3], [10], [16], [19]. This coefficient is typically linear with 
temperature, but varies with SoC [19].  
An exposed cell cannot be treated in isolation, and thermally 
interacts with the external environment through convective 
effects, modelled by (4). This general equation has been used 
in models previously [3], [7], [16], [20]. This thermal transfer 
inherently affects the cell surface more than its center, which 
in some circumstances promote thermal gradients [21] [14]. 
Literature values of convection coefficients range 
considerably, suggesting a dependence on cell design and air 
flow characteristics [6], [38], [40], [45], [47], [48]. To account 
for this, the cell surface convection coefficient is modelled 
using known properties of air, taken from [23], and relations 
for natural and forced convections for either flat surfaces or 
cylinders, depending on cell geometry [8], [50]–[52]. 
The final term included in the heat balance is external cooling. 
This allows the simulation of power transfer from systems such 
as external thermal management systems, that could include 
mechanisms such as liquid cooling or phase change materials 
[4], [16], [18]. This power term is applied to either the cell 
surface or terminals, depending on the cooling method, and is 
also a consideration in thermal gradients [26]. 
To account for temperature distributions across the cell 
however, the above approach was expanded to a 1D nodal 
structure which could show thermal distribution across either 
the thickness (in the case of prismatic/pouch) or radial 
direction (cylindrical) cell direction. This direction was chosen 
due to the low thermal conductivity of the separator reducing 
thermal conductivity through jelly roll thickness, and due to 
thermal gradients being more significant to aging in this 
direction [14]. To correctly model the interactions between the 
jelly roll and external environment, additional nodes were 
added for the terminals and case. 

 
 mcellCpcell(TN-TN-1)=q̇ir+q̇ex-q̇c-q̇e   (1) 

 
 q̇ir=I2R [W]  (2) 

 
 q̇e=Tcell∆S=-TcellI �

δVoc

δT
�   (3) 

 
 q̇c=hsAs(Ts-Ta)    (4) 

 

IV. ELECTRICAL MODEL 

An equivalent circuit approach was used for the electrical 
model due to its ease of parameterization for different cells, 
and quick computational speed. Equivalent circuit models for 
Li-ion cells are usually based on open circuit voltage input, and 
elements representing contributions to cell resistance. The 
resistance contributions of a new cell can be characterized into 
3 effects: ohmic, charge transfer polarization and diffusion 
[24], [54]. Ohmic resistance is applied instantaneously from 
current application due to material resistance of cell 
components such as the electrolyte, electrode materials and 
terminals. Charge transfer polarization resistance results from 
the chemical reactions occurring on the electrode, and 
diffusion is due to the mass transport limitations of the 
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Case



electrolyte and electrode materials [55], [56]. Ohmic 
resistance is typically modelled as a single resistor, with 
additional resistance components modelled as resistor-
capacitor pairs.  
A study of different equivalent circuit approaches found that 
the best compromise between accuracy and modelling 
efficiency was a resistor paired with one parallel connected 
resistor and capacitor [9]. In fitting to empirical data however, 
it was found by the authors that 2 RC curves gave much more 
representative emulation of real data than a single RC curve, 
as shown in Fig. 6. This led to the choice of equivalent circuit 
shown in Fig. 5. The resulting state and output equations are 
shown in (5) and (6). 

 

 {ẋ}= �
Vṗ

Vḋ
�= �

-1
Rp*Cp

0

0 -1
Rd*Cd

� �
Vp
Vd
�+�

1
Cpt
1

Cdt

� I   (5) 

 

 {y}={VT}=[1 1] �
Vp
Vd
�+RoI+Voc   (6) 

 

Each model element required population over the known 
operating range. This took the place of empirical data, 
populated by an array of charge/discharge pulse testing at 
different temperature and current conditions, similar to that 
performed in [28]. Open circuit voltage (OCV) depends heavily 
on SoC, and has mild dependence on temperature [29]. There 
is a strong hysteresis effect of open circuit voltage based on 
current history [26][38] with true OCV only occurring after 
several hours [30]. To account for hysteresis, separate 2D OCV 
maps were implemented for charge and discharge.  
Charge transfer and polarization resistance are heavily 
dependent on temperature, SoC, current direction[27], and 
current magnitude [31]. While ohmic resistance is 
independent of SoC  [27], it is dependent on temperature [27], 
and in our data showed slight dependencies on SoC and 
current. Maps using these parameters were developed for all 
model elements. 
SoC is an essential model state due to its influence on cell 
electrical and thermal behavior. It is modelled based on the 
commonly used coulomb counting algorithm [64]–[67], with 
the initial estimation using the OCV-SoC relationship under 
relaxed conditions [32], [33] which the cell is assumed to be at 
the simulation start. 
It has been suggested that cell internal behaviour between cell 
layers, emulates that of full cells in parallel [12][68]. This 
approach was taken to model the distribution. The approach 
for modelling parallel cells was adapted from [34]. The 
resultant equations are shown in (7-13). 
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Fig. 5 Equivalent Circuit Approach used for each node 

 
Electrical Model Parameter Definition 
As the electrical model relies on accurate data, a strategy 
needed to be constructed for map population. A pulse testing 
strategy, similar to [28] and [31] was implemented, with tests 
being performed at several different temperatures and current 
magnitudes to give the required data.  This used an approach 
similar to [31], using exponential decay relations in (14) and 
(15). The data for each resistance parameter was then formed 
into maps, using an adapted version of the 
scatteredIntepolant() approach available in MATLAB. OCV and 
capacity data was also acquired from these tests. 

 Vp=�1-e
- -t
RpCp� IRp   (14) 

 

 Vd= �1-e
-t

RdCd� IRd   (15) 
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Fig. 6 Fitting of example test data with (a) 1 RC curve, and (b) 2 RC 

curves 

V. VERIFICATION OF MODEL 

 
Fig. 7 Cell Thermocouple Test Setup 

The model was verified by correlating to experimental data 
from tests performed on a 28Ah PHEV2 format NMC/graphite 
lithium-ion cell. The tests performed were a 3C discharge and 
a Federal Urban Driving Schedule (FUDS) [35], both between 
85% and 15% SoC. Both tests were performed with ambient 
temperature monitoring, but with no active temperature 
control, and the cell exposed to ambient air. PT100 
temperature monitoring was used with an accuracy of 0.1°C, 
with voltage and current accuracy of approximately 1mV and 
0.01A respectively, and measurement timesteps of 100ms. 
PT100s were placed in 3 positions on the body of the cell, and 
on each terminal, as shown in Fig. 7.  The correlation results 
are shown in Fig. 8 and Fig. 9, which show temperature 

comparison against the experimental data for the mid-height 
body and terminal sensors. The model boundary conditions 
were considering the cell exposed to ambient air, mimicking 
the test condition. 
For the 3C discharge, the temperature results are within 1.2 
ºC. The voltage error is within 10mV underload, and 18mV at 
the worst point (directly after load is removed). The profile also 
follows the experimental data well. For the FUDS, the 
temperature results are within 2.1 ºC, and the worst case 
voltage error was 40mV. The larger disparity is a function of 
the high periods of heat generation and due to the more 
dynamic nature of current application. The results are 
sufficiently accurate for most applications, but areas of 
improving accuracy would be to refine the resolution and 
accuracy of the underlying test data. In particular, a timestep 
resolution of 100ms made isolating ohmic resistance from 
dynamic influences difficult, and the voltage accuracy inhibited 
representative entropic coefficient maps. 
Fig. 10 shows the temperature and SoC distribution across the 
cell when ran with 7 nodes. It is clear that there is some 
temperature distribution in the regions of high current, but the 
internal conduction leads this to be resolved again in periods 
of relaxation. Because of the relatively mild and short duration 
of temperature distribution, the effect on cell lithiation 
distribution is low, and the cell maintains a largely 
homogeneous state. This is due to the periods of low or no 
current in the FUDS cycle allowing the cell to balance thermal 
and electrical characteristics. Testing under conditions of 
prolonged high current, or on higher capacity, energy dense 
cells would allow for greater analysis of thermal/electrical cell 
heterogeneity. 

VI. CONCLUSIONS AND FURTHER WORK 

A 1D electrical and thermal closed loop cell model was 
developed. The model was developed, using the 
Matlab/Simulink platform, in order to be applicable to a range 
of cell chemistries and geometries as well as be compact and 
fast calculating. The underlying equations were presented and 
described. The model was verified both under constant current 
and dynamic conditions. The model accurately estimates cell 
voltage and temperature response to current application, even 
under dynamic drive cycles. The model also emulates thermal 
and electrical distributions to a high degree of accuracy, 
although the capability of the test cell to maintain even 
conditions did not allow this to be fully evaluated. To further 
develop this model, testing should be done on a larger, more 
energy orientated cell to see the results. 
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B. Nomenclature 
𝐼𝐼                  Cell Current [A] 
𝑅𝑅𝑝𝑝               Charge Transfer Polarization Resistance [Ohm] 
𝑅𝑅𝑑𝑑               Diffusion Resistance [Ohm] 
𝑅𝑅𝑜𝑜               Ohmic Resistance [Ohm] 
𝑅𝑅𝑐𝑐               Connection Resistance [Ohm] 
𝐶𝐶𝑝𝑝               Charge Transfer Polarization Capacitance [Farad] 
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𝐶𝐶𝑑𝑑               Diffusion Capacitance [Farad] 
𝑉𝑉𝑝𝑝                Charge Transfer Polarization Voltage [V] 
𝑉𝑉𝑑𝑑                Diffusion Voltage [V] 
𝑉𝑉𝑜𝑜𝑜𝑜               Open Circuit Voltage [V] 
𝑉𝑉𝑇𝑇                Terminal Voltage [V] 
𝐶𝐶𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐          Cell specific heat capacity [J/kgK] 
T                   Temperature [K] 
𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐            Cell mass [kg] 
ℎ𝑠𝑠                 Cell convection coefficient [W/ m2] 
𝐴𝐴𝑠𝑠                 Cell surface area [m2] 

 

 
Fig. 8 3C Discharge correlation between experimental and simulation 

data 

 
Fig. 9 Nodal temperature and SoC evolution through FUDS. 

 
Fig. 10 Comparison of Experimental and Simulated Data FUDS 
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